perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / fs / btrfs / extent_io.c
blobd228f706ff3e61784e4c78e71a40d923dbefe1d2
1 // SPDX-License-Identifier: GPL-2.0
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
31 static inline bool extent_state_in_tree(const struct extent_state *state)
33 return !RB_EMPTY_NODE(&state->rb_node);
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
40 static DEFINE_SPINLOCK(leak_lock);
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45 unsigned long flags;
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
55 unsigned long flags;
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
62 static inline
63 void btrfs_leak_debug_check(void)
65 struct extent_state *state;
66 struct extent_buffer *eb;
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
87 #define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
96 #else
97 #define btrfs_leak_debug_add(new, head) do {} while (0)
98 #define btrfs_leak_debug_del(entry) do {} while (0)
99 #define btrfs_leak_debug_check() do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101 #endif
103 #define BUFFER_LRU_MAX 64
105 struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
111 struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
117 unsigned int extent_locked:1;
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
127 int ret;
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
141 static void flush_write_bio(struct extent_page_data *epd);
143 int __init extent_io_init(void)
145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 sizeof(struct extent_state), 0,
147 SLAB_MEM_SPREAD, NULL);
148 if (!extent_state_cache)
149 return -ENOMEM;
151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 sizeof(struct extent_buffer), 0,
153 SLAB_MEM_SPREAD, NULL);
154 if (!extent_buffer_cache)
155 goto free_state_cache;
157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio),
159 BIOSET_NEED_BVECS))
160 goto free_buffer_cache;
162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
165 return 0;
167 free_bioset:
168 bioset_exit(&btrfs_bioset);
170 free_buffer_cache:
171 kmem_cache_destroy(extent_buffer_cache);
172 extent_buffer_cache = NULL;
174 free_state_cache:
175 kmem_cache_destroy(extent_state_cache);
176 extent_state_cache = NULL;
177 return -ENOMEM;
180 void __cold extent_io_exit(void)
182 btrfs_leak_debug_check();
185 * Make sure all delayed rcu free are flushed before we
186 * destroy caches.
188 rcu_barrier();
189 kmem_cache_destroy(extent_state_cache);
190 kmem_cache_destroy(extent_buffer_cache);
191 bioset_exit(&btrfs_bioset);
194 void extent_io_tree_init(struct extent_io_tree *tree,
195 void *private_data)
197 tree->state = RB_ROOT;
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
200 spin_lock_init(&tree->lock);
201 tree->private_data = private_data;
204 static struct extent_state *alloc_extent_state(gfp_t mask)
206 struct extent_state *state;
209 * The given mask might be not appropriate for the slab allocator,
210 * drop the unsupported bits
212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
213 state = kmem_cache_alloc(extent_state_cache, mask);
214 if (!state)
215 return state;
216 state->state = 0;
217 state->failrec = NULL;
218 RB_CLEAR_NODE(&state->rb_node);
219 btrfs_leak_debug_add(&state->leak_list, &states);
220 refcount_set(&state->refs, 1);
221 init_waitqueue_head(&state->wq);
222 trace_alloc_extent_state(state, mask, _RET_IP_);
223 return state;
226 void free_extent_state(struct extent_state *state)
228 if (!state)
229 return;
230 if (refcount_dec_and_test(&state->refs)) {
231 WARN_ON(extent_state_in_tree(state));
232 btrfs_leak_debug_del(&state->leak_list);
233 trace_free_extent_state(state, _RET_IP_);
234 kmem_cache_free(extent_state_cache, state);
238 static struct rb_node *tree_insert(struct rb_root *root,
239 struct rb_node *search_start,
240 u64 offset,
241 struct rb_node *node,
242 struct rb_node ***p_in,
243 struct rb_node **parent_in)
245 struct rb_node **p;
246 struct rb_node *parent = NULL;
247 struct tree_entry *entry;
249 if (p_in && parent_in) {
250 p = *p_in;
251 parent = *parent_in;
252 goto do_insert;
255 p = search_start ? &search_start : &root->rb_node;
256 while (*p) {
257 parent = *p;
258 entry = rb_entry(parent, struct tree_entry, rb_node);
260 if (offset < entry->start)
261 p = &(*p)->rb_left;
262 else if (offset > entry->end)
263 p = &(*p)->rb_right;
264 else
265 return parent;
268 do_insert:
269 rb_link_node(node, parent, p);
270 rb_insert_color(node, root);
271 return NULL;
274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
275 struct rb_node **prev_ret,
276 struct rb_node **next_ret,
277 struct rb_node ***p_ret,
278 struct rb_node **parent_ret)
280 struct rb_root *root = &tree->state;
281 struct rb_node **n = &root->rb_node;
282 struct rb_node *prev = NULL;
283 struct rb_node *orig_prev = NULL;
284 struct tree_entry *entry;
285 struct tree_entry *prev_entry = NULL;
287 while (*n) {
288 prev = *n;
289 entry = rb_entry(prev, struct tree_entry, rb_node);
290 prev_entry = entry;
292 if (offset < entry->start)
293 n = &(*n)->rb_left;
294 else if (offset > entry->end)
295 n = &(*n)->rb_right;
296 else
297 return *n;
300 if (p_ret)
301 *p_ret = n;
302 if (parent_ret)
303 *parent_ret = prev;
305 if (prev_ret) {
306 orig_prev = prev;
307 while (prev && offset > prev_entry->end) {
308 prev = rb_next(prev);
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 *prev_ret = prev;
312 prev = orig_prev;
315 if (next_ret) {
316 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
317 while (prev && offset < prev_entry->start) {
318 prev = rb_prev(prev);
319 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 *next_ret = prev;
323 return NULL;
326 static inline struct rb_node *
327 tree_search_for_insert(struct extent_io_tree *tree,
328 u64 offset,
329 struct rb_node ***p_ret,
330 struct rb_node **parent_ret)
332 struct rb_node *prev = NULL;
333 struct rb_node *ret;
335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
336 if (!ret)
337 return prev;
338 return ret;
341 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342 u64 offset)
344 return tree_search_for_insert(tree, offset, NULL, NULL);
347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348 struct extent_state *other)
350 if (tree->ops && tree->ops->merge_extent_hook)
351 tree->ops->merge_extent_hook(tree->private_data, new, other);
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
361 * This should be called with the tree lock held.
363 static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
366 struct extent_state *other;
367 struct rb_node *other_node;
369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 return;
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
377 merge_cb(tree, state, other);
378 state->start = other->start;
379 rb_erase(&other->rb_node, &tree->state);
380 RB_CLEAR_NODE(&other->rb_node);
381 free_extent_state(other);
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
389 merge_cb(tree, state, other);
390 state->end = other->end;
391 rb_erase(&other->rb_node, &tree->state);
392 RB_CLEAR_NODE(&other->rb_node);
393 free_extent_state(other);
398 static void set_state_cb(struct extent_io_tree *tree,
399 struct extent_state *state, unsigned *bits)
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->private_data, state, bits);
405 static void clear_state_cb(struct extent_io_tree *tree,
406 struct extent_state *state, unsigned *bits)
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->private_data, state, bits);
412 static void set_state_bits(struct extent_io_tree *tree,
413 struct extent_state *state, unsigned *bits,
414 struct extent_changeset *changeset);
417 * insert an extent_state struct into the tree. 'bits' are set on the
418 * struct before it is inserted.
420 * This may return -EEXIST if the extent is already there, in which case the
421 * state struct is freed.
423 * The tree lock is not taken internally. This is a utility function and
424 * probably isn't what you want to call (see set/clear_extent_bit).
426 static int insert_state(struct extent_io_tree *tree,
427 struct extent_state *state, u64 start, u64 end,
428 struct rb_node ***p,
429 struct rb_node **parent,
430 unsigned *bits, struct extent_changeset *changeset)
432 struct rb_node *node;
434 if (end < start)
435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
436 end, start);
437 state->start = start;
438 state->end = end;
440 set_state_bits(tree, state, bits, changeset);
442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
443 if (node) {
444 struct extent_state *found;
445 found = rb_entry(node, struct extent_state, rb_node);
446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
447 found->start, found->end, start, end);
448 return -EEXIST;
450 merge_state(tree, state);
451 return 0;
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 u64 split)
457 if (tree->ops && tree->ops->split_extent_hook)
458 tree->ops->split_extent_hook(tree->private_data, orig, split);
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
478 struct rb_node *node;
480 split_cb(tree, orig, split);
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
489 if (node) {
490 free_extent_state(prealloc);
491 return -EEXIST;
493 return 0;
496 static struct extent_state *next_state(struct extent_state *state)
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
506 * utility function to clear some bits in an extent state struct.
507 * it will optionally wake up any one waiting on this state (wake == 1).
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
514 unsigned *bits, int wake,
515 struct extent_changeset *changeset)
517 struct extent_state *next;
518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519 int ret;
521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
522 u64 range = state->end - state->start + 1;
523 WARN_ON(range > tree->dirty_bytes);
524 tree->dirty_bytes -= range;
526 clear_state_cb(tree, state, bits);
527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528 BUG_ON(ret < 0);
529 state->state &= ~bits_to_clear;
530 if (wake)
531 wake_up(&state->wq);
532 if (state->state == 0) {
533 next = next_state(state);
534 if (extent_state_in_tree(state)) {
535 rb_erase(&state->rb_node, &tree->state);
536 RB_CLEAR_NODE(&state->rb_node);
537 free_extent_state(state);
538 } else {
539 WARN_ON(1);
541 } else {
542 merge_state(tree, state);
543 next = next_state(state);
545 return next;
548 static struct extent_state *
549 alloc_extent_state_atomic(struct extent_state *prealloc)
551 if (!prealloc)
552 prealloc = alloc_extent_state(GFP_ATOMIC);
554 return prealloc;
557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
559 struct inode *inode = tree->private_data;
561 btrfs_panic(btrfs_sb(inode->i_sb), err,
562 "locking error: extent tree was modified by another thread while locked");
566 * clear some bits on a range in the tree. This may require splitting
567 * or inserting elements in the tree, so the gfp mask is used to
568 * indicate which allocations or sleeping are allowed.
570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571 * the given range from the tree regardless of state (ie for truncate).
573 * the range [start, end] is inclusive.
575 * This takes the tree lock, and returns 0 on success and < 0 on error.
577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
578 unsigned bits, int wake, int delete,
579 struct extent_state **cached_state,
580 gfp_t mask, struct extent_changeset *changeset)
582 struct extent_state *state;
583 struct extent_state *cached;
584 struct extent_state *prealloc = NULL;
585 struct rb_node *node;
586 u64 last_end;
587 int err;
588 int clear = 0;
590 btrfs_debug_check_extent_io_range(tree, start, end);
592 if (bits & EXTENT_DELALLOC)
593 bits |= EXTENT_NORESERVE;
595 if (delete)
596 bits |= ~EXTENT_CTLBITS;
597 bits |= EXTENT_FIRST_DELALLOC;
599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600 clear = 1;
601 again:
602 if (!prealloc && gfpflags_allow_blocking(mask)) {
604 * Don't care for allocation failure here because we might end
605 * up not needing the pre-allocated extent state at all, which
606 * is the case if we only have in the tree extent states that
607 * cover our input range and don't cover too any other range.
608 * If we end up needing a new extent state we allocate it later.
610 prealloc = alloc_extent_state(mask);
613 spin_lock(&tree->lock);
614 if (cached_state) {
615 cached = *cached_state;
617 if (clear) {
618 *cached_state = NULL;
619 cached_state = NULL;
622 if (cached && extent_state_in_tree(cached) &&
623 cached->start <= start && cached->end > start) {
624 if (clear)
625 refcount_dec(&cached->refs);
626 state = cached;
627 goto hit_next;
629 if (clear)
630 free_extent_state(cached);
633 * this search will find the extents that end after
634 * our range starts
636 node = tree_search(tree, start);
637 if (!node)
638 goto out;
639 state = rb_entry(node, struct extent_state, rb_node);
640 hit_next:
641 if (state->start > end)
642 goto out;
643 WARN_ON(state->end < start);
644 last_end = state->end;
646 /* the state doesn't have the wanted bits, go ahead */
647 if (!(state->state & bits)) {
648 state = next_state(state);
649 goto next;
653 * | ---- desired range ---- |
654 * | state | or
655 * | ------------- state -------------- |
657 * We need to split the extent we found, and may flip
658 * bits on second half.
660 * If the extent we found extends past our range, we
661 * just split and search again. It'll get split again
662 * the next time though.
664 * If the extent we found is inside our range, we clear
665 * the desired bit on it.
668 if (state->start < start) {
669 prealloc = alloc_extent_state_atomic(prealloc);
670 BUG_ON(!prealloc);
671 err = split_state(tree, state, prealloc, start);
672 if (err)
673 extent_io_tree_panic(tree, err);
675 prealloc = NULL;
676 if (err)
677 goto out;
678 if (state->end <= end) {
679 state = clear_state_bit(tree, state, &bits, wake,
680 changeset);
681 goto next;
683 goto search_again;
686 * | ---- desired range ---- |
687 * | state |
688 * We need to split the extent, and clear the bit
689 * on the first half
691 if (state->start <= end && state->end > end) {
692 prealloc = alloc_extent_state_atomic(prealloc);
693 BUG_ON(!prealloc);
694 err = split_state(tree, state, prealloc, end + 1);
695 if (err)
696 extent_io_tree_panic(tree, err);
698 if (wake)
699 wake_up(&state->wq);
701 clear_state_bit(tree, prealloc, &bits, wake, changeset);
703 prealloc = NULL;
704 goto out;
707 state = clear_state_bit(tree, state, &bits, wake, changeset);
708 next:
709 if (last_end == (u64)-1)
710 goto out;
711 start = last_end + 1;
712 if (start <= end && state && !need_resched())
713 goto hit_next;
715 search_again:
716 if (start > end)
717 goto out;
718 spin_unlock(&tree->lock);
719 if (gfpflags_allow_blocking(mask))
720 cond_resched();
721 goto again;
723 out:
724 spin_unlock(&tree->lock);
725 if (prealloc)
726 free_extent_state(prealloc);
728 return 0;
732 static void wait_on_state(struct extent_io_tree *tree,
733 struct extent_state *state)
734 __releases(tree->lock)
735 __acquires(tree->lock)
737 DEFINE_WAIT(wait);
738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
739 spin_unlock(&tree->lock);
740 schedule();
741 spin_lock(&tree->lock);
742 finish_wait(&state->wq, &wait);
746 * waits for one or more bits to clear on a range in the state tree.
747 * The range [start, end] is inclusive.
748 * The tree lock is taken by this function
750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751 unsigned long bits)
753 struct extent_state *state;
754 struct rb_node *node;
756 btrfs_debug_check_extent_io_range(tree, start, end);
758 spin_lock(&tree->lock);
759 again:
760 while (1) {
762 * this search will find all the extents that end after
763 * our range starts
765 node = tree_search(tree, start);
766 process_node:
767 if (!node)
768 break;
770 state = rb_entry(node, struct extent_state, rb_node);
772 if (state->start > end)
773 goto out;
775 if (state->state & bits) {
776 start = state->start;
777 refcount_inc(&state->refs);
778 wait_on_state(tree, state);
779 free_extent_state(state);
780 goto again;
782 start = state->end + 1;
784 if (start > end)
785 break;
787 if (!cond_resched_lock(&tree->lock)) {
788 node = rb_next(node);
789 goto process_node;
792 out:
793 spin_unlock(&tree->lock);
796 static void set_state_bits(struct extent_io_tree *tree,
797 struct extent_state *state,
798 unsigned *bits, struct extent_changeset *changeset)
800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
801 int ret;
803 set_state_cb(tree, state, bits);
804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
805 u64 range = state->end - state->start + 1;
806 tree->dirty_bytes += range;
808 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809 BUG_ON(ret < 0);
810 state->state |= bits_to_set;
813 static void cache_state_if_flags(struct extent_state *state,
814 struct extent_state **cached_ptr,
815 unsigned flags)
817 if (cached_ptr && !(*cached_ptr)) {
818 if (!flags || (state->state & flags)) {
819 *cached_ptr = state;
820 refcount_inc(&state->refs);
825 static void cache_state(struct extent_state *state,
826 struct extent_state **cached_ptr)
828 return cache_state_if_flags(state, cached_ptr,
829 EXTENT_IOBITS | EXTENT_BOUNDARY);
833 * set some bits on a range in the tree. This may require allocations or
834 * sleeping, so the gfp mask is used to indicate what is allowed.
836 * If any of the exclusive bits are set, this will fail with -EEXIST if some
837 * part of the range already has the desired bits set. The start of the
838 * existing range is returned in failed_start in this case.
840 * [start, end] is inclusive This takes the tree lock.
843 static int __must_check
844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
845 unsigned bits, unsigned exclusive_bits,
846 u64 *failed_start, struct extent_state **cached_state,
847 gfp_t mask, struct extent_changeset *changeset)
849 struct extent_state *state;
850 struct extent_state *prealloc = NULL;
851 struct rb_node *node;
852 struct rb_node **p;
853 struct rb_node *parent;
854 int err = 0;
855 u64 last_start;
856 u64 last_end;
858 btrfs_debug_check_extent_io_range(tree, start, end);
860 bits |= EXTENT_FIRST_DELALLOC;
861 again:
862 if (!prealloc && gfpflags_allow_blocking(mask)) {
864 * Don't care for allocation failure here because we might end
865 * up not needing the pre-allocated extent state at all, which
866 * is the case if we only have in the tree extent states that
867 * cover our input range and don't cover too any other range.
868 * If we end up needing a new extent state we allocate it later.
870 prealloc = alloc_extent_state(mask);
873 spin_lock(&tree->lock);
874 if (cached_state && *cached_state) {
875 state = *cached_state;
876 if (state->start <= start && state->end > start &&
877 extent_state_in_tree(state)) {
878 node = &state->rb_node;
879 goto hit_next;
883 * this search will find all the extents that end after
884 * our range starts.
886 node = tree_search_for_insert(tree, start, &p, &parent);
887 if (!node) {
888 prealloc = alloc_extent_state_atomic(prealloc);
889 BUG_ON(!prealloc);
890 err = insert_state(tree, prealloc, start, end,
891 &p, &parent, &bits, changeset);
892 if (err)
893 extent_io_tree_panic(tree, err);
895 cache_state(prealloc, cached_state);
896 prealloc = NULL;
897 goto out;
899 state = rb_entry(node, struct extent_state, rb_node);
900 hit_next:
901 last_start = state->start;
902 last_end = state->end;
905 * | ---- desired range ---- |
906 * | state |
908 * Just lock what we found and keep going
910 if (state->start == start && state->end <= end) {
911 if (state->state & exclusive_bits) {
912 *failed_start = state->start;
913 err = -EEXIST;
914 goto out;
917 set_state_bits(tree, state, &bits, changeset);
918 cache_state(state, cached_state);
919 merge_state(tree, state);
920 if (last_end == (u64)-1)
921 goto out;
922 start = last_end + 1;
923 state = next_state(state);
924 if (start < end && state && state->start == start &&
925 !need_resched())
926 goto hit_next;
927 goto search_again;
931 * | ---- desired range ---- |
932 * | state |
933 * or
934 * | ------------- state -------------- |
936 * We need to split the extent we found, and may flip bits on
937 * second half.
939 * If the extent we found extends past our
940 * range, we just split and search again. It'll get split
941 * again the next time though.
943 * If the extent we found is inside our range, we set the
944 * desired bit on it.
946 if (state->start < start) {
947 if (state->state & exclusive_bits) {
948 *failed_start = start;
949 err = -EEXIST;
950 goto out;
953 prealloc = alloc_extent_state_atomic(prealloc);
954 BUG_ON(!prealloc);
955 err = split_state(tree, state, prealloc, start);
956 if (err)
957 extent_io_tree_panic(tree, err);
959 prealloc = NULL;
960 if (err)
961 goto out;
962 if (state->end <= end) {
963 set_state_bits(tree, state, &bits, changeset);
964 cache_state(state, cached_state);
965 merge_state(tree, state);
966 if (last_end == (u64)-1)
967 goto out;
968 start = last_end + 1;
969 state = next_state(state);
970 if (start < end && state && state->start == start &&
971 !need_resched())
972 goto hit_next;
974 goto search_again;
977 * | ---- desired range ---- |
978 * | state | or | state |
980 * There's a hole, we need to insert something in it and
981 * ignore the extent we found.
983 if (state->start > start) {
984 u64 this_end;
985 if (end < last_start)
986 this_end = end;
987 else
988 this_end = last_start - 1;
990 prealloc = alloc_extent_state_atomic(prealloc);
991 BUG_ON(!prealloc);
994 * Avoid to free 'prealloc' if it can be merged with
995 * the later extent.
997 err = insert_state(tree, prealloc, start, this_end,
998 NULL, NULL, &bits, changeset);
999 if (err)
1000 extent_io_tree_panic(tree, err);
1002 cache_state(prealloc, cached_state);
1003 prealloc = NULL;
1004 start = this_end + 1;
1005 goto search_again;
1008 * | ---- desired range ---- |
1009 * | state |
1010 * We need to split the extent, and set the bit
1011 * on the first half
1013 if (state->start <= end && state->end > end) {
1014 if (state->state & exclusive_bits) {
1015 *failed_start = start;
1016 err = -EEXIST;
1017 goto out;
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
1022 err = split_state(tree, state, prealloc, end + 1);
1023 if (err)
1024 extent_io_tree_panic(tree, err);
1026 set_state_bits(tree, prealloc, &bits, changeset);
1027 cache_state(prealloc, cached_state);
1028 merge_state(tree, prealloc);
1029 prealloc = NULL;
1030 goto out;
1033 search_again:
1034 if (start > end)
1035 goto out;
1036 spin_unlock(&tree->lock);
1037 if (gfpflags_allow_blocking(mask))
1038 cond_resched();
1039 goto again;
1041 out:
1042 spin_unlock(&tree->lock);
1043 if (prealloc)
1044 free_extent_state(prealloc);
1046 return err;
1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1051 unsigned bits, u64 * failed_start,
1052 struct extent_state **cached_state, gfp_t mask)
1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1055 cached_state, mask, NULL);
1060 * convert_extent_bit - convert all bits in a given range from one bit to
1061 * another
1062 * @tree: the io tree to search
1063 * @start: the start offset in bytes
1064 * @end: the end offset in bytes (inclusive)
1065 * @bits: the bits to set in this range
1066 * @clear_bits: the bits to clear in this range
1067 * @cached_state: state that we're going to cache
1069 * This will go through and set bits for the given range. If any states exist
1070 * already in this range they are set with the given bit and cleared of the
1071 * clear_bits. This is only meant to be used by things that are mergeable, ie
1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1073 * boundary bits like LOCK.
1075 * All allocations are done with GFP_NOFS.
1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1078 unsigned bits, unsigned clear_bits,
1079 struct extent_state **cached_state)
1081 struct extent_state *state;
1082 struct extent_state *prealloc = NULL;
1083 struct rb_node *node;
1084 struct rb_node **p;
1085 struct rb_node *parent;
1086 int err = 0;
1087 u64 last_start;
1088 u64 last_end;
1089 bool first_iteration = true;
1091 btrfs_debug_check_extent_io_range(tree, start, end);
1093 again:
1094 if (!prealloc) {
1096 * Best effort, don't worry if extent state allocation fails
1097 * here for the first iteration. We might have a cached state
1098 * that matches exactly the target range, in which case no
1099 * extent state allocations are needed. We'll only know this
1100 * after locking the tree.
1102 prealloc = alloc_extent_state(GFP_NOFS);
1103 if (!prealloc && !first_iteration)
1104 return -ENOMEM;
1107 spin_lock(&tree->lock);
1108 if (cached_state && *cached_state) {
1109 state = *cached_state;
1110 if (state->start <= start && state->end > start &&
1111 extent_state_in_tree(state)) {
1112 node = &state->rb_node;
1113 goto hit_next;
1118 * this search will find all the extents that end after
1119 * our range starts.
1121 node = tree_search_for_insert(tree, start, &p, &parent);
1122 if (!node) {
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 if (!prealloc) {
1125 err = -ENOMEM;
1126 goto out;
1128 err = insert_state(tree, prealloc, start, end,
1129 &p, &parent, &bits, NULL);
1130 if (err)
1131 extent_io_tree_panic(tree, err);
1132 cache_state(prealloc, cached_state);
1133 prealloc = NULL;
1134 goto out;
1136 state = rb_entry(node, struct extent_state, rb_node);
1137 hit_next:
1138 last_start = state->start;
1139 last_end = state->end;
1142 * | ---- desired range ---- |
1143 * | state |
1145 * Just lock what we found and keep going
1147 if (state->start == start && state->end <= end) {
1148 set_state_bits(tree, state, &bits, NULL);
1149 cache_state(state, cached_state);
1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1151 if (last_end == (u64)-1)
1152 goto out;
1153 start = last_end + 1;
1154 if (start < end && state && state->start == start &&
1155 !need_resched())
1156 goto hit_next;
1157 goto search_again;
1161 * | ---- desired range ---- |
1162 * | state |
1163 * or
1164 * | ------------- state -------------- |
1166 * We need to split the extent we found, and may flip bits on
1167 * second half.
1169 * If the extent we found extends past our
1170 * range, we just split and search again. It'll get split
1171 * again the next time though.
1173 * If the extent we found is inside our range, we set the
1174 * desired bit on it.
1176 if (state->start < start) {
1177 prealloc = alloc_extent_state_atomic(prealloc);
1178 if (!prealloc) {
1179 err = -ENOMEM;
1180 goto out;
1182 err = split_state(tree, state, prealloc, start);
1183 if (err)
1184 extent_io_tree_panic(tree, err);
1185 prealloc = NULL;
1186 if (err)
1187 goto out;
1188 if (state->end <= end) {
1189 set_state_bits(tree, state, &bits, NULL);
1190 cache_state(state, cached_state);
1191 state = clear_state_bit(tree, state, &clear_bits, 0,
1192 NULL);
1193 if (last_end == (u64)-1)
1194 goto out;
1195 start = last_end + 1;
1196 if (start < end && state && state->start == start &&
1197 !need_resched())
1198 goto hit_next;
1200 goto search_again;
1203 * | ---- desired range ---- |
1204 * | state | or | state |
1206 * There's a hole, we need to insert something in it and
1207 * ignore the extent we found.
1209 if (state->start > start) {
1210 u64 this_end;
1211 if (end < last_start)
1212 this_end = end;
1213 else
1214 this_end = last_start - 1;
1216 prealloc = alloc_extent_state_atomic(prealloc);
1217 if (!prealloc) {
1218 err = -ENOMEM;
1219 goto out;
1223 * Avoid to free 'prealloc' if it can be merged with
1224 * the later extent.
1226 err = insert_state(tree, prealloc, start, this_end,
1227 NULL, NULL, &bits, NULL);
1228 if (err)
1229 extent_io_tree_panic(tree, err);
1230 cache_state(prealloc, cached_state);
1231 prealloc = NULL;
1232 start = this_end + 1;
1233 goto search_again;
1236 * | ---- desired range ---- |
1237 * | state |
1238 * We need to split the extent, and set the bit
1239 * on the first half
1241 if (state->start <= end && state->end > end) {
1242 prealloc = alloc_extent_state_atomic(prealloc);
1243 if (!prealloc) {
1244 err = -ENOMEM;
1245 goto out;
1248 err = split_state(tree, state, prealloc, end + 1);
1249 if (err)
1250 extent_io_tree_panic(tree, err);
1252 set_state_bits(tree, prealloc, &bits, NULL);
1253 cache_state(prealloc, cached_state);
1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1255 prealloc = NULL;
1256 goto out;
1259 search_again:
1260 if (start > end)
1261 goto out;
1262 spin_unlock(&tree->lock);
1263 cond_resched();
1264 first_iteration = false;
1265 goto again;
1267 out:
1268 spin_unlock(&tree->lock);
1269 if (prealloc)
1270 free_extent_state(prealloc);
1272 return err;
1275 /* wrappers around set/clear extent bit */
1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1277 unsigned bits, struct extent_changeset *changeset)
1280 * We don't support EXTENT_LOCKED yet, as current changeset will
1281 * record any bits changed, so for EXTENT_LOCKED case, it will
1282 * either fail with -EEXIST or changeset will record the whole
1283 * range.
1285 BUG_ON(bits & EXTENT_LOCKED);
1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1288 changeset);
1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292 unsigned bits, int wake, int delete,
1293 struct extent_state **cached)
1295 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1296 cached, GFP_NOFS, NULL);
1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300 unsigned bits, struct extent_changeset *changeset)
1303 * Don't support EXTENT_LOCKED case, same reason as
1304 * set_record_extent_bits().
1306 BUG_ON(bits & EXTENT_LOCKED);
1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1309 changeset);
1313 * either insert or lock state struct between start and end use mask to tell
1314 * us if waiting is desired.
1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 struct extent_state **cached_state)
1319 int err;
1320 u64 failed_start;
1322 while (1) {
1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1324 EXTENT_LOCKED, &failed_start,
1325 cached_state, GFP_NOFS, NULL);
1326 if (err == -EEXIST) {
1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328 start = failed_start;
1329 } else
1330 break;
1331 WARN_ON(start > end);
1333 return err;
1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1338 int err;
1339 u64 failed_start;
1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1342 &failed_start, NULL, GFP_NOFS, NULL);
1343 if (err == -EEXIST) {
1344 if (failed_start > start)
1345 clear_extent_bit(tree, start, failed_start - 1,
1346 EXTENT_LOCKED, 1, 0, NULL);
1347 return 0;
1349 return 1;
1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1354 unsigned long index = start >> PAGE_SHIFT;
1355 unsigned long end_index = end >> PAGE_SHIFT;
1356 struct page *page;
1358 while (index <= end_index) {
1359 page = find_get_page(inode->i_mapping, index);
1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361 clear_page_dirty_for_io(page);
1362 put_page(page);
1363 index++;
1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1369 unsigned long index = start >> PAGE_SHIFT;
1370 unsigned long end_index = end >> PAGE_SHIFT;
1371 struct page *page;
1373 while (index <= end_index) {
1374 page = find_get_page(inode->i_mapping, index);
1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1376 __set_page_dirty_nobuffers(page);
1377 account_page_redirty(page);
1378 put_page(page);
1379 index++;
1383 /* find the first state struct with 'bits' set after 'start', and
1384 * return it. tree->lock must be held. NULL will returned if
1385 * nothing was found after 'start'
1387 static struct extent_state *
1388 find_first_extent_bit_state(struct extent_io_tree *tree,
1389 u64 start, unsigned bits)
1391 struct rb_node *node;
1392 struct extent_state *state;
1395 * this search will find all the extents that end after
1396 * our range starts.
1398 node = tree_search(tree, start);
1399 if (!node)
1400 goto out;
1402 while (1) {
1403 state = rb_entry(node, struct extent_state, rb_node);
1404 if (state->end >= start && (state->state & bits))
1405 return state;
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1411 out:
1412 return NULL;
1416 * find the first offset in the io tree with 'bits' set. zero is
1417 * returned if we find something, and *start_ret and *end_ret are
1418 * set to reflect the state struct that was found.
1420 * If nothing was found, 1 is returned. If found something, return 0.
1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1423 u64 *start_ret, u64 *end_ret, unsigned bits,
1424 struct extent_state **cached_state)
1426 struct extent_state *state;
1427 int ret = 1;
1429 spin_lock(&tree->lock);
1430 if (cached_state && *cached_state) {
1431 state = *cached_state;
1432 if (state->end == start - 1 && extent_state_in_tree(state)) {
1433 while ((state = next_state(state)) != NULL) {
1434 if (state->state & bits)
1435 goto got_it;
1437 free_extent_state(*cached_state);
1438 *cached_state = NULL;
1439 goto out;
1441 free_extent_state(*cached_state);
1442 *cached_state = NULL;
1445 state = find_first_extent_bit_state(tree, start, bits);
1446 got_it:
1447 if (state) {
1448 cache_state_if_flags(state, cached_state, 0);
1449 *start_ret = state->start;
1450 *end_ret = state->end;
1451 ret = 0;
1453 out:
1454 spin_unlock(&tree->lock);
1455 return ret;
1459 * find a contiguous range of bytes in the file marked as delalloc, not
1460 * more than 'max_bytes'. start and end are used to return the range,
1462 * 1 is returned if we find something, 0 if nothing was in the tree
1464 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1465 u64 *start, u64 *end, u64 max_bytes,
1466 struct extent_state **cached_state)
1468 struct rb_node *node;
1469 struct extent_state *state;
1470 u64 cur_start = *start;
1471 u64 found = 0;
1472 u64 total_bytes = 0;
1474 spin_lock(&tree->lock);
1477 * this search will find all the extents that end after
1478 * our range starts.
1480 node = tree_search(tree, cur_start);
1481 if (!node) {
1482 if (!found)
1483 *end = (u64)-1;
1484 goto out;
1487 while (1) {
1488 state = rb_entry(node, struct extent_state, rb_node);
1489 if (found && (state->start != cur_start ||
1490 (state->state & EXTENT_BOUNDARY))) {
1491 goto out;
1493 if (!(state->state & EXTENT_DELALLOC)) {
1494 if (!found)
1495 *end = state->end;
1496 goto out;
1498 if (!found) {
1499 *start = state->start;
1500 *cached_state = state;
1501 refcount_inc(&state->refs);
1503 found++;
1504 *end = state->end;
1505 cur_start = state->end + 1;
1506 node = rb_next(node);
1507 total_bytes += state->end - state->start + 1;
1508 if (total_bytes >= max_bytes)
1509 break;
1510 if (!node)
1511 break;
1513 out:
1514 spin_unlock(&tree->lock);
1515 return found;
1518 static int __process_pages_contig(struct address_space *mapping,
1519 struct page *locked_page,
1520 pgoff_t start_index, pgoff_t end_index,
1521 unsigned long page_ops, pgoff_t *index_ret);
1523 static noinline void __unlock_for_delalloc(struct inode *inode,
1524 struct page *locked_page,
1525 u64 start, u64 end)
1527 unsigned long index = start >> PAGE_SHIFT;
1528 unsigned long end_index = end >> PAGE_SHIFT;
1530 ASSERT(locked_page);
1531 if (index == locked_page->index && end_index == index)
1532 return;
1534 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1535 PAGE_UNLOCK, NULL);
1538 static noinline int lock_delalloc_pages(struct inode *inode,
1539 struct page *locked_page,
1540 u64 delalloc_start,
1541 u64 delalloc_end)
1543 unsigned long index = delalloc_start >> PAGE_SHIFT;
1544 unsigned long index_ret = index;
1545 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1546 int ret;
1548 ASSERT(locked_page);
1549 if (index == locked_page->index && index == end_index)
1550 return 0;
1552 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1553 end_index, PAGE_LOCK, &index_ret);
1554 if (ret == -EAGAIN)
1555 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1556 (u64)index_ret << PAGE_SHIFT);
1557 return ret;
1561 * find a contiguous range of bytes in the file marked as delalloc, not
1562 * more than 'max_bytes'. start and end are used to return the range,
1564 * 1 is returned if we find something, 0 if nothing was in the tree
1566 static noinline_for_stack u64 find_lock_delalloc_range(struct inode *inode,
1567 struct extent_io_tree *tree,
1568 struct page *locked_page, u64 *start,
1569 u64 *end, u64 max_bytes)
1571 u64 delalloc_start;
1572 u64 delalloc_end;
1573 u64 found;
1574 struct extent_state *cached_state = NULL;
1575 int ret;
1576 int loops = 0;
1578 again:
1579 /* step one, find a bunch of delalloc bytes starting at start */
1580 delalloc_start = *start;
1581 delalloc_end = 0;
1582 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1583 max_bytes, &cached_state);
1584 if (!found || delalloc_end <= *start) {
1585 *start = delalloc_start;
1586 *end = delalloc_end;
1587 free_extent_state(cached_state);
1588 return 0;
1592 * start comes from the offset of locked_page. We have to lock
1593 * pages in order, so we can't process delalloc bytes before
1594 * locked_page
1596 if (delalloc_start < *start)
1597 delalloc_start = *start;
1600 * make sure to limit the number of pages we try to lock down
1602 if (delalloc_end + 1 - delalloc_start > max_bytes)
1603 delalloc_end = delalloc_start + max_bytes - 1;
1605 /* step two, lock all the pages after the page that has start */
1606 ret = lock_delalloc_pages(inode, locked_page,
1607 delalloc_start, delalloc_end);
1608 if (ret == -EAGAIN) {
1609 /* some of the pages are gone, lets avoid looping by
1610 * shortening the size of the delalloc range we're searching
1612 free_extent_state(cached_state);
1613 cached_state = NULL;
1614 if (!loops) {
1615 max_bytes = PAGE_SIZE;
1616 loops = 1;
1617 goto again;
1618 } else {
1619 found = 0;
1620 goto out_failed;
1623 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1625 /* step three, lock the state bits for the whole range */
1626 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1628 /* then test to make sure it is all still delalloc */
1629 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1630 EXTENT_DELALLOC, 1, cached_state);
1631 if (!ret) {
1632 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1633 &cached_state);
1634 __unlock_for_delalloc(inode, locked_page,
1635 delalloc_start, delalloc_end);
1636 cond_resched();
1637 goto again;
1639 free_extent_state(cached_state);
1640 *start = delalloc_start;
1641 *end = delalloc_end;
1642 out_failed:
1643 return found;
1646 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1647 u64 btrfs_find_lock_delalloc_range(struct inode *inode,
1648 struct extent_io_tree *tree,
1649 struct page *locked_page, u64 *start,
1650 u64 *end, u64 max_bytes)
1652 return find_lock_delalloc_range(inode, tree, locked_page, start, end,
1653 max_bytes);
1655 #endif
1657 static int __process_pages_contig(struct address_space *mapping,
1658 struct page *locked_page,
1659 pgoff_t start_index, pgoff_t end_index,
1660 unsigned long page_ops, pgoff_t *index_ret)
1662 unsigned long nr_pages = end_index - start_index + 1;
1663 unsigned long pages_locked = 0;
1664 pgoff_t index = start_index;
1665 struct page *pages[16];
1666 unsigned ret;
1667 int err = 0;
1668 int i;
1670 if (page_ops & PAGE_LOCK) {
1671 ASSERT(page_ops == PAGE_LOCK);
1672 ASSERT(index_ret && *index_ret == start_index);
1675 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1676 mapping_set_error(mapping, -EIO);
1678 while (nr_pages > 0) {
1679 ret = find_get_pages_contig(mapping, index,
1680 min_t(unsigned long,
1681 nr_pages, ARRAY_SIZE(pages)), pages);
1682 if (ret == 0) {
1684 * Only if we're going to lock these pages,
1685 * can we find nothing at @index.
1687 ASSERT(page_ops & PAGE_LOCK);
1688 err = -EAGAIN;
1689 goto out;
1692 for (i = 0; i < ret; i++) {
1693 if (page_ops & PAGE_SET_PRIVATE2)
1694 SetPagePrivate2(pages[i]);
1696 if (pages[i] == locked_page) {
1697 put_page(pages[i]);
1698 pages_locked++;
1699 continue;
1701 if (page_ops & PAGE_CLEAR_DIRTY)
1702 clear_page_dirty_for_io(pages[i]);
1703 if (page_ops & PAGE_SET_WRITEBACK)
1704 set_page_writeback(pages[i]);
1705 if (page_ops & PAGE_SET_ERROR)
1706 SetPageError(pages[i]);
1707 if (page_ops & PAGE_END_WRITEBACK)
1708 end_page_writeback(pages[i]);
1709 if (page_ops & PAGE_UNLOCK)
1710 unlock_page(pages[i]);
1711 if (page_ops & PAGE_LOCK) {
1712 lock_page(pages[i]);
1713 if (!PageDirty(pages[i]) ||
1714 pages[i]->mapping != mapping) {
1715 unlock_page(pages[i]);
1716 put_page(pages[i]);
1717 err = -EAGAIN;
1718 goto out;
1721 put_page(pages[i]);
1722 pages_locked++;
1724 nr_pages -= ret;
1725 index += ret;
1726 cond_resched();
1728 out:
1729 if (err && index_ret)
1730 *index_ret = start_index + pages_locked - 1;
1731 return err;
1734 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1735 u64 delalloc_end, struct page *locked_page,
1736 unsigned clear_bits,
1737 unsigned long page_ops)
1739 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1740 NULL);
1742 __process_pages_contig(inode->i_mapping, locked_page,
1743 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1744 page_ops, NULL);
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached. The total number found is returned.
1752 u64 count_range_bits(struct extent_io_tree *tree,
1753 u64 *start, u64 search_end, u64 max_bytes,
1754 unsigned bits, int contig)
1756 struct rb_node *node;
1757 struct extent_state *state;
1758 u64 cur_start = *start;
1759 u64 total_bytes = 0;
1760 u64 last = 0;
1761 int found = 0;
1763 if (WARN_ON(search_end <= cur_start))
1764 return 0;
1766 spin_lock(&tree->lock);
1767 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1768 total_bytes = tree->dirty_bytes;
1769 goto out;
1772 * this search will find all the extents that end after
1773 * our range starts.
1775 node = tree_search(tree, cur_start);
1776 if (!node)
1777 goto out;
1779 while (1) {
1780 state = rb_entry(node, struct extent_state, rb_node);
1781 if (state->start > search_end)
1782 break;
1783 if (contig && found && state->start > last + 1)
1784 break;
1785 if (state->end >= cur_start && (state->state & bits) == bits) {
1786 total_bytes += min(search_end, state->end) + 1 -
1787 max(cur_start, state->start);
1788 if (total_bytes >= max_bytes)
1789 break;
1790 if (!found) {
1791 *start = max(cur_start, state->start);
1792 found = 1;
1794 last = state->end;
1795 } else if (contig && found) {
1796 break;
1798 node = rb_next(node);
1799 if (!node)
1800 break;
1802 out:
1803 spin_unlock(&tree->lock);
1804 return total_bytes;
1808 * set the private field for a given byte offset in the tree. If there isn't
1809 * an extent_state there already, this does nothing.
1811 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1812 struct io_failure_record *failrec)
1814 struct rb_node *node;
1815 struct extent_state *state;
1816 int ret = 0;
1818 spin_lock(&tree->lock);
1820 * this search will find all the extents that end after
1821 * our range starts.
1823 node = tree_search(tree, start);
1824 if (!node) {
1825 ret = -ENOENT;
1826 goto out;
1828 state = rb_entry(node, struct extent_state, rb_node);
1829 if (state->start != start) {
1830 ret = -ENOENT;
1831 goto out;
1833 state->failrec = failrec;
1834 out:
1835 spin_unlock(&tree->lock);
1836 return ret;
1839 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1840 struct io_failure_record **failrec)
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1846 spin_lock(&tree->lock);
1848 * this search will find all the extents that end after
1849 * our range starts.
1851 node = tree_search(tree, start);
1852 if (!node) {
1853 ret = -ENOENT;
1854 goto out;
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1861 *failrec = state->failrec;
1862 out:
1863 spin_unlock(&tree->lock);
1864 return ret;
1868 * searches a range in the state tree for a given mask.
1869 * If 'filled' == 1, this returns 1 only if every extent in the tree
1870 * has the bits set. Otherwise, 1 is returned if any bit in the
1871 * range is found set.
1873 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1874 unsigned bits, int filled, struct extent_state *cached)
1876 struct extent_state *state = NULL;
1877 struct rb_node *node;
1878 int bitset = 0;
1880 spin_lock(&tree->lock);
1881 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1882 cached->end > start)
1883 node = &cached->rb_node;
1884 else
1885 node = tree_search(tree, start);
1886 while (node && start <= end) {
1887 state = rb_entry(node, struct extent_state, rb_node);
1889 if (filled && state->start > start) {
1890 bitset = 0;
1891 break;
1894 if (state->start > end)
1895 break;
1897 if (state->state & bits) {
1898 bitset = 1;
1899 if (!filled)
1900 break;
1901 } else if (filled) {
1902 bitset = 0;
1903 break;
1906 if (state->end == (u64)-1)
1907 break;
1909 start = state->end + 1;
1910 if (start > end)
1911 break;
1912 node = rb_next(node);
1913 if (!node) {
1914 if (filled)
1915 bitset = 0;
1916 break;
1919 spin_unlock(&tree->lock);
1920 return bitset;
1924 * helper function to set a given page up to date if all the
1925 * extents in the tree for that page are up to date
1927 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1929 u64 start = page_offset(page);
1930 u64 end = start + PAGE_SIZE - 1;
1931 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1932 SetPageUptodate(page);
1935 int free_io_failure(struct extent_io_tree *failure_tree,
1936 struct extent_io_tree *io_tree,
1937 struct io_failure_record *rec)
1939 int ret;
1940 int err = 0;
1942 set_state_failrec(failure_tree, rec->start, NULL);
1943 ret = clear_extent_bits(failure_tree, rec->start,
1944 rec->start + rec->len - 1,
1945 EXTENT_LOCKED | EXTENT_DIRTY);
1946 if (ret)
1947 err = ret;
1949 ret = clear_extent_bits(io_tree, rec->start,
1950 rec->start + rec->len - 1,
1951 EXTENT_DAMAGED);
1952 if (ret && !err)
1953 err = ret;
1955 kfree(rec);
1956 return err;
1960 * this bypasses the standard btrfs submit functions deliberately, as
1961 * the standard behavior is to write all copies in a raid setup. here we only
1962 * want to write the one bad copy. so we do the mapping for ourselves and issue
1963 * submit_bio directly.
1964 * to avoid any synchronization issues, wait for the data after writing, which
1965 * actually prevents the read that triggered the error from finishing.
1966 * currently, there can be no more than two copies of every data bit. thus,
1967 * exactly one rewrite is required.
1969 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1970 u64 length, u64 logical, struct page *page,
1971 unsigned int pg_offset, int mirror_num)
1973 struct bio *bio;
1974 struct btrfs_device *dev;
1975 u64 map_length = 0;
1976 u64 sector;
1977 struct btrfs_bio *bbio = NULL;
1978 int ret;
1980 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1981 BUG_ON(!mirror_num);
1983 bio = btrfs_io_bio_alloc(1);
1984 bio->bi_iter.bi_size = 0;
1985 map_length = length;
1988 * Avoid races with device replace and make sure our bbio has devices
1989 * associated to its stripes that don't go away while we are doing the
1990 * read repair operation.
1992 btrfs_bio_counter_inc_blocked(fs_info);
1993 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1995 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1996 * to update all raid stripes, but here we just want to correct
1997 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1998 * stripe's dev and sector.
2000 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2001 &map_length, &bbio, 0);
2002 if (ret) {
2003 btrfs_bio_counter_dec(fs_info);
2004 bio_put(bio);
2005 return -EIO;
2007 ASSERT(bbio->mirror_num == 1);
2008 } else {
2009 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2010 &map_length, &bbio, mirror_num);
2011 if (ret) {
2012 btrfs_bio_counter_dec(fs_info);
2013 bio_put(bio);
2014 return -EIO;
2016 BUG_ON(mirror_num != bbio->mirror_num);
2019 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2020 bio->bi_iter.bi_sector = sector;
2021 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2022 btrfs_put_bbio(bbio);
2023 if (!dev || !dev->bdev ||
2024 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2025 btrfs_bio_counter_dec(fs_info);
2026 bio_put(bio);
2027 return -EIO;
2029 bio_set_dev(bio, dev->bdev);
2030 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2031 bio_add_page(bio, page, length, pg_offset);
2033 if (btrfsic_submit_bio_wait(bio)) {
2034 /* try to remap that extent elsewhere? */
2035 btrfs_bio_counter_dec(fs_info);
2036 bio_put(bio);
2037 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2038 return -EIO;
2041 btrfs_info_rl_in_rcu(fs_info,
2042 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2043 ino, start,
2044 rcu_str_deref(dev->name), sector);
2045 btrfs_bio_counter_dec(fs_info);
2046 bio_put(bio);
2047 return 0;
2050 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2051 struct extent_buffer *eb, int mirror_num)
2053 u64 start = eb->start;
2054 int i, num_pages = num_extent_pages(eb);
2055 int ret = 0;
2057 if (sb_rdonly(fs_info->sb))
2058 return -EROFS;
2060 for (i = 0; i < num_pages; i++) {
2061 struct page *p = eb->pages[i];
2063 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2064 start - page_offset(p), mirror_num);
2065 if (ret)
2066 break;
2067 start += PAGE_SIZE;
2070 return ret;
2074 * each time an IO finishes, we do a fast check in the IO failure tree
2075 * to see if we need to process or clean up an io_failure_record
2077 int clean_io_failure(struct btrfs_fs_info *fs_info,
2078 struct extent_io_tree *failure_tree,
2079 struct extent_io_tree *io_tree, u64 start,
2080 struct page *page, u64 ino, unsigned int pg_offset)
2082 u64 private;
2083 struct io_failure_record *failrec;
2084 struct extent_state *state;
2085 int num_copies;
2086 int ret;
2088 private = 0;
2089 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2090 EXTENT_DIRTY, 0);
2091 if (!ret)
2092 return 0;
2094 ret = get_state_failrec(failure_tree, start, &failrec);
2095 if (ret)
2096 return 0;
2098 BUG_ON(!failrec->this_mirror);
2100 if (failrec->in_validation) {
2101 /* there was no real error, just free the record */
2102 btrfs_debug(fs_info,
2103 "clean_io_failure: freeing dummy error at %llu",
2104 failrec->start);
2105 goto out;
2107 if (sb_rdonly(fs_info->sb))
2108 goto out;
2110 spin_lock(&io_tree->lock);
2111 state = find_first_extent_bit_state(io_tree,
2112 failrec->start,
2113 EXTENT_LOCKED);
2114 spin_unlock(&io_tree->lock);
2116 if (state && state->start <= failrec->start &&
2117 state->end >= failrec->start + failrec->len - 1) {
2118 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2119 failrec->len);
2120 if (num_copies > 1) {
2121 repair_io_failure(fs_info, ino, start, failrec->len,
2122 failrec->logical, page, pg_offset,
2123 failrec->failed_mirror);
2127 out:
2128 free_io_failure(failure_tree, io_tree, failrec);
2130 return 0;
2134 * Can be called when
2135 * - hold extent lock
2136 * - under ordered extent
2137 * - the inode is freeing
2139 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2141 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2142 struct io_failure_record *failrec;
2143 struct extent_state *state, *next;
2145 if (RB_EMPTY_ROOT(&failure_tree->state))
2146 return;
2148 spin_lock(&failure_tree->lock);
2149 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2150 while (state) {
2151 if (state->start > end)
2152 break;
2154 ASSERT(state->end <= end);
2156 next = next_state(state);
2158 failrec = state->failrec;
2159 free_extent_state(state);
2160 kfree(failrec);
2162 state = next;
2164 spin_unlock(&failure_tree->lock);
2167 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2168 struct io_failure_record **failrec_ret)
2170 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2171 struct io_failure_record *failrec;
2172 struct extent_map *em;
2173 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2174 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2176 int ret;
2177 u64 logical;
2179 ret = get_state_failrec(failure_tree, start, &failrec);
2180 if (ret) {
2181 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2182 if (!failrec)
2183 return -ENOMEM;
2185 failrec->start = start;
2186 failrec->len = end - start + 1;
2187 failrec->this_mirror = 0;
2188 failrec->bio_flags = 0;
2189 failrec->in_validation = 0;
2191 read_lock(&em_tree->lock);
2192 em = lookup_extent_mapping(em_tree, start, failrec->len);
2193 if (!em) {
2194 read_unlock(&em_tree->lock);
2195 kfree(failrec);
2196 return -EIO;
2199 if (em->start > start || em->start + em->len <= start) {
2200 free_extent_map(em);
2201 em = NULL;
2203 read_unlock(&em_tree->lock);
2204 if (!em) {
2205 kfree(failrec);
2206 return -EIO;
2209 logical = start - em->start;
2210 logical = em->block_start + logical;
2211 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2212 logical = em->block_start;
2213 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2214 extent_set_compress_type(&failrec->bio_flags,
2215 em->compress_type);
2218 btrfs_debug(fs_info,
2219 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2220 logical, start, failrec->len);
2222 failrec->logical = logical;
2223 free_extent_map(em);
2225 /* set the bits in the private failure tree */
2226 ret = set_extent_bits(failure_tree, start, end,
2227 EXTENT_LOCKED | EXTENT_DIRTY);
2228 if (ret >= 0)
2229 ret = set_state_failrec(failure_tree, start, failrec);
2230 /* set the bits in the inode's tree */
2231 if (ret >= 0)
2232 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2233 if (ret < 0) {
2234 kfree(failrec);
2235 return ret;
2237 } else {
2238 btrfs_debug(fs_info,
2239 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2240 failrec->logical, failrec->start, failrec->len,
2241 failrec->in_validation);
2243 * when data can be on disk more than twice, add to failrec here
2244 * (e.g. with a list for failed_mirror) to make
2245 * clean_io_failure() clean all those errors at once.
2249 *failrec_ret = failrec;
2251 return 0;
2254 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2255 struct io_failure_record *failrec, int failed_mirror)
2257 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2258 int num_copies;
2260 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2261 if (num_copies == 1) {
2263 * we only have a single copy of the data, so don't bother with
2264 * all the retry and error correction code that follows. no
2265 * matter what the error is, it is very likely to persist.
2267 btrfs_debug(fs_info,
2268 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2269 num_copies, failrec->this_mirror, failed_mirror);
2270 return false;
2274 * there are two premises:
2275 * a) deliver good data to the caller
2276 * b) correct the bad sectors on disk
2278 if (failed_bio_pages > 1) {
2280 * to fulfill b), we need to know the exact failing sectors, as
2281 * we don't want to rewrite any more than the failed ones. thus,
2282 * we need separate read requests for the failed bio
2284 * if the following BUG_ON triggers, our validation request got
2285 * merged. we need separate requests for our algorithm to work.
2287 BUG_ON(failrec->in_validation);
2288 failrec->in_validation = 1;
2289 failrec->this_mirror = failed_mirror;
2290 } else {
2292 * we're ready to fulfill a) and b) alongside. get a good copy
2293 * of the failed sector and if we succeed, we have setup
2294 * everything for repair_io_failure to do the rest for us.
2296 if (failrec->in_validation) {
2297 BUG_ON(failrec->this_mirror != failed_mirror);
2298 failrec->in_validation = 0;
2299 failrec->this_mirror = 0;
2301 failrec->failed_mirror = failed_mirror;
2302 failrec->this_mirror++;
2303 if (failrec->this_mirror == failed_mirror)
2304 failrec->this_mirror++;
2307 if (failrec->this_mirror > num_copies) {
2308 btrfs_debug(fs_info,
2309 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2310 num_copies, failrec->this_mirror, failed_mirror);
2311 return false;
2314 return true;
2318 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2319 struct io_failure_record *failrec,
2320 struct page *page, int pg_offset, int icsum,
2321 bio_end_io_t *endio_func, void *data)
2323 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2324 struct bio *bio;
2325 struct btrfs_io_bio *btrfs_failed_bio;
2326 struct btrfs_io_bio *btrfs_bio;
2328 bio = btrfs_io_bio_alloc(1);
2329 bio->bi_end_io = endio_func;
2330 bio->bi_iter.bi_sector = failrec->logical >> 9;
2331 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2332 bio->bi_iter.bi_size = 0;
2333 bio->bi_private = data;
2335 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2336 if (btrfs_failed_bio->csum) {
2337 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2339 btrfs_bio = btrfs_io_bio(bio);
2340 btrfs_bio->csum = btrfs_bio->csum_inline;
2341 icsum *= csum_size;
2342 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2343 csum_size);
2346 bio_add_page(bio, page, failrec->len, pg_offset);
2348 return bio;
2352 * this is a generic handler for readpage errors (default
2353 * readpage_io_failed_hook). if other copies exist, read those and write back
2354 * good data to the failed position. does not investigate in remapping the
2355 * failed extent elsewhere, hoping the device will be smart enough to do this as
2356 * needed
2359 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2360 struct page *page, u64 start, u64 end,
2361 int failed_mirror)
2363 struct io_failure_record *failrec;
2364 struct inode *inode = page->mapping->host;
2365 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2366 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2367 struct bio *bio;
2368 int read_mode = 0;
2369 blk_status_t status;
2370 int ret;
2371 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2373 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2375 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2376 if (ret)
2377 return ret;
2379 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2380 failed_mirror)) {
2381 free_io_failure(failure_tree, tree, failrec);
2382 return -EIO;
2385 if (failed_bio_pages > 1)
2386 read_mode |= REQ_FAILFAST_DEV;
2388 phy_offset >>= inode->i_sb->s_blocksize_bits;
2389 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2390 start - page_offset(page),
2391 (int)phy_offset, failed_bio->bi_end_io,
2392 NULL);
2393 bio->bi_opf = REQ_OP_READ | read_mode;
2395 btrfs_debug(btrfs_sb(inode->i_sb),
2396 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2397 read_mode, failrec->this_mirror, failrec->in_validation);
2399 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2400 failrec->bio_flags, 0);
2401 if (status) {
2402 free_io_failure(failure_tree, tree, failrec);
2403 bio_put(bio);
2404 ret = blk_status_to_errno(status);
2407 return ret;
2410 /* lots and lots of room for performance fixes in the end_bio funcs */
2412 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2414 int uptodate = (err == 0);
2415 struct extent_io_tree *tree;
2416 int ret = 0;
2418 tree = &BTRFS_I(page->mapping->host)->io_tree;
2420 if (tree->ops && tree->ops->writepage_end_io_hook)
2421 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2422 uptodate);
2424 if (!uptodate) {
2425 ClearPageUptodate(page);
2426 SetPageError(page);
2427 ret = err < 0 ? err : -EIO;
2428 mapping_set_error(page->mapping, ret);
2433 * after a writepage IO is done, we need to:
2434 * clear the uptodate bits on error
2435 * clear the writeback bits in the extent tree for this IO
2436 * end_page_writeback if the page has no more pending IO
2438 * Scheduling is not allowed, so the extent state tree is expected
2439 * to have one and only one object corresponding to this IO.
2441 static void end_bio_extent_writepage(struct bio *bio)
2443 int error = blk_status_to_errno(bio->bi_status);
2444 struct bio_vec *bvec;
2445 u64 start;
2446 u64 end;
2447 int i;
2449 ASSERT(!bio_flagged(bio, BIO_CLONED));
2450 bio_for_each_segment_all(bvec, bio, i) {
2451 struct page *page = bvec->bv_page;
2452 struct inode *inode = page->mapping->host;
2453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2455 /* We always issue full-page reads, but if some block
2456 * in a page fails to read, blk_update_request() will
2457 * advance bv_offset and adjust bv_len to compensate.
2458 * Print a warning for nonzero offsets, and an error
2459 * if they don't add up to a full page. */
2460 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2461 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2462 btrfs_err(fs_info,
2463 "partial page write in btrfs with offset %u and length %u",
2464 bvec->bv_offset, bvec->bv_len);
2465 else
2466 btrfs_info(fs_info,
2467 "incomplete page write in btrfs with offset %u and length %u",
2468 bvec->bv_offset, bvec->bv_len);
2471 start = page_offset(page);
2472 end = start + bvec->bv_offset + bvec->bv_len - 1;
2474 end_extent_writepage(page, error, start, end);
2475 end_page_writeback(page);
2478 bio_put(bio);
2481 static void
2482 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2483 int uptodate)
2485 struct extent_state *cached = NULL;
2486 u64 end = start + len - 1;
2488 if (uptodate && tree->track_uptodate)
2489 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2490 unlock_extent_cached_atomic(tree, start, end, &cached);
2494 * after a readpage IO is done, we need to:
2495 * clear the uptodate bits on error
2496 * set the uptodate bits if things worked
2497 * set the page up to date if all extents in the tree are uptodate
2498 * clear the lock bit in the extent tree
2499 * unlock the page if there are no other extents locked for it
2501 * Scheduling is not allowed, so the extent state tree is expected
2502 * to have one and only one object corresponding to this IO.
2504 static void end_bio_extent_readpage(struct bio *bio)
2506 struct bio_vec *bvec;
2507 int uptodate = !bio->bi_status;
2508 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2509 struct extent_io_tree *tree, *failure_tree;
2510 u64 offset = 0;
2511 u64 start;
2512 u64 end;
2513 u64 len;
2514 u64 extent_start = 0;
2515 u64 extent_len = 0;
2516 int mirror;
2517 int ret;
2518 int i;
2520 ASSERT(!bio_flagged(bio, BIO_CLONED));
2521 bio_for_each_segment_all(bvec, bio, i) {
2522 struct page *page = bvec->bv_page;
2523 struct inode *inode = page->mapping->host;
2524 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2526 btrfs_debug(fs_info,
2527 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2528 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2529 io_bio->mirror_num);
2530 tree = &BTRFS_I(inode)->io_tree;
2531 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2533 /* We always issue full-page reads, but if some block
2534 * in a page fails to read, blk_update_request() will
2535 * advance bv_offset and adjust bv_len to compensate.
2536 * Print a warning for nonzero offsets, and an error
2537 * if they don't add up to a full page. */
2538 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2539 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2540 btrfs_err(fs_info,
2541 "partial page read in btrfs with offset %u and length %u",
2542 bvec->bv_offset, bvec->bv_len);
2543 else
2544 btrfs_info(fs_info,
2545 "incomplete page read in btrfs with offset %u and length %u",
2546 bvec->bv_offset, bvec->bv_len);
2549 start = page_offset(page);
2550 end = start + bvec->bv_offset + bvec->bv_len - 1;
2551 len = bvec->bv_len;
2553 mirror = io_bio->mirror_num;
2554 if (likely(uptodate && tree->ops)) {
2555 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2556 page, start, end,
2557 mirror);
2558 if (ret)
2559 uptodate = 0;
2560 else
2561 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2562 failure_tree, tree, start,
2563 page,
2564 btrfs_ino(BTRFS_I(inode)), 0);
2567 if (likely(uptodate))
2568 goto readpage_ok;
2570 if (tree->ops) {
2571 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2572 if (ret == -EAGAIN) {
2574 * Data inode's readpage_io_failed_hook() always
2575 * returns -EAGAIN.
2577 * The generic bio_readpage_error handles errors
2578 * the following way: If possible, new read
2579 * requests are created and submitted and will
2580 * end up in end_bio_extent_readpage as well (if
2581 * we're lucky, not in the !uptodate case). In
2582 * that case it returns 0 and we just go on with
2583 * the next page in our bio. If it can't handle
2584 * the error it will return -EIO and we remain
2585 * responsible for that page.
2587 ret = bio_readpage_error(bio, offset, page,
2588 start, end, mirror);
2589 if (ret == 0) {
2590 uptodate = !bio->bi_status;
2591 offset += len;
2592 continue;
2597 * metadata's readpage_io_failed_hook() always returns
2598 * -EIO and fixes nothing. -EIO is also returned if
2599 * data inode error could not be fixed.
2601 ASSERT(ret == -EIO);
2603 readpage_ok:
2604 if (likely(uptodate)) {
2605 loff_t i_size = i_size_read(inode);
2606 pgoff_t end_index = i_size >> PAGE_SHIFT;
2607 unsigned off;
2609 /* Zero out the end if this page straddles i_size */
2610 off = i_size & (PAGE_SIZE-1);
2611 if (page->index == end_index && off)
2612 zero_user_segment(page, off, PAGE_SIZE);
2613 SetPageUptodate(page);
2614 } else {
2615 ClearPageUptodate(page);
2616 SetPageError(page);
2618 unlock_page(page);
2619 offset += len;
2621 if (unlikely(!uptodate)) {
2622 if (extent_len) {
2623 endio_readpage_release_extent(tree,
2624 extent_start,
2625 extent_len, 1);
2626 extent_start = 0;
2627 extent_len = 0;
2629 endio_readpage_release_extent(tree, start,
2630 end - start + 1, 0);
2631 } else if (!extent_len) {
2632 extent_start = start;
2633 extent_len = end + 1 - start;
2634 } else if (extent_start + extent_len == start) {
2635 extent_len += end + 1 - start;
2636 } else {
2637 endio_readpage_release_extent(tree, extent_start,
2638 extent_len, uptodate);
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2644 if (extent_len)
2645 endio_readpage_release_extent(tree, extent_start, extent_len,
2646 uptodate);
2647 if (io_bio->end_io)
2648 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2649 bio_put(bio);
2653 * Initialize the members up to but not including 'bio'. Use after allocating a
2654 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2655 * 'bio' because use of __GFP_ZERO is not supported.
2657 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2659 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2663 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2664 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2665 * for the appropriate container_of magic
2667 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2669 struct bio *bio;
2671 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2672 bio_set_dev(bio, bdev);
2673 bio->bi_iter.bi_sector = first_byte >> 9;
2674 btrfs_io_bio_init(btrfs_io_bio(bio));
2675 return bio;
2678 struct bio *btrfs_bio_clone(struct bio *bio)
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
2683 /* Bio allocation backed by a bioset does not fail */
2684 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_io_bio_init(btrfs_bio);
2687 btrfs_bio->iter = bio->bi_iter;
2688 return new;
2691 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2693 struct bio *bio;
2695 /* Bio allocation backed by a bioset does not fail */
2696 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2697 btrfs_io_bio_init(btrfs_io_bio(bio));
2698 return bio;
2701 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2703 struct bio *bio;
2704 struct btrfs_io_bio *btrfs_bio;
2706 /* this will never fail when it's backed by a bioset */
2707 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2708 ASSERT(bio);
2710 btrfs_bio = btrfs_io_bio(bio);
2711 btrfs_io_bio_init(btrfs_bio);
2713 bio_trim(bio, offset >> 9, size >> 9);
2714 btrfs_bio->iter = bio->bi_iter;
2715 return bio;
2718 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2719 unsigned long bio_flags)
2721 blk_status_t ret = 0;
2722 struct bio_vec *bvec = bio_last_bvec_all(bio);
2723 struct page *page = bvec->bv_page;
2724 struct extent_io_tree *tree = bio->bi_private;
2725 u64 start;
2727 start = page_offset(page) + bvec->bv_offset;
2729 bio->bi_private = NULL;
2731 if (tree->ops)
2732 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2733 mirror_num, bio_flags, start);
2734 else
2735 btrfsic_submit_bio(bio);
2737 return blk_status_to_errno(ret);
2741 * @opf: bio REQ_OP_* and REQ_* flags as one value
2742 * @tree: tree so we can call our merge_bio hook
2743 * @wbc: optional writeback control for io accounting
2744 * @page: page to add to the bio
2745 * @pg_offset: offset of the new bio or to check whether we are adding
2746 * a contiguous page to the previous one
2747 * @size: portion of page that we want to write
2748 * @offset: starting offset in the page
2749 * @bdev: attach newly created bios to this bdev
2750 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2751 * @end_io_func: end_io callback for new bio
2752 * @mirror_num: desired mirror to read/write
2753 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2754 * @bio_flags: flags of the current bio to see if we can merge them
2756 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2757 struct writeback_control *wbc,
2758 struct page *page, u64 offset,
2759 size_t size, unsigned long pg_offset,
2760 struct block_device *bdev,
2761 struct bio **bio_ret,
2762 bio_end_io_t end_io_func,
2763 int mirror_num,
2764 unsigned long prev_bio_flags,
2765 unsigned long bio_flags,
2766 bool force_bio_submit)
2768 int ret = 0;
2769 struct bio *bio;
2770 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2771 sector_t sector = offset >> 9;
2773 ASSERT(bio_ret);
2775 if (*bio_ret) {
2776 bool contig;
2777 bool can_merge = true;
2779 bio = *bio_ret;
2780 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2781 contig = bio->bi_iter.bi_sector == sector;
2782 else
2783 contig = bio_end_sector(bio) == sector;
2785 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2786 bio, bio_flags))
2787 can_merge = false;
2789 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2790 force_bio_submit ||
2791 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2792 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2793 if (ret < 0) {
2794 *bio_ret = NULL;
2795 return ret;
2797 bio = NULL;
2798 } else {
2799 if (wbc)
2800 wbc_account_io(wbc, page, page_size);
2801 return 0;
2805 bio = btrfs_bio_alloc(bdev, offset);
2806 bio_add_page(bio, page, page_size, pg_offset);
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
2809 bio->bi_write_hint = page->mapping->host->i_write_hint;
2810 bio->bi_opf = opf;
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2816 *bio_ret = bio;
2818 return ret;
2821 static void attach_extent_buffer_page(struct extent_buffer *eb,
2822 struct page *page)
2824 if (!PagePrivate(page)) {
2825 SetPagePrivate(page);
2826 get_page(page);
2827 set_page_private(page, (unsigned long)eb);
2828 } else {
2829 WARN_ON(page->private != (unsigned long)eb);
2833 void set_page_extent_mapped(struct page *page)
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
2837 get_page(page);
2838 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 static struct extent_map *
2843 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2844 u64 start, u64 len, get_extent_t *get_extent,
2845 struct extent_map **em_cached)
2847 struct extent_map *em;
2849 if (em_cached && *em_cached) {
2850 em = *em_cached;
2851 if (extent_map_in_tree(em) && start >= em->start &&
2852 start < extent_map_end(em)) {
2853 refcount_inc(&em->refs);
2854 return em;
2857 free_extent_map(em);
2858 *em_cached = NULL;
2861 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2862 if (em_cached && !IS_ERR_OR_NULL(em)) {
2863 BUG_ON(*em_cached);
2864 refcount_inc(&em->refs);
2865 *em_cached = em;
2867 return em;
2870 * basic readpage implementation. Locked extent state structs are inserted
2871 * into the tree that are removed when the IO is done (by the end_io
2872 * handlers)
2873 * XXX JDM: This needs looking at to ensure proper page locking
2874 * return 0 on success, otherwise return error
2876 static int __do_readpage(struct extent_io_tree *tree,
2877 struct page *page,
2878 get_extent_t *get_extent,
2879 struct extent_map **em_cached,
2880 struct bio **bio, int mirror_num,
2881 unsigned long *bio_flags, unsigned int read_flags,
2882 u64 *prev_em_start)
2884 struct inode *inode = page->mapping->host;
2885 u64 start = page_offset(page);
2886 const u64 end = start + PAGE_SIZE - 1;
2887 u64 cur = start;
2888 u64 extent_offset;
2889 u64 last_byte = i_size_read(inode);
2890 u64 block_start;
2891 u64 cur_end;
2892 struct extent_map *em;
2893 struct block_device *bdev;
2894 int ret = 0;
2895 int nr = 0;
2896 size_t pg_offset = 0;
2897 size_t iosize;
2898 size_t disk_io_size;
2899 size_t blocksize = inode->i_sb->s_blocksize;
2900 unsigned long this_bio_flag = 0;
2902 set_page_extent_mapped(page);
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
2907 unlock_extent(tree, start, end);
2908 goto out;
2912 if (page->index == last_byte >> PAGE_SHIFT) {
2913 char *userpage;
2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2916 if (zero_offset) {
2917 iosize = PAGE_SIZE - zero_offset;
2918 userpage = kmap_atomic(page);
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
2921 kunmap_atomic(userpage);
2924 while (cur <= end) {
2925 bool force_bio_submit = false;
2926 u64 offset;
2928 if (cur >= last_byte) {
2929 char *userpage;
2930 struct extent_state *cached = NULL;
2932 iosize = PAGE_SIZE - pg_offset;
2933 userpage = kmap_atomic(page);
2934 memset(userpage + pg_offset, 0, iosize);
2935 flush_dcache_page(page);
2936 kunmap_atomic(userpage);
2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
2938 &cached, GFP_NOFS);
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1, &cached);
2941 break;
2943 em = __get_extent_map(inode, page, pg_offset, cur,
2944 end - cur + 1, get_extent, em_cached);
2945 if (IS_ERR_OR_NULL(em)) {
2946 SetPageError(page);
2947 unlock_extent(tree, cur, end);
2948 break;
2950 extent_offset = cur - em->start;
2951 BUG_ON(extent_map_end(em) <= cur);
2952 BUG_ON(end < cur);
2954 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2955 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2956 extent_set_compress_type(&this_bio_flag,
2957 em->compress_type);
2960 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2961 cur_end = min(extent_map_end(em) - 1, end);
2962 iosize = ALIGN(iosize, blocksize);
2963 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2964 disk_io_size = em->block_len;
2965 offset = em->block_start;
2966 } else {
2967 offset = em->block_start + extent_offset;
2968 disk_io_size = iosize;
2970 bdev = em->bdev;
2971 block_start = em->block_start;
2972 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2973 block_start = EXTENT_MAP_HOLE;
2976 * If we have a file range that points to a compressed extent
2977 * and it's followed by a consecutive file range that points to
2978 * to the same compressed extent (possibly with a different
2979 * offset and/or length, so it either points to the whole extent
2980 * or only part of it), we must make sure we do not submit a
2981 * single bio to populate the pages for the 2 ranges because
2982 * this makes the compressed extent read zero out the pages
2983 * belonging to the 2nd range. Imagine the following scenario:
2985 * File layout
2986 * [0 - 8K] [8K - 24K]
2987 * | |
2988 * | |
2989 * points to extent X, points to extent X,
2990 * offset 4K, length of 8K offset 0, length 16K
2992 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 * If the bio to read the compressed extent covers both ranges,
2995 * it will decompress extent X into the pages belonging to the
2996 * first range and then it will stop, zeroing out the remaining
2997 * pages that belong to the other range that points to extent X.
2998 * So here we make sure we submit 2 bios, one for the first
2999 * range and another one for the third range. Both will target
3000 * the same physical extent from disk, but we can't currently
3001 * make the compressed bio endio callback populate the pages
3002 * for both ranges because each compressed bio is tightly
3003 * coupled with a single extent map, and each range can have
3004 * an extent map with a different offset value relative to the
3005 * uncompressed data of our extent and different lengths. This
3006 * is a corner case so we prioritize correctness over
3007 * non-optimal behavior (submitting 2 bios for the same extent).
3009 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3010 prev_em_start && *prev_em_start != (u64)-1 &&
3011 *prev_em_start != em->orig_start)
3012 force_bio_submit = true;
3014 if (prev_em_start)
3015 *prev_em_start = em->orig_start;
3017 free_extent_map(em);
3018 em = NULL;
3020 /* we've found a hole, just zero and go on */
3021 if (block_start == EXTENT_MAP_HOLE) {
3022 char *userpage;
3023 struct extent_state *cached = NULL;
3025 userpage = kmap_atomic(page);
3026 memset(userpage + pg_offset, 0, iosize);
3027 flush_dcache_page(page);
3028 kunmap_atomic(userpage);
3030 set_extent_uptodate(tree, cur, cur + iosize - 1,
3031 &cached, GFP_NOFS);
3032 unlock_extent_cached(tree, cur,
3033 cur + iosize - 1, &cached);
3034 cur = cur + iosize;
3035 pg_offset += iosize;
3036 continue;
3038 /* the get_extent function already copied into the page */
3039 if (test_range_bit(tree, cur, cur_end,
3040 EXTENT_UPTODATE, 1, NULL)) {
3041 check_page_uptodate(tree, page);
3042 unlock_extent(tree, cur, cur + iosize - 1);
3043 cur = cur + iosize;
3044 pg_offset += iosize;
3045 continue;
3047 /* we have an inline extent but it didn't get marked up
3048 * to date. Error out
3050 if (block_start == EXTENT_MAP_INLINE) {
3051 SetPageError(page);
3052 unlock_extent(tree, cur, cur + iosize - 1);
3053 cur = cur + iosize;
3054 pg_offset += iosize;
3055 continue;
3058 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3059 page, offset, disk_io_size,
3060 pg_offset, bdev, bio,
3061 end_bio_extent_readpage, mirror_num,
3062 *bio_flags,
3063 this_bio_flag,
3064 force_bio_submit);
3065 if (!ret) {
3066 nr++;
3067 *bio_flags = this_bio_flag;
3068 } else {
3069 SetPageError(page);
3070 unlock_extent(tree, cur, cur + iosize - 1);
3071 goto out;
3073 cur = cur + iosize;
3074 pg_offset += iosize;
3076 out:
3077 if (!nr) {
3078 if (!PageError(page))
3079 SetPageUptodate(page);
3080 unlock_page(page);
3082 return ret;
3085 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3086 struct page *pages[], int nr_pages,
3087 u64 start, u64 end,
3088 struct extent_map **em_cached,
3089 struct bio **bio,
3090 unsigned long *bio_flags,
3091 u64 *prev_em_start)
3093 struct inode *inode;
3094 struct btrfs_ordered_extent *ordered;
3095 int index;
3097 inode = pages[0]->mapping->host;
3098 while (1) {
3099 lock_extent(tree, start, end);
3100 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3101 end - start + 1);
3102 if (!ordered)
3103 break;
3104 unlock_extent(tree, start, end);
3105 btrfs_start_ordered_extent(inode, ordered, 1);
3106 btrfs_put_ordered_extent(ordered);
3109 for (index = 0; index < nr_pages; index++) {
3110 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3111 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3112 put_page(pages[index]);
3116 static void __extent_readpages(struct extent_io_tree *tree,
3117 struct page *pages[],
3118 int nr_pages,
3119 struct extent_map **em_cached,
3120 struct bio **bio, unsigned long *bio_flags,
3121 u64 *prev_em_start)
3123 u64 start = 0;
3124 u64 end = 0;
3125 u64 page_start;
3126 int index;
3127 int first_index = 0;
3129 for (index = 0; index < nr_pages; index++) {
3130 page_start = page_offset(pages[index]);
3131 if (!end) {
3132 start = page_start;
3133 end = start + PAGE_SIZE - 1;
3134 first_index = index;
3135 } else if (end + 1 == page_start) {
3136 end += PAGE_SIZE;
3137 } else {
3138 __do_contiguous_readpages(tree, &pages[first_index],
3139 index - first_index, start,
3140 end, em_cached,
3141 bio, bio_flags,
3142 prev_em_start);
3143 start = page_start;
3144 end = start + PAGE_SIZE - 1;
3145 first_index = index;
3149 if (end)
3150 __do_contiguous_readpages(tree, &pages[first_index],
3151 index - first_index, start,
3152 end, em_cached, bio,
3153 bio_flags, prev_em_start);
3156 static int __extent_read_full_page(struct extent_io_tree *tree,
3157 struct page *page,
3158 get_extent_t *get_extent,
3159 struct bio **bio, int mirror_num,
3160 unsigned long *bio_flags,
3161 unsigned int read_flags)
3163 struct inode *inode = page->mapping->host;
3164 struct btrfs_ordered_extent *ordered;
3165 u64 start = page_offset(page);
3166 u64 end = start + PAGE_SIZE - 1;
3167 int ret;
3169 while (1) {
3170 lock_extent(tree, start, end);
3171 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3172 PAGE_SIZE);
3173 if (!ordered)
3174 break;
3175 unlock_extent(tree, start, end);
3176 btrfs_start_ordered_extent(inode, ordered, 1);
3177 btrfs_put_ordered_extent(ordered);
3180 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3181 bio_flags, read_flags, NULL);
3182 return ret;
3185 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3186 get_extent_t *get_extent, int mirror_num)
3188 struct bio *bio = NULL;
3189 unsigned long bio_flags = 0;
3190 int ret;
3192 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3193 &bio_flags, 0);
3194 if (bio)
3195 ret = submit_one_bio(bio, mirror_num, bio_flags);
3196 return ret;
3199 static void update_nr_written(struct writeback_control *wbc,
3200 unsigned long nr_written)
3202 wbc->nr_to_write -= nr_written;
3206 * helper for __extent_writepage, doing all of the delayed allocation setup.
3208 * This returns 1 if our fill_delalloc function did all the work required
3209 * to write the page (copy into inline extent). In this case the IO has
3210 * been started and the page is already unlocked.
3212 * This returns 0 if all went well (page still locked)
3213 * This returns < 0 if there were errors (page still locked)
3215 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3216 struct page *page, struct writeback_control *wbc,
3217 struct extent_page_data *epd,
3218 u64 delalloc_start,
3219 unsigned long *nr_written)
3221 struct extent_io_tree *tree = epd->tree;
3222 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3223 u64 nr_delalloc;
3224 u64 delalloc_to_write = 0;
3225 u64 delalloc_end = 0;
3226 int ret;
3227 int page_started = 0;
3229 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3230 return 0;
3232 while (delalloc_end < page_end) {
3233 nr_delalloc = find_lock_delalloc_range(inode, tree,
3234 page,
3235 &delalloc_start,
3236 &delalloc_end,
3237 BTRFS_MAX_EXTENT_SIZE);
3238 if (nr_delalloc == 0) {
3239 delalloc_start = delalloc_end + 1;
3240 continue;
3242 ret = tree->ops->fill_delalloc(inode, page,
3243 delalloc_start,
3244 delalloc_end,
3245 &page_started,
3246 nr_written, wbc);
3247 /* File system has been set read-only */
3248 if (ret) {
3249 SetPageError(page);
3250 /* fill_delalloc should be return < 0 for error
3251 * but just in case, we use > 0 here meaning the
3252 * IO is started, so we don't want to return > 0
3253 * unless things are going well.
3255 ret = ret < 0 ? ret : -EIO;
3256 goto done;
3259 * delalloc_end is already one less than the total length, so
3260 * we don't subtract one from PAGE_SIZE
3262 delalloc_to_write += (delalloc_end - delalloc_start +
3263 PAGE_SIZE) >> PAGE_SHIFT;
3264 delalloc_start = delalloc_end + 1;
3266 if (wbc->nr_to_write < delalloc_to_write) {
3267 int thresh = 8192;
3269 if (delalloc_to_write < thresh * 2)
3270 thresh = delalloc_to_write;
3271 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3272 thresh);
3275 /* did the fill delalloc function already unlock and start
3276 * the IO?
3278 if (page_started) {
3280 * we've unlocked the page, so we can't update
3281 * the mapping's writeback index, just update
3282 * nr_to_write.
3284 wbc->nr_to_write -= *nr_written;
3285 return 1;
3288 ret = 0;
3290 done:
3291 return ret;
3295 * helper for __extent_writepage. This calls the writepage start hooks,
3296 * and does the loop to map the page into extents and bios.
3298 * We return 1 if the IO is started and the page is unlocked,
3299 * 0 if all went well (page still locked)
3300 * < 0 if there were errors (page still locked)
3302 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3303 struct page *page,
3304 struct writeback_control *wbc,
3305 struct extent_page_data *epd,
3306 loff_t i_size,
3307 unsigned long nr_written,
3308 unsigned int write_flags, int *nr_ret)
3310 struct extent_io_tree *tree = epd->tree;
3311 u64 start = page_offset(page);
3312 u64 page_end = start + PAGE_SIZE - 1;
3313 u64 end;
3314 u64 cur = start;
3315 u64 extent_offset;
3316 u64 block_start;
3317 u64 iosize;
3318 struct extent_map *em;
3319 struct block_device *bdev;
3320 size_t pg_offset = 0;
3321 size_t blocksize;
3322 int ret = 0;
3323 int nr = 0;
3324 bool compressed;
3326 if (tree->ops && tree->ops->writepage_start_hook) {
3327 ret = tree->ops->writepage_start_hook(page, start,
3328 page_end);
3329 if (ret) {
3330 /* Fixup worker will requeue */
3331 if (ret == -EBUSY)
3332 wbc->pages_skipped++;
3333 else
3334 redirty_page_for_writepage(wbc, page);
3336 update_nr_written(wbc, nr_written);
3337 unlock_page(page);
3338 return 1;
3343 * we don't want to touch the inode after unlocking the page,
3344 * so we update the mapping writeback index now
3346 update_nr_written(wbc, nr_written + 1);
3348 end = page_end;
3349 if (i_size <= start) {
3350 if (tree->ops && tree->ops->writepage_end_io_hook)
3351 tree->ops->writepage_end_io_hook(page, start,
3352 page_end, NULL, 1);
3353 goto done;
3356 blocksize = inode->i_sb->s_blocksize;
3358 while (cur <= end) {
3359 u64 em_end;
3360 u64 offset;
3362 if (cur >= i_size) {
3363 if (tree->ops && tree->ops->writepage_end_io_hook)
3364 tree->ops->writepage_end_io_hook(page, cur,
3365 page_end, NULL, 1);
3366 break;
3368 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3369 end - cur + 1, 1);
3370 if (IS_ERR_OR_NULL(em)) {
3371 SetPageError(page);
3372 ret = PTR_ERR_OR_ZERO(em);
3373 break;
3376 extent_offset = cur - em->start;
3377 em_end = extent_map_end(em);
3378 BUG_ON(em_end <= cur);
3379 BUG_ON(end < cur);
3380 iosize = min(em_end - cur, end - cur + 1);
3381 iosize = ALIGN(iosize, blocksize);
3382 offset = em->block_start + extent_offset;
3383 bdev = em->bdev;
3384 block_start = em->block_start;
3385 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3386 free_extent_map(em);
3387 em = NULL;
3390 * compressed and inline extents are written through other
3391 * paths in the FS
3393 if (compressed || block_start == EXTENT_MAP_HOLE ||
3394 block_start == EXTENT_MAP_INLINE) {
3396 * end_io notification does not happen here for
3397 * compressed extents
3399 if (!compressed && tree->ops &&
3400 tree->ops->writepage_end_io_hook)
3401 tree->ops->writepage_end_io_hook(page, cur,
3402 cur + iosize - 1,
3403 NULL, 1);
3404 else if (compressed) {
3405 /* we don't want to end_page_writeback on
3406 * a compressed extent. this happens
3407 * elsewhere
3409 nr++;
3412 cur += iosize;
3413 pg_offset += iosize;
3414 continue;
3417 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3418 if (!PageWriteback(page)) {
3419 btrfs_err(BTRFS_I(inode)->root->fs_info,
3420 "page %lu not writeback, cur %llu end %llu",
3421 page->index, cur, end);
3424 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3425 page, offset, iosize, pg_offset,
3426 bdev, &epd->bio,
3427 end_bio_extent_writepage,
3428 0, 0, 0, false);
3429 if (ret) {
3430 SetPageError(page);
3431 if (PageWriteback(page))
3432 end_page_writeback(page);
3435 cur = cur + iosize;
3436 pg_offset += iosize;
3437 nr++;
3439 done:
3440 *nr_ret = nr;
3441 return ret;
3445 * the writepage semantics are similar to regular writepage. extent
3446 * records are inserted to lock ranges in the tree, and as dirty areas
3447 * are found, they are marked writeback. Then the lock bits are removed
3448 * and the end_io handler clears the writeback ranges
3450 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3451 struct extent_page_data *epd)
3453 struct inode *inode = page->mapping->host;
3454 u64 start = page_offset(page);
3455 u64 page_end = start + PAGE_SIZE - 1;
3456 int ret;
3457 int nr = 0;
3458 size_t pg_offset = 0;
3459 loff_t i_size = i_size_read(inode);
3460 unsigned long end_index = i_size >> PAGE_SHIFT;
3461 unsigned int write_flags = 0;
3462 unsigned long nr_written = 0;
3464 write_flags = wbc_to_write_flags(wbc);
3466 trace___extent_writepage(page, inode, wbc);
3468 WARN_ON(!PageLocked(page));
3470 ClearPageError(page);
3472 pg_offset = i_size & (PAGE_SIZE - 1);
3473 if (page->index > end_index ||
3474 (page->index == end_index && !pg_offset)) {
3475 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3476 unlock_page(page);
3477 return 0;
3480 if (page->index == end_index) {
3481 char *userpage;
3483 userpage = kmap_atomic(page);
3484 memset(userpage + pg_offset, 0,
3485 PAGE_SIZE - pg_offset);
3486 kunmap_atomic(userpage);
3487 flush_dcache_page(page);
3490 pg_offset = 0;
3492 set_page_extent_mapped(page);
3494 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3495 if (ret == 1)
3496 goto done_unlocked;
3497 if (ret)
3498 goto done;
3500 ret = __extent_writepage_io(inode, page, wbc, epd,
3501 i_size, nr_written, write_flags, &nr);
3502 if (ret == 1)
3503 goto done_unlocked;
3505 done:
3506 if (nr == 0) {
3507 /* make sure the mapping tag for page dirty gets cleared */
3508 set_page_writeback(page);
3509 end_page_writeback(page);
3511 if (PageError(page)) {
3512 ret = ret < 0 ? ret : -EIO;
3513 end_extent_writepage(page, ret, start, page_end);
3515 unlock_page(page);
3516 return ret;
3518 done_unlocked:
3519 return 0;
3522 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3524 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3525 TASK_UNINTERRUPTIBLE);
3528 static noinline_for_stack int
3529 lock_extent_buffer_for_io(struct extent_buffer *eb,
3530 struct btrfs_fs_info *fs_info,
3531 struct extent_page_data *epd)
3533 int i, num_pages;
3534 int flush = 0;
3535 int ret = 0;
3537 if (!btrfs_try_tree_write_lock(eb)) {
3538 flush = 1;
3539 flush_write_bio(epd);
3540 btrfs_tree_lock(eb);
3543 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3544 btrfs_tree_unlock(eb);
3545 if (!epd->sync_io)
3546 return 0;
3547 if (!flush) {
3548 flush_write_bio(epd);
3549 flush = 1;
3551 while (1) {
3552 wait_on_extent_buffer_writeback(eb);
3553 btrfs_tree_lock(eb);
3554 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3555 break;
3556 btrfs_tree_unlock(eb);
3561 * We need to do this to prevent races in people who check if the eb is
3562 * under IO since we can end up having no IO bits set for a short period
3563 * of time.
3565 spin_lock(&eb->refs_lock);
3566 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3567 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3568 spin_unlock(&eb->refs_lock);
3569 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3570 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3571 -eb->len,
3572 fs_info->dirty_metadata_batch);
3573 ret = 1;
3574 } else {
3575 spin_unlock(&eb->refs_lock);
3578 btrfs_tree_unlock(eb);
3580 if (!ret)
3581 return ret;
3583 num_pages = num_extent_pages(eb);
3584 for (i = 0; i < num_pages; i++) {
3585 struct page *p = eb->pages[i];
3587 if (!trylock_page(p)) {
3588 if (!flush) {
3589 flush_write_bio(epd);
3590 flush = 1;
3592 lock_page(p);
3596 return ret;
3599 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3601 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3602 smp_mb__after_atomic();
3603 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3606 static void set_btree_ioerr(struct page *page)
3608 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3610 SetPageError(page);
3611 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3612 return;
3615 * If writeback for a btree extent that doesn't belong to a log tree
3616 * failed, increment the counter transaction->eb_write_errors.
3617 * We do this because while the transaction is running and before it's
3618 * committing (when we call filemap_fdata[write|wait]_range against
3619 * the btree inode), we might have
3620 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3621 * returns an error or an error happens during writeback, when we're
3622 * committing the transaction we wouldn't know about it, since the pages
3623 * can be no longer dirty nor marked anymore for writeback (if a
3624 * subsequent modification to the extent buffer didn't happen before the
3625 * transaction commit), which makes filemap_fdata[write|wait]_range not
3626 * able to find the pages tagged with SetPageError at transaction
3627 * commit time. So if this happens we must abort the transaction,
3628 * otherwise we commit a super block with btree roots that point to
3629 * btree nodes/leafs whose content on disk is invalid - either garbage
3630 * or the content of some node/leaf from a past generation that got
3631 * cowed or deleted and is no longer valid.
3633 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3634 * not be enough - we need to distinguish between log tree extents vs
3635 * non-log tree extents, and the next filemap_fdatawait_range() call
3636 * will catch and clear such errors in the mapping - and that call might
3637 * be from a log sync and not from a transaction commit. Also, checking
3638 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3639 * not done and would not be reliable - the eb might have been released
3640 * from memory and reading it back again means that flag would not be
3641 * set (since it's a runtime flag, not persisted on disk).
3643 * Using the flags below in the btree inode also makes us achieve the
3644 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3645 * writeback for all dirty pages and before filemap_fdatawait_range()
3646 * is called, the writeback for all dirty pages had already finished
3647 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3648 * filemap_fdatawait_range() would return success, as it could not know
3649 * that writeback errors happened (the pages were no longer tagged for
3650 * writeback).
3652 switch (eb->log_index) {
3653 case -1:
3654 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3655 break;
3656 case 0:
3657 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3658 break;
3659 case 1:
3660 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3661 break;
3662 default:
3663 BUG(); /* unexpected, logic error */
3667 static void end_bio_extent_buffer_writepage(struct bio *bio)
3669 struct bio_vec *bvec;
3670 struct extent_buffer *eb;
3671 int i, done;
3673 ASSERT(!bio_flagged(bio, BIO_CLONED));
3674 bio_for_each_segment_all(bvec, bio, i) {
3675 struct page *page = bvec->bv_page;
3677 eb = (struct extent_buffer *)page->private;
3678 BUG_ON(!eb);
3679 done = atomic_dec_and_test(&eb->io_pages);
3681 if (bio->bi_status ||
3682 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3683 ClearPageUptodate(page);
3684 set_btree_ioerr(page);
3687 end_page_writeback(page);
3689 if (!done)
3690 continue;
3692 end_extent_buffer_writeback(eb);
3695 bio_put(bio);
3698 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3699 struct btrfs_fs_info *fs_info,
3700 struct writeback_control *wbc,
3701 struct extent_page_data *epd)
3703 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3704 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3705 u64 offset = eb->start;
3706 u32 nritems;
3707 int i, num_pages;
3708 unsigned long start, end;
3709 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3710 int ret = 0;
3712 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3713 num_pages = num_extent_pages(eb);
3714 atomic_set(&eb->io_pages, num_pages);
3716 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3717 nritems = btrfs_header_nritems(eb);
3718 if (btrfs_header_level(eb) > 0) {
3719 end = btrfs_node_key_ptr_offset(nritems);
3721 memzero_extent_buffer(eb, end, eb->len - end);
3722 } else {
3724 * leaf:
3725 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3727 start = btrfs_item_nr_offset(nritems);
3728 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3729 memzero_extent_buffer(eb, start, end - start);
3732 for (i = 0; i < num_pages; i++) {
3733 struct page *p = eb->pages[i];
3735 clear_page_dirty_for_io(p);
3736 set_page_writeback(p);
3737 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3738 p, offset, PAGE_SIZE, 0, bdev,
3739 &epd->bio,
3740 end_bio_extent_buffer_writepage,
3741 0, 0, 0, false);
3742 if (ret) {
3743 set_btree_ioerr(p);
3744 if (PageWriteback(p))
3745 end_page_writeback(p);
3746 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3747 end_extent_buffer_writeback(eb);
3748 ret = -EIO;
3749 break;
3751 offset += PAGE_SIZE;
3752 update_nr_written(wbc, 1);
3753 unlock_page(p);
3756 if (unlikely(ret)) {
3757 for (; i < num_pages; i++) {
3758 struct page *p = eb->pages[i];
3759 clear_page_dirty_for_io(p);
3760 unlock_page(p);
3764 return ret;
3767 int btree_write_cache_pages(struct address_space *mapping,
3768 struct writeback_control *wbc)
3770 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3771 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3772 struct extent_buffer *eb, *prev_eb = NULL;
3773 struct extent_page_data epd = {
3774 .bio = NULL,
3775 .tree = tree,
3776 .extent_locked = 0,
3777 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3779 int ret = 0;
3780 int done = 0;
3781 int nr_to_write_done = 0;
3782 struct pagevec pvec;
3783 int nr_pages;
3784 pgoff_t index;
3785 pgoff_t end; /* Inclusive */
3786 int scanned = 0;
3787 xa_mark_t tag;
3789 pagevec_init(&pvec);
3790 if (wbc->range_cyclic) {
3791 index = mapping->writeback_index; /* Start from prev offset */
3792 end = -1;
3793 } else {
3794 index = wbc->range_start >> PAGE_SHIFT;
3795 end = wbc->range_end >> PAGE_SHIFT;
3796 scanned = 1;
3798 if (wbc->sync_mode == WB_SYNC_ALL)
3799 tag = PAGECACHE_TAG_TOWRITE;
3800 else
3801 tag = PAGECACHE_TAG_DIRTY;
3802 retry:
3803 if (wbc->sync_mode == WB_SYNC_ALL)
3804 tag_pages_for_writeback(mapping, index, end);
3805 while (!done && !nr_to_write_done && (index <= end) &&
3806 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3807 tag))) {
3808 unsigned i;
3810 scanned = 1;
3811 for (i = 0; i < nr_pages; i++) {
3812 struct page *page = pvec.pages[i];
3814 if (!PagePrivate(page))
3815 continue;
3817 spin_lock(&mapping->private_lock);
3818 if (!PagePrivate(page)) {
3819 spin_unlock(&mapping->private_lock);
3820 continue;
3823 eb = (struct extent_buffer *)page->private;
3826 * Shouldn't happen and normally this would be a BUG_ON
3827 * but no sense in crashing the users box for something
3828 * we can survive anyway.
3830 if (WARN_ON(!eb)) {
3831 spin_unlock(&mapping->private_lock);
3832 continue;
3835 if (eb == prev_eb) {
3836 spin_unlock(&mapping->private_lock);
3837 continue;
3840 ret = atomic_inc_not_zero(&eb->refs);
3841 spin_unlock(&mapping->private_lock);
3842 if (!ret)
3843 continue;
3845 prev_eb = eb;
3846 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3847 if (!ret) {
3848 free_extent_buffer(eb);
3849 continue;
3852 ret = write_one_eb(eb, fs_info, wbc, &epd);
3853 if (ret) {
3854 done = 1;
3855 free_extent_buffer(eb);
3856 break;
3858 free_extent_buffer(eb);
3861 * the filesystem may choose to bump up nr_to_write.
3862 * We have to make sure to honor the new nr_to_write
3863 * at any time
3865 nr_to_write_done = wbc->nr_to_write <= 0;
3867 pagevec_release(&pvec);
3868 cond_resched();
3870 if (!scanned && !done) {
3872 * We hit the last page and there is more work to be done: wrap
3873 * back to the start of the file
3875 scanned = 1;
3876 index = 0;
3877 goto retry;
3879 flush_write_bio(&epd);
3880 return ret;
3884 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3885 * @mapping: address space structure to write
3886 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3887 * @data: data passed to __extent_writepage function
3889 * If a page is already under I/O, write_cache_pages() skips it, even
3890 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3891 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3892 * and msync() need to guarantee that all the data which was dirty at the time
3893 * the call was made get new I/O started against them. If wbc->sync_mode is
3894 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3895 * existing IO to complete.
3897 static int extent_write_cache_pages(struct address_space *mapping,
3898 struct writeback_control *wbc,
3899 struct extent_page_data *epd)
3901 struct inode *inode = mapping->host;
3902 int ret = 0;
3903 int done = 0;
3904 int nr_to_write_done = 0;
3905 struct pagevec pvec;
3906 int nr_pages;
3907 pgoff_t index;
3908 pgoff_t end; /* Inclusive */
3909 pgoff_t done_index;
3910 int range_whole = 0;
3911 int scanned = 0;
3912 xa_mark_t tag;
3915 * We have to hold onto the inode so that ordered extents can do their
3916 * work when the IO finishes. The alternative to this is failing to add
3917 * an ordered extent if the igrab() fails there and that is a huge pain
3918 * to deal with, so instead just hold onto the inode throughout the
3919 * writepages operation. If it fails here we are freeing up the inode
3920 * anyway and we'd rather not waste our time writing out stuff that is
3921 * going to be truncated anyway.
3923 if (!igrab(inode))
3924 return 0;
3926 pagevec_init(&pvec);
3927 if (wbc->range_cyclic) {
3928 index = mapping->writeback_index; /* Start from prev offset */
3929 end = -1;
3930 } else {
3931 index = wbc->range_start >> PAGE_SHIFT;
3932 end = wbc->range_end >> PAGE_SHIFT;
3933 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3934 range_whole = 1;
3935 scanned = 1;
3937 if (wbc->sync_mode == WB_SYNC_ALL)
3938 tag = PAGECACHE_TAG_TOWRITE;
3939 else
3940 tag = PAGECACHE_TAG_DIRTY;
3941 retry:
3942 if (wbc->sync_mode == WB_SYNC_ALL)
3943 tag_pages_for_writeback(mapping, index, end);
3944 done_index = index;
3945 while (!done && !nr_to_write_done && (index <= end) &&
3946 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3947 &index, end, tag))) {
3948 unsigned i;
3950 scanned = 1;
3951 for (i = 0; i < nr_pages; i++) {
3952 struct page *page = pvec.pages[i];
3954 done_index = page->index;
3956 * At this point we hold neither the i_pages lock nor
3957 * the page lock: the page may be truncated or
3958 * invalidated (changing page->mapping to NULL),
3959 * or even swizzled back from swapper_space to
3960 * tmpfs file mapping
3962 if (!trylock_page(page)) {
3963 flush_write_bio(epd);
3964 lock_page(page);
3967 if (unlikely(page->mapping != mapping)) {
3968 unlock_page(page);
3969 continue;
3972 if (wbc->sync_mode != WB_SYNC_NONE) {
3973 if (PageWriteback(page))
3974 flush_write_bio(epd);
3975 wait_on_page_writeback(page);
3978 if (PageWriteback(page) ||
3979 !clear_page_dirty_for_io(page)) {
3980 unlock_page(page);
3981 continue;
3984 ret = __extent_writepage(page, wbc, epd);
3986 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3987 unlock_page(page);
3988 ret = 0;
3990 if (ret < 0) {
3992 * done_index is set past this page,
3993 * so media errors will not choke
3994 * background writeout for the entire
3995 * file. This has consequences for
3996 * range_cyclic semantics (ie. it may
3997 * not be suitable for data integrity
3998 * writeout).
4000 done_index = page->index + 1;
4001 done = 1;
4002 break;
4006 * the filesystem may choose to bump up nr_to_write.
4007 * We have to make sure to honor the new nr_to_write
4008 * at any time
4010 nr_to_write_done = wbc->nr_to_write <= 0;
4012 pagevec_release(&pvec);
4013 cond_resched();
4015 if (!scanned && !done) {
4017 * We hit the last page and there is more work to be done: wrap
4018 * back to the start of the file
4020 scanned = 1;
4021 index = 0;
4022 goto retry;
4025 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4026 mapping->writeback_index = done_index;
4028 btrfs_add_delayed_iput(inode);
4029 return ret;
4032 static void flush_write_bio(struct extent_page_data *epd)
4034 if (epd->bio) {
4035 int ret;
4037 ret = submit_one_bio(epd->bio, 0, 0);
4038 BUG_ON(ret < 0); /* -ENOMEM */
4039 epd->bio = NULL;
4043 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4045 int ret;
4046 struct extent_page_data epd = {
4047 .bio = NULL,
4048 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4049 .extent_locked = 0,
4050 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4053 ret = __extent_writepage(page, wbc, &epd);
4055 flush_write_bio(&epd);
4056 return ret;
4059 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4060 int mode)
4062 int ret = 0;
4063 struct address_space *mapping = inode->i_mapping;
4064 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4065 struct page *page;
4066 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4067 PAGE_SHIFT;
4069 struct extent_page_data epd = {
4070 .bio = NULL,
4071 .tree = tree,
4072 .extent_locked = 1,
4073 .sync_io = mode == WB_SYNC_ALL,
4075 struct writeback_control wbc_writepages = {
4076 .sync_mode = mode,
4077 .nr_to_write = nr_pages * 2,
4078 .range_start = start,
4079 .range_end = end + 1,
4082 while (start <= end) {
4083 page = find_get_page(mapping, start >> PAGE_SHIFT);
4084 if (clear_page_dirty_for_io(page))
4085 ret = __extent_writepage(page, &wbc_writepages, &epd);
4086 else {
4087 if (tree->ops && tree->ops->writepage_end_io_hook)
4088 tree->ops->writepage_end_io_hook(page, start,
4089 start + PAGE_SIZE - 1,
4090 NULL, 1);
4091 unlock_page(page);
4093 put_page(page);
4094 start += PAGE_SIZE;
4097 flush_write_bio(&epd);
4098 return ret;
4101 int extent_writepages(struct address_space *mapping,
4102 struct writeback_control *wbc)
4104 int ret = 0;
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = &BTRFS_I(mapping->host)->io_tree,
4108 .extent_locked = 0,
4109 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4112 ret = extent_write_cache_pages(mapping, wbc, &epd);
4113 flush_write_bio(&epd);
4114 return ret;
4117 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4118 unsigned nr_pages)
4120 struct bio *bio = NULL;
4121 unsigned page_idx;
4122 unsigned long bio_flags = 0;
4123 struct page *pagepool[16];
4124 struct page *page;
4125 struct extent_map *em_cached = NULL;
4126 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4127 int nr = 0;
4128 u64 prev_em_start = (u64)-1;
4130 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4131 page = list_entry(pages->prev, struct page, lru);
4133 prefetchw(&page->flags);
4134 list_del(&page->lru);
4135 if (add_to_page_cache_lru(page, mapping,
4136 page->index,
4137 readahead_gfp_mask(mapping))) {
4138 put_page(page);
4139 continue;
4142 pagepool[nr++] = page;
4143 if (nr < ARRAY_SIZE(pagepool))
4144 continue;
4145 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4146 &bio_flags, &prev_em_start);
4147 nr = 0;
4149 if (nr)
4150 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4151 &bio_flags, &prev_em_start);
4153 if (em_cached)
4154 free_extent_map(em_cached);
4156 BUG_ON(!list_empty(pages));
4157 if (bio)
4158 return submit_one_bio(bio, 0, bio_flags);
4159 return 0;
4163 * basic invalidatepage code, this waits on any locked or writeback
4164 * ranges corresponding to the page, and then deletes any extent state
4165 * records from the tree
4167 int extent_invalidatepage(struct extent_io_tree *tree,
4168 struct page *page, unsigned long offset)
4170 struct extent_state *cached_state = NULL;
4171 u64 start = page_offset(page);
4172 u64 end = start + PAGE_SIZE - 1;
4173 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4175 start += ALIGN(offset, blocksize);
4176 if (start > end)
4177 return 0;
4179 lock_extent_bits(tree, start, end, &cached_state);
4180 wait_on_page_writeback(page);
4181 clear_extent_bit(tree, start, end,
4182 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4183 EXTENT_DO_ACCOUNTING,
4184 1, 1, &cached_state);
4185 return 0;
4189 * a helper for releasepage, this tests for areas of the page that
4190 * are locked or under IO and drops the related state bits if it is safe
4191 * to drop the page.
4193 static int try_release_extent_state(struct extent_io_tree *tree,
4194 struct page *page, gfp_t mask)
4196 u64 start = page_offset(page);
4197 u64 end = start + PAGE_SIZE - 1;
4198 int ret = 1;
4200 if (test_range_bit(tree, start, end,
4201 EXTENT_IOBITS, 0, NULL))
4202 ret = 0;
4203 else {
4205 * at this point we can safely clear everything except the
4206 * locked bit and the nodatasum bit
4208 ret = __clear_extent_bit(tree, start, end,
4209 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4210 0, 0, NULL, mask, NULL);
4212 /* if clear_extent_bit failed for enomem reasons,
4213 * we can't allow the release to continue.
4215 if (ret < 0)
4216 ret = 0;
4217 else
4218 ret = 1;
4220 return ret;
4224 * a helper for releasepage. As long as there are no locked extents
4225 * in the range corresponding to the page, both state records and extent
4226 * map records are removed
4228 int try_release_extent_mapping(struct page *page, gfp_t mask)
4230 struct extent_map *em;
4231 u64 start = page_offset(page);
4232 u64 end = start + PAGE_SIZE - 1;
4233 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4234 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4235 struct extent_map_tree *map = &btrfs_inode->extent_tree;
4237 if (gfpflags_allow_blocking(mask) &&
4238 page->mapping->host->i_size > SZ_16M) {
4239 u64 len;
4240 while (start <= end) {
4241 len = end - start + 1;
4242 write_lock(&map->lock);
4243 em = lookup_extent_mapping(map, start, len);
4244 if (!em) {
4245 write_unlock(&map->lock);
4246 break;
4248 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4249 em->start != start) {
4250 write_unlock(&map->lock);
4251 free_extent_map(em);
4252 break;
4254 if (!test_range_bit(tree, em->start,
4255 extent_map_end(em) - 1,
4256 EXTENT_LOCKED | EXTENT_WRITEBACK,
4257 0, NULL)) {
4258 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4259 &btrfs_inode->runtime_flags);
4260 remove_extent_mapping(map, em);
4261 /* once for the rb tree */
4262 free_extent_map(em);
4264 start = extent_map_end(em);
4265 write_unlock(&map->lock);
4267 /* once for us */
4268 free_extent_map(em);
4271 return try_release_extent_state(tree, page, mask);
4275 * helper function for fiemap, which doesn't want to see any holes.
4276 * This maps until we find something past 'last'
4278 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4279 u64 offset, u64 last)
4281 u64 sectorsize = btrfs_inode_sectorsize(inode);
4282 struct extent_map *em;
4283 u64 len;
4285 if (offset >= last)
4286 return NULL;
4288 while (1) {
4289 len = last - offset;
4290 if (len == 0)
4291 break;
4292 len = ALIGN(len, sectorsize);
4293 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4294 len, 0);
4295 if (IS_ERR_OR_NULL(em))
4296 return em;
4298 /* if this isn't a hole return it */
4299 if (em->block_start != EXTENT_MAP_HOLE)
4300 return em;
4302 /* this is a hole, advance to the next extent */
4303 offset = extent_map_end(em);
4304 free_extent_map(em);
4305 if (offset >= last)
4306 break;
4308 return NULL;
4312 * To cache previous fiemap extent
4314 * Will be used for merging fiemap extent
4316 struct fiemap_cache {
4317 u64 offset;
4318 u64 phys;
4319 u64 len;
4320 u32 flags;
4321 bool cached;
4325 * Helper to submit fiemap extent.
4327 * Will try to merge current fiemap extent specified by @offset, @phys,
4328 * @len and @flags with cached one.
4329 * And only when we fails to merge, cached one will be submitted as
4330 * fiemap extent.
4332 * Return value is the same as fiemap_fill_next_extent().
4334 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4335 struct fiemap_cache *cache,
4336 u64 offset, u64 phys, u64 len, u32 flags)
4338 int ret = 0;
4340 if (!cache->cached)
4341 goto assign;
4344 * Sanity check, extent_fiemap() should have ensured that new
4345 * fiemap extent won't overlap with cahced one.
4346 * Not recoverable.
4348 * NOTE: Physical address can overlap, due to compression
4350 if (cache->offset + cache->len > offset) {
4351 WARN_ON(1);
4352 return -EINVAL;
4356 * Only merges fiemap extents if
4357 * 1) Their logical addresses are continuous
4359 * 2) Their physical addresses are continuous
4360 * So truly compressed (physical size smaller than logical size)
4361 * extents won't get merged with each other
4363 * 3) Share same flags except FIEMAP_EXTENT_LAST
4364 * So regular extent won't get merged with prealloc extent
4366 if (cache->offset + cache->len == offset &&
4367 cache->phys + cache->len == phys &&
4368 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4369 (flags & ~FIEMAP_EXTENT_LAST)) {
4370 cache->len += len;
4371 cache->flags |= flags;
4372 goto try_submit_last;
4375 /* Not mergeable, need to submit cached one */
4376 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4377 cache->len, cache->flags);
4378 cache->cached = false;
4379 if (ret)
4380 return ret;
4381 assign:
4382 cache->cached = true;
4383 cache->offset = offset;
4384 cache->phys = phys;
4385 cache->len = len;
4386 cache->flags = flags;
4387 try_submit_last:
4388 if (cache->flags & FIEMAP_EXTENT_LAST) {
4389 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4390 cache->phys, cache->len, cache->flags);
4391 cache->cached = false;
4393 return ret;
4397 * Emit last fiemap cache
4399 * The last fiemap cache may still be cached in the following case:
4400 * 0 4k 8k
4401 * |<- Fiemap range ->|
4402 * |<------------ First extent ----------->|
4404 * In this case, the first extent range will be cached but not emitted.
4405 * So we must emit it before ending extent_fiemap().
4407 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4408 struct fiemap_extent_info *fieinfo,
4409 struct fiemap_cache *cache)
4411 int ret;
4413 if (!cache->cached)
4414 return 0;
4416 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4417 cache->len, cache->flags);
4418 cache->cached = false;
4419 if (ret > 0)
4420 ret = 0;
4421 return ret;
4424 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4425 __u64 start, __u64 len)
4427 int ret = 0;
4428 u64 off = start;
4429 u64 max = start + len;
4430 u32 flags = 0;
4431 u32 found_type;
4432 u64 last;
4433 u64 last_for_get_extent = 0;
4434 u64 disko = 0;
4435 u64 isize = i_size_read(inode);
4436 struct btrfs_key found_key;
4437 struct extent_map *em = NULL;
4438 struct extent_state *cached_state = NULL;
4439 struct btrfs_path *path;
4440 struct btrfs_root *root = BTRFS_I(inode)->root;
4441 struct fiemap_cache cache = { 0 };
4442 int end = 0;
4443 u64 em_start = 0;
4444 u64 em_len = 0;
4445 u64 em_end = 0;
4447 if (len == 0)
4448 return -EINVAL;
4450 path = btrfs_alloc_path();
4451 if (!path)
4452 return -ENOMEM;
4453 path->leave_spinning = 1;
4455 start = round_down(start, btrfs_inode_sectorsize(inode));
4456 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4459 * lookup the last file extent. We're not using i_size here
4460 * because there might be preallocation past i_size
4462 ret = btrfs_lookup_file_extent(NULL, root, path,
4463 btrfs_ino(BTRFS_I(inode)), -1, 0);
4464 if (ret < 0) {
4465 btrfs_free_path(path);
4466 return ret;
4467 } else {
4468 WARN_ON(!ret);
4469 if (ret == 1)
4470 ret = 0;
4473 path->slots[0]--;
4474 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4475 found_type = found_key.type;
4477 /* No extents, but there might be delalloc bits */
4478 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4479 found_type != BTRFS_EXTENT_DATA_KEY) {
4480 /* have to trust i_size as the end */
4481 last = (u64)-1;
4482 last_for_get_extent = isize;
4483 } else {
4485 * remember the start of the last extent. There are a
4486 * bunch of different factors that go into the length of the
4487 * extent, so its much less complex to remember where it started
4489 last = found_key.offset;
4490 last_for_get_extent = last + 1;
4492 btrfs_release_path(path);
4495 * we might have some extents allocated but more delalloc past those
4496 * extents. so, we trust isize unless the start of the last extent is
4497 * beyond isize
4499 if (last < isize) {
4500 last = (u64)-1;
4501 last_for_get_extent = isize;
4504 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4505 &cached_state);
4507 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4508 if (!em)
4509 goto out;
4510 if (IS_ERR(em)) {
4511 ret = PTR_ERR(em);
4512 goto out;
4515 while (!end) {
4516 u64 offset_in_extent = 0;
4518 /* break if the extent we found is outside the range */
4519 if (em->start >= max || extent_map_end(em) < off)
4520 break;
4523 * get_extent may return an extent that starts before our
4524 * requested range. We have to make sure the ranges
4525 * we return to fiemap always move forward and don't
4526 * overlap, so adjust the offsets here
4528 em_start = max(em->start, off);
4531 * record the offset from the start of the extent
4532 * for adjusting the disk offset below. Only do this if the
4533 * extent isn't compressed since our in ram offset may be past
4534 * what we have actually allocated on disk.
4536 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4537 offset_in_extent = em_start - em->start;
4538 em_end = extent_map_end(em);
4539 em_len = em_end - em_start;
4540 flags = 0;
4541 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4542 disko = em->block_start + offset_in_extent;
4543 else
4544 disko = 0;
4547 * bump off for our next call to get_extent
4549 off = extent_map_end(em);
4550 if (off >= max)
4551 end = 1;
4553 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4554 end = 1;
4555 flags |= FIEMAP_EXTENT_LAST;
4556 } else if (em->block_start == EXTENT_MAP_INLINE) {
4557 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4558 FIEMAP_EXTENT_NOT_ALIGNED);
4559 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4560 flags |= (FIEMAP_EXTENT_DELALLOC |
4561 FIEMAP_EXTENT_UNKNOWN);
4562 } else if (fieinfo->fi_extents_max) {
4563 u64 bytenr = em->block_start -
4564 (em->start - em->orig_start);
4567 * As btrfs supports shared space, this information
4568 * can be exported to userspace tools via
4569 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4570 * then we're just getting a count and we can skip the
4571 * lookup stuff.
4573 ret = btrfs_check_shared(root,
4574 btrfs_ino(BTRFS_I(inode)),
4575 bytenr);
4576 if (ret < 0)
4577 goto out_free;
4578 if (ret)
4579 flags |= FIEMAP_EXTENT_SHARED;
4580 ret = 0;
4582 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4583 flags |= FIEMAP_EXTENT_ENCODED;
4584 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4585 flags |= FIEMAP_EXTENT_UNWRITTEN;
4587 free_extent_map(em);
4588 em = NULL;
4589 if ((em_start >= last) || em_len == (u64)-1 ||
4590 (last == (u64)-1 && isize <= em_end)) {
4591 flags |= FIEMAP_EXTENT_LAST;
4592 end = 1;
4595 /* now scan forward to see if this is really the last extent. */
4596 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4597 if (IS_ERR(em)) {
4598 ret = PTR_ERR(em);
4599 goto out;
4601 if (!em) {
4602 flags |= FIEMAP_EXTENT_LAST;
4603 end = 1;
4605 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4606 em_len, flags);
4607 if (ret) {
4608 if (ret == 1)
4609 ret = 0;
4610 goto out_free;
4613 out_free:
4614 if (!ret)
4615 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4616 free_extent_map(em);
4617 out:
4618 btrfs_free_path(path);
4619 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4620 &cached_state);
4621 return ret;
4624 static void __free_extent_buffer(struct extent_buffer *eb)
4626 btrfs_leak_debug_del(&eb->leak_list);
4627 kmem_cache_free(extent_buffer_cache, eb);
4630 int extent_buffer_under_io(struct extent_buffer *eb)
4632 return (atomic_read(&eb->io_pages) ||
4633 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4634 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4638 * Release all pages attached to the extent buffer.
4640 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4642 int i;
4643 int num_pages;
4644 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4646 BUG_ON(extent_buffer_under_io(eb));
4648 num_pages = num_extent_pages(eb);
4649 for (i = 0; i < num_pages; i++) {
4650 struct page *page = eb->pages[i];
4652 if (!page)
4653 continue;
4654 if (mapped)
4655 spin_lock(&page->mapping->private_lock);
4657 * We do this since we'll remove the pages after we've
4658 * removed the eb from the radix tree, so we could race
4659 * and have this page now attached to the new eb. So
4660 * only clear page_private if it's still connected to
4661 * this eb.
4663 if (PagePrivate(page) &&
4664 page->private == (unsigned long)eb) {
4665 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4666 BUG_ON(PageDirty(page));
4667 BUG_ON(PageWriteback(page));
4669 * We need to make sure we haven't be attached
4670 * to a new eb.
4672 ClearPagePrivate(page);
4673 set_page_private(page, 0);
4674 /* One for the page private */
4675 put_page(page);
4678 if (mapped)
4679 spin_unlock(&page->mapping->private_lock);
4681 /* One for when we allocated the page */
4682 put_page(page);
4687 * Helper for releasing the extent buffer.
4689 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4691 btrfs_release_extent_buffer_pages(eb);
4692 __free_extent_buffer(eb);
4695 static struct extent_buffer *
4696 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4697 unsigned long len)
4699 struct extent_buffer *eb = NULL;
4701 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4702 eb->start = start;
4703 eb->len = len;
4704 eb->fs_info = fs_info;
4705 eb->bflags = 0;
4706 rwlock_init(&eb->lock);
4707 atomic_set(&eb->write_locks, 0);
4708 atomic_set(&eb->read_locks, 0);
4709 atomic_set(&eb->blocking_readers, 0);
4710 atomic_set(&eb->blocking_writers, 0);
4711 atomic_set(&eb->spinning_readers, 0);
4712 atomic_set(&eb->spinning_writers, 0);
4713 eb->lock_nested = 0;
4714 init_waitqueue_head(&eb->write_lock_wq);
4715 init_waitqueue_head(&eb->read_lock_wq);
4717 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4719 spin_lock_init(&eb->refs_lock);
4720 atomic_set(&eb->refs, 1);
4721 atomic_set(&eb->io_pages, 0);
4724 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4726 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4727 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4728 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4730 return eb;
4733 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4735 int i;
4736 struct page *p;
4737 struct extent_buffer *new;
4738 int num_pages = num_extent_pages(src);
4740 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4741 if (new == NULL)
4742 return NULL;
4744 for (i = 0; i < num_pages; i++) {
4745 p = alloc_page(GFP_NOFS);
4746 if (!p) {
4747 btrfs_release_extent_buffer(new);
4748 return NULL;
4750 attach_extent_buffer_page(new, p);
4751 WARN_ON(PageDirty(p));
4752 SetPageUptodate(p);
4753 new->pages[i] = p;
4754 copy_page(page_address(p), page_address(src->pages[i]));
4757 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4758 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4760 return new;
4763 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4764 u64 start, unsigned long len)
4766 struct extent_buffer *eb;
4767 int num_pages;
4768 int i;
4770 eb = __alloc_extent_buffer(fs_info, start, len);
4771 if (!eb)
4772 return NULL;
4774 num_pages = num_extent_pages(eb);
4775 for (i = 0; i < num_pages; i++) {
4776 eb->pages[i] = alloc_page(GFP_NOFS);
4777 if (!eb->pages[i])
4778 goto err;
4780 set_extent_buffer_uptodate(eb);
4781 btrfs_set_header_nritems(eb, 0);
4782 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4784 return eb;
4785 err:
4786 for (; i > 0; i--)
4787 __free_page(eb->pages[i - 1]);
4788 __free_extent_buffer(eb);
4789 return NULL;
4792 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4793 u64 start)
4795 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4798 static void check_buffer_tree_ref(struct extent_buffer *eb)
4800 int refs;
4801 /* the ref bit is tricky. We have to make sure it is set
4802 * if we have the buffer dirty. Otherwise the
4803 * code to free a buffer can end up dropping a dirty
4804 * page
4806 * Once the ref bit is set, it won't go away while the
4807 * buffer is dirty or in writeback, and it also won't
4808 * go away while we have the reference count on the
4809 * eb bumped.
4811 * We can't just set the ref bit without bumping the
4812 * ref on the eb because free_extent_buffer might
4813 * see the ref bit and try to clear it. If this happens
4814 * free_extent_buffer might end up dropping our original
4815 * ref by mistake and freeing the page before we are able
4816 * to add one more ref.
4818 * So bump the ref count first, then set the bit. If someone
4819 * beat us to it, drop the ref we added.
4821 refs = atomic_read(&eb->refs);
4822 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4823 return;
4825 spin_lock(&eb->refs_lock);
4826 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4827 atomic_inc(&eb->refs);
4828 spin_unlock(&eb->refs_lock);
4831 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4832 struct page *accessed)
4834 int num_pages, i;
4836 check_buffer_tree_ref(eb);
4838 num_pages = num_extent_pages(eb);
4839 for (i = 0; i < num_pages; i++) {
4840 struct page *p = eb->pages[i];
4842 if (p != accessed)
4843 mark_page_accessed(p);
4847 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4848 u64 start)
4850 struct extent_buffer *eb;
4852 rcu_read_lock();
4853 eb = radix_tree_lookup(&fs_info->buffer_radix,
4854 start >> PAGE_SHIFT);
4855 if (eb && atomic_inc_not_zero(&eb->refs)) {
4856 rcu_read_unlock();
4858 * Lock our eb's refs_lock to avoid races with
4859 * free_extent_buffer. When we get our eb it might be flagged
4860 * with EXTENT_BUFFER_STALE and another task running
4861 * free_extent_buffer might have seen that flag set,
4862 * eb->refs == 2, that the buffer isn't under IO (dirty and
4863 * writeback flags not set) and it's still in the tree (flag
4864 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4865 * of decrementing the extent buffer's reference count twice.
4866 * So here we could race and increment the eb's reference count,
4867 * clear its stale flag, mark it as dirty and drop our reference
4868 * before the other task finishes executing free_extent_buffer,
4869 * which would later result in an attempt to free an extent
4870 * buffer that is dirty.
4872 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4873 spin_lock(&eb->refs_lock);
4874 spin_unlock(&eb->refs_lock);
4876 mark_extent_buffer_accessed(eb, NULL);
4877 return eb;
4879 rcu_read_unlock();
4881 return NULL;
4884 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4885 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4886 u64 start)
4888 struct extent_buffer *eb, *exists = NULL;
4889 int ret;
4891 eb = find_extent_buffer(fs_info, start);
4892 if (eb)
4893 return eb;
4894 eb = alloc_dummy_extent_buffer(fs_info, start);
4895 if (!eb)
4896 return NULL;
4897 eb->fs_info = fs_info;
4898 again:
4899 ret = radix_tree_preload(GFP_NOFS);
4900 if (ret)
4901 goto free_eb;
4902 spin_lock(&fs_info->buffer_lock);
4903 ret = radix_tree_insert(&fs_info->buffer_radix,
4904 start >> PAGE_SHIFT, eb);
4905 spin_unlock(&fs_info->buffer_lock);
4906 radix_tree_preload_end();
4907 if (ret == -EEXIST) {
4908 exists = find_extent_buffer(fs_info, start);
4909 if (exists)
4910 goto free_eb;
4911 else
4912 goto again;
4914 check_buffer_tree_ref(eb);
4915 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4918 * We will free dummy extent buffer's if they come into
4919 * free_extent_buffer with a ref count of 2, but if we are using this we
4920 * want the buffers to stay in memory until we're done with them, so
4921 * bump the ref count again.
4923 atomic_inc(&eb->refs);
4924 return eb;
4925 free_eb:
4926 btrfs_release_extent_buffer(eb);
4927 return exists;
4929 #endif
4931 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4932 u64 start)
4934 unsigned long len = fs_info->nodesize;
4935 int num_pages;
4936 int i;
4937 unsigned long index = start >> PAGE_SHIFT;
4938 struct extent_buffer *eb;
4939 struct extent_buffer *exists = NULL;
4940 struct page *p;
4941 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4942 int uptodate = 1;
4943 int ret;
4945 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4946 btrfs_err(fs_info, "bad tree block start %llu", start);
4947 return ERR_PTR(-EINVAL);
4950 eb = find_extent_buffer(fs_info, start);
4951 if (eb)
4952 return eb;
4954 eb = __alloc_extent_buffer(fs_info, start, len);
4955 if (!eb)
4956 return ERR_PTR(-ENOMEM);
4958 num_pages = num_extent_pages(eb);
4959 for (i = 0; i < num_pages; i++, index++) {
4960 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4961 if (!p) {
4962 exists = ERR_PTR(-ENOMEM);
4963 goto free_eb;
4966 spin_lock(&mapping->private_lock);
4967 if (PagePrivate(p)) {
4969 * We could have already allocated an eb for this page
4970 * and attached one so lets see if we can get a ref on
4971 * the existing eb, and if we can we know it's good and
4972 * we can just return that one, else we know we can just
4973 * overwrite page->private.
4975 exists = (struct extent_buffer *)p->private;
4976 if (atomic_inc_not_zero(&exists->refs)) {
4977 spin_unlock(&mapping->private_lock);
4978 unlock_page(p);
4979 put_page(p);
4980 mark_extent_buffer_accessed(exists, p);
4981 goto free_eb;
4983 exists = NULL;
4986 * Do this so attach doesn't complain and we need to
4987 * drop the ref the old guy had.
4989 ClearPagePrivate(p);
4990 WARN_ON(PageDirty(p));
4991 put_page(p);
4993 attach_extent_buffer_page(eb, p);
4994 spin_unlock(&mapping->private_lock);
4995 WARN_ON(PageDirty(p));
4996 eb->pages[i] = p;
4997 if (!PageUptodate(p))
4998 uptodate = 0;
5001 * We can't unlock the pages just yet since the extent buffer
5002 * hasn't been properly inserted in the radix tree, this
5003 * opens a race with btree_releasepage which can free a page
5004 * while we are still filling in all pages for the buffer and
5005 * we could crash.
5008 if (uptodate)
5009 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5010 again:
5011 ret = radix_tree_preload(GFP_NOFS);
5012 if (ret) {
5013 exists = ERR_PTR(ret);
5014 goto free_eb;
5017 spin_lock(&fs_info->buffer_lock);
5018 ret = radix_tree_insert(&fs_info->buffer_radix,
5019 start >> PAGE_SHIFT, eb);
5020 spin_unlock(&fs_info->buffer_lock);
5021 radix_tree_preload_end();
5022 if (ret == -EEXIST) {
5023 exists = find_extent_buffer(fs_info, start);
5024 if (exists)
5025 goto free_eb;
5026 else
5027 goto again;
5029 /* add one reference for the tree */
5030 check_buffer_tree_ref(eb);
5031 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5034 * Now it's safe to unlock the pages because any calls to
5035 * btree_releasepage will correctly detect that a page belongs to a
5036 * live buffer and won't free them prematurely.
5038 for (i = 0; i < num_pages; i++)
5039 unlock_page(eb->pages[i]);
5040 return eb;
5042 free_eb:
5043 WARN_ON(!atomic_dec_and_test(&eb->refs));
5044 for (i = 0; i < num_pages; i++) {
5045 if (eb->pages[i])
5046 unlock_page(eb->pages[i]);
5049 btrfs_release_extent_buffer(eb);
5050 return exists;
5053 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5055 struct extent_buffer *eb =
5056 container_of(head, struct extent_buffer, rcu_head);
5058 __free_extent_buffer(eb);
5061 static int release_extent_buffer(struct extent_buffer *eb)
5063 lockdep_assert_held(&eb->refs_lock);
5065 WARN_ON(atomic_read(&eb->refs) == 0);
5066 if (atomic_dec_and_test(&eb->refs)) {
5067 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5068 struct btrfs_fs_info *fs_info = eb->fs_info;
5070 spin_unlock(&eb->refs_lock);
5072 spin_lock(&fs_info->buffer_lock);
5073 radix_tree_delete(&fs_info->buffer_radix,
5074 eb->start >> PAGE_SHIFT);
5075 spin_unlock(&fs_info->buffer_lock);
5076 } else {
5077 spin_unlock(&eb->refs_lock);
5080 /* Should be safe to release our pages at this point */
5081 btrfs_release_extent_buffer_pages(eb);
5082 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5083 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5084 __free_extent_buffer(eb);
5085 return 1;
5087 #endif
5088 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5089 return 1;
5091 spin_unlock(&eb->refs_lock);
5093 return 0;
5096 void free_extent_buffer(struct extent_buffer *eb)
5098 int refs;
5099 int old;
5100 if (!eb)
5101 return;
5103 while (1) {
5104 refs = atomic_read(&eb->refs);
5105 if (refs <= 3)
5106 break;
5107 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5108 if (old == refs)
5109 return;
5112 spin_lock(&eb->refs_lock);
5113 if (atomic_read(&eb->refs) == 2 &&
5114 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
5115 atomic_dec(&eb->refs);
5117 if (atomic_read(&eb->refs) == 2 &&
5118 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5119 !extent_buffer_under_io(eb) &&
5120 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5121 atomic_dec(&eb->refs);
5124 * I know this is terrible, but it's temporary until we stop tracking
5125 * the uptodate bits and such for the extent buffers.
5127 release_extent_buffer(eb);
5130 void free_extent_buffer_stale(struct extent_buffer *eb)
5132 if (!eb)
5133 return;
5135 spin_lock(&eb->refs_lock);
5136 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5138 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5139 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5140 atomic_dec(&eb->refs);
5141 release_extent_buffer(eb);
5144 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5146 int i;
5147 int num_pages;
5148 struct page *page;
5150 num_pages = num_extent_pages(eb);
5152 for (i = 0; i < num_pages; i++) {
5153 page = eb->pages[i];
5154 if (!PageDirty(page))
5155 continue;
5157 lock_page(page);
5158 WARN_ON(!PagePrivate(page));
5160 clear_page_dirty_for_io(page);
5161 xa_lock_irq(&page->mapping->i_pages);
5162 if (!PageDirty(page))
5163 __xa_clear_mark(&page->mapping->i_pages,
5164 page_index(page), PAGECACHE_TAG_DIRTY);
5165 xa_unlock_irq(&page->mapping->i_pages);
5166 ClearPageError(page);
5167 unlock_page(page);
5169 WARN_ON(atomic_read(&eb->refs) == 0);
5172 bool set_extent_buffer_dirty(struct extent_buffer *eb)
5174 int i;
5175 int num_pages;
5176 bool was_dirty;
5178 check_buffer_tree_ref(eb);
5180 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5182 num_pages = num_extent_pages(eb);
5183 WARN_ON(atomic_read(&eb->refs) == 0);
5184 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5186 if (!was_dirty)
5187 for (i = 0; i < num_pages; i++)
5188 set_page_dirty(eb->pages[i]);
5190 #ifdef CONFIG_BTRFS_DEBUG
5191 for (i = 0; i < num_pages; i++)
5192 ASSERT(PageDirty(eb->pages[i]));
5193 #endif
5195 return was_dirty;
5198 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5200 int i;
5201 struct page *page;
5202 int num_pages;
5204 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5205 num_pages = num_extent_pages(eb);
5206 for (i = 0; i < num_pages; i++) {
5207 page = eb->pages[i];
5208 if (page)
5209 ClearPageUptodate(page);
5213 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5215 int i;
5216 struct page *page;
5217 int num_pages;
5219 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5220 num_pages = num_extent_pages(eb);
5221 for (i = 0; i < num_pages; i++) {
5222 page = eb->pages[i];
5223 SetPageUptodate(page);
5227 int read_extent_buffer_pages(struct extent_io_tree *tree,
5228 struct extent_buffer *eb, int wait, int mirror_num)
5230 int i;
5231 struct page *page;
5232 int err;
5233 int ret = 0;
5234 int locked_pages = 0;
5235 int all_uptodate = 1;
5236 int num_pages;
5237 unsigned long num_reads = 0;
5238 struct bio *bio = NULL;
5239 unsigned long bio_flags = 0;
5241 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5242 return 0;
5244 num_pages = num_extent_pages(eb);
5245 for (i = 0; i < num_pages; i++) {
5246 page = eb->pages[i];
5247 if (wait == WAIT_NONE) {
5248 if (!trylock_page(page))
5249 goto unlock_exit;
5250 } else {
5251 lock_page(page);
5253 locked_pages++;
5256 * We need to firstly lock all pages to make sure that
5257 * the uptodate bit of our pages won't be affected by
5258 * clear_extent_buffer_uptodate().
5260 for (i = 0; i < num_pages; i++) {
5261 page = eb->pages[i];
5262 if (!PageUptodate(page)) {
5263 num_reads++;
5264 all_uptodate = 0;
5268 if (all_uptodate) {
5269 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5270 goto unlock_exit;
5273 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5274 eb->read_mirror = 0;
5275 atomic_set(&eb->io_pages, num_reads);
5276 for (i = 0; i < num_pages; i++) {
5277 page = eb->pages[i];
5279 if (!PageUptodate(page)) {
5280 if (ret) {
5281 atomic_dec(&eb->io_pages);
5282 unlock_page(page);
5283 continue;
5286 ClearPageError(page);
5287 err = __extent_read_full_page(tree, page,
5288 btree_get_extent, &bio,
5289 mirror_num, &bio_flags,
5290 REQ_META);
5291 if (err) {
5292 ret = err;
5294 * We use &bio in above __extent_read_full_page,
5295 * so we ensure that if it returns error, the
5296 * current page fails to add itself to bio and
5297 * it's been unlocked.
5299 * We must dec io_pages by ourselves.
5301 atomic_dec(&eb->io_pages);
5303 } else {
5304 unlock_page(page);
5308 if (bio) {
5309 err = submit_one_bio(bio, mirror_num, bio_flags);
5310 if (err)
5311 return err;
5314 if (ret || wait != WAIT_COMPLETE)
5315 return ret;
5317 for (i = 0; i < num_pages; i++) {
5318 page = eb->pages[i];
5319 wait_on_page_locked(page);
5320 if (!PageUptodate(page))
5321 ret = -EIO;
5324 return ret;
5326 unlock_exit:
5327 while (locked_pages > 0) {
5328 locked_pages--;
5329 page = eb->pages[locked_pages];
5330 unlock_page(page);
5332 return ret;
5335 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5336 unsigned long start, unsigned long len)
5338 size_t cur;
5339 size_t offset;
5340 struct page *page;
5341 char *kaddr;
5342 char *dst = (char *)dstv;
5343 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5344 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5346 if (start + len > eb->len) {
5347 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5348 eb->start, eb->len, start, len);
5349 memset(dst, 0, len);
5350 return;
5353 offset = (start_offset + start) & (PAGE_SIZE - 1);
5355 while (len > 0) {
5356 page = eb->pages[i];
5358 cur = min(len, (PAGE_SIZE - offset));
5359 kaddr = page_address(page);
5360 memcpy(dst, kaddr + offset, cur);
5362 dst += cur;
5363 len -= cur;
5364 offset = 0;
5365 i++;
5369 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5370 void __user *dstv,
5371 unsigned long start, unsigned long len)
5373 size_t cur;
5374 size_t offset;
5375 struct page *page;
5376 char *kaddr;
5377 char __user *dst = (char __user *)dstv;
5378 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5379 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5380 int ret = 0;
5382 WARN_ON(start > eb->len);
5383 WARN_ON(start + len > eb->start + eb->len);
5385 offset = (start_offset + start) & (PAGE_SIZE - 1);
5387 while (len > 0) {
5388 page = eb->pages[i];
5390 cur = min(len, (PAGE_SIZE - offset));
5391 kaddr = page_address(page);
5392 if (copy_to_user(dst, kaddr + offset, cur)) {
5393 ret = -EFAULT;
5394 break;
5397 dst += cur;
5398 len -= cur;
5399 offset = 0;
5400 i++;
5403 return ret;
5407 * return 0 if the item is found within a page.
5408 * return 1 if the item spans two pages.
5409 * return -EINVAL otherwise.
5411 int map_private_extent_buffer(const struct extent_buffer *eb,
5412 unsigned long start, unsigned long min_len,
5413 char **map, unsigned long *map_start,
5414 unsigned long *map_len)
5416 size_t offset = start & (PAGE_SIZE - 1);
5417 char *kaddr;
5418 struct page *p;
5419 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5420 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5421 unsigned long end_i = (start_offset + start + min_len - 1) >>
5422 PAGE_SHIFT;
5424 if (start + min_len > eb->len) {
5425 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5426 eb->start, eb->len, start, min_len);
5427 return -EINVAL;
5430 if (i != end_i)
5431 return 1;
5433 if (i == 0) {
5434 offset = start_offset;
5435 *map_start = 0;
5436 } else {
5437 offset = 0;
5438 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5441 p = eb->pages[i];
5442 kaddr = page_address(p);
5443 *map = kaddr + offset;
5444 *map_len = PAGE_SIZE - offset;
5445 return 0;
5448 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5449 unsigned long start, unsigned long len)
5451 size_t cur;
5452 size_t offset;
5453 struct page *page;
5454 char *kaddr;
5455 char *ptr = (char *)ptrv;
5456 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5457 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5458 int ret = 0;
5460 WARN_ON(start > eb->len);
5461 WARN_ON(start + len > eb->start + eb->len);
5463 offset = (start_offset + start) & (PAGE_SIZE - 1);
5465 while (len > 0) {
5466 page = eb->pages[i];
5468 cur = min(len, (PAGE_SIZE - offset));
5470 kaddr = page_address(page);
5471 ret = memcmp(ptr, kaddr + offset, cur);
5472 if (ret)
5473 break;
5475 ptr += cur;
5476 len -= cur;
5477 offset = 0;
5478 i++;
5480 return ret;
5483 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5484 const void *srcv)
5486 char *kaddr;
5488 WARN_ON(!PageUptodate(eb->pages[0]));
5489 kaddr = page_address(eb->pages[0]);
5490 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5491 BTRFS_FSID_SIZE);
5494 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5496 char *kaddr;
5498 WARN_ON(!PageUptodate(eb->pages[0]));
5499 kaddr = page_address(eb->pages[0]);
5500 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5501 BTRFS_FSID_SIZE);
5504 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5505 unsigned long start, unsigned long len)
5507 size_t cur;
5508 size_t offset;
5509 struct page *page;
5510 char *kaddr;
5511 char *src = (char *)srcv;
5512 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5513 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5515 WARN_ON(start > eb->len);
5516 WARN_ON(start + len > eb->start + eb->len);
5518 offset = (start_offset + start) & (PAGE_SIZE - 1);
5520 while (len > 0) {
5521 page = eb->pages[i];
5522 WARN_ON(!PageUptodate(page));
5524 cur = min(len, PAGE_SIZE - offset);
5525 kaddr = page_address(page);
5526 memcpy(kaddr + offset, src, cur);
5528 src += cur;
5529 len -= cur;
5530 offset = 0;
5531 i++;
5535 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5536 unsigned long len)
5538 size_t cur;
5539 size_t offset;
5540 struct page *page;
5541 char *kaddr;
5542 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5543 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5545 WARN_ON(start > eb->len);
5546 WARN_ON(start + len > eb->start + eb->len);
5548 offset = (start_offset + start) & (PAGE_SIZE - 1);
5550 while (len > 0) {
5551 page = eb->pages[i];
5552 WARN_ON(!PageUptodate(page));
5554 cur = min(len, PAGE_SIZE - offset);
5555 kaddr = page_address(page);
5556 memset(kaddr + offset, 0, cur);
5558 len -= cur;
5559 offset = 0;
5560 i++;
5564 void copy_extent_buffer_full(struct extent_buffer *dst,
5565 struct extent_buffer *src)
5567 int i;
5568 int num_pages;
5570 ASSERT(dst->len == src->len);
5572 num_pages = num_extent_pages(dst);
5573 for (i = 0; i < num_pages; i++)
5574 copy_page(page_address(dst->pages[i]),
5575 page_address(src->pages[i]));
5578 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5579 unsigned long dst_offset, unsigned long src_offset,
5580 unsigned long len)
5582 u64 dst_len = dst->len;
5583 size_t cur;
5584 size_t offset;
5585 struct page *page;
5586 char *kaddr;
5587 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5588 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5590 WARN_ON(src->len != dst_len);
5592 offset = (start_offset + dst_offset) &
5593 (PAGE_SIZE - 1);
5595 while (len > 0) {
5596 page = dst->pages[i];
5597 WARN_ON(!PageUptodate(page));
5599 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5601 kaddr = page_address(page);
5602 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5604 src_offset += cur;
5605 len -= cur;
5606 offset = 0;
5607 i++;
5612 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5613 * given bit number
5614 * @eb: the extent buffer
5615 * @start: offset of the bitmap item in the extent buffer
5616 * @nr: bit number
5617 * @page_index: return index of the page in the extent buffer that contains the
5618 * given bit number
5619 * @page_offset: return offset into the page given by page_index
5621 * This helper hides the ugliness of finding the byte in an extent buffer which
5622 * contains a given bit.
5624 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5625 unsigned long start, unsigned long nr,
5626 unsigned long *page_index,
5627 size_t *page_offset)
5629 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5630 size_t byte_offset = BIT_BYTE(nr);
5631 size_t offset;
5634 * The byte we want is the offset of the extent buffer + the offset of
5635 * the bitmap item in the extent buffer + the offset of the byte in the
5636 * bitmap item.
5638 offset = start_offset + start + byte_offset;
5640 *page_index = offset >> PAGE_SHIFT;
5641 *page_offset = offset & (PAGE_SIZE - 1);
5645 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5646 * @eb: the extent buffer
5647 * @start: offset of the bitmap item in the extent buffer
5648 * @nr: bit number to test
5650 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5651 unsigned long nr)
5653 u8 *kaddr;
5654 struct page *page;
5655 unsigned long i;
5656 size_t offset;
5658 eb_bitmap_offset(eb, start, nr, &i, &offset);
5659 page = eb->pages[i];
5660 WARN_ON(!PageUptodate(page));
5661 kaddr = page_address(page);
5662 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5666 * extent_buffer_bitmap_set - set an area of a bitmap
5667 * @eb: the extent buffer
5668 * @start: offset of the bitmap item in the extent buffer
5669 * @pos: bit number of the first bit
5670 * @len: number of bits to set
5672 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5673 unsigned long pos, unsigned long len)
5675 u8 *kaddr;
5676 struct page *page;
5677 unsigned long i;
5678 size_t offset;
5679 const unsigned int size = pos + len;
5680 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5681 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5683 eb_bitmap_offset(eb, start, pos, &i, &offset);
5684 page = eb->pages[i];
5685 WARN_ON(!PageUptodate(page));
5686 kaddr = page_address(page);
5688 while (len >= bits_to_set) {
5689 kaddr[offset] |= mask_to_set;
5690 len -= bits_to_set;
5691 bits_to_set = BITS_PER_BYTE;
5692 mask_to_set = ~0;
5693 if (++offset >= PAGE_SIZE && len > 0) {
5694 offset = 0;
5695 page = eb->pages[++i];
5696 WARN_ON(!PageUptodate(page));
5697 kaddr = page_address(page);
5700 if (len) {
5701 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5702 kaddr[offset] |= mask_to_set;
5708 * extent_buffer_bitmap_clear - clear an area of a bitmap
5709 * @eb: the extent buffer
5710 * @start: offset of the bitmap item in the extent buffer
5711 * @pos: bit number of the first bit
5712 * @len: number of bits to clear
5714 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5715 unsigned long pos, unsigned long len)
5717 u8 *kaddr;
5718 struct page *page;
5719 unsigned long i;
5720 size_t offset;
5721 const unsigned int size = pos + len;
5722 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5723 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5725 eb_bitmap_offset(eb, start, pos, &i, &offset);
5726 page = eb->pages[i];
5727 WARN_ON(!PageUptodate(page));
5728 kaddr = page_address(page);
5730 while (len >= bits_to_clear) {
5731 kaddr[offset] &= ~mask_to_clear;
5732 len -= bits_to_clear;
5733 bits_to_clear = BITS_PER_BYTE;
5734 mask_to_clear = ~0;
5735 if (++offset >= PAGE_SIZE && len > 0) {
5736 offset = 0;
5737 page = eb->pages[++i];
5738 WARN_ON(!PageUptodate(page));
5739 kaddr = page_address(page);
5742 if (len) {
5743 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5744 kaddr[offset] &= ~mask_to_clear;
5748 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5750 unsigned long distance = (src > dst) ? src - dst : dst - src;
5751 return distance < len;
5754 static void copy_pages(struct page *dst_page, struct page *src_page,
5755 unsigned long dst_off, unsigned long src_off,
5756 unsigned long len)
5758 char *dst_kaddr = page_address(dst_page);
5759 char *src_kaddr;
5760 int must_memmove = 0;
5762 if (dst_page != src_page) {
5763 src_kaddr = page_address(src_page);
5764 } else {
5765 src_kaddr = dst_kaddr;
5766 if (areas_overlap(src_off, dst_off, len))
5767 must_memmove = 1;
5770 if (must_memmove)
5771 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5772 else
5773 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5776 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5777 unsigned long src_offset, unsigned long len)
5779 struct btrfs_fs_info *fs_info = dst->fs_info;
5780 size_t cur;
5781 size_t dst_off_in_page;
5782 size_t src_off_in_page;
5783 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5784 unsigned long dst_i;
5785 unsigned long src_i;
5787 if (src_offset + len > dst->len) {
5788 btrfs_err(fs_info,
5789 "memmove bogus src_offset %lu move len %lu dst len %lu",
5790 src_offset, len, dst->len);
5791 BUG_ON(1);
5793 if (dst_offset + len > dst->len) {
5794 btrfs_err(fs_info,
5795 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5796 dst_offset, len, dst->len);
5797 BUG_ON(1);
5800 while (len > 0) {
5801 dst_off_in_page = (start_offset + dst_offset) &
5802 (PAGE_SIZE - 1);
5803 src_off_in_page = (start_offset + src_offset) &
5804 (PAGE_SIZE - 1);
5806 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5807 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5809 cur = min(len, (unsigned long)(PAGE_SIZE -
5810 src_off_in_page));
5811 cur = min_t(unsigned long, cur,
5812 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5814 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5815 dst_off_in_page, src_off_in_page, cur);
5817 src_offset += cur;
5818 dst_offset += cur;
5819 len -= cur;
5823 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5824 unsigned long src_offset, unsigned long len)
5826 struct btrfs_fs_info *fs_info = dst->fs_info;
5827 size_t cur;
5828 size_t dst_off_in_page;
5829 size_t src_off_in_page;
5830 unsigned long dst_end = dst_offset + len - 1;
5831 unsigned long src_end = src_offset + len - 1;
5832 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5833 unsigned long dst_i;
5834 unsigned long src_i;
5836 if (src_offset + len > dst->len) {
5837 btrfs_err(fs_info,
5838 "memmove bogus src_offset %lu move len %lu len %lu",
5839 src_offset, len, dst->len);
5840 BUG_ON(1);
5842 if (dst_offset + len > dst->len) {
5843 btrfs_err(fs_info,
5844 "memmove bogus dst_offset %lu move len %lu len %lu",
5845 dst_offset, len, dst->len);
5846 BUG_ON(1);
5848 if (dst_offset < src_offset) {
5849 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5850 return;
5852 while (len > 0) {
5853 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5854 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5856 dst_off_in_page = (start_offset + dst_end) &
5857 (PAGE_SIZE - 1);
5858 src_off_in_page = (start_offset + src_end) &
5859 (PAGE_SIZE - 1);
5861 cur = min_t(unsigned long, len, src_off_in_page + 1);
5862 cur = min(cur, dst_off_in_page + 1);
5863 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5864 dst_off_in_page - cur + 1,
5865 src_off_in_page - cur + 1, cur);
5867 dst_end -= cur;
5868 src_end -= cur;
5869 len -= cur;
5873 int try_release_extent_buffer(struct page *page)
5875 struct extent_buffer *eb;
5878 * We need to make sure nobody is attaching this page to an eb right
5879 * now.
5881 spin_lock(&page->mapping->private_lock);
5882 if (!PagePrivate(page)) {
5883 spin_unlock(&page->mapping->private_lock);
5884 return 1;
5887 eb = (struct extent_buffer *)page->private;
5888 BUG_ON(!eb);
5891 * This is a little awful but should be ok, we need to make sure that
5892 * the eb doesn't disappear out from under us while we're looking at
5893 * this page.
5895 spin_lock(&eb->refs_lock);
5896 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5897 spin_unlock(&eb->refs_lock);
5898 spin_unlock(&page->mapping->private_lock);
5899 return 0;
5901 spin_unlock(&page->mapping->private_lock);
5904 * If tree ref isn't set then we know the ref on this eb is a real ref,
5905 * so just return, this page will likely be freed soon anyway.
5907 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5908 spin_unlock(&eb->refs_lock);
5909 return 0;
5912 return release_extent_buffer(eb);