1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kernel.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <asm/unaligned.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "ordered-data.h"
40 #include "compression.h"
42 #include "free-space-cache.h"
43 #include "inode-map.h"
49 struct btrfs_iget_args
{
50 struct btrfs_key
*location
;
51 struct btrfs_root
*root
;
54 struct btrfs_dio_data
{
56 u64 unsubmitted_oe_range_start
;
57 u64 unsubmitted_oe_range_end
;
61 static const struct inode_operations btrfs_dir_inode_operations
;
62 static const struct inode_operations btrfs_symlink_inode_operations
;
63 static const struct inode_operations btrfs_dir_ro_inode_operations
;
64 static const struct inode_operations btrfs_special_inode_operations
;
65 static const struct inode_operations btrfs_file_inode_operations
;
66 static const struct address_space_operations btrfs_aops
;
67 static const struct file_operations btrfs_dir_file_operations
;
68 static const struct extent_io_ops btrfs_extent_io_ops
;
70 static struct kmem_cache
*btrfs_inode_cachep
;
71 struct kmem_cache
*btrfs_trans_handle_cachep
;
72 struct kmem_cache
*btrfs_path_cachep
;
73 struct kmem_cache
*btrfs_free_space_cachep
;
76 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
77 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
78 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
79 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
80 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
81 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
82 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
83 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
86 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
87 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
);
88 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
89 static noinline
int cow_file_range(struct inode
*inode
,
90 struct page
*locked_page
,
91 u64 start
, u64 end
, u64 delalloc_end
,
92 int *page_started
, unsigned long *nr_written
,
93 int unlock
, struct btrfs_dedupe_hash
*hash
);
94 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
95 u64 orig_start
, u64 block_start
,
96 u64 block_len
, u64 orig_block_len
,
97 u64 ram_bytes
, int compress_type
,
100 static void __endio_write_update_ordered(struct inode
*inode
,
101 const u64 offset
, const u64 bytes
,
102 const bool uptodate
);
105 * Cleanup all submitted ordered extents in specified range to handle errors
106 * from the fill_dellaloc() callback.
108 * NOTE: caller must ensure that when an error happens, it can not call
109 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
110 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
111 * to be released, which we want to happen only when finishing the ordered
112 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
113 * fill_delalloc() callback already does proper cleanup for the first page of
114 * the range, that is, it invokes the callback writepage_end_io_hook() for the
115 * range of the first page.
117 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
121 unsigned long index
= offset
>> PAGE_SHIFT
;
122 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
125 while (index
<= end_index
) {
126 page
= find_get_page(inode
->i_mapping
, index
);
130 ClearPagePrivate2(page
);
133 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
134 bytes
- PAGE_SIZE
, false);
137 static int btrfs_dirty_inode(struct inode
*inode
);
139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
140 void btrfs_test_inode_set_ops(struct inode
*inode
)
142 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
146 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
147 struct inode
*inode
, struct inode
*dir
,
148 const struct qstr
*qstr
)
152 err
= btrfs_init_acl(trans
, inode
, dir
);
154 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
159 * this does all the hard work for inserting an inline extent into
160 * the btree. The caller should have done a btrfs_drop_extents so that
161 * no overlapping inline items exist in the btree
163 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
164 struct btrfs_path
*path
, int extent_inserted
,
165 struct btrfs_root
*root
, struct inode
*inode
,
166 u64 start
, size_t size
, size_t compressed_size
,
168 struct page
**compressed_pages
)
170 struct extent_buffer
*leaf
;
171 struct page
*page
= NULL
;
174 struct btrfs_file_extent_item
*ei
;
176 size_t cur_size
= size
;
177 unsigned long offset
;
179 if (compressed_size
&& compressed_pages
)
180 cur_size
= compressed_size
;
182 inode_add_bytes(inode
, size
);
184 if (!extent_inserted
) {
185 struct btrfs_key key
;
188 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
190 key
.type
= BTRFS_EXTENT_DATA_KEY
;
192 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
193 path
->leave_spinning
= 1;
194 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
199 leaf
= path
->nodes
[0];
200 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
201 struct btrfs_file_extent_item
);
202 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
203 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
204 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
205 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
206 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
207 ptr
= btrfs_file_extent_inline_start(ei
);
209 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
212 while (compressed_size
> 0) {
213 cpage
= compressed_pages
[i
];
214 cur_size
= min_t(unsigned long, compressed_size
,
217 kaddr
= kmap_atomic(cpage
);
218 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
219 kunmap_atomic(kaddr
);
223 compressed_size
-= cur_size
;
225 btrfs_set_file_extent_compression(leaf
, ei
,
228 page
= find_get_page(inode
->i_mapping
,
229 start
>> PAGE_SHIFT
);
230 btrfs_set_file_extent_compression(leaf
, ei
, 0);
231 kaddr
= kmap_atomic(page
);
232 offset
= start
& (PAGE_SIZE
- 1);
233 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
234 kunmap_atomic(kaddr
);
237 btrfs_mark_buffer_dirty(leaf
);
238 btrfs_release_path(path
);
241 * we're an inline extent, so nobody can
242 * extend the file past i_size without locking
243 * a page we already have locked.
245 * We must do any isize and inode updates
246 * before we unlock the pages. Otherwise we
247 * could end up racing with unlink.
249 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
250 ret
= btrfs_update_inode(trans
, root
, inode
);
258 * conditionally insert an inline extent into the file. This
259 * does the checks required to make sure the data is small enough
260 * to fit as an inline extent.
262 static noinline
int cow_file_range_inline(struct inode
*inode
, u64 start
,
263 u64 end
, size_t compressed_size
,
265 struct page
**compressed_pages
)
267 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
268 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
269 struct btrfs_trans_handle
*trans
;
270 u64 isize
= i_size_read(inode
);
271 u64 actual_end
= min(end
+ 1, isize
);
272 u64 inline_len
= actual_end
- start
;
273 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
274 u64 data_len
= inline_len
;
276 struct btrfs_path
*path
;
277 int extent_inserted
= 0;
278 u32 extent_item_size
;
281 data_len
= compressed_size
;
284 actual_end
> fs_info
->sectorsize
||
285 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
287 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
289 data_len
> fs_info
->max_inline
) {
293 path
= btrfs_alloc_path();
297 trans
= btrfs_join_transaction(root
);
299 btrfs_free_path(path
);
300 return PTR_ERR(trans
);
302 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
304 if (compressed_size
&& compressed_pages
)
305 extent_item_size
= btrfs_file_extent_calc_inline_size(
308 extent_item_size
= btrfs_file_extent_calc_inline_size(
311 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
312 start
, aligned_end
, NULL
,
313 1, 1, extent_item_size
, &extent_inserted
);
315 btrfs_abort_transaction(trans
, ret
);
319 if (isize
> actual_end
)
320 inline_len
= min_t(u64
, isize
, actual_end
);
321 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
323 inline_len
, compressed_size
,
324 compress_type
, compressed_pages
);
325 if (ret
&& ret
!= -ENOSPC
) {
326 btrfs_abort_transaction(trans
, ret
);
328 } else if (ret
== -ENOSPC
) {
333 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
334 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
337 * Don't forget to free the reserved space, as for inlined extent
338 * it won't count as data extent, free them directly here.
339 * And at reserve time, it's always aligned to page size, so
340 * just free one page here.
342 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
343 btrfs_free_path(path
);
344 btrfs_end_transaction(trans
);
348 struct async_extent
{
353 unsigned long nr_pages
;
355 struct list_head list
;
360 struct btrfs_root
*root
;
361 struct page
*locked_page
;
364 unsigned int write_flags
;
365 struct list_head extents
;
366 struct btrfs_work work
;
369 static noinline
int add_async_extent(struct async_cow
*cow
,
370 u64 start
, u64 ram_size
,
373 unsigned long nr_pages
,
376 struct async_extent
*async_extent
;
378 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
379 BUG_ON(!async_extent
); /* -ENOMEM */
380 async_extent
->start
= start
;
381 async_extent
->ram_size
= ram_size
;
382 async_extent
->compressed_size
= compressed_size
;
383 async_extent
->pages
= pages
;
384 async_extent
->nr_pages
= nr_pages
;
385 async_extent
->compress_type
= compress_type
;
386 list_add_tail(&async_extent
->list
, &cow
->extents
);
390 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
392 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
395 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
398 if (BTRFS_I(inode
)->defrag_compress
)
400 /* bad compression ratios */
401 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
403 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
404 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
405 BTRFS_I(inode
)->prop_compress
)
406 return btrfs_compress_heuristic(inode
, start
, end
);
410 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
411 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
413 /* If this is a small write inside eof, kick off a defrag */
414 if (num_bytes
< small_write
&&
415 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
416 btrfs_add_inode_defrag(NULL
, inode
);
420 * we create compressed extents in two phases. The first
421 * phase compresses a range of pages that have already been
422 * locked (both pages and state bits are locked).
424 * This is done inside an ordered work queue, and the compression
425 * is spread across many cpus. The actual IO submission is step
426 * two, and the ordered work queue takes care of making sure that
427 * happens in the same order things were put onto the queue by
428 * writepages and friends.
430 * If this code finds it can't get good compression, it puts an
431 * entry onto the work queue to write the uncompressed bytes. This
432 * makes sure that both compressed inodes and uncompressed inodes
433 * are written in the same order that the flusher thread sent them
436 static noinline
void compress_file_range(struct inode
*inode
,
437 struct page
*locked_page
,
439 struct async_cow
*async_cow
,
442 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
443 u64 blocksize
= fs_info
->sectorsize
;
445 u64 isize
= i_size_read(inode
);
447 struct page
**pages
= NULL
;
448 unsigned long nr_pages
;
449 unsigned long total_compressed
= 0;
450 unsigned long total_in
= 0;
453 int compress_type
= fs_info
->compress_type
;
456 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
459 actual_end
= min_t(u64
, isize
, end
+ 1);
462 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
463 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
464 nr_pages
= min_t(unsigned long, nr_pages
,
465 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
468 * we don't want to send crud past the end of i_size through
469 * compression, that's just a waste of CPU time. So, if the
470 * end of the file is before the start of our current
471 * requested range of bytes, we bail out to the uncompressed
472 * cleanup code that can deal with all of this.
474 * It isn't really the fastest way to fix things, but this is a
475 * very uncommon corner.
477 if (actual_end
<= start
)
478 goto cleanup_and_bail_uncompressed
;
480 total_compressed
= actual_end
- start
;
483 * skip compression for a small file range(<=blocksize) that
484 * isn't an inline extent, since it doesn't save disk space at all.
486 if (total_compressed
<= blocksize
&&
487 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
488 goto cleanup_and_bail_uncompressed
;
490 total_compressed
= min_t(unsigned long, total_compressed
,
491 BTRFS_MAX_UNCOMPRESSED
);
496 * we do compression for mount -o compress and when the
497 * inode has not been flagged as nocompress. This flag can
498 * change at any time if we discover bad compression ratios.
500 if (inode_need_compress(inode
, start
, end
)) {
502 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
504 /* just bail out to the uncompressed code */
509 if (BTRFS_I(inode
)->defrag_compress
)
510 compress_type
= BTRFS_I(inode
)->defrag_compress
;
511 else if (BTRFS_I(inode
)->prop_compress
)
512 compress_type
= BTRFS_I(inode
)->prop_compress
;
515 * we need to call clear_page_dirty_for_io on each
516 * page in the range. Otherwise applications with the file
517 * mmap'd can wander in and change the page contents while
518 * we are compressing them.
520 * If the compression fails for any reason, we set the pages
521 * dirty again later on.
523 * Note that the remaining part is redirtied, the start pointer
524 * has moved, the end is the original one.
527 extent_range_clear_dirty_for_io(inode
, start
, end
);
531 /* Compression level is applied here and only here */
532 ret
= btrfs_compress_pages(
533 compress_type
| (fs_info
->compress_level
<< 4),
534 inode
->i_mapping
, start
,
541 unsigned long offset
= total_compressed
&
543 struct page
*page
= pages
[nr_pages
- 1];
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
550 kaddr
= kmap_atomic(page
);
551 memset(kaddr
+ offset
, 0,
553 kunmap_atomic(kaddr
);
560 /* lets try to make an inline extent */
561 if (ret
|| total_in
< actual_end
) {
562 /* we didn't compress the entire range, try
563 * to make an uncompressed inline extent.
565 ret
= cow_file_range_inline(inode
, start
, end
, 0,
566 BTRFS_COMPRESS_NONE
, NULL
);
568 /* try making a compressed inline extent */
569 ret
= cow_file_range_inline(inode
, start
, end
,
571 compress_type
, pages
);
574 unsigned long clear_flags
= EXTENT_DELALLOC
|
575 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
576 EXTENT_DO_ACCOUNTING
;
577 unsigned long page_error_op
;
579 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
586 * We use DO_ACCOUNTING here because we need the
587 * delalloc_release_metadata to be done _after_ we drop
588 * our outstanding extent for clearing delalloc for this
591 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
604 * we aren't doing an inline extent round the compressed size
605 * up to a block size boundary so the allocator does sane
608 total_compressed
= ALIGN(total_compressed
, blocksize
);
611 * one last check to make sure the compression is really a
612 * win, compare the page count read with the blocks on disk,
613 * compression must free at least one sector size
615 total_in
= ALIGN(total_in
, PAGE_SIZE
);
616 if (total_compressed
+ blocksize
<= total_in
) {
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
624 add_async_extent(async_cow
, start
, total_in
,
625 total_compressed
, pages
, nr_pages
,
628 if (start
+ total_in
< end
) {
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
642 for (i
= 0; i
< nr_pages
; i
++) {
643 WARN_ON(pages
[i
]->mapping
);
648 total_compressed
= 0;
651 /* flag the file so we don't compress in the future */
652 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
653 !(BTRFS_I(inode
)->prop_compress
)) {
654 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
657 cleanup_and_bail_uncompressed
:
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
664 if (page_offset(locked_page
) >= start
&&
665 page_offset(locked_page
) <= end
)
666 __set_page_dirty_nobuffers(locked_page
);
667 /* unlocked later on in the async handlers */
670 extent_range_redirty_for_io(inode
, start
, end
);
671 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
672 BTRFS_COMPRESS_NONE
);
678 for (i
= 0; i
< nr_pages
; i
++) {
679 WARN_ON(pages
[i
]->mapping
);
685 static void free_async_extent_pages(struct async_extent
*async_extent
)
689 if (!async_extent
->pages
)
692 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
693 WARN_ON(async_extent
->pages
[i
]->mapping
);
694 put_page(async_extent
->pages
[i
]);
696 kfree(async_extent
->pages
);
697 async_extent
->nr_pages
= 0;
698 async_extent
->pages
= NULL
;
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
707 static noinline
void submit_compressed_extents(struct inode
*inode
,
708 struct async_cow
*async_cow
)
710 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
711 struct async_extent
*async_extent
;
713 struct btrfs_key ins
;
714 struct extent_map
*em
;
715 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
716 struct extent_io_tree
*io_tree
;
720 while (!list_empty(&async_cow
->extents
)) {
721 async_extent
= list_entry(async_cow
->extents
.next
,
722 struct async_extent
, list
);
723 list_del(&async_extent
->list
);
725 io_tree
= &BTRFS_I(inode
)->io_tree
;
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent
->pages
) {
730 int page_started
= 0;
731 unsigned long nr_written
= 0;
733 lock_extent(io_tree
, async_extent
->start
,
734 async_extent
->start
+
735 async_extent
->ram_size
- 1);
737 /* allocate blocks */
738 ret
= cow_file_range(inode
, async_cow
->locked_page
,
740 async_extent
->start
+
741 async_extent
->ram_size
- 1,
742 async_extent
->start
+
743 async_extent
->ram_size
- 1,
744 &page_started
, &nr_written
, 0,
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
755 if (!page_started
&& !ret
)
756 extent_write_locked_range(inode
,
758 async_extent
->start
+
759 async_extent
->ram_size
- 1,
762 unlock_page(async_cow
->locked_page
);
768 lock_extent(io_tree
, async_extent
->start
,
769 async_extent
->start
+ async_extent
->ram_size
- 1);
771 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
772 async_extent
->compressed_size
,
773 async_extent
->compressed_size
,
774 0, alloc_hint
, &ins
, 1, 1);
776 free_async_extent_pages(async_extent
);
778 if (ret
== -ENOSPC
) {
779 unlock_extent(io_tree
, async_extent
->start
,
780 async_extent
->start
+
781 async_extent
->ram_size
- 1);
784 * we need to redirty the pages if we decide to
785 * fallback to uncompressed IO, otherwise we
786 * will not submit these pages down to lower
789 extent_range_redirty_for_io(inode
,
791 async_extent
->start
+
792 async_extent
->ram_size
- 1);
799 * here we're doing allocation and writeback of the
802 em
= create_io_em(inode
, async_extent
->start
,
803 async_extent
->ram_size
, /* len */
804 async_extent
->start
, /* orig_start */
805 ins
.objectid
, /* block_start */
806 ins
.offset
, /* block_len */
807 ins
.offset
, /* orig_block_len */
808 async_extent
->ram_size
, /* ram_bytes */
809 async_extent
->compress_type
,
810 BTRFS_ORDERED_COMPRESSED
);
812 /* ret value is not necessary due to void function */
813 goto out_free_reserve
;
816 ret
= btrfs_add_ordered_extent_compress(inode
,
819 async_extent
->ram_size
,
821 BTRFS_ORDERED_COMPRESSED
,
822 async_extent
->compress_type
);
824 btrfs_drop_extent_cache(BTRFS_I(inode
),
826 async_extent
->start
+
827 async_extent
->ram_size
- 1, 0);
828 goto out_free_reserve
;
830 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
833 * clear dirty, set writeback and unlock the pages.
835 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
836 async_extent
->start
+
837 async_extent
->ram_size
- 1,
838 async_extent
->start
+
839 async_extent
->ram_size
- 1,
840 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
841 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
843 if (btrfs_submit_compressed_write(inode
,
845 async_extent
->ram_size
,
847 ins
.offset
, async_extent
->pages
,
848 async_extent
->nr_pages
,
849 async_cow
->write_flags
)) {
850 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
851 struct page
*p
= async_extent
->pages
[0];
852 const u64 start
= async_extent
->start
;
853 const u64 end
= start
+ async_extent
->ram_size
- 1;
855 p
->mapping
= inode
->i_mapping
;
856 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
859 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
863 free_async_extent_pages(async_extent
);
865 alloc_hint
= ins
.objectid
+ ins
.offset
;
871 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
872 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
874 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
875 async_extent
->start
+
876 async_extent
->ram_size
- 1,
877 async_extent
->start
+
878 async_extent
->ram_size
- 1,
879 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
880 EXTENT_DELALLOC_NEW
|
881 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
882 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
883 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
885 free_async_extent_pages(async_extent
);
890 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
893 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
894 struct extent_map
*em
;
897 read_lock(&em_tree
->lock
);
898 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
905 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
907 em
= search_extent_mapping(em_tree
, 0, 0);
908 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
909 alloc_hint
= em
->block_start
;
913 alloc_hint
= em
->block_start
;
917 read_unlock(&em_tree
->lock
);
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
935 static noinline
int cow_file_range(struct inode
*inode
,
936 struct page
*locked_page
,
937 u64 start
, u64 end
, u64 delalloc_end
,
938 int *page_started
, unsigned long *nr_written
,
939 int unlock
, struct btrfs_dedupe_hash
*hash
)
941 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
942 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
945 unsigned long ram_size
;
946 u64 cur_alloc_size
= 0;
947 u64 blocksize
= fs_info
->sectorsize
;
948 struct btrfs_key ins
;
949 struct extent_map
*em
;
951 unsigned long page_ops
;
952 bool extent_reserved
= false;
955 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
961 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
962 num_bytes
= max(blocksize
, num_bytes
);
963 ASSERT(num_bytes
<= btrfs_super_total_bytes(fs_info
->super_copy
));
965 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
968 /* lets try to make an inline extent */
969 ret
= cow_file_range_inline(inode
, start
, end
, 0,
970 BTRFS_COMPRESS_NONE
, NULL
);
973 * We use DO_ACCOUNTING here because we need the
974 * delalloc_release_metadata to be run _after_ we drop
975 * our outstanding extent for clearing delalloc for this
978 extent_clear_unlock_delalloc(inode
, start
, end
,
980 EXTENT_LOCKED
| EXTENT_DELALLOC
|
981 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
982 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
983 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
985 *nr_written
= *nr_written
+
986 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
989 } else if (ret
< 0) {
994 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
995 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
996 start
+ num_bytes
- 1, 0);
998 while (num_bytes
> 0) {
999 cur_alloc_size
= num_bytes
;
1000 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1001 fs_info
->sectorsize
, 0, alloc_hint
,
1005 cur_alloc_size
= ins
.offset
;
1006 extent_reserved
= true;
1008 ram_size
= ins
.offset
;
1009 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1010 start
, /* orig_start */
1011 ins
.objectid
, /* block_start */
1012 ins
.offset
, /* block_len */
1013 ins
.offset
, /* orig_block_len */
1014 ram_size
, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE
, /* compress_type */
1016 BTRFS_ORDERED_REGULAR
/* type */);
1021 free_extent_map(em
);
1023 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1024 ram_size
, cur_alloc_size
, 0);
1026 goto out_drop_extent_cache
;
1028 if (root
->root_key
.objectid
==
1029 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1030 ret
= btrfs_reloc_clone_csums(inode
, start
,
1033 * Only drop cache here, and process as normal.
1035 * We must not allow extent_clear_unlock_delalloc()
1036 * at out_unlock label to free meta of this ordered
1037 * extent, as its meta should be freed by
1038 * btrfs_finish_ordered_io().
1040 * So we must continue until @start is increased to
1041 * skip current ordered extent.
1044 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1045 start
+ ram_size
- 1, 0);
1048 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1050 /* we're not doing compressed IO, don't unlock the first
1051 * page (which the caller expects to stay locked), don't
1052 * clear any dirty bits and don't set any writeback bits
1054 * Do set the Private2 bit so we know this page was properly
1055 * setup for writepage
1057 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1058 page_ops
|= PAGE_SET_PRIVATE2
;
1060 extent_clear_unlock_delalloc(inode
, start
,
1061 start
+ ram_size
- 1,
1062 delalloc_end
, locked_page
,
1063 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1065 if (num_bytes
< cur_alloc_size
)
1068 num_bytes
-= cur_alloc_size
;
1069 alloc_hint
= ins
.objectid
+ ins
.offset
;
1070 start
+= cur_alloc_size
;
1071 extent_reserved
= false;
1074 * btrfs_reloc_clone_csums() error, since start is increased
1075 * extent_clear_unlock_delalloc() at out_unlock label won't
1076 * free metadata of current ordered extent, we're OK to exit.
1084 out_drop_extent_cache
:
1085 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1087 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1088 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1090 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1091 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1092 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1095 * If we reserved an extent for our delalloc range (or a subrange) and
1096 * failed to create the respective ordered extent, then it means that
1097 * when we reserved the extent we decremented the extent's size from
1098 * the data space_info's bytes_may_use counter and incremented the
1099 * space_info's bytes_reserved counter by the same amount. We must make
1100 * sure extent_clear_unlock_delalloc() does not try to decrement again
1101 * the data space_info's bytes_may_use counter, therefore we do not pass
1102 * it the flag EXTENT_CLEAR_DATA_RESV.
1104 if (extent_reserved
) {
1105 extent_clear_unlock_delalloc(inode
, start
,
1106 start
+ cur_alloc_size
,
1107 start
+ cur_alloc_size
,
1111 start
+= cur_alloc_size
;
1115 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1117 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1123 * work queue call back to started compression on a file and pages
1125 static noinline
void async_cow_start(struct btrfs_work
*work
)
1127 struct async_cow
*async_cow
;
1129 async_cow
= container_of(work
, struct async_cow
, work
);
1131 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1132 async_cow
->start
, async_cow
->end
, async_cow
,
1134 if (num_added
== 0) {
1135 btrfs_add_delayed_iput(async_cow
->inode
);
1136 async_cow
->inode
= NULL
;
1141 * work queue call back to submit previously compressed pages
1143 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1145 struct btrfs_fs_info
*fs_info
;
1146 struct async_cow
*async_cow
;
1147 struct btrfs_root
*root
;
1148 unsigned long nr_pages
;
1150 async_cow
= container_of(work
, struct async_cow
, work
);
1152 root
= async_cow
->root
;
1153 fs_info
= root
->fs_info
;
1154 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1157 /* atomic_sub_return implies a barrier */
1158 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1160 cond_wake_up_nomb(&fs_info
->async_submit_wait
);
1162 if (async_cow
->inode
)
1163 submit_compressed_extents(async_cow
->inode
, async_cow
);
1166 static noinline
void async_cow_free(struct btrfs_work
*work
)
1168 struct async_cow
*async_cow
;
1169 async_cow
= container_of(work
, struct async_cow
, work
);
1170 if (async_cow
->inode
)
1171 btrfs_add_delayed_iput(async_cow
->inode
);
1175 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1176 u64 start
, u64 end
, int *page_started
,
1177 unsigned long *nr_written
,
1178 unsigned int write_flags
)
1180 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1181 struct async_cow
*async_cow
;
1182 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1183 unsigned long nr_pages
;
1186 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1188 while (start
< end
) {
1189 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1190 BUG_ON(!async_cow
); /* -ENOMEM */
1191 async_cow
->inode
= igrab(inode
);
1192 async_cow
->root
= root
;
1193 async_cow
->locked_page
= locked_page
;
1194 async_cow
->start
= start
;
1195 async_cow
->write_flags
= write_flags
;
1197 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1198 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1201 cur_end
= min(end
, start
+ SZ_512K
- 1);
1203 async_cow
->end
= cur_end
;
1204 INIT_LIST_HEAD(&async_cow
->extents
);
1206 btrfs_init_work(&async_cow
->work
,
1207 btrfs_delalloc_helper
,
1208 async_cow_start
, async_cow_submit
,
1211 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1213 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1215 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1217 *nr_written
+= nr_pages
;
1218 start
= cur_end
+ 1;
1224 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1225 u64 bytenr
, u64 num_bytes
)
1228 struct btrfs_ordered_sum
*sums
;
1231 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1232 bytenr
+ num_bytes
- 1, &list
, 0);
1233 if (ret
== 0 && list_empty(&list
))
1236 while (!list_empty(&list
)) {
1237 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1238 list_del(&sums
->list
);
1247 * when nowcow writeback call back. This checks for snapshots or COW copies
1248 * of the extents that exist in the file, and COWs the file as required.
1250 * If no cow copies or snapshots exist, we write directly to the existing
1253 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1254 struct page
*locked_page
,
1255 u64 start
, u64 end
, int *page_started
, int force
,
1256 unsigned long *nr_written
)
1258 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1259 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1260 struct extent_buffer
*leaf
;
1261 struct btrfs_path
*path
;
1262 struct btrfs_file_extent_item
*fi
;
1263 struct btrfs_key found_key
;
1264 struct extent_map
*em
;
1279 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1281 path
= btrfs_alloc_path();
1283 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1285 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1286 EXTENT_DO_ACCOUNTING
|
1287 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1289 PAGE_SET_WRITEBACK
|
1290 PAGE_END_WRITEBACK
);
1294 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1296 cow_start
= (u64
)-1;
1299 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1303 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1304 leaf
= path
->nodes
[0];
1305 btrfs_item_key_to_cpu(leaf
, &found_key
,
1306 path
->slots
[0] - 1);
1307 if (found_key
.objectid
== ino
&&
1308 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1313 leaf
= path
->nodes
[0];
1314 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1315 ret
= btrfs_next_leaf(root
, path
);
1317 if (cow_start
!= (u64
)-1)
1318 cur_offset
= cow_start
;
1323 leaf
= path
->nodes
[0];
1329 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1331 if (found_key
.objectid
> ino
)
1333 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1334 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1338 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1339 found_key
.offset
> end
)
1342 if (found_key
.offset
> cur_offset
) {
1343 extent_end
= found_key
.offset
;
1348 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1349 struct btrfs_file_extent_item
);
1350 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1352 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1353 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1354 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1355 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1356 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1357 extent_end
= found_key
.offset
+
1358 btrfs_file_extent_num_bytes(leaf
, fi
);
1360 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1361 if (extent_end
<= start
) {
1365 if (disk_bytenr
== 0)
1367 if (btrfs_file_extent_compression(leaf
, fi
) ||
1368 btrfs_file_extent_encryption(leaf
, fi
) ||
1369 btrfs_file_extent_other_encoding(leaf
, fi
))
1372 * Do the same check as in btrfs_cross_ref_exist but
1373 * without the unnecessary search.
1375 if (btrfs_file_extent_generation(leaf
, fi
) <=
1376 btrfs_root_last_snapshot(&root
->root_item
))
1378 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1380 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1382 ret
= btrfs_cross_ref_exist(root
, ino
,
1384 extent_offset
, disk_bytenr
);
1387 * ret could be -EIO if the above fails to read
1391 if (cow_start
!= (u64
)-1)
1392 cur_offset
= cow_start
;
1396 WARN_ON_ONCE(nolock
);
1399 disk_bytenr
+= extent_offset
;
1400 disk_bytenr
+= cur_offset
- found_key
.offset
;
1401 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1403 * if there are pending snapshots for this root,
1404 * we fall into common COW way.
1406 if (!nolock
&& atomic_read(&root
->snapshot_force_cow
))
1409 * force cow if csum exists in the range.
1410 * this ensure that csum for a given extent are
1411 * either valid or do not exist.
1413 ret
= csum_exist_in_range(fs_info
, disk_bytenr
,
1417 * ret could be -EIO if the above fails to read
1421 if (cow_start
!= (u64
)-1)
1422 cur_offset
= cow_start
;
1425 WARN_ON_ONCE(nolock
);
1428 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
))
1431 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1432 extent_end
= found_key
.offset
+
1433 btrfs_file_extent_ram_bytes(leaf
, fi
);
1434 extent_end
= ALIGN(extent_end
,
1435 fs_info
->sectorsize
);
1440 if (extent_end
<= start
) {
1443 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1447 if (cow_start
== (u64
)-1)
1448 cow_start
= cur_offset
;
1449 cur_offset
= extent_end
;
1450 if (cur_offset
> end
)
1456 btrfs_release_path(path
);
1457 if (cow_start
!= (u64
)-1) {
1458 ret
= cow_file_range(inode
, locked_page
,
1459 cow_start
, found_key
.offset
- 1,
1460 end
, page_started
, nr_written
, 1,
1464 btrfs_dec_nocow_writers(fs_info
,
1468 cow_start
= (u64
)-1;
1471 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1472 u64 orig_start
= found_key
.offset
- extent_offset
;
1474 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1476 disk_bytenr
, /* block_start */
1477 num_bytes
, /* block_len */
1478 disk_num_bytes
, /* orig_block_len */
1479 ram_bytes
, BTRFS_COMPRESS_NONE
,
1480 BTRFS_ORDERED_PREALLOC
);
1483 btrfs_dec_nocow_writers(fs_info
,
1488 free_extent_map(em
);
1491 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1492 type
= BTRFS_ORDERED_PREALLOC
;
1494 type
= BTRFS_ORDERED_NOCOW
;
1497 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1498 num_bytes
, num_bytes
, type
);
1500 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1501 BUG_ON(ret
); /* -ENOMEM */
1503 if (root
->root_key
.objectid
==
1504 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1506 * Error handled later, as we must prevent
1507 * extent_clear_unlock_delalloc() in error handler
1508 * from freeing metadata of created ordered extent.
1510 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1513 extent_clear_unlock_delalloc(inode
, cur_offset
,
1514 cur_offset
+ num_bytes
- 1, end
,
1515 locked_page
, EXTENT_LOCKED
|
1517 EXTENT_CLEAR_DATA_RESV
,
1518 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1520 cur_offset
= extent_end
;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset
> end
)
1532 btrfs_release_path(path
);
1534 if (cur_offset
<= end
&& cow_start
== (u64
)-1)
1535 cow_start
= cur_offset
;
1537 if (cow_start
!= (u64
)-1) {
1539 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1540 page_started
, nr_written
, 1, NULL
);
1546 if (ret
&& cur_offset
< end
)
1547 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1548 locked_page
, EXTENT_LOCKED
|
1549 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1550 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1552 PAGE_SET_WRITEBACK
|
1553 PAGE_END_WRITEBACK
);
1554 btrfs_free_path(path
);
1558 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1561 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1562 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1566 * @defrag_bytes is a hint value, no spinlock held here,
1567 * if is not zero, it means the file is defragging.
1568 * Force cow if given extent needs to be defragged.
1570 if (BTRFS_I(inode
)->defrag_bytes
&&
1571 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1572 EXTENT_DEFRAG
, 0, NULL
))
1579 * extent_io.c call back to do delayed allocation processing
1581 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1582 u64 start
, u64 end
, int *page_started
,
1583 unsigned long *nr_written
,
1584 struct writeback_control
*wbc
)
1586 struct inode
*inode
= private_data
;
1588 int force_cow
= need_force_cow(inode
, start
, end
);
1589 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1591 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1592 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1593 page_started
, 1, nr_written
);
1594 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1595 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1596 page_started
, 0, nr_written
);
1597 } else if (!inode_need_compress(inode
, start
, end
)) {
1598 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1599 page_started
, nr_written
, 1, NULL
);
1601 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1602 &BTRFS_I(inode
)->runtime_flags
);
1603 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1604 page_started
, nr_written
,
1608 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1612 static void btrfs_split_extent_hook(void *private_data
,
1613 struct extent_state
*orig
, u64 split
)
1615 struct inode
*inode
= private_data
;
1618 /* not delalloc, ignore it */
1619 if (!(orig
->state
& EXTENT_DELALLOC
))
1622 size
= orig
->end
- orig
->start
+ 1;
1623 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1628 * See the explanation in btrfs_merge_extent_hook, the same
1629 * applies here, just in reverse.
1631 new_size
= orig
->end
- split
+ 1;
1632 num_extents
= count_max_extents(new_size
);
1633 new_size
= split
- orig
->start
;
1634 num_extents
+= count_max_extents(new_size
);
1635 if (count_max_extents(size
) >= num_extents
)
1639 spin_lock(&BTRFS_I(inode
)->lock
);
1640 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1641 spin_unlock(&BTRFS_I(inode
)->lock
);
1645 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1646 * extents so we can keep track of new extents that are just merged onto old
1647 * extents, such as when we are doing sequential writes, so we can properly
1648 * account for the metadata space we'll need.
1650 static void btrfs_merge_extent_hook(void *private_data
,
1651 struct extent_state
*new,
1652 struct extent_state
*other
)
1654 struct inode
*inode
= private_data
;
1655 u64 new_size
, old_size
;
1658 /* not delalloc, ignore it */
1659 if (!(other
->state
& EXTENT_DELALLOC
))
1662 if (new->start
> other
->start
)
1663 new_size
= new->end
- other
->start
+ 1;
1665 new_size
= other
->end
- new->start
+ 1;
1667 /* we're not bigger than the max, unreserve the space and go */
1668 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1669 spin_lock(&BTRFS_I(inode
)->lock
);
1670 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1671 spin_unlock(&BTRFS_I(inode
)->lock
);
1676 * We have to add up either side to figure out how many extents were
1677 * accounted for before we merged into one big extent. If the number of
1678 * extents we accounted for is <= the amount we need for the new range
1679 * then we can return, otherwise drop. Think of it like this
1683 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1684 * need 2 outstanding extents, on one side we have 1 and the other side
1685 * we have 1 so they are == and we can return. But in this case
1687 * [MAX_SIZE+4k][MAX_SIZE+4k]
1689 * Each range on their own accounts for 2 extents, but merged together
1690 * they are only 3 extents worth of accounting, so we need to drop in
1693 old_size
= other
->end
- other
->start
+ 1;
1694 num_extents
= count_max_extents(old_size
);
1695 old_size
= new->end
- new->start
+ 1;
1696 num_extents
+= count_max_extents(old_size
);
1697 if (count_max_extents(new_size
) >= num_extents
)
1700 spin_lock(&BTRFS_I(inode
)->lock
);
1701 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1702 spin_unlock(&BTRFS_I(inode
)->lock
);
1705 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1706 struct inode
*inode
)
1708 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1710 spin_lock(&root
->delalloc_lock
);
1711 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1712 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1713 &root
->delalloc_inodes
);
1714 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1715 &BTRFS_I(inode
)->runtime_flags
);
1716 root
->nr_delalloc_inodes
++;
1717 if (root
->nr_delalloc_inodes
== 1) {
1718 spin_lock(&fs_info
->delalloc_root_lock
);
1719 BUG_ON(!list_empty(&root
->delalloc_root
));
1720 list_add_tail(&root
->delalloc_root
,
1721 &fs_info
->delalloc_roots
);
1722 spin_unlock(&fs_info
->delalloc_root_lock
);
1725 spin_unlock(&root
->delalloc_lock
);
1729 void __btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1730 struct btrfs_inode
*inode
)
1732 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1734 if (!list_empty(&inode
->delalloc_inodes
)) {
1735 list_del_init(&inode
->delalloc_inodes
);
1736 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1737 &inode
->runtime_flags
);
1738 root
->nr_delalloc_inodes
--;
1739 if (!root
->nr_delalloc_inodes
) {
1740 ASSERT(list_empty(&root
->delalloc_inodes
));
1741 spin_lock(&fs_info
->delalloc_root_lock
);
1742 BUG_ON(list_empty(&root
->delalloc_root
));
1743 list_del_init(&root
->delalloc_root
);
1744 spin_unlock(&fs_info
->delalloc_root_lock
);
1749 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1750 struct btrfs_inode
*inode
)
1752 spin_lock(&root
->delalloc_lock
);
1753 __btrfs_del_delalloc_inode(root
, inode
);
1754 spin_unlock(&root
->delalloc_lock
);
1758 * extent_io.c set_bit_hook, used to track delayed allocation
1759 * bytes in this file, and to maintain the list of inodes that
1760 * have pending delalloc work to be done.
1762 static void btrfs_set_bit_hook(void *private_data
,
1763 struct extent_state
*state
, unsigned *bits
)
1765 struct inode
*inode
= private_data
;
1767 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1769 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1772 * set_bit and clear bit hooks normally require _irqsave/restore
1773 * but in this case, we are only testing for the DELALLOC
1774 * bit, which is only set or cleared with irqs on
1776 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1777 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1778 u64 len
= state
->end
+ 1 - state
->start
;
1779 u32 num_extents
= count_max_extents(len
);
1780 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1782 spin_lock(&BTRFS_I(inode
)->lock
);
1783 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1784 spin_unlock(&BTRFS_I(inode
)->lock
);
1786 /* For sanity tests */
1787 if (btrfs_is_testing(fs_info
))
1790 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1791 fs_info
->delalloc_batch
);
1792 spin_lock(&BTRFS_I(inode
)->lock
);
1793 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1794 if (*bits
& EXTENT_DEFRAG
)
1795 BTRFS_I(inode
)->defrag_bytes
+= len
;
1796 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1797 &BTRFS_I(inode
)->runtime_flags
))
1798 btrfs_add_delalloc_inodes(root
, inode
);
1799 spin_unlock(&BTRFS_I(inode
)->lock
);
1802 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1803 (*bits
& EXTENT_DELALLOC_NEW
)) {
1804 spin_lock(&BTRFS_I(inode
)->lock
);
1805 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1807 spin_unlock(&BTRFS_I(inode
)->lock
);
1812 * extent_io.c clear_bit_hook, see set_bit_hook for why
1814 static void btrfs_clear_bit_hook(void *private_data
,
1815 struct extent_state
*state
,
1818 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1819 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1820 u64 len
= state
->end
+ 1 - state
->start
;
1821 u32 num_extents
= count_max_extents(len
);
1823 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1824 spin_lock(&inode
->lock
);
1825 inode
->defrag_bytes
-= len
;
1826 spin_unlock(&inode
->lock
);
1830 * set_bit and clear bit hooks normally require _irqsave/restore
1831 * but in this case, we are only testing for the DELALLOC
1832 * bit, which is only set or cleared with irqs on
1834 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1835 struct btrfs_root
*root
= inode
->root
;
1836 bool do_list
= !btrfs_is_free_space_inode(inode
);
1838 spin_lock(&inode
->lock
);
1839 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1840 spin_unlock(&inode
->lock
);
1843 * We don't reserve metadata space for space cache inodes so we
1844 * don't need to call dellalloc_release_metadata if there is an
1847 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1848 root
!= fs_info
->tree_root
)
1849 btrfs_delalloc_release_metadata(inode
, len
, false);
1851 /* For sanity tests. */
1852 if (btrfs_is_testing(fs_info
))
1855 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1856 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1857 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1858 btrfs_free_reserved_data_space_noquota(
1862 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1863 fs_info
->delalloc_batch
);
1864 spin_lock(&inode
->lock
);
1865 inode
->delalloc_bytes
-= len
;
1866 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1868 &inode
->runtime_flags
))
1869 btrfs_del_delalloc_inode(root
, inode
);
1870 spin_unlock(&inode
->lock
);
1873 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1874 (*bits
& EXTENT_DELALLOC_NEW
)) {
1875 spin_lock(&inode
->lock
);
1876 ASSERT(inode
->new_delalloc_bytes
>= len
);
1877 inode
->new_delalloc_bytes
-= len
;
1878 spin_unlock(&inode
->lock
);
1883 * Merge bio hook, this must check the chunk tree to make sure we don't create
1884 * bios that span stripes or chunks
1886 * return 1 if page cannot be merged to bio
1887 * return 0 if page can be merged to bio
1888 * return error otherwise
1890 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1891 size_t size
, struct bio
*bio
,
1892 unsigned long bio_flags
)
1894 struct inode
*inode
= page
->mapping
->host
;
1895 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1896 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1901 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1904 length
= bio
->bi_iter
.bi_size
;
1905 map_length
= length
;
1906 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1910 if (map_length
< length
+ size
)
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1923 static blk_status_t
btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1926 struct inode
*inode
= private_data
;
1927 blk_status_t ret
= 0;
1929 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1930 BUG_ON(ret
); /* -ENOMEM */
1935 * in order to insert checksums into the metadata in large chunks,
1936 * we wait until bio submission time. All the pages in the bio are
1937 * checksummed and sums are attached onto the ordered extent record.
1939 * At IO completion time the cums attached on the ordered extent record
1940 * are inserted into the btree
1942 blk_status_t
btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1945 struct inode
*inode
= private_data
;
1946 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1949 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1951 bio
->bi_status
= ret
;
1958 * extent_io.c submission hook. This does the right thing for csum calculation
1959 * on write, or reading the csums from the tree before a read.
1961 * Rules about async/sync submit,
1962 * a) read: sync submit
1964 * b) write without checksum: sync submit
1966 * c) write with checksum:
1967 * c-1) if bio is issued by fsync: sync submit
1968 * (sync_writers != 0)
1970 * c-2) if root is reloc root: sync submit
1971 * (only in case of buffered IO)
1973 * c-3) otherwise: async submit
1975 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1976 int mirror_num
, unsigned long bio_flags
,
1979 struct inode
*inode
= private_data
;
1980 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1981 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1982 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1983 blk_status_t ret
= 0;
1985 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1987 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1989 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1990 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1992 if (bio_op(bio
) != REQ_OP_WRITE
) {
1993 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1997 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1998 ret
= btrfs_submit_compressed_read(inode
, bio
,
2002 } else if (!skip_sum
) {
2003 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
2008 } else if (async
&& !skip_sum
) {
2009 /* csum items have already been cloned */
2010 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2012 /* we're doing a write, do the async checksumming */
2013 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
2015 btrfs_submit_bio_start
);
2017 } else if (!skip_sum
) {
2018 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2024 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2028 bio
->bi_status
= ret
;
2035 * given a list of ordered sums record them in the inode. This happens
2036 * at IO completion time based on sums calculated at bio submission time.
2038 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2039 struct inode
*inode
, struct list_head
*list
)
2041 struct btrfs_ordered_sum
*sum
;
2044 list_for_each_entry(sum
, list
, list
) {
2045 trans
->adding_csums
= true;
2046 ret
= btrfs_csum_file_blocks(trans
,
2047 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2048 trans
->adding_csums
= false;
2055 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2056 unsigned int extra_bits
,
2057 struct extent_state
**cached_state
, int dedupe
)
2059 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2060 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2061 extra_bits
, cached_state
);
2064 /* see btrfs_writepage_start_hook for details on why this is required */
2065 struct btrfs_writepage_fixup
{
2067 struct btrfs_work work
;
2070 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2072 struct btrfs_writepage_fixup
*fixup
;
2073 struct btrfs_ordered_extent
*ordered
;
2074 struct extent_state
*cached_state
= NULL
;
2075 struct extent_changeset
*data_reserved
= NULL
;
2077 struct inode
*inode
;
2082 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2086 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2087 ClearPageChecked(page
);
2091 inode
= page
->mapping
->host
;
2092 page_start
= page_offset(page
);
2093 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2095 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2098 /* already ordered? We're done */
2099 if (PagePrivate2(page
))
2102 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2105 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2106 page_end
, &cached_state
);
2108 btrfs_start_ordered_extent(inode
, ordered
, 1);
2109 btrfs_put_ordered_extent(ordered
);
2113 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2116 mapping_set_error(page
->mapping
, ret
);
2117 end_extent_writepage(page
, ret
, page_start
, page_end
);
2118 ClearPageChecked(page
);
2122 ret
= btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0,
2125 mapping_set_error(page
->mapping
, ret
);
2126 end_extent_writepage(page
, ret
, page_start
, page_end
);
2127 ClearPageChecked(page
);
2131 ClearPageChecked(page
);
2132 set_page_dirty(page
);
2133 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, false);
2135 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2141 extent_changeset_free(data_reserved
);
2145 * There are a few paths in the higher layers of the kernel that directly
2146 * set the page dirty bit without asking the filesystem if it is a
2147 * good idea. This causes problems because we want to make sure COW
2148 * properly happens and the data=ordered rules are followed.
2150 * In our case any range that doesn't have the ORDERED bit set
2151 * hasn't been properly setup for IO. We kick off an async process
2152 * to fix it up. The async helper will wait for ordered extents, set
2153 * the delalloc bit and make it safe to write the page.
2155 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2157 struct inode
*inode
= page
->mapping
->host
;
2158 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2159 struct btrfs_writepage_fixup
*fixup
;
2161 /* this page is properly in the ordered list */
2162 if (TestClearPagePrivate2(page
))
2165 if (PageChecked(page
))
2168 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2172 SetPageChecked(page
);
2174 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2175 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2177 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2181 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2182 struct inode
*inode
, u64 file_pos
,
2183 u64 disk_bytenr
, u64 disk_num_bytes
,
2184 u64 num_bytes
, u64 ram_bytes
,
2185 u8 compression
, u8 encryption
,
2186 u16 other_encoding
, int extent_type
)
2188 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2189 struct btrfs_file_extent_item
*fi
;
2190 struct btrfs_path
*path
;
2191 struct extent_buffer
*leaf
;
2192 struct btrfs_key ins
;
2194 int extent_inserted
= 0;
2197 path
= btrfs_alloc_path();
2202 * we may be replacing one extent in the tree with another.
2203 * The new extent is pinned in the extent map, and we don't want
2204 * to drop it from the cache until it is completely in the btree.
2206 * So, tell btrfs_drop_extents to leave this extent in the cache.
2207 * the caller is expected to unpin it and allow it to be merged
2210 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2211 file_pos
+ num_bytes
, NULL
, 0,
2212 1, sizeof(*fi
), &extent_inserted
);
2216 if (!extent_inserted
) {
2217 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2218 ins
.offset
= file_pos
;
2219 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2221 path
->leave_spinning
= 1;
2222 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2227 leaf
= path
->nodes
[0];
2228 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2229 struct btrfs_file_extent_item
);
2230 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2231 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2232 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2233 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2234 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2235 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2236 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2237 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2238 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2239 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2241 btrfs_mark_buffer_dirty(leaf
);
2242 btrfs_release_path(path
);
2244 inode_add_bytes(inode
, num_bytes
);
2246 ins
.objectid
= disk_bytenr
;
2247 ins
.offset
= disk_num_bytes
;
2248 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2251 * Release the reserved range from inode dirty range map, as it is
2252 * already moved into delayed_ref_head
2254 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2258 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2259 btrfs_ino(BTRFS_I(inode
)),
2260 file_pos
, qg_released
, &ins
);
2262 btrfs_free_path(path
);
2267 /* snapshot-aware defrag */
2268 struct sa_defrag_extent_backref
{
2269 struct rb_node node
;
2270 struct old_sa_defrag_extent
*old
;
2279 struct old_sa_defrag_extent
{
2280 struct list_head list
;
2281 struct new_sa_defrag_extent
*new;
2290 struct new_sa_defrag_extent
{
2291 struct rb_root root
;
2292 struct list_head head
;
2293 struct btrfs_path
*path
;
2294 struct inode
*inode
;
2302 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2303 struct sa_defrag_extent_backref
*b2
)
2305 if (b1
->root_id
< b2
->root_id
)
2307 else if (b1
->root_id
> b2
->root_id
)
2310 if (b1
->inum
< b2
->inum
)
2312 else if (b1
->inum
> b2
->inum
)
2315 if (b1
->file_pos
< b2
->file_pos
)
2317 else if (b1
->file_pos
> b2
->file_pos
)
2321 * [------------------------------] ===> (a range of space)
2322 * |<--->| |<---->| =============> (fs/file tree A)
2323 * |<---------------------------->| ===> (fs/file tree B)
2325 * A range of space can refer to two file extents in one tree while
2326 * refer to only one file extent in another tree.
2328 * So we may process a disk offset more than one time(two extents in A)
2329 * and locate at the same extent(one extent in B), then insert two same
2330 * backrefs(both refer to the extent in B).
2335 static void backref_insert(struct rb_root
*root
,
2336 struct sa_defrag_extent_backref
*backref
)
2338 struct rb_node
**p
= &root
->rb_node
;
2339 struct rb_node
*parent
= NULL
;
2340 struct sa_defrag_extent_backref
*entry
;
2345 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2347 ret
= backref_comp(backref
, entry
);
2351 p
= &(*p
)->rb_right
;
2354 rb_link_node(&backref
->node
, parent
, p
);
2355 rb_insert_color(&backref
->node
, root
);
2359 * Note the backref might has changed, and in this case we just return 0.
2361 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2364 struct btrfs_file_extent_item
*extent
;
2365 struct old_sa_defrag_extent
*old
= ctx
;
2366 struct new_sa_defrag_extent
*new = old
->new;
2367 struct btrfs_path
*path
= new->path
;
2368 struct btrfs_key key
;
2369 struct btrfs_root
*root
;
2370 struct sa_defrag_extent_backref
*backref
;
2371 struct extent_buffer
*leaf
;
2372 struct inode
*inode
= new->inode
;
2373 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2379 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2380 inum
== btrfs_ino(BTRFS_I(inode
)))
2383 key
.objectid
= root_id
;
2384 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2385 key
.offset
= (u64
)-1;
2387 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2389 if (PTR_ERR(root
) == -ENOENT
)
2392 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2393 inum
, offset
, root_id
);
2394 return PTR_ERR(root
);
2397 key
.objectid
= inum
;
2398 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2399 if (offset
> (u64
)-1 << 32)
2402 key
.offset
= offset
;
2404 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2405 if (WARN_ON(ret
< 0))
2412 leaf
= path
->nodes
[0];
2413 slot
= path
->slots
[0];
2415 if (slot
>= btrfs_header_nritems(leaf
)) {
2416 ret
= btrfs_next_leaf(root
, path
);
2419 } else if (ret
> 0) {
2428 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2430 if (key
.objectid
> inum
)
2433 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2436 extent
= btrfs_item_ptr(leaf
, slot
,
2437 struct btrfs_file_extent_item
);
2439 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2443 * 'offset' refers to the exact key.offset,
2444 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2445 * (key.offset - extent_offset).
2447 if (key
.offset
!= offset
)
2450 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2451 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2453 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2454 old
->len
|| extent_offset
+ num_bytes
<=
2455 old
->extent_offset
+ old
->offset
)
2460 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2466 backref
->root_id
= root_id
;
2467 backref
->inum
= inum
;
2468 backref
->file_pos
= offset
;
2469 backref
->num_bytes
= num_bytes
;
2470 backref
->extent_offset
= extent_offset
;
2471 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2473 backref_insert(&new->root
, backref
);
2476 btrfs_release_path(path
);
2481 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2482 struct new_sa_defrag_extent
*new)
2484 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2485 struct old_sa_defrag_extent
*old
, *tmp
;
2490 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2491 ret
= iterate_inodes_from_logical(old
->bytenr
+
2492 old
->extent_offset
, fs_info
,
2493 path
, record_one_backref
,
2495 if (ret
< 0 && ret
!= -ENOENT
)
2498 /* no backref to be processed for this extent */
2500 list_del(&old
->list
);
2505 if (list_empty(&new->head
))
2511 static int relink_is_mergable(struct extent_buffer
*leaf
,
2512 struct btrfs_file_extent_item
*fi
,
2513 struct new_sa_defrag_extent
*new)
2515 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2518 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2521 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2524 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2525 btrfs_file_extent_other_encoding(leaf
, fi
))
2532 * Note the backref might has changed, and in this case we just return 0.
2534 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2535 struct sa_defrag_extent_backref
*prev
,
2536 struct sa_defrag_extent_backref
*backref
)
2538 struct btrfs_file_extent_item
*extent
;
2539 struct btrfs_file_extent_item
*item
;
2540 struct btrfs_ordered_extent
*ordered
;
2541 struct btrfs_trans_handle
*trans
;
2542 struct btrfs_root
*root
;
2543 struct btrfs_key key
;
2544 struct extent_buffer
*leaf
;
2545 struct old_sa_defrag_extent
*old
= backref
->old
;
2546 struct new_sa_defrag_extent
*new = old
->new;
2547 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2548 struct inode
*inode
;
2549 struct extent_state
*cached
= NULL
;
2558 if (prev
&& prev
->root_id
== backref
->root_id
&&
2559 prev
->inum
== backref
->inum
&&
2560 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2563 /* step 1: get root */
2564 key
.objectid
= backref
->root_id
;
2565 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2566 key
.offset
= (u64
)-1;
2568 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2570 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2572 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2573 if (PTR_ERR(root
) == -ENOENT
)
2575 return PTR_ERR(root
);
2578 if (btrfs_root_readonly(root
)) {
2579 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2583 /* step 2: get inode */
2584 key
.objectid
= backref
->inum
;
2585 key
.type
= BTRFS_INODE_ITEM_KEY
;
2588 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2589 if (IS_ERR(inode
)) {
2590 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2594 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2596 /* step 3: relink backref */
2597 lock_start
= backref
->file_pos
;
2598 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2599 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2602 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2604 btrfs_put_ordered_extent(ordered
);
2608 trans
= btrfs_join_transaction(root
);
2609 if (IS_ERR(trans
)) {
2610 ret
= PTR_ERR(trans
);
2614 key
.objectid
= backref
->inum
;
2615 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2616 key
.offset
= backref
->file_pos
;
2618 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2621 } else if (ret
> 0) {
2626 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2627 struct btrfs_file_extent_item
);
2629 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2630 backref
->generation
)
2633 btrfs_release_path(path
);
2635 start
= backref
->file_pos
;
2636 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2637 start
+= old
->extent_offset
+ old
->offset
-
2638 backref
->extent_offset
;
2640 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2641 old
->extent_offset
+ old
->offset
+ old
->len
);
2642 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2644 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2649 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2650 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2653 path
->leave_spinning
= 1;
2655 struct btrfs_file_extent_item
*fi
;
2657 struct btrfs_key found_key
;
2659 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2664 leaf
= path
->nodes
[0];
2665 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2667 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2668 struct btrfs_file_extent_item
);
2669 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2671 if (extent_len
+ found_key
.offset
== start
&&
2672 relink_is_mergable(leaf
, fi
, new)) {
2673 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2675 btrfs_mark_buffer_dirty(leaf
);
2676 inode_add_bytes(inode
, len
);
2682 btrfs_release_path(path
);
2687 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2690 btrfs_abort_transaction(trans
, ret
);
2694 leaf
= path
->nodes
[0];
2695 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2696 struct btrfs_file_extent_item
);
2697 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2698 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2699 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2700 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2701 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2702 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2703 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2704 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2705 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2706 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2708 btrfs_mark_buffer_dirty(leaf
);
2709 inode_add_bytes(inode
, len
);
2710 btrfs_release_path(path
);
2712 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2714 backref
->root_id
, backref
->inum
,
2715 new->file_pos
); /* start - extent_offset */
2717 btrfs_abort_transaction(trans
, ret
);
2723 btrfs_release_path(path
);
2724 path
->leave_spinning
= 0;
2725 btrfs_end_transaction(trans
);
2727 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2733 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2735 struct old_sa_defrag_extent
*old
, *tmp
;
2740 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2746 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2748 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2749 struct btrfs_path
*path
;
2750 struct sa_defrag_extent_backref
*backref
;
2751 struct sa_defrag_extent_backref
*prev
= NULL
;
2752 struct rb_node
*node
;
2755 path
= btrfs_alloc_path();
2759 if (!record_extent_backrefs(path
, new)) {
2760 btrfs_free_path(path
);
2763 btrfs_release_path(path
);
2766 node
= rb_first(&new->root
);
2769 rb_erase(node
, &new->root
);
2771 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2773 ret
= relink_extent_backref(path
, prev
, backref
);
2786 btrfs_free_path(path
);
2788 free_sa_defrag_extent(new);
2790 atomic_dec(&fs_info
->defrag_running
);
2791 wake_up(&fs_info
->transaction_wait
);
2794 static struct new_sa_defrag_extent
*
2795 record_old_file_extents(struct inode
*inode
,
2796 struct btrfs_ordered_extent
*ordered
)
2798 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2799 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2800 struct btrfs_path
*path
;
2801 struct btrfs_key key
;
2802 struct old_sa_defrag_extent
*old
;
2803 struct new_sa_defrag_extent
*new;
2806 new = kmalloc(sizeof(*new), GFP_NOFS
);
2811 new->file_pos
= ordered
->file_offset
;
2812 new->len
= ordered
->len
;
2813 new->bytenr
= ordered
->start
;
2814 new->disk_len
= ordered
->disk_len
;
2815 new->compress_type
= ordered
->compress_type
;
2816 new->root
= RB_ROOT
;
2817 INIT_LIST_HEAD(&new->head
);
2819 path
= btrfs_alloc_path();
2823 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2824 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2825 key
.offset
= new->file_pos
;
2827 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2830 if (ret
> 0 && path
->slots
[0] > 0)
2833 /* find out all the old extents for the file range */
2835 struct btrfs_file_extent_item
*extent
;
2836 struct extent_buffer
*l
;
2845 slot
= path
->slots
[0];
2847 if (slot
>= btrfs_header_nritems(l
)) {
2848 ret
= btrfs_next_leaf(root
, path
);
2856 btrfs_item_key_to_cpu(l
, &key
, slot
);
2858 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2860 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2862 if (key
.offset
>= new->file_pos
+ new->len
)
2865 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2867 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2868 if (key
.offset
+ num_bytes
< new->file_pos
)
2871 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2875 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2877 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2881 offset
= max(new->file_pos
, key
.offset
);
2882 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2884 old
->bytenr
= disk_bytenr
;
2885 old
->extent_offset
= extent_offset
;
2886 old
->offset
= offset
- key
.offset
;
2887 old
->len
= end
- offset
;
2890 list_add_tail(&old
->list
, &new->head
);
2896 btrfs_free_path(path
);
2897 atomic_inc(&fs_info
->defrag_running
);
2902 btrfs_free_path(path
);
2904 free_sa_defrag_extent(new);
2908 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2911 struct btrfs_block_group_cache
*cache
;
2913 cache
= btrfs_lookup_block_group(fs_info
, start
);
2916 spin_lock(&cache
->lock
);
2917 cache
->delalloc_bytes
-= len
;
2918 spin_unlock(&cache
->lock
);
2920 btrfs_put_block_group(cache
);
2923 /* as ordered data IO finishes, this gets called so we can finish
2924 * an ordered extent if the range of bytes in the file it covers are
2927 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2929 struct inode
*inode
= ordered_extent
->inode
;
2930 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2931 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2932 struct btrfs_trans_handle
*trans
= NULL
;
2933 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2934 struct extent_state
*cached_state
= NULL
;
2935 struct new_sa_defrag_extent
*new = NULL
;
2936 int compress_type
= 0;
2938 u64 logical_len
= ordered_extent
->len
;
2940 bool truncated
= false;
2941 bool range_locked
= false;
2942 bool clear_new_delalloc_bytes
= false;
2943 bool clear_reserved_extent
= true;
2945 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2946 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2947 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2948 clear_new_delalloc_bytes
= true;
2950 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2952 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2957 btrfs_free_io_failure_record(BTRFS_I(inode
),
2958 ordered_extent
->file_offset
,
2959 ordered_extent
->file_offset
+
2960 ordered_extent
->len
- 1);
2962 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2964 logical_len
= ordered_extent
->truncated_len
;
2965 /* Truncated the entire extent, don't bother adding */
2970 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2971 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2974 * For mwrite(mmap + memset to write) case, we still reserve
2975 * space for NOCOW range.
2976 * As NOCOW won't cause a new delayed ref, just free the space
2978 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2979 ordered_extent
->len
);
2980 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2982 trans
= btrfs_join_transaction_nolock(root
);
2984 trans
= btrfs_join_transaction(root
);
2985 if (IS_ERR(trans
)) {
2986 ret
= PTR_ERR(trans
);
2990 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2991 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2992 if (ret
) /* -ENOMEM or corruption */
2993 btrfs_abort_transaction(trans
, ret
);
2997 range_locked
= true;
2998 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2999 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3002 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
3003 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3004 EXTENT_DEFRAG
, 0, cached_state
);
3006 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
3007 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
3008 /* the inode is shared */
3009 new = record_old_file_extents(inode
, ordered_extent
);
3011 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
3012 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
3013 EXTENT_DEFRAG
, 0, 0, &cached_state
);
3017 trans
= btrfs_join_transaction_nolock(root
);
3019 trans
= btrfs_join_transaction(root
);
3020 if (IS_ERR(trans
)) {
3021 ret
= PTR_ERR(trans
);
3026 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3028 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3029 compress_type
= ordered_extent
->compress_type
;
3030 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3031 BUG_ON(compress_type
);
3032 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
3033 ordered_extent
->len
);
3034 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3035 ordered_extent
->file_offset
,
3036 ordered_extent
->file_offset
+
3039 BUG_ON(root
== fs_info
->tree_root
);
3040 ret
= insert_reserved_file_extent(trans
, inode
,
3041 ordered_extent
->file_offset
,
3042 ordered_extent
->start
,
3043 ordered_extent
->disk_len
,
3044 logical_len
, logical_len
,
3045 compress_type
, 0, 0,
3046 BTRFS_FILE_EXTENT_REG
);
3048 clear_reserved_extent
= false;
3049 btrfs_release_delalloc_bytes(fs_info
,
3050 ordered_extent
->start
,
3051 ordered_extent
->disk_len
);
3054 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3055 ordered_extent
->file_offset
, ordered_extent
->len
,
3058 btrfs_abort_transaction(trans
, ret
);
3062 ret
= add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3064 btrfs_abort_transaction(trans
, ret
);
3068 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3069 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3070 if (ret
) { /* -ENOMEM or corruption */
3071 btrfs_abort_transaction(trans
, ret
);
3076 if (range_locked
|| clear_new_delalloc_bytes
) {
3077 unsigned int clear_bits
= 0;
3080 clear_bits
|= EXTENT_LOCKED
;
3081 if (clear_new_delalloc_bytes
)
3082 clear_bits
|= EXTENT_DELALLOC_NEW
;
3083 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3084 ordered_extent
->file_offset
,
3085 ordered_extent
->file_offset
+
3086 ordered_extent
->len
- 1,
3088 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3093 btrfs_end_transaction(trans
);
3095 if (ret
|| truncated
) {
3099 start
= ordered_extent
->file_offset
+ logical_len
;
3101 start
= ordered_extent
->file_offset
;
3102 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3103 clear_extent_uptodate(io_tree
, start
, end
, NULL
);
3105 /* Drop the cache for the part of the extent we didn't write. */
3106 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3109 * If the ordered extent had an IOERR or something else went
3110 * wrong we need to return the space for this ordered extent
3111 * back to the allocator. We only free the extent in the
3112 * truncated case if we didn't write out the extent at all.
3114 * If we made it past insert_reserved_file_extent before we
3115 * errored out then we don't need to do this as the accounting
3116 * has already been done.
3118 if ((ret
|| !logical_len
) &&
3119 clear_reserved_extent
&&
3120 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3121 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3122 btrfs_free_reserved_extent(fs_info
,
3123 ordered_extent
->start
,
3124 ordered_extent
->disk_len
, 1);
3129 * This needs to be done to make sure anybody waiting knows we are done
3130 * updating everything for this ordered extent.
3132 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3134 /* for snapshot-aware defrag */
3137 free_sa_defrag_extent(new);
3138 atomic_dec(&fs_info
->defrag_running
);
3140 relink_file_extents(new);
3145 btrfs_put_ordered_extent(ordered_extent
);
3146 /* once for the tree */
3147 btrfs_put_ordered_extent(ordered_extent
);
3149 /* Try to release some metadata so we don't get an OOM but don't wait */
3150 btrfs_btree_balance_dirty_nodelay(fs_info
);
3155 static void finish_ordered_fn(struct btrfs_work
*work
)
3157 struct btrfs_ordered_extent
*ordered_extent
;
3158 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3159 btrfs_finish_ordered_io(ordered_extent
);
3162 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3163 struct extent_state
*state
, int uptodate
)
3165 struct inode
*inode
= page
->mapping
->host
;
3166 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3167 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3168 struct btrfs_workqueue
*wq
;
3169 btrfs_work_func_t func
;
3171 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3173 ClearPagePrivate2(page
);
3174 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3175 end
- start
+ 1, uptodate
))
3178 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3179 wq
= fs_info
->endio_freespace_worker
;
3180 func
= btrfs_freespace_write_helper
;
3182 wq
= fs_info
->endio_write_workers
;
3183 func
= btrfs_endio_write_helper
;
3186 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3188 btrfs_queue_work(wq
, &ordered_extent
->work
);
3191 static int __readpage_endio_check(struct inode
*inode
,
3192 struct btrfs_io_bio
*io_bio
,
3193 int icsum
, struct page
*page
,
3194 int pgoff
, u64 start
, size_t len
)
3200 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3202 kaddr
= kmap_atomic(page
);
3203 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3204 btrfs_csum_final(csum
, (u8
*)&csum
);
3205 if (csum
!= csum_expected
)
3208 kunmap_atomic(kaddr
);
3211 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3212 io_bio
->mirror_num
);
3213 memset(kaddr
+ pgoff
, 1, len
);
3214 flush_dcache_page(page
);
3215 kunmap_atomic(kaddr
);
3220 * when reads are done, we need to check csums to verify the data is correct
3221 * if there's a match, we allow the bio to finish. If not, the code in
3222 * extent_io.c will try to find good copies for us.
3224 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3225 u64 phy_offset
, struct page
*page
,
3226 u64 start
, u64 end
, int mirror
)
3228 size_t offset
= start
- page_offset(page
);
3229 struct inode
*inode
= page
->mapping
->host
;
3230 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3231 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3233 if (PageChecked(page
)) {
3234 ClearPageChecked(page
);
3238 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3241 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3242 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3243 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3247 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3248 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3249 start
, (size_t)(end
- start
+ 1));
3253 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3255 * @inode: The inode we want to perform iput on
3257 * This function uses the generic vfs_inode::i_count to track whether we should
3258 * just decrement it (in case it's > 1) or if this is the last iput then link
3259 * the inode to the delayed iput machinery. Delayed iputs are processed at
3260 * transaction commit time/superblock commit/cleaner kthread.
3262 void btrfs_add_delayed_iput(struct inode
*inode
)
3264 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3265 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3267 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3270 spin_lock(&fs_info
->delayed_iput_lock
);
3271 ASSERT(list_empty(&binode
->delayed_iput
));
3272 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3273 spin_unlock(&fs_info
->delayed_iput_lock
);
3276 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3279 spin_lock(&fs_info
->delayed_iput_lock
);
3280 while (!list_empty(&fs_info
->delayed_iputs
)) {
3281 struct btrfs_inode
*inode
;
3283 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3284 struct btrfs_inode
, delayed_iput
);
3285 list_del_init(&inode
->delayed_iput
);
3286 spin_unlock(&fs_info
->delayed_iput_lock
);
3287 iput(&inode
->vfs_inode
);
3288 spin_lock(&fs_info
->delayed_iput_lock
);
3290 spin_unlock(&fs_info
->delayed_iput_lock
);
3294 * This creates an orphan entry for the given inode in case something goes wrong
3295 * in the middle of an unlink.
3297 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3298 struct btrfs_inode
*inode
)
3302 ret
= btrfs_insert_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3303 if (ret
&& ret
!= -EEXIST
) {
3304 btrfs_abort_transaction(trans
, ret
);
3312 * We have done the delete so we can go ahead and remove the orphan item for
3313 * this particular inode.
3315 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3316 struct btrfs_inode
*inode
)
3318 return btrfs_del_orphan_item(trans
, inode
->root
, btrfs_ino(inode
));
3322 * this cleans up any orphans that may be left on the list from the last use
3325 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3327 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3328 struct btrfs_path
*path
;
3329 struct extent_buffer
*leaf
;
3330 struct btrfs_key key
, found_key
;
3331 struct btrfs_trans_handle
*trans
;
3332 struct inode
*inode
;
3333 u64 last_objectid
= 0;
3334 int ret
= 0, nr_unlink
= 0;
3336 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3339 path
= btrfs_alloc_path();
3344 path
->reada
= READA_BACK
;
3346 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3347 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3348 key
.offset
= (u64
)-1;
3351 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3356 * if ret == 0 means we found what we were searching for, which
3357 * is weird, but possible, so only screw with path if we didn't
3358 * find the key and see if we have stuff that matches
3362 if (path
->slots
[0] == 0)
3367 /* pull out the item */
3368 leaf
= path
->nodes
[0];
3369 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3371 /* make sure the item matches what we want */
3372 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3374 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3377 /* release the path since we're done with it */
3378 btrfs_release_path(path
);
3381 * this is where we are basically btrfs_lookup, without the
3382 * crossing root thing. we store the inode number in the
3383 * offset of the orphan item.
3386 if (found_key
.offset
== last_objectid
) {
3388 "Error removing orphan entry, stopping orphan cleanup");
3393 last_objectid
= found_key
.offset
;
3395 found_key
.objectid
= found_key
.offset
;
3396 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3397 found_key
.offset
= 0;
3398 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3399 ret
= PTR_ERR_OR_ZERO(inode
);
3400 if (ret
&& ret
!= -ENOENT
)
3403 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3404 struct btrfs_root
*dead_root
;
3405 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3406 int is_dead_root
= 0;
3409 * this is an orphan in the tree root. Currently these
3410 * could come from 2 sources:
3411 * a) a snapshot deletion in progress
3412 * b) a free space cache inode
3413 * We need to distinguish those two, as the snapshot
3414 * orphan must not get deleted.
3415 * find_dead_roots already ran before us, so if this
3416 * is a snapshot deletion, we should find the root
3417 * in the dead_roots list
3419 spin_lock(&fs_info
->trans_lock
);
3420 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3422 if (dead_root
->root_key
.objectid
==
3423 found_key
.objectid
) {
3428 spin_unlock(&fs_info
->trans_lock
);
3430 /* prevent this orphan from being found again */
3431 key
.offset
= found_key
.objectid
- 1;
3438 * If we have an inode with links, there are a couple of
3439 * possibilities. Old kernels (before v3.12) used to create an
3440 * orphan item for truncate indicating that there were possibly
3441 * extent items past i_size that needed to be deleted. In v3.12,
3442 * truncate was changed to update i_size in sync with the extent
3443 * items, but the (useless) orphan item was still created. Since
3444 * v4.18, we don't create the orphan item for truncate at all.
3446 * So, this item could mean that we need to do a truncate, but
3447 * only if this filesystem was last used on a pre-v3.12 kernel
3448 * and was not cleanly unmounted. The odds of that are quite
3449 * slim, and it's a pain to do the truncate now, so just delete
3452 * It's also possible that this orphan item was supposed to be
3453 * deleted but wasn't. The inode number may have been reused,
3454 * but either way, we can delete the orphan item.
3456 if (ret
== -ENOENT
|| inode
->i_nlink
) {
3459 trans
= btrfs_start_transaction(root
, 1);
3460 if (IS_ERR(trans
)) {
3461 ret
= PTR_ERR(trans
);
3464 btrfs_debug(fs_info
, "auto deleting %Lu",
3465 found_key
.objectid
);
3466 ret
= btrfs_del_orphan_item(trans
, root
,
3467 found_key
.objectid
);
3468 btrfs_end_transaction(trans
);
3476 /* this will do delete_inode and everything for us */
3479 /* release the path since we're done with it */
3480 btrfs_release_path(path
);
3482 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3484 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3485 trans
= btrfs_join_transaction(root
);
3487 btrfs_end_transaction(trans
);
3491 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3495 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3496 btrfs_free_path(path
);
3501 * very simple check to peek ahead in the leaf looking for xattrs. If we
3502 * don't find any xattrs, we know there can't be any acls.
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3506 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3507 int slot
, u64 objectid
,
3508 int *first_xattr_slot
)
3510 u32 nritems
= btrfs_header_nritems(leaf
);
3511 struct btrfs_key found_key
;
3512 static u64 xattr_access
= 0;
3513 static u64 xattr_default
= 0;
3516 if (!xattr_access
) {
3517 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3518 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3519 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3520 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3524 *first_xattr_slot
= -1;
3525 while (slot
< nritems
) {
3526 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3528 /* we found a different objectid, there must not be acls */
3529 if (found_key
.objectid
!= objectid
)
3532 /* we found an xattr, assume we've got an acl */
3533 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3534 if (*first_xattr_slot
== -1)
3535 *first_xattr_slot
= slot
;
3536 if (found_key
.offset
== xattr_access
||
3537 found_key
.offset
== xattr_default
)
3542 * we found a key greater than an xattr key, there can't
3543 * be any acls later on
3545 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3552 * it goes inode, inode backrefs, xattrs, extents,
3553 * so if there are a ton of hard links to an inode there can
3554 * be a lot of backrefs. Don't waste time searching too hard,
3555 * this is just an optimization
3560 /* we hit the end of the leaf before we found an xattr or
3561 * something larger than an xattr. We have to assume the inode
3564 if (*first_xattr_slot
== -1)
3565 *first_xattr_slot
= slot
;
3570 * read an inode from the btree into the in-memory inode
3572 static int btrfs_read_locked_inode(struct inode
*inode
,
3573 struct btrfs_path
*in_path
)
3575 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3576 struct btrfs_path
*path
= in_path
;
3577 struct extent_buffer
*leaf
;
3578 struct btrfs_inode_item
*inode_item
;
3579 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3580 struct btrfs_key location
;
3585 bool filled
= false;
3586 int first_xattr_slot
;
3588 ret
= btrfs_fill_inode(inode
, &rdev
);
3593 path
= btrfs_alloc_path();
3598 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3600 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3602 if (path
!= in_path
)
3603 btrfs_free_path(path
);
3607 leaf
= path
->nodes
[0];
3612 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3613 struct btrfs_inode_item
);
3614 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3615 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3616 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3617 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3618 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3620 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3621 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3623 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3624 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3626 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3627 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3629 BTRFS_I(inode
)->i_otime
.tv_sec
=
3630 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3631 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3632 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3634 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3635 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3636 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3638 inode_set_iversion_queried(inode
,
3639 btrfs_inode_sequence(leaf
, inode_item
));
3640 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3642 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3644 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3645 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3649 * If we were modified in the current generation and evicted from memory
3650 * and then re-read we need to do a full sync since we don't have any
3651 * idea about which extents were modified before we were evicted from
3654 * This is required for both inode re-read from disk and delayed inode
3655 * in delayed_nodes_tree.
3657 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3658 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3659 &BTRFS_I(inode
)->runtime_flags
);
3662 * We don't persist the id of the transaction where an unlink operation
3663 * against the inode was last made. So here we assume the inode might
3664 * have been evicted, and therefore the exact value of last_unlink_trans
3665 * lost, and set it to last_trans to avoid metadata inconsistencies
3666 * between the inode and its parent if the inode is fsync'ed and the log
3667 * replayed. For example, in the scenario:
3670 * ln mydir/foo mydir/bar
3673 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3674 * xfs_io -c fsync mydir/foo
3676 * mount fs, triggers fsync log replay
3678 * We must make sure that when we fsync our inode foo we also log its
3679 * parent inode, otherwise after log replay the parent still has the
3680 * dentry with the "bar" name but our inode foo has a link count of 1
3681 * and doesn't have an inode ref with the name "bar" anymore.
3683 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3684 * but it guarantees correctness at the expense of occasional full
3685 * transaction commits on fsync if our inode is a directory, or if our
3686 * inode is not a directory, logging its parent unnecessarily.
3688 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3691 if (inode
->i_nlink
!= 1 ||
3692 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3695 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3696 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3699 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3700 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3701 struct btrfs_inode_ref
*ref
;
3703 ref
= (struct btrfs_inode_ref
*)ptr
;
3704 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3705 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3706 struct btrfs_inode_extref
*extref
;
3708 extref
= (struct btrfs_inode_extref
*)ptr
;
3709 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3714 * try to precache a NULL acl entry for files that don't have
3715 * any xattrs or acls
3717 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3718 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3719 if (first_xattr_slot
!= -1) {
3720 path
->slots
[0] = first_xattr_slot
;
3721 ret
= btrfs_load_inode_props(inode
, path
);
3724 "error loading props for ino %llu (root %llu): %d",
3725 btrfs_ino(BTRFS_I(inode
)),
3726 root
->root_key
.objectid
, ret
);
3728 if (path
!= in_path
)
3729 btrfs_free_path(path
);
3732 cache_no_acl(inode
);
3734 switch (inode
->i_mode
& S_IFMT
) {
3736 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3737 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3738 inode
->i_fop
= &btrfs_file_operations
;
3739 inode
->i_op
= &btrfs_file_inode_operations
;
3742 inode
->i_fop
= &btrfs_dir_file_operations
;
3743 inode
->i_op
= &btrfs_dir_inode_operations
;
3746 inode
->i_op
= &btrfs_symlink_inode_operations
;
3747 inode_nohighmem(inode
);
3748 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3751 inode
->i_op
= &btrfs_special_inode_operations
;
3752 init_special_inode(inode
, inode
->i_mode
, rdev
);
3756 btrfs_sync_inode_flags_to_i_flags(inode
);
3761 * given a leaf and an inode, copy the inode fields into the leaf
3763 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3764 struct extent_buffer
*leaf
,
3765 struct btrfs_inode_item
*item
,
3766 struct inode
*inode
)
3768 struct btrfs_map_token token
;
3770 btrfs_init_map_token(&token
);
3772 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3773 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3774 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3776 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3777 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3779 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3780 inode
->i_atime
.tv_sec
, &token
);
3781 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3782 inode
->i_atime
.tv_nsec
, &token
);
3784 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3785 inode
->i_mtime
.tv_sec
, &token
);
3786 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3787 inode
->i_mtime
.tv_nsec
, &token
);
3789 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3790 inode
->i_ctime
.tv_sec
, &token
);
3791 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3792 inode
->i_ctime
.tv_nsec
, &token
);
3794 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3795 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3796 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3797 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3799 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3801 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3803 btrfs_set_token_inode_sequence(leaf
, item
, inode_peek_iversion(inode
),
3805 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3806 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3807 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3808 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3812 * copy everything in the in-memory inode into the btree.
3814 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3815 struct btrfs_root
*root
, struct inode
*inode
)
3817 struct btrfs_inode_item
*inode_item
;
3818 struct btrfs_path
*path
;
3819 struct extent_buffer
*leaf
;
3822 path
= btrfs_alloc_path();
3826 path
->leave_spinning
= 1;
3827 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3835 leaf
= path
->nodes
[0];
3836 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3837 struct btrfs_inode_item
);
3839 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3840 btrfs_mark_buffer_dirty(leaf
);
3841 btrfs_set_inode_last_trans(trans
, inode
);
3844 btrfs_free_path(path
);
3849 * copy everything in the in-memory inode into the btree.
3851 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3852 struct btrfs_root
*root
, struct inode
*inode
)
3854 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3858 * If the inode is a free space inode, we can deadlock during commit
3859 * if we put it into the delayed code.
3861 * The data relocation inode should also be directly updated
3864 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
3865 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
3866 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
3867 btrfs_update_root_times(trans
, root
);
3869 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
3871 btrfs_set_inode_last_trans(trans
, inode
);
3875 return btrfs_update_inode_item(trans
, root
, inode
);
3878 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
3879 struct btrfs_root
*root
,
3880 struct inode
*inode
)
3884 ret
= btrfs_update_inode(trans
, root
, inode
);
3886 return btrfs_update_inode_item(trans
, root
, inode
);
3891 * unlink helper that gets used here in inode.c and in the tree logging
3892 * recovery code. It remove a link in a directory with a given name, and
3893 * also drops the back refs in the inode to the directory
3895 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3896 struct btrfs_root
*root
,
3897 struct btrfs_inode
*dir
,
3898 struct btrfs_inode
*inode
,
3899 const char *name
, int name_len
)
3901 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3902 struct btrfs_path
*path
;
3904 struct extent_buffer
*leaf
;
3905 struct btrfs_dir_item
*di
;
3906 struct btrfs_key key
;
3908 u64 ino
= btrfs_ino(inode
);
3909 u64 dir_ino
= btrfs_ino(dir
);
3911 path
= btrfs_alloc_path();
3917 path
->leave_spinning
= 1;
3918 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
3919 name
, name_len
, -1);
3920 if (IS_ERR_OR_NULL(di
)) {
3921 ret
= di
? PTR_ERR(di
) : -ENOENT
;
3924 leaf
= path
->nodes
[0];
3925 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
3926 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
3929 btrfs_release_path(path
);
3932 * If we don't have dir index, we have to get it by looking up
3933 * the inode ref, since we get the inode ref, remove it directly,
3934 * it is unnecessary to do delayed deletion.
3936 * But if we have dir index, needn't search inode ref to get it.
3937 * Since the inode ref is close to the inode item, it is better
3938 * that we delay to delete it, and just do this deletion when
3939 * we update the inode item.
3941 if (inode
->dir_index
) {
3942 ret
= btrfs_delayed_delete_inode_ref(inode
);
3944 index
= inode
->dir_index
;
3949 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
3953 "failed to delete reference to %.*s, inode %llu parent %llu",
3954 name_len
, name
, ino
, dir_ino
);
3955 btrfs_abort_transaction(trans
, ret
);
3959 ret
= btrfs_delete_delayed_dir_index(trans
, dir
, index
);
3961 btrfs_abort_transaction(trans
, ret
);
3965 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
3967 if (ret
!= 0 && ret
!= -ENOENT
) {
3968 btrfs_abort_transaction(trans
, ret
);
3972 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
3977 btrfs_abort_transaction(trans
, ret
);
3979 btrfs_free_path(path
);
3983 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
3984 inode_inc_iversion(&inode
->vfs_inode
);
3985 inode_inc_iversion(&dir
->vfs_inode
);
3986 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
3987 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
3988 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
3993 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
3994 struct btrfs_root
*root
,
3995 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
3996 const char *name
, int name_len
)
3999 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4001 drop_nlink(&inode
->vfs_inode
);
4002 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4008 * helper to start transaction for unlink and rmdir.
4010 * unlink and rmdir are special in btrfs, they do not always free space, so
4011 * if we cannot make our reservations the normal way try and see if there is
4012 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4013 * allow the unlink to occur.
4015 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4017 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4020 * 1 for the possible orphan item
4021 * 1 for the dir item
4022 * 1 for the dir index
4023 * 1 for the inode ref
4026 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4029 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4031 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4032 struct btrfs_trans_handle
*trans
;
4033 struct inode
*inode
= d_inode(dentry
);
4036 trans
= __unlink_start_trans(dir
);
4038 return PTR_ERR(trans
);
4040 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4043 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4044 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4045 dentry
->d_name
.len
);
4049 if (inode
->i_nlink
== 0) {
4050 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4056 btrfs_end_transaction(trans
);
4057 btrfs_btree_balance_dirty(root
->fs_info
);
4061 static int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4062 struct inode
*dir
, u64 objectid
,
4063 const char *name
, int name_len
)
4065 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4066 struct btrfs_path
*path
;
4067 struct extent_buffer
*leaf
;
4068 struct btrfs_dir_item
*di
;
4069 struct btrfs_key key
;
4072 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4074 path
= btrfs_alloc_path();
4078 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4079 name
, name_len
, -1);
4080 if (IS_ERR_OR_NULL(di
)) {
4081 ret
= di
? PTR_ERR(di
) : -ENOENT
;
4085 leaf
= path
->nodes
[0];
4086 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4087 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4088 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4090 btrfs_abort_transaction(trans
, ret
);
4093 btrfs_release_path(path
);
4095 ret
= btrfs_del_root_ref(trans
, objectid
, root
->root_key
.objectid
,
4096 dir_ino
, &index
, name
, name_len
);
4098 if (ret
!= -ENOENT
) {
4099 btrfs_abort_transaction(trans
, ret
);
4102 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4104 if (IS_ERR_OR_NULL(di
)) {
4109 btrfs_abort_transaction(trans
, ret
);
4113 leaf
= path
->nodes
[0];
4114 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4117 btrfs_release_path(path
);
4119 ret
= btrfs_delete_delayed_dir_index(trans
, BTRFS_I(dir
), index
);
4121 btrfs_abort_transaction(trans
, ret
);
4125 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4126 inode_inc_iversion(dir
);
4127 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4128 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4130 btrfs_abort_transaction(trans
, ret
);
4132 btrfs_free_path(path
);
4137 * Helper to check if the subvolume references other subvolumes or if it's
4140 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
4142 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4143 struct btrfs_path
*path
;
4144 struct btrfs_dir_item
*di
;
4145 struct btrfs_key key
;
4149 path
= btrfs_alloc_path();
4153 /* Make sure this root isn't set as the default subvol */
4154 dir_id
= btrfs_super_root_dir(fs_info
->super_copy
);
4155 di
= btrfs_lookup_dir_item(NULL
, fs_info
->tree_root
, path
,
4156 dir_id
, "default", 7, 0);
4157 if (di
&& !IS_ERR(di
)) {
4158 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
4159 if (key
.objectid
== root
->root_key
.objectid
) {
4162 "deleting default subvolume %llu is not allowed",
4166 btrfs_release_path(path
);
4169 key
.objectid
= root
->root_key
.objectid
;
4170 key
.type
= BTRFS_ROOT_REF_KEY
;
4171 key
.offset
= (u64
)-1;
4173 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4179 if (path
->slots
[0] > 0) {
4181 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
4182 if (key
.objectid
== root
->root_key
.objectid
&&
4183 key
.type
== BTRFS_ROOT_REF_KEY
)
4187 btrfs_free_path(path
);
4191 /* Delete all dentries for inodes belonging to the root */
4192 static void btrfs_prune_dentries(struct btrfs_root
*root
)
4194 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4195 struct rb_node
*node
;
4196 struct rb_node
*prev
;
4197 struct btrfs_inode
*entry
;
4198 struct inode
*inode
;
4201 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
4202 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
4204 spin_lock(&root
->inode_lock
);
4206 node
= root
->inode_tree
.rb_node
;
4210 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4212 if (objectid
< btrfs_ino(entry
))
4213 node
= node
->rb_left
;
4214 else if (objectid
> btrfs_ino(entry
))
4215 node
= node
->rb_right
;
4221 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
4222 if (objectid
<= btrfs_ino(entry
)) {
4226 prev
= rb_next(prev
);
4230 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
4231 objectid
= btrfs_ino(entry
) + 1;
4232 inode
= igrab(&entry
->vfs_inode
);
4234 spin_unlock(&root
->inode_lock
);
4235 if (atomic_read(&inode
->i_count
) > 1)
4236 d_prune_aliases(inode
);
4238 * btrfs_drop_inode will have it removed from the inode
4239 * cache when its usage count hits zero.
4243 spin_lock(&root
->inode_lock
);
4247 if (cond_resched_lock(&root
->inode_lock
))
4250 node
= rb_next(node
);
4252 spin_unlock(&root
->inode_lock
);
4255 int btrfs_delete_subvolume(struct inode
*dir
, struct dentry
*dentry
)
4257 struct btrfs_fs_info
*fs_info
= btrfs_sb(dentry
->d_sb
);
4258 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4259 struct inode
*inode
= d_inode(dentry
);
4260 struct btrfs_root
*dest
= BTRFS_I(inode
)->root
;
4261 struct btrfs_trans_handle
*trans
;
4262 struct btrfs_block_rsv block_rsv
;
4268 * Don't allow to delete a subvolume with send in progress. This is
4269 * inside the inode lock so the error handling that has to drop the bit
4270 * again is not run concurrently.
4272 spin_lock(&dest
->root_item_lock
);
4273 if (dest
->send_in_progress
) {
4274 spin_unlock(&dest
->root_item_lock
);
4276 "attempt to delete subvolume %llu during send",
4277 dest
->root_key
.objectid
);
4280 root_flags
= btrfs_root_flags(&dest
->root_item
);
4281 btrfs_set_root_flags(&dest
->root_item
,
4282 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
4283 spin_unlock(&dest
->root_item_lock
);
4285 down_write(&fs_info
->subvol_sem
);
4287 err
= may_destroy_subvol(dest
);
4291 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
4293 * One for dir inode,
4294 * two for dir entries,
4295 * two for root ref/backref.
4297 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
, 5, true);
4301 trans
= btrfs_start_transaction(root
, 0);
4302 if (IS_ERR(trans
)) {
4303 err
= PTR_ERR(trans
);
4306 trans
->block_rsv
= &block_rsv
;
4307 trans
->bytes_reserved
= block_rsv
.size
;
4309 btrfs_record_snapshot_destroy(trans
, BTRFS_I(dir
));
4311 ret
= btrfs_unlink_subvol(trans
, dir
, dest
->root_key
.objectid
,
4312 dentry
->d_name
.name
, dentry
->d_name
.len
);
4315 btrfs_abort_transaction(trans
, ret
);
4319 btrfs_record_root_in_trans(trans
, dest
);
4321 memset(&dest
->root_item
.drop_progress
, 0,
4322 sizeof(dest
->root_item
.drop_progress
));
4323 dest
->root_item
.drop_level
= 0;
4324 btrfs_set_root_refs(&dest
->root_item
, 0);
4326 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
4327 ret
= btrfs_insert_orphan_item(trans
,
4329 dest
->root_key
.objectid
);
4331 btrfs_abort_transaction(trans
, ret
);
4337 ret
= btrfs_uuid_tree_remove(trans
, dest
->root_item
.uuid
,
4338 BTRFS_UUID_KEY_SUBVOL
,
4339 dest
->root_key
.objectid
);
4340 if (ret
&& ret
!= -ENOENT
) {
4341 btrfs_abort_transaction(trans
, ret
);
4345 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
4346 ret
= btrfs_uuid_tree_remove(trans
,
4347 dest
->root_item
.received_uuid
,
4348 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4349 dest
->root_key
.objectid
);
4350 if (ret
&& ret
!= -ENOENT
) {
4351 btrfs_abort_transaction(trans
, ret
);
4358 trans
->block_rsv
= NULL
;
4359 trans
->bytes_reserved
= 0;
4360 ret
= btrfs_end_transaction(trans
);
4363 inode
->i_flags
|= S_DEAD
;
4365 btrfs_subvolume_release_metadata(fs_info
, &block_rsv
);
4367 up_write(&fs_info
->subvol_sem
);
4369 spin_lock(&dest
->root_item_lock
);
4370 root_flags
= btrfs_root_flags(&dest
->root_item
);
4371 btrfs_set_root_flags(&dest
->root_item
,
4372 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
4373 spin_unlock(&dest
->root_item_lock
);
4375 d_invalidate(dentry
);
4376 btrfs_prune_dentries(dest
);
4377 ASSERT(dest
->send_in_progress
== 0);
4380 if (dest
->ino_cache_inode
) {
4381 iput(dest
->ino_cache_inode
);
4382 dest
->ino_cache_inode
= NULL
;
4389 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4391 struct inode
*inode
= d_inode(dentry
);
4393 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4394 struct btrfs_trans_handle
*trans
;
4395 u64 last_unlink_trans
;
4397 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4399 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4400 return btrfs_delete_subvolume(dir
, dentry
);
4402 trans
= __unlink_start_trans(dir
);
4404 return PTR_ERR(trans
);
4406 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4407 err
= btrfs_unlink_subvol(trans
, dir
,
4408 BTRFS_I(inode
)->location
.objectid
,
4409 dentry
->d_name
.name
,
4410 dentry
->d_name
.len
);
4414 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4418 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4420 /* now the directory is empty */
4421 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4422 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4423 dentry
->d_name
.len
);
4425 btrfs_i_size_write(BTRFS_I(inode
), 0);
4427 * Propagate the last_unlink_trans value of the deleted dir to
4428 * its parent directory. This is to prevent an unrecoverable
4429 * log tree in the case we do something like this:
4431 * 2) create snapshot under dir foo
4432 * 3) delete the snapshot
4435 * 6) fsync foo or some file inside foo
4437 if (last_unlink_trans
>= trans
->transid
)
4438 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4441 btrfs_end_transaction(trans
);
4442 btrfs_btree_balance_dirty(root
->fs_info
);
4447 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4448 struct btrfs_root
*root
,
4451 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4455 * This is only used to apply pressure to the enospc system, we don't
4456 * intend to use this reservation at all.
4458 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4459 bytes_deleted
*= fs_info
->nodesize
;
4460 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4461 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4463 trace_btrfs_space_reservation(fs_info
, "transaction",
4466 trans
->bytes_reserved
+= bytes_deleted
;
4473 * Return this if we need to call truncate_block for the last bit of the
4476 #define NEED_TRUNCATE_BLOCK 1
4479 * this can truncate away extent items, csum items and directory items.
4480 * It starts at a high offset and removes keys until it can't find
4481 * any higher than new_size
4483 * csum items that cross the new i_size are truncated to the new size
4486 * min_type is the minimum key type to truncate down to. If set to 0, this
4487 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4489 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4490 struct btrfs_root
*root
,
4491 struct inode
*inode
,
4492 u64 new_size
, u32 min_type
)
4494 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4495 struct btrfs_path
*path
;
4496 struct extent_buffer
*leaf
;
4497 struct btrfs_file_extent_item
*fi
;
4498 struct btrfs_key key
;
4499 struct btrfs_key found_key
;
4500 u64 extent_start
= 0;
4501 u64 extent_num_bytes
= 0;
4502 u64 extent_offset
= 0;
4504 u64 last_size
= new_size
;
4505 u32 found_type
= (u8
)-1;
4508 int pending_del_nr
= 0;
4509 int pending_del_slot
= 0;
4510 int extent_type
= -1;
4512 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4513 u64 bytes_deleted
= 0;
4514 bool be_nice
= false;
4515 bool should_throttle
= false;
4516 bool should_end
= false;
4518 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4521 * for non-free space inodes and ref cows, we want to back off from
4524 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4525 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4528 path
= btrfs_alloc_path();
4531 path
->reada
= READA_BACK
;
4534 * We want to drop from the next block forward in case this new size is
4535 * not block aligned since we will be keeping the last block of the
4536 * extent just the way it is.
4538 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4539 root
== fs_info
->tree_root
)
4540 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4541 fs_info
->sectorsize
),
4545 * This function is also used to drop the items in the log tree before
4546 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4547 * it is used to drop the loged items. So we shouldn't kill the delayed
4550 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4551 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4554 key
.offset
= (u64
)-1;
4559 * with a 16K leaf size and 128MB extents, you can actually queue
4560 * up a huge file in a single leaf. Most of the time that
4561 * bytes_deleted is > 0, it will be huge by the time we get here
4563 if (be_nice
&& bytes_deleted
> SZ_32M
&&
4564 btrfs_should_end_transaction(trans
)) {
4569 path
->leave_spinning
= 1;
4570 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4576 /* there are no items in the tree for us to truncate, we're
4579 if (path
->slots
[0] == 0)
4586 leaf
= path
->nodes
[0];
4587 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4588 found_type
= found_key
.type
;
4590 if (found_key
.objectid
!= ino
)
4593 if (found_type
< min_type
)
4596 item_end
= found_key
.offset
;
4597 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4598 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4599 struct btrfs_file_extent_item
);
4600 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4601 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4603 btrfs_file_extent_num_bytes(leaf
, fi
);
4605 trace_btrfs_truncate_show_fi_regular(
4606 BTRFS_I(inode
), leaf
, fi
,
4608 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4609 item_end
+= btrfs_file_extent_ram_bytes(leaf
,
4612 trace_btrfs_truncate_show_fi_inline(
4613 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4618 if (found_type
> min_type
) {
4621 if (item_end
< new_size
)
4623 if (found_key
.offset
>= new_size
)
4629 /* FIXME, shrink the extent if the ref count is only 1 */
4630 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4633 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4635 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4637 u64 orig_num_bytes
=
4638 btrfs_file_extent_num_bytes(leaf
, fi
);
4639 extent_num_bytes
= ALIGN(new_size
-
4641 fs_info
->sectorsize
);
4642 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4644 num_dec
= (orig_num_bytes
-
4646 if (test_bit(BTRFS_ROOT_REF_COWS
,
4649 inode_sub_bytes(inode
, num_dec
);
4650 btrfs_mark_buffer_dirty(leaf
);
4653 btrfs_file_extent_disk_num_bytes(leaf
,
4655 extent_offset
= found_key
.offset
-
4656 btrfs_file_extent_offset(leaf
, fi
);
4658 /* FIXME blocksize != 4096 */
4659 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4660 if (extent_start
!= 0) {
4662 if (test_bit(BTRFS_ROOT_REF_COWS
,
4664 inode_sub_bytes(inode
, num_dec
);
4667 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4669 * we can't truncate inline items that have had
4673 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4674 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4675 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4676 u32 size
= (u32
)(new_size
- found_key
.offset
);
4678 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4679 size
= btrfs_file_extent_calc_inline_size(size
);
4680 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4681 } else if (!del_item
) {
4683 * We have to bail so the last_size is set to
4684 * just before this extent.
4686 ret
= NEED_TRUNCATE_BLOCK
;
4690 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4691 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4695 last_size
= found_key
.offset
;
4697 last_size
= new_size
;
4699 if (!pending_del_nr
) {
4700 /* no pending yet, add ourselves */
4701 pending_del_slot
= path
->slots
[0];
4703 } else if (pending_del_nr
&&
4704 path
->slots
[0] + 1 == pending_del_slot
) {
4705 /* hop on the pending chunk */
4707 pending_del_slot
= path
->slots
[0];
4714 should_throttle
= false;
4717 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4718 root
== fs_info
->tree_root
)) {
4719 btrfs_set_path_blocking(path
);
4720 bytes_deleted
+= extent_num_bytes
;
4721 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4722 extent_num_bytes
, 0,
4723 btrfs_header_owner(leaf
),
4724 ino
, extent_offset
);
4726 btrfs_abort_transaction(trans
, ret
);
4729 if (btrfs_should_throttle_delayed_refs(trans
))
4730 btrfs_async_run_delayed_refs(fs_info
,
4731 trans
->delayed_ref_updates
* 2,
4734 if (truncate_space_check(trans
, root
,
4735 extent_num_bytes
)) {
4738 if (btrfs_should_throttle_delayed_refs(trans
))
4739 should_throttle
= true;
4743 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4746 if (path
->slots
[0] == 0 ||
4747 path
->slots
[0] != pending_del_slot
||
4748 should_throttle
|| should_end
) {
4749 if (pending_del_nr
) {
4750 ret
= btrfs_del_items(trans
, root
, path
,
4754 btrfs_abort_transaction(trans
, ret
);
4759 btrfs_release_path(path
);
4760 if (should_throttle
) {
4761 unsigned long updates
= trans
->delayed_ref_updates
;
4763 trans
->delayed_ref_updates
= 0;
4764 ret
= btrfs_run_delayed_refs(trans
,
4771 * if we failed to refill our space rsv, bail out
4772 * and let the transaction restart
4784 if (ret
>= 0 && pending_del_nr
) {
4787 err
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4790 btrfs_abort_transaction(trans
, err
);
4794 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4795 ASSERT(last_size
>= new_size
);
4796 if (!ret
&& last_size
> new_size
)
4797 last_size
= new_size
;
4798 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4801 btrfs_free_path(path
);
4803 if (be_nice
&& bytes_deleted
> SZ_32M
&& (ret
>= 0 || ret
== -EAGAIN
)) {
4804 unsigned long updates
= trans
->delayed_ref_updates
;
4808 trans
->delayed_ref_updates
= 0;
4809 err
= btrfs_run_delayed_refs(trans
, updates
* 2);
4818 * btrfs_truncate_block - read, zero a chunk and write a block
4819 * @inode - inode that we're zeroing
4820 * @from - the offset to start zeroing
4821 * @len - the length to zero, 0 to zero the entire range respective to the
4823 * @front - zero up to the offset instead of from the offset on
4825 * This will find the block for the "from" offset and cow the block and zero the
4826 * part we want to zero. This is used with truncate and hole punching.
4828 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4831 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4832 struct address_space
*mapping
= inode
->i_mapping
;
4833 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4834 struct btrfs_ordered_extent
*ordered
;
4835 struct extent_state
*cached_state
= NULL
;
4836 struct extent_changeset
*data_reserved
= NULL
;
4838 u32 blocksize
= fs_info
->sectorsize
;
4839 pgoff_t index
= from
>> PAGE_SHIFT
;
4840 unsigned offset
= from
& (blocksize
- 1);
4842 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4847 if (IS_ALIGNED(offset
, blocksize
) &&
4848 (!len
|| IS_ALIGNED(len
, blocksize
)))
4851 block_start
= round_down(from
, blocksize
);
4852 block_end
= block_start
+ blocksize
- 1;
4854 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4855 block_start
, blocksize
);
4860 page
= find_or_create_page(mapping
, index
, mask
);
4862 btrfs_delalloc_release_space(inode
, data_reserved
,
4863 block_start
, blocksize
, true);
4864 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, true);
4869 if (!PageUptodate(page
)) {
4870 ret
= btrfs_readpage(NULL
, page
);
4872 if (page
->mapping
!= mapping
) {
4877 if (!PageUptodate(page
)) {
4882 wait_on_page_writeback(page
);
4884 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4885 set_page_extent_mapped(page
);
4887 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4889 unlock_extent_cached(io_tree
, block_start
, block_end
,
4893 btrfs_start_ordered_extent(inode
, ordered
, 1);
4894 btrfs_put_ordered_extent(ordered
);
4898 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4899 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4900 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4901 0, 0, &cached_state
);
4903 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4906 unlock_extent_cached(io_tree
, block_start
, block_end
,
4911 if (offset
!= blocksize
) {
4913 len
= blocksize
- offset
;
4916 memset(kaddr
+ (block_start
- page_offset(page
)),
4919 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4921 flush_dcache_page(page
);
4924 ClearPageChecked(page
);
4925 set_page_dirty(page
);
4926 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
);
4930 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4932 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
, (ret
!= 0));
4936 extent_changeset_free(data_reserved
);
4940 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4941 u64 offset
, u64 len
)
4943 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4944 struct btrfs_trans_handle
*trans
;
4948 * Still need to make sure the inode looks like it's been updated so
4949 * that any holes get logged if we fsync.
4951 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4952 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4953 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4954 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4959 * 1 - for the one we're dropping
4960 * 1 - for the one we're adding
4961 * 1 - for updating the inode.
4963 trans
= btrfs_start_transaction(root
, 3);
4965 return PTR_ERR(trans
);
4967 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4969 btrfs_abort_transaction(trans
, ret
);
4970 btrfs_end_transaction(trans
);
4974 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4975 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4977 btrfs_abort_transaction(trans
, ret
);
4979 btrfs_update_inode(trans
, root
, inode
);
4980 btrfs_end_transaction(trans
);
4985 * This function puts in dummy file extents for the area we're creating a hole
4986 * for. So if we are truncating this file to a larger size we need to insert
4987 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4988 * the range between oldsize and size
4990 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4992 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4993 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4994 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4995 struct extent_map
*em
= NULL
;
4996 struct extent_state
*cached_state
= NULL
;
4997 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4998 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4999 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
5006 * If our size started in the middle of a block we need to zero out the
5007 * rest of the block before we expand the i_size, otherwise we could
5008 * expose stale data.
5010 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
5014 if (size
<= hole_start
)
5018 struct btrfs_ordered_extent
*ordered
;
5020 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
5022 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
5023 block_end
- hole_start
);
5026 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
5028 btrfs_start_ordered_extent(inode
, ordered
, 1);
5029 btrfs_put_ordered_extent(ordered
);
5032 cur_offset
= hole_start
;
5034 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
5035 block_end
- cur_offset
, 0);
5041 last_byte
= min(extent_map_end(em
), block_end
);
5042 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
5043 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
5044 struct extent_map
*hole_em
;
5045 hole_size
= last_byte
- cur_offset
;
5047 err
= maybe_insert_hole(root
, inode
, cur_offset
,
5051 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
5052 cur_offset
+ hole_size
- 1, 0);
5053 hole_em
= alloc_extent_map();
5055 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5056 &BTRFS_I(inode
)->runtime_flags
);
5059 hole_em
->start
= cur_offset
;
5060 hole_em
->len
= hole_size
;
5061 hole_em
->orig_start
= cur_offset
;
5063 hole_em
->block_start
= EXTENT_MAP_HOLE
;
5064 hole_em
->block_len
= 0;
5065 hole_em
->orig_block_len
= 0;
5066 hole_em
->ram_bytes
= hole_size
;
5067 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
5068 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
5069 hole_em
->generation
= fs_info
->generation
;
5072 write_lock(&em_tree
->lock
);
5073 err
= add_extent_mapping(em_tree
, hole_em
, 1);
5074 write_unlock(&em_tree
->lock
);
5077 btrfs_drop_extent_cache(BTRFS_I(inode
),
5082 free_extent_map(hole_em
);
5085 free_extent_map(em
);
5087 cur_offset
= last_byte
;
5088 if (cur_offset
>= block_end
)
5091 free_extent_map(em
);
5092 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
);
5096 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
5098 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5099 struct btrfs_trans_handle
*trans
;
5100 loff_t oldsize
= i_size_read(inode
);
5101 loff_t newsize
= attr
->ia_size
;
5102 int mask
= attr
->ia_valid
;
5106 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5107 * special case where we need to update the times despite not having
5108 * these flags set. For all other operations the VFS set these flags
5109 * explicitly if it wants a timestamp update.
5111 if (newsize
!= oldsize
) {
5112 inode_inc_iversion(inode
);
5113 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5114 inode
->i_ctime
= inode
->i_mtime
=
5115 current_time(inode
);
5118 if (newsize
> oldsize
) {
5120 * Don't do an expanding truncate while snapshotting is ongoing.
5121 * This is to ensure the snapshot captures a fully consistent
5122 * state of this file - if the snapshot captures this expanding
5123 * truncation, it must capture all writes that happened before
5126 btrfs_wait_for_snapshot_creation(root
);
5127 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5129 btrfs_end_write_no_snapshotting(root
);
5133 trans
= btrfs_start_transaction(root
, 1);
5134 if (IS_ERR(trans
)) {
5135 btrfs_end_write_no_snapshotting(root
);
5136 return PTR_ERR(trans
);
5139 i_size_write(inode
, newsize
);
5140 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5141 pagecache_isize_extended(inode
, oldsize
, newsize
);
5142 ret
= btrfs_update_inode(trans
, root
, inode
);
5143 btrfs_end_write_no_snapshotting(root
);
5144 btrfs_end_transaction(trans
);
5148 * We're truncating a file that used to have good data down to
5149 * zero. Make sure it gets into the ordered flush list so that
5150 * any new writes get down to disk quickly.
5153 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5154 &BTRFS_I(inode
)->runtime_flags
);
5156 truncate_setsize(inode
, newsize
);
5158 /* Disable nonlocked read DIO to avoid the end less truncate */
5159 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5160 inode_dio_wait(inode
);
5161 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5163 ret
= btrfs_truncate(inode
, newsize
== oldsize
);
5164 if (ret
&& inode
->i_nlink
) {
5168 * Truncate failed, so fix up the in-memory size. We
5169 * adjusted disk_i_size down as we removed extents, so
5170 * wait for disk_i_size to be stable and then update the
5171 * in-memory size to match.
5173 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5176 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5183 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5185 struct inode
*inode
= d_inode(dentry
);
5186 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5189 if (btrfs_root_readonly(root
))
5192 err
= setattr_prepare(dentry
, attr
);
5196 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5197 err
= btrfs_setsize(inode
, attr
);
5202 if (attr
->ia_valid
) {
5203 setattr_copy(inode
, attr
);
5204 inode_inc_iversion(inode
);
5205 err
= btrfs_dirty_inode(inode
);
5207 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5208 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5215 * While truncating the inode pages during eviction, we get the VFS calling
5216 * btrfs_invalidatepage() against each page of the inode. This is slow because
5217 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5218 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5219 * extent_state structures over and over, wasting lots of time.
5221 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5222 * those expensive operations on a per page basis and do only the ordered io
5223 * finishing, while we release here the extent_map and extent_state structures,
5224 * without the excessive merging and splitting.
5226 static void evict_inode_truncate_pages(struct inode
*inode
)
5228 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5229 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5230 struct rb_node
*node
;
5232 ASSERT(inode
->i_state
& I_FREEING
);
5233 truncate_inode_pages_final(&inode
->i_data
);
5235 write_lock(&map_tree
->lock
);
5236 while (!RB_EMPTY_ROOT(&map_tree
->map
.rb_root
)) {
5237 struct extent_map
*em
;
5239 node
= rb_first_cached(&map_tree
->map
);
5240 em
= rb_entry(node
, struct extent_map
, rb_node
);
5241 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5242 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5243 remove_extent_mapping(map_tree
, em
);
5244 free_extent_map(em
);
5245 if (need_resched()) {
5246 write_unlock(&map_tree
->lock
);
5248 write_lock(&map_tree
->lock
);
5251 write_unlock(&map_tree
->lock
);
5254 * Keep looping until we have no more ranges in the io tree.
5255 * We can have ongoing bios started by readpages (called from readahead)
5256 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5257 * still in progress (unlocked the pages in the bio but did not yet
5258 * unlocked the ranges in the io tree). Therefore this means some
5259 * ranges can still be locked and eviction started because before
5260 * submitting those bios, which are executed by a separate task (work
5261 * queue kthread), inode references (inode->i_count) were not taken
5262 * (which would be dropped in the end io callback of each bio).
5263 * Therefore here we effectively end up waiting for those bios and
5264 * anyone else holding locked ranges without having bumped the inode's
5265 * reference count - if we don't do it, when they access the inode's
5266 * io_tree to unlock a range it may be too late, leading to an
5267 * use-after-free issue.
5269 spin_lock(&io_tree
->lock
);
5270 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5271 struct extent_state
*state
;
5272 struct extent_state
*cached_state
= NULL
;
5275 unsigned state_flags
;
5277 node
= rb_first(&io_tree
->state
);
5278 state
= rb_entry(node
, struct extent_state
, rb_node
);
5279 start
= state
->start
;
5281 state_flags
= state
->state
;
5282 spin_unlock(&io_tree
->lock
);
5284 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5287 * If still has DELALLOC flag, the extent didn't reach disk,
5288 * and its reserved space won't be freed by delayed_ref.
5289 * So we need to free its reserved space here.
5290 * (Refer to comment in btrfs_invalidatepage, case 2)
5292 * Note, end is the bytenr of last byte, so we need + 1 here.
5294 if (state_flags
& EXTENT_DELALLOC
)
5295 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5297 clear_extent_bit(io_tree
, start
, end
,
5298 EXTENT_LOCKED
| EXTENT_DIRTY
|
5299 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5300 EXTENT_DEFRAG
, 1, 1, &cached_state
);
5303 spin_lock(&io_tree
->lock
);
5305 spin_unlock(&io_tree
->lock
);
5308 static struct btrfs_trans_handle
*evict_refill_and_join(struct btrfs_root
*root
,
5309 struct btrfs_block_rsv
*rsv
)
5311 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5312 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5316 struct btrfs_trans_handle
*trans
;
5319 ret
= btrfs_block_rsv_refill(root
, rsv
, rsv
->size
,
5320 BTRFS_RESERVE_FLUSH_LIMIT
);
5322 if (ret
&& ++failures
> 2) {
5324 "could not allocate space for a delete; will truncate on mount");
5325 return ERR_PTR(-ENOSPC
);
5328 trans
= btrfs_join_transaction(root
);
5329 if (IS_ERR(trans
) || !ret
)
5333 * Try to steal from the global reserve if there is space for
5336 if (!btrfs_check_space_for_delayed_refs(trans
) &&
5337 !btrfs_block_rsv_migrate(global_rsv
, rsv
, rsv
->size
, false))
5340 /* If not, commit and try again. */
5341 ret
= btrfs_commit_transaction(trans
);
5343 return ERR_PTR(ret
);
5347 void btrfs_evict_inode(struct inode
*inode
)
5349 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5350 struct btrfs_trans_handle
*trans
;
5351 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5352 struct btrfs_block_rsv
*rsv
;
5355 trace_btrfs_inode_evict(inode
);
5362 evict_inode_truncate_pages(inode
);
5364 if (inode
->i_nlink
&&
5365 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5366 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5367 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5370 if (is_bad_inode(inode
))
5373 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5375 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
5378 if (inode
->i_nlink
> 0) {
5379 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5380 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5384 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5388 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5391 rsv
->size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5394 btrfs_i_size_write(BTRFS_I(inode
), 0);
5397 trans
= evict_refill_and_join(root
, rsv
);
5401 trans
->block_rsv
= rsv
;
5403 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5404 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5405 btrfs_end_transaction(trans
);
5406 btrfs_btree_balance_dirty(fs_info
);
5407 if (ret
&& ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5414 * Errors here aren't a big deal, it just means we leave orphan items in
5415 * the tree. They will be cleaned up on the next mount. If the inode
5416 * number gets reused, cleanup deletes the orphan item without doing
5417 * anything, and unlink reuses the existing orphan item.
5419 * If it turns out that we are dropping too many of these, we might want
5420 * to add a mechanism for retrying these after a commit.
5422 trans
= evict_refill_and_join(root
, rsv
);
5423 if (!IS_ERR(trans
)) {
5424 trans
->block_rsv
= rsv
;
5425 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5426 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5427 btrfs_end_transaction(trans
);
5430 if (!(root
== fs_info
->tree_root
||
5431 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5432 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5435 btrfs_free_block_rsv(fs_info
, rsv
);
5438 * If we didn't successfully delete, the orphan item will still be in
5439 * the tree and we'll retry on the next mount. Again, we might also want
5440 * to retry these periodically in the future.
5442 btrfs_remove_delayed_node(BTRFS_I(inode
));
5447 * this returns the key found in the dir entry in the location pointer.
5448 * If no dir entries were found, returns -ENOENT.
5449 * If found a corrupted location in dir entry, returns -EUCLEAN.
5451 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5452 struct btrfs_key
*location
)
5454 const char *name
= dentry
->d_name
.name
;
5455 int namelen
= dentry
->d_name
.len
;
5456 struct btrfs_dir_item
*di
;
5457 struct btrfs_path
*path
;
5458 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5461 path
= btrfs_alloc_path();
5465 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5467 if (IS_ERR_OR_NULL(di
)) {
5468 ret
= di
? PTR_ERR(di
) : -ENOENT
;
5472 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5473 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5474 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5476 btrfs_warn(root
->fs_info
,
5477 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5478 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5479 location
->objectid
, location
->type
, location
->offset
);
5482 btrfs_free_path(path
);
5487 * when we hit a tree root in a directory, the btrfs part of the inode
5488 * needs to be changed to reflect the root directory of the tree root. This
5489 * is kind of like crossing a mount point.
5491 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5493 struct dentry
*dentry
,
5494 struct btrfs_key
*location
,
5495 struct btrfs_root
**sub_root
)
5497 struct btrfs_path
*path
;
5498 struct btrfs_root
*new_root
;
5499 struct btrfs_root_ref
*ref
;
5500 struct extent_buffer
*leaf
;
5501 struct btrfs_key key
;
5505 path
= btrfs_alloc_path();
5512 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5513 key
.type
= BTRFS_ROOT_REF_KEY
;
5514 key
.offset
= location
->objectid
;
5516 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5523 leaf
= path
->nodes
[0];
5524 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5525 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5526 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5529 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5530 (unsigned long)(ref
+ 1),
5531 dentry
->d_name
.len
);
5535 btrfs_release_path(path
);
5537 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5538 if (IS_ERR(new_root
)) {
5539 err
= PTR_ERR(new_root
);
5543 *sub_root
= new_root
;
5544 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5545 location
->type
= BTRFS_INODE_ITEM_KEY
;
5546 location
->offset
= 0;
5549 btrfs_free_path(path
);
5553 static void inode_tree_add(struct inode
*inode
)
5555 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5556 struct btrfs_inode
*entry
;
5558 struct rb_node
*parent
;
5559 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5560 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5562 if (inode_unhashed(inode
))
5565 spin_lock(&root
->inode_lock
);
5566 p
= &root
->inode_tree
.rb_node
;
5569 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5571 if (ino
< btrfs_ino(entry
))
5572 p
= &parent
->rb_left
;
5573 else if (ino
> btrfs_ino(entry
))
5574 p
= &parent
->rb_right
;
5576 WARN_ON(!(entry
->vfs_inode
.i_state
&
5577 (I_WILL_FREE
| I_FREEING
)));
5578 rb_replace_node(parent
, new, &root
->inode_tree
);
5579 RB_CLEAR_NODE(parent
);
5580 spin_unlock(&root
->inode_lock
);
5584 rb_link_node(new, parent
, p
);
5585 rb_insert_color(new, &root
->inode_tree
);
5586 spin_unlock(&root
->inode_lock
);
5589 static void inode_tree_del(struct inode
*inode
)
5591 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5592 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5595 spin_lock(&root
->inode_lock
);
5596 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5597 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5598 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5599 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5601 spin_unlock(&root
->inode_lock
);
5603 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5604 synchronize_srcu(&fs_info
->subvol_srcu
);
5605 spin_lock(&root
->inode_lock
);
5606 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5607 spin_unlock(&root
->inode_lock
);
5609 btrfs_add_dead_root(root
);
5614 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5616 struct btrfs_iget_args
*args
= p
;
5617 inode
->i_ino
= args
->location
->objectid
;
5618 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5619 sizeof(*args
->location
));
5620 BTRFS_I(inode
)->root
= args
->root
;
5624 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5626 struct btrfs_iget_args
*args
= opaque
;
5627 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5628 args
->root
== BTRFS_I(inode
)->root
;
5631 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5632 struct btrfs_key
*location
,
5633 struct btrfs_root
*root
)
5635 struct inode
*inode
;
5636 struct btrfs_iget_args args
;
5637 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5639 args
.location
= location
;
5642 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5643 btrfs_init_locked_inode
,
5648 /* Get an inode object given its location and corresponding root.
5649 * Returns in *is_new if the inode was read from disk
5651 struct inode
*btrfs_iget_path(struct super_block
*s
, struct btrfs_key
*location
,
5652 struct btrfs_root
*root
, int *new,
5653 struct btrfs_path
*path
)
5655 struct inode
*inode
;
5657 inode
= btrfs_iget_locked(s
, location
, root
);
5659 return ERR_PTR(-ENOMEM
);
5661 if (inode
->i_state
& I_NEW
) {
5664 ret
= btrfs_read_locked_inode(inode
, path
);
5666 inode_tree_add(inode
);
5667 unlock_new_inode(inode
);
5673 * ret > 0 can come from btrfs_search_slot called by
5674 * btrfs_read_locked_inode, this means the inode item
5679 inode
= ERR_PTR(ret
);
5686 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5687 struct btrfs_root
*root
, int *new)
5689 return btrfs_iget_path(s
, location
, root
, new, NULL
);
5692 static struct inode
*new_simple_dir(struct super_block
*s
,
5693 struct btrfs_key
*key
,
5694 struct btrfs_root
*root
)
5696 struct inode
*inode
= new_inode(s
);
5699 return ERR_PTR(-ENOMEM
);
5701 BTRFS_I(inode
)->root
= root
;
5702 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5703 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5705 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5706 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5707 inode
->i_opflags
&= ~IOP_XATTR
;
5708 inode
->i_fop
= &simple_dir_operations
;
5709 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5710 inode
->i_mtime
= current_time(inode
);
5711 inode
->i_atime
= inode
->i_mtime
;
5712 inode
->i_ctime
= inode
->i_mtime
;
5713 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5718 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5720 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5721 struct inode
*inode
;
5722 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5723 struct btrfs_root
*sub_root
= root
;
5724 struct btrfs_key location
;
5728 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5729 return ERR_PTR(-ENAMETOOLONG
);
5731 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5733 return ERR_PTR(ret
);
5735 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5736 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5740 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5741 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5742 &location
, &sub_root
);
5745 inode
= ERR_PTR(ret
);
5747 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5749 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5751 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5753 if (!IS_ERR(inode
) && root
!= sub_root
) {
5754 down_read(&fs_info
->cleanup_work_sem
);
5755 if (!sb_rdonly(inode
->i_sb
))
5756 ret
= btrfs_orphan_cleanup(sub_root
);
5757 up_read(&fs_info
->cleanup_work_sem
);
5760 inode
= ERR_PTR(ret
);
5767 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5769 struct btrfs_root
*root
;
5770 struct inode
*inode
= d_inode(dentry
);
5772 if (!inode
&& !IS_ROOT(dentry
))
5773 inode
= d_inode(dentry
->d_parent
);
5776 root
= BTRFS_I(inode
)->root
;
5777 if (btrfs_root_refs(&root
->root_item
) == 0)
5780 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5786 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5789 struct inode
*inode
= btrfs_lookup_dentry(dir
, dentry
);
5791 if (inode
== ERR_PTR(-ENOENT
))
5793 return d_splice_alias(inode
, dentry
);
5796 unsigned char btrfs_filetype_table
[] = {
5797 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5801 * All this infrastructure exists because dir_emit can fault, and we are holding
5802 * the tree lock when doing readdir. For now just allocate a buffer and copy
5803 * our information into that, and then dir_emit from the buffer. This is
5804 * similar to what NFS does, only we don't keep the buffer around in pagecache
5805 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5806 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5809 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5811 struct btrfs_file_private
*private;
5813 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5816 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5817 if (!private->filldir_buf
) {
5821 file
->private_data
= private;
5832 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5835 struct dir_entry
*entry
= addr
;
5836 char *name
= (char *)(entry
+ 1);
5838 ctx
->pos
= get_unaligned(&entry
->offset
);
5839 if (!dir_emit(ctx
, name
, get_unaligned(&entry
->name_len
),
5840 get_unaligned(&entry
->ino
),
5841 get_unaligned(&entry
->type
)))
5843 addr
+= sizeof(struct dir_entry
) +
5844 get_unaligned(&entry
->name_len
);
5850 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5852 struct inode
*inode
= file_inode(file
);
5853 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5854 struct btrfs_file_private
*private = file
->private_data
;
5855 struct btrfs_dir_item
*di
;
5856 struct btrfs_key key
;
5857 struct btrfs_key found_key
;
5858 struct btrfs_path
*path
;
5860 struct list_head ins_list
;
5861 struct list_head del_list
;
5863 struct extent_buffer
*leaf
;
5870 struct btrfs_key location
;
5872 if (!dir_emit_dots(file
, ctx
))
5875 path
= btrfs_alloc_path();
5879 addr
= private->filldir_buf
;
5880 path
->reada
= READA_FORWARD
;
5882 INIT_LIST_HEAD(&ins_list
);
5883 INIT_LIST_HEAD(&del_list
);
5884 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5887 key
.type
= BTRFS_DIR_INDEX_KEY
;
5888 key
.offset
= ctx
->pos
;
5889 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5891 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5896 struct dir_entry
*entry
;
5898 leaf
= path
->nodes
[0];
5899 slot
= path
->slots
[0];
5900 if (slot
>= btrfs_header_nritems(leaf
)) {
5901 ret
= btrfs_next_leaf(root
, path
);
5909 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5911 if (found_key
.objectid
!= key
.objectid
)
5913 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5915 if (found_key
.offset
< ctx
->pos
)
5917 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5919 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5920 name_len
= btrfs_dir_name_len(leaf
, di
);
5921 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5923 btrfs_release_path(path
);
5924 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5927 addr
= private->filldir_buf
;
5934 put_unaligned(name_len
, &entry
->name_len
);
5935 name_ptr
= (char *)(entry
+ 1);
5936 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5938 put_unaligned(btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)],
5940 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5941 put_unaligned(location
.objectid
, &entry
->ino
);
5942 put_unaligned(found_key
.offset
, &entry
->offset
);
5944 addr
+= sizeof(struct dir_entry
) + name_len
;
5945 total_len
+= sizeof(struct dir_entry
) + name_len
;
5949 btrfs_release_path(path
);
5951 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5955 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
5960 * Stop new entries from being returned after we return the last
5963 * New directory entries are assigned a strictly increasing
5964 * offset. This means that new entries created during readdir
5965 * are *guaranteed* to be seen in the future by that readdir.
5966 * This has broken buggy programs which operate on names as
5967 * they're returned by readdir. Until we re-use freed offsets
5968 * we have this hack to stop new entries from being returned
5969 * under the assumption that they'll never reach this huge
5972 * This is being careful not to overflow 32bit loff_t unless the
5973 * last entry requires it because doing so has broken 32bit apps
5976 if (ctx
->pos
>= INT_MAX
)
5977 ctx
->pos
= LLONG_MAX
;
5984 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
5985 btrfs_free_path(path
);
5990 * This is somewhat expensive, updating the tree every time the
5991 * inode changes. But, it is most likely to find the inode in cache.
5992 * FIXME, needs more benchmarking...there are no reasons other than performance
5993 * to keep or drop this code.
5995 static int btrfs_dirty_inode(struct inode
*inode
)
5997 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5999 struct btrfs_trans_handle
*trans
;
6002 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6005 trans
= btrfs_join_transaction(root
);
6007 return PTR_ERR(trans
);
6009 ret
= btrfs_update_inode(trans
, root
, inode
);
6010 if (ret
&& ret
== -ENOSPC
) {
6011 /* whoops, lets try again with the full transaction */
6012 btrfs_end_transaction(trans
);
6013 trans
= btrfs_start_transaction(root
, 1);
6015 return PTR_ERR(trans
);
6017 ret
= btrfs_update_inode(trans
, root
, inode
);
6019 btrfs_end_transaction(trans
);
6020 if (BTRFS_I(inode
)->delayed_node
)
6021 btrfs_balance_delayed_items(fs_info
);
6027 * This is a copy of file_update_time. We need this so we can return error on
6028 * ENOSPC for updating the inode in the case of file write and mmap writes.
6030 static int btrfs_update_time(struct inode
*inode
, struct timespec64
*now
,
6033 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6034 bool dirty
= flags
& ~S_VERSION
;
6036 if (btrfs_root_readonly(root
))
6039 if (flags
& S_VERSION
)
6040 dirty
|= inode_maybe_inc_iversion(inode
, dirty
);
6041 if (flags
& S_CTIME
)
6042 inode
->i_ctime
= *now
;
6043 if (flags
& S_MTIME
)
6044 inode
->i_mtime
= *now
;
6045 if (flags
& S_ATIME
)
6046 inode
->i_atime
= *now
;
6047 return dirty
? btrfs_dirty_inode(inode
) : 0;
6051 * find the highest existing sequence number in a directory
6052 * and then set the in-memory index_cnt variable to reflect
6053 * free sequence numbers
6055 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6057 struct btrfs_root
*root
= inode
->root
;
6058 struct btrfs_key key
, found_key
;
6059 struct btrfs_path
*path
;
6060 struct extent_buffer
*leaf
;
6063 key
.objectid
= btrfs_ino(inode
);
6064 key
.type
= BTRFS_DIR_INDEX_KEY
;
6065 key
.offset
= (u64
)-1;
6067 path
= btrfs_alloc_path();
6071 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6074 /* FIXME: we should be able to handle this */
6080 * MAGIC NUMBER EXPLANATION:
6081 * since we search a directory based on f_pos we have to start at 2
6082 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6083 * else has to start at 2
6085 if (path
->slots
[0] == 0) {
6086 inode
->index_cnt
= 2;
6092 leaf
= path
->nodes
[0];
6093 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6095 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6096 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6097 inode
->index_cnt
= 2;
6101 inode
->index_cnt
= found_key
.offset
+ 1;
6103 btrfs_free_path(path
);
6108 * helper to find a free sequence number in a given directory. This current
6109 * code is very simple, later versions will do smarter things in the btree
6111 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6115 if (dir
->index_cnt
== (u64
)-1) {
6116 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6118 ret
= btrfs_set_inode_index_count(dir
);
6124 *index
= dir
->index_cnt
;
6130 static int btrfs_insert_inode_locked(struct inode
*inode
)
6132 struct btrfs_iget_args args
;
6133 args
.location
= &BTRFS_I(inode
)->location
;
6134 args
.root
= BTRFS_I(inode
)->root
;
6136 return insert_inode_locked4(inode
,
6137 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6138 btrfs_find_actor
, &args
);
6142 * Inherit flags from the parent inode.
6144 * Currently only the compression flags and the cow flags are inherited.
6146 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6153 flags
= BTRFS_I(dir
)->flags
;
6155 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6156 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6157 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6158 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6159 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6160 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6163 if (flags
& BTRFS_INODE_NODATACOW
) {
6164 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6165 if (S_ISREG(inode
->i_mode
))
6166 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6169 btrfs_sync_inode_flags_to_i_flags(inode
);
6172 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6173 struct btrfs_root
*root
,
6175 const char *name
, int name_len
,
6176 u64 ref_objectid
, u64 objectid
,
6177 umode_t mode
, u64
*index
)
6179 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6180 struct inode
*inode
;
6181 struct btrfs_inode_item
*inode_item
;
6182 struct btrfs_key
*location
;
6183 struct btrfs_path
*path
;
6184 struct btrfs_inode_ref
*ref
;
6185 struct btrfs_key key
[2];
6187 int nitems
= name
? 2 : 1;
6191 path
= btrfs_alloc_path();
6193 return ERR_PTR(-ENOMEM
);
6195 inode
= new_inode(fs_info
->sb
);
6197 btrfs_free_path(path
);
6198 return ERR_PTR(-ENOMEM
);
6202 * O_TMPFILE, set link count to 0, so that after this point,
6203 * we fill in an inode item with the correct link count.
6206 set_nlink(inode
, 0);
6209 * we have to initialize this early, so we can reclaim the inode
6210 * number if we fail afterwards in this function.
6212 inode
->i_ino
= objectid
;
6215 trace_btrfs_inode_request(dir
);
6217 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6219 btrfs_free_path(path
);
6221 return ERR_PTR(ret
);
6227 * index_cnt is ignored for everything but a dir,
6228 * btrfs_set_inode_index_count has an explanation for the magic
6231 BTRFS_I(inode
)->index_cnt
= 2;
6232 BTRFS_I(inode
)->dir_index
= *index
;
6233 BTRFS_I(inode
)->root
= root
;
6234 BTRFS_I(inode
)->generation
= trans
->transid
;
6235 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6238 * We could have gotten an inode number from somebody who was fsynced
6239 * and then removed in this same transaction, so let's just set full
6240 * sync since it will be a full sync anyway and this will blow away the
6241 * old info in the log.
6243 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6245 key
[0].objectid
= objectid
;
6246 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6249 sizes
[0] = sizeof(struct btrfs_inode_item
);
6253 * Start new inodes with an inode_ref. This is slightly more
6254 * efficient for small numbers of hard links since they will
6255 * be packed into one item. Extended refs will kick in if we
6256 * add more hard links than can fit in the ref item.
6258 key
[1].objectid
= objectid
;
6259 key
[1].type
= BTRFS_INODE_REF_KEY
;
6260 key
[1].offset
= ref_objectid
;
6262 sizes
[1] = name_len
+ sizeof(*ref
);
6265 location
= &BTRFS_I(inode
)->location
;
6266 location
->objectid
= objectid
;
6267 location
->offset
= 0;
6268 location
->type
= BTRFS_INODE_ITEM_KEY
;
6270 ret
= btrfs_insert_inode_locked(inode
);
6276 path
->leave_spinning
= 1;
6277 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6281 inode_init_owner(inode
, dir
, mode
);
6282 inode_set_bytes(inode
, 0);
6284 inode
->i_mtime
= current_time(inode
);
6285 inode
->i_atime
= inode
->i_mtime
;
6286 inode
->i_ctime
= inode
->i_mtime
;
6287 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6289 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6290 struct btrfs_inode_item
);
6291 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6292 sizeof(*inode_item
));
6293 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6296 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6297 struct btrfs_inode_ref
);
6298 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6299 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6300 ptr
= (unsigned long)(ref
+ 1);
6301 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6304 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6305 btrfs_free_path(path
);
6307 btrfs_inherit_iflags(inode
, dir
);
6309 if (S_ISREG(mode
)) {
6310 if (btrfs_test_opt(fs_info
, NODATASUM
))
6311 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6312 if (btrfs_test_opt(fs_info
, NODATACOW
))
6313 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6314 BTRFS_INODE_NODATASUM
;
6317 inode_tree_add(inode
);
6319 trace_btrfs_inode_new(inode
);
6320 btrfs_set_inode_last_trans(trans
, inode
);
6322 btrfs_update_root_times(trans
, root
);
6324 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6327 "error inheriting props for ino %llu (root %llu): %d",
6328 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6333 discard_new_inode(inode
);
6336 BTRFS_I(dir
)->index_cnt
--;
6337 btrfs_free_path(path
);
6338 return ERR_PTR(ret
);
6341 static inline u8
btrfs_inode_type(struct inode
*inode
)
6343 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6347 * utility function to add 'inode' into 'parent_inode' with
6348 * a give name and a given sequence number.
6349 * if 'add_backref' is true, also insert a backref from the
6350 * inode to the parent directory.
6352 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6353 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6354 const char *name
, int name_len
, int add_backref
, u64 index
)
6357 struct btrfs_key key
;
6358 struct btrfs_root
*root
= parent_inode
->root
;
6359 u64 ino
= btrfs_ino(inode
);
6360 u64 parent_ino
= btrfs_ino(parent_inode
);
6362 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6363 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6366 key
.type
= BTRFS_INODE_ITEM_KEY
;
6370 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6371 ret
= btrfs_add_root_ref(trans
, key
.objectid
,
6372 root
->root_key
.objectid
, parent_ino
,
6373 index
, name
, name_len
);
6374 } else if (add_backref
) {
6375 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6379 /* Nothing to clean up yet */
6383 ret
= btrfs_insert_dir_item(trans
, name
, name_len
, parent_inode
, &key
,
6384 btrfs_inode_type(&inode
->vfs_inode
), index
);
6385 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6388 btrfs_abort_transaction(trans
, ret
);
6392 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6394 inode_inc_iversion(&parent_inode
->vfs_inode
);
6395 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6396 current_time(&parent_inode
->vfs_inode
);
6397 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6399 btrfs_abort_transaction(trans
, ret
);
6403 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6406 err
= btrfs_del_root_ref(trans
, key
.objectid
,
6407 root
->root_key
.objectid
, parent_ino
,
6408 &local_index
, name
, name_len
);
6410 } else if (add_backref
) {
6414 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6415 ino
, parent_ino
, &local_index
);
6420 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6421 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6422 struct btrfs_inode
*inode
, int backref
, u64 index
)
6424 int err
= btrfs_add_link(trans
, dir
, inode
,
6425 dentry
->d_name
.name
, dentry
->d_name
.len
,
6432 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6433 umode_t mode
, dev_t rdev
)
6435 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6436 struct btrfs_trans_handle
*trans
;
6437 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6438 struct inode
*inode
= NULL
;
6444 * 2 for inode item and ref
6446 * 1 for xattr if selinux is on
6448 trans
= btrfs_start_transaction(root
, 5);
6450 return PTR_ERR(trans
);
6452 err
= btrfs_find_free_ino(root
, &objectid
);
6456 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6457 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6459 if (IS_ERR(inode
)) {
6460 err
= PTR_ERR(inode
);
6466 * If the active LSM wants to access the inode during
6467 * d_instantiate it needs these. Smack checks to see
6468 * if the filesystem supports xattrs by looking at the
6471 inode
->i_op
= &btrfs_special_inode_operations
;
6472 init_special_inode(inode
, inode
->i_mode
, rdev
);
6474 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6478 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6483 btrfs_update_inode(trans
, root
, inode
);
6484 d_instantiate_new(dentry
, inode
);
6487 btrfs_end_transaction(trans
);
6488 btrfs_btree_balance_dirty(fs_info
);
6490 inode_dec_link_count(inode
);
6491 discard_new_inode(inode
);
6496 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6497 umode_t mode
, bool excl
)
6499 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6500 struct btrfs_trans_handle
*trans
;
6501 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6502 struct inode
*inode
= NULL
;
6508 * 2 for inode item and ref
6510 * 1 for xattr if selinux is on
6512 trans
= btrfs_start_transaction(root
, 5);
6514 return PTR_ERR(trans
);
6516 err
= btrfs_find_free_ino(root
, &objectid
);
6520 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6521 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6523 if (IS_ERR(inode
)) {
6524 err
= PTR_ERR(inode
);
6529 * If the active LSM wants to access the inode during
6530 * d_instantiate it needs these. Smack checks to see
6531 * if the filesystem supports xattrs by looking at the
6534 inode
->i_fop
= &btrfs_file_operations
;
6535 inode
->i_op
= &btrfs_file_inode_operations
;
6536 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6538 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6542 err
= btrfs_update_inode(trans
, root
, inode
);
6546 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6551 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6552 d_instantiate_new(dentry
, inode
);
6555 btrfs_end_transaction(trans
);
6557 inode_dec_link_count(inode
);
6558 discard_new_inode(inode
);
6560 btrfs_btree_balance_dirty(fs_info
);
6564 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6565 struct dentry
*dentry
)
6567 struct btrfs_trans_handle
*trans
= NULL
;
6568 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6569 struct inode
*inode
= d_inode(old_dentry
);
6570 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6575 /* do not allow sys_link's with other subvols of the same device */
6576 if (root
->root_key
.objectid
!= BTRFS_I(inode
)->root
->root_key
.objectid
)
6579 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6582 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6587 * 2 items for inode and inode ref
6588 * 2 items for dir items
6589 * 1 item for parent inode
6590 * 1 item for orphan item deletion if O_TMPFILE
6592 trans
= btrfs_start_transaction(root
, inode
->i_nlink
? 5 : 6);
6593 if (IS_ERR(trans
)) {
6594 err
= PTR_ERR(trans
);
6599 /* There are several dir indexes for this inode, clear the cache. */
6600 BTRFS_I(inode
)->dir_index
= 0ULL;
6602 inode_inc_iversion(inode
);
6603 inode
->i_ctime
= current_time(inode
);
6605 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6607 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6613 struct dentry
*parent
= dentry
->d_parent
;
6616 err
= btrfs_update_inode(trans
, root
, inode
);
6619 if (inode
->i_nlink
== 1) {
6621 * If new hard link count is 1, it's a file created
6622 * with open(2) O_TMPFILE flag.
6624 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6628 d_instantiate(dentry
, inode
);
6629 ret
= btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
,
6631 if (ret
== BTRFS_NEED_TRANS_COMMIT
) {
6632 err
= btrfs_commit_transaction(trans
);
6639 btrfs_end_transaction(trans
);
6641 inode_dec_link_count(inode
);
6644 btrfs_btree_balance_dirty(fs_info
);
6648 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6650 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6651 struct inode
*inode
= NULL
;
6652 struct btrfs_trans_handle
*trans
;
6653 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6655 int drop_on_err
= 0;
6660 * 2 items for inode and ref
6661 * 2 items for dir items
6662 * 1 for xattr if selinux is on
6664 trans
= btrfs_start_transaction(root
, 5);
6666 return PTR_ERR(trans
);
6668 err
= btrfs_find_free_ino(root
, &objectid
);
6672 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6673 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6674 S_IFDIR
| mode
, &index
);
6675 if (IS_ERR(inode
)) {
6676 err
= PTR_ERR(inode
);
6682 /* these must be set before we unlock the inode */
6683 inode
->i_op
= &btrfs_dir_inode_operations
;
6684 inode
->i_fop
= &btrfs_dir_file_operations
;
6686 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6690 btrfs_i_size_write(BTRFS_I(inode
), 0);
6691 err
= btrfs_update_inode(trans
, root
, inode
);
6695 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6696 dentry
->d_name
.name
,
6697 dentry
->d_name
.len
, 0, index
);
6701 d_instantiate_new(dentry
, inode
);
6705 btrfs_end_transaction(trans
);
6707 inode_dec_link_count(inode
);
6708 discard_new_inode(inode
);
6710 btrfs_btree_balance_dirty(fs_info
);
6714 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6716 size_t pg_offset
, u64 extent_offset
,
6717 struct btrfs_file_extent_item
*item
)
6720 struct extent_buffer
*leaf
= path
->nodes
[0];
6723 unsigned long inline_size
;
6727 WARN_ON(pg_offset
!= 0);
6728 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6729 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6730 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6731 btrfs_item_nr(path
->slots
[0]));
6732 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6735 ptr
= btrfs_file_extent_inline_start(item
);
6737 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6739 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6740 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6741 extent_offset
, inline_size
, max_size
);
6744 * decompression code contains a memset to fill in any space between the end
6745 * of the uncompressed data and the end of max_size in case the decompressed
6746 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6747 * the end of an inline extent and the beginning of the next block, so we
6748 * cover that region here.
6751 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6752 char *map
= kmap(page
);
6753 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6761 * a bit scary, this does extent mapping from logical file offset to the disk.
6762 * the ugly parts come from merging extents from the disk with the in-ram
6763 * representation. This gets more complex because of the data=ordered code,
6764 * where the in-ram extents might be locked pending data=ordered completion.
6766 * This also copies inline extents directly into the page.
6768 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6770 size_t pg_offset
, u64 start
, u64 len
,
6773 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
6776 u64 extent_start
= 0;
6778 u64 objectid
= btrfs_ino(inode
);
6780 struct btrfs_path
*path
= NULL
;
6781 struct btrfs_root
*root
= inode
->root
;
6782 struct btrfs_file_extent_item
*item
;
6783 struct extent_buffer
*leaf
;
6784 struct btrfs_key found_key
;
6785 struct extent_map
*em
= NULL
;
6786 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6787 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6788 const bool new_inline
= !page
|| create
;
6790 read_lock(&em_tree
->lock
);
6791 em
= lookup_extent_mapping(em_tree
, start
, len
);
6793 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6794 read_unlock(&em_tree
->lock
);
6797 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6798 free_extent_map(em
);
6799 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6800 free_extent_map(em
);
6804 em
= alloc_extent_map();
6809 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6810 em
->start
= EXTENT_MAP_HOLE
;
6811 em
->orig_start
= EXTENT_MAP_HOLE
;
6813 em
->block_len
= (u64
)-1;
6815 path
= btrfs_alloc_path();
6821 /* Chances are we'll be called again, so go ahead and do readahead */
6822 path
->reada
= READA_FORWARD
;
6825 * Unless we're going to uncompress the inline extent, no sleep would
6828 path
->leave_spinning
= 1;
6830 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, objectid
, start
, 0);
6837 if (path
->slots
[0] == 0)
6842 leaf
= path
->nodes
[0];
6843 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6844 struct btrfs_file_extent_item
);
6845 /* are we inside the extent that was found? */
6846 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6847 found_type
= found_key
.type
;
6848 if (found_key
.objectid
!= objectid
||
6849 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
6851 * If we backup past the first extent we want to move forward
6852 * and see if there is an extent in front of us, otherwise we'll
6853 * say there is a hole for our whole search range which can
6860 found_type
= btrfs_file_extent_type(leaf
, item
);
6861 extent_start
= found_key
.offset
;
6862 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6863 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6864 extent_end
= extent_start
+
6865 btrfs_file_extent_num_bytes(leaf
, item
);
6867 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
6869 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6872 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6873 extent_end
= ALIGN(extent_start
+ size
,
6874 fs_info
->sectorsize
);
6876 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
6881 if (start
>= extent_end
) {
6883 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
6884 ret
= btrfs_next_leaf(root
, path
);
6891 leaf
= path
->nodes
[0];
6893 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6894 if (found_key
.objectid
!= objectid
||
6895 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6897 if (start
+ len
<= found_key
.offset
)
6899 if (start
> found_key
.offset
)
6902 em
->orig_start
= start
;
6903 em
->len
= found_key
.offset
- start
;
6907 btrfs_extent_item_to_extent_map(inode
, path
, item
,
6910 if (found_type
== BTRFS_FILE_EXTENT_REG
||
6911 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
6913 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
6917 size_t extent_offset
;
6923 size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6924 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
6925 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
6926 size
- extent_offset
);
6927 em
->start
= extent_start
+ extent_offset
;
6928 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
6929 em
->orig_block_len
= em
->len
;
6930 em
->orig_start
= em
->start
;
6931 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
6933 btrfs_set_path_blocking(path
);
6934 if (!PageUptodate(page
)) {
6935 if (btrfs_file_extent_compression(leaf
, item
) !=
6936 BTRFS_COMPRESS_NONE
) {
6937 ret
= uncompress_inline(path
, page
, pg_offset
,
6938 extent_offset
, item
);
6945 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
6947 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
6948 memset(map
+ pg_offset
+ copy_size
, 0,
6949 PAGE_SIZE
- pg_offset
-
6954 flush_dcache_page(page
);
6956 set_extent_uptodate(io_tree
, em
->start
,
6957 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
6962 em
->orig_start
= start
;
6965 em
->block_start
= EXTENT_MAP_HOLE
;
6967 btrfs_release_path(path
);
6968 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
6970 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6971 em
->start
, em
->len
, start
, len
);
6977 write_lock(&em_tree
->lock
);
6978 err
= btrfs_add_extent_mapping(fs_info
, em_tree
, &em
, start
, len
);
6979 write_unlock(&em_tree
->lock
);
6981 btrfs_free_path(path
);
6983 trace_btrfs_get_extent(root
, inode
, em
);
6986 free_extent_map(em
);
6987 return ERR_PTR(err
);
6989 BUG_ON(!em
); /* Error is always set */
6993 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
6995 size_t pg_offset
, u64 start
, u64 len
,
6998 struct extent_map
*em
;
6999 struct extent_map
*hole_em
= NULL
;
7000 u64 range_start
= start
;
7006 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7010 * If our em maps to:
7012 * - a pre-alloc extent,
7013 * there might actually be delalloc bytes behind it.
7015 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7016 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7021 /* check to see if we've wrapped (len == -1 or similar) */
7030 /* ok, we didn't find anything, lets look for delalloc */
7031 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7032 end
, len
, EXTENT_DELALLOC
, 1);
7033 found_end
= range_start
+ found
;
7034 if (found_end
< range_start
)
7035 found_end
= (u64
)-1;
7038 * we didn't find anything useful, return
7039 * the original results from get_extent()
7041 if (range_start
> end
|| found_end
<= start
) {
7047 /* adjust the range_start to make sure it doesn't
7048 * go backwards from the start they passed in
7050 range_start
= max(start
, range_start
);
7051 found
= found_end
- range_start
;
7054 u64 hole_start
= start
;
7057 em
= alloc_extent_map();
7063 * when btrfs_get_extent can't find anything it
7064 * returns one huge hole
7066 * make sure what it found really fits our range, and
7067 * adjust to make sure it is based on the start from
7071 u64 calc_end
= extent_map_end(hole_em
);
7073 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7074 free_extent_map(hole_em
);
7077 hole_start
= max(hole_em
->start
, start
);
7078 hole_len
= calc_end
- hole_start
;
7082 if (hole_em
&& range_start
> hole_start
) {
7083 /* our hole starts before our delalloc, so we
7084 * have to return just the parts of the hole
7085 * that go until the delalloc starts
7087 em
->len
= min(hole_len
,
7088 range_start
- hole_start
);
7089 em
->start
= hole_start
;
7090 em
->orig_start
= hole_start
;
7092 * don't adjust block start at all,
7093 * it is fixed at EXTENT_MAP_HOLE
7095 em
->block_start
= hole_em
->block_start
;
7096 em
->block_len
= hole_len
;
7097 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7098 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7100 em
->start
= range_start
;
7102 em
->orig_start
= range_start
;
7103 em
->block_start
= EXTENT_MAP_DELALLOC
;
7104 em
->block_len
= found
;
7111 free_extent_map(hole_em
);
7113 free_extent_map(em
);
7114 return ERR_PTR(err
);
7119 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7122 const u64 orig_start
,
7123 const u64 block_start
,
7124 const u64 block_len
,
7125 const u64 orig_block_len
,
7126 const u64 ram_bytes
,
7129 struct extent_map
*em
= NULL
;
7132 if (type
!= BTRFS_ORDERED_NOCOW
) {
7133 em
= create_io_em(inode
, start
, len
, orig_start
,
7134 block_start
, block_len
, orig_block_len
,
7136 BTRFS_COMPRESS_NONE
, /* compress_type */
7141 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7142 len
, block_len
, type
);
7145 free_extent_map(em
);
7146 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7147 start
+ len
- 1, 0);
7156 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7159 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7160 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7161 struct extent_map
*em
;
7162 struct btrfs_key ins
;
7166 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7167 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7168 0, alloc_hint
, &ins
, 1, 1);
7170 return ERR_PTR(ret
);
7172 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7173 ins
.objectid
, ins
.offset
, ins
.offset
,
7174 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7175 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7177 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7184 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7185 * block must be cow'd
7187 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7188 u64
*orig_start
, u64
*orig_block_len
,
7191 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7192 struct btrfs_path
*path
;
7194 struct extent_buffer
*leaf
;
7195 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7196 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7197 struct btrfs_file_extent_item
*fi
;
7198 struct btrfs_key key
;
7205 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7207 path
= btrfs_alloc_path();
7211 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7212 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7216 slot
= path
->slots
[0];
7219 /* can't find the item, must cow */
7226 leaf
= path
->nodes
[0];
7227 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7228 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7229 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7230 /* not our file or wrong item type, must cow */
7234 if (key
.offset
> offset
) {
7235 /* Wrong offset, must cow */
7239 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7240 found_type
= btrfs_file_extent_type(leaf
, fi
);
7241 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7242 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7243 /* not a regular extent, must cow */
7247 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7250 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7251 if (extent_end
<= offset
)
7254 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7255 if (disk_bytenr
== 0)
7258 if (btrfs_file_extent_compression(leaf
, fi
) ||
7259 btrfs_file_extent_encryption(leaf
, fi
) ||
7260 btrfs_file_extent_other_encoding(leaf
, fi
))
7264 * Do the same check as in btrfs_cross_ref_exist but without the
7265 * unnecessary search.
7267 if (btrfs_file_extent_generation(leaf
, fi
) <=
7268 btrfs_root_last_snapshot(&root
->root_item
))
7271 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7274 *orig_start
= key
.offset
- backref_offset
;
7275 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7276 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7279 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7282 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7283 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7286 range_end
= round_up(offset
+ num_bytes
,
7287 root
->fs_info
->sectorsize
) - 1;
7288 ret
= test_range_bit(io_tree
, offset
, range_end
,
7289 EXTENT_DELALLOC
, 0, NULL
);
7296 btrfs_release_path(path
);
7299 * look for other files referencing this extent, if we
7300 * find any we must cow
7303 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7304 key
.offset
- backref_offset
, disk_bytenr
);
7311 * adjust disk_bytenr and num_bytes to cover just the bytes
7312 * in this extent we are about to write. If there
7313 * are any csums in that range we have to cow in order
7314 * to keep the csums correct
7316 disk_bytenr
+= backref_offset
;
7317 disk_bytenr
+= offset
- key
.offset
;
7318 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7321 * all of the above have passed, it is safe to overwrite this extent
7327 btrfs_free_path(path
);
7331 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7332 struct extent_state
**cached_state
, int writing
)
7334 struct btrfs_ordered_extent
*ordered
;
7338 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7341 * We're concerned with the entire range that we're going to be
7342 * doing DIO to, so we need to make sure there's no ordered
7343 * extents in this range.
7345 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7346 lockend
- lockstart
+ 1);
7349 * We need to make sure there are no buffered pages in this
7350 * range either, we could have raced between the invalidate in
7351 * generic_file_direct_write and locking the extent. The
7352 * invalidate needs to happen so that reads after a write do not
7356 (!writing
|| !filemap_range_has_page(inode
->i_mapping
,
7357 lockstart
, lockend
)))
7360 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7365 * If we are doing a DIO read and the ordered extent we
7366 * found is for a buffered write, we can not wait for it
7367 * to complete and retry, because if we do so we can
7368 * deadlock with concurrent buffered writes on page
7369 * locks. This happens only if our DIO read covers more
7370 * than one extent map, if at this point has already
7371 * created an ordered extent for a previous extent map
7372 * and locked its range in the inode's io tree, and a
7373 * concurrent write against that previous extent map's
7374 * range and this range started (we unlock the ranges
7375 * in the io tree only when the bios complete and
7376 * buffered writes always lock pages before attempting
7377 * to lock range in the io tree).
7380 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7381 btrfs_start_ordered_extent(inode
, ordered
, 1);
7384 btrfs_put_ordered_extent(ordered
);
7387 * We could trigger writeback for this range (and wait
7388 * for it to complete) and then invalidate the pages for
7389 * this range (through invalidate_inode_pages2_range()),
7390 * but that can lead us to a deadlock with a concurrent
7391 * call to readpages() (a buffered read or a defrag call
7392 * triggered a readahead) on a page lock due to an
7393 * ordered dio extent we created before but did not have
7394 * yet a corresponding bio submitted (whence it can not
7395 * complete), which makes readpages() wait for that
7396 * ordered extent to complete while holding a lock on
7411 /* The callers of this must take lock_extent() */
7412 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7413 u64 orig_start
, u64 block_start
,
7414 u64 block_len
, u64 orig_block_len
,
7415 u64 ram_bytes
, int compress_type
,
7418 struct extent_map_tree
*em_tree
;
7419 struct extent_map
*em
;
7420 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7423 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7424 type
== BTRFS_ORDERED_COMPRESSED
||
7425 type
== BTRFS_ORDERED_NOCOW
||
7426 type
== BTRFS_ORDERED_REGULAR
);
7428 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7429 em
= alloc_extent_map();
7431 return ERR_PTR(-ENOMEM
);
7434 em
->orig_start
= orig_start
;
7436 em
->block_len
= block_len
;
7437 em
->block_start
= block_start
;
7438 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7439 em
->orig_block_len
= orig_block_len
;
7440 em
->ram_bytes
= ram_bytes
;
7441 em
->generation
= -1;
7442 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7443 if (type
== BTRFS_ORDERED_PREALLOC
) {
7444 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7445 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7446 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7447 em
->compress_type
= compress_type
;
7451 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7452 em
->start
+ em
->len
- 1, 0);
7453 write_lock(&em_tree
->lock
);
7454 ret
= add_extent_mapping(em_tree
, em
, 1);
7455 write_unlock(&em_tree
->lock
);
7457 * The caller has taken lock_extent(), who could race with us
7460 } while (ret
== -EEXIST
);
7463 free_extent_map(em
);
7464 return ERR_PTR(ret
);
7467 /* em got 2 refs now, callers needs to do free_extent_map once. */
7472 static int btrfs_get_blocks_direct_read(struct extent_map
*em
,
7473 struct buffer_head
*bh_result
,
7474 struct inode
*inode
,
7477 if (em
->block_start
== EXTENT_MAP_HOLE
||
7478 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7481 len
= min(len
, em
->len
- (start
- em
->start
));
7483 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7485 bh_result
->b_size
= len
;
7486 bh_result
->b_bdev
= em
->bdev
;
7487 set_buffer_mapped(bh_result
);
7492 static int btrfs_get_blocks_direct_write(struct extent_map
**map
,
7493 struct buffer_head
*bh_result
,
7494 struct inode
*inode
,
7495 struct btrfs_dio_data
*dio_data
,
7498 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7499 struct extent_map
*em
= *map
;
7503 * We don't allocate a new extent in the following cases
7505 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7507 * 2) The extent is marked as PREALLOC. We're good to go here and can
7508 * just use the extent.
7511 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7512 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7513 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7515 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7517 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7518 type
= BTRFS_ORDERED_PREALLOC
;
7520 type
= BTRFS_ORDERED_NOCOW
;
7521 len
= min(len
, em
->len
- (start
- em
->start
));
7522 block_start
= em
->block_start
+ (start
- em
->start
);
7524 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7525 &orig_block_len
, &ram_bytes
) == 1 &&
7526 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7527 struct extent_map
*em2
;
7529 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7530 orig_start
, block_start
,
7531 len
, orig_block_len
,
7533 btrfs_dec_nocow_writers(fs_info
, block_start
);
7534 if (type
== BTRFS_ORDERED_PREALLOC
) {
7535 free_extent_map(em
);
7539 if (em2
&& IS_ERR(em2
)) {
7544 * For inode marked NODATACOW or extent marked PREALLOC,
7545 * use the existing or preallocated extent, so does not
7546 * need to adjust btrfs_space_info's bytes_may_use.
7548 btrfs_free_reserved_data_space_noquota(inode
, start
,
7554 /* this will cow the extent */
7555 len
= bh_result
->b_size
;
7556 free_extent_map(em
);
7557 *map
= em
= btrfs_new_extent_direct(inode
, start
, len
);
7563 len
= min(len
, em
->len
- (start
- em
->start
));
7566 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7568 bh_result
->b_size
= len
;
7569 bh_result
->b_bdev
= em
->bdev
;
7570 set_buffer_mapped(bh_result
);
7572 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7573 set_buffer_new(bh_result
);
7576 * Need to update the i_size under the extent lock so buffered
7577 * readers will get the updated i_size when we unlock.
7579 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7580 i_size_write(inode
, start
+ len
);
7582 WARN_ON(dio_data
->reserve
< len
);
7583 dio_data
->reserve
-= len
;
7584 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7585 current
->journal_info
= dio_data
;
7590 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7591 struct buffer_head
*bh_result
, int create
)
7593 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7594 struct extent_map
*em
;
7595 struct extent_state
*cached_state
= NULL
;
7596 struct btrfs_dio_data
*dio_data
= NULL
;
7597 u64 start
= iblock
<< inode
->i_blkbits
;
7598 u64 lockstart
, lockend
;
7599 u64 len
= bh_result
->b_size
;
7600 int unlock_bits
= EXTENT_LOCKED
;
7604 unlock_bits
|= EXTENT_DIRTY
;
7606 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7609 lockend
= start
+ len
- 1;
7611 if (current
->journal_info
) {
7613 * Need to pull our outstanding extents and set journal_info to NULL so
7614 * that anything that needs to check if there's a transaction doesn't get
7617 dio_data
= current
->journal_info
;
7618 current
->journal_info
= NULL
;
7622 * If this errors out it's because we couldn't invalidate pagecache for
7623 * this range and we need to fallback to buffered.
7625 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7631 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7638 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7639 * io. INLINE is special, and we could probably kludge it in here, but
7640 * it's still buffered so for safety lets just fall back to the generic
7643 * For COMPRESSED we _have_ to read the entire extent in so we can
7644 * decompress it, so there will be buffering required no matter what we
7645 * do, so go ahead and fallback to buffered.
7647 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7648 * to buffered IO. Don't blame me, this is the price we pay for using
7651 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7652 em
->block_start
== EXTENT_MAP_INLINE
) {
7653 free_extent_map(em
);
7659 ret
= btrfs_get_blocks_direct_write(&em
, bh_result
, inode
,
7660 dio_data
, start
, len
);
7664 /* clear and unlock the entire range */
7665 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7666 unlock_bits
, 1, 0, &cached_state
);
7668 ret
= btrfs_get_blocks_direct_read(em
, bh_result
, inode
,
7670 /* Can be negative only if we read from a hole */
7673 free_extent_map(em
);
7677 * We need to unlock only the end area that we aren't using.
7678 * The rest is going to be unlocked by the endio routine.
7680 lockstart
= start
+ bh_result
->b_size
;
7681 if (lockstart
< lockend
) {
7682 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7683 lockend
, unlock_bits
, 1, 0,
7686 free_extent_state(cached_state
);
7690 free_extent_map(em
);
7695 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7696 unlock_bits
, 1, 0, &cached_state
);
7699 current
->journal_info
= dio_data
;
7703 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7707 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7710 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7712 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7716 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7721 static int btrfs_check_dio_repairable(struct inode
*inode
,
7722 struct bio
*failed_bio
,
7723 struct io_failure_record
*failrec
,
7726 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7729 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7730 if (num_copies
== 1) {
7732 * we only have a single copy of the data, so don't bother with
7733 * all the retry and error correction code that follows. no
7734 * matter what the error is, it is very likely to persist.
7736 btrfs_debug(fs_info
,
7737 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7738 num_copies
, failrec
->this_mirror
, failed_mirror
);
7742 failrec
->failed_mirror
= failed_mirror
;
7743 failrec
->this_mirror
++;
7744 if (failrec
->this_mirror
== failed_mirror
)
7745 failrec
->this_mirror
++;
7747 if (failrec
->this_mirror
> num_copies
) {
7748 btrfs_debug(fs_info
,
7749 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7750 num_copies
, failrec
->this_mirror
, failed_mirror
);
7757 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
7758 struct page
*page
, unsigned int pgoff
,
7759 u64 start
, u64 end
, int failed_mirror
,
7760 bio_end_io_t
*repair_endio
, void *repair_arg
)
7762 struct io_failure_record
*failrec
;
7763 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7764 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7767 unsigned int read_mode
= 0;
7770 blk_status_t status
;
7771 struct bio_vec bvec
;
7773 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
7775 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
7777 return errno_to_blk_status(ret
);
7779 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
7782 free_io_failure(failure_tree
, io_tree
, failrec
);
7783 return BLK_STS_IOERR
;
7786 segs
= bio_segments(failed_bio
);
7787 bio_get_first_bvec(failed_bio
, &bvec
);
7789 (bvec
.bv_len
> btrfs_inode_sectorsize(inode
)))
7790 read_mode
|= REQ_FAILFAST_DEV
;
7792 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
7793 isector
>>= inode
->i_sb
->s_blocksize_bits
;
7794 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
7795 pgoff
, isector
, repair_endio
, repair_arg
);
7796 bio
->bi_opf
= REQ_OP_READ
| read_mode
;
7798 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
7799 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
7800 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
7802 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
7804 free_io_failure(failure_tree
, io_tree
, failrec
);
7811 struct btrfs_retry_complete
{
7812 struct completion done
;
7813 struct inode
*inode
;
7818 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
7820 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7821 struct inode
*inode
= done
->inode
;
7822 struct bio_vec
*bvec
;
7823 struct extent_io_tree
*io_tree
, *failure_tree
;
7829 ASSERT(bio
->bi_vcnt
== 1);
7830 io_tree
= &BTRFS_I(inode
)->io_tree
;
7831 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7832 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(inode
));
7835 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7836 bio_for_each_segment_all(bvec
, bio
, i
)
7837 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
7838 io_tree
, done
->start
, bvec
->bv_page
,
7839 btrfs_ino(BTRFS_I(inode
)), 0);
7841 complete(&done
->done
);
7845 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
7846 struct btrfs_io_bio
*io_bio
)
7848 struct btrfs_fs_info
*fs_info
;
7849 struct bio_vec bvec
;
7850 struct bvec_iter iter
;
7851 struct btrfs_retry_complete done
;
7857 blk_status_t err
= BLK_STS_OK
;
7859 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7860 sectorsize
= fs_info
->sectorsize
;
7862 start
= io_bio
->logical
;
7864 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7866 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7867 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7868 pgoff
= bvec
.bv_offset
;
7870 next_block_or_try_again
:
7873 init_completion(&done
.done
);
7875 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7876 pgoff
, start
, start
+ sectorsize
- 1,
7878 btrfs_retry_endio_nocsum
, &done
);
7884 wait_for_completion_io(&done
.done
);
7886 if (!done
.uptodate
) {
7887 /* We might have another mirror, so try again */
7888 goto next_block_or_try_again
;
7892 start
+= sectorsize
;
7896 pgoff
+= sectorsize
;
7897 ASSERT(pgoff
< PAGE_SIZE
);
7898 goto next_block_or_try_again
;
7905 static void btrfs_retry_endio(struct bio
*bio
)
7907 struct btrfs_retry_complete
*done
= bio
->bi_private
;
7908 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
7909 struct extent_io_tree
*io_tree
, *failure_tree
;
7910 struct inode
*inode
= done
->inode
;
7911 struct bio_vec
*bvec
;
7921 ASSERT(bio
->bi_vcnt
== 1);
7922 ASSERT(bio_first_bvec_all(bio
)->bv_len
== btrfs_inode_sectorsize(done
->inode
));
7924 io_tree
= &BTRFS_I(inode
)->io_tree
;
7925 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
7927 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
7928 bio_for_each_segment_all(bvec
, bio
, i
) {
7929 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
7930 bvec
->bv_offset
, done
->start
,
7933 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
7934 failure_tree
, io_tree
, done
->start
,
7936 btrfs_ino(BTRFS_I(inode
)),
7942 done
->uptodate
= uptodate
;
7944 complete(&done
->done
);
7948 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
7949 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
7951 struct btrfs_fs_info
*fs_info
;
7952 struct bio_vec bvec
;
7953 struct bvec_iter iter
;
7954 struct btrfs_retry_complete done
;
7961 bool uptodate
= (err
== 0);
7963 blk_status_t status
;
7965 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
7966 sectorsize
= fs_info
->sectorsize
;
7969 start
= io_bio
->logical
;
7971 io_bio
->bio
.bi_iter
= io_bio
->iter
;
7973 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
7974 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
7976 pgoff
= bvec
.bv_offset
;
7979 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
7980 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
7981 bvec
.bv_page
, pgoff
, start
, sectorsize
);
7988 init_completion(&done
.done
);
7990 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
7991 pgoff
, start
, start
+ sectorsize
- 1,
7992 io_bio
->mirror_num
, btrfs_retry_endio
,
7999 wait_for_completion_io(&done
.done
);
8001 if (!done
.uptodate
) {
8002 /* We might have another mirror, so try again */
8006 offset
+= sectorsize
;
8007 start
+= sectorsize
;
8013 pgoff
+= sectorsize
;
8014 ASSERT(pgoff
< PAGE_SIZE
);
8022 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8023 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8025 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8029 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8033 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8037 static void btrfs_endio_direct_read(struct bio
*bio
)
8039 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8040 struct inode
*inode
= dip
->inode
;
8041 struct bio
*dio_bio
;
8042 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8043 blk_status_t err
= bio
->bi_status
;
8045 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8046 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8048 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8049 dip
->logical_offset
+ dip
->bytes
- 1);
8050 dio_bio
= dip
->dio_bio
;
8054 dio_bio
->bi_status
= err
;
8055 dio_end_io(dio_bio
);
8058 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8062 static void __endio_write_update_ordered(struct inode
*inode
,
8063 const u64 offset
, const u64 bytes
,
8064 const bool uptodate
)
8066 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8067 struct btrfs_ordered_extent
*ordered
= NULL
;
8068 struct btrfs_workqueue
*wq
;
8069 btrfs_work_func_t func
;
8070 u64 ordered_offset
= offset
;
8071 u64 ordered_bytes
= bytes
;
8074 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8075 wq
= fs_info
->endio_freespace_worker
;
8076 func
= btrfs_freespace_write_helper
;
8078 wq
= fs_info
->endio_write_workers
;
8079 func
= btrfs_endio_write_helper
;
8082 while (ordered_offset
< offset
+ bytes
) {
8083 last_offset
= ordered_offset
;
8084 if (btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8088 btrfs_init_work(&ordered
->work
, func
,
8091 btrfs_queue_work(wq
, &ordered
->work
);
8094 * If btrfs_dec_test_ordered_pending does not find any ordered
8095 * extent in the range, we can exit.
8097 if (ordered_offset
== last_offset
)
8100 * Our bio might span multiple ordered extents. In this case
8101 * we keep goin until we have accounted the whole dio.
8103 if (ordered_offset
< offset
+ bytes
) {
8104 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8110 static void btrfs_endio_direct_write(struct bio
*bio
)
8112 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8113 struct bio
*dio_bio
= dip
->dio_bio
;
8115 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8116 dip
->bytes
, !bio
->bi_status
);
8120 dio_bio
->bi_status
= bio
->bi_status
;
8121 dio_end_io(dio_bio
);
8125 static blk_status_t
btrfs_submit_bio_start_direct_io(void *private_data
,
8126 struct bio
*bio
, u64 offset
)
8128 struct inode
*inode
= private_data
;
8130 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8131 BUG_ON(ret
); /* -ENOMEM */
8135 static void btrfs_end_dio_bio(struct bio
*bio
)
8137 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8138 blk_status_t err
= bio
->bi_status
;
8141 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8142 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8143 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8145 (unsigned long long)bio
->bi_iter
.bi_sector
,
8146 bio
->bi_iter
.bi_size
, err
);
8148 if (dip
->subio_endio
)
8149 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8153 * We want to perceive the errors flag being set before
8154 * decrementing the reference count. We don't need a barrier
8155 * since atomic operations with a return value are fully
8156 * ordered as per atomic_t.txt
8161 /* if there are more bios still pending for this dio, just exit */
8162 if (!atomic_dec_and_test(&dip
->pending_bios
))
8166 bio_io_error(dip
->orig_bio
);
8168 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8169 bio_endio(dip
->orig_bio
);
8175 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8176 struct btrfs_dio_private
*dip
,
8180 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8181 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8185 * We load all the csum data we need when we submit
8186 * the first bio to reduce the csum tree search and
8189 if (dip
->logical_offset
== file_offset
) {
8190 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8196 if (bio
== dip
->orig_bio
)
8199 file_offset
-= dip
->logical_offset
;
8200 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8201 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8206 static inline blk_status_t
btrfs_submit_dio_bio(struct bio
*bio
,
8207 struct inode
*inode
, u64 file_offset
, int async_submit
)
8209 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8210 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8211 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8214 /* Check btrfs_submit_bio_hook() for rules about async submit. */
8216 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8219 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8224 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8227 if (write
&& async_submit
) {
8228 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8230 btrfs_submit_bio_start_direct_io
);
8234 * If we aren't doing async submit, calculate the csum of the
8237 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8241 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8247 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8252 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8254 struct inode
*inode
= dip
->inode
;
8255 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8257 struct bio
*orig_bio
= dip
->orig_bio
;
8258 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8259 u64 file_offset
= dip
->logical_offset
;
8261 int async_submit
= 0;
8263 int clone_offset
= 0;
8266 blk_status_t status
;
8268 map_length
= orig_bio
->bi_iter
.bi_size
;
8269 submit_len
= map_length
;
8270 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8271 &map_length
, NULL
, 0);
8275 if (map_length
>= submit_len
) {
8277 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8281 /* async crcs make it difficult to collect full stripe writes. */
8282 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8288 ASSERT(map_length
<= INT_MAX
);
8289 atomic_inc(&dip
->pending_bios
);
8291 clone_len
= min_t(int, submit_len
, map_length
);
8294 * This will never fail as it's passing GPF_NOFS and
8295 * the allocation is backed by btrfs_bioset.
8297 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8299 bio
->bi_private
= dip
;
8300 bio
->bi_end_io
= btrfs_end_dio_bio
;
8301 btrfs_io_bio(bio
)->logical
= file_offset
;
8303 ASSERT(submit_len
>= clone_len
);
8304 submit_len
-= clone_len
;
8305 if (submit_len
== 0)
8309 * Increase the count before we submit the bio so we know
8310 * the end IO handler won't happen before we increase the
8311 * count. Otherwise, the dip might get freed before we're
8312 * done setting it up.
8314 atomic_inc(&dip
->pending_bios
);
8316 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8320 atomic_dec(&dip
->pending_bios
);
8324 clone_offset
+= clone_len
;
8325 start_sector
+= clone_len
>> 9;
8326 file_offset
+= clone_len
;
8328 map_length
= submit_len
;
8329 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8330 start_sector
<< 9, &map_length
, NULL
, 0);
8333 } while (submit_len
> 0);
8336 status
= btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8344 * Before atomic variable goto zero, we must make sure dip->errors is
8345 * perceived to be set. This ordering is ensured by the fact that an
8346 * atomic operations with a return value are fully ordered as per
8349 if (atomic_dec_and_test(&dip
->pending_bios
))
8350 bio_io_error(dip
->orig_bio
);
8352 /* bio_end_io() will handle error, so we needn't return it */
8356 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8359 struct btrfs_dio_private
*dip
= NULL
;
8360 struct bio
*bio
= NULL
;
8361 struct btrfs_io_bio
*io_bio
;
8362 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8365 bio
= btrfs_bio_clone(dio_bio
);
8367 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8373 dip
->private = dio_bio
->bi_private
;
8375 dip
->logical_offset
= file_offset
;
8376 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8377 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8378 bio
->bi_private
= dip
;
8379 dip
->orig_bio
= bio
;
8380 dip
->dio_bio
= dio_bio
;
8381 atomic_set(&dip
->pending_bios
, 0);
8382 io_bio
= btrfs_io_bio(bio
);
8383 io_bio
->logical
= file_offset
;
8386 bio
->bi_end_io
= btrfs_endio_direct_write
;
8388 bio
->bi_end_io
= btrfs_endio_direct_read
;
8389 dip
->subio_endio
= btrfs_subio_endio_read
;
8393 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8394 * even if we fail to submit a bio, because in such case we do the
8395 * corresponding error handling below and it must not be done a second
8396 * time by btrfs_direct_IO().
8399 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8401 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8403 dio_data
->unsubmitted_oe_range_start
=
8404 dio_data
->unsubmitted_oe_range_end
;
8407 ret
= btrfs_submit_direct_hook(dip
);
8412 io_bio
->end_io(io_bio
, ret
);
8416 * If we arrived here it means either we failed to submit the dip
8417 * or we either failed to clone the dio_bio or failed to allocate the
8418 * dip. If we cloned the dio_bio and allocated the dip, we can just
8419 * call bio_endio against our io_bio so that we get proper resource
8420 * cleanup if we fail to submit the dip, otherwise, we must do the
8421 * same as btrfs_endio_direct_[write|read] because we can't call these
8422 * callbacks - they require an allocated dip and a clone of dio_bio.
8427 * The end io callbacks free our dip, do the final put on bio
8428 * and all the cleanup and final put for dio_bio (through
8435 __endio_write_update_ordered(inode
,
8437 dio_bio
->bi_iter
.bi_size
,
8440 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8441 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8443 dio_bio
->bi_status
= BLK_STS_IOERR
;
8445 * Releases and cleans up our dio_bio, no need to bio_put()
8446 * nor bio_endio()/bio_io_error() against dio_bio.
8448 dio_end_io(dio_bio
);
8455 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8456 const struct iov_iter
*iter
, loff_t offset
)
8460 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8461 ssize_t retval
= -EINVAL
;
8463 if (offset
& blocksize_mask
)
8466 if (iov_iter_alignment(iter
) & blocksize_mask
)
8469 /* If this is a write we don't need to check anymore */
8470 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8473 * Check to make sure we don't have duplicate iov_base's in this
8474 * iovec, if so return EINVAL, otherwise we'll get csum errors
8475 * when reading back.
8477 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8478 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8479 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8488 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8490 struct file
*file
= iocb
->ki_filp
;
8491 struct inode
*inode
= file
->f_mapping
->host
;
8492 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8493 struct btrfs_dio_data dio_data
= { 0 };
8494 struct extent_changeset
*data_reserved
= NULL
;
8495 loff_t offset
= iocb
->ki_pos
;
8499 bool relock
= false;
8502 if (check_direct_IO(fs_info
, iter
, offset
))
8505 inode_dio_begin(inode
);
8508 * The generic stuff only does filemap_write_and_wait_range, which
8509 * isn't enough if we've written compressed pages to this area, so
8510 * we need to flush the dirty pages again to make absolutely sure
8511 * that any outstanding dirty pages are on disk.
8513 count
= iov_iter_count(iter
);
8514 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8515 &BTRFS_I(inode
)->runtime_flags
))
8516 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8517 offset
+ count
- 1);
8519 if (iov_iter_rw(iter
) == WRITE
) {
8521 * If the write DIO is beyond the EOF, we need update
8522 * the isize, but it is protected by i_mutex. So we can
8523 * not unlock the i_mutex at this case.
8525 if (offset
+ count
<= inode
->i_size
) {
8526 dio_data
.overwrite
= 1;
8527 inode_unlock(inode
);
8529 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8533 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8539 * We need to know how many extents we reserved so that we can
8540 * do the accounting properly if we go over the number we
8541 * originally calculated. Abuse current->journal_info for this.
8543 dio_data
.reserve
= round_up(count
,
8544 fs_info
->sectorsize
);
8545 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8546 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8547 current
->journal_info
= &dio_data
;
8548 down_read(&BTRFS_I(inode
)->dio_sem
);
8549 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8550 &BTRFS_I(inode
)->runtime_flags
)) {
8551 inode_dio_end(inode
);
8552 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8556 ret
= __blockdev_direct_IO(iocb
, inode
,
8557 fs_info
->fs_devices
->latest_bdev
,
8558 iter
, btrfs_get_blocks_direct
, NULL
,
8559 btrfs_submit_direct
, flags
);
8560 if (iov_iter_rw(iter
) == WRITE
) {
8561 up_read(&BTRFS_I(inode
)->dio_sem
);
8562 current
->journal_info
= NULL
;
8563 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8564 if (dio_data
.reserve
)
8565 btrfs_delalloc_release_space(inode
, data_reserved
,
8566 offset
, dio_data
.reserve
, true);
8568 * On error we might have left some ordered extents
8569 * without submitting corresponding bios for them, so
8570 * cleanup them up to avoid other tasks getting them
8571 * and waiting for them to complete forever.
8573 if (dio_data
.unsubmitted_oe_range_start
<
8574 dio_data
.unsubmitted_oe_range_end
)
8575 __endio_write_update_ordered(inode
,
8576 dio_data
.unsubmitted_oe_range_start
,
8577 dio_data
.unsubmitted_oe_range_end
-
8578 dio_data
.unsubmitted_oe_range_start
,
8580 } else if (ret
>= 0 && (size_t)ret
< count
)
8581 btrfs_delalloc_release_space(inode
, data_reserved
,
8582 offset
, count
- (size_t)ret
, true);
8583 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
, false);
8587 inode_dio_end(inode
);
8591 extent_changeset_free(data_reserved
);
8595 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8597 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8598 __u64 start
, __u64 len
)
8602 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8606 return extent_fiemap(inode
, fieinfo
, start
, len
);
8609 int btrfs_readpage(struct file
*file
, struct page
*page
)
8611 struct extent_io_tree
*tree
;
8612 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8613 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8616 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8618 struct inode
*inode
= page
->mapping
->host
;
8621 if (current
->flags
& PF_MEMALLOC
) {
8622 redirty_page_for_writepage(wbc
, page
);
8628 * If we are under memory pressure we will call this directly from the
8629 * VM, we need to make sure we have the inode referenced for the ordered
8630 * extent. If not just return like we didn't do anything.
8632 if (!igrab(inode
)) {
8633 redirty_page_for_writepage(wbc
, page
);
8634 return AOP_WRITEPAGE_ACTIVATE
;
8636 ret
= extent_write_full_page(page
, wbc
);
8637 btrfs_add_delayed_iput(inode
);
8641 static int btrfs_writepages(struct address_space
*mapping
,
8642 struct writeback_control
*wbc
)
8644 return extent_writepages(mapping
, wbc
);
8648 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8649 struct list_head
*pages
, unsigned nr_pages
)
8651 return extent_readpages(mapping
, pages
, nr_pages
);
8654 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8656 int ret
= try_release_extent_mapping(page
, gfp_flags
);
8658 ClearPagePrivate(page
);
8659 set_page_private(page
, 0);
8665 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8667 if (PageWriteback(page
) || PageDirty(page
))
8669 return __btrfs_releasepage(page
, gfp_flags
);
8672 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8673 unsigned int length
)
8675 struct inode
*inode
= page
->mapping
->host
;
8676 struct extent_io_tree
*tree
;
8677 struct btrfs_ordered_extent
*ordered
;
8678 struct extent_state
*cached_state
= NULL
;
8679 u64 page_start
= page_offset(page
);
8680 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8683 int inode_evicting
= inode
->i_state
& I_FREEING
;
8686 * we have the page locked, so new writeback can't start,
8687 * and the dirty bit won't be cleared while we are here.
8689 * Wait for IO on this page so that we can safely clear
8690 * the PagePrivate2 bit and do ordered accounting
8692 wait_on_page_writeback(page
);
8694 tree
= &BTRFS_I(inode
)->io_tree
;
8696 btrfs_releasepage(page
, GFP_NOFS
);
8700 if (!inode_evicting
)
8701 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8704 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8705 page_end
- start
+ 1);
8707 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8709 * IO on this page will never be started, so we need
8710 * to account for any ordered extents now
8712 if (!inode_evicting
)
8713 clear_extent_bit(tree
, start
, end
,
8714 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8715 EXTENT_DELALLOC_NEW
|
8716 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8717 EXTENT_DEFRAG
, 1, 0, &cached_state
);
8719 * whoever cleared the private bit is responsible
8720 * for the finish_ordered_io
8722 if (TestClearPagePrivate2(page
)) {
8723 struct btrfs_ordered_inode_tree
*tree
;
8726 tree
= &BTRFS_I(inode
)->ordered_tree
;
8728 spin_lock_irq(&tree
->lock
);
8729 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8730 new_len
= start
- ordered
->file_offset
;
8731 if (new_len
< ordered
->truncated_len
)
8732 ordered
->truncated_len
= new_len
;
8733 spin_unlock_irq(&tree
->lock
);
8735 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
8737 end
- start
+ 1, 1))
8738 btrfs_finish_ordered_io(ordered
);
8740 btrfs_put_ordered_extent(ordered
);
8741 if (!inode_evicting
) {
8742 cached_state
= NULL
;
8743 lock_extent_bits(tree
, start
, end
,
8748 if (start
< page_end
)
8753 * Qgroup reserved space handler
8754 * Page here will be either
8755 * 1) Already written to disk
8756 * In this case, its reserved space is released from data rsv map
8757 * and will be freed by delayed_ref handler finally.
8758 * So even we call qgroup_free_data(), it won't decrease reserved
8760 * 2) Not written to disk
8761 * This means the reserved space should be freed here. However,
8762 * if a truncate invalidates the page (by clearing PageDirty)
8763 * and the page is accounted for while allocating extent
8764 * in btrfs_check_data_free_space() we let delayed_ref to
8765 * free the entire extent.
8767 if (PageDirty(page
))
8768 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
8769 if (!inode_evicting
) {
8770 clear_extent_bit(tree
, page_start
, page_end
,
8771 EXTENT_LOCKED
| EXTENT_DIRTY
|
8772 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
8773 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
8776 __btrfs_releasepage(page
, GFP_NOFS
);
8779 ClearPageChecked(page
);
8780 if (PagePrivate(page
)) {
8781 ClearPagePrivate(page
);
8782 set_page_private(page
, 0);
8788 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8789 * called from a page fault handler when a page is first dirtied. Hence we must
8790 * be careful to check for EOF conditions here. We set the page up correctly
8791 * for a written page which means we get ENOSPC checking when writing into
8792 * holes and correct delalloc and unwritten extent mapping on filesystems that
8793 * support these features.
8795 * We are not allowed to take the i_mutex here so we have to play games to
8796 * protect against truncate races as the page could now be beyond EOF. Because
8797 * truncate_setsize() writes the inode size before removing pages, once we have
8798 * the page lock we can determine safely if the page is beyond EOF. If it is not
8799 * beyond EOF, then the page is guaranteed safe against truncation until we
8802 vm_fault_t
btrfs_page_mkwrite(struct vm_fault
*vmf
)
8804 struct page
*page
= vmf
->page
;
8805 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
8806 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8807 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8808 struct btrfs_ordered_extent
*ordered
;
8809 struct extent_state
*cached_state
= NULL
;
8810 struct extent_changeset
*data_reserved
= NULL
;
8812 unsigned long zero_start
;
8822 reserved_space
= PAGE_SIZE
;
8824 sb_start_pagefault(inode
->i_sb
);
8825 page_start
= page_offset(page
);
8826 page_end
= page_start
+ PAGE_SIZE
- 1;
8830 * Reserving delalloc space after obtaining the page lock can lead to
8831 * deadlock. For example, if a dirty page is locked by this function
8832 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8833 * dirty page write out, then the btrfs_writepage() function could
8834 * end up waiting indefinitely to get a lock on the page currently
8835 * being processed by btrfs_page_mkwrite() function.
8837 ret2
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
8840 ret2
= file_update_time(vmf
->vma
->vm_file
);
8844 ret
= vmf_error(ret2
);
8850 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
8853 size
= i_size_read(inode
);
8855 if ((page
->mapping
!= inode
->i_mapping
) ||
8856 (page_start
>= size
)) {
8857 /* page got truncated out from underneath us */
8860 wait_on_page_writeback(page
);
8862 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
8863 set_page_extent_mapped(page
);
8866 * we can't set the delalloc bits if there are pending ordered
8867 * extents. Drop our locks and wait for them to finish
8869 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
8872 unlock_extent_cached(io_tree
, page_start
, page_end
,
8875 btrfs_start_ordered_extent(inode
, ordered
, 1);
8876 btrfs_put_ordered_extent(ordered
);
8880 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
8881 reserved_space
= round_up(size
- page_start
,
8882 fs_info
->sectorsize
);
8883 if (reserved_space
< PAGE_SIZE
) {
8884 end
= page_start
+ reserved_space
- 1;
8885 btrfs_delalloc_release_space(inode
, data_reserved
,
8886 page_start
, PAGE_SIZE
- reserved_space
,
8892 * page_mkwrite gets called when the page is firstly dirtied after it's
8893 * faulted in, but write(2) could also dirty a page and set delalloc
8894 * bits, thus in this case for space account reason, we still need to
8895 * clear any delalloc bits within this page range since we have to
8896 * reserve data&meta space before lock_page() (see above comments).
8898 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
8899 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8900 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
8901 0, 0, &cached_state
);
8903 ret2
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
8906 unlock_extent_cached(io_tree
, page_start
, page_end
,
8908 ret
= VM_FAULT_SIGBUS
;
8913 /* page is wholly or partially inside EOF */
8914 if (page_start
+ PAGE_SIZE
> size
)
8915 zero_start
= size
& ~PAGE_MASK
;
8917 zero_start
= PAGE_SIZE
;
8919 if (zero_start
!= PAGE_SIZE
) {
8921 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
8922 flush_dcache_page(page
);
8925 ClearPageChecked(page
);
8926 set_page_dirty(page
);
8927 SetPageUptodate(page
);
8929 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
8930 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
8931 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
8933 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
);
8936 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, true);
8937 sb_end_pagefault(inode
->i_sb
);
8938 extent_changeset_free(data_reserved
);
8939 return VM_FAULT_LOCKED
;
8945 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
, (ret
!= 0));
8946 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
8947 reserved_space
, (ret
!= 0));
8949 sb_end_pagefault(inode
->i_sb
);
8950 extent_changeset_free(data_reserved
);
8954 static int btrfs_truncate(struct inode
*inode
, bool skip_writeback
)
8956 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8957 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
8958 struct btrfs_block_rsv
*rsv
;
8960 struct btrfs_trans_handle
*trans
;
8961 u64 mask
= fs_info
->sectorsize
- 1;
8962 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
8964 if (!skip_writeback
) {
8965 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
8972 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8973 * things going on here:
8975 * 1) We need to reserve space to update our inode.
8977 * 2) We need to have something to cache all the space that is going to
8978 * be free'd up by the truncate operation, but also have some slack
8979 * space reserved in case it uses space during the truncate (thank you
8980 * very much snapshotting).
8982 * And we need these to be separate. The fact is we can use a lot of
8983 * space doing the truncate, and we have no earthly idea how much space
8984 * we will use, so we need the truncate reservation to be separate so it
8985 * doesn't end up using space reserved for updating the inode. We also
8986 * need to be able to stop the transaction and start a new one, which
8987 * means we need to be able to update the inode several times, and we
8988 * have no idea of knowing how many times that will be, so we can't just
8989 * reserve 1 item for the entirety of the operation, so that has to be
8990 * done separately as well.
8992 * So that leaves us with
8994 * 1) rsv - for the truncate reservation, which we will steal from the
8995 * transaction reservation.
8996 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8997 * updating the inode.
8999 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9002 rsv
->size
= min_size
;
9006 * 1 for the truncate slack space
9007 * 1 for updating the inode.
9009 trans
= btrfs_start_transaction(root
, 2);
9010 if (IS_ERR(trans
)) {
9011 ret
= PTR_ERR(trans
);
9015 /* Migrate the slack space for the truncate to our reserve */
9016 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9021 * So if we truncate and then write and fsync we normally would just
9022 * write the extents that changed, which is a problem if we need to
9023 * first truncate that entire inode. So set this flag so we write out
9024 * all of the extents in the inode to the sync log so we're completely
9027 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9028 trans
->block_rsv
= rsv
;
9031 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9033 BTRFS_EXTENT_DATA_KEY
);
9034 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9035 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
9038 ret
= btrfs_update_inode(trans
, root
, inode
);
9042 btrfs_end_transaction(trans
);
9043 btrfs_btree_balance_dirty(fs_info
);
9045 trans
= btrfs_start_transaction(root
, 2);
9046 if (IS_ERR(trans
)) {
9047 ret
= PTR_ERR(trans
);
9052 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9053 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9054 rsv
, min_size
, false);
9055 BUG_ON(ret
); /* shouldn't happen */
9056 trans
->block_rsv
= rsv
;
9060 * We can't call btrfs_truncate_block inside a trans handle as we could
9061 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9062 * we've truncated everything except the last little bit, and can do
9063 * btrfs_truncate_block and then update the disk_i_size.
9065 if (ret
== NEED_TRUNCATE_BLOCK
) {
9066 btrfs_end_transaction(trans
);
9067 btrfs_btree_balance_dirty(fs_info
);
9069 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9072 trans
= btrfs_start_transaction(root
, 1);
9073 if (IS_ERR(trans
)) {
9074 ret
= PTR_ERR(trans
);
9077 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9083 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9084 ret2
= btrfs_update_inode(trans
, root
, inode
);
9088 ret2
= btrfs_end_transaction(trans
);
9091 btrfs_btree_balance_dirty(fs_info
);
9094 btrfs_free_block_rsv(fs_info
, rsv
);
9100 * create a new subvolume directory/inode (helper for the ioctl).
9102 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9103 struct btrfs_root
*new_root
,
9104 struct btrfs_root
*parent_root
,
9107 struct inode
*inode
;
9111 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9112 new_dirid
, new_dirid
,
9113 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9116 return PTR_ERR(inode
);
9117 inode
->i_op
= &btrfs_dir_inode_operations
;
9118 inode
->i_fop
= &btrfs_dir_file_operations
;
9120 set_nlink(inode
, 1);
9121 btrfs_i_size_write(BTRFS_I(inode
), 0);
9122 unlock_new_inode(inode
);
9124 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9126 btrfs_err(new_root
->fs_info
,
9127 "error inheriting subvolume %llu properties: %d",
9128 new_root
->root_key
.objectid
, err
);
9130 err
= btrfs_update_inode(trans
, new_root
, inode
);
9136 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9138 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9139 struct btrfs_inode
*ei
;
9140 struct inode
*inode
;
9142 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_KERNEL
);
9149 ei
->last_sub_trans
= 0;
9150 ei
->logged_trans
= 0;
9151 ei
->delalloc_bytes
= 0;
9152 ei
->new_delalloc_bytes
= 0;
9153 ei
->defrag_bytes
= 0;
9154 ei
->disk_i_size
= 0;
9157 ei
->index_cnt
= (u64
)-1;
9159 ei
->last_unlink_trans
= 0;
9160 ei
->last_log_commit
= 0;
9162 spin_lock_init(&ei
->lock
);
9163 ei
->outstanding_extents
= 0;
9164 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9165 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9166 BTRFS_BLOCK_RSV_DELALLOC
);
9167 ei
->runtime_flags
= 0;
9168 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9169 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9171 ei
->delayed_node
= NULL
;
9173 ei
->i_otime
.tv_sec
= 0;
9174 ei
->i_otime
.tv_nsec
= 0;
9176 inode
= &ei
->vfs_inode
;
9177 extent_map_tree_init(&ei
->extent_tree
);
9178 extent_io_tree_init(&ei
->io_tree
, inode
);
9179 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9180 ei
->io_tree
.track_uptodate
= 1;
9181 ei
->io_failure_tree
.track_uptodate
= 1;
9182 atomic_set(&ei
->sync_writers
, 0);
9183 mutex_init(&ei
->log_mutex
);
9184 mutex_init(&ei
->delalloc_mutex
);
9185 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9186 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9187 INIT_LIST_HEAD(&ei
->delayed_iput
);
9188 RB_CLEAR_NODE(&ei
->rb_node
);
9189 init_rwsem(&ei
->dio_sem
);
9194 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9195 void btrfs_test_destroy_inode(struct inode
*inode
)
9197 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9198 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9202 static void btrfs_i_callback(struct rcu_head
*head
)
9204 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9205 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9208 void btrfs_destroy_inode(struct inode
*inode
)
9210 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9211 struct btrfs_ordered_extent
*ordered
;
9212 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9214 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9215 WARN_ON(inode
->i_data
.nrpages
);
9216 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9217 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9218 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9219 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9220 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9221 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9222 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9225 * This can happen where we create an inode, but somebody else also
9226 * created the same inode and we need to destroy the one we already
9233 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9238 "found ordered extent %llu %llu on inode cleanup",
9239 ordered
->file_offset
, ordered
->len
);
9240 btrfs_remove_ordered_extent(inode
, ordered
);
9241 btrfs_put_ordered_extent(ordered
);
9242 btrfs_put_ordered_extent(ordered
);
9245 btrfs_qgroup_check_reserved_leak(inode
);
9246 inode_tree_del(inode
);
9247 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9249 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9252 int btrfs_drop_inode(struct inode
*inode
)
9254 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9259 /* the snap/subvol tree is on deleting */
9260 if (btrfs_root_refs(&root
->root_item
) == 0)
9263 return generic_drop_inode(inode
);
9266 static void init_once(void *foo
)
9268 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9270 inode_init_once(&ei
->vfs_inode
);
9273 void __cold
btrfs_destroy_cachep(void)
9276 * Make sure all delayed rcu free inodes are flushed before we
9280 kmem_cache_destroy(btrfs_inode_cachep
);
9281 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9282 kmem_cache_destroy(btrfs_path_cachep
);
9283 kmem_cache_destroy(btrfs_free_space_cachep
);
9286 int __init
btrfs_init_cachep(void)
9288 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9289 sizeof(struct btrfs_inode
), 0,
9290 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9292 if (!btrfs_inode_cachep
)
9295 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9296 sizeof(struct btrfs_trans_handle
), 0,
9297 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9298 if (!btrfs_trans_handle_cachep
)
9301 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9302 sizeof(struct btrfs_path
), 0,
9303 SLAB_MEM_SPREAD
, NULL
);
9304 if (!btrfs_path_cachep
)
9307 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9308 sizeof(struct btrfs_free_space
), 0,
9309 SLAB_MEM_SPREAD
, NULL
);
9310 if (!btrfs_free_space_cachep
)
9315 btrfs_destroy_cachep();
9319 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9320 u32 request_mask
, unsigned int flags
)
9323 struct inode
*inode
= d_inode(path
->dentry
);
9324 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9325 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9327 stat
->result_mask
|= STATX_BTIME
;
9328 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9329 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9330 if (bi_flags
& BTRFS_INODE_APPEND
)
9331 stat
->attributes
|= STATX_ATTR_APPEND
;
9332 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9333 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9334 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9335 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9336 if (bi_flags
& BTRFS_INODE_NODUMP
)
9337 stat
->attributes
|= STATX_ATTR_NODUMP
;
9339 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9340 STATX_ATTR_COMPRESSED
|
9341 STATX_ATTR_IMMUTABLE
|
9344 generic_fillattr(inode
, stat
);
9345 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9347 spin_lock(&BTRFS_I(inode
)->lock
);
9348 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9349 spin_unlock(&BTRFS_I(inode
)->lock
);
9350 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9351 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9355 static int btrfs_rename_exchange(struct inode
*old_dir
,
9356 struct dentry
*old_dentry
,
9357 struct inode
*new_dir
,
9358 struct dentry
*new_dentry
)
9360 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9361 struct btrfs_trans_handle
*trans
;
9362 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9363 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9364 struct inode
*new_inode
= new_dentry
->d_inode
;
9365 struct inode
*old_inode
= old_dentry
->d_inode
;
9366 struct timespec64 ctime
= current_time(old_inode
);
9367 struct dentry
*parent
;
9368 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9369 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9374 bool root_log_pinned
= false;
9375 bool dest_log_pinned
= false;
9376 struct btrfs_log_ctx ctx_root
;
9377 struct btrfs_log_ctx ctx_dest
;
9378 bool sync_log_root
= false;
9379 bool sync_log_dest
= false;
9380 bool commit_transaction
= false;
9382 /* we only allow rename subvolume link between subvolumes */
9383 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9386 btrfs_init_log_ctx(&ctx_root
, old_inode
);
9387 btrfs_init_log_ctx(&ctx_dest
, new_inode
);
9389 /* close the race window with snapshot create/destroy ioctl */
9390 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9391 down_read(&fs_info
->subvol_sem
);
9392 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9393 down_read(&fs_info
->subvol_sem
);
9396 * We want to reserve the absolute worst case amount of items. So if
9397 * both inodes are subvols and we need to unlink them then that would
9398 * require 4 item modifications, but if they are both normal inodes it
9399 * would require 5 item modifications, so we'll assume their normal
9400 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9401 * should cover the worst case number of items we'll modify.
9403 trans
= btrfs_start_transaction(root
, 12);
9404 if (IS_ERR(trans
)) {
9405 ret
= PTR_ERR(trans
);
9410 * We need to find a free sequence number both in the source and
9411 * in the destination directory for the exchange.
9413 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9416 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9420 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9421 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9423 /* Reference for the source. */
9424 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9425 /* force full log commit if subvolume involved. */
9426 btrfs_set_log_full_commit(fs_info
, trans
);
9428 btrfs_pin_log_trans(root
);
9429 root_log_pinned
= true;
9430 ret
= btrfs_insert_inode_ref(trans
, dest
,
9431 new_dentry
->d_name
.name
,
9432 new_dentry
->d_name
.len
,
9434 btrfs_ino(BTRFS_I(new_dir
)),
9440 /* And now for the dest. */
9441 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9442 /* force full log commit if subvolume involved. */
9443 btrfs_set_log_full_commit(fs_info
, trans
);
9445 btrfs_pin_log_trans(dest
);
9446 dest_log_pinned
= true;
9447 ret
= btrfs_insert_inode_ref(trans
, root
,
9448 old_dentry
->d_name
.name
,
9449 old_dentry
->d_name
.len
,
9451 btrfs_ino(BTRFS_I(old_dir
)),
9457 /* Update inode version and ctime/mtime. */
9458 inode_inc_iversion(old_dir
);
9459 inode_inc_iversion(new_dir
);
9460 inode_inc_iversion(old_inode
);
9461 inode_inc_iversion(new_inode
);
9462 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9463 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9464 old_inode
->i_ctime
= ctime
;
9465 new_inode
->i_ctime
= ctime
;
9467 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9468 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9469 BTRFS_I(old_inode
), 1);
9470 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9471 BTRFS_I(new_inode
), 1);
9474 /* src is a subvolume */
9475 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9476 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9477 ret
= btrfs_unlink_subvol(trans
, old_dir
, root_objectid
,
9478 old_dentry
->d_name
.name
,
9479 old_dentry
->d_name
.len
);
9480 } else { /* src is an inode */
9481 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9482 BTRFS_I(old_dentry
->d_inode
),
9483 old_dentry
->d_name
.name
,
9484 old_dentry
->d_name
.len
);
9486 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9489 btrfs_abort_transaction(trans
, ret
);
9493 /* dest is a subvolume */
9494 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9495 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9496 ret
= btrfs_unlink_subvol(trans
, new_dir
, root_objectid
,
9497 new_dentry
->d_name
.name
,
9498 new_dentry
->d_name
.len
);
9499 } else { /* dest is an inode */
9500 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9501 BTRFS_I(new_dentry
->d_inode
),
9502 new_dentry
->d_name
.name
,
9503 new_dentry
->d_name
.len
);
9505 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9508 btrfs_abort_transaction(trans
, ret
);
9512 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9513 new_dentry
->d_name
.name
,
9514 new_dentry
->d_name
.len
, 0, old_idx
);
9516 btrfs_abort_transaction(trans
, ret
);
9520 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9521 old_dentry
->d_name
.name
,
9522 old_dentry
->d_name
.len
, 0, new_idx
);
9524 btrfs_abort_transaction(trans
, ret
);
9528 if (old_inode
->i_nlink
== 1)
9529 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9530 if (new_inode
->i_nlink
== 1)
9531 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9533 if (root_log_pinned
) {
9534 parent
= new_dentry
->d_parent
;
9535 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9536 BTRFS_I(old_dir
), parent
,
9538 if (ret
== BTRFS_NEED_LOG_SYNC
)
9539 sync_log_root
= true;
9540 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9541 commit_transaction
= true;
9543 btrfs_end_log_trans(root
);
9544 root_log_pinned
= false;
9546 if (dest_log_pinned
) {
9547 if (!commit_transaction
) {
9548 parent
= old_dentry
->d_parent
;
9549 ret
= btrfs_log_new_name(trans
, BTRFS_I(new_inode
),
9550 BTRFS_I(new_dir
), parent
,
9552 if (ret
== BTRFS_NEED_LOG_SYNC
)
9553 sync_log_dest
= true;
9554 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9555 commit_transaction
= true;
9558 btrfs_end_log_trans(dest
);
9559 dest_log_pinned
= false;
9563 * If we have pinned a log and an error happened, we unpin tasks
9564 * trying to sync the log and force them to fallback to a transaction
9565 * commit if the log currently contains any of the inodes involved in
9566 * this rename operation (to ensure we do not persist a log with an
9567 * inconsistent state for any of these inodes or leading to any
9568 * inconsistencies when replayed). If the transaction was aborted, the
9569 * abortion reason is propagated to userspace when attempting to commit
9570 * the transaction. If the log does not contain any of these inodes, we
9571 * allow the tasks to sync it.
9573 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9574 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9575 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9576 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9578 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9579 btrfs_set_log_full_commit(fs_info
, trans
);
9581 if (root_log_pinned
) {
9582 btrfs_end_log_trans(root
);
9583 root_log_pinned
= false;
9585 if (dest_log_pinned
) {
9586 btrfs_end_log_trans(dest
);
9587 dest_log_pinned
= false;
9590 if (!ret
&& sync_log_root
&& !commit_transaction
) {
9591 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
,
9594 commit_transaction
= true;
9596 if (!ret
&& sync_log_dest
&& !commit_transaction
) {
9597 ret
= btrfs_sync_log(trans
, BTRFS_I(new_inode
)->root
,
9600 commit_transaction
= true;
9602 if (commit_transaction
) {
9603 ret
= btrfs_commit_transaction(trans
);
9607 ret2
= btrfs_end_transaction(trans
);
9608 ret
= ret
? ret
: ret2
;
9611 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9612 up_read(&fs_info
->subvol_sem
);
9613 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9614 up_read(&fs_info
->subvol_sem
);
9619 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9620 struct btrfs_root
*root
,
9622 struct dentry
*dentry
)
9625 struct inode
*inode
;
9629 ret
= btrfs_find_free_ino(root
, &objectid
);
9633 inode
= btrfs_new_inode(trans
, root
, dir
,
9634 dentry
->d_name
.name
,
9636 btrfs_ino(BTRFS_I(dir
)),
9638 S_IFCHR
| WHITEOUT_MODE
,
9641 if (IS_ERR(inode
)) {
9642 ret
= PTR_ERR(inode
);
9646 inode
->i_op
= &btrfs_special_inode_operations
;
9647 init_special_inode(inode
, inode
->i_mode
,
9650 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9655 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9656 BTRFS_I(inode
), 0, index
);
9660 ret
= btrfs_update_inode(trans
, root
, inode
);
9662 unlock_new_inode(inode
);
9664 inode_dec_link_count(inode
);
9670 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9671 struct inode
*new_dir
, struct dentry
*new_dentry
,
9674 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9675 struct btrfs_trans_handle
*trans
;
9676 unsigned int trans_num_items
;
9677 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9678 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9679 struct inode
*new_inode
= d_inode(new_dentry
);
9680 struct inode
*old_inode
= d_inode(old_dentry
);
9684 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9685 bool log_pinned
= false;
9686 struct btrfs_log_ctx ctx
;
9687 bool sync_log
= false;
9688 bool commit_transaction
= false;
9690 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9693 /* we only allow rename subvolume link between subvolumes */
9694 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9697 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9698 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9701 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9702 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9706 /* check for collisions, even if the name isn't there */
9707 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9708 new_dentry
->d_name
.name
,
9709 new_dentry
->d_name
.len
);
9712 if (ret
== -EEXIST
) {
9714 * eexist without a new_inode */
9715 if (WARN_ON(!new_inode
)) {
9719 /* maybe -EOVERFLOW */
9726 * we're using rename to replace one file with another. Start IO on it
9727 * now so we don't add too much work to the end of the transaction
9729 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9730 filemap_flush(old_inode
->i_mapping
);
9732 /* close the racy window with snapshot create/destroy ioctl */
9733 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9734 down_read(&fs_info
->subvol_sem
);
9736 * We want to reserve the absolute worst case amount of items. So if
9737 * both inodes are subvols and we need to unlink them then that would
9738 * require 4 item modifications, but if they are both normal inodes it
9739 * would require 5 item modifications, so we'll assume they are normal
9740 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9741 * should cover the worst case number of items we'll modify.
9742 * If our rename has the whiteout flag, we need more 5 units for the
9743 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9744 * when selinux is enabled).
9746 trans_num_items
= 11;
9747 if (flags
& RENAME_WHITEOUT
)
9748 trans_num_items
+= 5;
9749 trans
= btrfs_start_transaction(root
, trans_num_items
);
9750 if (IS_ERR(trans
)) {
9751 ret
= PTR_ERR(trans
);
9756 btrfs_record_root_in_trans(trans
, dest
);
9758 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
9762 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9763 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9764 /* force full log commit if subvolume involved. */
9765 btrfs_set_log_full_commit(fs_info
, trans
);
9767 btrfs_pin_log_trans(root
);
9769 ret
= btrfs_insert_inode_ref(trans
, dest
,
9770 new_dentry
->d_name
.name
,
9771 new_dentry
->d_name
.len
,
9773 btrfs_ino(BTRFS_I(new_dir
)), index
);
9778 inode_inc_iversion(old_dir
);
9779 inode_inc_iversion(new_dir
);
9780 inode_inc_iversion(old_inode
);
9781 old_dir
->i_ctime
= old_dir
->i_mtime
=
9782 new_dir
->i_ctime
= new_dir
->i_mtime
=
9783 old_inode
->i_ctime
= current_time(old_dir
);
9785 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
9786 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9787 BTRFS_I(old_inode
), 1);
9789 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
9790 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9791 ret
= btrfs_unlink_subvol(trans
, old_dir
, root_objectid
,
9792 old_dentry
->d_name
.name
,
9793 old_dentry
->d_name
.len
);
9795 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9796 BTRFS_I(d_inode(old_dentry
)),
9797 old_dentry
->d_name
.name
,
9798 old_dentry
->d_name
.len
);
9800 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9803 btrfs_abort_transaction(trans
, ret
);
9808 inode_inc_iversion(new_inode
);
9809 new_inode
->i_ctime
= current_time(new_inode
);
9810 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
9811 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
9812 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
9813 ret
= btrfs_unlink_subvol(trans
, new_dir
, root_objectid
,
9814 new_dentry
->d_name
.name
,
9815 new_dentry
->d_name
.len
);
9816 BUG_ON(new_inode
->i_nlink
== 0);
9818 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9819 BTRFS_I(d_inode(new_dentry
)),
9820 new_dentry
->d_name
.name
,
9821 new_dentry
->d_name
.len
);
9823 if (!ret
&& new_inode
->i_nlink
== 0)
9824 ret
= btrfs_orphan_add(trans
,
9825 BTRFS_I(d_inode(new_dentry
)));
9827 btrfs_abort_transaction(trans
, ret
);
9832 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9833 new_dentry
->d_name
.name
,
9834 new_dentry
->d_name
.len
, 0, index
);
9836 btrfs_abort_transaction(trans
, ret
);
9840 if (old_inode
->i_nlink
== 1)
9841 BTRFS_I(old_inode
)->dir_index
= index
;
9844 struct dentry
*parent
= new_dentry
->d_parent
;
9846 btrfs_init_log_ctx(&ctx
, old_inode
);
9847 ret
= btrfs_log_new_name(trans
, BTRFS_I(old_inode
),
9848 BTRFS_I(old_dir
), parent
,
9850 if (ret
== BTRFS_NEED_LOG_SYNC
)
9852 else if (ret
== BTRFS_NEED_TRANS_COMMIT
)
9853 commit_transaction
= true;
9855 btrfs_end_log_trans(root
);
9859 if (flags
& RENAME_WHITEOUT
) {
9860 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
9864 btrfs_abort_transaction(trans
, ret
);
9870 * If we have pinned the log and an error happened, we unpin tasks
9871 * trying to sync the log and force them to fallback to a transaction
9872 * commit if the log currently contains any of the inodes involved in
9873 * this rename operation (to ensure we do not persist a log with an
9874 * inconsistent state for any of these inodes or leading to any
9875 * inconsistencies when replayed). If the transaction was aborted, the
9876 * abortion reason is propagated to userspace when attempting to commit
9877 * the transaction. If the log does not contain any of these inodes, we
9878 * allow the tasks to sync it.
9880 if (ret
&& log_pinned
) {
9881 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9882 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9883 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9885 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9886 btrfs_set_log_full_commit(fs_info
, trans
);
9888 btrfs_end_log_trans(root
);
9891 if (!ret
&& sync_log
) {
9892 ret
= btrfs_sync_log(trans
, BTRFS_I(old_inode
)->root
, &ctx
);
9894 commit_transaction
= true;
9896 if (commit_transaction
) {
9897 ret
= btrfs_commit_transaction(trans
);
9901 ret2
= btrfs_end_transaction(trans
);
9902 ret
= ret
? ret
: ret2
;
9905 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9906 up_read(&fs_info
->subvol_sem
);
9911 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
9912 struct inode
*new_dir
, struct dentry
*new_dentry
,
9915 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
9918 if (flags
& RENAME_EXCHANGE
)
9919 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
9922 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
9925 struct btrfs_delalloc_work
{
9926 struct inode
*inode
;
9927 struct completion completion
;
9928 struct list_head list
;
9929 struct btrfs_work work
;
9932 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
9934 struct btrfs_delalloc_work
*delalloc_work
;
9935 struct inode
*inode
;
9937 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
9939 inode
= delalloc_work
->inode
;
9940 filemap_flush(inode
->i_mapping
);
9941 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
9942 &BTRFS_I(inode
)->runtime_flags
))
9943 filemap_flush(inode
->i_mapping
);
9946 complete(&delalloc_work
->completion
);
9949 static struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
)
9951 struct btrfs_delalloc_work
*work
;
9953 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
9957 init_completion(&work
->completion
);
9958 INIT_LIST_HEAD(&work
->list
);
9959 work
->inode
= inode
;
9960 WARN_ON_ONCE(!inode
);
9961 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
9962 btrfs_run_delalloc_work
, NULL
, NULL
);
9968 * some fairly slow code that needs optimization. This walks the list
9969 * of all the inodes with pending delalloc and forces them to disk.
9971 static int start_delalloc_inodes(struct btrfs_root
*root
, int nr
)
9973 struct btrfs_inode
*binode
;
9974 struct inode
*inode
;
9975 struct btrfs_delalloc_work
*work
, *next
;
9976 struct list_head works
;
9977 struct list_head splice
;
9980 INIT_LIST_HEAD(&works
);
9981 INIT_LIST_HEAD(&splice
);
9983 mutex_lock(&root
->delalloc_mutex
);
9984 spin_lock(&root
->delalloc_lock
);
9985 list_splice_init(&root
->delalloc_inodes
, &splice
);
9986 while (!list_empty(&splice
)) {
9987 binode
= list_entry(splice
.next
, struct btrfs_inode
,
9990 list_move_tail(&binode
->delalloc_inodes
,
9991 &root
->delalloc_inodes
);
9992 inode
= igrab(&binode
->vfs_inode
);
9994 cond_resched_lock(&root
->delalloc_lock
);
9997 spin_unlock(&root
->delalloc_lock
);
9999 work
= btrfs_alloc_delalloc_work(inode
);
10005 list_add_tail(&work
->list
, &works
);
10006 btrfs_queue_work(root
->fs_info
->flush_workers
,
10009 if (nr
!= -1 && ret
>= nr
)
10012 spin_lock(&root
->delalloc_lock
);
10014 spin_unlock(&root
->delalloc_lock
);
10017 list_for_each_entry_safe(work
, next
, &works
, list
) {
10018 list_del_init(&work
->list
);
10019 wait_for_completion(&work
->completion
);
10023 if (!list_empty(&splice
)) {
10024 spin_lock(&root
->delalloc_lock
);
10025 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10026 spin_unlock(&root
->delalloc_lock
);
10028 mutex_unlock(&root
->delalloc_mutex
);
10032 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
)
10034 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10037 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10040 ret
= start_delalloc_inodes(root
, -1);
10046 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int nr
)
10048 struct btrfs_root
*root
;
10049 struct list_head splice
;
10052 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10055 INIT_LIST_HEAD(&splice
);
10057 mutex_lock(&fs_info
->delalloc_root_mutex
);
10058 spin_lock(&fs_info
->delalloc_root_lock
);
10059 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10060 while (!list_empty(&splice
) && nr
) {
10061 root
= list_first_entry(&splice
, struct btrfs_root
,
10063 root
= btrfs_grab_fs_root(root
);
10065 list_move_tail(&root
->delalloc_root
,
10066 &fs_info
->delalloc_roots
);
10067 spin_unlock(&fs_info
->delalloc_root_lock
);
10069 ret
= start_delalloc_inodes(root
, nr
);
10070 btrfs_put_fs_root(root
);
10078 spin_lock(&fs_info
->delalloc_root_lock
);
10080 spin_unlock(&fs_info
->delalloc_root_lock
);
10084 if (!list_empty(&splice
)) {
10085 spin_lock(&fs_info
->delalloc_root_lock
);
10086 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10087 spin_unlock(&fs_info
->delalloc_root_lock
);
10089 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10093 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10094 const char *symname
)
10096 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10097 struct btrfs_trans_handle
*trans
;
10098 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10099 struct btrfs_path
*path
;
10100 struct btrfs_key key
;
10101 struct inode
*inode
= NULL
;
10108 struct btrfs_file_extent_item
*ei
;
10109 struct extent_buffer
*leaf
;
10111 name_len
= strlen(symname
);
10112 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10113 return -ENAMETOOLONG
;
10116 * 2 items for inode item and ref
10117 * 2 items for dir items
10118 * 1 item for updating parent inode item
10119 * 1 item for the inline extent item
10120 * 1 item for xattr if selinux is on
10122 trans
= btrfs_start_transaction(root
, 7);
10124 return PTR_ERR(trans
);
10126 err
= btrfs_find_free_ino(root
, &objectid
);
10130 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10131 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10132 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10133 if (IS_ERR(inode
)) {
10134 err
= PTR_ERR(inode
);
10140 * If the active LSM wants to access the inode during
10141 * d_instantiate it needs these. Smack checks to see
10142 * if the filesystem supports xattrs by looking at the
10145 inode
->i_fop
= &btrfs_file_operations
;
10146 inode
->i_op
= &btrfs_file_inode_operations
;
10147 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10148 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10150 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10154 path
= btrfs_alloc_path();
10159 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10161 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10162 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10163 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10166 btrfs_free_path(path
);
10169 leaf
= path
->nodes
[0];
10170 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10171 struct btrfs_file_extent_item
);
10172 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10173 btrfs_set_file_extent_type(leaf
, ei
,
10174 BTRFS_FILE_EXTENT_INLINE
);
10175 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10176 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10177 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10178 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10180 ptr
= btrfs_file_extent_inline_start(ei
);
10181 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10182 btrfs_mark_buffer_dirty(leaf
);
10183 btrfs_free_path(path
);
10185 inode
->i_op
= &btrfs_symlink_inode_operations
;
10186 inode_nohighmem(inode
);
10187 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10188 inode_set_bytes(inode
, name_len
);
10189 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10190 err
= btrfs_update_inode(trans
, root
, inode
);
10192 * Last step, add directory indexes for our symlink inode. This is the
10193 * last step to avoid extra cleanup of these indexes if an error happens
10197 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10198 BTRFS_I(inode
), 0, index
);
10202 d_instantiate_new(dentry
, inode
);
10205 btrfs_end_transaction(trans
);
10206 if (err
&& inode
) {
10207 inode_dec_link_count(inode
);
10208 discard_new_inode(inode
);
10210 btrfs_btree_balance_dirty(fs_info
);
10214 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10215 u64 start
, u64 num_bytes
, u64 min_size
,
10216 loff_t actual_len
, u64
*alloc_hint
,
10217 struct btrfs_trans_handle
*trans
)
10219 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10220 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10221 struct extent_map
*em
;
10222 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10223 struct btrfs_key ins
;
10224 u64 cur_offset
= start
;
10227 u64 last_alloc
= (u64
)-1;
10229 bool own_trans
= true;
10230 u64 end
= start
+ num_bytes
- 1;
10234 while (num_bytes
> 0) {
10236 trans
= btrfs_start_transaction(root
, 3);
10237 if (IS_ERR(trans
)) {
10238 ret
= PTR_ERR(trans
);
10243 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10244 cur_bytes
= max(cur_bytes
, min_size
);
10246 * If we are severely fragmented we could end up with really
10247 * small allocations, so if the allocator is returning small
10248 * chunks lets make its job easier by only searching for those
10251 cur_bytes
= min(cur_bytes
, last_alloc
);
10252 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10253 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10256 btrfs_end_transaction(trans
);
10259 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10261 last_alloc
= ins
.offset
;
10262 ret
= insert_reserved_file_extent(trans
, inode
,
10263 cur_offset
, ins
.objectid
,
10264 ins
.offset
, ins
.offset
,
10265 ins
.offset
, 0, 0, 0,
10266 BTRFS_FILE_EXTENT_PREALLOC
);
10268 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10270 btrfs_abort_transaction(trans
, ret
);
10272 btrfs_end_transaction(trans
);
10276 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10277 cur_offset
+ ins
.offset
-1, 0);
10279 em
= alloc_extent_map();
10281 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10282 &BTRFS_I(inode
)->runtime_flags
);
10286 em
->start
= cur_offset
;
10287 em
->orig_start
= cur_offset
;
10288 em
->len
= ins
.offset
;
10289 em
->block_start
= ins
.objectid
;
10290 em
->block_len
= ins
.offset
;
10291 em
->orig_block_len
= ins
.offset
;
10292 em
->ram_bytes
= ins
.offset
;
10293 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10294 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10295 em
->generation
= trans
->transid
;
10298 write_lock(&em_tree
->lock
);
10299 ret
= add_extent_mapping(em_tree
, em
, 1);
10300 write_unlock(&em_tree
->lock
);
10301 if (ret
!= -EEXIST
)
10303 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10304 cur_offset
+ ins
.offset
- 1,
10307 free_extent_map(em
);
10309 num_bytes
-= ins
.offset
;
10310 cur_offset
+= ins
.offset
;
10311 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10313 inode_inc_iversion(inode
);
10314 inode
->i_ctime
= current_time(inode
);
10315 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10316 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10317 (actual_len
> inode
->i_size
) &&
10318 (cur_offset
> inode
->i_size
)) {
10319 if (cur_offset
> actual_len
)
10320 i_size
= actual_len
;
10322 i_size
= cur_offset
;
10323 i_size_write(inode
, i_size
);
10324 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10327 ret
= btrfs_update_inode(trans
, root
, inode
);
10330 btrfs_abort_transaction(trans
, ret
);
10332 btrfs_end_transaction(trans
);
10337 btrfs_end_transaction(trans
);
10339 if (cur_offset
< end
)
10340 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10341 end
- cur_offset
+ 1);
10345 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10346 u64 start
, u64 num_bytes
, u64 min_size
,
10347 loff_t actual_len
, u64
*alloc_hint
)
10349 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10350 min_size
, actual_len
, alloc_hint
,
10354 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10355 struct btrfs_trans_handle
*trans
, int mode
,
10356 u64 start
, u64 num_bytes
, u64 min_size
,
10357 loff_t actual_len
, u64
*alloc_hint
)
10359 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10360 min_size
, actual_len
, alloc_hint
, trans
);
10363 static int btrfs_set_page_dirty(struct page
*page
)
10365 return __set_page_dirty_nobuffers(page
);
10368 static int btrfs_permission(struct inode
*inode
, int mask
)
10370 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10371 umode_t mode
= inode
->i_mode
;
10373 if (mask
& MAY_WRITE
&&
10374 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10375 if (btrfs_root_readonly(root
))
10377 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10380 return generic_permission(inode
, mask
);
10383 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10385 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10386 struct btrfs_trans_handle
*trans
;
10387 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10388 struct inode
*inode
= NULL
;
10394 * 5 units required for adding orphan entry
10396 trans
= btrfs_start_transaction(root
, 5);
10398 return PTR_ERR(trans
);
10400 ret
= btrfs_find_free_ino(root
, &objectid
);
10404 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10405 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10406 if (IS_ERR(inode
)) {
10407 ret
= PTR_ERR(inode
);
10412 inode
->i_fop
= &btrfs_file_operations
;
10413 inode
->i_op
= &btrfs_file_inode_operations
;
10415 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10416 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10418 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10422 ret
= btrfs_update_inode(trans
, root
, inode
);
10425 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10430 * We set number of links to 0 in btrfs_new_inode(), and here we set
10431 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10434 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10436 set_nlink(inode
, 1);
10437 d_tmpfile(dentry
, inode
);
10438 unlock_new_inode(inode
);
10439 mark_inode_dirty(inode
);
10441 btrfs_end_transaction(trans
);
10443 discard_new_inode(inode
);
10444 btrfs_btree_balance_dirty(fs_info
);
10448 __attribute__((const))
10449 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10454 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10455 u64 start
, u64 end
)
10457 struct inode
*inode
= private_data
;
10460 isize
= i_size_read(inode
);
10461 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10462 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10463 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10464 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10468 void btrfs_set_range_writeback(struct extent_io_tree
*tree
, u64 start
, u64 end
)
10470 struct inode
*inode
= tree
->private_data
;
10471 unsigned long index
= start
>> PAGE_SHIFT
;
10472 unsigned long end_index
= end
>> PAGE_SHIFT
;
10475 while (index
<= end_index
) {
10476 page
= find_get_page(inode
->i_mapping
, index
);
10477 ASSERT(page
); /* Pages should be in the extent_io_tree */
10478 set_page_writeback(page
);
10484 static const struct inode_operations btrfs_dir_inode_operations
= {
10485 .getattr
= btrfs_getattr
,
10486 .lookup
= btrfs_lookup
,
10487 .create
= btrfs_create
,
10488 .unlink
= btrfs_unlink
,
10489 .link
= btrfs_link
,
10490 .mkdir
= btrfs_mkdir
,
10491 .rmdir
= btrfs_rmdir
,
10492 .rename
= btrfs_rename2
,
10493 .symlink
= btrfs_symlink
,
10494 .setattr
= btrfs_setattr
,
10495 .mknod
= btrfs_mknod
,
10496 .listxattr
= btrfs_listxattr
,
10497 .permission
= btrfs_permission
,
10498 .get_acl
= btrfs_get_acl
,
10499 .set_acl
= btrfs_set_acl
,
10500 .update_time
= btrfs_update_time
,
10501 .tmpfile
= btrfs_tmpfile
,
10503 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10504 .lookup
= btrfs_lookup
,
10505 .permission
= btrfs_permission
,
10506 .update_time
= btrfs_update_time
,
10509 static const struct file_operations btrfs_dir_file_operations
= {
10510 .llseek
= generic_file_llseek
,
10511 .read
= generic_read_dir
,
10512 .iterate_shared
= btrfs_real_readdir
,
10513 .open
= btrfs_opendir
,
10514 .unlocked_ioctl
= btrfs_ioctl
,
10515 #ifdef CONFIG_COMPAT
10516 .compat_ioctl
= btrfs_compat_ioctl
,
10518 .release
= btrfs_release_file
,
10519 .fsync
= btrfs_sync_file
,
10522 static const struct extent_io_ops btrfs_extent_io_ops
= {
10523 /* mandatory callbacks */
10524 .submit_bio_hook
= btrfs_submit_bio_hook
,
10525 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10526 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10528 /* optional callbacks */
10529 .fill_delalloc
= run_delalloc_range
,
10530 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10531 .writepage_start_hook
= btrfs_writepage_start_hook
,
10532 .set_bit_hook
= btrfs_set_bit_hook
,
10533 .clear_bit_hook
= btrfs_clear_bit_hook
,
10534 .merge_extent_hook
= btrfs_merge_extent_hook
,
10535 .split_extent_hook
= btrfs_split_extent_hook
,
10536 .check_extent_io_range
= btrfs_check_extent_io_range
,
10540 * btrfs doesn't support the bmap operation because swapfiles
10541 * use bmap to make a mapping of extents in the file. They assume
10542 * these extents won't change over the life of the file and they
10543 * use the bmap result to do IO directly to the drive.
10545 * the btrfs bmap call would return logical addresses that aren't
10546 * suitable for IO and they also will change frequently as COW
10547 * operations happen. So, swapfile + btrfs == corruption.
10549 * For now we're avoiding this by dropping bmap.
10551 static const struct address_space_operations btrfs_aops
= {
10552 .readpage
= btrfs_readpage
,
10553 .writepage
= btrfs_writepage
,
10554 .writepages
= btrfs_writepages
,
10555 .readpages
= btrfs_readpages
,
10556 .direct_IO
= btrfs_direct_IO
,
10557 .invalidatepage
= btrfs_invalidatepage
,
10558 .releasepage
= btrfs_releasepage
,
10559 .set_page_dirty
= btrfs_set_page_dirty
,
10560 .error_remove_page
= generic_error_remove_page
,
10563 static const struct inode_operations btrfs_file_inode_operations
= {
10564 .getattr
= btrfs_getattr
,
10565 .setattr
= btrfs_setattr
,
10566 .listxattr
= btrfs_listxattr
,
10567 .permission
= btrfs_permission
,
10568 .fiemap
= btrfs_fiemap
,
10569 .get_acl
= btrfs_get_acl
,
10570 .set_acl
= btrfs_set_acl
,
10571 .update_time
= btrfs_update_time
,
10573 static const struct inode_operations btrfs_special_inode_operations
= {
10574 .getattr
= btrfs_getattr
,
10575 .setattr
= btrfs_setattr
,
10576 .permission
= btrfs_permission
,
10577 .listxattr
= btrfs_listxattr
,
10578 .get_acl
= btrfs_get_acl
,
10579 .set_acl
= btrfs_set_acl
,
10580 .update_time
= btrfs_update_time
,
10582 static const struct inode_operations btrfs_symlink_inode_operations
= {
10583 .get_link
= page_get_link
,
10584 .getattr
= btrfs_getattr
,
10585 .setattr
= btrfs_setattr
,
10586 .permission
= btrfs_permission
,
10587 .listxattr
= btrfs_listxattr
,
10588 .update_time
= btrfs_update_time
,
10591 const struct dentry_operations btrfs_dentry_operations
= {
10592 .d_delete
= btrfs_dentry_delete
,