1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
21 #include "transaction.h"
22 #include "btrfs_inode.h"
23 #include "print-tree.h"
28 #include "compression.h"
30 static struct kmem_cache
*btrfs_inode_defrag_cachep
;
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
37 struct rb_node rb_node
;
41 * transid where the defrag was added, we search for
42 * extents newer than this
49 /* last offset we were able to defrag */
52 /* if we've wrapped around back to zero once already */
56 static int __compare_inode_defrag(struct inode_defrag
*defrag1
,
57 struct inode_defrag
*defrag2
)
59 if (defrag1
->root
> defrag2
->root
)
61 else if (defrag1
->root
< defrag2
->root
)
63 else if (defrag1
->ino
> defrag2
->ino
)
65 else if (defrag1
->ino
< defrag2
->ino
)
71 /* pop a record for an inode into the defrag tree. The lock
72 * must be held already
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
77 * If an existing record is found the defrag item you
80 static int __btrfs_add_inode_defrag(struct btrfs_inode
*inode
,
81 struct inode_defrag
*defrag
)
83 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
84 struct inode_defrag
*entry
;
86 struct rb_node
*parent
= NULL
;
89 p
= &fs_info
->defrag_inodes
.rb_node
;
92 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
94 ret
= __compare_inode_defrag(defrag
, entry
);
98 p
= &parent
->rb_right
;
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
104 if (defrag
->transid
< entry
->transid
)
105 entry
->transid
= defrag
->transid
;
106 if (defrag
->last_offset
> entry
->last_offset
)
107 entry
->last_offset
= defrag
->last_offset
;
111 set_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
);
112 rb_link_node(&defrag
->rb_node
, parent
, p
);
113 rb_insert_color(&defrag
->rb_node
, &fs_info
->defrag_inodes
);
117 static inline int __need_auto_defrag(struct btrfs_fs_info
*fs_info
)
119 if (!btrfs_test_opt(fs_info
, AUTO_DEFRAG
))
122 if (btrfs_fs_closing(fs_info
))
129 * insert a defrag record for this inode if auto defrag is
132 int btrfs_add_inode_defrag(struct btrfs_trans_handle
*trans
,
133 struct btrfs_inode
*inode
)
135 struct btrfs_root
*root
= inode
->root
;
136 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
137 struct inode_defrag
*defrag
;
141 if (!__need_auto_defrag(fs_info
))
144 if (test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
))
148 transid
= trans
->transid
;
150 transid
= inode
->root
->last_trans
;
152 defrag
= kmem_cache_zalloc(btrfs_inode_defrag_cachep
, GFP_NOFS
);
156 defrag
->ino
= btrfs_ino(inode
);
157 defrag
->transid
= transid
;
158 defrag
->root
= root
->root_key
.objectid
;
160 spin_lock(&fs_info
->defrag_inodes_lock
);
161 if (!test_bit(BTRFS_INODE_IN_DEFRAG
, &inode
->runtime_flags
)) {
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
167 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
169 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
171 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
173 spin_unlock(&fs_info
->defrag_inodes_lock
);
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
182 static void btrfs_requeue_inode_defrag(struct btrfs_inode
*inode
,
183 struct inode_defrag
*defrag
)
185 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
188 if (!__need_auto_defrag(fs_info
))
192 * Here we don't check the IN_DEFRAG flag, because we need merge
195 spin_lock(&fs_info
->defrag_inodes_lock
);
196 ret
= __btrfs_add_inode_defrag(inode
, defrag
);
197 spin_unlock(&fs_info
->defrag_inodes_lock
);
202 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
206 * pick the defragable inode that we want, if it doesn't exist, we will get
209 static struct inode_defrag
*
210 btrfs_pick_defrag_inode(struct btrfs_fs_info
*fs_info
, u64 root
, u64 ino
)
212 struct inode_defrag
*entry
= NULL
;
213 struct inode_defrag tmp
;
215 struct rb_node
*parent
= NULL
;
221 spin_lock(&fs_info
->defrag_inodes_lock
);
222 p
= fs_info
->defrag_inodes
.rb_node
;
225 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
227 ret
= __compare_inode_defrag(&tmp
, entry
);
231 p
= parent
->rb_right
;
236 if (parent
&& __compare_inode_defrag(&tmp
, entry
) > 0) {
237 parent
= rb_next(parent
);
239 entry
= rb_entry(parent
, struct inode_defrag
, rb_node
);
245 rb_erase(parent
, &fs_info
->defrag_inodes
);
246 spin_unlock(&fs_info
->defrag_inodes_lock
);
250 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info
*fs_info
)
252 struct inode_defrag
*defrag
;
253 struct rb_node
*node
;
255 spin_lock(&fs_info
->defrag_inodes_lock
);
256 node
= rb_first(&fs_info
->defrag_inodes
);
258 rb_erase(node
, &fs_info
->defrag_inodes
);
259 defrag
= rb_entry(node
, struct inode_defrag
, rb_node
);
260 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
262 cond_resched_lock(&fs_info
->defrag_inodes_lock
);
264 node
= rb_first(&fs_info
->defrag_inodes
);
266 spin_unlock(&fs_info
->defrag_inodes_lock
);
269 #define BTRFS_DEFRAG_BATCH 1024
271 static int __btrfs_run_defrag_inode(struct btrfs_fs_info
*fs_info
,
272 struct inode_defrag
*defrag
)
274 struct btrfs_root
*inode_root
;
276 struct btrfs_key key
;
277 struct btrfs_ioctl_defrag_range_args range
;
283 key
.objectid
= defrag
->root
;
284 key
.type
= BTRFS_ROOT_ITEM_KEY
;
285 key
.offset
= (u64
)-1;
287 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
289 inode_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
290 if (IS_ERR(inode_root
)) {
291 ret
= PTR_ERR(inode_root
);
295 key
.objectid
= defrag
->ino
;
296 key
.type
= BTRFS_INODE_ITEM_KEY
;
298 inode
= btrfs_iget(fs_info
->sb
, &key
, inode_root
, NULL
);
300 ret
= PTR_ERR(inode
);
303 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG
, &BTRFS_I(inode
)->runtime_flags
);
307 memset(&range
, 0, sizeof(range
));
309 range
.start
= defrag
->last_offset
;
311 sb_start_write(fs_info
->sb
);
312 num_defrag
= btrfs_defrag_file(inode
, NULL
, &range
, defrag
->transid
,
314 sb_end_write(fs_info
->sb
);
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
320 if (num_defrag
== BTRFS_DEFRAG_BATCH
) {
321 defrag
->last_offset
= range
.start
;
322 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
323 } else if (defrag
->last_offset
&& !defrag
->cycled
) {
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
329 defrag
->last_offset
= 0;
331 btrfs_requeue_inode_defrag(BTRFS_I(inode
), defrag
);
333 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
339 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
340 kmem_cache_free(btrfs_inode_defrag_cachep
, defrag
);
345 * run through the list of inodes in the FS that need
348 int btrfs_run_defrag_inodes(struct btrfs_fs_info
*fs_info
)
350 struct inode_defrag
*defrag
;
352 u64 root_objectid
= 0;
354 atomic_inc(&fs_info
->defrag_running
);
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING
,
361 if (!__need_auto_defrag(fs_info
))
364 /* find an inode to defrag */
365 defrag
= btrfs_pick_defrag_inode(fs_info
, root_objectid
,
368 if (root_objectid
|| first_ino
) {
377 first_ino
= defrag
->ino
+ 1;
378 root_objectid
= defrag
->root
;
380 __btrfs_run_defrag_inode(fs_info
, defrag
);
382 atomic_dec(&fs_info
->defrag_running
);
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
388 wake_up(&fs_info
->transaction_wait
);
392 /* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
395 static noinline
int btrfs_copy_from_user(loff_t pos
, size_t write_bytes
,
396 struct page
**prepared_pages
,
400 size_t total_copied
= 0;
402 int offset
= pos
& (PAGE_SIZE
- 1);
404 while (write_bytes
> 0) {
405 size_t count
= min_t(size_t,
406 PAGE_SIZE
- offset
, write_bytes
);
407 struct page
*page
= prepared_pages
[pg
];
409 * Copy data from userspace to the current page
411 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, count
);
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page
);
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
425 if (!PageUptodate(page
) && copied
< count
)
428 iov_iter_advance(i
, copied
);
429 write_bytes
-= copied
;
430 total_copied
+= copied
;
432 /* Return to btrfs_file_write_iter to fault page */
433 if (unlikely(copied
== 0))
436 if (copied
< PAGE_SIZE
- offset
) {
447 * unlocks pages after btrfs_file_write is done with them
449 static void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
452 for (i
= 0; i
< num_pages
; i
++) {
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
459 ClearPageChecked(pages
[i
]);
460 unlock_page(pages
[i
]);
465 static int btrfs_find_new_delalloc_bytes(struct btrfs_inode
*inode
,
468 struct extent_state
**cached_state
)
470 u64 search_start
= start
;
471 const u64 end
= start
+ len
- 1;
473 while (search_start
< end
) {
474 const u64 search_len
= end
- search_start
+ 1;
475 struct extent_map
*em
;
479 em
= btrfs_get_extent(inode
, NULL
, 0, search_start
,
484 if (em
->block_start
!= EXTENT_MAP_HOLE
)
488 if (em
->start
< search_start
)
489 em_len
-= search_start
- em
->start
;
490 if (em_len
> search_len
)
493 ret
= set_extent_bit(&inode
->io_tree
, search_start
,
494 search_start
+ em_len
- 1,
496 NULL
, cached_state
, GFP_NOFS
);
498 search_start
= extent_map_end(em
);
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
514 int btrfs_dirty_pages(struct inode
*inode
, struct page
**pages
,
515 size_t num_pages
, loff_t pos
, size_t write_bytes
,
516 struct extent_state
**cached
)
518 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
523 u64 end_of_last_block
;
524 u64 end_pos
= pos
+ write_bytes
;
525 loff_t isize
= i_size_read(inode
);
526 unsigned int extra_bits
= 0;
528 start_pos
= pos
& ~((u64
) fs_info
->sectorsize
- 1);
529 num_bytes
= round_up(write_bytes
+ pos
- start_pos
,
530 fs_info
->sectorsize
);
532 end_of_last_block
= start_pos
+ num_bytes
- 1;
535 * The pages may have already been dirty, clear out old accounting so
536 * we can set things up properly
538 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start_pos
, end_of_last_block
,
539 EXTENT_DIRTY
| EXTENT_DELALLOC
|
540 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0, cached
);
542 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))) {
543 if (start_pos
>= isize
&&
544 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
)) {
546 * There can't be any extents following eof in this case
547 * so just set the delalloc new bit for the range
550 extra_bits
|= EXTENT_DELALLOC_NEW
;
552 err
= btrfs_find_new_delalloc_bytes(BTRFS_I(inode
),
560 err
= btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
,
561 extra_bits
, cached
, 0);
565 for (i
= 0; i
< num_pages
; i
++) {
566 struct page
*p
= pages
[i
];
573 * we've only changed i_size in ram, and we haven't updated
574 * the disk i_size. There is no need to log the inode
578 i_size_write(inode
, end_pos
);
583 * this drops all the extents in the cache that intersect the range
584 * [start, end]. Existing extents are split as required.
586 void btrfs_drop_extent_cache(struct btrfs_inode
*inode
, u64 start
, u64 end
,
589 struct extent_map
*em
;
590 struct extent_map
*split
= NULL
;
591 struct extent_map
*split2
= NULL
;
592 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
593 u64 len
= end
- start
+ 1;
601 WARN_ON(end
< start
);
602 if (end
== (u64
)-1) {
611 split
= alloc_extent_map();
613 split2
= alloc_extent_map();
614 if (!split
|| !split2
)
617 write_lock(&em_tree
->lock
);
618 em
= lookup_extent_mapping(em_tree
, start
, len
);
620 write_unlock(&em_tree
->lock
);
624 gen
= em
->generation
;
625 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
626 if (testend
&& em
->start
+ em
->len
>= start
+ len
) {
628 write_unlock(&em_tree
->lock
);
631 start
= em
->start
+ em
->len
;
633 len
= start
+ len
- (em
->start
+ em
->len
);
635 write_unlock(&em_tree
->lock
);
638 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
639 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
640 clear_bit(EXTENT_FLAG_LOGGING
, &flags
);
641 modified
= !list_empty(&em
->list
);
645 if (em
->start
< start
) {
646 split
->start
= em
->start
;
647 split
->len
= start
- em
->start
;
649 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
650 split
->orig_start
= em
->orig_start
;
651 split
->block_start
= em
->block_start
;
654 split
->block_len
= em
->block_len
;
656 split
->block_len
= split
->len
;
657 split
->orig_block_len
= max(split
->block_len
,
659 split
->ram_bytes
= em
->ram_bytes
;
661 split
->orig_start
= split
->start
;
662 split
->block_len
= 0;
663 split
->block_start
= em
->block_start
;
664 split
->orig_block_len
= 0;
665 split
->ram_bytes
= split
->len
;
668 split
->generation
= gen
;
669 split
->bdev
= em
->bdev
;
670 split
->flags
= flags
;
671 split
->compress_type
= em
->compress_type
;
672 replace_extent_mapping(em_tree
, em
, split
, modified
);
673 free_extent_map(split
);
677 if (testend
&& em
->start
+ em
->len
> start
+ len
) {
678 u64 diff
= start
+ len
- em
->start
;
680 split
->start
= start
+ len
;
681 split
->len
= em
->start
+ em
->len
- (start
+ len
);
682 split
->bdev
= em
->bdev
;
683 split
->flags
= flags
;
684 split
->compress_type
= em
->compress_type
;
685 split
->generation
= gen
;
687 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
688 split
->orig_block_len
= max(em
->block_len
,
691 split
->ram_bytes
= em
->ram_bytes
;
693 split
->block_len
= em
->block_len
;
694 split
->block_start
= em
->block_start
;
695 split
->orig_start
= em
->orig_start
;
697 split
->block_len
= split
->len
;
698 split
->block_start
= em
->block_start
700 split
->orig_start
= em
->orig_start
;
703 split
->ram_bytes
= split
->len
;
704 split
->orig_start
= split
->start
;
705 split
->block_len
= 0;
706 split
->block_start
= em
->block_start
;
707 split
->orig_block_len
= 0;
710 if (extent_map_in_tree(em
)) {
711 replace_extent_mapping(em_tree
, em
, split
,
714 ret
= add_extent_mapping(em_tree
, split
,
716 ASSERT(ret
== 0); /* Logic error */
718 free_extent_map(split
);
722 if (extent_map_in_tree(em
))
723 remove_extent_mapping(em_tree
, em
);
724 write_unlock(&em_tree
->lock
);
728 /* once for the tree*/
732 free_extent_map(split
);
734 free_extent_map(split2
);
738 * this is very complex, but the basic idea is to drop all extents
739 * in the range start - end. hint_block is filled in with a block number
740 * that would be a good hint to the block allocator for this file.
742 * If an extent intersects the range but is not entirely inside the range
743 * it is either truncated or split. Anything entirely inside the range
744 * is deleted from the tree.
746 int __btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
747 struct btrfs_root
*root
, struct inode
*inode
,
748 struct btrfs_path
*path
, u64 start
, u64 end
,
749 u64
*drop_end
, int drop_cache
,
751 u32 extent_item_size
,
754 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
755 struct extent_buffer
*leaf
;
756 struct btrfs_file_extent_item
*fi
;
757 struct btrfs_key key
;
758 struct btrfs_key new_key
;
759 u64 ino
= btrfs_ino(BTRFS_I(inode
));
760 u64 search_start
= start
;
763 u64 extent_offset
= 0;
765 u64 last_end
= start
;
771 int modify_tree
= -1;
774 int leafs_visited
= 0;
777 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
- 1, 0);
779 if (start
>= BTRFS_I(inode
)->disk_i_size
&& !replace_extent
)
782 update_refs
= (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
783 root
== fs_info
->tree_root
);
786 ret
= btrfs_lookup_file_extent(trans
, root
, path
, ino
,
787 search_start
, modify_tree
);
790 if (ret
> 0 && path
->slots
[0] > 0 && search_start
== start
) {
791 leaf
= path
->nodes
[0];
792 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
793 if (key
.objectid
== ino
&&
794 key
.type
== BTRFS_EXTENT_DATA_KEY
)
800 leaf
= path
->nodes
[0];
801 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
803 ret
= btrfs_next_leaf(root
, path
);
811 leaf
= path
->nodes
[0];
815 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
817 if (key
.objectid
> ino
)
819 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
820 key
.type
< BTRFS_EXTENT_DATA_KEY
) {
825 if (key
.type
> BTRFS_EXTENT_DATA_KEY
|| key
.offset
>= end
)
828 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
829 struct btrfs_file_extent_item
);
830 extent_type
= btrfs_file_extent_type(leaf
, fi
);
832 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
833 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
834 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
835 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
836 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
837 extent_end
= key
.offset
+
838 btrfs_file_extent_num_bytes(leaf
, fi
);
839 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
840 extent_end
= key
.offset
+
841 btrfs_file_extent_ram_bytes(leaf
, fi
);
848 * Don't skip extent items representing 0 byte lengths. They
849 * used to be created (bug) if while punching holes we hit
850 * -ENOSPC condition. So if we find one here, just ensure we
851 * delete it, otherwise we would insert a new file extent item
852 * with the same key (offset) as that 0 bytes length file
853 * extent item in the call to setup_items_for_insert() later
856 if (extent_end
== key
.offset
&& extent_end
>= search_start
) {
857 last_end
= extent_end
;
858 goto delete_extent_item
;
861 if (extent_end
<= search_start
) {
867 search_start
= max(key
.offset
, start
);
868 if (recow
|| !modify_tree
) {
870 btrfs_release_path(path
);
875 * | - range to drop - |
876 * | -------- extent -------- |
878 if (start
> key
.offset
&& end
< extent_end
) {
880 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
885 memcpy(&new_key
, &key
, sizeof(new_key
));
886 new_key
.offset
= start
;
887 ret
= btrfs_duplicate_item(trans
, root
, path
,
889 if (ret
== -EAGAIN
) {
890 btrfs_release_path(path
);
896 leaf
= path
->nodes
[0];
897 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
898 struct btrfs_file_extent_item
);
899 btrfs_set_file_extent_num_bytes(leaf
, fi
,
902 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
903 struct btrfs_file_extent_item
);
905 extent_offset
+= start
- key
.offset
;
906 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
907 btrfs_set_file_extent_num_bytes(leaf
, fi
,
909 btrfs_mark_buffer_dirty(leaf
);
911 if (update_refs
&& disk_bytenr
> 0) {
912 ret
= btrfs_inc_extent_ref(trans
, root
,
913 disk_bytenr
, num_bytes
, 0,
914 root
->root_key
.objectid
,
916 start
- extent_offset
);
917 BUG_ON(ret
); /* -ENOMEM */
922 * From here on out we will have actually dropped something, so
923 * last_end can be updated.
925 last_end
= extent_end
;
928 * | ---- range to drop ----- |
929 * | -------- extent -------- |
931 if (start
<= key
.offset
&& end
< extent_end
) {
932 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
937 memcpy(&new_key
, &key
, sizeof(new_key
));
938 new_key
.offset
= end
;
939 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
941 extent_offset
+= end
- key
.offset
;
942 btrfs_set_file_extent_offset(leaf
, fi
, extent_offset
);
943 btrfs_set_file_extent_num_bytes(leaf
, fi
,
945 btrfs_mark_buffer_dirty(leaf
);
946 if (update_refs
&& disk_bytenr
> 0)
947 inode_sub_bytes(inode
, end
- key
.offset
);
951 search_start
= extent_end
;
953 * | ---- range to drop ----- |
954 * | -------- extent -------- |
956 if (start
> key
.offset
&& end
>= extent_end
) {
958 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
963 btrfs_set_file_extent_num_bytes(leaf
, fi
,
965 btrfs_mark_buffer_dirty(leaf
);
966 if (update_refs
&& disk_bytenr
> 0)
967 inode_sub_bytes(inode
, extent_end
- start
);
968 if (end
== extent_end
)
976 * | ---- range to drop ----- |
977 * | ------ extent ------ |
979 if (start
<= key
.offset
&& end
>= extent_end
) {
982 del_slot
= path
->slots
[0];
985 BUG_ON(del_slot
+ del_nr
!= path
->slots
[0]);
990 extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
991 inode_sub_bytes(inode
,
992 extent_end
- key
.offset
);
993 extent_end
= ALIGN(extent_end
,
994 fs_info
->sectorsize
);
995 } else if (update_refs
&& disk_bytenr
> 0) {
996 ret
= btrfs_free_extent(trans
, root
,
997 disk_bytenr
, num_bytes
, 0,
998 root
->root_key
.objectid
,
999 key
.objectid
, key
.offset
-
1001 BUG_ON(ret
); /* -ENOMEM */
1002 inode_sub_bytes(inode
,
1003 extent_end
- key
.offset
);
1006 if (end
== extent_end
)
1009 if (path
->slots
[0] + 1 < btrfs_header_nritems(leaf
)) {
1014 ret
= btrfs_del_items(trans
, root
, path
, del_slot
,
1017 btrfs_abort_transaction(trans
, ret
);
1024 btrfs_release_path(path
);
1031 if (!ret
&& del_nr
> 0) {
1033 * Set path->slots[0] to first slot, so that after the delete
1034 * if items are move off from our leaf to its immediate left or
1035 * right neighbor leafs, we end up with a correct and adjusted
1036 * path->slots[0] for our insertion (if replace_extent != 0).
1038 path
->slots
[0] = del_slot
;
1039 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1041 btrfs_abort_transaction(trans
, ret
);
1044 leaf
= path
->nodes
[0];
1046 * If btrfs_del_items() was called, it might have deleted a leaf, in
1047 * which case it unlocked our path, so check path->locks[0] matches a
1050 if (!ret
&& replace_extent
&& leafs_visited
== 1 &&
1051 (path
->locks
[0] == BTRFS_WRITE_LOCK_BLOCKING
||
1052 path
->locks
[0] == BTRFS_WRITE_LOCK
) &&
1053 btrfs_leaf_free_space(fs_info
, leaf
) >=
1054 sizeof(struct btrfs_item
) + extent_item_size
) {
1057 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1059 if (!del_nr
&& path
->slots
[0] < btrfs_header_nritems(leaf
)) {
1060 struct btrfs_key slot_key
;
1062 btrfs_item_key_to_cpu(leaf
, &slot_key
, path
->slots
[0]);
1063 if (btrfs_comp_cpu_keys(&key
, &slot_key
) > 0)
1066 setup_items_for_insert(root
, path
, &key
,
1069 sizeof(struct btrfs_item
) +
1070 extent_item_size
, 1);
1074 if (!replace_extent
|| !(*key_inserted
))
1075 btrfs_release_path(path
);
1077 *drop_end
= found
? min(end
, last_end
) : end
;
1081 int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
1082 struct btrfs_root
*root
, struct inode
*inode
, u64 start
,
1083 u64 end
, int drop_cache
)
1085 struct btrfs_path
*path
;
1088 path
= btrfs_alloc_path();
1091 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, start
, end
, NULL
,
1092 drop_cache
, 0, 0, NULL
);
1093 btrfs_free_path(path
);
1097 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
1098 u64 objectid
, u64 bytenr
, u64 orig_offset
,
1099 u64
*start
, u64
*end
)
1101 struct btrfs_file_extent_item
*fi
;
1102 struct btrfs_key key
;
1105 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
1108 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1109 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
1112 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1113 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
1114 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
1115 btrfs_file_extent_offset(leaf
, fi
) != key
.offset
- orig_offset
||
1116 btrfs_file_extent_compression(leaf
, fi
) ||
1117 btrfs_file_extent_encryption(leaf
, fi
) ||
1118 btrfs_file_extent_other_encoding(leaf
, fi
))
1121 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1122 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
1125 *start
= key
.offset
;
1131 * Mark extent in the range start - end as written.
1133 * This changes extent type from 'pre-allocated' to 'regular'. If only
1134 * part of extent is marked as written, the extent will be split into
1137 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
1138 struct btrfs_inode
*inode
, u64 start
, u64 end
)
1140 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1141 struct btrfs_root
*root
= inode
->root
;
1142 struct extent_buffer
*leaf
;
1143 struct btrfs_path
*path
;
1144 struct btrfs_file_extent_item
*fi
;
1145 struct btrfs_key key
;
1146 struct btrfs_key new_key
;
1158 u64 ino
= btrfs_ino(inode
);
1160 path
= btrfs_alloc_path();
1167 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1170 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1173 if (ret
> 0 && path
->slots
[0] > 0)
1176 leaf
= path
->nodes
[0];
1177 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1178 if (key
.objectid
!= ino
||
1179 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
1181 btrfs_abort_transaction(trans
, ret
);
1184 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1185 struct btrfs_file_extent_item
);
1186 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_PREALLOC
) {
1188 btrfs_abort_transaction(trans
, ret
);
1191 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
1192 if (key
.offset
> start
|| extent_end
< end
) {
1194 btrfs_abort_transaction(trans
, ret
);
1198 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1199 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1200 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
1201 memcpy(&new_key
, &key
, sizeof(new_key
));
1203 if (start
== key
.offset
&& end
< extent_end
) {
1206 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1207 ino
, bytenr
, orig_offset
,
1208 &other_start
, &other_end
)) {
1209 new_key
.offset
= end
;
1210 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1211 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1212 struct btrfs_file_extent_item
);
1213 btrfs_set_file_extent_generation(leaf
, fi
,
1215 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1217 btrfs_set_file_extent_offset(leaf
, fi
,
1219 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1220 struct btrfs_file_extent_item
);
1221 btrfs_set_file_extent_generation(leaf
, fi
,
1223 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1225 btrfs_mark_buffer_dirty(leaf
);
1230 if (start
> key
.offset
&& end
== extent_end
) {
1233 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1234 ino
, bytenr
, orig_offset
,
1235 &other_start
, &other_end
)) {
1236 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1237 struct btrfs_file_extent_item
);
1238 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1239 start
- key
.offset
);
1240 btrfs_set_file_extent_generation(leaf
, fi
,
1243 new_key
.offset
= start
;
1244 btrfs_set_item_key_safe(fs_info
, path
, &new_key
);
1246 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1247 struct btrfs_file_extent_item
);
1248 btrfs_set_file_extent_generation(leaf
, fi
,
1250 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1252 btrfs_set_file_extent_offset(leaf
, fi
,
1253 start
- orig_offset
);
1254 btrfs_mark_buffer_dirty(leaf
);
1259 while (start
> key
.offset
|| end
< extent_end
) {
1260 if (key
.offset
== start
)
1263 new_key
.offset
= split
;
1264 ret
= btrfs_duplicate_item(trans
, root
, path
, &new_key
);
1265 if (ret
== -EAGAIN
) {
1266 btrfs_release_path(path
);
1270 btrfs_abort_transaction(trans
, ret
);
1274 leaf
= path
->nodes
[0];
1275 fi
= btrfs_item_ptr(leaf
, path
->slots
[0] - 1,
1276 struct btrfs_file_extent_item
);
1277 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1278 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1279 split
- key
.offset
);
1281 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1282 struct btrfs_file_extent_item
);
1284 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1285 btrfs_set_file_extent_offset(leaf
, fi
, split
- orig_offset
);
1286 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1287 extent_end
- split
);
1288 btrfs_mark_buffer_dirty(leaf
);
1290 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
,
1291 0, root
->root_key
.objectid
,
1294 btrfs_abort_transaction(trans
, ret
);
1298 if (split
== start
) {
1301 if (start
!= key
.offset
) {
1303 btrfs_abort_transaction(trans
, ret
);
1314 if (extent_mergeable(leaf
, path
->slots
[0] + 1,
1315 ino
, bytenr
, orig_offset
,
1316 &other_start
, &other_end
)) {
1318 btrfs_release_path(path
);
1321 extent_end
= other_end
;
1322 del_slot
= path
->slots
[0] + 1;
1324 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1325 0, root
->root_key
.objectid
,
1328 btrfs_abort_transaction(trans
, ret
);
1334 if (extent_mergeable(leaf
, path
->slots
[0] - 1,
1335 ino
, bytenr
, orig_offset
,
1336 &other_start
, &other_end
)) {
1338 btrfs_release_path(path
);
1341 key
.offset
= other_start
;
1342 del_slot
= path
->slots
[0];
1344 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
1345 0, root
->root_key
.objectid
,
1348 btrfs_abort_transaction(trans
, ret
);
1353 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1354 struct btrfs_file_extent_item
);
1355 btrfs_set_file_extent_type(leaf
, fi
,
1356 BTRFS_FILE_EXTENT_REG
);
1357 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1358 btrfs_mark_buffer_dirty(leaf
);
1360 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
1361 struct btrfs_file_extent_item
);
1362 btrfs_set_file_extent_type(leaf
, fi
,
1363 BTRFS_FILE_EXTENT_REG
);
1364 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
1365 btrfs_set_file_extent_num_bytes(leaf
, fi
,
1366 extent_end
- key
.offset
);
1367 btrfs_mark_buffer_dirty(leaf
);
1369 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
1371 btrfs_abort_transaction(trans
, ret
);
1376 btrfs_free_path(path
);
1381 * on error we return an unlocked page and the error value
1382 * on success we return a locked page and 0
1384 static int prepare_uptodate_page(struct inode
*inode
,
1385 struct page
*page
, u64 pos
,
1386 bool force_uptodate
)
1390 if (((pos
& (PAGE_SIZE
- 1)) || force_uptodate
) &&
1391 !PageUptodate(page
)) {
1392 ret
= btrfs_readpage(NULL
, page
);
1396 if (!PageUptodate(page
)) {
1400 if (page
->mapping
!= inode
->i_mapping
) {
1409 * this just gets pages into the page cache and locks them down.
1411 static noinline
int prepare_pages(struct inode
*inode
, struct page
**pages
,
1412 size_t num_pages
, loff_t pos
,
1413 size_t write_bytes
, bool force_uptodate
)
1416 unsigned long index
= pos
>> PAGE_SHIFT
;
1417 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1421 for (i
= 0; i
< num_pages
; i
++) {
1423 pages
[i
] = find_or_create_page(inode
->i_mapping
, index
+ i
,
1424 mask
| __GFP_WRITE
);
1432 err
= prepare_uptodate_page(inode
, pages
[i
], pos
,
1434 if (!err
&& i
== num_pages
- 1)
1435 err
= prepare_uptodate_page(inode
, pages
[i
],
1436 pos
+ write_bytes
, false);
1439 if (err
== -EAGAIN
) {
1446 wait_on_page_writeback(pages
[i
]);
1451 while (faili
>= 0) {
1452 unlock_page(pages
[faili
]);
1453 put_page(pages
[faili
]);
1461 * This function locks the extent and properly waits for data=ordered extents
1462 * to finish before allowing the pages to be modified if need.
1465 * 1 - the extent is locked
1466 * 0 - the extent is not locked, and everything is OK
1467 * -EAGAIN - need re-prepare the pages
1468 * the other < 0 number - Something wrong happens
1471 lock_and_cleanup_extent_if_need(struct btrfs_inode
*inode
, struct page
**pages
,
1472 size_t num_pages
, loff_t pos
,
1474 u64
*lockstart
, u64
*lockend
,
1475 struct extent_state
**cached_state
)
1477 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1483 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1484 last_pos
= start_pos
1485 + round_up(pos
+ write_bytes
- start_pos
,
1486 fs_info
->sectorsize
) - 1;
1488 if (start_pos
< inode
->vfs_inode
.i_size
) {
1489 struct btrfs_ordered_extent
*ordered
;
1491 lock_extent_bits(&inode
->io_tree
, start_pos
, last_pos
,
1493 ordered
= btrfs_lookup_ordered_range(inode
, start_pos
,
1494 last_pos
- start_pos
+ 1);
1496 ordered
->file_offset
+ ordered
->len
> start_pos
&&
1497 ordered
->file_offset
<= last_pos
) {
1498 unlock_extent_cached(&inode
->io_tree
, start_pos
,
1499 last_pos
, cached_state
);
1500 for (i
= 0; i
< num_pages
; i
++) {
1501 unlock_page(pages
[i
]);
1504 btrfs_start_ordered_extent(&inode
->vfs_inode
,
1506 btrfs_put_ordered_extent(ordered
);
1510 btrfs_put_ordered_extent(ordered
);
1512 *lockstart
= start_pos
;
1513 *lockend
= last_pos
;
1518 * It's possible the pages are dirty right now, but we don't want
1519 * to clean them yet because copy_from_user may catch a page fault
1520 * and we might have to fall back to one page at a time. If that
1521 * happens, we'll unlock these pages and we'd have a window where
1522 * reclaim could sneak in and drop the once-dirty page on the floor
1523 * without writing it.
1525 * We have the pages locked and the extent range locked, so there's
1526 * no way someone can start IO on any dirty pages in this range.
1528 * We'll call btrfs_dirty_pages() later on, and that will flip around
1529 * delalloc bits and dirty the pages as required.
1531 for (i
= 0; i
< num_pages
; i
++) {
1532 set_page_extent_mapped(pages
[i
]);
1533 WARN_ON(!PageLocked(pages
[i
]));
1539 static noinline
int check_can_nocow(struct btrfs_inode
*inode
, loff_t pos
,
1540 size_t *write_bytes
)
1542 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1543 struct btrfs_root
*root
= inode
->root
;
1544 struct btrfs_ordered_extent
*ordered
;
1545 u64 lockstart
, lockend
;
1549 ret
= btrfs_start_write_no_snapshotting(root
);
1553 lockstart
= round_down(pos
, fs_info
->sectorsize
);
1554 lockend
= round_up(pos
+ *write_bytes
,
1555 fs_info
->sectorsize
) - 1;
1558 lock_extent(&inode
->io_tree
, lockstart
, lockend
);
1559 ordered
= btrfs_lookup_ordered_range(inode
, lockstart
,
1560 lockend
- lockstart
+ 1);
1564 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1565 btrfs_start_ordered_extent(&inode
->vfs_inode
, ordered
, 1);
1566 btrfs_put_ordered_extent(ordered
);
1569 num_bytes
= lockend
- lockstart
+ 1;
1570 ret
= can_nocow_extent(&inode
->vfs_inode
, lockstart
, &num_bytes
,
1574 btrfs_end_write_no_snapshotting(root
);
1576 *write_bytes
= min_t(size_t, *write_bytes
,
1577 num_bytes
- pos
+ lockstart
);
1580 unlock_extent(&inode
->io_tree
, lockstart
, lockend
);
1585 static noinline ssize_t
btrfs_buffered_write(struct kiocb
*iocb
,
1588 struct file
*file
= iocb
->ki_filp
;
1589 loff_t pos
= iocb
->ki_pos
;
1590 struct inode
*inode
= file_inode(file
);
1591 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1592 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1593 struct page
**pages
= NULL
;
1594 struct extent_state
*cached_state
= NULL
;
1595 struct extent_changeset
*data_reserved
= NULL
;
1596 u64 release_bytes
= 0;
1599 size_t num_written
= 0;
1602 bool only_release_metadata
= false;
1603 bool force_page_uptodate
= false;
1605 nrptrs
= min(DIV_ROUND_UP(iov_iter_count(i
), PAGE_SIZE
),
1606 PAGE_SIZE
/ (sizeof(struct page
*)));
1607 nrptrs
= min(nrptrs
, current
->nr_dirtied_pause
- current
->nr_dirtied
);
1608 nrptrs
= max(nrptrs
, 8);
1609 pages
= kmalloc_array(nrptrs
, sizeof(struct page
*), GFP_KERNEL
);
1613 while (iov_iter_count(i
) > 0) {
1614 size_t offset
= pos
& (PAGE_SIZE
- 1);
1615 size_t sector_offset
;
1616 size_t write_bytes
= min(iov_iter_count(i
),
1617 nrptrs
* (size_t)PAGE_SIZE
-
1619 size_t num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1621 size_t reserve_bytes
;
1624 size_t dirty_sectors
;
1628 WARN_ON(num_pages
> nrptrs
);
1631 * Fault pages before locking them in prepare_pages
1632 * to avoid recursive lock
1634 if (unlikely(iov_iter_fault_in_readable(i
, write_bytes
))) {
1639 sector_offset
= pos
& (fs_info
->sectorsize
- 1);
1640 reserve_bytes
= round_up(write_bytes
+ sector_offset
,
1641 fs_info
->sectorsize
);
1643 extent_changeset_release(data_reserved
);
1644 ret
= btrfs_check_data_free_space(inode
, &data_reserved
, pos
,
1647 if ((BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1648 BTRFS_INODE_PREALLOC
)) &&
1649 check_can_nocow(BTRFS_I(inode
), pos
,
1650 &write_bytes
) > 0) {
1652 * For nodata cow case, no need to reserve
1655 only_release_metadata
= true;
1657 * our prealloc extent may be smaller than
1658 * write_bytes, so scale down.
1660 num_pages
= DIV_ROUND_UP(write_bytes
+ offset
,
1662 reserve_bytes
= round_up(write_bytes
+
1664 fs_info
->sectorsize
);
1670 WARN_ON(reserve_bytes
== 0);
1671 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
1674 if (!only_release_metadata
)
1675 btrfs_free_reserved_data_space(inode
,
1679 btrfs_end_write_no_snapshotting(root
);
1683 release_bytes
= reserve_bytes
;
1686 * This is going to setup the pages array with the number of
1687 * pages we want, so we don't really need to worry about the
1688 * contents of pages from loop to loop
1690 ret
= prepare_pages(inode
, pages
, num_pages
,
1692 force_page_uptodate
);
1694 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1695 reserve_bytes
, true);
1699 extents_locked
= lock_and_cleanup_extent_if_need(
1700 BTRFS_I(inode
), pages
,
1701 num_pages
, pos
, write_bytes
, &lockstart
,
1702 &lockend
, &cached_state
);
1703 if (extents_locked
< 0) {
1704 if (extents_locked
== -EAGAIN
)
1706 btrfs_delalloc_release_extents(BTRFS_I(inode
),
1707 reserve_bytes
, true);
1708 ret
= extents_locked
;
1712 copied
= btrfs_copy_from_user(pos
, write_bytes
, pages
, i
);
1714 num_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, reserve_bytes
);
1715 dirty_sectors
= round_up(copied
+ sector_offset
,
1716 fs_info
->sectorsize
);
1717 dirty_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, dirty_sectors
);
1720 * if we have trouble faulting in the pages, fall
1721 * back to one page at a time
1723 if (copied
< write_bytes
)
1727 force_page_uptodate
= true;
1731 force_page_uptodate
= false;
1732 dirty_pages
= DIV_ROUND_UP(copied
+ offset
,
1736 if (num_sectors
> dirty_sectors
) {
1737 /* release everything except the sectors we dirtied */
1738 release_bytes
-= dirty_sectors
<<
1739 fs_info
->sb
->s_blocksize_bits
;
1740 if (only_release_metadata
) {
1741 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1742 release_bytes
, true);
1746 __pos
= round_down(pos
,
1747 fs_info
->sectorsize
) +
1748 (dirty_pages
<< PAGE_SHIFT
);
1749 btrfs_delalloc_release_space(inode
,
1750 data_reserved
, __pos
,
1751 release_bytes
, true);
1755 release_bytes
= round_up(copied
+ sector_offset
,
1756 fs_info
->sectorsize
);
1759 ret
= btrfs_dirty_pages(inode
, pages
, dirty_pages
,
1760 pos
, copied
, &cached_state
);
1762 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1763 lockstart
, lockend
, &cached_state
);
1764 btrfs_delalloc_release_extents(BTRFS_I(inode
), reserve_bytes
,
1767 btrfs_drop_pages(pages
, num_pages
);
1772 if (only_release_metadata
)
1773 btrfs_end_write_no_snapshotting(root
);
1775 if (only_release_metadata
&& copied
> 0) {
1776 lockstart
= round_down(pos
,
1777 fs_info
->sectorsize
);
1778 lockend
= round_up(pos
+ copied
,
1779 fs_info
->sectorsize
) - 1;
1781 set_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
1782 lockend
, EXTENT_NORESERVE
, NULL
,
1784 only_release_metadata
= false;
1787 btrfs_drop_pages(pages
, num_pages
);
1791 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1792 if (dirty_pages
< (fs_info
->nodesize
>> PAGE_SHIFT
) + 1)
1793 btrfs_btree_balance_dirty(fs_info
);
1796 num_written
+= copied
;
1801 if (release_bytes
) {
1802 if (only_release_metadata
) {
1803 btrfs_end_write_no_snapshotting(root
);
1804 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
1805 release_bytes
, true);
1807 btrfs_delalloc_release_space(inode
, data_reserved
,
1808 round_down(pos
, fs_info
->sectorsize
),
1809 release_bytes
, true);
1813 extent_changeset_free(data_reserved
);
1814 return num_written
? num_written
: ret
;
1817 static ssize_t
__btrfs_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
)
1819 struct file
*file
= iocb
->ki_filp
;
1820 struct inode
*inode
= file_inode(file
);
1823 ssize_t written_buffered
;
1827 written
= generic_file_direct_write(iocb
, from
);
1829 if (written
< 0 || !iov_iter_count(from
))
1833 written_buffered
= btrfs_buffered_write(iocb
, from
);
1834 if (written_buffered
< 0) {
1835 err
= written_buffered
;
1839 * Ensure all data is persisted. We want the next direct IO read to be
1840 * able to read what was just written.
1842 endbyte
= pos
+ written_buffered
- 1;
1843 err
= btrfs_fdatawrite_range(inode
, pos
, endbyte
);
1846 err
= filemap_fdatawait_range(inode
->i_mapping
, pos
, endbyte
);
1849 written
+= written_buffered
;
1850 iocb
->ki_pos
= pos
+ written_buffered
;
1851 invalidate_mapping_pages(file
->f_mapping
, pos
>> PAGE_SHIFT
,
1852 endbyte
>> PAGE_SHIFT
);
1854 return written
? written
: err
;
1857 static void update_time_for_write(struct inode
*inode
)
1859 struct timespec64 now
;
1861 if (IS_NOCMTIME(inode
))
1864 now
= current_time(inode
);
1865 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1866 inode
->i_mtime
= now
;
1868 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1869 inode
->i_ctime
= now
;
1871 if (IS_I_VERSION(inode
))
1872 inode_inc_iversion(inode
);
1875 static ssize_t
btrfs_file_write_iter(struct kiocb
*iocb
,
1876 struct iov_iter
*from
)
1878 struct file
*file
= iocb
->ki_filp
;
1879 struct inode
*inode
= file_inode(file
);
1880 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1881 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1884 ssize_t num_written
= 0;
1885 bool sync
= (file
->f_flags
& O_DSYNC
) || IS_SYNC(file
->f_mapping
->host
);
1888 size_t count
= iov_iter_count(from
);
1892 if (!(iocb
->ki_flags
& IOCB_DIRECT
) &&
1893 (iocb
->ki_flags
& IOCB_NOWAIT
))
1896 if (!inode_trylock(inode
)) {
1897 if (iocb
->ki_flags
& IOCB_NOWAIT
)
1902 err
= generic_write_checks(iocb
, from
);
1904 inode_unlock(inode
);
1909 if (iocb
->ki_flags
& IOCB_NOWAIT
) {
1911 * We will allocate space in case nodatacow is not set,
1914 if (!(BTRFS_I(inode
)->flags
& (BTRFS_INODE_NODATACOW
|
1915 BTRFS_INODE_PREALLOC
)) ||
1916 check_can_nocow(BTRFS_I(inode
), pos
, &count
) <= 0) {
1917 inode_unlock(inode
);
1922 current
->backing_dev_info
= inode_to_bdi(inode
);
1923 err
= file_remove_privs(file
);
1925 inode_unlock(inode
);
1930 * If BTRFS flips readonly due to some impossible error
1931 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1932 * although we have opened a file as writable, we have
1933 * to stop this write operation to ensure FS consistency.
1935 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
1936 inode_unlock(inode
);
1942 * We reserve space for updating the inode when we reserve space for the
1943 * extent we are going to write, so we will enospc out there. We don't
1944 * need to start yet another transaction to update the inode as we will
1945 * update the inode when we finish writing whatever data we write.
1947 update_time_for_write(inode
);
1949 start_pos
= round_down(pos
, fs_info
->sectorsize
);
1950 oldsize
= i_size_read(inode
);
1951 if (start_pos
> oldsize
) {
1952 /* Expand hole size to cover write data, preventing empty gap */
1953 end_pos
= round_up(pos
+ count
,
1954 fs_info
->sectorsize
);
1955 err
= btrfs_cont_expand(inode
, oldsize
, end_pos
);
1957 inode_unlock(inode
);
1960 if (start_pos
> round_up(oldsize
, fs_info
->sectorsize
))
1965 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
1967 if (iocb
->ki_flags
& IOCB_DIRECT
) {
1968 num_written
= __btrfs_direct_write(iocb
, from
);
1970 num_written
= btrfs_buffered_write(iocb
, from
);
1971 if (num_written
> 0)
1972 iocb
->ki_pos
= pos
+ num_written
;
1974 pagecache_isize_extended(inode
, oldsize
,
1975 i_size_read(inode
));
1978 inode_unlock(inode
);
1981 * We also have to set last_sub_trans to the current log transid,
1982 * otherwise subsequent syncs to a file that's been synced in this
1983 * transaction will appear to have already occurred.
1985 spin_lock(&BTRFS_I(inode
)->lock
);
1986 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
1987 spin_unlock(&BTRFS_I(inode
)->lock
);
1988 if (num_written
> 0)
1989 num_written
= generic_write_sync(iocb
, num_written
);
1992 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
1994 current
->backing_dev_info
= NULL
;
1995 return num_written
? num_written
: err
;
1998 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
2000 struct btrfs_file_private
*private = filp
->private_data
;
2002 if (private && private->filldir_buf
)
2003 kfree(private->filldir_buf
);
2005 filp
->private_data
= NULL
;
2008 * ordered_data_close is set by settattr when we are about to truncate
2009 * a file from a non-zero size to a zero size. This tries to
2010 * flush down new bytes that may have been written if the
2011 * application were using truncate to replace a file in place.
2013 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
2014 &BTRFS_I(inode
)->runtime_flags
))
2015 filemap_flush(inode
->i_mapping
);
2019 static int start_ordered_ops(struct inode
*inode
, loff_t start
, loff_t end
)
2022 struct blk_plug plug
;
2025 * This is only called in fsync, which would do synchronous writes, so
2026 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2027 * multiple disks using raid profile, a large IO can be split to
2028 * several segments of stripe length (currently 64K).
2030 blk_start_plug(&plug
);
2031 atomic_inc(&BTRFS_I(inode
)->sync_writers
);
2032 ret
= btrfs_fdatawrite_range(inode
, start
, end
);
2033 atomic_dec(&BTRFS_I(inode
)->sync_writers
);
2034 blk_finish_plug(&plug
);
2040 * fsync call for both files and directories. This logs the inode into
2041 * the tree log instead of forcing full commits whenever possible.
2043 * It needs to call filemap_fdatawait so that all ordered extent updates are
2044 * in the metadata btree are up to date for copying to the log.
2046 * It drops the inode mutex before doing the tree log commit. This is an
2047 * important optimization for directories because holding the mutex prevents
2048 * new operations on the dir while we write to disk.
2050 int btrfs_sync_file(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
2052 struct dentry
*dentry
= file_dentry(file
);
2053 struct inode
*inode
= d_inode(dentry
);
2054 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2055 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2056 struct btrfs_trans_handle
*trans
;
2057 struct btrfs_log_ctx ctx
;
2062 * The range length can be represented by u64, we have to do the typecasts
2063 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2065 len
= (u64
)end
- (u64
)start
+ 1;
2066 trace_btrfs_sync_file(file
, datasync
);
2068 btrfs_init_log_ctx(&ctx
, inode
);
2071 * We write the dirty pages in the range and wait until they complete
2072 * out of the ->i_mutex. If so, we can flush the dirty pages by
2073 * multi-task, and make the performance up. See
2074 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
2076 ret
= start_ordered_ops(inode
, start
, end
);
2083 * We take the dio_sem here because the tree log stuff can race with
2084 * lockless dio writes and get an extent map logged for an extent we
2085 * never waited on. We need it this high up for lockdep reasons.
2087 down_write(&BTRFS_I(inode
)->dio_sem
);
2089 atomic_inc(&root
->log_batch
);
2092 * Before we acquired the inode's lock, someone may have dirtied more
2093 * pages in the target range. We need to make sure that writeback for
2094 * any such pages does not start while we are logging the inode, because
2095 * if it does, any of the following might happen when we are not doing a
2098 * 1) We log an extent after its writeback finishes but before its
2099 * checksums are added to the csum tree, leading to -EIO errors
2100 * when attempting to read the extent after a log replay.
2102 * 2) We can end up logging an extent before its writeback finishes.
2103 * Therefore after the log replay we will have a file extent item
2104 * pointing to an unwritten extent (and no data checksums as well).
2106 * So trigger writeback for any eventual new dirty pages and then we
2107 * wait for all ordered extents to complete below.
2109 ret
= start_ordered_ops(inode
, start
, end
);
2111 inode_unlock(inode
);
2116 * We have to do this here to avoid the priority inversion of waiting on
2117 * IO of a lower priority task while holding a transaciton open.
2119 ret
= btrfs_wait_ordered_range(inode
, start
, len
);
2121 up_write(&BTRFS_I(inode
)->dio_sem
);
2122 inode_unlock(inode
);
2125 atomic_inc(&root
->log_batch
);
2128 if (btrfs_inode_in_log(BTRFS_I(inode
), fs_info
->generation
) ||
2129 BTRFS_I(inode
)->last_trans
<= fs_info
->last_trans_committed
) {
2131 * We've had everything committed since the last time we were
2132 * modified so clear this flag in case it was set for whatever
2133 * reason, it's no longer relevant.
2135 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2136 &BTRFS_I(inode
)->runtime_flags
);
2138 * An ordered extent might have started before and completed
2139 * already with io errors, in which case the inode was not
2140 * updated and we end up here. So check the inode's mapping
2141 * for any errors that might have happened since we last
2142 * checked called fsync.
2144 ret
= filemap_check_wb_err(inode
->i_mapping
, file
->f_wb_err
);
2145 up_write(&BTRFS_I(inode
)->dio_sem
);
2146 inode_unlock(inode
);
2151 * We use start here because we will need to wait on the IO to complete
2152 * in btrfs_sync_log, which could require joining a transaction (for
2153 * example checking cross references in the nocow path). If we use join
2154 * here we could get into a situation where we're waiting on IO to
2155 * happen that is blocked on a transaction trying to commit. With start
2156 * we inc the extwriter counter, so we wait for all extwriters to exit
2157 * before we start blocking join'ers. This comment is to keep somebody
2158 * from thinking they are super smart and changing this to
2159 * btrfs_join_transaction *cough*Josef*cough*.
2161 trans
= btrfs_start_transaction(root
, 0);
2162 if (IS_ERR(trans
)) {
2163 ret
= PTR_ERR(trans
);
2164 up_write(&BTRFS_I(inode
)->dio_sem
);
2165 inode_unlock(inode
);
2170 ret
= btrfs_log_dentry_safe(trans
, dentry
, start
, end
, &ctx
);
2172 /* Fallthrough and commit/free transaction. */
2176 /* we've logged all the items and now have a consistent
2177 * version of the file in the log. It is possible that
2178 * someone will come in and modify the file, but that's
2179 * fine because the log is consistent on disk, and we
2180 * have references to all of the file's extents
2182 * It is possible that someone will come in and log the
2183 * file again, but that will end up using the synchronization
2184 * inside btrfs_sync_log to keep things safe.
2186 up_write(&BTRFS_I(inode
)->dio_sem
);
2187 inode_unlock(inode
);
2190 * If any of the ordered extents had an error, just return it to user
2191 * space, so that the application knows some writes didn't succeed and
2192 * can take proper action (retry for e.g.). Blindly committing the
2193 * transaction in this case, would fool userspace that everything was
2194 * successful. And we also want to make sure our log doesn't contain
2195 * file extent items pointing to extents that weren't fully written to -
2196 * just like in the non fast fsync path, where we check for the ordered
2197 * operation's error flag before writing to the log tree and return -EIO
2198 * if any of them had this flag set (btrfs_wait_ordered_range) -
2199 * therefore we need to check for errors in the ordered operations,
2200 * which are indicated by ctx.io_err.
2203 btrfs_end_transaction(trans
);
2208 if (ret
!= BTRFS_NO_LOG_SYNC
) {
2210 ret
= btrfs_sync_log(trans
, root
, &ctx
);
2212 ret
= btrfs_end_transaction(trans
);
2216 ret
= btrfs_commit_transaction(trans
);
2218 ret
= btrfs_end_transaction(trans
);
2221 ASSERT(list_empty(&ctx
.list
));
2222 err
= file_check_and_advance_wb_err(file
);
2225 return ret
> 0 ? -EIO
: ret
;
2228 static const struct vm_operations_struct btrfs_file_vm_ops
= {
2229 .fault
= filemap_fault
,
2230 .map_pages
= filemap_map_pages
,
2231 .page_mkwrite
= btrfs_page_mkwrite
,
2234 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
2236 struct address_space
*mapping
= filp
->f_mapping
;
2238 if (!mapping
->a_ops
->readpage
)
2241 file_accessed(filp
);
2242 vma
->vm_ops
= &btrfs_file_vm_ops
;
2247 static int hole_mergeable(struct btrfs_inode
*inode
, struct extent_buffer
*leaf
,
2248 int slot
, u64 start
, u64 end
)
2250 struct btrfs_file_extent_item
*fi
;
2251 struct btrfs_key key
;
2253 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
2256 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2257 if (key
.objectid
!= btrfs_ino(inode
) ||
2258 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2261 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
2263 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2266 if (btrfs_file_extent_disk_bytenr(leaf
, fi
))
2269 if (key
.offset
== end
)
2271 if (key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
) == start
)
2276 static int fill_holes(struct btrfs_trans_handle
*trans
,
2277 struct btrfs_inode
*inode
,
2278 struct btrfs_path
*path
, u64 offset
, u64 end
)
2280 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2281 struct btrfs_root
*root
= inode
->root
;
2282 struct extent_buffer
*leaf
;
2283 struct btrfs_file_extent_item
*fi
;
2284 struct extent_map
*hole_em
;
2285 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
2286 struct btrfs_key key
;
2289 if (btrfs_fs_incompat(fs_info
, NO_HOLES
))
2292 key
.objectid
= btrfs_ino(inode
);
2293 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2294 key
.offset
= offset
;
2296 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2299 * We should have dropped this offset, so if we find it then
2300 * something has gone horribly wrong.
2307 leaf
= path
->nodes
[0];
2308 if (hole_mergeable(inode
, leaf
, path
->slots
[0] - 1, offset
, end
)) {
2312 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2313 struct btrfs_file_extent_item
);
2314 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) +
2316 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2317 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2318 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2319 btrfs_mark_buffer_dirty(leaf
);
2323 if (hole_mergeable(inode
, leaf
, path
->slots
[0], offset
, end
)) {
2326 key
.offset
= offset
;
2327 btrfs_set_item_key_safe(fs_info
, path
, &key
);
2328 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2329 struct btrfs_file_extent_item
);
2330 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
) + end
-
2332 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2333 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
2334 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2335 btrfs_mark_buffer_dirty(leaf
);
2338 btrfs_release_path(path
);
2340 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(inode
),
2341 offset
, 0, 0, end
- offset
, 0, end
- offset
, 0, 0, 0);
2346 btrfs_release_path(path
);
2348 hole_em
= alloc_extent_map();
2350 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
);
2353 hole_em
->start
= offset
;
2354 hole_em
->len
= end
- offset
;
2355 hole_em
->ram_bytes
= hole_em
->len
;
2356 hole_em
->orig_start
= offset
;
2358 hole_em
->block_start
= EXTENT_MAP_HOLE
;
2359 hole_em
->block_len
= 0;
2360 hole_em
->orig_block_len
= 0;
2361 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
2362 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
2363 hole_em
->generation
= trans
->transid
;
2366 btrfs_drop_extent_cache(inode
, offset
, end
- 1, 0);
2367 write_lock(&em_tree
->lock
);
2368 ret
= add_extent_mapping(em_tree
, hole_em
, 1);
2369 write_unlock(&em_tree
->lock
);
2370 } while (ret
== -EEXIST
);
2371 free_extent_map(hole_em
);
2373 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
2374 &inode
->runtime_flags
);
2381 * Find a hole extent on given inode and change start/len to the end of hole
2382 * extent.(hole/vacuum extent whose em->start <= start &&
2383 * em->start + em->len > start)
2384 * When a hole extent is found, return 1 and modify start/len.
2386 static int find_first_non_hole(struct inode
*inode
, u64
*start
, u64
*len
)
2388 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2389 struct extent_map
*em
;
2392 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2393 round_down(*start
, fs_info
->sectorsize
),
2394 round_up(*len
, fs_info
->sectorsize
), 0);
2398 /* Hole or vacuum extent(only exists in no-hole mode) */
2399 if (em
->block_start
== EXTENT_MAP_HOLE
) {
2401 *len
= em
->start
+ em
->len
> *start
+ *len
?
2402 0 : *start
+ *len
- em
->start
- em
->len
;
2403 *start
= em
->start
+ em
->len
;
2405 free_extent_map(em
);
2409 static int btrfs_punch_hole_lock_range(struct inode
*inode
,
2410 const u64 lockstart
,
2412 struct extent_state
**cached_state
)
2415 struct btrfs_ordered_extent
*ordered
;
2418 truncate_pagecache_range(inode
, lockstart
, lockend
);
2420 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2422 ordered
= btrfs_lookup_first_ordered_extent(inode
, lockend
);
2425 * We need to make sure we have no ordered extents in this range
2426 * and nobody raced in and read a page in this range, if we did
2427 * we need to try again.
2430 (ordered
->file_offset
+ ordered
->len
<= lockstart
||
2431 ordered
->file_offset
> lockend
)) &&
2432 !filemap_range_has_page(inode
->i_mapping
,
2433 lockstart
, lockend
)) {
2435 btrfs_put_ordered_extent(ordered
);
2439 btrfs_put_ordered_extent(ordered
);
2440 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2441 lockend
, cached_state
);
2442 ret
= btrfs_wait_ordered_range(inode
, lockstart
,
2443 lockend
- lockstart
+ 1);
2450 static int btrfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
2452 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2453 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2454 struct extent_state
*cached_state
= NULL
;
2455 struct btrfs_path
*path
;
2456 struct btrfs_block_rsv
*rsv
;
2457 struct btrfs_trans_handle
*trans
;
2462 u64 orig_start
= offset
;
2464 u64 min_size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2468 unsigned int rsv_count
;
2470 bool no_holes
= btrfs_fs_incompat(fs_info
, NO_HOLES
);
2472 bool truncated_block
= false;
2473 bool updated_inode
= false;
2475 ret
= btrfs_wait_ordered_range(inode
, offset
, len
);
2480 ino_size
= round_up(inode
->i_size
, fs_info
->sectorsize
);
2481 ret
= find_first_non_hole(inode
, &offset
, &len
);
2483 goto out_only_mutex
;
2485 /* Already in a large hole */
2487 goto out_only_mutex
;
2490 lockstart
= round_up(offset
, btrfs_inode_sectorsize(inode
));
2491 lockend
= round_down(offset
+ len
,
2492 btrfs_inode_sectorsize(inode
)) - 1;
2493 same_block
= (BTRFS_BYTES_TO_BLKS(fs_info
, offset
))
2494 == (BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1));
2496 * We needn't truncate any block which is beyond the end of the file
2497 * because we are sure there is no data there.
2500 * Only do this if we are in the same block and we aren't doing the
2503 if (same_block
&& len
< fs_info
->sectorsize
) {
2504 if (offset
< ino_size
) {
2505 truncated_block
= true;
2506 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2510 goto out_only_mutex
;
2513 /* zero back part of the first block */
2514 if (offset
< ino_size
) {
2515 truncated_block
= true;
2516 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2518 inode_unlock(inode
);
2523 /* Check the aligned pages after the first unaligned page,
2524 * if offset != orig_start, which means the first unaligned page
2525 * including several following pages are already in holes,
2526 * the extra check can be skipped */
2527 if (offset
== orig_start
) {
2528 /* after truncate page, check hole again */
2529 len
= offset
+ len
- lockstart
;
2531 ret
= find_first_non_hole(inode
, &offset
, &len
);
2533 goto out_only_mutex
;
2536 goto out_only_mutex
;
2541 /* Check the tail unaligned part is in a hole */
2542 tail_start
= lockend
+ 1;
2543 tail_len
= offset
+ len
- tail_start
;
2545 ret
= find_first_non_hole(inode
, &tail_start
, &tail_len
);
2546 if (unlikely(ret
< 0))
2547 goto out_only_mutex
;
2549 /* zero the front end of the last page */
2550 if (tail_start
+ tail_len
< ino_size
) {
2551 truncated_block
= true;
2552 ret
= btrfs_truncate_block(inode
,
2553 tail_start
+ tail_len
,
2556 goto out_only_mutex
;
2561 if (lockend
< lockstart
) {
2563 goto out_only_mutex
;
2566 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
2569 inode_unlock(inode
);
2570 goto out_only_mutex
;
2573 path
= btrfs_alloc_path();
2579 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
2584 rsv
->size
= btrfs_calc_trans_metadata_size(fs_info
, 1);
2588 * 1 - update the inode
2589 * 1 - removing the extents in the range
2590 * 1 - adding the hole extent if no_holes isn't set
2592 rsv_count
= no_holes
? 2 : 3;
2593 trans
= btrfs_start_transaction(root
, rsv_count
);
2594 if (IS_ERR(trans
)) {
2595 err
= PTR_ERR(trans
);
2599 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
2602 trans
->block_rsv
= rsv
;
2604 cur_offset
= lockstart
;
2605 len
= lockend
- cur_offset
;
2606 while (cur_offset
< lockend
) {
2607 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
2608 cur_offset
, lockend
+ 1,
2609 &drop_end
, 1, 0, 0, NULL
);
2613 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2615 if (cur_offset
< drop_end
&& cur_offset
< ino_size
) {
2616 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2617 cur_offset
, drop_end
);
2620 * If we failed then we didn't insert our hole
2621 * entries for the area we dropped, so now the
2622 * fs is corrupted, so we must abort the
2625 btrfs_abort_transaction(trans
, ret
);
2631 cur_offset
= drop_end
;
2633 ret
= btrfs_update_inode(trans
, root
, inode
);
2639 btrfs_end_transaction(trans
);
2640 btrfs_btree_balance_dirty(fs_info
);
2642 trans
= btrfs_start_transaction(root
, rsv_count
);
2643 if (IS_ERR(trans
)) {
2644 ret
= PTR_ERR(trans
);
2649 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
2650 rsv
, min_size
, false);
2651 BUG_ON(ret
); /* shouldn't happen */
2652 trans
->block_rsv
= rsv
;
2654 ret
= find_first_non_hole(inode
, &cur_offset
, &len
);
2655 if (unlikely(ret
< 0))
2668 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2670 * If we are using the NO_HOLES feature we might have had already an
2671 * hole that overlaps a part of the region [lockstart, lockend] and
2672 * ends at (or beyond) lockend. Since we have no file extent items to
2673 * represent holes, drop_end can be less than lockend and so we must
2674 * make sure we have an extent map representing the existing hole (the
2675 * call to __btrfs_drop_extents() might have dropped the existing extent
2676 * map representing the existing hole), otherwise the fast fsync path
2677 * will not record the existence of the hole region
2678 * [existing_hole_start, lockend].
2680 if (drop_end
<= lockend
)
2681 drop_end
= lockend
+ 1;
2683 * Don't insert file hole extent item if it's for a range beyond eof
2684 * (because it's useless) or if it represents a 0 bytes range (when
2685 * cur_offset == drop_end).
2687 if (cur_offset
< ino_size
&& cur_offset
< drop_end
) {
2688 ret
= fill_holes(trans
, BTRFS_I(inode
), path
,
2689 cur_offset
, drop_end
);
2691 /* Same comment as above. */
2692 btrfs_abort_transaction(trans
, ret
);
2702 inode_inc_iversion(inode
);
2703 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2705 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
2706 ret
= btrfs_update_inode(trans
, root
, inode
);
2707 updated_inode
= true;
2708 btrfs_end_transaction(trans
);
2709 btrfs_btree_balance_dirty(fs_info
);
2711 btrfs_free_path(path
);
2712 btrfs_free_block_rsv(fs_info
, rsv
);
2714 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
2717 if (!updated_inode
&& truncated_block
&& !ret
&& !err
) {
2719 * If we only end up zeroing part of a page, we still need to
2720 * update the inode item, so that all the time fields are
2721 * updated as well as the necessary btrfs inode in memory fields
2722 * for detecting, at fsync time, if the inode isn't yet in the
2723 * log tree or it's there but not up to date.
2725 trans
= btrfs_start_transaction(root
, 1);
2726 if (IS_ERR(trans
)) {
2727 err
= PTR_ERR(trans
);
2729 err
= btrfs_update_inode(trans
, root
, inode
);
2730 ret
= btrfs_end_transaction(trans
);
2733 inode_unlock(inode
);
2739 /* Helper structure to record which range is already reserved */
2740 struct falloc_range
{
2741 struct list_head list
;
2747 * Helper function to add falloc range
2749 * Caller should have locked the larger range of extent containing
2752 static int add_falloc_range(struct list_head
*head
, u64 start
, u64 len
)
2754 struct falloc_range
*prev
= NULL
;
2755 struct falloc_range
*range
= NULL
;
2757 if (list_empty(head
))
2761 * As fallocate iterate by bytenr order, we only need to check
2764 prev
= list_entry(head
->prev
, struct falloc_range
, list
);
2765 if (prev
->start
+ prev
->len
== start
) {
2770 range
= kmalloc(sizeof(*range
), GFP_KERNEL
);
2773 range
->start
= start
;
2775 list_add_tail(&range
->list
, head
);
2779 static int btrfs_fallocate_update_isize(struct inode
*inode
,
2783 struct btrfs_trans_handle
*trans
;
2784 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2788 if (mode
& FALLOC_FL_KEEP_SIZE
|| end
<= i_size_read(inode
))
2791 trans
= btrfs_start_transaction(root
, 1);
2793 return PTR_ERR(trans
);
2795 inode
->i_ctime
= current_time(inode
);
2796 i_size_write(inode
, end
);
2797 btrfs_ordered_update_i_size(inode
, end
, NULL
);
2798 ret
= btrfs_update_inode(trans
, root
, inode
);
2799 ret2
= btrfs_end_transaction(trans
);
2801 return ret
? ret
: ret2
;
2805 RANGE_BOUNDARY_WRITTEN_EXTENT
= 0,
2806 RANGE_BOUNDARY_PREALLOC_EXTENT
= 1,
2807 RANGE_BOUNDARY_HOLE
= 2,
2810 static int btrfs_zero_range_check_range_boundary(struct inode
*inode
,
2813 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2814 struct extent_map
*em
;
2817 offset
= round_down(offset
, sectorsize
);
2818 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, offset
, sectorsize
, 0);
2822 if (em
->block_start
== EXTENT_MAP_HOLE
)
2823 ret
= RANGE_BOUNDARY_HOLE
;
2824 else if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
2825 ret
= RANGE_BOUNDARY_PREALLOC_EXTENT
;
2827 ret
= RANGE_BOUNDARY_WRITTEN_EXTENT
;
2829 free_extent_map(em
);
2833 static int btrfs_zero_range(struct inode
*inode
,
2838 struct btrfs_fs_info
*fs_info
= BTRFS_I(inode
)->root
->fs_info
;
2839 struct extent_map
*em
;
2840 struct extent_changeset
*data_reserved
= NULL
;
2843 const u64 sectorsize
= btrfs_inode_sectorsize(inode
);
2844 u64 alloc_start
= round_down(offset
, sectorsize
);
2845 u64 alloc_end
= round_up(offset
+ len
, sectorsize
);
2846 u64 bytes_to_reserve
= 0;
2847 bool space_reserved
= false;
2849 inode_dio_wait(inode
);
2851 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2852 alloc_start
, alloc_end
- alloc_start
, 0);
2859 * Avoid hole punching and extent allocation for some cases. More cases
2860 * could be considered, but these are unlikely common and we keep things
2861 * as simple as possible for now. Also, intentionally, if the target
2862 * range contains one or more prealloc extents together with regular
2863 * extents and holes, we drop all the existing extents and allocate a
2864 * new prealloc extent, so that we get a larger contiguous disk extent.
2866 if (em
->start
<= alloc_start
&&
2867 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2868 const u64 em_end
= em
->start
+ em
->len
;
2870 if (em_end
>= offset
+ len
) {
2872 * The whole range is already a prealloc extent,
2873 * do nothing except updating the inode's i_size if
2876 free_extent_map(em
);
2877 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2882 * Part of the range is already a prealloc extent, so operate
2883 * only on the remaining part of the range.
2885 alloc_start
= em_end
;
2886 ASSERT(IS_ALIGNED(alloc_start
, sectorsize
));
2887 len
= offset
+ len
- alloc_start
;
2888 offset
= alloc_start
;
2889 alloc_hint
= em
->block_start
+ em
->len
;
2891 free_extent_map(em
);
2893 if (BTRFS_BYTES_TO_BLKS(fs_info
, offset
) ==
2894 BTRFS_BYTES_TO_BLKS(fs_info
, offset
+ len
- 1)) {
2895 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0,
2896 alloc_start
, sectorsize
, 0);
2902 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
2903 free_extent_map(em
);
2904 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
,
2908 if (len
< sectorsize
&& em
->block_start
!= EXTENT_MAP_HOLE
) {
2909 free_extent_map(em
);
2910 ret
= btrfs_truncate_block(inode
, offset
, len
, 0);
2912 ret
= btrfs_fallocate_update_isize(inode
,
2917 free_extent_map(em
);
2918 alloc_start
= round_down(offset
, sectorsize
);
2919 alloc_end
= alloc_start
+ sectorsize
;
2923 alloc_start
= round_up(offset
, sectorsize
);
2924 alloc_end
= round_down(offset
+ len
, sectorsize
);
2927 * For unaligned ranges, check the pages at the boundaries, they might
2928 * map to an extent, in which case we need to partially zero them, or
2929 * they might map to a hole, in which case we need our allocation range
2932 if (!IS_ALIGNED(offset
, sectorsize
)) {
2933 ret
= btrfs_zero_range_check_range_boundary(inode
, offset
);
2936 if (ret
== RANGE_BOUNDARY_HOLE
) {
2937 alloc_start
= round_down(offset
, sectorsize
);
2939 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
2940 ret
= btrfs_truncate_block(inode
, offset
, 0, 0);
2948 if (!IS_ALIGNED(offset
+ len
, sectorsize
)) {
2949 ret
= btrfs_zero_range_check_range_boundary(inode
,
2953 if (ret
== RANGE_BOUNDARY_HOLE
) {
2954 alloc_end
= round_up(offset
+ len
, sectorsize
);
2956 } else if (ret
== RANGE_BOUNDARY_WRITTEN_EXTENT
) {
2957 ret
= btrfs_truncate_block(inode
, offset
+ len
, 0, 1);
2966 if (alloc_start
< alloc_end
) {
2967 struct extent_state
*cached_state
= NULL
;
2968 const u64 lockstart
= alloc_start
;
2969 const u64 lockend
= alloc_end
- 1;
2971 bytes_to_reserve
= alloc_end
- alloc_start
;
2972 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
2976 space_reserved
= true;
2977 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
2978 alloc_start
, bytes_to_reserve
);
2981 ret
= btrfs_punch_hole_lock_range(inode
, lockstart
, lockend
,
2985 ret
= btrfs_prealloc_file_range(inode
, mode
, alloc_start
,
2986 alloc_end
- alloc_start
,
2988 offset
+ len
, &alloc_hint
);
2989 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
,
2990 lockend
, &cached_state
);
2991 /* btrfs_prealloc_file_range releases reserved space on error */
2993 space_reserved
= false;
2997 ret
= btrfs_fallocate_update_isize(inode
, offset
+ len
, mode
);
2999 if (ret
&& space_reserved
)
3000 btrfs_free_reserved_data_space(inode
, data_reserved
,
3001 alloc_start
, bytes_to_reserve
);
3002 extent_changeset_free(data_reserved
);
3007 static long btrfs_fallocate(struct file
*file
, int mode
,
3008 loff_t offset
, loff_t len
)
3010 struct inode
*inode
= file_inode(file
);
3011 struct extent_state
*cached_state
= NULL
;
3012 struct extent_changeset
*data_reserved
= NULL
;
3013 struct falloc_range
*range
;
3014 struct falloc_range
*tmp
;
3015 struct list_head reserve_list
;
3023 struct extent_map
*em
;
3024 int blocksize
= btrfs_inode_sectorsize(inode
);
3027 alloc_start
= round_down(offset
, blocksize
);
3028 alloc_end
= round_up(offset
+ len
, blocksize
);
3029 cur_offset
= alloc_start
;
3031 /* Make sure we aren't being give some crap mode */
3032 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
|
3033 FALLOC_FL_ZERO_RANGE
))
3036 if (mode
& FALLOC_FL_PUNCH_HOLE
)
3037 return btrfs_punch_hole(inode
, offset
, len
);
3040 * Only trigger disk allocation, don't trigger qgroup reserve
3042 * For qgroup space, it will be checked later.
3044 if (!(mode
& FALLOC_FL_ZERO_RANGE
)) {
3045 ret
= btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode
),
3046 alloc_end
- alloc_start
);
3053 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
) {
3054 ret
= inode_newsize_ok(inode
, offset
+ len
);
3060 * TODO: Move these two operations after we have checked
3061 * accurate reserved space, or fallocate can still fail but
3062 * with page truncated or size expanded.
3064 * But that's a minor problem and won't do much harm BTW.
3066 if (alloc_start
> inode
->i_size
) {
3067 ret
= btrfs_cont_expand(inode
, i_size_read(inode
),
3071 } else if (offset
+ len
> inode
->i_size
) {
3073 * If we are fallocating from the end of the file onward we
3074 * need to zero out the end of the block if i_size lands in the
3075 * middle of a block.
3077 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
3083 * wait for ordered IO before we have any locks. We'll loop again
3084 * below with the locks held.
3086 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3087 alloc_end
- alloc_start
);
3091 if (mode
& FALLOC_FL_ZERO_RANGE
) {
3092 ret
= btrfs_zero_range(inode
, offset
, len
, mode
);
3093 inode_unlock(inode
);
3097 locked_end
= alloc_end
- 1;
3099 struct btrfs_ordered_extent
*ordered
;
3101 /* the extent lock is ordered inside the running
3104 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, alloc_start
,
3105 locked_end
, &cached_state
);
3106 ordered
= btrfs_lookup_first_ordered_extent(inode
, locked_end
);
3109 ordered
->file_offset
+ ordered
->len
> alloc_start
&&
3110 ordered
->file_offset
< alloc_end
) {
3111 btrfs_put_ordered_extent(ordered
);
3112 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
3113 alloc_start
, locked_end
,
3116 * we can't wait on the range with the transaction
3117 * running or with the extent lock held
3119 ret
= btrfs_wait_ordered_range(inode
, alloc_start
,
3120 alloc_end
- alloc_start
);
3125 btrfs_put_ordered_extent(ordered
);
3130 /* First, check if we exceed the qgroup limit */
3131 INIT_LIST_HEAD(&reserve_list
);
3132 while (cur_offset
< alloc_end
) {
3133 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
3134 alloc_end
- cur_offset
, 0);
3139 last_byte
= min(extent_map_end(em
), alloc_end
);
3140 actual_end
= min_t(u64
, extent_map_end(em
), offset
+ len
);
3141 last_byte
= ALIGN(last_byte
, blocksize
);
3142 if (em
->block_start
== EXTENT_MAP_HOLE
||
3143 (cur_offset
>= inode
->i_size
&&
3144 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
3145 ret
= add_falloc_range(&reserve_list
, cur_offset
,
3146 last_byte
- cur_offset
);
3148 free_extent_map(em
);
3151 ret
= btrfs_qgroup_reserve_data(inode
, &data_reserved
,
3152 cur_offset
, last_byte
- cur_offset
);
3154 free_extent_map(em
);
3159 * Do not need to reserve unwritten extent for this
3160 * range, free reserved data space first, otherwise
3161 * it'll result in false ENOSPC error.
3163 btrfs_free_reserved_data_space(inode
, data_reserved
,
3164 cur_offset
, last_byte
- cur_offset
);
3166 free_extent_map(em
);
3167 cur_offset
= last_byte
;
3171 * If ret is still 0, means we're OK to fallocate.
3172 * Or just cleanup the list and exit.
3174 list_for_each_entry_safe(range
, tmp
, &reserve_list
, list
) {
3176 ret
= btrfs_prealloc_file_range(inode
, mode
,
3178 range
->len
, i_blocksize(inode
),
3179 offset
+ len
, &alloc_hint
);
3181 btrfs_free_reserved_data_space(inode
,
3182 data_reserved
, range
->start
,
3184 list_del(&range
->list
);
3191 * We didn't need to allocate any more space, but we still extended the
3192 * size of the file so we need to update i_size and the inode item.
3194 ret
= btrfs_fallocate_update_isize(inode
, actual_end
, mode
);
3196 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, alloc_start
, locked_end
,
3199 inode_unlock(inode
);
3200 /* Let go of our reservation. */
3201 if (ret
!= 0 && !(mode
& FALLOC_FL_ZERO_RANGE
))
3202 btrfs_free_reserved_data_space(inode
, data_reserved
,
3203 alloc_start
, alloc_end
- cur_offset
);
3204 extent_changeset_free(data_reserved
);
3208 static int find_desired_extent(struct inode
*inode
, loff_t
*offset
, int whence
)
3210 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3211 struct extent_map
*em
= NULL
;
3212 struct extent_state
*cached_state
= NULL
;
3219 if (inode
->i_size
== 0)
3223 * *offset can be negative, in this case we start finding DATA/HOLE from
3224 * the very start of the file.
3226 start
= max_t(loff_t
, 0, *offset
);
3228 lockstart
= round_down(start
, fs_info
->sectorsize
);
3229 lockend
= round_up(i_size_read(inode
),
3230 fs_info
->sectorsize
);
3231 if (lockend
<= lockstart
)
3232 lockend
= lockstart
+ fs_info
->sectorsize
;
3234 len
= lockend
- lockstart
+ 1;
3236 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3239 while (start
< inode
->i_size
) {
3240 em
= btrfs_get_extent_fiemap(BTRFS_I(inode
), NULL
, 0,
3248 if (whence
== SEEK_HOLE
&&
3249 (em
->block_start
== EXTENT_MAP_HOLE
||
3250 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3252 else if (whence
== SEEK_DATA
&&
3253 (em
->block_start
!= EXTENT_MAP_HOLE
&&
3254 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)))
3257 start
= em
->start
+ em
->len
;
3258 free_extent_map(em
);
3262 free_extent_map(em
);
3264 if (whence
== SEEK_DATA
&& start
>= inode
->i_size
)
3267 *offset
= min_t(loff_t
, start
, inode
->i_size
);
3269 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
3274 static loff_t
btrfs_file_llseek(struct file
*file
, loff_t offset
, int whence
)
3276 struct inode
*inode
= file
->f_mapping
->host
;
3283 offset
= generic_file_llseek(file
, offset
, whence
);
3287 if (offset
>= i_size_read(inode
)) {
3288 inode_unlock(inode
);
3292 ret
= find_desired_extent(inode
, &offset
, whence
);
3294 inode_unlock(inode
);
3299 offset
= vfs_setpos(file
, offset
, inode
->i_sb
->s_maxbytes
);
3301 inode_unlock(inode
);
3305 static int btrfs_file_open(struct inode
*inode
, struct file
*filp
)
3307 filp
->f_mode
|= FMODE_NOWAIT
;
3308 return generic_file_open(inode
, filp
);
3311 const struct file_operations btrfs_file_operations
= {
3312 .llseek
= btrfs_file_llseek
,
3313 .read_iter
= generic_file_read_iter
,
3314 .splice_read
= generic_file_splice_read
,
3315 .write_iter
= btrfs_file_write_iter
,
3316 .mmap
= btrfs_file_mmap
,
3317 .open
= btrfs_file_open
,
3318 .release
= btrfs_release_file
,
3319 .fsync
= btrfs_sync_file
,
3320 .fallocate
= btrfs_fallocate
,
3321 .unlocked_ioctl
= btrfs_ioctl
,
3322 #ifdef CONFIG_COMPAT
3323 .compat_ioctl
= btrfs_compat_ioctl
,
3325 .remap_file_range
= btrfs_remap_file_range
,
3328 void __cold
btrfs_auto_defrag_exit(void)
3330 kmem_cache_destroy(btrfs_inode_defrag_cachep
);
3333 int __init
btrfs_auto_defrag_init(void)
3335 btrfs_inode_defrag_cachep
= kmem_cache_create("btrfs_inode_defrag",
3336 sizeof(struct inode_defrag
), 0,
3339 if (!btrfs_inode_defrag_cachep
)
3345 int btrfs_fdatawrite_range(struct inode
*inode
, loff_t start
, loff_t end
)
3350 * So with compression we will find and lock a dirty page and clear the
3351 * first one as dirty, setup an async extent, and immediately return
3352 * with the entire range locked but with nobody actually marked with
3353 * writeback. So we can't just filemap_write_and_wait_range() and
3354 * expect it to work since it will just kick off a thread to do the
3355 * actual work. So we need to call filemap_fdatawrite_range _again_
3356 * since it will wait on the page lock, which won't be unlocked until
3357 * after the pages have been marked as writeback and so we're good to go
3358 * from there. We have to do this otherwise we'll miss the ordered
3359 * extents and that results in badness. Please Josef, do not think you
3360 * know better and pull this out at some point in the future, it is
3361 * right and you are wrong.
3363 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3364 if (!ret
&& test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
3365 &BTRFS_I(inode
)->runtime_flags
))
3366 ret
= filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);