1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Red Hat. All rights reserved.
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
15 #include "free-space-cache.h"
16 #include "transaction.h"
18 #include "extent_io.h"
19 #include "inode-map.h"
22 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
23 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
25 struct btrfs_trim_range
{
28 struct list_head list
;
31 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
32 struct btrfs_free_space
*info
);
33 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
34 struct btrfs_free_space
*info
);
35 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
36 struct btrfs_trans_handle
*trans
,
37 struct btrfs_io_ctl
*io_ctl
,
38 struct btrfs_path
*path
);
40 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
41 struct btrfs_path
*path
,
44 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
46 struct btrfs_key location
;
47 struct btrfs_disk_key disk_key
;
48 struct btrfs_free_space_header
*header
;
49 struct extent_buffer
*leaf
;
50 struct inode
*inode
= NULL
;
54 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
58 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
62 btrfs_release_path(path
);
63 return ERR_PTR(-ENOENT
);
66 leaf
= path
->nodes
[0];
67 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
68 struct btrfs_free_space_header
);
69 btrfs_free_space_key(leaf
, header
, &disk_key
);
70 btrfs_disk_key_to_cpu(&location
, &disk_key
);
71 btrfs_release_path(path
);
74 * We are often under a trans handle at this point, so we need to make
75 * sure NOFS is set to keep us from deadlocking.
77 nofs_flag
= memalloc_nofs_save();
78 inode
= btrfs_iget_path(fs_info
->sb
, &location
, root
, NULL
, path
);
79 btrfs_release_path(path
);
80 memalloc_nofs_restore(nofs_flag
);
84 mapping_set_gfp_mask(inode
->i_mapping
,
85 mapping_gfp_constraint(inode
->i_mapping
,
86 ~(__GFP_FS
| __GFP_HIGHMEM
)));
91 struct inode
*lookup_free_space_inode(struct btrfs_fs_info
*fs_info
,
92 struct btrfs_block_group_cache
93 *block_group
, struct btrfs_path
*path
)
95 struct inode
*inode
= NULL
;
96 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
98 spin_lock(&block_group
->lock
);
99 if (block_group
->inode
)
100 inode
= igrab(block_group
->inode
);
101 spin_unlock(&block_group
->lock
);
105 inode
= __lookup_free_space_inode(fs_info
->tree_root
, path
,
106 block_group
->key
.objectid
);
110 spin_lock(&block_group
->lock
);
111 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
112 btrfs_info(fs_info
, "Old style space inode found, converting.");
113 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
114 BTRFS_INODE_NODATACOW
;
115 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
118 if (!block_group
->iref
) {
119 block_group
->inode
= igrab(inode
);
120 block_group
->iref
= 1;
122 spin_unlock(&block_group
->lock
);
127 static int __create_free_space_inode(struct btrfs_root
*root
,
128 struct btrfs_trans_handle
*trans
,
129 struct btrfs_path
*path
,
132 struct btrfs_key key
;
133 struct btrfs_disk_key disk_key
;
134 struct btrfs_free_space_header
*header
;
135 struct btrfs_inode_item
*inode_item
;
136 struct extent_buffer
*leaf
;
137 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
140 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
144 /* We inline crc's for the free disk space cache */
145 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
146 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
148 leaf
= path
->nodes
[0];
149 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
150 struct btrfs_inode_item
);
151 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
152 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
153 sizeof(*inode_item
));
154 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
155 btrfs_set_inode_size(leaf
, inode_item
, 0);
156 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
157 btrfs_set_inode_uid(leaf
, inode_item
, 0);
158 btrfs_set_inode_gid(leaf
, inode_item
, 0);
159 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
160 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
161 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
162 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
163 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
164 btrfs_mark_buffer_dirty(leaf
);
165 btrfs_release_path(path
);
167 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
170 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
171 sizeof(struct btrfs_free_space_header
));
173 btrfs_release_path(path
);
177 leaf
= path
->nodes
[0];
178 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
179 struct btrfs_free_space_header
);
180 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
181 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
182 btrfs_mark_buffer_dirty(leaf
);
183 btrfs_release_path(path
);
188 int create_free_space_inode(struct btrfs_fs_info
*fs_info
,
189 struct btrfs_trans_handle
*trans
,
190 struct btrfs_block_group_cache
*block_group
,
191 struct btrfs_path
*path
)
196 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &ino
);
200 return __create_free_space_inode(fs_info
->tree_root
, trans
, path
, ino
,
201 block_group
->key
.objectid
);
204 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
205 struct btrfs_block_rsv
*rsv
)
210 /* 1 for slack space, 1 for updating the inode */
211 needed_bytes
= btrfs_calc_trunc_metadata_size(fs_info
, 1) +
212 btrfs_calc_trans_metadata_size(fs_info
, 1);
214 spin_lock(&rsv
->lock
);
215 if (rsv
->reserved
< needed_bytes
)
219 spin_unlock(&rsv
->lock
);
223 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle
*trans
,
224 struct btrfs_block_group_cache
*block_group
,
227 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
232 struct btrfs_path
*path
= btrfs_alloc_path();
239 mutex_lock(&trans
->transaction
->cache_write_mutex
);
240 if (!list_empty(&block_group
->io_list
)) {
241 list_del_init(&block_group
->io_list
);
243 btrfs_wait_cache_io(trans
, block_group
, path
);
244 btrfs_put_block_group(block_group
);
248 * now that we've truncated the cache away, its no longer
251 spin_lock(&block_group
->lock
);
252 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
253 spin_unlock(&block_group
->lock
);
254 btrfs_free_path(path
);
257 btrfs_i_size_write(BTRFS_I(inode
), 0);
258 truncate_pagecache(inode
, 0);
261 * We skip the throttling logic for free space cache inodes, so we don't
262 * need to check for -EAGAIN.
264 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
265 0, BTRFS_EXTENT_DATA_KEY
);
269 ret
= btrfs_update_inode(trans
, root
, inode
);
273 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
275 btrfs_abort_transaction(trans
, ret
);
280 static void readahead_cache(struct inode
*inode
)
282 struct file_ra_state
*ra
;
283 unsigned long last_index
;
285 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
289 file_ra_state_init(ra
, inode
->i_mapping
);
290 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
292 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
297 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
303 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
305 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FREE_INO_OBJECTID
)
308 /* Make sure we can fit our crcs and generation into the first page */
309 if (write
&& check_crcs
&&
310 (num_pages
* sizeof(u32
) + sizeof(u64
)) > PAGE_SIZE
)
313 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
315 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
319 io_ctl
->num_pages
= num_pages
;
320 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
321 io_ctl
->check_crcs
= check_crcs
;
322 io_ctl
->inode
= inode
;
326 ALLOW_ERROR_INJECTION(io_ctl_init
, ERRNO
);
328 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
330 kfree(io_ctl
->pages
);
331 io_ctl
->pages
= NULL
;
334 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
342 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
344 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
345 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
346 io_ctl
->cur
= page_address(io_ctl
->page
);
347 io_ctl
->orig
= io_ctl
->cur
;
348 io_ctl
->size
= PAGE_SIZE
;
350 clear_page(io_ctl
->cur
);
353 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
357 io_ctl_unmap_page(io_ctl
);
359 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
360 if (io_ctl
->pages
[i
]) {
361 ClearPageChecked(io_ctl
->pages
[i
]);
362 unlock_page(io_ctl
->pages
[i
]);
363 put_page(io_ctl
->pages
[i
]);
368 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
372 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
375 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
376 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
378 io_ctl_drop_pages(io_ctl
);
381 io_ctl
->pages
[i
] = page
;
382 if (uptodate
&& !PageUptodate(page
)) {
383 btrfs_readpage(NULL
, page
);
385 if (!PageUptodate(page
)) {
386 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
387 "error reading free space cache");
388 io_ctl_drop_pages(io_ctl
);
394 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
395 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
396 set_page_extent_mapped(io_ctl
->pages
[i
]);
402 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
406 io_ctl_map_page(io_ctl
, 1);
409 * Skip the csum areas. If we don't check crcs then we just have a
410 * 64bit chunk at the front of the first page.
412 if (io_ctl
->check_crcs
) {
413 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
414 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
416 io_ctl
->cur
+= sizeof(u64
);
417 io_ctl
->size
-= sizeof(u64
) * 2;
421 *val
= cpu_to_le64(generation
);
422 io_ctl
->cur
+= sizeof(u64
);
425 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
430 * Skip the crc area. If we don't check crcs then we just have a 64bit
431 * chunk at the front of the first page.
433 if (io_ctl
->check_crcs
) {
434 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
435 io_ctl
->size
-= sizeof(u64
) +
436 (sizeof(u32
) * io_ctl
->num_pages
);
438 io_ctl
->cur
+= sizeof(u64
);
439 io_ctl
->size
-= sizeof(u64
) * 2;
443 if (le64_to_cpu(*gen
) != generation
) {
444 btrfs_err_rl(io_ctl
->fs_info
,
445 "space cache generation (%llu) does not match inode (%llu)",
447 io_ctl_unmap_page(io_ctl
);
450 io_ctl
->cur
+= sizeof(u64
);
454 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
460 if (!io_ctl
->check_crcs
) {
461 io_ctl_unmap_page(io_ctl
);
466 offset
= sizeof(u32
) * io_ctl
->num_pages
;
468 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
470 btrfs_csum_final(crc
, (u8
*)&crc
);
471 io_ctl_unmap_page(io_ctl
);
472 tmp
= page_address(io_ctl
->pages
[0]);
477 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
483 if (!io_ctl
->check_crcs
) {
484 io_ctl_map_page(io_ctl
, 0);
489 offset
= sizeof(u32
) * io_ctl
->num_pages
;
491 tmp
= page_address(io_ctl
->pages
[0]);
495 io_ctl_map_page(io_ctl
, 0);
496 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
498 btrfs_csum_final(crc
, (u8
*)&crc
);
500 btrfs_err_rl(io_ctl
->fs_info
,
501 "csum mismatch on free space cache");
502 io_ctl_unmap_page(io_ctl
);
509 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
512 struct btrfs_free_space_entry
*entry
;
518 entry
->offset
= cpu_to_le64(offset
);
519 entry
->bytes
= cpu_to_le64(bytes
);
520 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
521 BTRFS_FREE_SPACE_EXTENT
;
522 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
523 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
525 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
528 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
530 /* No more pages to map */
531 if (io_ctl
->index
>= io_ctl
->num_pages
)
534 /* map the next page */
535 io_ctl_map_page(io_ctl
, 1);
539 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
545 * If we aren't at the start of the current page, unmap this one and
546 * map the next one if there is any left.
548 if (io_ctl
->cur
!= io_ctl
->orig
) {
549 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
550 if (io_ctl
->index
>= io_ctl
->num_pages
)
552 io_ctl_map_page(io_ctl
, 0);
555 copy_page(io_ctl
->cur
, bitmap
);
556 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
557 if (io_ctl
->index
< io_ctl
->num_pages
)
558 io_ctl_map_page(io_ctl
, 0);
562 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
565 * If we're not on the boundary we know we've modified the page and we
566 * need to crc the page.
568 if (io_ctl
->cur
!= io_ctl
->orig
)
569 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
571 io_ctl_unmap_page(io_ctl
);
573 while (io_ctl
->index
< io_ctl
->num_pages
) {
574 io_ctl_map_page(io_ctl
, 1);
575 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
579 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
580 struct btrfs_free_space
*entry
, u8
*type
)
582 struct btrfs_free_space_entry
*e
;
586 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
592 entry
->offset
= le64_to_cpu(e
->offset
);
593 entry
->bytes
= le64_to_cpu(e
->bytes
);
595 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
596 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
598 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
601 io_ctl_unmap_page(io_ctl
);
606 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
607 struct btrfs_free_space
*entry
)
611 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
615 copy_page(entry
->bitmap
, io_ctl
->cur
);
616 io_ctl_unmap_page(io_ctl
);
622 * Since we attach pinned extents after the fact we can have contiguous sections
623 * of free space that are split up in entries. This poses a problem with the
624 * tree logging stuff since it could have allocated across what appears to be 2
625 * entries since we would have merged the entries when adding the pinned extents
626 * back to the free space cache. So run through the space cache that we just
627 * loaded and merge contiguous entries. This will make the log replay stuff not
628 * blow up and it will make for nicer allocator behavior.
630 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
632 struct btrfs_free_space
*e
, *prev
= NULL
;
636 spin_lock(&ctl
->tree_lock
);
637 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
638 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
641 if (e
->bitmap
|| prev
->bitmap
)
643 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
644 unlink_free_space(ctl
, prev
);
645 unlink_free_space(ctl
, e
);
646 prev
->bytes
+= e
->bytes
;
647 kmem_cache_free(btrfs_free_space_cachep
, e
);
648 link_free_space(ctl
, prev
);
650 spin_unlock(&ctl
->tree_lock
);
656 spin_unlock(&ctl
->tree_lock
);
659 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
660 struct btrfs_free_space_ctl
*ctl
,
661 struct btrfs_path
*path
, u64 offset
)
663 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
664 struct btrfs_free_space_header
*header
;
665 struct extent_buffer
*leaf
;
666 struct btrfs_io_ctl io_ctl
;
667 struct btrfs_key key
;
668 struct btrfs_free_space
*e
, *n
;
676 /* Nothing in the space cache, goodbye */
677 if (!i_size_read(inode
))
680 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
684 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
688 btrfs_release_path(path
);
694 leaf
= path
->nodes
[0];
695 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
696 struct btrfs_free_space_header
);
697 num_entries
= btrfs_free_space_entries(leaf
, header
);
698 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
699 generation
= btrfs_free_space_generation(leaf
, header
);
700 btrfs_release_path(path
);
702 if (!BTRFS_I(inode
)->generation
) {
704 "the free space cache file (%llu) is invalid, skip it",
709 if (BTRFS_I(inode
)->generation
!= generation
) {
711 "free space inode generation (%llu) did not match free space cache generation (%llu)",
712 BTRFS_I(inode
)->generation
, generation
);
719 ret
= io_ctl_init(&io_ctl
, inode
, 0);
723 readahead_cache(inode
);
725 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
729 ret
= io_ctl_check_crc(&io_ctl
, 0);
733 ret
= io_ctl_check_generation(&io_ctl
, generation
);
737 while (num_entries
) {
738 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
743 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
745 kmem_cache_free(btrfs_free_space_cachep
, e
);
750 kmem_cache_free(btrfs_free_space_cachep
, e
);
754 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
755 spin_lock(&ctl
->tree_lock
);
756 ret
= link_free_space(ctl
, e
);
757 spin_unlock(&ctl
->tree_lock
);
760 "Duplicate entries in free space cache, dumping");
761 kmem_cache_free(btrfs_free_space_cachep
, e
);
767 e
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
770 btrfs_free_space_cachep
, e
);
773 spin_lock(&ctl
->tree_lock
);
774 ret
= link_free_space(ctl
, e
);
775 ctl
->total_bitmaps
++;
776 ctl
->op
->recalc_thresholds(ctl
);
777 spin_unlock(&ctl
->tree_lock
);
780 "Duplicate entries in free space cache, dumping");
781 kmem_cache_free(btrfs_free_space_cachep
, e
);
784 list_add_tail(&e
->list
, &bitmaps
);
790 io_ctl_unmap_page(&io_ctl
);
793 * We add the bitmaps at the end of the entries in order that
794 * the bitmap entries are added to the cache.
796 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
797 list_del_init(&e
->list
);
798 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
803 io_ctl_drop_pages(&io_ctl
);
804 merge_space_tree(ctl
);
807 io_ctl_free(&io_ctl
);
810 io_ctl_drop_pages(&io_ctl
);
811 __btrfs_remove_free_space_cache(ctl
);
815 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
816 struct btrfs_block_group_cache
*block_group
)
818 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
820 struct btrfs_path
*path
;
823 u64 used
= btrfs_block_group_used(&block_group
->item
);
826 * If this block group has been marked to be cleared for one reason or
827 * another then we can't trust the on disk cache, so just return.
829 spin_lock(&block_group
->lock
);
830 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
831 spin_unlock(&block_group
->lock
);
834 spin_unlock(&block_group
->lock
);
836 path
= btrfs_alloc_path();
839 path
->search_commit_root
= 1;
840 path
->skip_locking
= 1;
843 * We must pass a path with search_commit_root set to btrfs_iget in
844 * order to avoid a deadlock when allocating extents for the tree root.
846 * When we are COWing an extent buffer from the tree root, when looking
847 * for a free extent, at extent-tree.c:find_free_extent(), we can find
848 * block group without its free space cache loaded. When we find one
849 * we must load its space cache which requires reading its free space
850 * cache's inode item from the root tree. If this inode item is located
851 * in the same leaf that we started COWing before, then we end up in
852 * deadlock on the extent buffer (trying to read lock it when we
853 * previously write locked it).
855 * It's safe to read the inode item using the commit root because
856 * block groups, once loaded, stay in memory forever (until they are
857 * removed) as well as their space caches once loaded. New block groups
858 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
859 * we will never try to read their inode item while the fs is mounted.
861 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
863 btrfs_free_path(path
);
867 /* We may have converted the inode and made the cache invalid. */
868 spin_lock(&block_group
->lock
);
869 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
870 spin_unlock(&block_group
->lock
);
871 btrfs_free_path(path
);
874 spin_unlock(&block_group
->lock
);
876 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
877 path
, block_group
->key
.objectid
);
878 btrfs_free_path(path
);
882 spin_lock(&ctl
->tree_lock
);
883 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
884 block_group
->bytes_super
));
885 spin_unlock(&ctl
->tree_lock
);
888 __btrfs_remove_free_space_cache(ctl
);
890 "block group %llu has wrong amount of free space",
891 block_group
->key
.objectid
);
896 /* This cache is bogus, make sure it gets cleared */
897 spin_lock(&block_group
->lock
);
898 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
899 spin_unlock(&block_group
->lock
);
903 "failed to load free space cache for block group %llu, rebuilding it now",
904 block_group
->key
.objectid
);
911 static noinline_for_stack
912 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
913 struct btrfs_free_space_ctl
*ctl
,
914 struct btrfs_block_group_cache
*block_group
,
915 int *entries
, int *bitmaps
,
916 struct list_head
*bitmap_list
)
919 struct btrfs_free_cluster
*cluster
= NULL
;
920 struct btrfs_free_cluster
*cluster_locked
= NULL
;
921 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
922 struct btrfs_trim_range
*trim_entry
;
924 /* Get the cluster for this block_group if it exists */
925 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
926 cluster
= list_entry(block_group
->cluster_list
.next
,
927 struct btrfs_free_cluster
,
931 if (!node
&& cluster
) {
932 cluster_locked
= cluster
;
933 spin_lock(&cluster_locked
->lock
);
934 node
= rb_first(&cluster
->root
);
938 /* Write out the extent entries */
940 struct btrfs_free_space
*e
;
942 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
945 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
951 list_add_tail(&e
->list
, bitmap_list
);
954 node
= rb_next(node
);
955 if (!node
&& cluster
) {
956 node
= rb_first(&cluster
->root
);
957 cluster_locked
= cluster
;
958 spin_lock(&cluster_locked
->lock
);
962 if (cluster_locked
) {
963 spin_unlock(&cluster_locked
->lock
);
964 cluster_locked
= NULL
;
968 * Make sure we don't miss any range that was removed from our rbtree
969 * because trimming is running. Otherwise after a umount+mount (or crash
970 * after committing the transaction) we would leak free space and get
971 * an inconsistent free space cache report from fsck.
973 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
974 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
975 trim_entry
->bytes
, NULL
);
984 spin_unlock(&cluster_locked
->lock
);
988 static noinline_for_stack
int
989 update_cache_item(struct btrfs_trans_handle
*trans
,
990 struct btrfs_root
*root
,
992 struct btrfs_path
*path
, u64 offset
,
993 int entries
, int bitmaps
)
995 struct btrfs_key key
;
996 struct btrfs_free_space_header
*header
;
997 struct extent_buffer
*leaf
;
1000 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
1001 key
.offset
= offset
;
1004 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1006 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1007 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
);
1010 leaf
= path
->nodes
[0];
1012 struct btrfs_key found_key
;
1013 ASSERT(path
->slots
[0]);
1015 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1016 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1017 found_key
.offset
!= offset
) {
1018 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1020 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1022 btrfs_release_path(path
);
1027 BTRFS_I(inode
)->generation
= trans
->transid
;
1028 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1029 struct btrfs_free_space_header
);
1030 btrfs_set_free_space_entries(leaf
, header
, entries
);
1031 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1032 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1033 btrfs_mark_buffer_dirty(leaf
);
1034 btrfs_release_path(path
);
1042 static noinline_for_stack
int
1043 write_pinned_extent_entries(struct btrfs_fs_info
*fs_info
,
1044 struct btrfs_block_group_cache
*block_group
,
1045 struct btrfs_io_ctl
*io_ctl
,
1048 u64 start
, extent_start
, extent_end
, len
;
1049 struct extent_io_tree
*unpin
= NULL
;
1056 * We want to add any pinned extents to our free space cache
1057 * so we don't leak the space
1059 * We shouldn't have switched the pinned extents yet so this is the
1062 unpin
= fs_info
->pinned_extents
;
1064 start
= block_group
->key
.objectid
;
1066 while (start
< block_group
->key
.objectid
+ block_group
->key
.offset
) {
1067 ret
= find_first_extent_bit(unpin
, start
,
1068 &extent_start
, &extent_end
,
1069 EXTENT_DIRTY
, NULL
);
1073 /* This pinned extent is out of our range */
1074 if (extent_start
>= block_group
->key
.objectid
+
1075 block_group
->key
.offset
)
1078 extent_start
= max(extent_start
, start
);
1079 extent_end
= min(block_group
->key
.objectid
+
1080 block_group
->key
.offset
, extent_end
+ 1);
1081 len
= extent_end
- extent_start
;
1084 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1094 static noinline_for_stack
int
1095 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1097 struct btrfs_free_space
*entry
, *next
;
1100 /* Write out the bitmaps */
1101 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1102 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1105 list_del_init(&entry
->list
);
1111 static int flush_dirty_cache(struct inode
*inode
)
1115 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1117 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1118 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
);
1123 static void noinline_for_stack
1124 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1126 struct btrfs_free_space
*entry
, *next
;
1128 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1129 list_del_init(&entry
->list
);
1132 static void noinline_for_stack
1133 cleanup_write_cache_enospc(struct inode
*inode
,
1134 struct btrfs_io_ctl
*io_ctl
,
1135 struct extent_state
**cached_state
)
1137 io_ctl_drop_pages(io_ctl
);
1138 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1139 i_size_read(inode
) - 1, cached_state
);
1142 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1143 struct btrfs_trans_handle
*trans
,
1144 struct btrfs_block_group_cache
*block_group
,
1145 struct btrfs_io_ctl
*io_ctl
,
1146 struct btrfs_path
*path
, u64 offset
)
1149 struct inode
*inode
= io_ctl
->inode
;
1154 /* Flush the dirty pages in the cache file. */
1155 ret
= flush_dirty_cache(inode
);
1159 /* Update the cache item to tell everyone this cache file is valid. */
1160 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1161 io_ctl
->entries
, io_ctl
->bitmaps
);
1163 io_ctl_free(io_ctl
);
1165 invalidate_inode_pages2(inode
->i_mapping
);
1166 BTRFS_I(inode
)->generation
= 0;
1169 btrfs_err(root
->fs_info
,
1170 "failed to write free space cache for block group %llu",
1171 block_group
->key
.objectid
);
1175 btrfs_update_inode(trans
, root
, inode
);
1178 /* the dirty list is protected by the dirty_bgs_lock */
1179 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1181 /* the disk_cache_state is protected by the block group lock */
1182 spin_lock(&block_group
->lock
);
1185 * only mark this as written if we didn't get put back on
1186 * the dirty list while waiting for IO. Otherwise our
1187 * cache state won't be right, and we won't get written again
1189 if (!ret
&& list_empty(&block_group
->dirty_list
))
1190 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1192 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1194 spin_unlock(&block_group
->lock
);
1195 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1196 io_ctl
->inode
= NULL
;
1204 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1205 struct btrfs_trans_handle
*trans
,
1206 struct btrfs_io_ctl
*io_ctl
,
1207 struct btrfs_path
*path
)
1209 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1212 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1213 struct btrfs_block_group_cache
*block_group
,
1214 struct btrfs_path
*path
)
1216 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1217 block_group
, &block_group
->io_ctl
,
1218 path
, block_group
->key
.objectid
);
1222 * __btrfs_write_out_cache - write out cached info to an inode
1223 * @root - the root the inode belongs to
1224 * @ctl - the free space cache we are going to write out
1225 * @block_group - the block_group for this cache if it belongs to a block_group
1226 * @trans - the trans handle
1228 * This function writes out a free space cache struct to disk for quick recovery
1229 * on mount. This will return 0 if it was successful in writing the cache out,
1230 * or an errno if it was not.
1232 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1233 struct btrfs_free_space_ctl
*ctl
,
1234 struct btrfs_block_group_cache
*block_group
,
1235 struct btrfs_io_ctl
*io_ctl
,
1236 struct btrfs_trans_handle
*trans
)
1238 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1239 struct extent_state
*cached_state
= NULL
;
1240 LIST_HEAD(bitmap_list
);
1246 if (!i_size_read(inode
))
1249 WARN_ON(io_ctl
->pages
);
1250 ret
= io_ctl_init(io_ctl
, inode
, 1);
1254 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1255 down_write(&block_group
->data_rwsem
);
1256 spin_lock(&block_group
->lock
);
1257 if (block_group
->delalloc_bytes
) {
1258 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1259 spin_unlock(&block_group
->lock
);
1260 up_write(&block_group
->data_rwsem
);
1261 BTRFS_I(inode
)->generation
= 0;
1266 spin_unlock(&block_group
->lock
);
1269 /* Lock all pages first so we can lock the extent safely. */
1270 ret
= io_ctl_prepare_pages(io_ctl
, inode
, 0);
1274 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1277 io_ctl_set_generation(io_ctl
, trans
->transid
);
1279 mutex_lock(&ctl
->cache_writeout_mutex
);
1280 /* Write out the extent entries in the free space cache */
1281 spin_lock(&ctl
->tree_lock
);
1282 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1283 block_group
, &entries
, &bitmaps
,
1286 goto out_nospc_locked
;
1289 * Some spaces that are freed in the current transaction are pinned,
1290 * they will be added into free space cache after the transaction is
1291 * committed, we shouldn't lose them.
1293 * If this changes while we are working we'll get added back to
1294 * the dirty list and redo it. No locking needed
1296 ret
= write_pinned_extent_entries(fs_info
, block_group
,
1299 goto out_nospc_locked
;
1302 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1303 * locked while doing it because a concurrent trim can be manipulating
1304 * or freeing the bitmap.
1306 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1307 spin_unlock(&ctl
->tree_lock
);
1308 mutex_unlock(&ctl
->cache_writeout_mutex
);
1312 /* Zero out the rest of the pages just to make sure */
1313 io_ctl_zero_remaining_pages(io_ctl
);
1315 /* Everything is written out, now we dirty the pages in the file. */
1316 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1317 i_size_read(inode
), &cached_state
);
1321 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1322 up_write(&block_group
->data_rwsem
);
1324 * Release the pages and unlock the extent, we will flush
1327 io_ctl_drop_pages(io_ctl
);
1329 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1330 i_size_read(inode
) - 1, &cached_state
);
1333 * at this point the pages are under IO and we're happy,
1334 * The caller is responsible for waiting on them and updating the
1335 * the cache and the inode
1337 io_ctl
->entries
= entries
;
1338 io_ctl
->bitmaps
= bitmaps
;
1340 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1347 io_ctl
->inode
= NULL
;
1348 io_ctl_free(io_ctl
);
1350 invalidate_inode_pages2(inode
->i_mapping
);
1351 BTRFS_I(inode
)->generation
= 0;
1353 btrfs_update_inode(trans
, root
, inode
);
1359 cleanup_bitmap_list(&bitmap_list
);
1360 spin_unlock(&ctl
->tree_lock
);
1361 mutex_unlock(&ctl
->cache_writeout_mutex
);
1364 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
);
1367 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1368 up_write(&block_group
->data_rwsem
);
1373 int btrfs_write_out_cache(struct btrfs_fs_info
*fs_info
,
1374 struct btrfs_trans_handle
*trans
,
1375 struct btrfs_block_group_cache
*block_group
,
1376 struct btrfs_path
*path
)
1378 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1379 struct inode
*inode
;
1382 spin_lock(&block_group
->lock
);
1383 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1384 spin_unlock(&block_group
->lock
);
1387 spin_unlock(&block_group
->lock
);
1389 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
1393 ret
= __btrfs_write_out_cache(fs_info
->tree_root
, inode
, ctl
,
1394 block_group
, &block_group
->io_ctl
, trans
);
1398 "failed to write free space cache for block group %llu",
1399 block_group
->key
.objectid
);
1401 spin_lock(&block_group
->lock
);
1402 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1403 spin_unlock(&block_group
->lock
);
1405 block_group
->io_ctl
.inode
= NULL
;
1410 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1411 * to wait for IO and put the inode
1417 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1420 ASSERT(offset
>= bitmap_start
);
1421 offset
-= bitmap_start
;
1422 return (unsigned long)(div_u64(offset
, unit
));
1425 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1427 return (unsigned long)(div_u64(bytes
, unit
));
1430 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1434 u64 bytes_per_bitmap
;
1436 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1437 bitmap_start
= offset
- ctl
->start
;
1438 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1439 bitmap_start
*= bytes_per_bitmap
;
1440 bitmap_start
+= ctl
->start
;
1442 return bitmap_start
;
1445 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1446 struct rb_node
*node
, int bitmap
)
1448 struct rb_node
**p
= &root
->rb_node
;
1449 struct rb_node
*parent
= NULL
;
1450 struct btrfs_free_space
*info
;
1454 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1456 if (offset
< info
->offset
) {
1458 } else if (offset
> info
->offset
) {
1459 p
= &(*p
)->rb_right
;
1462 * we could have a bitmap entry and an extent entry
1463 * share the same offset. If this is the case, we want
1464 * the extent entry to always be found first if we do a
1465 * linear search through the tree, since we want to have
1466 * the quickest allocation time, and allocating from an
1467 * extent is faster than allocating from a bitmap. So
1468 * if we're inserting a bitmap and we find an entry at
1469 * this offset, we want to go right, or after this entry
1470 * logically. If we are inserting an extent and we've
1471 * found a bitmap, we want to go left, or before
1479 p
= &(*p
)->rb_right
;
1481 if (!info
->bitmap
) {
1490 rb_link_node(node
, parent
, p
);
1491 rb_insert_color(node
, root
);
1497 * searches the tree for the given offset.
1499 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1500 * want a section that has at least bytes size and comes at or after the given
1503 static struct btrfs_free_space
*
1504 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1505 u64 offset
, int bitmap_only
, int fuzzy
)
1507 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1508 struct btrfs_free_space
*entry
, *prev
= NULL
;
1510 /* find entry that is closest to the 'offset' */
1517 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1520 if (offset
< entry
->offset
)
1522 else if (offset
> entry
->offset
)
1535 * bitmap entry and extent entry may share same offset,
1536 * in that case, bitmap entry comes after extent entry.
1541 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1542 if (entry
->offset
!= offset
)
1545 WARN_ON(!entry
->bitmap
);
1548 if (entry
->bitmap
) {
1550 * if previous extent entry covers the offset,
1551 * we should return it instead of the bitmap entry
1553 n
= rb_prev(&entry
->offset_index
);
1555 prev
= rb_entry(n
, struct btrfs_free_space
,
1557 if (!prev
->bitmap
&&
1558 prev
->offset
+ prev
->bytes
> offset
)
1568 /* find last entry before the 'offset' */
1570 if (entry
->offset
> offset
) {
1571 n
= rb_prev(&entry
->offset_index
);
1573 entry
= rb_entry(n
, struct btrfs_free_space
,
1575 ASSERT(entry
->offset
<= offset
);
1584 if (entry
->bitmap
) {
1585 n
= rb_prev(&entry
->offset_index
);
1587 prev
= rb_entry(n
, struct btrfs_free_space
,
1589 if (!prev
->bitmap
&&
1590 prev
->offset
+ prev
->bytes
> offset
)
1593 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1595 } else if (entry
->offset
+ entry
->bytes
> offset
)
1602 if (entry
->bitmap
) {
1603 if (entry
->offset
+ BITS_PER_BITMAP
*
1607 if (entry
->offset
+ entry
->bytes
> offset
)
1611 n
= rb_next(&entry
->offset_index
);
1614 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1620 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1621 struct btrfs_free_space
*info
)
1623 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1624 ctl
->free_extents
--;
1627 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1628 struct btrfs_free_space
*info
)
1630 __unlink_free_space(ctl
, info
);
1631 ctl
->free_space
-= info
->bytes
;
1634 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1635 struct btrfs_free_space
*info
)
1639 ASSERT(info
->bytes
|| info
->bitmap
);
1640 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1641 &info
->offset_index
, (info
->bitmap
!= NULL
));
1645 ctl
->free_space
+= info
->bytes
;
1646 ctl
->free_extents
++;
1650 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1652 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1656 u64 size
= block_group
->key
.offset
;
1657 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1658 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1660 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1662 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1665 * The goal is to keep the total amount of memory used per 1gb of space
1666 * at or below 32k, so we need to adjust how much memory we allow to be
1667 * used by extent based free space tracking
1670 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1672 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1675 * we want to account for 1 more bitmap than what we have so we can make
1676 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1677 * we add more bitmaps.
1679 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * ctl
->unit
;
1681 if (bitmap_bytes
>= max_bytes
) {
1682 ctl
->extents_thresh
= 0;
1687 * we want the extent entry threshold to always be at most 1/2 the max
1688 * bytes we can have, or whatever is less than that.
1690 extent_bytes
= max_bytes
- bitmap_bytes
;
1691 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1693 ctl
->extents_thresh
=
1694 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1697 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1698 struct btrfs_free_space
*info
,
1699 u64 offset
, u64 bytes
)
1701 unsigned long start
, count
;
1703 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1704 count
= bytes_to_bits(bytes
, ctl
->unit
);
1705 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1707 bitmap_clear(info
->bitmap
, start
, count
);
1709 info
->bytes
-= bytes
;
1710 if (info
->max_extent_size
> ctl
->unit
)
1711 info
->max_extent_size
= 0;
1714 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1715 struct btrfs_free_space
*info
, u64 offset
,
1718 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1719 ctl
->free_space
-= bytes
;
1722 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1723 struct btrfs_free_space
*info
, u64 offset
,
1726 unsigned long start
, count
;
1728 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1729 count
= bytes_to_bits(bytes
, ctl
->unit
);
1730 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1732 bitmap_set(info
->bitmap
, start
, count
);
1734 info
->bytes
+= bytes
;
1735 ctl
->free_space
+= bytes
;
1739 * If we can not find suitable extent, we will use bytes to record
1740 * the size of the max extent.
1742 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1743 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1744 u64
*bytes
, bool for_alloc
)
1746 unsigned long found_bits
= 0;
1747 unsigned long max_bits
= 0;
1748 unsigned long bits
, i
;
1749 unsigned long next_zero
;
1750 unsigned long extent_bits
;
1753 * Skip searching the bitmap if we don't have a contiguous section that
1754 * is large enough for this allocation.
1757 bitmap_info
->max_extent_size
&&
1758 bitmap_info
->max_extent_size
< *bytes
) {
1759 *bytes
= bitmap_info
->max_extent_size
;
1763 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1764 max_t(u64
, *offset
, bitmap_info
->offset
));
1765 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1767 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1768 if (for_alloc
&& bits
== 1) {
1772 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1773 BITS_PER_BITMAP
, i
);
1774 extent_bits
= next_zero
- i
;
1775 if (extent_bits
>= bits
) {
1776 found_bits
= extent_bits
;
1778 } else if (extent_bits
> max_bits
) {
1779 max_bits
= extent_bits
;
1785 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1786 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1790 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1791 bitmap_info
->max_extent_size
= *bytes
;
1795 static inline u64
get_max_extent_size(struct btrfs_free_space
*entry
)
1798 return entry
->max_extent_size
;
1799 return entry
->bytes
;
1802 /* Cache the size of the max extent in bytes */
1803 static struct btrfs_free_space
*
1804 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1805 unsigned long align
, u64
*max_extent_size
)
1807 struct btrfs_free_space
*entry
;
1808 struct rb_node
*node
;
1813 if (!ctl
->free_space_offset
.rb_node
)
1816 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1820 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1821 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1822 if (entry
->bytes
< *bytes
) {
1823 *max_extent_size
= max(get_max_extent_size(entry
),
1828 /* make sure the space returned is big enough
1829 * to match our requested alignment
1831 if (*bytes
>= align
) {
1832 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1833 tmp
= div64_u64(tmp
, align
);
1834 tmp
= tmp
* align
+ ctl
->start
;
1835 align_off
= tmp
- entry
->offset
;
1838 tmp
= entry
->offset
;
1841 if (entry
->bytes
< *bytes
+ align_off
) {
1842 *max_extent_size
= max(get_max_extent_size(entry
),
1847 if (entry
->bitmap
) {
1850 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1857 max(get_max_extent_size(entry
),
1864 *bytes
= entry
->bytes
- align_off
;
1871 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1872 struct btrfs_free_space
*info
, u64 offset
)
1874 info
->offset
= offset_to_bitmap(ctl
, offset
);
1876 INIT_LIST_HEAD(&info
->list
);
1877 link_free_space(ctl
, info
);
1878 ctl
->total_bitmaps
++;
1880 ctl
->op
->recalc_thresholds(ctl
);
1883 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1884 struct btrfs_free_space
*bitmap_info
)
1886 unlink_free_space(ctl
, bitmap_info
);
1887 kfree(bitmap_info
->bitmap
);
1888 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1889 ctl
->total_bitmaps
--;
1890 ctl
->op
->recalc_thresholds(ctl
);
1893 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1894 struct btrfs_free_space
*bitmap_info
,
1895 u64
*offset
, u64
*bytes
)
1898 u64 search_start
, search_bytes
;
1902 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1905 * We need to search for bits in this bitmap. We could only cover some
1906 * of the extent in this bitmap thanks to how we add space, so we need
1907 * to search for as much as it as we can and clear that amount, and then
1908 * go searching for the next bit.
1910 search_start
= *offset
;
1911 search_bytes
= ctl
->unit
;
1912 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1913 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
1915 if (ret
< 0 || search_start
!= *offset
)
1918 /* We may have found more bits than what we need */
1919 search_bytes
= min(search_bytes
, *bytes
);
1921 /* Cannot clear past the end of the bitmap */
1922 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1924 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1925 *offset
+= search_bytes
;
1926 *bytes
-= search_bytes
;
1929 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1930 if (!bitmap_info
->bytes
)
1931 free_bitmap(ctl
, bitmap_info
);
1934 * no entry after this bitmap, but we still have bytes to
1935 * remove, so something has gone wrong.
1940 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1944 * if the next entry isn't a bitmap we need to return to let the
1945 * extent stuff do its work.
1947 if (!bitmap_info
->bitmap
)
1951 * Ok the next item is a bitmap, but it may not actually hold
1952 * the information for the rest of this free space stuff, so
1953 * look for it, and if we don't find it return so we can try
1954 * everything over again.
1956 search_start
= *offset
;
1957 search_bytes
= ctl
->unit
;
1958 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1959 &search_bytes
, false);
1960 if (ret
< 0 || search_start
!= *offset
)
1964 } else if (!bitmap_info
->bytes
)
1965 free_bitmap(ctl
, bitmap_info
);
1970 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1971 struct btrfs_free_space
*info
, u64 offset
,
1974 u64 bytes_to_set
= 0;
1977 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1979 bytes_to_set
= min(end
- offset
, bytes
);
1981 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1984 * We set some bytes, we have no idea what the max extent size is
1987 info
->max_extent_size
= 0;
1989 return bytes_to_set
;
1993 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1994 struct btrfs_free_space
*info
)
1996 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1997 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
1998 bool forced
= false;
2000 #ifdef CONFIG_BTRFS_DEBUG
2001 if (btrfs_should_fragment_free_space(block_group
))
2006 * If we are below the extents threshold then we can add this as an
2007 * extent, and don't have to deal with the bitmap
2009 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
2011 * If this block group has some small extents we don't want to
2012 * use up all of our free slots in the cache with them, we want
2013 * to reserve them to larger extents, however if we have plenty
2014 * of cache left then go ahead an dadd them, no sense in adding
2015 * the overhead of a bitmap if we don't have to.
2017 if (info
->bytes
<= fs_info
->sectorsize
* 4) {
2018 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
2026 * The original block groups from mkfs can be really small, like 8
2027 * megabytes, so don't bother with a bitmap for those entries. However
2028 * some block groups can be smaller than what a bitmap would cover but
2029 * are still large enough that they could overflow the 32k memory limit,
2030 * so allow those block groups to still be allowed to have a bitmap
2033 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
2039 static const struct btrfs_free_space_op free_space_op
= {
2040 .recalc_thresholds
= recalculate_thresholds
,
2041 .use_bitmap
= use_bitmap
,
2044 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2045 struct btrfs_free_space
*info
)
2047 struct btrfs_free_space
*bitmap_info
;
2048 struct btrfs_block_group_cache
*block_group
= NULL
;
2050 u64 bytes
, offset
, bytes_added
;
2053 bytes
= info
->bytes
;
2054 offset
= info
->offset
;
2056 if (!ctl
->op
->use_bitmap(ctl
, info
))
2059 if (ctl
->op
== &free_space_op
)
2060 block_group
= ctl
->private;
2063 * Since we link bitmaps right into the cluster we need to see if we
2064 * have a cluster here, and if so and it has our bitmap we need to add
2065 * the free space to that bitmap.
2067 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2068 struct btrfs_free_cluster
*cluster
;
2069 struct rb_node
*node
;
2070 struct btrfs_free_space
*entry
;
2072 cluster
= list_entry(block_group
->cluster_list
.next
,
2073 struct btrfs_free_cluster
,
2075 spin_lock(&cluster
->lock
);
2076 node
= rb_first(&cluster
->root
);
2078 spin_unlock(&cluster
->lock
);
2079 goto no_cluster_bitmap
;
2082 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2083 if (!entry
->bitmap
) {
2084 spin_unlock(&cluster
->lock
);
2085 goto no_cluster_bitmap
;
2088 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2089 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
2091 bytes
-= bytes_added
;
2092 offset
+= bytes_added
;
2094 spin_unlock(&cluster
->lock
);
2102 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2109 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
2110 bytes
-= bytes_added
;
2111 offset
+= bytes_added
;
2121 if (info
&& info
->bitmap
) {
2122 add_new_bitmap(ctl
, info
, offset
);
2127 spin_unlock(&ctl
->tree_lock
);
2129 /* no pre-allocated info, allocate a new one */
2131 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2134 spin_lock(&ctl
->tree_lock
);
2140 /* allocate the bitmap */
2141 info
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
2142 spin_lock(&ctl
->tree_lock
);
2143 if (!info
->bitmap
) {
2152 kfree(info
->bitmap
);
2153 kmem_cache_free(btrfs_free_space_cachep
, info
);
2159 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2160 struct btrfs_free_space
*info
, bool update_stat
)
2162 struct btrfs_free_space
*left_info
;
2163 struct btrfs_free_space
*right_info
;
2164 bool merged
= false;
2165 u64 offset
= info
->offset
;
2166 u64 bytes
= info
->bytes
;
2169 * first we want to see if there is free space adjacent to the range we
2170 * are adding, if there is remove that struct and add a new one to
2171 * cover the entire range
2173 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2174 if (right_info
&& rb_prev(&right_info
->offset_index
))
2175 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2176 struct btrfs_free_space
, offset_index
);
2178 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2180 if (right_info
&& !right_info
->bitmap
) {
2182 unlink_free_space(ctl
, right_info
);
2184 __unlink_free_space(ctl
, right_info
);
2185 info
->bytes
+= right_info
->bytes
;
2186 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2190 if (left_info
&& !left_info
->bitmap
&&
2191 left_info
->offset
+ left_info
->bytes
== offset
) {
2193 unlink_free_space(ctl
, left_info
);
2195 __unlink_free_space(ctl
, left_info
);
2196 info
->offset
= left_info
->offset
;
2197 info
->bytes
+= left_info
->bytes
;
2198 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2205 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2206 struct btrfs_free_space
*info
,
2209 struct btrfs_free_space
*bitmap
;
2212 const u64 end
= info
->offset
+ info
->bytes
;
2213 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2216 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2220 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2221 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2224 bytes
= (j
- i
) * ctl
->unit
;
2225 info
->bytes
+= bytes
;
2228 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2230 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2233 free_bitmap(ctl
, bitmap
);
2238 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2239 struct btrfs_free_space
*info
,
2242 struct btrfs_free_space
*bitmap
;
2246 unsigned long prev_j
;
2249 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2250 /* If we're on a boundary, try the previous logical bitmap. */
2251 if (bitmap_offset
== info
->offset
) {
2252 if (info
->offset
== 0)
2254 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2257 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2261 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2263 prev_j
= (unsigned long)-1;
2264 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2272 if (prev_j
== (unsigned long)-1)
2273 bytes
= (i
+ 1) * ctl
->unit
;
2275 bytes
= (i
- prev_j
) * ctl
->unit
;
2277 info
->offset
-= bytes
;
2278 info
->bytes
+= bytes
;
2281 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2283 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2286 free_bitmap(ctl
, bitmap
);
2292 * We prefer always to allocate from extent entries, both for clustered and
2293 * non-clustered allocation requests. So when attempting to add a new extent
2294 * entry, try to see if there's adjacent free space in bitmap entries, and if
2295 * there is, migrate that space from the bitmaps to the extent.
2296 * Like this we get better chances of satisfying space allocation requests
2297 * because we attempt to satisfy them based on a single cache entry, and never
2298 * on 2 or more entries - even if the entries represent a contiguous free space
2299 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2302 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2303 struct btrfs_free_space
*info
,
2307 * Only work with disconnected entries, as we can change their offset,
2308 * and must be extent entries.
2310 ASSERT(!info
->bitmap
);
2311 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2313 if (ctl
->total_bitmaps
> 0) {
2315 bool stole_front
= false;
2317 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2318 if (ctl
->total_bitmaps
> 0)
2319 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2322 if (stole_end
|| stole_front
)
2323 try_merge_free_space(ctl
, info
, update_stat
);
2327 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2328 struct btrfs_free_space_ctl
*ctl
,
2329 u64 offset
, u64 bytes
)
2331 struct btrfs_free_space
*info
;
2334 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2338 info
->offset
= offset
;
2339 info
->bytes
= bytes
;
2340 RB_CLEAR_NODE(&info
->offset_index
);
2342 spin_lock(&ctl
->tree_lock
);
2344 if (try_merge_free_space(ctl
, info
, true))
2348 * There was no extent directly to the left or right of this new
2349 * extent then we know we're going to have to allocate a new extent, so
2350 * before we do that see if we need to drop this into a bitmap
2352 ret
= insert_into_bitmap(ctl
, info
);
2361 * Only steal free space from adjacent bitmaps if we're sure we're not
2362 * going to add the new free space to existing bitmap entries - because
2363 * that would mean unnecessary work that would be reverted. Therefore
2364 * attempt to steal space from bitmaps if we're adding an extent entry.
2366 steal_from_bitmap(ctl
, info
, true);
2368 ret
= link_free_space(ctl
, info
);
2370 kmem_cache_free(btrfs_free_space_cachep
, info
);
2372 spin_unlock(&ctl
->tree_lock
);
2375 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2376 ASSERT(ret
!= -EEXIST
);
2382 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
2383 u64 offset
, u64 bytes
)
2385 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2386 struct btrfs_free_space
*info
;
2388 bool re_search
= false;
2390 spin_lock(&ctl
->tree_lock
);
2397 info
= tree_search_offset(ctl
, offset
, 0, 0);
2400 * oops didn't find an extent that matched the space we wanted
2401 * to remove, look for a bitmap instead
2403 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2407 * If we found a partial bit of our free space in a
2408 * bitmap but then couldn't find the other part this may
2409 * be a problem, so WARN about it.
2417 if (!info
->bitmap
) {
2418 unlink_free_space(ctl
, info
);
2419 if (offset
== info
->offset
) {
2420 u64 to_free
= min(bytes
, info
->bytes
);
2422 info
->bytes
-= to_free
;
2423 info
->offset
+= to_free
;
2425 ret
= link_free_space(ctl
, info
);
2428 kmem_cache_free(btrfs_free_space_cachep
, info
);
2435 u64 old_end
= info
->bytes
+ info
->offset
;
2437 info
->bytes
= offset
- info
->offset
;
2438 ret
= link_free_space(ctl
, info
);
2443 /* Not enough bytes in this entry to satisfy us */
2444 if (old_end
< offset
+ bytes
) {
2445 bytes
-= old_end
- offset
;
2448 } else if (old_end
== offset
+ bytes
) {
2452 spin_unlock(&ctl
->tree_lock
);
2454 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
2455 old_end
- (offset
+ bytes
));
2461 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2462 if (ret
== -EAGAIN
) {
2467 spin_unlock(&ctl
->tree_lock
);
2472 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2475 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2476 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2477 struct btrfs_free_space
*info
;
2481 spin_lock(&ctl
->tree_lock
);
2482 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2483 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2484 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2486 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2487 info
->offset
, info
->bytes
,
2488 (info
->bitmap
) ? "yes" : "no");
2490 spin_unlock(&ctl
->tree_lock
);
2491 btrfs_info(fs_info
, "block group has cluster?: %s",
2492 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2494 "%d blocks of free space at or bigger than bytes is", count
);
2497 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2499 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2500 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2502 spin_lock_init(&ctl
->tree_lock
);
2503 ctl
->unit
= fs_info
->sectorsize
;
2504 ctl
->start
= block_group
->key
.objectid
;
2505 ctl
->private = block_group
;
2506 ctl
->op
= &free_space_op
;
2507 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2508 mutex_init(&ctl
->cache_writeout_mutex
);
2511 * we only want to have 32k of ram per block group for keeping
2512 * track of free space, and if we pass 1/2 of that we want to
2513 * start converting things over to using bitmaps
2515 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2519 * for a given cluster, put all of its extents back into the free
2520 * space cache. If the block group passed doesn't match the block group
2521 * pointed to by the cluster, someone else raced in and freed the
2522 * cluster already. In that case, we just return without changing anything
2525 __btrfs_return_cluster_to_free_space(
2526 struct btrfs_block_group_cache
*block_group
,
2527 struct btrfs_free_cluster
*cluster
)
2529 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2530 struct btrfs_free_space
*entry
;
2531 struct rb_node
*node
;
2533 spin_lock(&cluster
->lock
);
2534 if (cluster
->block_group
!= block_group
)
2537 cluster
->block_group
= NULL
;
2538 cluster
->window_start
= 0;
2539 list_del_init(&cluster
->block_group_list
);
2541 node
= rb_first(&cluster
->root
);
2545 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2546 node
= rb_next(&entry
->offset_index
);
2547 rb_erase(&entry
->offset_index
, &cluster
->root
);
2548 RB_CLEAR_NODE(&entry
->offset_index
);
2550 bitmap
= (entry
->bitmap
!= NULL
);
2552 try_merge_free_space(ctl
, entry
, false);
2553 steal_from_bitmap(ctl
, entry
, false);
2555 tree_insert_offset(&ctl
->free_space_offset
,
2556 entry
->offset
, &entry
->offset_index
, bitmap
);
2558 cluster
->root
= RB_ROOT
;
2561 spin_unlock(&cluster
->lock
);
2562 btrfs_put_block_group(block_group
);
2566 static void __btrfs_remove_free_space_cache_locked(
2567 struct btrfs_free_space_ctl
*ctl
)
2569 struct btrfs_free_space
*info
;
2570 struct rb_node
*node
;
2572 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2573 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2574 if (!info
->bitmap
) {
2575 unlink_free_space(ctl
, info
);
2576 kmem_cache_free(btrfs_free_space_cachep
, info
);
2578 free_bitmap(ctl
, info
);
2581 cond_resched_lock(&ctl
->tree_lock
);
2585 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2587 spin_lock(&ctl
->tree_lock
);
2588 __btrfs_remove_free_space_cache_locked(ctl
);
2589 spin_unlock(&ctl
->tree_lock
);
2592 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2594 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2595 struct btrfs_free_cluster
*cluster
;
2596 struct list_head
*head
;
2598 spin_lock(&ctl
->tree_lock
);
2599 while ((head
= block_group
->cluster_list
.next
) !=
2600 &block_group
->cluster_list
) {
2601 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2604 WARN_ON(cluster
->block_group
!= block_group
);
2605 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2607 cond_resched_lock(&ctl
->tree_lock
);
2609 __btrfs_remove_free_space_cache_locked(ctl
);
2610 spin_unlock(&ctl
->tree_lock
);
2614 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2615 u64 offset
, u64 bytes
, u64 empty_size
,
2616 u64
*max_extent_size
)
2618 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2619 struct btrfs_free_space
*entry
= NULL
;
2620 u64 bytes_search
= bytes
+ empty_size
;
2623 u64 align_gap_len
= 0;
2625 spin_lock(&ctl
->tree_lock
);
2626 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2627 block_group
->full_stripe_len
, max_extent_size
);
2632 if (entry
->bitmap
) {
2633 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2635 free_bitmap(ctl
, entry
);
2637 unlink_free_space(ctl
, entry
);
2638 align_gap_len
= offset
- entry
->offset
;
2639 align_gap
= entry
->offset
;
2641 entry
->offset
= offset
+ bytes
;
2642 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2644 entry
->bytes
-= bytes
+ align_gap_len
;
2646 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2648 link_free_space(ctl
, entry
);
2651 spin_unlock(&ctl
->tree_lock
);
2654 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2655 align_gap
, align_gap_len
);
2660 * given a cluster, put all of its extents back into the free space
2661 * cache. If a block group is passed, this function will only free
2662 * a cluster that belongs to the passed block group.
2664 * Otherwise, it'll get a reference on the block group pointed to by the
2665 * cluster and remove the cluster from it.
2667 int btrfs_return_cluster_to_free_space(
2668 struct btrfs_block_group_cache
*block_group
,
2669 struct btrfs_free_cluster
*cluster
)
2671 struct btrfs_free_space_ctl
*ctl
;
2674 /* first, get a safe pointer to the block group */
2675 spin_lock(&cluster
->lock
);
2677 block_group
= cluster
->block_group
;
2679 spin_unlock(&cluster
->lock
);
2682 } else if (cluster
->block_group
!= block_group
) {
2683 /* someone else has already freed it don't redo their work */
2684 spin_unlock(&cluster
->lock
);
2687 atomic_inc(&block_group
->count
);
2688 spin_unlock(&cluster
->lock
);
2690 ctl
= block_group
->free_space_ctl
;
2692 /* now return any extents the cluster had on it */
2693 spin_lock(&ctl
->tree_lock
);
2694 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2695 spin_unlock(&ctl
->tree_lock
);
2697 /* finally drop our ref */
2698 btrfs_put_block_group(block_group
);
2702 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2703 struct btrfs_free_cluster
*cluster
,
2704 struct btrfs_free_space
*entry
,
2705 u64 bytes
, u64 min_start
,
2706 u64
*max_extent_size
)
2708 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2710 u64 search_start
= cluster
->window_start
;
2711 u64 search_bytes
= bytes
;
2714 search_start
= min_start
;
2715 search_bytes
= bytes
;
2717 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2719 *max_extent_size
= max(get_max_extent_size(entry
),
2725 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2731 * given a cluster, try to allocate 'bytes' from it, returns 0
2732 * if it couldn't find anything suitably large, or a logical disk offset
2733 * if things worked out
2735 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2736 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2737 u64 min_start
, u64
*max_extent_size
)
2739 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2740 struct btrfs_free_space
*entry
= NULL
;
2741 struct rb_node
*node
;
2744 spin_lock(&cluster
->lock
);
2745 if (bytes
> cluster
->max_size
)
2748 if (cluster
->block_group
!= block_group
)
2751 node
= rb_first(&cluster
->root
);
2755 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2757 if (entry
->bytes
< bytes
)
2758 *max_extent_size
= max(get_max_extent_size(entry
),
2761 if (entry
->bytes
< bytes
||
2762 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2763 node
= rb_next(&entry
->offset_index
);
2766 entry
= rb_entry(node
, struct btrfs_free_space
,
2771 if (entry
->bitmap
) {
2772 ret
= btrfs_alloc_from_bitmap(block_group
,
2773 cluster
, entry
, bytes
,
2774 cluster
->window_start
,
2777 node
= rb_next(&entry
->offset_index
);
2780 entry
= rb_entry(node
, struct btrfs_free_space
,
2784 cluster
->window_start
+= bytes
;
2786 ret
= entry
->offset
;
2788 entry
->offset
+= bytes
;
2789 entry
->bytes
-= bytes
;
2792 if (entry
->bytes
== 0)
2793 rb_erase(&entry
->offset_index
, &cluster
->root
);
2797 spin_unlock(&cluster
->lock
);
2802 spin_lock(&ctl
->tree_lock
);
2804 ctl
->free_space
-= bytes
;
2805 if (entry
->bytes
== 0) {
2806 ctl
->free_extents
--;
2807 if (entry
->bitmap
) {
2808 kfree(entry
->bitmap
);
2809 ctl
->total_bitmaps
--;
2810 ctl
->op
->recalc_thresholds(ctl
);
2812 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2815 spin_unlock(&ctl
->tree_lock
);
2820 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2821 struct btrfs_free_space
*entry
,
2822 struct btrfs_free_cluster
*cluster
,
2823 u64 offset
, u64 bytes
,
2824 u64 cont1_bytes
, u64 min_bytes
)
2826 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2827 unsigned long next_zero
;
2829 unsigned long want_bits
;
2830 unsigned long min_bits
;
2831 unsigned long found_bits
;
2832 unsigned long max_bits
= 0;
2833 unsigned long start
= 0;
2834 unsigned long total_found
= 0;
2837 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2838 max_t(u64
, offset
, entry
->offset
));
2839 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2840 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2843 * Don't bother looking for a cluster in this bitmap if it's heavily
2846 if (entry
->max_extent_size
&&
2847 entry
->max_extent_size
< cont1_bytes
)
2851 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2852 next_zero
= find_next_zero_bit(entry
->bitmap
,
2853 BITS_PER_BITMAP
, i
);
2854 if (next_zero
- i
>= min_bits
) {
2855 found_bits
= next_zero
- i
;
2856 if (found_bits
> max_bits
)
2857 max_bits
= found_bits
;
2860 if (next_zero
- i
> max_bits
)
2861 max_bits
= next_zero
- i
;
2866 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
2872 cluster
->max_size
= 0;
2875 total_found
+= found_bits
;
2877 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2878 cluster
->max_size
= found_bits
* ctl
->unit
;
2880 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2885 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2886 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2887 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2888 &entry
->offset_index
, 1);
2889 ASSERT(!ret
); /* -EEXIST; Logic error */
2891 trace_btrfs_setup_cluster(block_group
, cluster
,
2892 total_found
* ctl
->unit
, 1);
2897 * This searches the block group for just extents to fill the cluster with.
2898 * Try to find a cluster with at least bytes total bytes, at least one
2899 * extent of cont1_bytes, and other clusters of at least min_bytes.
2902 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2903 struct btrfs_free_cluster
*cluster
,
2904 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2905 u64 cont1_bytes
, u64 min_bytes
)
2907 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2908 struct btrfs_free_space
*first
= NULL
;
2909 struct btrfs_free_space
*entry
= NULL
;
2910 struct btrfs_free_space
*last
;
2911 struct rb_node
*node
;
2916 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2921 * We don't want bitmaps, so just move along until we find a normal
2924 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2925 if (entry
->bitmap
&& list_empty(&entry
->list
))
2926 list_add_tail(&entry
->list
, bitmaps
);
2927 node
= rb_next(&entry
->offset_index
);
2930 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2933 window_free
= entry
->bytes
;
2934 max_extent
= entry
->bytes
;
2938 for (node
= rb_next(&entry
->offset_index
); node
;
2939 node
= rb_next(&entry
->offset_index
)) {
2940 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2942 if (entry
->bitmap
) {
2943 if (list_empty(&entry
->list
))
2944 list_add_tail(&entry
->list
, bitmaps
);
2948 if (entry
->bytes
< min_bytes
)
2952 window_free
+= entry
->bytes
;
2953 if (entry
->bytes
> max_extent
)
2954 max_extent
= entry
->bytes
;
2957 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2960 cluster
->window_start
= first
->offset
;
2962 node
= &first
->offset_index
;
2965 * now we've found our entries, pull them out of the free space
2966 * cache and put them into the cluster rbtree
2971 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2972 node
= rb_next(&entry
->offset_index
);
2973 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2976 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2977 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2978 &entry
->offset_index
, 0);
2979 total_size
+= entry
->bytes
;
2980 ASSERT(!ret
); /* -EEXIST; Logic error */
2981 } while (node
&& entry
!= last
);
2983 cluster
->max_size
= max_extent
;
2984 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2989 * This specifically looks for bitmaps that may work in the cluster, we assume
2990 * that we have already failed to find extents that will work.
2993 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2994 struct btrfs_free_cluster
*cluster
,
2995 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2996 u64 cont1_bytes
, u64 min_bytes
)
2998 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2999 struct btrfs_free_space
*entry
= NULL
;
3001 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
3003 if (ctl
->total_bitmaps
== 0)
3007 * The bitmap that covers offset won't be in the list unless offset
3008 * is just its start offset.
3010 if (!list_empty(bitmaps
))
3011 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
3013 if (!entry
|| entry
->offset
!= bitmap_offset
) {
3014 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
3015 if (entry
&& list_empty(&entry
->list
))
3016 list_add(&entry
->list
, bitmaps
);
3019 list_for_each_entry(entry
, bitmaps
, list
) {
3020 if (entry
->bytes
< bytes
)
3022 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3023 bytes
, cont1_bytes
, min_bytes
);
3029 * The bitmaps list has all the bitmaps that record free space
3030 * starting after offset, so no more search is required.
3036 * here we try to find a cluster of blocks in a block group. The goal
3037 * is to find at least bytes+empty_size.
3038 * We might not find them all in one contiguous area.
3040 * returns zero and sets up cluster if things worked out, otherwise
3041 * it returns -enospc
3043 int btrfs_find_space_cluster(struct btrfs_fs_info
*fs_info
,
3044 struct btrfs_block_group_cache
*block_group
,
3045 struct btrfs_free_cluster
*cluster
,
3046 u64 offset
, u64 bytes
, u64 empty_size
)
3048 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3049 struct btrfs_free_space
*entry
, *tmp
;
3056 * Choose the minimum extent size we'll require for this
3057 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3058 * For metadata, allow allocates with smaller extents. For
3059 * data, keep it dense.
3061 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3062 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3063 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3064 cont1_bytes
= bytes
;
3065 min_bytes
= fs_info
->sectorsize
;
3067 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3068 min_bytes
= fs_info
->sectorsize
;
3071 spin_lock(&ctl
->tree_lock
);
3074 * If we know we don't have enough space to make a cluster don't even
3075 * bother doing all the work to try and find one.
3077 if (ctl
->free_space
< bytes
) {
3078 spin_unlock(&ctl
->tree_lock
);
3082 spin_lock(&cluster
->lock
);
3084 /* someone already found a cluster, hooray */
3085 if (cluster
->block_group
) {
3090 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3093 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3095 cont1_bytes
, min_bytes
);
3097 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3098 offset
, bytes
+ empty_size
,
3099 cont1_bytes
, min_bytes
);
3101 /* Clear our temporary list */
3102 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3103 list_del_init(&entry
->list
);
3106 atomic_inc(&block_group
->count
);
3107 list_add_tail(&cluster
->block_group_list
,
3108 &block_group
->cluster_list
);
3109 cluster
->block_group
= block_group
;
3111 trace_btrfs_failed_cluster_setup(block_group
);
3114 spin_unlock(&cluster
->lock
);
3115 spin_unlock(&ctl
->tree_lock
);
3121 * simple code to zero out a cluster
3123 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3125 spin_lock_init(&cluster
->lock
);
3126 spin_lock_init(&cluster
->refill_lock
);
3127 cluster
->root
= RB_ROOT
;
3128 cluster
->max_size
= 0;
3129 cluster
->fragmented
= false;
3130 INIT_LIST_HEAD(&cluster
->block_group_list
);
3131 cluster
->block_group
= NULL
;
3134 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
3135 u64
*total_trimmed
, u64 start
, u64 bytes
,
3136 u64 reserved_start
, u64 reserved_bytes
,
3137 struct btrfs_trim_range
*trim_entry
)
3139 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3140 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3141 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3146 spin_lock(&space_info
->lock
);
3147 spin_lock(&block_group
->lock
);
3148 if (!block_group
->ro
) {
3149 block_group
->reserved
+= reserved_bytes
;
3150 space_info
->bytes_reserved
+= reserved_bytes
;
3153 spin_unlock(&block_group
->lock
);
3154 spin_unlock(&space_info
->lock
);
3156 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3158 *total_trimmed
+= trimmed
;
3160 mutex_lock(&ctl
->cache_writeout_mutex
);
3161 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
3162 list_del(&trim_entry
->list
);
3163 mutex_unlock(&ctl
->cache_writeout_mutex
);
3166 spin_lock(&space_info
->lock
);
3167 spin_lock(&block_group
->lock
);
3168 if (block_group
->ro
)
3169 space_info
->bytes_readonly
+= reserved_bytes
;
3170 block_group
->reserved
-= reserved_bytes
;
3171 space_info
->bytes_reserved
-= reserved_bytes
;
3172 spin_unlock(&space_info
->lock
);
3173 spin_unlock(&block_group
->lock
);
3179 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
3180 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3182 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3183 struct btrfs_free_space
*entry
;
3184 struct rb_node
*node
;
3190 while (start
< end
) {
3191 struct btrfs_trim_range trim_entry
;
3193 mutex_lock(&ctl
->cache_writeout_mutex
);
3194 spin_lock(&ctl
->tree_lock
);
3196 if (ctl
->free_space
< minlen
) {
3197 spin_unlock(&ctl
->tree_lock
);
3198 mutex_unlock(&ctl
->cache_writeout_mutex
);
3202 entry
= tree_search_offset(ctl
, start
, 0, 1);
3204 spin_unlock(&ctl
->tree_lock
);
3205 mutex_unlock(&ctl
->cache_writeout_mutex
);
3210 while (entry
->bitmap
) {
3211 node
= rb_next(&entry
->offset_index
);
3213 spin_unlock(&ctl
->tree_lock
);
3214 mutex_unlock(&ctl
->cache_writeout_mutex
);
3217 entry
= rb_entry(node
, struct btrfs_free_space
,
3221 if (entry
->offset
>= end
) {
3222 spin_unlock(&ctl
->tree_lock
);
3223 mutex_unlock(&ctl
->cache_writeout_mutex
);
3227 extent_start
= entry
->offset
;
3228 extent_bytes
= entry
->bytes
;
3229 start
= max(start
, extent_start
);
3230 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3231 if (bytes
< minlen
) {
3232 spin_unlock(&ctl
->tree_lock
);
3233 mutex_unlock(&ctl
->cache_writeout_mutex
);
3237 unlink_free_space(ctl
, entry
);
3238 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3240 spin_unlock(&ctl
->tree_lock
);
3241 trim_entry
.start
= extent_start
;
3242 trim_entry
.bytes
= extent_bytes
;
3243 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3244 mutex_unlock(&ctl
->cache_writeout_mutex
);
3246 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3247 extent_start
, extent_bytes
, &trim_entry
);
3253 if (fatal_signal_pending(current
)) {
3264 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
3265 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3267 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3268 struct btrfs_free_space
*entry
;
3272 u64 offset
= offset_to_bitmap(ctl
, start
);
3274 while (offset
< end
) {
3275 bool next_bitmap
= false;
3276 struct btrfs_trim_range trim_entry
;
3278 mutex_lock(&ctl
->cache_writeout_mutex
);
3279 spin_lock(&ctl
->tree_lock
);
3281 if (ctl
->free_space
< minlen
) {
3282 spin_unlock(&ctl
->tree_lock
);
3283 mutex_unlock(&ctl
->cache_writeout_mutex
);
3287 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3289 spin_unlock(&ctl
->tree_lock
);
3290 mutex_unlock(&ctl
->cache_writeout_mutex
);
3296 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3297 if (ret2
|| start
>= end
) {
3298 spin_unlock(&ctl
->tree_lock
);
3299 mutex_unlock(&ctl
->cache_writeout_mutex
);
3304 bytes
= min(bytes
, end
- start
);
3305 if (bytes
< minlen
) {
3306 spin_unlock(&ctl
->tree_lock
);
3307 mutex_unlock(&ctl
->cache_writeout_mutex
);
3311 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3312 if (entry
->bytes
== 0)
3313 free_bitmap(ctl
, entry
);
3315 spin_unlock(&ctl
->tree_lock
);
3316 trim_entry
.start
= start
;
3317 trim_entry
.bytes
= bytes
;
3318 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3319 mutex_unlock(&ctl
->cache_writeout_mutex
);
3321 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3322 start
, bytes
, &trim_entry
);
3327 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3330 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
3331 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3334 if (fatal_signal_pending(current
)) {
3345 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache
*cache
)
3347 atomic_inc(&cache
->trimming
);
3350 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache
*block_group
)
3352 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3353 struct extent_map_tree
*em_tree
;
3354 struct extent_map
*em
;
3357 spin_lock(&block_group
->lock
);
3358 cleanup
= (atomic_dec_and_test(&block_group
->trimming
) &&
3359 block_group
->removed
);
3360 spin_unlock(&block_group
->lock
);
3363 mutex_lock(&fs_info
->chunk_mutex
);
3364 em_tree
= &fs_info
->mapping_tree
.map_tree
;
3365 write_lock(&em_tree
->lock
);
3366 em
= lookup_extent_mapping(em_tree
, block_group
->key
.objectid
,
3368 BUG_ON(!em
); /* logic error, can't happen */
3370 * remove_extent_mapping() will delete us from the pinned_chunks
3371 * list, which is protected by the chunk mutex.
3373 remove_extent_mapping(em_tree
, em
);
3374 write_unlock(&em_tree
->lock
);
3375 mutex_unlock(&fs_info
->chunk_mutex
);
3377 /* once for us and once for the tree */
3378 free_extent_map(em
);
3379 free_extent_map(em
);
3382 * We've left one free space entry and other tasks trimming
3383 * this block group have left 1 entry each one. Free them.
3385 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3389 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
3390 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3396 spin_lock(&block_group
->lock
);
3397 if (block_group
->removed
) {
3398 spin_unlock(&block_group
->lock
);
3401 btrfs_get_block_group_trimming(block_group
);
3402 spin_unlock(&block_group
->lock
);
3404 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
3408 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
3410 btrfs_put_block_group_trimming(block_group
);
3415 * Find the left-most item in the cache tree, and then return the
3416 * smallest inode number in the item.
3418 * Note: the returned inode number may not be the smallest one in
3419 * the tree, if the left-most item is a bitmap.
3421 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3423 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3424 struct btrfs_free_space
*entry
= NULL
;
3427 spin_lock(&ctl
->tree_lock
);
3429 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3432 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3433 struct btrfs_free_space
, offset_index
);
3435 if (!entry
->bitmap
) {
3436 ino
= entry
->offset
;
3438 unlink_free_space(ctl
, entry
);
3442 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3444 link_free_space(ctl
, entry
);
3450 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3451 /* Logic error; Should be empty if it can't find anything */
3455 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3456 if (entry
->bytes
== 0)
3457 free_bitmap(ctl
, entry
);
3460 spin_unlock(&ctl
->tree_lock
);
3465 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3466 struct btrfs_path
*path
)
3468 struct inode
*inode
= NULL
;
3470 spin_lock(&root
->ino_cache_lock
);
3471 if (root
->ino_cache_inode
)
3472 inode
= igrab(root
->ino_cache_inode
);
3473 spin_unlock(&root
->ino_cache_lock
);
3477 inode
= __lookup_free_space_inode(root
, path
, 0);
3481 spin_lock(&root
->ino_cache_lock
);
3482 if (!btrfs_fs_closing(root
->fs_info
))
3483 root
->ino_cache_inode
= igrab(inode
);
3484 spin_unlock(&root
->ino_cache_lock
);
3489 int create_free_ino_inode(struct btrfs_root
*root
,
3490 struct btrfs_trans_handle
*trans
,
3491 struct btrfs_path
*path
)
3493 return __create_free_space_inode(root
, trans
, path
,
3494 BTRFS_FREE_INO_OBJECTID
, 0);
3497 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3499 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3500 struct btrfs_path
*path
;
3501 struct inode
*inode
;
3503 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3505 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3509 * If we're unmounting then just return, since this does a search on the
3510 * normal root and not the commit root and we could deadlock.
3512 if (btrfs_fs_closing(fs_info
))
3515 path
= btrfs_alloc_path();
3519 inode
= lookup_free_ino_inode(root
, path
);
3523 if (root_gen
!= BTRFS_I(inode
)->generation
)
3526 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3530 "failed to load free ino cache for root %llu",
3531 root
->root_key
.objectid
);
3535 btrfs_free_path(path
);
3539 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3540 struct btrfs_trans_handle
*trans
,
3541 struct btrfs_path
*path
,
3542 struct inode
*inode
)
3544 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3545 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3547 struct btrfs_io_ctl io_ctl
;
3548 bool release_metadata
= true;
3550 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3553 memset(&io_ctl
, 0, sizeof(io_ctl
));
3554 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
, trans
);
3557 * At this point writepages() didn't error out, so our metadata
3558 * reservation is released when the writeback finishes, at
3559 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3560 * with or without an error.
3562 release_metadata
= false;
3563 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
3567 if (release_metadata
)
3568 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
3569 inode
->i_size
, true);
3572 "failed to write free ino cache for root %llu",
3573 root
->root_key
.objectid
);
3580 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3582 * Use this if you need to make a bitmap or extent entry specifically, it
3583 * doesn't do any of the merging that add_free_space does, this acts a lot like
3584 * how the free space cache loading stuff works, so you can get really weird
3587 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3588 u64 offset
, u64 bytes
, bool bitmap
)
3590 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3591 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3598 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3604 spin_lock(&ctl
->tree_lock
);
3605 info
->offset
= offset
;
3606 info
->bytes
= bytes
;
3607 info
->max_extent_size
= 0;
3608 ret
= link_free_space(ctl
, info
);
3609 spin_unlock(&ctl
->tree_lock
);
3611 kmem_cache_free(btrfs_free_space_cachep
, info
);
3616 map
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
3618 kmem_cache_free(btrfs_free_space_cachep
, info
);
3623 spin_lock(&ctl
->tree_lock
);
3624 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3629 add_new_bitmap(ctl
, info
, offset
);
3634 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3636 bytes
-= bytes_added
;
3637 offset
+= bytes_added
;
3638 spin_unlock(&ctl
->tree_lock
);
3644 kmem_cache_free(btrfs_free_space_cachep
, info
);
3650 * Checks to see if the given range is in the free space cache. This is really
3651 * just used to check the absence of space, so if there is free space in the
3652 * range at all we will return 1.
3654 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3655 u64 offset
, u64 bytes
)
3657 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3658 struct btrfs_free_space
*info
;
3661 spin_lock(&ctl
->tree_lock
);
3662 info
= tree_search_offset(ctl
, offset
, 0, 0);
3664 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3672 u64 bit_off
, bit_bytes
;
3674 struct btrfs_free_space
*tmp
;
3677 bit_bytes
= ctl
->unit
;
3678 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
3680 if (bit_off
== offset
) {
3683 } else if (bit_off
> offset
&&
3684 offset
+ bytes
> bit_off
) {
3690 n
= rb_prev(&info
->offset_index
);
3692 tmp
= rb_entry(n
, struct btrfs_free_space
,
3694 if (tmp
->offset
+ tmp
->bytes
< offset
)
3696 if (offset
+ bytes
< tmp
->offset
) {
3697 n
= rb_prev(&tmp
->offset_index
);
3704 n
= rb_next(&info
->offset_index
);
3706 tmp
= rb_entry(n
, struct btrfs_free_space
,
3708 if (offset
+ bytes
< tmp
->offset
)
3710 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3711 n
= rb_next(&tmp
->offset_index
);
3722 if (info
->offset
== offset
) {
3727 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3730 spin_unlock(&ctl
->tree_lock
);
3733 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */