perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / fs / btrfs / ioctl.c
blob802a628e9f7d7fe629a76e8d108b75c04ed4246e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include "ctree.h"
30 #include "disk-io.h"
31 #include "transaction.h"
32 #include "btrfs_inode.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "locking.h"
36 #include "inode-map.h"
37 #include "backref.h"
38 #include "rcu-string.h"
39 #include "send.h"
40 #include "dev-replace.h"
41 #include "props.h"
42 #include "sysfs.h"
43 #include "qgroup.h"
44 #include "tree-log.h"
45 #include "compression.h"
47 #ifdef CONFIG_64BIT
48 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
49 * structures are incorrect, as the timespec structure from userspace
50 * is 4 bytes too small. We define these alternatives here to teach
51 * the kernel about the 32-bit struct packing.
53 struct btrfs_ioctl_timespec_32 {
54 __u64 sec;
55 __u32 nsec;
56 } __attribute__ ((__packed__));
58 struct btrfs_ioctl_received_subvol_args_32 {
59 char uuid[BTRFS_UUID_SIZE]; /* in */
60 __u64 stransid; /* in */
61 __u64 rtransid; /* out */
62 struct btrfs_ioctl_timespec_32 stime; /* in */
63 struct btrfs_ioctl_timespec_32 rtime; /* out */
64 __u64 flags; /* in */
65 __u64 reserved[16]; /* in */
66 } __attribute__ ((__packed__));
68 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
69 struct btrfs_ioctl_received_subvol_args_32)
70 #endif
72 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
73 struct btrfs_ioctl_send_args_32 {
74 __s64 send_fd; /* in */
75 __u64 clone_sources_count; /* in */
76 compat_uptr_t clone_sources; /* in */
77 __u64 parent_root; /* in */
78 __u64 flags; /* in */
79 __u64 reserved[4]; /* in */
80 } __attribute__ ((__packed__));
82 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
83 struct btrfs_ioctl_send_args_32)
84 #endif
86 static int btrfs_clone(struct inode *src, struct inode *inode,
87 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
88 int no_time_update);
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
108 unsigned int iflags = 0;
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
130 return iflags;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
159 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
160 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags);
162 if (copy_to_user(arg, &flags, sizeof(flags)))
163 return -EFAULT;
164 return 0;
167 /* Check if @flags are a supported and valid set of FS_*_FL flags */
168 static int check_fsflags(unsigned int flags)
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
174 FS_NOCOW_FL))
175 return -EOPNOTSUPP;
177 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
178 return -EINVAL;
180 return 0;
183 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
185 struct inode *inode = file_inode(file);
186 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
187 struct btrfs_inode *binode = BTRFS_I(inode);
188 struct btrfs_root *root = binode->root;
189 struct btrfs_trans_handle *trans;
190 unsigned int fsflags, old_fsflags;
191 int ret;
192 u64 old_flags;
193 unsigned int old_i_flags;
194 umode_t mode;
196 if (!inode_owner_or_capable(inode))
197 return -EPERM;
199 if (btrfs_root_readonly(root))
200 return -EROFS;
202 if (copy_from_user(&fsflags, arg, sizeof(fsflags)))
203 return -EFAULT;
205 ret = check_fsflags(fsflags);
206 if (ret)
207 return ret;
209 ret = mnt_want_write_file(file);
210 if (ret)
211 return ret;
213 inode_lock(inode);
215 old_flags = binode->flags;
216 old_i_flags = inode->i_flags;
217 mode = inode->i_mode;
219 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags);
220 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
221 if ((fsflags ^ old_fsflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
222 if (!capable(CAP_LINUX_IMMUTABLE)) {
223 ret = -EPERM;
224 goto out_unlock;
228 if (fsflags & FS_SYNC_FL)
229 binode->flags |= BTRFS_INODE_SYNC;
230 else
231 binode->flags &= ~BTRFS_INODE_SYNC;
232 if (fsflags & FS_IMMUTABLE_FL)
233 binode->flags |= BTRFS_INODE_IMMUTABLE;
234 else
235 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
236 if (fsflags & FS_APPEND_FL)
237 binode->flags |= BTRFS_INODE_APPEND;
238 else
239 binode->flags &= ~BTRFS_INODE_APPEND;
240 if (fsflags & FS_NODUMP_FL)
241 binode->flags |= BTRFS_INODE_NODUMP;
242 else
243 binode->flags &= ~BTRFS_INODE_NODUMP;
244 if (fsflags & FS_NOATIME_FL)
245 binode->flags |= BTRFS_INODE_NOATIME;
246 else
247 binode->flags &= ~BTRFS_INODE_NOATIME;
248 if (fsflags & FS_DIRSYNC_FL)
249 binode->flags |= BTRFS_INODE_DIRSYNC;
250 else
251 binode->flags &= ~BTRFS_INODE_DIRSYNC;
252 if (fsflags & FS_NOCOW_FL) {
253 if (S_ISREG(mode)) {
255 * It's safe to turn csums off here, no extents exist.
256 * Otherwise we want the flag to reflect the real COW
257 * status of the file and will not set it.
259 if (inode->i_size == 0)
260 binode->flags |= BTRFS_INODE_NODATACOW
261 | BTRFS_INODE_NODATASUM;
262 } else {
263 binode->flags |= BTRFS_INODE_NODATACOW;
265 } else {
267 * Revert back under same assumptions as above
269 if (S_ISREG(mode)) {
270 if (inode->i_size == 0)
271 binode->flags &= ~(BTRFS_INODE_NODATACOW
272 | BTRFS_INODE_NODATASUM);
273 } else {
274 binode->flags &= ~BTRFS_INODE_NODATACOW;
279 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
280 * flag may be changed automatically if compression code won't make
281 * things smaller.
283 if (fsflags & FS_NOCOMP_FL) {
284 binode->flags &= ~BTRFS_INODE_COMPRESS;
285 binode->flags |= BTRFS_INODE_NOCOMPRESS;
287 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
288 if (ret && ret != -ENODATA)
289 goto out_drop;
290 } else if (fsflags & FS_COMPR_FL) {
291 const char *comp;
293 binode->flags |= BTRFS_INODE_COMPRESS;
294 binode->flags &= ~BTRFS_INODE_NOCOMPRESS;
296 comp = btrfs_compress_type2str(fs_info->compress_type);
297 if (!comp || comp[0] == 0)
298 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
300 ret = btrfs_set_prop(inode, "btrfs.compression",
301 comp, strlen(comp), 0);
302 if (ret)
303 goto out_drop;
305 } else {
306 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
307 if (ret && ret != -ENODATA)
308 goto out_drop;
309 binode->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
312 trans = btrfs_start_transaction(root, 1);
313 if (IS_ERR(trans)) {
314 ret = PTR_ERR(trans);
315 goto out_drop;
318 btrfs_sync_inode_flags_to_i_flags(inode);
319 inode_inc_iversion(inode);
320 inode->i_ctime = current_time(inode);
321 ret = btrfs_update_inode(trans, root, inode);
323 btrfs_end_transaction(trans);
324 out_drop:
325 if (ret) {
326 binode->flags = old_flags;
327 inode->i_flags = old_i_flags;
330 out_unlock:
331 inode_unlock(inode);
332 mnt_drop_write_file(file);
333 return ret;
337 * Translate btrfs internal inode flags to xflags as expected by the
338 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are
339 * silently dropped.
341 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags)
343 unsigned int xflags = 0;
345 if (flags & BTRFS_INODE_APPEND)
346 xflags |= FS_XFLAG_APPEND;
347 if (flags & BTRFS_INODE_IMMUTABLE)
348 xflags |= FS_XFLAG_IMMUTABLE;
349 if (flags & BTRFS_INODE_NOATIME)
350 xflags |= FS_XFLAG_NOATIME;
351 if (flags & BTRFS_INODE_NODUMP)
352 xflags |= FS_XFLAG_NODUMP;
353 if (flags & BTRFS_INODE_SYNC)
354 xflags |= FS_XFLAG_SYNC;
356 return xflags;
359 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */
360 static int check_xflags(unsigned int flags)
362 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME |
363 FS_XFLAG_NODUMP | FS_XFLAG_SYNC))
364 return -EOPNOTSUPP;
365 return 0;
369 * Set the xflags from the internal inode flags. The remaining items of fsxattr
370 * are zeroed.
372 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg)
374 struct btrfs_inode *binode = BTRFS_I(file_inode(file));
375 struct fsxattr fa;
377 memset(&fa, 0, sizeof(fa));
378 fa.fsx_xflags = btrfs_inode_flags_to_xflags(binode->flags);
380 if (copy_to_user(arg, &fa, sizeof(fa)))
381 return -EFAULT;
383 return 0;
386 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg)
388 struct inode *inode = file_inode(file);
389 struct btrfs_inode *binode = BTRFS_I(inode);
390 struct btrfs_root *root = binode->root;
391 struct btrfs_trans_handle *trans;
392 struct fsxattr fa;
393 unsigned old_flags;
394 unsigned old_i_flags;
395 int ret = 0;
397 if (!inode_owner_or_capable(inode))
398 return -EPERM;
400 if (btrfs_root_readonly(root))
401 return -EROFS;
403 memset(&fa, 0, sizeof(fa));
404 if (copy_from_user(&fa, arg, sizeof(fa)))
405 return -EFAULT;
407 ret = check_xflags(fa.fsx_xflags);
408 if (ret)
409 return ret;
411 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0)
412 return -EOPNOTSUPP;
414 ret = mnt_want_write_file(file);
415 if (ret)
416 return ret;
418 inode_lock(inode);
420 old_flags = binode->flags;
421 old_i_flags = inode->i_flags;
423 /* We need the capabilities to change append-only or immutable inode */
424 if (((old_flags & (BTRFS_INODE_APPEND | BTRFS_INODE_IMMUTABLE)) ||
425 (fa.fsx_xflags & (FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE))) &&
426 !capable(CAP_LINUX_IMMUTABLE)) {
427 ret = -EPERM;
428 goto out_unlock;
431 if (fa.fsx_xflags & FS_XFLAG_SYNC)
432 binode->flags |= BTRFS_INODE_SYNC;
433 else
434 binode->flags &= ~BTRFS_INODE_SYNC;
435 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE)
436 binode->flags |= BTRFS_INODE_IMMUTABLE;
437 else
438 binode->flags &= ~BTRFS_INODE_IMMUTABLE;
439 if (fa.fsx_xflags & FS_XFLAG_APPEND)
440 binode->flags |= BTRFS_INODE_APPEND;
441 else
442 binode->flags &= ~BTRFS_INODE_APPEND;
443 if (fa.fsx_xflags & FS_XFLAG_NODUMP)
444 binode->flags |= BTRFS_INODE_NODUMP;
445 else
446 binode->flags &= ~BTRFS_INODE_NODUMP;
447 if (fa.fsx_xflags & FS_XFLAG_NOATIME)
448 binode->flags |= BTRFS_INODE_NOATIME;
449 else
450 binode->flags &= ~BTRFS_INODE_NOATIME;
452 /* 1 item for the inode */
453 trans = btrfs_start_transaction(root, 1);
454 if (IS_ERR(trans)) {
455 ret = PTR_ERR(trans);
456 goto out_unlock;
459 btrfs_sync_inode_flags_to_i_flags(inode);
460 inode_inc_iversion(inode);
461 inode->i_ctime = current_time(inode);
462 ret = btrfs_update_inode(trans, root, inode);
464 btrfs_end_transaction(trans);
466 out_unlock:
467 if (ret) {
468 binode->flags = old_flags;
469 inode->i_flags = old_i_flags;
472 inode_unlock(inode);
473 mnt_drop_write_file(file);
475 return ret;
478 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
480 struct inode *inode = file_inode(file);
482 return put_user(inode->i_generation, arg);
485 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
487 struct inode *inode = file_inode(file);
488 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
489 struct btrfs_device *device;
490 struct request_queue *q;
491 struct fstrim_range range;
492 u64 minlen = ULLONG_MAX;
493 u64 num_devices = 0;
494 int ret;
496 if (!capable(CAP_SYS_ADMIN))
497 return -EPERM;
499 rcu_read_lock();
500 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
501 dev_list) {
502 if (!device->bdev)
503 continue;
504 q = bdev_get_queue(device->bdev);
505 if (blk_queue_discard(q)) {
506 num_devices++;
507 minlen = min_t(u64, q->limits.discard_granularity,
508 minlen);
511 rcu_read_unlock();
513 if (!num_devices)
514 return -EOPNOTSUPP;
515 if (copy_from_user(&range, arg, sizeof(range)))
516 return -EFAULT;
519 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
520 * block group is in the logical address space, which can be any
521 * sectorsize aligned bytenr in the range [0, U64_MAX].
523 if (range.len < fs_info->sb->s_blocksize)
524 return -EINVAL;
526 range.minlen = max(range.minlen, minlen);
527 ret = btrfs_trim_fs(fs_info, &range);
528 if (ret < 0)
529 return ret;
531 if (copy_to_user(arg, &range, sizeof(range)))
532 return -EFAULT;
534 return 0;
537 int btrfs_is_empty_uuid(u8 *uuid)
539 int i;
541 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
542 if (uuid[i])
543 return 0;
545 return 1;
548 static noinline int create_subvol(struct inode *dir,
549 struct dentry *dentry,
550 const char *name, int namelen,
551 u64 *async_transid,
552 struct btrfs_qgroup_inherit *inherit)
554 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
555 struct btrfs_trans_handle *trans;
556 struct btrfs_key key;
557 struct btrfs_root_item *root_item;
558 struct btrfs_inode_item *inode_item;
559 struct extent_buffer *leaf;
560 struct btrfs_root *root = BTRFS_I(dir)->root;
561 struct btrfs_root *new_root;
562 struct btrfs_block_rsv block_rsv;
563 struct timespec64 cur_time = current_time(dir);
564 struct inode *inode;
565 int ret;
566 int err;
567 u64 objectid;
568 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
569 u64 index = 0;
570 uuid_le new_uuid;
572 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
573 if (!root_item)
574 return -ENOMEM;
576 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
577 if (ret)
578 goto fail_free;
581 * Don't create subvolume whose level is not zero. Or qgroup will be
582 * screwed up since it assumes subvolume qgroup's level to be 0.
584 if (btrfs_qgroup_level(objectid)) {
585 ret = -ENOSPC;
586 goto fail_free;
589 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
591 * The same as the snapshot creation, please see the comment
592 * of create_snapshot().
594 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
595 if (ret)
596 goto fail_free;
598 trans = btrfs_start_transaction(root, 0);
599 if (IS_ERR(trans)) {
600 ret = PTR_ERR(trans);
601 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
602 goto fail_free;
604 trans->block_rsv = &block_rsv;
605 trans->bytes_reserved = block_rsv.size;
607 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
608 if (ret)
609 goto fail;
611 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
612 if (IS_ERR(leaf)) {
613 ret = PTR_ERR(leaf);
614 goto fail;
617 btrfs_mark_buffer_dirty(leaf);
619 inode_item = &root_item->inode;
620 btrfs_set_stack_inode_generation(inode_item, 1);
621 btrfs_set_stack_inode_size(inode_item, 3);
622 btrfs_set_stack_inode_nlink(inode_item, 1);
623 btrfs_set_stack_inode_nbytes(inode_item,
624 fs_info->nodesize);
625 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
627 btrfs_set_root_flags(root_item, 0);
628 btrfs_set_root_limit(root_item, 0);
629 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
631 btrfs_set_root_bytenr(root_item, leaf->start);
632 btrfs_set_root_generation(root_item, trans->transid);
633 btrfs_set_root_level(root_item, 0);
634 btrfs_set_root_refs(root_item, 1);
635 btrfs_set_root_used(root_item, leaf->len);
636 btrfs_set_root_last_snapshot(root_item, 0);
638 btrfs_set_root_generation_v2(root_item,
639 btrfs_root_generation(root_item));
640 uuid_le_gen(&new_uuid);
641 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
642 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
643 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
644 root_item->ctime = root_item->otime;
645 btrfs_set_root_ctransid(root_item, trans->transid);
646 btrfs_set_root_otransid(root_item, trans->transid);
648 btrfs_tree_unlock(leaf);
649 free_extent_buffer(leaf);
650 leaf = NULL;
652 btrfs_set_root_dirid(root_item, new_dirid);
654 key.objectid = objectid;
655 key.offset = 0;
656 key.type = BTRFS_ROOT_ITEM_KEY;
657 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
658 root_item);
659 if (ret)
660 goto fail;
662 key.offset = (u64)-1;
663 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
664 if (IS_ERR(new_root)) {
665 ret = PTR_ERR(new_root);
666 btrfs_abort_transaction(trans, ret);
667 goto fail;
670 btrfs_record_root_in_trans(trans, new_root);
672 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
673 if (ret) {
674 /* We potentially lose an unused inode item here */
675 btrfs_abort_transaction(trans, ret);
676 goto fail;
679 mutex_lock(&new_root->objectid_mutex);
680 new_root->highest_objectid = new_dirid;
681 mutex_unlock(&new_root->objectid_mutex);
684 * insert the directory item
686 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
687 if (ret) {
688 btrfs_abort_transaction(trans, ret);
689 goto fail;
692 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
693 BTRFS_FT_DIR, index);
694 if (ret) {
695 btrfs_abort_transaction(trans, ret);
696 goto fail;
699 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
700 ret = btrfs_update_inode(trans, root, dir);
701 BUG_ON(ret);
703 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
704 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
705 BUG_ON(ret);
707 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
708 BTRFS_UUID_KEY_SUBVOL, objectid);
709 if (ret)
710 btrfs_abort_transaction(trans, ret);
712 fail:
713 kfree(root_item);
714 trans->block_rsv = NULL;
715 trans->bytes_reserved = 0;
716 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
718 if (async_transid) {
719 *async_transid = trans->transid;
720 err = btrfs_commit_transaction_async(trans, 1);
721 if (err)
722 err = btrfs_commit_transaction(trans);
723 } else {
724 err = btrfs_commit_transaction(trans);
726 if (err && !ret)
727 ret = err;
729 if (!ret) {
730 inode = btrfs_lookup_dentry(dir, dentry);
731 if (IS_ERR(inode))
732 return PTR_ERR(inode);
733 d_instantiate(dentry, inode);
735 return ret;
737 fail_free:
738 kfree(root_item);
739 return ret;
742 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
743 struct dentry *dentry,
744 u64 *async_transid, bool readonly,
745 struct btrfs_qgroup_inherit *inherit)
747 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
748 struct inode *inode;
749 struct btrfs_pending_snapshot *pending_snapshot;
750 struct btrfs_trans_handle *trans;
751 int ret;
752 bool snapshot_force_cow = false;
754 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
755 return -EINVAL;
757 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
758 if (!pending_snapshot)
759 return -ENOMEM;
761 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
762 GFP_KERNEL);
763 pending_snapshot->path = btrfs_alloc_path();
764 if (!pending_snapshot->root_item || !pending_snapshot->path) {
765 ret = -ENOMEM;
766 goto free_pending;
770 * Force new buffered writes to reserve space even when NOCOW is
771 * possible. This is to avoid later writeback (running dealloc) to
772 * fallback to COW mode and unexpectedly fail with ENOSPC.
774 atomic_inc(&root->will_be_snapshotted);
775 smp_mb__after_atomic();
776 /* wait for no snapshot writes */
777 wait_event(root->subv_writers->wait,
778 percpu_counter_sum(&root->subv_writers->counter) == 0);
780 ret = btrfs_start_delalloc_inodes(root);
781 if (ret)
782 goto dec_and_free;
785 * All previous writes have started writeback in NOCOW mode, so now
786 * we force future writes to fallback to COW mode during snapshot
787 * creation.
789 atomic_inc(&root->snapshot_force_cow);
790 snapshot_force_cow = true;
792 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
794 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
795 BTRFS_BLOCK_RSV_TEMP);
797 * 1 - parent dir inode
798 * 2 - dir entries
799 * 1 - root item
800 * 2 - root ref/backref
801 * 1 - root of snapshot
802 * 1 - UUID item
804 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
805 &pending_snapshot->block_rsv, 8,
806 false);
807 if (ret)
808 goto dec_and_free;
810 pending_snapshot->dentry = dentry;
811 pending_snapshot->root = root;
812 pending_snapshot->readonly = readonly;
813 pending_snapshot->dir = dir;
814 pending_snapshot->inherit = inherit;
816 trans = btrfs_start_transaction(root, 0);
817 if (IS_ERR(trans)) {
818 ret = PTR_ERR(trans);
819 goto fail;
822 spin_lock(&fs_info->trans_lock);
823 list_add(&pending_snapshot->list,
824 &trans->transaction->pending_snapshots);
825 spin_unlock(&fs_info->trans_lock);
826 if (async_transid) {
827 *async_transid = trans->transid;
828 ret = btrfs_commit_transaction_async(trans, 1);
829 if (ret)
830 ret = btrfs_commit_transaction(trans);
831 } else {
832 ret = btrfs_commit_transaction(trans);
834 if (ret)
835 goto fail;
837 ret = pending_snapshot->error;
838 if (ret)
839 goto fail;
841 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
842 if (ret)
843 goto fail;
845 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
846 if (IS_ERR(inode)) {
847 ret = PTR_ERR(inode);
848 goto fail;
851 d_instantiate(dentry, inode);
852 ret = 0;
853 fail:
854 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
855 dec_and_free:
856 if (snapshot_force_cow)
857 atomic_dec(&root->snapshot_force_cow);
858 if (atomic_dec_and_test(&root->will_be_snapshotted))
859 wake_up_var(&root->will_be_snapshotted);
860 free_pending:
861 kfree(pending_snapshot->root_item);
862 btrfs_free_path(pending_snapshot->path);
863 kfree(pending_snapshot);
865 return ret;
868 /* copy of may_delete in fs/namei.c()
869 * Check whether we can remove a link victim from directory dir, check
870 * whether the type of victim is right.
871 * 1. We can't do it if dir is read-only (done in permission())
872 * 2. We should have write and exec permissions on dir
873 * 3. We can't remove anything from append-only dir
874 * 4. We can't do anything with immutable dir (done in permission())
875 * 5. If the sticky bit on dir is set we should either
876 * a. be owner of dir, or
877 * b. be owner of victim, or
878 * c. have CAP_FOWNER capability
879 * 6. If the victim is append-only or immutable we can't do anything with
880 * links pointing to it.
881 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
882 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
883 * 9. We can't remove a root or mountpoint.
884 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
885 * nfs_async_unlink().
888 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
890 int error;
892 if (d_really_is_negative(victim))
893 return -ENOENT;
895 BUG_ON(d_inode(victim->d_parent) != dir);
896 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
898 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
899 if (error)
900 return error;
901 if (IS_APPEND(dir))
902 return -EPERM;
903 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
904 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
905 return -EPERM;
906 if (isdir) {
907 if (!d_is_dir(victim))
908 return -ENOTDIR;
909 if (IS_ROOT(victim))
910 return -EBUSY;
911 } else if (d_is_dir(victim))
912 return -EISDIR;
913 if (IS_DEADDIR(dir))
914 return -ENOENT;
915 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
916 return -EBUSY;
917 return 0;
920 /* copy of may_create in fs/namei.c() */
921 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
923 if (d_really_is_positive(child))
924 return -EEXIST;
925 if (IS_DEADDIR(dir))
926 return -ENOENT;
927 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
931 * Create a new subvolume below @parent. This is largely modeled after
932 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
933 * inside this filesystem so it's quite a bit simpler.
935 static noinline int btrfs_mksubvol(const struct path *parent,
936 const char *name, int namelen,
937 struct btrfs_root *snap_src,
938 u64 *async_transid, bool readonly,
939 struct btrfs_qgroup_inherit *inherit)
941 struct inode *dir = d_inode(parent->dentry);
942 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
943 struct dentry *dentry;
944 int error;
946 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
947 if (error == -EINTR)
948 return error;
950 dentry = lookup_one_len(name, parent->dentry, namelen);
951 error = PTR_ERR(dentry);
952 if (IS_ERR(dentry))
953 goto out_unlock;
955 error = btrfs_may_create(dir, dentry);
956 if (error)
957 goto out_dput;
960 * even if this name doesn't exist, we may get hash collisions.
961 * check for them now when we can safely fail
963 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
964 dir->i_ino, name,
965 namelen);
966 if (error)
967 goto out_dput;
969 down_read(&fs_info->subvol_sem);
971 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
972 goto out_up_read;
974 if (snap_src) {
975 error = create_snapshot(snap_src, dir, dentry,
976 async_transid, readonly, inherit);
977 } else {
978 error = create_subvol(dir, dentry, name, namelen,
979 async_transid, inherit);
981 if (!error)
982 fsnotify_mkdir(dir, dentry);
983 out_up_read:
984 up_read(&fs_info->subvol_sem);
985 out_dput:
986 dput(dentry);
987 out_unlock:
988 inode_unlock(dir);
989 return error;
993 * When we're defragging a range, we don't want to kick it off again
994 * if it is really just waiting for delalloc to send it down.
995 * If we find a nice big extent or delalloc range for the bytes in the
996 * file you want to defrag, we return 0 to let you know to skip this
997 * part of the file
999 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
1001 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1002 struct extent_map *em = NULL;
1003 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1004 u64 end;
1006 read_lock(&em_tree->lock);
1007 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1008 read_unlock(&em_tree->lock);
1010 if (em) {
1011 end = extent_map_end(em);
1012 free_extent_map(em);
1013 if (end - offset > thresh)
1014 return 0;
1016 /* if we already have a nice delalloc here, just stop */
1017 thresh /= 2;
1018 end = count_range_bits(io_tree, &offset, offset + thresh,
1019 thresh, EXTENT_DELALLOC, 1);
1020 if (end >= thresh)
1021 return 0;
1022 return 1;
1026 * helper function to walk through a file and find extents
1027 * newer than a specific transid, and smaller than thresh.
1029 * This is used by the defragging code to find new and small
1030 * extents
1032 static int find_new_extents(struct btrfs_root *root,
1033 struct inode *inode, u64 newer_than,
1034 u64 *off, u32 thresh)
1036 struct btrfs_path *path;
1037 struct btrfs_key min_key;
1038 struct extent_buffer *leaf;
1039 struct btrfs_file_extent_item *extent;
1040 int type;
1041 int ret;
1042 u64 ino = btrfs_ino(BTRFS_I(inode));
1044 path = btrfs_alloc_path();
1045 if (!path)
1046 return -ENOMEM;
1048 min_key.objectid = ino;
1049 min_key.type = BTRFS_EXTENT_DATA_KEY;
1050 min_key.offset = *off;
1052 while (1) {
1053 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1054 if (ret != 0)
1055 goto none;
1056 process_slot:
1057 if (min_key.objectid != ino)
1058 goto none;
1059 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1060 goto none;
1062 leaf = path->nodes[0];
1063 extent = btrfs_item_ptr(leaf, path->slots[0],
1064 struct btrfs_file_extent_item);
1066 type = btrfs_file_extent_type(leaf, extent);
1067 if (type == BTRFS_FILE_EXTENT_REG &&
1068 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1069 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1070 *off = min_key.offset;
1071 btrfs_free_path(path);
1072 return 0;
1075 path->slots[0]++;
1076 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1077 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1078 goto process_slot;
1081 if (min_key.offset == (u64)-1)
1082 goto none;
1084 min_key.offset++;
1085 btrfs_release_path(path);
1087 none:
1088 btrfs_free_path(path);
1089 return -ENOENT;
1092 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1094 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1095 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1096 struct extent_map *em;
1097 u64 len = PAGE_SIZE;
1100 * hopefully we have this extent in the tree already, try without
1101 * the full extent lock
1103 read_lock(&em_tree->lock);
1104 em = lookup_extent_mapping(em_tree, start, len);
1105 read_unlock(&em_tree->lock);
1107 if (!em) {
1108 struct extent_state *cached = NULL;
1109 u64 end = start + len - 1;
1111 /* get the big lock and read metadata off disk */
1112 lock_extent_bits(io_tree, start, end, &cached);
1113 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
1114 unlock_extent_cached(io_tree, start, end, &cached);
1116 if (IS_ERR(em))
1117 return NULL;
1120 return em;
1123 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1125 struct extent_map *next;
1126 bool ret = true;
1128 /* this is the last extent */
1129 if (em->start + em->len >= i_size_read(inode))
1130 return false;
1132 next = defrag_lookup_extent(inode, em->start + em->len);
1133 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1134 ret = false;
1135 else if ((em->block_start + em->block_len == next->block_start) &&
1136 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1137 ret = false;
1139 free_extent_map(next);
1140 return ret;
1143 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1144 u64 *last_len, u64 *skip, u64 *defrag_end,
1145 int compress)
1147 struct extent_map *em;
1148 int ret = 1;
1149 bool next_mergeable = true;
1150 bool prev_mergeable = true;
1153 * make sure that once we start defragging an extent, we keep on
1154 * defragging it
1156 if (start < *defrag_end)
1157 return 1;
1159 *skip = 0;
1161 em = defrag_lookup_extent(inode, start);
1162 if (!em)
1163 return 0;
1165 /* this will cover holes, and inline extents */
1166 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1167 ret = 0;
1168 goto out;
1171 if (!*defrag_end)
1172 prev_mergeable = false;
1174 next_mergeable = defrag_check_next_extent(inode, em);
1176 * we hit a real extent, if it is big or the next extent is not a
1177 * real extent, don't bother defragging it
1179 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1180 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1181 ret = 0;
1182 out:
1184 * last_len ends up being a counter of how many bytes we've defragged.
1185 * every time we choose not to defrag an extent, we reset *last_len
1186 * so that the next tiny extent will force a defrag.
1188 * The end result of this is that tiny extents before a single big
1189 * extent will force at least part of that big extent to be defragged.
1191 if (ret) {
1192 *defrag_end = extent_map_end(em);
1193 } else {
1194 *last_len = 0;
1195 *skip = extent_map_end(em);
1196 *defrag_end = 0;
1199 free_extent_map(em);
1200 return ret;
1204 * it doesn't do much good to defrag one or two pages
1205 * at a time. This pulls in a nice chunk of pages
1206 * to COW and defrag.
1208 * It also makes sure the delalloc code has enough
1209 * dirty data to avoid making new small extents as part
1210 * of the defrag
1212 * It's a good idea to start RA on this range
1213 * before calling this.
1215 static int cluster_pages_for_defrag(struct inode *inode,
1216 struct page **pages,
1217 unsigned long start_index,
1218 unsigned long num_pages)
1220 unsigned long file_end;
1221 u64 isize = i_size_read(inode);
1222 u64 page_start;
1223 u64 page_end;
1224 u64 page_cnt;
1225 int ret;
1226 int i;
1227 int i_done;
1228 struct btrfs_ordered_extent *ordered;
1229 struct extent_state *cached_state = NULL;
1230 struct extent_io_tree *tree;
1231 struct extent_changeset *data_reserved = NULL;
1232 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1234 file_end = (isize - 1) >> PAGE_SHIFT;
1235 if (!isize || start_index > file_end)
1236 return 0;
1238 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1240 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1241 start_index << PAGE_SHIFT,
1242 page_cnt << PAGE_SHIFT);
1243 if (ret)
1244 return ret;
1245 i_done = 0;
1246 tree = &BTRFS_I(inode)->io_tree;
1248 /* step one, lock all the pages */
1249 for (i = 0; i < page_cnt; i++) {
1250 struct page *page;
1251 again:
1252 page = find_or_create_page(inode->i_mapping,
1253 start_index + i, mask);
1254 if (!page)
1255 break;
1257 page_start = page_offset(page);
1258 page_end = page_start + PAGE_SIZE - 1;
1259 while (1) {
1260 lock_extent_bits(tree, page_start, page_end,
1261 &cached_state);
1262 ordered = btrfs_lookup_ordered_extent(inode,
1263 page_start);
1264 unlock_extent_cached(tree, page_start, page_end,
1265 &cached_state);
1266 if (!ordered)
1267 break;
1269 unlock_page(page);
1270 btrfs_start_ordered_extent(inode, ordered, 1);
1271 btrfs_put_ordered_extent(ordered);
1272 lock_page(page);
1274 * we unlocked the page above, so we need check if
1275 * it was released or not.
1277 if (page->mapping != inode->i_mapping) {
1278 unlock_page(page);
1279 put_page(page);
1280 goto again;
1284 if (!PageUptodate(page)) {
1285 btrfs_readpage(NULL, page);
1286 lock_page(page);
1287 if (!PageUptodate(page)) {
1288 unlock_page(page);
1289 put_page(page);
1290 ret = -EIO;
1291 break;
1295 if (page->mapping != inode->i_mapping) {
1296 unlock_page(page);
1297 put_page(page);
1298 goto again;
1301 pages[i] = page;
1302 i_done++;
1304 if (!i_done || ret)
1305 goto out;
1307 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1308 goto out;
1311 * so now we have a nice long stream of locked
1312 * and up to date pages, lets wait on them
1314 for (i = 0; i < i_done; i++)
1315 wait_on_page_writeback(pages[i]);
1317 page_start = page_offset(pages[0]);
1318 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1320 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1321 page_start, page_end - 1, &cached_state);
1322 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1323 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1324 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1325 &cached_state);
1327 if (i_done != page_cnt) {
1328 spin_lock(&BTRFS_I(inode)->lock);
1329 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1330 spin_unlock(&BTRFS_I(inode)->lock);
1331 btrfs_delalloc_release_space(inode, data_reserved,
1332 start_index << PAGE_SHIFT,
1333 (page_cnt - i_done) << PAGE_SHIFT, true);
1337 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1338 &cached_state);
1340 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1341 page_start, page_end - 1, &cached_state);
1343 for (i = 0; i < i_done; i++) {
1344 clear_page_dirty_for_io(pages[i]);
1345 ClearPageChecked(pages[i]);
1346 set_page_extent_mapped(pages[i]);
1347 set_page_dirty(pages[i]);
1348 unlock_page(pages[i]);
1349 put_page(pages[i]);
1351 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1352 false);
1353 extent_changeset_free(data_reserved);
1354 return i_done;
1355 out:
1356 for (i = 0; i < i_done; i++) {
1357 unlock_page(pages[i]);
1358 put_page(pages[i]);
1360 btrfs_delalloc_release_space(inode, data_reserved,
1361 start_index << PAGE_SHIFT,
1362 page_cnt << PAGE_SHIFT, true);
1363 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT,
1364 true);
1365 extent_changeset_free(data_reserved);
1366 return ret;
1370 int btrfs_defrag_file(struct inode *inode, struct file *file,
1371 struct btrfs_ioctl_defrag_range_args *range,
1372 u64 newer_than, unsigned long max_to_defrag)
1374 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1375 struct btrfs_root *root = BTRFS_I(inode)->root;
1376 struct file_ra_state *ra = NULL;
1377 unsigned long last_index;
1378 u64 isize = i_size_read(inode);
1379 u64 last_len = 0;
1380 u64 skip = 0;
1381 u64 defrag_end = 0;
1382 u64 newer_off = range->start;
1383 unsigned long i;
1384 unsigned long ra_index = 0;
1385 int ret;
1386 int defrag_count = 0;
1387 int compress_type = BTRFS_COMPRESS_ZLIB;
1388 u32 extent_thresh = range->extent_thresh;
1389 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1390 unsigned long cluster = max_cluster;
1391 u64 new_align = ~((u64)SZ_128K - 1);
1392 struct page **pages = NULL;
1393 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1395 if (isize == 0)
1396 return 0;
1398 if (range->start >= isize)
1399 return -EINVAL;
1401 if (do_compress) {
1402 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1403 return -EINVAL;
1404 if (range->compress_type)
1405 compress_type = range->compress_type;
1408 if (extent_thresh == 0)
1409 extent_thresh = SZ_256K;
1412 * If we were not given a file, allocate a readahead context. As
1413 * readahead is just an optimization, defrag will work without it so
1414 * we don't error out.
1416 if (!file) {
1417 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1418 if (ra)
1419 file_ra_state_init(ra, inode->i_mapping);
1420 } else {
1421 ra = &file->f_ra;
1424 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1425 if (!pages) {
1426 ret = -ENOMEM;
1427 goto out_ra;
1430 /* find the last page to defrag */
1431 if (range->start + range->len > range->start) {
1432 last_index = min_t(u64, isize - 1,
1433 range->start + range->len - 1) >> PAGE_SHIFT;
1434 } else {
1435 last_index = (isize - 1) >> PAGE_SHIFT;
1438 if (newer_than) {
1439 ret = find_new_extents(root, inode, newer_than,
1440 &newer_off, SZ_64K);
1441 if (!ret) {
1442 range->start = newer_off;
1444 * we always align our defrag to help keep
1445 * the extents in the file evenly spaced
1447 i = (newer_off & new_align) >> PAGE_SHIFT;
1448 } else
1449 goto out_ra;
1450 } else {
1451 i = range->start >> PAGE_SHIFT;
1453 if (!max_to_defrag)
1454 max_to_defrag = last_index - i + 1;
1457 * make writeback starts from i, so the defrag range can be
1458 * written sequentially.
1460 if (i < inode->i_mapping->writeback_index)
1461 inode->i_mapping->writeback_index = i;
1463 while (i <= last_index && defrag_count < max_to_defrag &&
1464 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1466 * make sure we stop running if someone unmounts
1467 * the FS
1469 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1470 break;
1472 if (btrfs_defrag_cancelled(fs_info)) {
1473 btrfs_debug(fs_info, "defrag_file cancelled");
1474 ret = -EAGAIN;
1475 break;
1478 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1479 extent_thresh, &last_len, &skip,
1480 &defrag_end, do_compress)){
1481 unsigned long next;
1483 * the should_defrag function tells us how much to skip
1484 * bump our counter by the suggested amount
1486 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1487 i = max(i + 1, next);
1488 continue;
1491 if (!newer_than) {
1492 cluster = (PAGE_ALIGN(defrag_end) >>
1493 PAGE_SHIFT) - i;
1494 cluster = min(cluster, max_cluster);
1495 } else {
1496 cluster = max_cluster;
1499 if (i + cluster > ra_index) {
1500 ra_index = max(i, ra_index);
1501 if (ra)
1502 page_cache_sync_readahead(inode->i_mapping, ra,
1503 file, ra_index, cluster);
1504 ra_index += cluster;
1507 inode_lock(inode);
1508 if (do_compress)
1509 BTRFS_I(inode)->defrag_compress = compress_type;
1510 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1511 if (ret < 0) {
1512 inode_unlock(inode);
1513 goto out_ra;
1516 defrag_count += ret;
1517 balance_dirty_pages_ratelimited(inode->i_mapping);
1518 inode_unlock(inode);
1520 if (newer_than) {
1521 if (newer_off == (u64)-1)
1522 break;
1524 if (ret > 0)
1525 i += ret;
1527 newer_off = max(newer_off + 1,
1528 (u64)i << PAGE_SHIFT);
1530 ret = find_new_extents(root, inode, newer_than,
1531 &newer_off, SZ_64K);
1532 if (!ret) {
1533 range->start = newer_off;
1534 i = (newer_off & new_align) >> PAGE_SHIFT;
1535 } else {
1536 break;
1538 } else {
1539 if (ret > 0) {
1540 i += ret;
1541 last_len += ret << PAGE_SHIFT;
1542 } else {
1543 i++;
1544 last_len = 0;
1549 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1550 filemap_flush(inode->i_mapping);
1551 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1552 &BTRFS_I(inode)->runtime_flags))
1553 filemap_flush(inode->i_mapping);
1556 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1557 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1558 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1559 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1562 ret = defrag_count;
1564 out_ra:
1565 if (do_compress) {
1566 inode_lock(inode);
1567 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1568 inode_unlock(inode);
1570 if (!file)
1571 kfree(ra);
1572 kfree(pages);
1573 return ret;
1576 static noinline int btrfs_ioctl_resize(struct file *file,
1577 void __user *arg)
1579 struct inode *inode = file_inode(file);
1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1581 u64 new_size;
1582 u64 old_size;
1583 u64 devid = 1;
1584 struct btrfs_root *root = BTRFS_I(inode)->root;
1585 struct btrfs_ioctl_vol_args *vol_args;
1586 struct btrfs_trans_handle *trans;
1587 struct btrfs_device *device = NULL;
1588 char *sizestr;
1589 char *retptr;
1590 char *devstr = NULL;
1591 int ret = 0;
1592 int mod = 0;
1594 if (!capable(CAP_SYS_ADMIN))
1595 return -EPERM;
1597 ret = mnt_want_write_file(file);
1598 if (ret)
1599 return ret;
1601 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1602 mnt_drop_write_file(file);
1603 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1606 vol_args = memdup_user(arg, sizeof(*vol_args));
1607 if (IS_ERR(vol_args)) {
1608 ret = PTR_ERR(vol_args);
1609 goto out;
1612 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1614 sizestr = vol_args->name;
1615 devstr = strchr(sizestr, ':');
1616 if (devstr) {
1617 sizestr = devstr + 1;
1618 *devstr = '\0';
1619 devstr = vol_args->name;
1620 ret = kstrtoull(devstr, 10, &devid);
1621 if (ret)
1622 goto out_free;
1623 if (!devid) {
1624 ret = -EINVAL;
1625 goto out_free;
1627 btrfs_info(fs_info, "resizing devid %llu", devid);
1630 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1631 if (!device) {
1632 btrfs_info(fs_info, "resizer unable to find device %llu",
1633 devid);
1634 ret = -ENODEV;
1635 goto out_free;
1638 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1639 btrfs_info(fs_info,
1640 "resizer unable to apply on readonly device %llu",
1641 devid);
1642 ret = -EPERM;
1643 goto out_free;
1646 if (!strcmp(sizestr, "max"))
1647 new_size = device->bdev->bd_inode->i_size;
1648 else {
1649 if (sizestr[0] == '-') {
1650 mod = -1;
1651 sizestr++;
1652 } else if (sizestr[0] == '+') {
1653 mod = 1;
1654 sizestr++;
1656 new_size = memparse(sizestr, &retptr);
1657 if (*retptr != '\0' || new_size == 0) {
1658 ret = -EINVAL;
1659 goto out_free;
1663 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1664 ret = -EPERM;
1665 goto out_free;
1668 old_size = btrfs_device_get_total_bytes(device);
1670 if (mod < 0) {
1671 if (new_size > old_size) {
1672 ret = -EINVAL;
1673 goto out_free;
1675 new_size = old_size - new_size;
1676 } else if (mod > 0) {
1677 if (new_size > ULLONG_MAX - old_size) {
1678 ret = -ERANGE;
1679 goto out_free;
1681 new_size = old_size + new_size;
1684 if (new_size < SZ_256M) {
1685 ret = -EINVAL;
1686 goto out_free;
1688 if (new_size > device->bdev->bd_inode->i_size) {
1689 ret = -EFBIG;
1690 goto out_free;
1693 new_size = round_down(new_size, fs_info->sectorsize);
1695 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1696 rcu_str_deref(device->name), new_size);
1698 if (new_size > old_size) {
1699 trans = btrfs_start_transaction(root, 0);
1700 if (IS_ERR(trans)) {
1701 ret = PTR_ERR(trans);
1702 goto out_free;
1704 ret = btrfs_grow_device(trans, device, new_size);
1705 btrfs_commit_transaction(trans);
1706 } else if (new_size < old_size) {
1707 ret = btrfs_shrink_device(device, new_size);
1708 } /* equal, nothing need to do */
1710 out_free:
1711 kfree(vol_args);
1712 out:
1713 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1714 mnt_drop_write_file(file);
1715 return ret;
1718 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1719 const char *name, unsigned long fd, int subvol,
1720 u64 *transid, bool readonly,
1721 struct btrfs_qgroup_inherit *inherit)
1723 int namelen;
1724 int ret = 0;
1726 if (!S_ISDIR(file_inode(file)->i_mode))
1727 return -ENOTDIR;
1729 ret = mnt_want_write_file(file);
1730 if (ret)
1731 goto out;
1733 namelen = strlen(name);
1734 if (strchr(name, '/')) {
1735 ret = -EINVAL;
1736 goto out_drop_write;
1739 if (name[0] == '.' &&
1740 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1741 ret = -EEXIST;
1742 goto out_drop_write;
1745 if (subvol) {
1746 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1747 NULL, transid, readonly, inherit);
1748 } else {
1749 struct fd src = fdget(fd);
1750 struct inode *src_inode;
1751 if (!src.file) {
1752 ret = -EINVAL;
1753 goto out_drop_write;
1756 src_inode = file_inode(src.file);
1757 if (src_inode->i_sb != file_inode(file)->i_sb) {
1758 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1759 "Snapshot src from another FS");
1760 ret = -EXDEV;
1761 } else if (!inode_owner_or_capable(src_inode)) {
1763 * Subvolume creation is not restricted, but snapshots
1764 * are limited to own subvolumes only
1766 ret = -EPERM;
1767 } else {
1768 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1769 BTRFS_I(src_inode)->root,
1770 transid, readonly, inherit);
1772 fdput(src);
1774 out_drop_write:
1775 mnt_drop_write_file(file);
1776 out:
1777 return ret;
1780 static noinline int btrfs_ioctl_snap_create(struct file *file,
1781 void __user *arg, int subvol)
1783 struct btrfs_ioctl_vol_args *vol_args;
1784 int ret;
1786 if (!S_ISDIR(file_inode(file)->i_mode))
1787 return -ENOTDIR;
1789 vol_args = memdup_user(arg, sizeof(*vol_args));
1790 if (IS_ERR(vol_args))
1791 return PTR_ERR(vol_args);
1792 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1794 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1795 vol_args->fd, subvol,
1796 NULL, false, NULL);
1798 kfree(vol_args);
1799 return ret;
1802 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1803 void __user *arg, int subvol)
1805 struct btrfs_ioctl_vol_args_v2 *vol_args;
1806 int ret;
1807 u64 transid = 0;
1808 u64 *ptr = NULL;
1809 bool readonly = false;
1810 struct btrfs_qgroup_inherit *inherit = NULL;
1812 if (!S_ISDIR(file_inode(file)->i_mode))
1813 return -ENOTDIR;
1815 vol_args = memdup_user(arg, sizeof(*vol_args));
1816 if (IS_ERR(vol_args))
1817 return PTR_ERR(vol_args);
1818 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1820 if (vol_args->flags &
1821 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1822 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1823 ret = -EOPNOTSUPP;
1824 goto free_args;
1827 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1828 ptr = &transid;
1829 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1830 readonly = true;
1831 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1832 if (vol_args->size > PAGE_SIZE) {
1833 ret = -EINVAL;
1834 goto free_args;
1836 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1837 if (IS_ERR(inherit)) {
1838 ret = PTR_ERR(inherit);
1839 goto free_args;
1843 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1844 vol_args->fd, subvol, ptr,
1845 readonly, inherit);
1846 if (ret)
1847 goto free_inherit;
1849 if (ptr && copy_to_user(arg +
1850 offsetof(struct btrfs_ioctl_vol_args_v2,
1851 transid),
1852 ptr, sizeof(*ptr)))
1853 ret = -EFAULT;
1855 free_inherit:
1856 kfree(inherit);
1857 free_args:
1858 kfree(vol_args);
1859 return ret;
1862 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1863 void __user *arg)
1865 struct inode *inode = file_inode(file);
1866 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1867 struct btrfs_root *root = BTRFS_I(inode)->root;
1868 int ret = 0;
1869 u64 flags = 0;
1871 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1872 return -EINVAL;
1874 down_read(&fs_info->subvol_sem);
1875 if (btrfs_root_readonly(root))
1876 flags |= BTRFS_SUBVOL_RDONLY;
1877 up_read(&fs_info->subvol_sem);
1879 if (copy_to_user(arg, &flags, sizeof(flags)))
1880 ret = -EFAULT;
1882 return ret;
1885 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1886 void __user *arg)
1888 struct inode *inode = file_inode(file);
1889 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1890 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 struct btrfs_trans_handle *trans;
1892 u64 root_flags;
1893 u64 flags;
1894 int ret = 0;
1896 if (!inode_owner_or_capable(inode))
1897 return -EPERM;
1899 ret = mnt_want_write_file(file);
1900 if (ret)
1901 goto out;
1903 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1904 ret = -EINVAL;
1905 goto out_drop_write;
1908 if (copy_from_user(&flags, arg, sizeof(flags))) {
1909 ret = -EFAULT;
1910 goto out_drop_write;
1913 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1914 ret = -EINVAL;
1915 goto out_drop_write;
1918 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1919 ret = -EOPNOTSUPP;
1920 goto out_drop_write;
1923 down_write(&fs_info->subvol_sem);
1925 /* nothing to do */
1926 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1927 goto out_drop_sem;
1929 root_flags = btrfs_root_flags(&root->root_item);
1930 if (flags & BTRFS_SUBVOL_RDONLY) {
1931 btrfs_set_root_flags(&root->root_item,
1932 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1933 } else {
1935 * Block RO -> RW transition if this subvolume is involved in
1936 * send
1938 spin_lock(&root->root_item_lock);
1939 if (root->send_in_progress == 0) {
1940 btrfs_set_root_flags(&root->root_item,
1941 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1942 spin_unlock(&root->root_item_lock);
1943 } else {
1944 spin_unlock(&root->root_item_lock);
1945 btrfs_warn(fs_info,
1946 "Attempt to set subvolume %llu read-write during send",
1947 root->root_key.objectid);
1948 ret = -EPERM;
1949 goto out_drop_sem;
1953 trans = btrfs_start_transaction(root, 1);
1954 if (IS_ERR(trans)) {
1955 ret = PTR_ERR(trans);
1956 goto out_reset;
1959 ret = btrfs_update_root(trans, fs_info->tree_root,
1960 &root->root_key, &root->root_item);
1961 if (ret < 0) {
1962 btrfs_end_transaction(trans);
1963 goto out_reset;
1966 ret = btrfs_commit_transaction(trans);
1968 out_reset:
1969 if (ret)
1970 btrfs_set_root_flags(&root->root_item, root_flags);
1971 out_drop_sem:
1972 up_write(&fs_info->subvol_sem);
1973 out_drop_write:
1974 mnt_drop_write_file(file);
1975 out:
1976 return ret;
1979 static noinline int key_in_sk(struct btrfs_key *key,
1980 struct btrfs_ioctl_search_key *sk)
1982 struct btrfs_key test;
1983 int ret;
1985 test.objectid = sk->min_objectid;
1986 test.type = sk->min_type;
1987 test.offset = sk->min_offset;
1989 ret = btrfs_comp_cpu_keys(key, &test);
1990 if (ret < 0)
1991 return 0;
1993 test.objectid = sk->max_objectid;
1994 test.type = sk->max_type;
1995 test.offset = sk->max_offset;
1997 ret = btrfs_comp_cpu_keys(key, &test);
1998 if (ret > 0)
1999 return 0;
2000 return 1;
2003 static noinline int copy_to_sk(struct btrfs_path *path,
2004 struct btrfs_key *key,
2005 struct btrfs_ioctl_search_key *sk,
2006 size_t *buf_size,
2007 char __user *ubuf,
2008 unsigned long *sk_offset,
2009 int *num_found)
2011 u64 found_transid;
2012 struct extent_buffer *leaf;
2013 struct btrfs_ioctl_search_header sh;
2014 struct btrfs_key test;
2015 unsigned long item_off;
2016 unsigned long item_len;
2017 int nritems;
2018 int i;
2019 int slot;
2020 int ret = 0;
2022 leaf = path->nodes[0];
2023 slot = path->slots[0];
2024 nritems = btrfs_header_nritems(leaf);
2026 if (btrfs_header_generation(leaf) > sk->max_transid) {
2027 i = nritems;
2028 goto advance_key;
2030 found_transid = btrfs_header_generation(leaf);
2032 for (i = slot; i < nritems; i++) {
2033 item_off = btrfs_item_ptr_offset(leaf, i);
2034 item_len = btrfs_item_size_nr(leaf, i);
2036 btrfs_item_key_to_cpu(leaf, key, i);
2037 if (!key_in_sk(key, sk))
2038 continue;
2040 if (sizeof(sh) + item_len > *buf_size) {
2041 if (*num_found) {
2042 ret = 1;
2043 goto out;
2047 * return one empty item back for v1, which does not
2048 * handle -EOVERFLOW
2051 *buf_size = sizeof(sh) + item_len;
2052 item_len = 0;
2053 ret = -EOVERFLOW;
2056 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2057 ret = 1;
2058 goto out;
2061 sh.objectid = key->objectid;
2062 sh.offset = key->offset;
2063 sh.type = key->type;
2064 sh.len = item_len;
2065 sh.transid = found_transid;
2067 /* copy search result header */
2068 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
2069 ret = -EFAULT;
2070 goto out;
2073 *sk_offset += sizeof(sh);
2075 if (item_len) {
2076 char __user *up = ubuf + *sk_offset;
2077 /* copy the item */
2078 if (read_extent_buffer_to_user(leaf, up,
2079 item_off, item_len)) {
2080 ret = -EFAULT;
2081 goto out;
2084 *sk_offset += item_len;
2086 (*num_found)++;
2088 if (ret) /* -EOVERFLOW from above */
2089 goto out;
2091 if (*num_found >= sk->nr_items) {
2092 ret = 1;
2093 goto out;
2096 advance_key:
2097 ret = 0;
2098 test.objectid = sk->max_objectid;
2099 test.type = sk->max_type;
2100 test.offset = sk->max_offset;
2101 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2102 ret = 1;
2103 else if (key->offset < (u64)-1)
2104 key->offset++;
2105 else if (key->type < (u8)-1) {
2106 key->offset = 0;
2107 key->type++;
2108 } else if (key->objectid < (u64)-1) {
2109 key->offset = 0;
2110 key->type = 0;
2111 key->objectid++;
2112 } else
2113 ret = 1;
2114 out:
2116 * 0: all items from this leaf copied, continue with next
2117 * 1: * more items can be copied, but unused buffer is too small
2118 * * all items were found
2119 * Either way, it will stops the loop which iterates to the next
2120 * leaf
2121 * -EOVERFLOW: item was to large for buffer
2122 * -EFAULT: could not copy extent buffer back to userspace
2124 return ret;
2127 static noinline int search_ioctl(struct inode *inode,
2128 struct btrfs_ioctl_search_key *sk,
2129 size_t *buf_size,
2130 char __user *ubuf)
2132 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2133 struct btrfs_root *root;
2134 struct btrfs_key key;
2135 struct btrfs_path *path;
2136 int ret;
2137 int num_found = 0;
2138 unsigned long sk_offset = 0;
2140 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2141 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2142 return -EOVERFLOW;
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2149 if (sk->tree_id == 0) {
2150 /* search the root of the inode that was passed */
2151 root = BTRFS_I(inode)->root;
2152 } else {
2153 key.objectid = sk->tree_id;
2154 key.type = BTRFS_ROOT_ITEM_KEY;
2155 key.offset = (u64)-1;
2156 root = btrfs_read_fs_root_no_name(info, &key);
2157 if (IS_ERR(root)) {
2158 btrfs_free_path(path);
2159 return PTR_ERR(root);
2163 key.objectid = sk->min_objectid;
2164 key.type = sk->min_type;
2165 key.offset = sk->min_offset;
2167 while (1) {
2168 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2169 if (ret != 0) {
2170 if (ret > 0)
2171 ret = 0;
2172 goto err;
2174 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2175 &sk_offset, &num_found);
2176 btrfs_release_path(path);
2177 if (ret)
2178 break;
2181 if (ret > 0)
2182 ret = 0;
2183 err:
2184 sk->nr_items = num_found;
2185 btrfs_free_path(path);
2186 return ret;
2189 static noinline int btrfs_ioctl_tree_search(struct file *file,
2190 void __user *argp)
2192 struct btrfs_ioctl_search_args __user *uargs;
2193 struct btrfs_ioctl_search_key sk;
2194 struct inode *inode;
2195 int ret;
2196 size_t buf_size;
2198 if (!capable(CAP_SYS_ADMIN))
2199 return -EPERM;
2201 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2203 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2204 return -EFAULT;
2206 buf_size = sizeof(uargs->buf);
2208 inode = file_inode(file);
2209 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2212 * In the origin implementation an overflow is handled by returning a
2213 * search header with a len of zero, so reset ret.
2215 if (ret == -EOVERFLOW)
2216 ret = 0;
2218 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2219 ret = -EFAULT;
2220 return ret;
2223 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2224 void __user *argp)
2226 struct btrfs_ioctl_search_args_v2 __user *uarg;
2227 struct btrfs_ioctl_search_args_v2 args;
2228 struct inode *inode;
2229 int ret;
2230 size_t buf_size;
2231 const size_t buf_limit = SZ_16M;
2233 if (!capable(CAP_SYS_ADMIN))
2234 return -EPERM;
2236 /* copy search header and buffer size */
2237 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2238 if (copy_from_user(&args, uarg, sizeof(args)))
2239 return -EFAULT;
2241 buf_size = args.buf_size;
2243 /* limit result size to 16MB */
2244 if (buf_size > buf_limit)
2245 buf_size = buf_limit;
2247 inode = file_inode(file);
2248 ret = search_ioctl(inode, &args.key, &buf_size,
2249 (char __user *)(&uarg->buf[0]));
2250 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2251 ret = -EFAULT;
2252 else if (ret == -EOVERFLOW &&
2253 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2254 ret = -EFAULT;
2256 return ret;
2260 * Search INODE_REFs to identify path name of 'dirid' directory
2261 * in a 'tree_id' tree. and sets path name to 'name'.
2263 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2264 u64 tree_id, u64 dirid, char *name)
2266 struct btrfs_root *root;
2267 struct btrfs_key key;
2268 char *ptr;
2269 int ret = -1;
2270 int slot;
2271 int len;
2272 int total_len = 0;
2273 struct btrfs_inode_ref *iref;
2274 struct extent_buffer *l;
2275 struct btrfs_path *path;
2277 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2278 name[0]='\0';
2279 return 0;
2282 path = btrfs_alloc_path();
2283 if (!path)
2284 return -ENOMEM;
2286 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2288 key.objectid = tree_id;
2289 key.type = BTRFS_ROOT_ITEM_KEY;
2290 key.offset = (u64)-1;
2291 root = btrfs_read_fs_root_no_name(info, &key);
2292 if (IS_ERR(root)) {
2293 ret = PTR_ERR(root);
2294 goto out;
2297 key.objectid = dirid;
2298 key.type = BTRFS_INODE_REF_KEY;
2299 key.offset = (u64)-1;
2301 while (1) {
2302 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2303 if (ret < 0)
2304 goto out;
2305 else if (ret > 0) {
2306 ret = btrfs_previous_item(root, path, dirid,
2307 BTRFS_INODE_REF_KEY);
2308 if (ret < 0)
2309 goto out;
2310 else if (ret > 0) {
2311 ret = -ENOENT;
2312 goto out;
2316 l = path->nodes[0];
2317 slot = path->slots[0];
2318 btrfs_item_key_to_cpu(l, &key, slot);
2320 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2321 len = btrfs_inode_ref_name_len(l, iref);
2322 ptr -= len + 1;
2323 total_len += len + 1;
2324 if (ptr < name) {
2325 ret = -ENAMETOOLONG;
2326 goto out;
2329 *(ptr + len) = '/';
2330 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2332 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2333 break;
2335 btrfs_release_path(path);
2336 key.objectid = key.offset;
2337 key.offset = (u64)-1;
2338 dirid = key.objectid;
2340 memmove(name, ptr, total_len);
2341 name[total_len] = '\0';
2342 ret = 0;
2343 out:
2344 btrfs_free_path(path);
2345 return ret;
2348 static int btrfs_search_path_in_tree_user(struct inode *inode,
2349 struct btrfs_ioctl_ino_lookup_user_args *args)
2351 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2352 struct super_block *sb = inode->i_sb;
2353 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2354 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2355 u64 dirid = args->dirid;
2356 unsigned long item_off;
2357 unsigned long item_len;
2358 struct btrfs_inode_ref *iref;
2359 struct btrfs_root_ref *rref;
2360 struct btrfs_root *root;
2361 struct btrfs_path *path;
2362 struct btrfs_key key, key2;
2363 struct extent_buffer *leaf;
2364 struct inode *temp_inode;
2365 char *ptr;
2366 int slot;
2367 int len;
2368 int total_len = 0;
2369 int ret;
2371 path = btrfs_alloc_path();
2372 if (!path)
2373 return -ENOMEM;
2376 * If the bottom subvolume does not exist directly under upper_limit,
2377 * construct the path in from the bottom up.
2379 if (dirid != upper_limit.objectid) {
2380 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2382 key.objectid = treeid;
2383 key.type = BTRFS_ROOT_ITEM_KEY;
2384 key.offset = (u64)-1;
2385 root = btrfs_read_fs_root_no_name(fs_info, &key);
2386 if (IS_ERR(root)) {
2387 ret = PTR_ERR(root);
2388 goto out;
2391 key.objectid = dirid;
2392 key.type = BTRFS_INODE_REF_KEY;
2393 key.offset = (u64)-1;
2394 while (1) {
2395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2396 if (ret < 0) {
2397 goto out;
2398 } else if (ret > 0) {
2399 ret = btrfs_previous_item(root, path, dirid,
2400 BTRFS_INODE_REF_KEY);
2401 if (ret < 0) {
2402 goto out;
2403 } else if (ret > 0) {
2404 ret = -ENOENT;
2405 goto out;
2409 leaf = path->nodes[0];
2410 slot = path->slots[0];
2411 btrfs_item_key_to_cpu(leaf, &key, slot);
2413 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2414 len = btrfs_inode_ref_name_len(leaf, iref);
2415 ptr -= len + 1;
2416 total_len += len + 1;
2417 if (ptr < args->path) {
2418 ret = -ENAMETOOLONG;
2419 goto out;
2422 *(ptr + len) = '/';
2423 read_extent_buffer(leaf, ptr,
2424 (unsigned long)(iref + 1), len);
2426 /* Check the read+exec permission of this directory */
2427 ret = btrfs_previous_item(root, path, dirid,
2428 BTRFS_INODE_ITEM_KEY);
2429 if (ret < 0) {
2430 goto out;
2431 } else if (ret > 0) {
2432 ret = -ENOENT;
2433 goto out;
2436 leaf = path->nodes[0];
2437 slot = path->slots[0];
2438 btrfs_item_key_to_cpu(leaf, &key2, slot);
2439 if (key2.objectid != dirid) {
2440 ret = -ENOENT;
2441 goto out;
2444 temp_inode = btrfs_iget(sb, &key2, root, NULL);
2445 if (IS_ERR(temp_inode)) {
2446 ret = PTR_ERR(temp_inode);
2447 goto out;
2449 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC);
2450 iput(temp_inode);
2451 if (ret) {
2452 ret = -EACCES;
2453 goto out;
2456 if (key.offset == upper_limit.objectid)
2457 break;
2458 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2459 ret = -EACCES;
2460 goto out;
2463 btrfs_release_path(path);
2464 key.objectid = key.offset;
2465 key.offset = (u64)-1;
2466 dirid = key.objectid;
2469 memmove(args->path, ptr, total_len);
2470 args->path[total_len] = '\0';
2471 btrfs_release_path(path);
2474 /* Get the bottom subvolume's name from ROOT_REF */
2475 root = fs_info->tree_root;
2476 key.objectid = treeid;
2477 key.type = BTRFS_ROOT_REF_KEY;
2478 key.offset = args->treeid;
2479 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2480 if (ret < 0) {
2481 goto out;
2482 } else if (ret > 0) {
2483 ret = -ENOENT;
2484 goto out;
2487 leaf = path->nodes[0];
2488 slot = path->slots[0];
2489 btrfs_item_key_to_cpu(leaf, &key, slot);
2491 item_off = btrfs_item_ptr_offset(leaf, slot);
2492 item_len = btrfs_item_size_nr(leaf, slot);
2493 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2494 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2495 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2496 ret = -EINVAL;
2497 goto out;
2500 /* Copy subvolume's name */
2501 item_off += sizeof(struct btrfs_root_ref);
2502 item_len -= sizeof(struct btrfs_root_ref);
2503 read_extent_buffer(leaf, args->name, item_off, item_len);
2504 args->name[item_len] = 0;
2506 out:
2507 btrfs_free_path(path);
2508 return ret;
2511 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2512 void __user *argp)
2514 struct btrfs_ioctl_ino_lookup_args *args;
2515 struct inode *inode;
2516 int ret = 0;
2518 args = memdup_user(argp, sizeof(*args));
2519 if (IS_ERR(args))
2520 return PTR_ERR(args);
2522 inode = file_inode(file);
2525 * Unprivileged query to obtain the containing subvolume root id. The
2526 * path is reset so it's consistent with btrfs_search_path_in_tree.
2528 if (args->treeid == 0)
2529 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2531 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2532 args->name[0] = 0;
2533 goto out;
2536 if (!capable(CAP_SYS_ADMIN)) {
2537 ret = -EPERM;
2538 goto out;
2541 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2542 args->treeid, args->objectid,
2543 args->name);
2545 out:
2546 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2547 ret = -EFAULT;
2549 kfree(args);
2550 return ret;
2554 * Version of ino_lookup ioctl (unprivileged)
2556 * The main differences from ino_lookup ioctl are:
2558 * 1. Read + Exec permission will be checked using inode_permission() during
2559 * path construction. -EACCES will be returned in case of failure.
2560 * 2. Path construction will be stopped at the inode number which corresponds
2561 * to the fd with which this ioctl is called. If constructed path does not
2562 * exist under fd's inode, -EACCES will be returned.
2563 * 3. The name of bottom subvolume is also searched and filled.
2565 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2567 struct btrfs_ioctl_ino_lookup_user_args *args;
2568 struct inode *inode;
2569 int ret;
2571 args = memdup_user(argp, sizeof(*args));
2572 if (IS_ERR(args))
2573 return PTR_ERR(args);
2575 inode = file_inode(file);
2577 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2578 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2580 * The subvolume does not exist under fd with which this is
2581 * called
2583 kfree(args);
2584 return -EACCES;
2587 ret = btrfs_search_path_in_tree_user(inode, args);
2589 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2590 ret = -EFAULT;
2592 kfree(args);
2593 return ret;
2596 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2597 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2599 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2600 struct btrfs_fs_info *fs_info;
2601 struct btrfs_root *root;
2602 struct btrfs_path *path;
2603 struct btrfs_key key;
2604 struct btrfs_root_item *root_item;
2605 struct btrfs_root_ref *rref;
2606 struct extent_buffer *leaf;
2607 unsigned long item_off;
2608 unsigned long item_len;
2609 struct inode *inode;
2610 int slot;
2611 int ret = 0;
2613 path = btrfs_alloc_path();
2614 if (!path)
2615 return -ENOMEM;
2617 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2618 if (!subvol_info) {
2619 btrfs_free_path(path);
2620 return -ENOMEM;
2623 inode = file_inode(file);
2624 fs_info = BTRFS_I(inode)->root->fs_info;
2626 /* Get root_item of inode's subvolume */
2627 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2628 key.type = BTRFS_ROOT_ITEM_KEY;
2629 key.offset = (u64)-1;
2630 root = btrfs_read_fs_root_no_name(fs_info, &key);
2631 if (IS_ERR(root)) {
2632 ret = PTR_ERR(root);
2633 goto out;
2635 root_item = &root->root_item;
2637 subvol_info->treeid = key.objectid;
2639 subvol_info->generation = btrfs_root_generation(root_item);
2640 subvol_info->flags = btrfs_root_flags(root_item);
2642 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2643 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2644 BTRFS_UUID_SIZE);
2645 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2646 BTRFS_UUID_SIZE);
2648 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2649 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2650 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2652 subvol_info->otransid = btrfs_root_otransid(root_item);
2653 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2654 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2656 subvol_info->stransid = btrfs_root_stransid(root_item);
2657 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2658 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2660 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2661 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2662 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2664 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2665 /* Search root tree for ROOT_BACKREF of this subvolume */
2666 root = fs_info->tree_root;
2668 key.type = BTRFS_ROOT_BACKREF_KEY;
2669 key.offset = 0;
2670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2671 if (ret < 0) {
2672 goto out;
2673 } else if (path->slots[0] >=
2674 btrfs_header_nritems(path->nodes[0])) {
2675 ret = btrfs_next_leaf(root, path);
2676 if (ret < 0) {
2677 goto out;
2678 } else if (ret > 0) {
2679 ret = -EUCLEAN;
2680 goto out;
2684 leaf = path->nodes[0];
2685 slot = path->slots[0];
2686 btrfs_item_key_to_cpu(leaf, &key, slot);
2687 if (key.objectid == subvol_info->treeid &&
2688 key.type == BTRFS_ROOT_BACKREF_KEY) {
2689 subvol_info->parent_id = key.offset;
2691 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2692 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2694 item_off = btrfs_item_ptr_offset(leaf, slot)
2695 + sizeof(struct btrfs_root_ref);
2696 item_len = btrfs_item_size_nr(leaf, slot)
2697 - sizeof(struct btrfs_root_ref);
2698 read_extent_buffer(leaf, subvol_info->name,
2699 item_off, item_len);
2700 } else {
2701 ret = -ENOENT;
2702 goto out;
2706 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2707 ret = -EFAULT;
2709 out:
2710 btrfs_free_path(path);
2711 kzfree(subvol_info);
2712 return ret;
2716 * Return ROOT_REF information of the subvolume containing this inode
2717 * except the subvolume name.
2719 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2721 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2722 struct btrfs_root_ref *rref;
2723 struct btrfs_root *root;
2724 struct btrfs_path *path;
2725 struct btrfs_key key;
2726 struct extent_buffer *leaf;
2727 struct inode *inode;
2728 u64 objectid;
2729 int slot;
2730 int ret;
2731 u8 found;
2733 path = btrfs_alloc_path();
2734 if (!path)
2735 return -ENOMEM;
2737 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2738 if (IS_ERR(rootrefs)) {
2739 btrfs_free_path(path);
2740 return PTR_ERR(rootrefs);
2743 inode = file_inode(file);
2744 root = BTRFS_I(inode)->root->fs_info->tree_root;
2745 objectid = BTRFS_I(inode)->root->root_key.objectid;
2747 key.objectid = objectid;
2748 key.type = BTRFS_ROOT_REF_KEY;
2749 key.offset = rootrefs->min_treeid;
2750 found = 0;
2752 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2753 if (ret < 0) {
2754 goto out;
2755 } else if (path->slots[0] >=
2756 btrfs_header_nritems(path->nodes[0])) {
2757 ret = btrfs_next_leaf(root, path);
2758 if (ret < 0) {
2759 goto out;
2760 } else if (ret > 0) {
2761 ret = -EUCLEAN;
2762 goto out;
2765 while (1) {
2766 leaf = path->nodes[0];
2767 slot = path->slots[0];
2769 btrfs_item_key_to_cpu(leaf, &key, slot);
2770 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2771 ret = 0;
2772 goto out;
2775 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2776 ret = -EOVERFLOW;
2777 goto out;
2780 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2781 rootrefs->rootref[found].treeid = key.offset;
2782 rootrefs->rootref[found].dirid =
2783 btrfs_root_ref_dirid(leaf, rref);
2784 found++;
2786 ret = btrfs_next_item(root, path);
2787 if (ret < 0) {
2788 goto out;
2789 } else if (ret > 0) {
2790 ret = -EUCLEAN;
2791 goto out;
2795 out:
2796 if (!ret || ret == -EOVERFLOW) {
2797 rootrefs->num_items = found;
2798 /* update min_treeid for next search */
2799 if (found)
2800 rootrefs->min_treeid =
2801 rootrefs->rootref[found - 1].treeid + 1;
2802 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2803 ret = -EFAULT;
2806 kfree(rootrefs);
2807 btrfs_free_path(path);
2809 return ret;
2812 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2813 void __user *arg)
2815 struct dentry *parent = file->f_path.dentry;
2816 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2817 struct dentry *dentry;
2818 struct inode *dir = d_inode(parent);
2819 struct inode *inode;
2820 struct btrfs_root *root = BTRFS_I(dir)->root;
2821 struct btrfs_root *dest = NULL;
2822 struct btrfs_ioctl_vol_args *vol_args;
2823 int namelen;
2824 int err = 0;
2826 if (!S_ISDIR(dir->i_mode))
2827 return -ENOTDIR;
2829 vol_args = memdup_user(arg, sizeof(*vol_args));
2830 if (IS_ERR(vol_args))
2831 return PTR_ERR(vol_args);
2833 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2834 namelen = strlen(vol_args->name);
2835 if (strchr(vol_args->name, '/') ||
2836 strncmp(vol_args->name, "..", namelen) == 0) {
2837 err = -EINVAL;
2838 goto out;
2841 err = mnt_want_write_file(file);
2842 if (err)
2843 goto out;
2846 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2847 if (err == -EINTR)
2848 goto out_drop_write;
2849 dentry = lookup_one_len(vol_args->name, parent, namelen);
2850 if (IS_ERR(dentry)) {
2851 err = PTR_ERR(dentry);
2852 goto out_unlock_dir;
2855 if (d_really_is_negative(dentry)) {
2856 err = -ENOENT;
2857 goto out_dput;
2860 inode = d_inode(dentry);
2861 dest = BTRFS_I(inode)->root;
2862 if (!capable(CAP_SYS_ADMIN)) {
2864 * Regular user. Only allow this with a special mount
2865 * option, when the user has write+exec access to the
2866 * subvol root, and when rmdir(2) would have been
2867 * allowed.
2869 * Note that this is _not_ check that the subvol is
2870 * empty or doesn't contain data that we wouldn't
2871 * otherwise be able to delete.
2873 * Users who want to delete empty subvols should try
2874 * rmdir(2).
2876 err = -EPERM;
2877 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2878 goto out_dput;
2881 * Do not allow deletion if the parent dir is the same
2882 * as the dir to be deleted. That means the ioctl
2883 * must be called on the dentry referencing the root
2884 * of the subvol, not a random directory contained
2885 * within it.
2887 err = -EINVAL;
2888 if (root == dest)
2889 goto out_dput;
2891 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2892 if (err)
2893 goto out_dput;
2896 /* check if subvolume may be deleted by a user */
2897 err = btrfs_may_delete(dir, dentry, 1);
2898 if (err)
2899 goto out_dput;
2901 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2902 err = -EINVAL;
2903 goto out_dput;
2906 inode_lock(inode);
2907 err = btrfs_delete_subvolume(dir, dentry);
2908 inode_unlock(inode);
2909 if (!err)
2910 d_delete(dentry);
2912 out_dput:
2913 dput(dentry);
2914 out_unlock_dir:
2915 inode_unlock(dir);
2916 out_drop_write:
2917 mnt_drop_write_file(file);
2918 out:
2919 kfree(vol_args);
2920 return err;
2923 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2925 struct inode *inode = file_inode(file);
2926 struct btrfs_root *root = BTRFS_I(inode)->root;
2927 struct btrfs_ioctl_defrag_range_args *range;
2928 int ret;
2930 ret = mnt_want_write_file(file);
2931 if (ret)
2932 return ret;
2934 if (btrfs_root_readonly(root)) {
2935 ret = -EROFS;
2936 goto out;
2939 switch (inode->i_mode & S_IFMT) {
2940 case S_IFDIR:
2941 if (!capable(CAP_SYS_ADMIN)) {
2942 ret = -EPERM;
2943 goto out;
2945 ret = btrfs_defrag_root(root);
2946 break;
2947 case S_IFREG:
2949 * Note that this does not check the file descriptor for write
2950 * access. This prevents defragmenting executables that are
2951 * running and allows defrag on files open in read-only mode.
2953 if (!capable(CAP_SYS_ADMIN) &&
2954 inode_permission(inode, MAY_WRITE)) {
2955 ret = -EPERM;
2956 goto out;
2959 range = kzalloc(sizeof(*range), GFP_KERNEL);
2960 if (!range) {
2961 ret = -ENOMEM;
2962 goto out;
2965 if (argp) {
2966 if (copy_from_user(range, argp,
2967 sizeof(*range))) {
2968 ret = -EFAULT;
2969 kfree(range);
2970 goto out;
2972 /* compression requires us to start the IO */
2973 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2974 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2975 range->extent_thresh = (u32)-1;
2977 } else {
2978 /* the rest are all set to zero by kzalloc */
2979 range->len = (u64)-1;
2981 ret = btrfs_defrag_file(file_inode(file), file,
2982 range, BTRFS_OLDEST_GENERATION, 0);
2983 if (ret > 0)
2984 ret = 0;
2985 kfree(range);
2986 break;
2987 default:
2988 ret = -EINVAL;
2990 out:
2991 mnt_drop_write_file(file);
2992 return ret;
2995 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2997 struct btrfs_ioctl_vol_args *vol_args;
2998 int ret;
3000 if (!capable(CAP_SYS_ADMIN))
3001 return -EPERM;
3003 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
3004 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3006 vol_args = memdup_user(arg, sizeof(*vol_args));
3007 if (IS_ERR(vol_args)) {
3008 ret = PTR_ERR(vol_args);
3009 goto out;
3012 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3013 ret = btrfs_init_new_device(fs_info, vol_args->name);
3015 if (!ret)
3016 btrfs_info(fs_info, "disk added %s", vol_args->name);
3018 kfree(vol_args);
3019 out:
3020 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3021 return ret;
3024 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3026 struct inode *inode = file_inode(file);
3027 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3028 struct btrfs_ioctl_vol_args_v2 *vol_args;
3029 int ret;
3031 if (!capable(CAP_SYS_ADMIN))
3032 return -EPERM;
3034 ret = mnt_want_write_file(file);
3035 if (ret)
3036 return ret;
3038 vol_args = memdup_user(arg, sizeof(*vol_args));
3039 if (IS_ERR(vol_args)) {
3040 ret = PTR_ERR(vol_args);
3041 goto err_drop;
3044 /* Check for compatibility reject unknown flags */
3045 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED) {
3046 ret = -EOPNOTSUPP;
3047 goto out;
3050 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3051 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3052 goto out;
3055 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3056 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3057 } else {
3058 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3059 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3061 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3063 if (!ret) {
3064 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3065 btrfs_info(fs_info, "device deleted: id %llu",
3066 vol_args->devid);
3067 else
3068 btrfs_info(fs_info, "device deleted: %s",
3069 vol_args->name);
3071 out:
3072 kfree(vol_args);
3073 err_drop:
3074 mnt_drop_write_file(file);
3075 return ret;
3078 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3080 struct inode *inode = file_inode(file);
3081 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3082 struct btrfs_ioctl_vol_args *vol_args;
3083 int ret;
3085 if (!capable(CAP_SYS_ADMIN))
3086 return -EPERM;
3088 ret = mnt_want_write_file(file);
3089 if (ret)
3090 return ret;
3092 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
3093 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3094 goto out_drop_write;
3097 vol_args = memdup_user(arg, sizeof(*vol_args));
3098 if (IS_ERR(vol_args)) {
3099 ret = PTR_ERR(vol_args);
3100 goto out;
3103 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3104 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3106 if (!ret)
3107 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3108 kfree(vol_args);
3109 out:
3110 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3111 out_drop_write:
3112 mnt_drop_write_file(file);
3114 return ret;
3117 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3118 void __user *arg)
3120 struct btrfs_ioctl_fs_info_args *fi_args;
3121 struct btrfs_device *device;
3122 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3123 int ret = 0;
3125 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
3126 if (!fi_args)
3127 return -ENOMEM;
3129 rcu_read_lock();
3130 fi_args->num_devices = fs_devices->num_devices;
3132 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3133 if (device->devid > fi_args->max_id)
3134 fi_args->max_id = device->devid;
3136 rcu_read_unlock();
3138 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
3139 fi_args->nodesize = fs_info->nodesize;
3140 fi_args->sectorsize = fs_info->sectorsize;
3141 fi_args->clone_alignment = fs_info->sectorsize;
3143 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3144 ret = -EFAULT;
3146 kfree(fi_args);
3147 return ret;
3150 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3151 void __user *arg)
3153 struct btrfs_ioctl_dev_info_args *di_args;
3154 struct btrfs_device *dev;
3155 int ret = 0;
3156 char *s_uuid = NULL;
3158 di_args = memdup_user(arg, sizeof(*di_args));
3159 if (IS_ERR(di_args))
3160 return PTR_ERR(di_args);
3162 if (!btrfs_is_empty_uuid(di_args->uuid))
3163 s_uuid = di_args->uuid;
3165 rcu_read_lock();
3166 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
3168 if (!dev) {
3169 ret = -ENODEV;
3170 goto out;
3173 di_args->devid = dev->devid;
3174 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3175 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3176 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3177 if (dev->name) {
3178 strncpy(di_args->path, rcu_str_deref(dev->name),
3179 sizeof(di_args->path) - 1);
3180 di_args->path[sizeof(di_args->path) - 1] = 0;
3181 } else {
3182 di_args->path[0] = '\0';
3185 out:
3186 rcu_read_unlock();
3187 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3188 ret = -EFAULT;
3190 kfree(di_args);
3191 return ret;
3194 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
3196 struct page *page;
3198 page = grab_cache_page(inode->i_mapping, index);
3199 if (!page)
3200 return ERR_PTR(-ENOMEM);
3202 if (!PageUptodate(page)) {
3203 int ret;
3205 ret = btrfs_readpage(NULL, page);
3206 if (ret)
3207 return ERR_PTR(ret);
3208 lock_page(page);
3209 if (!PageUptodate(page)) {
3210 unlock_page(page);
3211 put_page(page);
3212 return ERR_PTR(-EIO);
3214 if (page->mapping != inode->i_mapping) {
3215 unlock_page(page);
3216 put_page(page);
3217 return ERR_PTR(-EAGAIN);
3221 return page;
3224 static int gather_extent_pages(struct inode *inode, struct page **pages,
3225 int num_pages, u64 off)
3227 int i;
3228 pgoff_t index = off >> PAGE_SHIFT;
3230 for (i = 0; i < num_pages; i++) {
3231 again:
3232 pages[i] = extent_same_get_page(inode, index + i);
3233 if (IS_ERR(pages[i])) {
3234 int err = PTR_ERR(pages[i]);
3236 if (err == -EAGAIN)
3237 goto again;
3238 pages[i] = NULL;
3239 return err;
3242 return 0;
3245 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
3246 bool retry_range_locking)
3249 * Do any pending delalloc/csum calculations on inode, one way or
3250 * another, and lock file content.
3251 * The locking order is:
3253 * 1) pages
3254 * 2) range in the inode's io tree
3256 while (1) {
3257 struct btrfs_ordered_extent *ordered;
3258 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3259 ordered = btrfs_lookup_first_ordered_extent(inode,
3260 off + len - 1);
3261 if ((!ordered ||
3262 ordered->file_offset + ordered->len <= off ||
3263 ordered->file_offset >= off + len) &&
3264 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
3265 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
3266 if (ordered)
3267 btrfs_put_ordered_extent(ordered);
3268 break;
3270 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
3271 if (ordered)
3272 btrfs_put_ordered_extent(ordered);
3273 if (!retry_range_locking)
3274 return -EAGAIN;
3275 btrfs_wait_ordered_range(inode, off, len);
3277 return 0;
3280 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
3282 inode_unlock(inode1);
3283 inode_unlock(inode2);
3286 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
3288 if (inode1 < inode2)
3289 swap(inode1, inode2);
3291 inode_lock_nested(inode1, I_MUTEX_PARENT);
3292 inode_lock_nested(inode2, I_MUTEX_CHILD);
3295 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
3296 struct inode *inode2, u64 loff2, u64 len)
3298 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
3299 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
3302 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
3303 struct inode *inode2, u64 loff2, u64 len,
3304 bool retry_range_locking)
3306 int ret;
3308 if (inode1 < inode2) {
3309 swap(inode1, inode2);
3310 swap(loff1, loff2);
3312 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
3313 if (ret)
3314 return ret;
3315 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
3316 if (ret)
3317 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
3318 loff1 + len - 1);
3319 return ret;
3322 struct cmp_pages {
3323 int num_pages;
3324 struct page **src_pages;
3325 struct page **dst_pages;
3328 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
3330 int i;
3331 struct page *pg;
3333 for (i = 0; i < cmp->num_pages; i++) {
3334 pg = cmp->src_pages[i];
3335 if (pg) {
3336 unlock_page(pg);
3337 put_page(pg);
3338 cmp->src_pages[i] = NULL;
3340 pg = cmp->dst_pages[i];
3341 if (pg) {
3342 unlock_page(pg);
3343 put_page(pg);
3344 cmp->dst_pages[i] = NULL;
3349 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
3350 struct inode *dst, u64 dst_loff,
3351 u64 len, struct cmp_pages *cmp)
3353 int ret;
3354 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
3356 cmp->num_pages = num_pages;
3358 ret = gather_extent_pages(src, cmp->src_pages, num_pages, loff);
3359 if (ret)
3360 goto out;
3362 ret = gather_extent_pages(dst, cmp->dst_pages, num_pages, dst_loff);
3364 out:
3365 if (ret)
3366 btrfs_cmp_data_free(cmp);
3367 return ret;
3370 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3372 int ret = 0;
3373 int i;
3374 struct page *src_page, *dst_page;
3375 unsigned int cmp_len = PAGE_SIZE;
3376 void *addr, *dst_addr;
3378 i = 0;
3379 while (len) {
3380 if (len < PAGE_SIZE)
3381 cmp_len = len;
3383 BUG_ON(i >= cmp->num_pages);
3385 src_page = cmp->src_pages[i];
3386 dst_page = cmp->dst_pages[i];
3387 ASSERT(PageLocked(src_page));
3388 ASSERT(PageLocked(dst_page));
3390 addr = kmap_atomic(src_page);
3391 dst_addr = kmap_atomic(dst_page);
3393 flush_dcache_page(src_page);
3394 flush_dcache_page(dst_page);
3396 if (memcmp(addr, dst_addr, cmp_len))
3397 ret = -EBADE;
3399 kunmap_atomic(addr);
3400 kunmap_atomic(dst_addr);
3402 if (ret)
3403 break;
3405 len -= cmp_len;
3406 i++;
3409 return ret;
3412 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3413 u64 olen)
3415 u64 len = *plen;
3416 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3418 if (off + olen > inode->i_size || off + olen < off)
3419 return -EINVAL;
3421 /* if we extend to eof, continue to block boundary */
3422 if (off + len == inode->i_size)
3423 *plen = len = ALIGN(inode->i_size, bs) - off;
3425 /* Check that we are block aligned - btrfs_clone() requires this */
3426 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3427 return -EINVAL;
3429 return 0;
3432 static int btrfs_extent_same_range(struct inode *src, u64 loff, u64 olen,
3433 struct inode *dst, u64 dst_loff,
3434 struct cmp_pages *cmp)
3436 int ret;
3437 u64 len = olen;
3438 bool same_inode = (src == dst);
3439 u64 same_lock_start = 0;
3440 u64 same_lock_len = 0;
3442 ret = extent_same_check_offsets(src, loff, &len, olen);
3443 if (ret)
3444 return ret;
3446 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3447 if (ret)
3448 return ret;
3450 if (same_inode) {
3452 * Single inode case wants the same checks, except we
3453 * don't want our length pushed out past i_size as
3454 * comparing that data range makes no sense.
3456 * extent_same_check_offsets() will do this for an
3457 * unaligned length at i_size, so catch it here and
3458 * reject the request.
3460 * This effectively means we require aligned extents
3461 * for the single-inode case, whereas the other cases
3462 * allow an unaligned length so long as it ends at
3463 * i_size.
3465 if (len != olen)
3466 return -EINVAL;
3468 /* Check for overlapping ranges */
3469 if (dst_loff + len > loff && dst_loff < loff + len)
3470 return -EINVAL;
3472 same_lock_start = min_t(u64, loff, dst_loff);
3473 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3474 } else {
3476 * If the source and destination inodes are different, the
3477 * source's range end offset matches the source's i_size, that
3478 * i_size is not a multiple of the sector size, and the
3479 * destination range does not go past the destination's i_size,
3480 * we must round down the length to the nearest sector size
3481 * multiple. If we don't do this adjustment we end replacing
3482 * with zeroes the bytes in the range that starts at the
3483 * deduplication range's end offset and ends at the next sector
3484 * size multiple.
3486 if (loff + olen == i_size_read(src) &&
3487 dst_loff + len < i_size_read(dst)) {
3488 const u64 sz = BTRFS_I(src)->root->fs_info->sectorsize;
3490 len = round_down(i_size_read(src), sz) - loff;
3491 if (len == 0)
3492 return 0;
3493 olen = len;
3497 again:
3498 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, cmp);
3499 if (ret)
3500 return ret;
3502 if (same_inode)
3503 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3504 false);
3505 else
3506 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3507 false);
3509 * If one of the inodes has dirty pages in the respective range or
3510 * ordered extents, we need to flush dellaloc and wait for all ordered
3511 * extents in the range. We must unlock the pages and the ranges in the
3512 * io trees to avoid deadlocks when flushing delalloc (requires locking
3513 * pages) and when waiting for ordered extents to complete (they require
3514 * range locking).
3516 if (ret == -EAGAIN) {
3518 * Ranges in the io trees already unlocked. Now unlock all
3519 * pages before waiting for all IO to complete.
3521 btrfs_cmp_data_free(cmp);
3522 if (same_inode) {
3523 btrfs_wait_ordered_range(src, same_lock_start,
3524 same_lock_len);
3525 } else {
3526 btrfs_wait_ordered_range(src, loff, len);
3527 btrfs_wait_ordered_range(dst, dst_loff, len);
3529 goto again;
3531 ASSERT(ret == 0);
3532 if (WARN_ON(ret)) {
3533 /* ranges in the io trees already unlocked */
3534 btrfs_cmp_data_free(cmp);
3535 return ret;
3538 /* pass original length for comparison so we stay within i_size */
3539 ret = btrfs_cmp_data(olen, cmp);
3540 if (ret == 0)
3541 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3543 if (same_inode)
3544 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3545 same_lock_start + same_lock_len - 1);
3546 else
3547 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3549 btrfs_cmp_data_free(cmp);
3551 return ret;
3554 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3556 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3557 struct inode *dst, u64 dst_loff)
3559 int ret;
3560 struct cmp_pages cmp;
3561 int num_pages = PAGE_ALIGN(BTRFS_MAX_DEDUPE_LEN) >> PAGE_SHIFT;
3562 bool same_inode = (src == dst);
3563 u64 i, tail_len, chunk_count;
3565 if (olen == 0)
3566 return 0;
3568 if (same_inode)
3569 inode_lock(src);
3570 else
3571 btrfs_double_inode_lock(src, dst);
3573 /* don't make the dst file partly checksummed */
3574 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3575 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3576 ret = -EINVAL;
3577 goto out_unlock;
3580 tail_len = olen % BTRFS_MAX_DEDUPE_LEN;
3581 chunk_count = div_u64(olen, BTRFS_MAX_DEDUPE_LEN);
3582 if (chunk_count == 0)
3583 num_pages = PAGE_ALIGN(tail_len) >> PAGE_SHIFT;
3586 * If deduping ranges in the same inode, locking rules make it
3587 * mandatory to always lock pages in ascending order to avoid deadlocks
3588 * with concurrent tasks (such as starting writeback/delalloc).
3590 if (same_inode && dst_loff < loff)
3591 swap(loff, dst_loff);
3594 * We must gather up all the pages before we initiate our extent
3595 * locking. We use an array for the page pointers. Size of the array is
3596 * bounded by len, which is in turn bounded by BTRFS_MAX_DEDUPE_LEN.
3598 cmp.src_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3599 GFP_KERNEL | __GFP_ZERO);
3600 cmp.dst_pages = kvmalloc_array(num_pages, sizeof(struct page *),
3601 GFP_KERNEL | __GFP_ZERO);
3602 if (!cmp.src_pages || !cmp.dst_pages) {
3603 ret = -ENOMEM;
3604 goto out_free;
3607 for (i = 0; i < chunk_count; i++) {
3608 ret = btrfs_extent_same_range(src, loff, BTRFS_MAX_DEDUPE_LEN,
3609 dst, dst_loff, &cmp);
3610 if (ret)
3611 goto out_free;
3613 loff += BTRFS_MAX_DEDUPE_LEN;
3614 dst_loff += BTRFS_MAX_DEDUPE_LEN;
3617 if (tail_len > 0)
3618 ret = btrfs_extent_same_range(src, loff, tail_len, dst,
3619 dst_loff, &cmp);
3621 out_free:
3622 kvfree(cmp.src_pages);
3623 kvfree(cmp.dst_pages);
3625 out_unlock:
3626 if (same_inode)
3627 inode_unlock(src);
3628 else
3629 btrfs_double_inode_unlock(src, dst);
3631 return ret;
3634 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3635 struct inode *inode,
3636 u64 endoff,
3637 const u64 destoff,
3638 const u64 olen,
3639 int no_time_update)
3641 struct btrfs_root *root = BTRFS_I(inode)->root;
3642 int ret;
3644 inode_inc_iversion(inode);
3645 if (!no_time_update)
3646 inode->i_mtime = inode->i_ctime = current_time(inode);
3648 * We round up to the block size at eof when determining which
3649 * extents to clone above, but shouldn't round up the file size.
3651 if (endoff > destoff + olen)
3652 endoff = destoff + olen;
3653 if (endoff > inode->i_size)
3654 btrfs_i_size_write(BTRFS_I(inode), endoff);
3656 ret = btrfs_update_inode(trans, root, inode);
3657 if (ret) {
3658 btrfs_abort_transaction(trans, ret);
3659 btrfs_end_transaction(trans);
3660 goto out;
3662 ret = btrfs_end_transaction(trans);
3663 out:
3664 return ret;
3667 static void clone_update_extent_map(struct btrfs_inode *inode,
3668 const struct btrfs_trans_handle *trans,
3669 const struct btrfs_path *path,
3670 const u64 hole_offset,
3671 const u64 hole_len)
3673 struct extent_map_tree *em_tree = &inode->extent_tree;
3674 struct extent_map *em;
3675 int ret;
3677 em = alloc_extent_map();
3678 if (!em) {
3679 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3680 return;
3683 if (path) {
3684 struct btrfs_file_extent_item *fi;
3686 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3687 struct btrfs_file_extent_item);
3688 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3689 em->generation = -1;
3690 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3691 BTRFS_FILE_EXTENT_INLINE)
3692 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3693 &inode->runtime_flags);
3694 } else {
3695 em->start = hole_offset;
3696 em->len = hole_len;
3697 em->ram_bytes = em->len;
3698 em->orig_start = hole_offset;
3699 em->block_start = EXTENT_MAP_HOLE;
3700 em->block_len = 0;
3701 em->orig_block_len = 0;
3702 em->compress_type = BTRFS_COMPRESS_NONE;
3703 em->generation = trans->transid;
3706 while (1) {
3707 write_lock(&em_tree->lock);
3708 ret = add_extent_mapping(em_tree, em, 1);
3709 write_unlock(&em_tree->lock);
3710 if (ret != -EEXIST) {
3711 free_extent_map(em);
3712 break;
3714 btrfs_drop_extent_cache(inode, em->start,
3715 em->start + em->len - 1, 0);
3718 if (ret)
3719 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3723 * Make sure we do not end up inserting an inline extent into a file that has
3724 * already other (non-inline) extents. If a file has an inline extent it can
3725 * not have any other extents and the (single) inline extent must start at the
3726 * file offset 0. Failing to respect these rules will lead to file corruption,
3727 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3729 * We can have extents that have been already written to disk or we can have
3730 * dirty ranges still in delalloc, in which case the extent maps and items are
3731 * created only when we run delalloc, and the delalloc ranges might fall outside
3732 * the range we are currently locking in the inode's io tree. So we check the
3733 * inode's i_size because of that (i_size updates are done while holding the
3734 * i_mutex, which we are holding here).
3735 * We also check to see if the inode has a size not greater than "datal" but has
3736 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3737 * protected against such concurrent fallocate calls by the i_mutex).
3739 * If the file has no extents but a size greater than datal, do not allow the
3740 * copy because we would need turn the inline extent into a non-inline one (even
3741 * with NO_HOLES enabled). If we find our destination inode only has one inline
3742 * extent, just overwrite it with the source inline extent if its size is less
3743 * than the source extent's size, or we could copy the source inline extent's
3744 * data into the destination inode's inline extent if the later is greater then
3745 * the former.
3747 static int clone_copy_inline_extent(struct inode *dst,
3748 struct btrfs_trans_handle *trans,
3749 struct btrfs_path *path,
3750 struct btrfs_key *new_key,
3751 const u64 drop_start,
3752 const u64 datal,
3753 const u64 skip,
3754 const u64 size,
3755 char *inline_data)
3757 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3758 struct btrfs_root *root = BTRFS_I(dst)->root;
3759 const u64 aligned_end = ALIGN(new_key->offset + datal,
3760 fs_info->sectorsize);
3761 int ret;
3762 struct btrfs_key key;
3764 if (new_key->offset > 0)
3765 return -EOPNOTSUPP;
3767 key.objectid = btrfs_ino(BTRFS_I(dst));
3768 key.type = BTRFS_EXTENT_DATA_KEY;
3769 key.offset = 0;
3770 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3771 if (ret < 0) {
3772 return ret;
3773 } else if (ret > 0) {
3774 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3775 ret = btrfs_next_leaf(root, path);
3776 if (ret < 0)
3777 return ret;
3778 else if (ret > 0)
3779 goto copy_inline_extent;
3781 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3782 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3783 key.type == BTRFS_EXTENT_DATA_KEY) {
3784 ASSERT(key.offset > 0);
3785 return -EOPNOTSUPP;
3787 } else if (i_size_read(dst) <= datal) {
3788 struct btrfs_file_extent_item *ei;
3789 u64 ext_len;
3792 * If the file size is <= datal, make sure there are no other
3793 * extents following (can happen do to an fallocate call with
3794 * the flag FALLOC_FL_KEEP_SIZE).
3796 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3797 struct btrfs_file_extent_item);
3799 * If it's an inline extent, it can not have other extents
3800 * following it.
3802 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3803 BTRFS_FILE_EXTENT_INLINE)
3804 goto copy_inline_extent;
3806 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3807 if (ext_len > aligned_end)
3808 return -EOPNOTSUPP;
3810 ret = btrfs_next_item(root, path);
3811 if (ret < 0) {
3812 return ret;
3813 } else if (ret == 0) {
3814 btrfs_item_key_to_cpu(path->nodes[0], &key,
3815 path->slots[0]);
3816 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3817 key.type == BTRFS_EXTENT_DATA_KEY)
3818 return -EOPNOTSUPP;
3822 copy_inline_extent:
3824 * We have no extent items, or we have an extent at offset 0 which may
3825 * or may not be inlined. All these cases are dealt the same way.
3827 if (i_size_read(dst) > datal) {
3829 * If the destination inode has an inline extent...
3830 * This would require copying the data from the source inline
3831 * extent into the beginning of the destination's inline extent.
3832 * But this is really complex, both extents can be compressed
3833 * or just one of them, which would require decompressing and
3834 * re-compressing data (which could increase the new compressed
3835 * size, not allowing the compressed data to fit anymore in an
3836 * inline extent).
3837 * So just don't support this case for now (it should be rare,
3838 * we are not really saving space when cloning inline extents).
3840 return -EOPNOTSUPP;
3843 btrfs_release_path(path);
3844 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3845 if (ret)
3846 return ret;
3847 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3848 if (ret)
3849 return ret;
3851 if (skip) {
3852 const u32 start = btrfs_file_extent_calc_inline_size(0);
3854 memmove(inline_data + start, inline_data + start + skip, datal);
3857 write_extent_buffer(path->nodes[0], inline_data,
3858 btrfs_item_ptr_offset(path->nodes[0],
3859 path->slots[0]),
3860 size);
3861 inode_add_bytes(dst, datal);
3863 return 0;
3867 * btrfs_clone() - clone a range from inode file to another
3869 * @src: Inode to clone from
3870 * @inode: Inode to clone to
3871 * @off: Offset within source to start clone from
3872 * @olen: Original length, passed by user, of range to clone
3873 * @olen_aligned: Block-aligned value of olen
3874 * @destoff: Offset within @inode to start clone
3875 * @no_time_update: Whether to update mtime/ctime on the target inode
3877 static int btrfs_clone(struct inode *src, struct inode *inode,
3878 const u64 off, const u64 olen, const u64 olen_aligned,
3879 const u64 destoff, int no_time_update)
3881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3882 struct btrfs_root *root = BTRFS_I(inode)->root;
3883 struct btrfs_path *path = NULL;
3884 struct extent_buffer *leaf;
3885 struct btrfs_trans_handle *trans;
3886 char *buf = NULL;
3887 struct btrfs_key key;
3888 u32 nritems;
3889 int slot;
3890 int ret;
3891 const u64 len = olen_aligned;
3892 u64 last_dest_end = destoff;
3894 ret = -ENOMEM;
3895 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3896 if (!buf)
3897 return ret;
3899 path = btrfs_alloc_path();
3900 if (!path) {
3901 kvfree(buf);
3902 return ret;
3905 path->reada = READA_FORWARD;
3906 /* clone data */
3907 key.objectid = btrfs_ino(BTRFS_I(src));
3908 key.type = BTRFS_EXTENT_DATA_KEY;
3909 key.offset = off;
3911 while (1) {
3912 u64 next_key_min_offset = key.offset + 1;
3915 * note the key will change type as we walk through the
3916 * tree.
3918 path->leave_spinning = 1;
3919 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3920 0, 0);
3921 if (ret < 0)
3922 goto out;
3924 * First search, if no extent item that starts at offset off was
3925 * found but the previous item is an extent item, it's possible
3926 * it might overlap our target range, therefore process it.
3928 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3929 btrfs_item_key_to_cpu(path->nodes[0], &key,
3930 path->slots[0] - 1);
3931 if (key.type == BTRFS_EXTENT_DATA_KEY)
3932 path->slots[0]--;
3935 nritems = btrfs_header_nritems(path->nodes[0]);
3936 process_slot:
3937 if (path->slots[0] >= nritems) {
3938 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3939 if (ret < 0)
3940 goto out;
3941 if (ret > 0)
3942 break;
3943 nritems = btrfs_header_nritems(path->nodes[0]);
3945 leaf = path->nodes[0];
3946 slot = path->slots[0];
3948 btrfs_item_key_to_cpu(leaf, &key, slot);
3949 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3950 key.objectid != btrfs_ino(BTRFS_I(src)))
3951 break;
3953 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3954 struct btrfs_file_extent_item *extent;
3955 int type;
3956 u32 size;
3957 struct btrfs_key new_key;
3958 u64 disko = 0, diskl = 0;
3959 u64 datao = 0, datal = 0;
3960 u8 comp;
3961 u64 drop_start;
3963 extent = btrfs_item_ptr(leaf, slot,
3964 struct btrfs_file_extent_item);
3965 comp = btrfs_file_extent_compression(leaf, extent);
3966 type = btrfs_file_extent_type(leaf, extent);
3967 if (type == BTRFS_FILE_EXTENT_REG ||
3968 type == BTRFS_FILE_EXTENT_PREALLOC) {
3969 disko = btrfs_file_extent_disk_bytenr(leaf,
3970 extent);
3971 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3972 extent);
3973 datao = btrfs_file_extent_offset(leaf, extent);
3974 datal = btrfs_file_extent_num_bytes(leaf,
3975 extent);
3976 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3977 /* take upper bound, may be compressed */
3978 datal = btrfs_file_extent_ram_bytes(leaf,
3979 extent);
3983 * The first search might have left us at an extent
3984 * item that ends before our target range's start, can
3985 * happen if we have holes and NO_HOLES feature enabled.
3987 if (key.offset + datal <= off) {
3988 path->slots[0]++;
3989 goto process_slot;
3990 } else if (key.offset >= off + len) {
3991 break;
3993 next_key_min_offset = key.offset + datal;
3994 size = btrfs_item_size_nr(leaf, slot);
3995 read_extent_buffer(leaf, buf,
3996 btrfs_item_ptr_offset(leaf, slot),
3997 size);
3999 btrfs_release_path(path);
4000 path->leave_spinning = 0;
4002 memcpy(&new_key, &key, sizeof(new_key));
4003 new_key.objectid = btrfs_ino(BTRFS_I(inode));
4004 if (off <= key.offset)
4005 new_key.offset = key.offset + destoff - off;
4006 else
4007 new_key.offset = destoff;
4010 * Deal with a hole that doesn't have an extent item
4011 * that represents it (NO_HOLES feature enabled).
4012 * This hole is either in the middle of the cloning
4013 * range or at the beginning (fully overlaps it or
4014 * partially overlaps it).
4016 if (new_key.offset != last_dest_end)
4017 drop_start = last_dest_end;
4018 else
4019 drop_start = new_key.offset;
4022 * 1 - adjusting old extent (we may have to split it)
4023 * 1 - add new extent
4024 * 1 - inode update
4026 trans = btrfs_start_transaction(root, 3);
4027 if (IS_ERR(trans)) {
4028 ret = PTR_ERR(trans);
4029 goto out;
4032 if (type == BTRFS_FILE_EXTENT_REG ||
4033 type == BTRFS_FILE_EXTENT_PREALLOC) {
4035 * a | --- range to clone ---| b
4036 * | ------------- extent ------------- |
4039 /* subtract range b */
4040 if (key.offset + datal > off + len)
4041 datal = off + len - key.offset;
4043 /* subtract range a */
4044 if (off > key.offset) {
4045 datao += off - key.offset;
4046 datal -= off - key.offset;
4049 ret = btrfs_drop_extents(trans, root, inode,
4050 drop_start,
4051 new_key.offset + datal,
4053 if (ret) {
4054 if (ret != -EOPNOTSUPP)
4055 btrfs_abort_transaction(trans,
4056 ret);
4057 btrfs_end_transaction(trans);
4058 goto out;
4061 ret = btrfs_insert_empty_item(trans, root, path,
4062 &new_key, size);
4063 if (ret) {
4064 btrfs_abort_transaction(trans, ret);
4065 btrfs_end_transaction(trans);
4066 goto out;
4069 leaf = path->nodes[0];
4070 slot = path->slots[0];
4071 write_extent_buffer(leaf, buf,
4072 btrfs_item_ptr_offset(leaf, slot),
4073 size);
4075 extent = btrfs_item_ptr(leaf, slot,
4076 struct btrfs_file_extent_item);
4078 /* disko == 0 means it's a hole */
4079 if (!disko)
4080 datao = 0;
4082 btrfs_set_file_extent_offset(leaf, extent,
4083 datao);
4084 btrfs_set_file_extent_num_bytes(leaf, extent,
4085 datal);
4087 if (disko) {
4088 inode_add_bytes(inode, datal);
4089 ret = btrfs_inc_extent_ref(trans,
4090 root,
4091 disko, diskl, 0,
4092 root->root_key.objectid,
4093 btrfs_ino(BTRFS_I(inode)),
4094 new_key.offset - datao);
4095 if (ret) {
4096 btrfs_abort_transaction(trans,
4097 ret);
4098 btrfs_end_transaction(trans);
4099 goto out;
4103 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
4104 u64 skip = 0;
4105 u64 trim = 0;
4107 if (off > key.offset) {
4108 skip = off - key.offset;
4109 new_key.offset += skip;
4112 if (key.offset + datal > off + len)
4113 trim = key.offset + datal - (off + len);
4115 if (comp && (skip || trim)) {
4116 ret = -EINVAL;
4117 btrfs_end_transaction(trans);
4118 goto out;
4120 size -= skip + trim;
4121 datal -= skip + trim;
4123 ret = clone_copy_inline_extent(inode,
4124 trans, path,
4125 &new_key,
4126 drop_start,
4127 datal,
4128 skip, size, buf);
4129 if (ret) {
4130 if (ret != -EOPNOTSUPP)
4131 btrfs_abort_transaction(trans,
4132 ret);
4133 btrfs_end_transaction(trans);
4134 goto out;
4136 leaf = path->nodes[0];
4137 slot = path->slots[0];
4140 /* If we have an implicit hole (NO_HOLES feature). */
4141 if (drop_start < new_key.offset)
4142 clone_update_extent_map(BTRFS_I(inode), trans,
4143 NULL, drop_start,
4144 new_key.offset - drop_start);
4146 clone_update_extent_map(BTRFS_I(inode), trans,
4147 path, 0, 0);
4149 btrfs_mark_buffer_dirty(leaf);
4150 btrfs_release_path(path);
4152 last_dest_end = ALIGN(new_key.offset + datal,
4153 fs_info->sectorsize);
4154 ret = clone_finish_inode_update(trans, inode,
4155 last_dest_end,
4156 destoff, olen,
4157 no_time_update);
4158 if (ret)
4159 goto out;
4160 if (new_key.offset + datal >= destoff + len)
4161 break;
4163 btrfs_release_path(path);
4164 key.offset = next_key_min_offset;
4166 if (fatal_signal_pending(current)) {
4167 ret = -EINTR;
4168 goto out;
4171 ret = 0;
4173 if (last_dest_end < destoff + len) {
4175 * We have an implicit hole (NO_HOLES feature is enabled) that
4176 * fully or partially overlaps our cloning range at its end.
4178 btrfs_release_path(path);
4181 * 1 - remove extent(s)
4182 * 1 - inode update
4184 trans = btrfs_start_transaction(root, 2);
4185 if (IS_ERR(trans)) {
4186 ret = PTR_ERR(trans);
4187 goto out;
4189 ret = btrfs_drop_extents(trans, root, inode,
4190 last_dest_end, destoff + len, 1);
4191 if (ret) {
4192 if (ret != -EOPNOTSUPP)
4193 btrfs_abort_transaction(trans, ret);
4194 btrfs_end_transaction(trans);
4195 goto out;
4197 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
4198 last_dest_end,
4199 destoff + len - last_dest_end);
4200 ret = clone_finish_inode_update(trans, inode, destoff + len,
4201 destoff, olen, no_time_update);
4204 out:
4205 btrfs_free_path(path);
4206 kvfree(buf);
4207 return ret;
4210 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
4211 u64 off, u64 olen, u64 destoff)
4213 struct inode *inode = file_inode(file);
4214 struct inode *src = file_inode(file_src);
4215 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4216 struct btrfs_root *root = BTRFS_I(inode)->root;
4217 int ret;
4218 u64 len = olen;
4219 u64 bs = fs_info->sb->s_blocksize;
4220 int same_inode = src == inode;
4223 * TODO:
4224 * - split compressed inline extents. annoying: we need to
4225 * decompress into destination's address_space (the file offset
4226 * may change, so source mapping won't do), then recompress (or
4227 * otherwise reinsert) a subrange.
4229 * - split destination inode's inline extents. The inline extents can
4230 * be either compressed or non-compressed.
4233 if (btrfs_root_readonly(root))
4234 return -EROFS;
4236 if (file_src->f_path.mnt != file->f_path.mnt ||
4237 src->i_sb != inode->i_sb)
4238 return -EXDEV;
4240 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
4241 return -EISDIR;
4243 if (!same_inode) {
4244 btrfs_double_inode_lock(src, inode);
4245 } else {
4246 inode_lock(src);
4249 /* don't make the dst file partly checksummed */
4250 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
4251 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
4252 ret = -EINVAL;
4253 goto out_unlock;
4256 /* determine range to clone */
4257 ret = -EINVAL;
4258 if (off + len > src->i_size || off + len < off)
4259 goto out_unlock;
4260 if (len == 0)
4261 olen = len = src->i_size - off;
4263 * If we extend to eof, continue to block boundary if and only if the
4264 * destination end offset matches the destination file's size, otherwise
4265 * we would be corrupting data by placing the eof block into the middle
4266 * of a file.
4268 if (off + len == src->i_size) {
4269 if (!IS_ALIGNED(len, bs) && destoff + len < inode->i_size)
4270 goto out_unlock;
4271 len = ALIGN(src->i_size, bs) - off;
4274 if (len == 0) {
4275 ret = 0;
4276 goto out_unlock;
4279 /* verify the end result is block aligned */
4280 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
4281 !IS_ALIGNED(destoff, bs))
4282 goto out_unlock;
4284 /* verify if ranges are overlapped within the same file */
4285 if (same_inode) {
4286 if (destoff + len > off && destoff < off + len)
4287 goto out_unlock;
4290 if (destoff > inode->i_size) {
4291 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
4292 if (ret)
4293 goto out_unlock;
4297 * Lock the target range too. Right after we replace the file extent
4298 * items in the fs tree (which now point to the cloned data), we might
4299 * have a worker replace them with extent items relative to a write
4300 * operation that was issued before this clone operation (i.e. confront
4301 * with inode.c:btrfs_finish_ordered_io).
4303 if (same_inode) {
4304 u64 lock_start = min_t(u64, off, destoff);
4305 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
4307 ret = lock_extent_range(src, lock_start, lock_len, true);
4308 } else {
4309 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
4310 true);
4312 ASSERT(ret == 0);
4313 if (WARN_ON(ret)) {
4314 /* ranges in the io trees already unlocked */
4315 goto out_unlock;
4318 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
4320 if (same_inode) {
4321 u64 lock_start = min_t(u64, off, destoff);
4322 u64 lock_end = max_t(u64, off, destoff) + len - 1;
4324 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
4325 } else {
4326 btrfs_double_extent_unlock(src, off, inode, destoff, len);
4329 * Truncate page cache pages so that future reads will see the cloned
4330 * data immediately and not the previous data.
4332 truncate_inode_pages_range(&inode->i_data,
4333 round_down(destoff, PAGE_SIZE),
4334 round_up(destoff + len, PAGE_SIZE) - 1);
4335 out_unlock:
4336 if (!same_inode)
4337 btrfs_double_inode_unlock(src, inode);
4338 else
4339 inode_unlock(src);
4340 return ret;
4343 loff_t btrfs_remap_file_range(struct file *src_file, loff_t off,
4344 struct file *dst_file, loff_t destoff, loff_t len,
4345 unsigned int remap_flags)
4347 int ret;
4349 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
4350 return -EINVAL;
4352 if (remap_flags & REMAP_FILE_DEDUP) {
4353 struct inode *src = file_inode(src_file);
4354 struct inode *dst = file_inode(dst_file);
4355 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
4357 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
4359 * Btrfs does not support blocksize < page_size. As a
4360 * result, btrfs_cmp_data() won't correctly handle
4361 * this situation without an update.
4363 return -EINVAL;
4366 ret = btrfs_extent_same(src, off, len, dst, destoff);
4367 } else {
4368 ret = btrfs_clone_files(dst_file, src_file, off, len, destoff);
4370 return ret < 0 ? ret : len;
4373 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4375 struct inode *inode = file_inode(file);
4376 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4377 struct btrfs_root *root = BTRFS_I(inode)->root;
4378 struct btrfs_root *new_root;
4379 struct btrfs_dir_item *di;
4380 struct btrfs_trans_handle *trans;
4381 struct btrfs_path *path;
4382 struct btrfs_key location;
4383 struct btrfs_disk_key disk_key;
4384 u64 objectid = 0;
4385 u64 dir_id;
4386 int ret;
4388 if (!capable(CAP_SYS_ADMIN))
4389 return -EPERM;
4391 ret = mnt_want_write_file(file);
4392 if (ret)
4393 return ret;
4395 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4396 ret = -EFAULT;
4397 goto out;
4400 if (!objectid)
4401 objectid = BTRFS_FS_TREE_OBJECTID;
4403 location.objectid = objectid;
4404 location.type = BTRFS_ROOT_ITEM_KEY;
4405 location.offset = (u64)-1;
4407 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4408 if (IS_ERR(new_root)) {
4409 ret = PTR_ERR(new_root);
4410 goto out;
4412 if (!is_fstree(new_root->root_key.objectid)) {
4413 ret = -ENOENT;
4414 goto out;
4417 path = btrfs_alloc_path();
4418 if (!path) {
4419 ret = -ENOMEM;
4420 goto out;
4422 path->leave_spinning = 1;
4424 trans = btrfs_start_transaction(root, 1);
4425 if (IS_ERR(trans)) {
4426 btrfs_free_path(path);
4427 ret = PTR_ERR(trans);
4428 goto out;
4431 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4432 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4433 dir_id, "default", 7, 1);
4434 if (IS_ERR_OR_NULL(di)) {
4435 btrfs_free_path(path);
4436 btrfs_end_transaction(trans);
4437 btrfs_err(fs_info,
4438 "Umm, you don't have the default diritem, this isn't going to work");
4439 ret = -ENOENT;
4440 goto out;
4443 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4444 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4445 btrfs_mark_buffer_dirty(path->nodes[0]);
4446 btrfs_free_path(path);
4448 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4449 btrfs_end_transaction(trans);
4450 out:
4451 mnt_drop_write_file(file);
4452 return ret;
4455 static void get_block_group_info(struct list_head *groups_list,
4456 struct btrfs_ioctl_space_info *space)
4458 struct btrfs_block_group_cache *block_group;
4460 space->total_bytes = 0;
4461 space->used_bytes = 0;
4462 space->flags = 0;
4463 list_for_each_entry(block_group, groups_list, list) {
4464 space->flags = block_group->flags;
4465 space->total_bytes += block_group->key.offset;
4466 space->used_bytes +=
4467 btrfs_block_group_used(&block_group->item);
4471 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4472 void __user *arg)
4474 struct btrfs_ioctl_space_args space_args;
4475 struct btrfs_ioctl_space_info space;
4476 struct btrfs_ioctl_space_info *dest;
4477 struct btrfs_ioctl_space_info *dest_orig;
4478 struct btrfs_ioctl_space_info __user *user_dest;
4479 struct btrfs_space_info *info;
4480 static const u64 types[] = {
4481 BTRFS_BLOCK_GROUP_DATA,
4482 BTRFS_BLOCK_GROUP_SYSTEM,
4483 BTRFS_BLOCK_GROUP_METADATA,
4484 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4486 int num_types = 4;
4487 int alloc_size;
4488 int ret = 0;
4489 u64 slot_count = 0;
4490 int i, c;
4492 if (copy_from_user(&space_args,
4493 (struct btrfs_ioctl_space_args __user *)arg,
4494 sizeof(space_args)))
4495 return -EFAULT;
4497 for (i = 0; i < num_types; i++) {
4498 struct btrfs_space_info *tmp;
4500 info = NULL;
4501 rcu_read_lock();
4502 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4503 list) {
4504 if (tmp->flags == types[i]) {
4505 info = tmp;
4506 break;
4509 rcu_read_unlock();
4511 if (!info)
4512 continue;
4514 down_read(&info->groups_sem);
4515 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4516 if (!list_empty(&info->block_groups[c]))
4517 slot_count++;
4519 up_read(&info->groups_sem);
4523 * Global block reserve, exported as a space_info
4525 slot_count++;
4527 /* space_slots == 0 means they are asking for a count */
4528 if (space_args.space_slots == 0) {
4529 space_args.total_spaces = slot_count;
4530 goto out;
4533 slot_count = min_t(u64, space_args.space_slots, slot_count);
4535 alloc_size = sizeof(*dest) * slot_count;
4537 /* we generally have at most 6 or so space infos, one for each raid
4538 * level. So, a whole page should be more than enough for everyone
4540 if (alloc_size > PAGE_SIZE)
4541 return -ENOMEM;
4543 space_args.total_spaces = 0;
4544 dest = kmalloc(alloc_size, GFP_KERNEL);
4545 if (!dest)
4546 return -ENOMEM;
4547 dest_orig = dest;
4549 /* now we have a buffer to copy into */
4550 for (i = 0; i < num_types; i++) {
4551 struct btrfs_space_info *tmp;
4553 if (!slot_count)
4554 break;
4556 info = NULL;
4557 rcu_read_lock();
4558 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4559 list) {
4560 if (tmp->flags == types[i]) {
4561 info = tmp;
4562 break;
4565 rcu_read_unlock();
4567 if (!info)
4568 continue;
4569 down_read(&info->groups_sem);
4570 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4571 if (!list_empty(&info->block_groups[c])) {
4572 get_block_group_info(&info->block_groups[c],
4573 &space);
4574 memcpy(dest, &space, sizeof(space));
4575 dest++;
4576 space_args.total_spaces++;
4577 slot_count--;
4579 if (!slot_count)
4580 break;
4582 up_read(&info->groups_sem);
4586 * Add global block reserve
4588 if (slot_count) {
4589 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4591 spin_lock(&block_rsv->lock);
4592 space.total_bytes = block_rsv->size;
4593 space.used_bytes = block_rsv->size - block_rsv->reserved;
4594 spin_unlock(&block_rsv->lock);
4595 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4596 memcpy(dest, &space, sizeof(space));
4597 space_args.total_spaces++;
4600 user_dest = (struct btrfs_ioctl_space_info __user *)
4601 (arg + sizeof(struct btrfs_ioctl_space_args));
4603 if (copy_to_user(user_dest, dest_orig, alloc_size))
4604 ret = -EFAULT;
4606 kfree(dest_orig);
4607 out:
4608 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4609 ret = -EFAULT;
4611 return ret;
4614 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4615 void __user *argp)
4617 struct btrfs_trans_handle *trans;
4618 u64 transid;
4619 int ret;
4621 trans = btrfs_attach_transaction_barrier(root);
4622 if (IS_ERR(trans)) {
4623 if (PTR_ERR(trans) != -ENOENT)
4624 return PTR_ERR(trans);
4626 /* No running transaction, don't bother */
4627 transid = root->fs_info->last_trans_committed;
4628 goto out;
4630 transid = trans->transid;
4631 ret = btrfs_commit_transaction_async(trans, 0);
4632 if (ret) {
4633 btrfs_end_transaction(trans);
4634 return ret;
4636 out:
4637 if (argp)
4638 if (copy_to_user(argp, &transid, sizeof(transid)))
4639 return -EFAULT;
4640 return 0;
4643 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4644 void __user *argp)
4646 u64 transid;
4648 if (argp) {
4649 if (copy_from_user(&transid, argp, sizeof(transid)))
4650 return -EFAULT;
4651 } else {
4652 transid = 0; /* current trans */
4654 return btrfs_wait_for_commit(fs_info, transid);
4657 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4659 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4660 struct btrfs_ioctl_scrub_args *sa;
4661 int ret;
4663 if (!capable(CAP_SYS_ADMIN))
4664 return -EPERM;
4666 sa = memdup_user(arg, sizeof(*sa));
4667 if (IS_ERR(sa))
4668 return PTR_ERR(sa);
4670 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4671 ret = mnt_want_write_file(file);
4672 if (ret)
4673 goto out;
4676 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4677 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4680 if (copy_to_user(arg, sa, sizeof(*sa)))
4681 ret = -EFAULT;
4683 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4684 mnt_drop_write_file(file);
4685 out:
4686 kfree(sa);
4687 return ret;
4690 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4692 if (!capable(CAP_SYS_ADMIN))
4693 return -EPERM;
4695 return btrfs_scrub_cancel(fs_info);
4698 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4699 void __user *arg)
4701 struct btrfs_ioctl_scrub_args *sa;
4702 int ret;
4704 if (!capable(CAP_SYS_ADMIN))
4705 return -EPERM;
4707 sa = memdup_user(arg, sizeof(*sa));
4708 if (IS_ERR(sa))
4709 return PTR_ERR(sa);
4711 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4713 if (copy_to_user(arg, sa, sizeof(*sa)))
4714 ret = -EFAULT;
4716 kfree(sa);
4717 return ret;
4720 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4721 void __user *arg)
4723 struct btrfs_ioctl_get_dev_stats *sa;
4724 int ret;
4726 sa = memdup_user(arg, sizeof(*sa));
4727 if (IS_ERR(sa))
4728 return PTR_ERR(sa);
4730 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4731 kfree(sa);
4732 return -EPERM;
4735 ret = btrfs_get_dev_stats(fs_info, sa);
4737 if (copy_to_user(arg, sa, sizeof(*sa)))
4738 ret = -EFAULT;
4740 kfree(sa);
4741 return ret;
4744 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4745 void __user *arg)
4747 struct btrfs_ioctl_dev_replace_args *p;
4748 int ret;
4750 if (!capable(CAP_SYS_ADMIN))
4751 return -EPERM;
4753 p = memdup_user(arg, sizeof(*p));
4754 if (IS_ERR(p))
4755 return PTR_ERR(p);
4757 switch (p->cmd) {
4758 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4759 if (sb_rdonly(fs_info->sb)) {
4760 ret = -EROFS;
4761 goto out;
4763 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4764 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4765 } else {
4766 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4767 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4769 break;
4770 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4771 btrfs_dev_replace_status(fs_info, p);
4772 ret = 0;
4773 break;
4774 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4775 p->result = btrfs_dev_replace_cancel(fs_info);
4776 ret = 0;
4777 break;
4778 default:
4779 ret = -EINVAL;
4780 break;
4783 if (copy_to_user(arg, p, sizeof(*p)))
4784 ret = -EFAULT;
4785 out:
4786 kfree(p);
4787 return ret;
4790 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4792 int ret = 0;
4793 int i;
4794 u64 rel_ptr;
4795 int size;
4796 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4797 struct inode_fs_paths *ipath = NULL;
4798 struct btrfs_path *path;
4800 if (!capable(CAP_DAC_READ_SEARCH))
4801 return -EPERM;
4803 path = btrfs_alloc_path();
4804 if (!path) {
4805 ret = -ENOMEM;
4806 goto out;
4809 ipa = memdup_user(arg, sizeof(*ipa));
4810 if (IS_ERR(ipa)) {
4811 ret = PTR_ERR(ipa);
4812 ipa = NULL;
4813 goto out;
4816 size = min_t(u32, ipa->size, 4096);
4817 ipath = init_ipath(size, root, path);
4818 if (IS_ERR(ipath)) {
4819 ret = PTR_ERR(ipath);
4820 ipath = NULL;
4821 goto out;
4824 ret = paths_from_inode(ipa->inum, ipath);
4825 if (ret < 0)
4826 goto out;
4828 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4829 rel_ptr = ipath->fspath->val[i] -
4830 (u64)(unsigned long)ipath->fspath->val;
4831 ipath->fspath->val[i] = rel_ptr;
4834 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4835 ipath->fspath, size);
4836 if (ret) {
4837 ret = -EFAULT;
4838 goto out;
4841 out:
4842 btrfs_free_path(path);
4843 free_ipath(ipath);
4844 kfree(ipa);
4846 return ret;
4849 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4851 struct btrfs_data_container *inodes = ctx;
4852 const size_t c = 3 * sizeof(u64);
4854 if (inodes->bytes_left >= c) {
4855 inodes->bytes_left -= c;
4856 inodes->val[inodes->elem_cnt] = inum;
4857 inodes->val[inodes->elem_cnt + 1] = offset;
4858 inodes->val[inodes->elem_cnt + 2] = root;
4859 inodes->elem_cnt += 3;
4860 } else {
4861 inodes->bytes_missing += c - inodes->bytes_left;
4862 inodes->bytes_left = 0;
4863 inodes->elem_missed += 3;
4866 return 0;
4869 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4870 void __user *arg, int version)
4872 int ret = 0;
4873 int size;
4874 struct btrfs_ioctl_logical_ino_args *loi;
4875 struct btrfs_data_container *inodes = NULL;
4876 struct btrfs_path *path = NULL;
4877 bool ignore_offset;
4879 if (!capable(CAP_SYS_ADMIN))
4880 return -EPERM;
4882 loi = memdup_user(arg, sizeof(*loi));
4883 if (IS_ERR(loi))
4884 return PTR_ERR(loi);
4886 if (version == 1) {
4887 ignore_offset = false;
4888 size = min_t(u32, loi->size, SZ_64K);
4889 } else {
4890 /* All reserved bits must be 0 for now */
4891 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4892 ret = -EINVAL;
4893 goto out_loi;
4895 /* Only accept flags we have defined so far */
4896 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4897 ret = -EINVAL;
4898 goto out_loi;
4900 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4901 size = min_t(u32, loi->size, SZ_16M);
4904 path = btrfs_alloc_path();
4905 if (!path) {
4906 ret = -ENOMEM;
4907 goto out;
4910 inodes = init_data_container(size);
4911 if (IS_ERR(inodes)) {
4912 ret = PTR_ERR(inodes);
4913 inodes = NULL;
4914 goto out;
4917 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4918 build_ino_list, inodes, ignore_offset);
4919 if (ret == -EINVAL)
4920 ret = -ENOENT;
4921 if (ret < 0)
4922 goto out;
4924 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4925 size);
4926 if (ret)
4927 ret = -EFAULT;
4929 out:
4930 btrfs_free_path(path);
4931 kvfree(inodes);
4932 out_loi:
4933 kfree(loi);
4935 return ret;
4938 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
4939 struct btrfs_ioctl_balance_args *bargs)
4941 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4943 bargs->flags = bctl->flags;
4945 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
4946 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4947 if (atomic_read(&fs_info->balance_pause_req))
4948 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4949 if (atomic_read(&fs_info->balance_cancel_req))
4950 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4952 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4953 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4954 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4956 spin_lock(&fs_info->balance_lock);
4957 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4958 spin_unlock(&fs_info->balance_lock);
4961 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4963 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4964 struct btrfs_fs_info *fs_info = root->fs_info;
4965 struct btrfs_ioctl_balance_args *bargs;
4966 struct btrfs_balance_control *bctl;
4967 bool need_unlock; /* for mut. excl. ops lock */
4968 int ret;
4970 if (!capable(CAP_SYS_ADMIN))
4971 return -EPERM;
4973 ret = mnt_want_write_file(file);
4974 if (ret)
4975 return ret;
4977 again:
4978 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4979 mutex_lock(&fs_info->balance_mutex);
4980 need_unlock = true;
4981 goto locked;
4985 * mut. excl. ops lock is locked. Three possibilities:
4986 * (1) some other op is running
4987 * (2) balance is running
4988 * (3) balance is paused -- special case (think resume)
4990 mutex_lock(&fs_info->balance_mutex);
4991 if (fs_info->balance_ctl) {
4992 /* this is either (2) or (3) */
4993 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4994 mutex_unlock(&fs_info->balance_mutex);
4996 * Lock released to allow other waiters to continue,
4997 * we'll reexamine the status again.
4999 mutex_lock(&fs_info->balance_mutex);
5001 if (fs_info->balance_ctl &&
5002 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
5003 /* this is (3) */
5004 need_unlock = false;
5005 goto locked;
5008 mutex_unlock(&fs_info->balance_mutex);
5009 goto again;
5010 } else {
5011 /* this is (2) */
5012 mutex_unlock(&fs_info->balance_mutex);
5013 ret = -EINPROGRESS;
5014 goto out;
5016 } else {
5017 /* this is (1) */
5018 mutex_unlock(&fs_info->balance_mutex);
5019 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
5020 goto out;
5023 locked:
5024 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
5026 if (arg) {
5027 bargs = memdup_user(arg, sizeof(*bargs));
5028 if (IS_ERR(bargs)) {
5029 ret = PTR_ERR(bargs);
5030 goto out_unlock;
5033 if (bargs->flags & BTRFS_BALANCE_RESUME) {
5034 if (!fs_info->balance_ctl) {
5035 ret = -ENOTCONN;
5036 goto out_bargs;
5039 bctl = fs_info->balance_ctl;
5040 spin_lock(&fs_info->balance_lock);
5041 bctl->flags |= BTRFS_BALANCE_RESUME;
5042 spin_unlock(&fs_info->balance_lock);
5044 goto do_balance;
5046 } else {
5047 bargs = NULL;
5050 if (fs_info->balance_ctl) {
5051 ret = -EINPROGRESS;
5052 goto out_bargs;
5055 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
5056 if (!bctl) {
5057 ret = -ENOMEM;
5058 goto out_bargs;
5061 if (arg) {
5062 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
5063 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
5064 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
5066 bctl->flags = bargs->flags;
5067 } else {
5068 /* balance everything - no filters */
5069 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
5072 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
5073 ret = -EINVAL;
5074 goto out_bctl;
5077 do_balance:
5079 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP goes to
5080 * btrfs_balance. bctl is freed in reset_balance_state, or, if
5081 * restriper was paused all the way until unmount, in free_fs_info.
5082 * The flag should be cleared after reset_balance_state.
5084 need_unlock = false;
5086 ret = btrfs_balance(fs_info, bctl, bargs);
5087 bctl = NULL;
5089 if (arg) {
5090 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5091 ret = -EFAULT;
5094 out_bctl:
5095 kfree(bctl);
5096 out_bargs:
5097 kfree(bargs);
5098 out_unlock:
5099 mutex_unlock(&fs_info->balance_mutex);
5100 if (need_unlock)
5101 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
5102 out:
5103 mnt_drop_write_file(file);
5104 return ret;
5107 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
5109 if (!capable(CAP_SYS_ADMIN))
5110 return -EPERM;
5112 switch (cmd) {
5113 case BTRFS_BALANCE_CTL_PAUSE:
5114 return btrfs_pause_balance(fs_info);
5115 case BTRFS_BALANCE_CTL_CANCEL:
5116 return btrfs_cancel_balance(fs_info);
5119 return -EINVAL;
5122 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
5123 void __user *arg)
5125 struct btrfs_ioctl_balance_args *bargs;
5126 int ret = 0;
5128 if (!capable(CAP_SYS_ADMIN))
5129 return -EPERM;
5131 mutex_lock(&fs_info->balance_mutex);
5132 if (!fs_info->balance_ctl) {
5133 ret = -ENOTCONN;
5134 goto out;
5137 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
5138 if (!bargs) {
5139 ret = -ENOMEM;
5140 goto out;
5143 btrfs_update_ioctl_balance_args(fs_info, bargs);
5145 if (copy_to_user(arg, bargs, sizeof(*bargs)))
5146 ret = -EFAULT;
5148 kfree(bargs);
5149 out:
5150 mutex_unlock(&fs_info->balance_mutex);
5151 return ret;
5154 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
5156 struct inode *inode = file_inode(file);
5157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5158 struct btrfs_ioctl_quota_ctl_args *sa;
5159 int ret;
5161 if (!capable(CAP_SYS_ADMIN))
5162 return -EPERM;
5164 ret = mnt_want_write_file(file);
5165 if (ret)
5166 return ret;
5168 sa = memdup_user(arg, sizeof(*sa));
5169 if (IS_ERR(sa)) {
5170 ret = PTR_ERR(sa);
5171 goto drop_write;
5174 down_write(&fs_info->subvol_sem);
5176 switch (sa->cmd) {
5177 case BTRFS_QUOTA_CTL_ENABLE:
5178 ret = btrfs_quota_enable(fs_info);
5179 break;
5180 case BTRFS_QUOTA_CTL_DISABLE:
5181 ret = btrfs_quota_disable(fs_info);
5182 break;
5183 default:
5184 ret = -EINVAL;
5185 break;
5188 kfree(sa);
5189 up_write(&fs_info->subvol_sem);
5190 drop_write:
5191 mnt_drop_write_file(file);
5192 return ret;
5195 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
5197 struct inode *inode = file_inode(file);
5198 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5199 struct btrfs_root *root = BTRFS_I(inode)->root;
5200 struct btrfs_ioctl_qgroup_assign_args *sa;
5201 struct btrfs_trans_handle *trans;
5202 int ret;
5203 int err;
5205 if (!capable(CAP_SYS_ADMIN))
5206 return -EPERM;
5208 ret = mnt_want_write_file(file);
5209 if (ret)
5210 return ret;
5212 sa = memdup_user(arg, sizeof(*sa));
5213 if (IS_ERR(sa)) {
5214 ret = PTR_ERR(sa);
5215 goto drop_write;
5218 trans = btrfs_join_transaction(root);
5219 if (IS_ERR(trans)) {
5220 ret = PTR_ERR(trans);
5221 goto out;
5224 if (sa->assign) {
5225 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
5226 } else {
5227 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
5230 /* update qgroup status and info */
5231 err = btrfs_run_qgroups(trans);
5232 if (err < 0)
5233 btrfs_handle_fs_error(fs_info, err,
5234 "failed to update qgroup status and info");
5235 err = btrfs_end_transaction(trans);
5236 if (err && !ret)
5237 ret = err;
5239 out:
5240 kfree(sa);
5241 drop_write:
5242 mnt_drop_write_file(file);
5243 return ret;
5246 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
5248 struct inode *inode = file_inode(file);
5249 struct btrfs_root *root = BTRFS_I(inode)->root;
5250 struct btrfs_ioctl_qgroup_create_args *sa;
5251 struct btrfs_trans_handle *trans;
5252 int ret;
5253 int err;
5255 if (!capable(CAP_SYS_ADMIN))
5256 return -EPERM;
5258 ret = mnt_want_write_file(file);
5259 if (ret)
5260 return ret;
5262 sa = memdup_user(arg, sizeof(*sa));
5263 if (IS_ERR(sa)) {
5264 ret = PTR_ERR(sa);
5265 goto drop_write;
5268 if (!sa->qgroupid) {
5269 ret = -EINVAL;
5270 goto out;
5273 trans = btrfs_join_transaction(root);
5274 if (IS_ERR(trans)) {
5275 ret = PTR_ERR(trans);
5276 goto out;
5279 if (sa->create) {
5280 ret = btrfs_create_qgroup(trans, sa->qgroupid);
5281 } else {
5282 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
5285 err = btrfs_end_transaction(trans);
5286 if (err && !ret)
5287 ret = err;
5289 out:
5290 kfree(sa);
5291 drop_write:
5292 mnt_drop_write_file(file);
5293 return ret;
5296 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
5298 struct inode *inode = file_inode(file);
5299 struct btrfs_root *root = BTRFS_I(inode)->root;
5300 struct btrfs_ioctl_qgroup_limit_args *sa;
5301 struct btrfs_trans_handle *trans;
5302 int ret;
5303 int err;
5304 u64 qgroupid;
5306 if (!capable(CAP_SYS_ADMIN))
5307 return -EPERM;
5309 ret = mnt_want_write_file(file);
5310 if (ret)
5311 return ret;
5313 sa = memdup_user(arg, sizeof(*sa));
5314 if (IS_ERR(sa)) {
5315 ret = PTR_ERR(sa);
5316 goto drop_write;
5319 trans = btrfs_join_transaction(root);
5320 if (IS_ERR(trans)) {
5321 ret = PTR_ERR(trans);
5322 goto out;
5325 qgroupid = sa->qgroupid;
5326 if (!qgroupid) {
5327 /* take the current subvol as qgroup */
5328 qgroupid = root->root_key.objectid;
5331 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
5333 err = btrfs_end_transaction(trans);
5334 if (err && !ret)
5335 ret = err;
5337 out:
5338 kfree(sa);
5339 drop_write:
5340 mnt_drop_write_file(file);
5341 return ret;
5344 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5346 struct inode *inode = file_inode(file);
5347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5348 struct btrfs_ioctl_quota_rescan_args *qsa;
5349 int ret;
5351 if (!capable(CAP_SYS_ADMIN))
5352 return -EPERM;
5354 ret = mnt_want_write_file(file);
5355 if (ret)
5356 return ret;
5358 qsa = memdup_user(arg, sizeof(*qsa));
5359 if (IS_ERR(qsa)) {
5360 ret = PTR_ERR(qsa);
5361 goto drop_write;
5364 if (qsa->flags) {
5365 ret = -EINVAL;
5366 goto out;
5369 ret = btrfs_qgroup_rescan(fs_info);
5371 out:
5372 kfree(qsa);
5373 drop_write:
5374 mnt_drop_write_file(file);
5375 return ret;
5378 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5380 struct inode *inode = file_inode(file);
5381 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5382 struct btrfs_ioctl_quota_rescan_args *qsa;
5383 int ret = 0;
5385 if (!capable(CAP_SYS_ADMIN))
5386 return -EPERM;
5388 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5389 if (!qsa)
5390 return -ENOMEM;
5392 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5393 qsa->flags = 1;
5394 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5397 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5398 ret = -EFAULT;
5400 kfree(qsa);
5401 return ret;
5404 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5406 struct inode *inode = file_inode(file);
5407 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5409 if (!capable(CAP_SYS_ADMIN))
5410 return -EPERM;
5412 return btrfs_qgroup_wait_for_completion(fs_info, true);
5415 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5416 struct btrfs_ioctl_received_subvol_args *sa)
5418 struct inode *inode = file_inode(file);
5419 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5420 struct btrfs_root *root = BTRFS_I(inode)->root;
5421 struct btrfs_root_item *root_item = &root->root_item;
5422 struct btrfs_trans_handle *trans;
5423 struct timespec64 ct = current_time(inode);
5424 int ret = 0;
5425 int received_uuid_changed;
5427 if (!inode_owner_or_capable(inode))
5428 return -EPERM;
5430 ret = mnt_want_write_file(file);
5431 if (ret < 0)
5432 return ret;
5434 down_write(&fs_info->subvol_sem);
5436 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5437 ret = -EINVAL;
5438 goto out;
5441 if (btrfs_root_readonly(root)) {
5442 ret = -EROFS;
5443 goto out;
5447 * 1 - root item
5448 * 2 - uuid items (received uuid + subvol uuid)
5450 trans = btrfs_start_transaction(root, 3);
5451 if (IS_ERR(trans)) {
5452 ret = PTR_ERR(trans);
5453 trans = NULL;
5454 goto out;
5457 sa->rtransid = trans->transid;
5458 sa->rtime.sec = ct.tv_sec;
5459 sa->rtime.nsec = ct.tv_nsec;
5461 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5462 BTRFS_UUID_SIZE);
5463 if (received_uuid_changed &&
5464 !btrfs_is_empty_uuid(root_item->received_uuid)) {
5465 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
5466 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5467 root->root_key.objectid);
5468 if (ret && ret != -ENOENT) {
5469 btrfs_abort_transaction(trans, ret);
5470 btrfs_end_transaction(trans);
5471 goto out;
5474 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5475 btrfs_set_root_stransid(root_item, sa->stransid);
5476 btrfs_set_root_rtransid(root_item, sa->rtransid);
5477 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5478 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5479 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5480 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5482 ret = btrfs_update_root(trans, fs_info->tree_root,
5483 &root->root_key, &root->root_item);
5484 if (ret < 0) {
5485 btrfs_end_transaction(trans);
5486 goto out;
5488 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5489 ret = btrfs_uuid_tree_add(trans, sa->uuid,
5490 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5491 root->root_key.objectid);
5492 if (ret < 0 && ret != -EEXIST) {
5493 btrfs_abort_transaction(trans, ret);
5494 btrfs_end_transaction(trans);
5495 goto out;
5498 ret = btrfs_commit_transaction(trans);
5499 out:
5500 up_write(&fs_info->subvol_sem);
5501 mnt_drop_write_file(file);
5502 return ret;
5505 #ifdef CONFIG_64BIT
5506 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5507 void __user *arg)
5509 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5510 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5511 int ret = 0;
5513 args32 = memdup_user(arg, sizeof(*args32));
5514 if (IS_ERR(args32))
5515 return PTR_ERR(args32);
5517 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5518 if (!args64) {
5519 ret = -ENOMEM;
5520 goto out;
5523 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5524 args64->stransid = args32->stransid;
5525 args64->rtransid = args32->rtransid;
5526 args64->stime.sec = args32->stime.sec;
5527 args64->stime.nsec = args32->stime.nsec;
5528 args64->rtime.sec = args32->rtime.sec;
5529 args64->rtime.nsec = args32->rtime.nsec;
5530 args64->flags = args32->flags;
5532 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5533 if (ret)
5534 goto out;
5536 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5537 args32->stransid = args64->stransid;
5538 args32->rtransid = args64->rtransid;
5539 args32->stime.sec = args64->stime.sec;
5540 args32->stime.nsec = args64->stime.nsec;
5541 args32->rtime.sec = args64->rtime.sec;
5542 args32->rtime.nsec = args64->rtime.nsec;
5543 args32->flags = args64->flags;
5545 ret = copy_to_user(arg, args32, sizeof(*args32));
5546 if (ret)
5547 ret = -EFAULT;
5549 out:
5550 kfree(args32);
5551 kfree(args64);
5552 return ret;
5554 #endif
5556 static long btrfs_ioctl_set_received_subvol(struct file *file,
5557 void __user *arg)
5559 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5560 int ret = 0;
5562 sa = memdup_user(arg, sizeof(*sa));
5563 if (IS_ERR(sa))
5564 return PTR_ERR(sa);
5566 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5568 if (ret)
5569 goto out;
5571 ret = copy_to_user(arg, sa, sizeof(*sa));
5572 if (ret)
5573 ret = -EFAULT;
5575 out:
5576 kfree(sa);
5577 return ret;
5580 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5582 struct inode *inode = file_inode(file);
5583 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5584 size_t len;
5585 int ret;
5586 char label[BTRFS_LABEL_SIZE];
5588 spin_lock(&fs_info->super_lock);
5589 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5590 spin_unlock(&fs_info->super_lock);
5592 len = strnlen(label, BTRFS_LABEL_SIZE);
5594 if (len == BTRFS_LABEL_SIZE) {
5595 btrfs_warn(fs_info,
5596 "label is too long, return the first %zu bytes",
5597 --len);
5600 ret = copy_to_user(arg, label, len);
5602 return ret ? -EFAULT : 0;
5605 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5607 struct inode *inode = file_inode(file);
5608 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5609 struct btrfs_root *root = BTRFS_I(inode)->root;
5610 struct btrfs_super_block *super_block = fs_info->super_copy;
5611 struct btrfs_trans_handle *trans;
5612 char label[BTRFS_LABEL_SIZE];
5613 int ret;
5615 if (!capable(CAP_SYS_ADMIN))
5616 return -EPERM;
5618 if (copy_from_user(label, arg, sizeof(label)))
5619 return -EFAULT;
5621 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5622 btrfs_err(fs_info,
5623 "unable to set label with more than %d bytes",
5624 BTRFS_LABEL_SIZE - 1);
5625 return -EINVAL;
5628 ret = mnt_want_write_file(file);
5629 if (ret)
5630 return ret;
5632 trans = btrfs_start_transaction(root, 0);
5633 if (IS_ERR(trans)) {
5634 ret = PTR_ERR(trans);
5635 goto out_unlock;
5638 spin_lock(&fs_info->super_lock);
5639 strcpy(super_block->label, label);
5640 spin_unlock(&fs_info->super_lock);
5641 ret = btrfs_commit_transaction(trans);
5643 out_unlock:
5644 mnt_drop_write_file(file);
5645 return ret;
5648 #define INIT_FEATURE_FLAGS(suffix) \
5649 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5650 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5651 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5653 int btrfs_ioctl_get_supported_features(void __user *arg)
5655 static const struct btrfs_ioctl_feature_flags features[3] = {
5656 INIT_FEATURE_FLAGS(SUPP),
5657 INIT_FEATURE_FLAGS(SAFE_SET),
5658 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5661 if (copy_to_user(arg, &features, sizeof(features)))
5662 return -EFAULT;
5664 return 0;
5667 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5669 struct inode *inode = file_inode(file);
5670 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5671 struct btrfs_super_block *super_block = fs_info->super_copy;
5672 struct btrfs_ioctl_feature_flags features;
5674 features.compat_flags = btrfs_super_compat_flags(super_block);
5675 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5676 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5678 if (copy_to_user(arg, &features, sizeof(features)))
5679 return -EFAULT;
5681 return 0;
5684 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5685 enum btrfs_feature_set set,
5686 u64 change_mask, u64 flags, u64 supported_flags,
5687 u64 safe_set, u64 safe_clear)
5689 const char *type = btrfs_feature_set_names[set];
5690 char *names;
5691 u64 disallowed, unsupported;
5692 u64 set_mask = flags & change_mask;
5693 u64 clear_mask = ~flags & change_mask;
5695 unsupported = set_mask & ~supported_flags;
5696 if (unsupported) {
5697 names = btrfs_printable_features(set, unsupported);
5698 if (names) {
5699 btrfs_warn(fs_info,
5700 "this kernel does not support the %s feature bit%s",
5701 names, strchr(names, ',') ? "s" : "");
5702 kfree(names);
5703 } else
5704 btrfs_warn(fs_info,
5705 "this kernel does not support %s bits 0x%llx",
5706 type, unsupported);
5707 return -EOPNOTSUPP;
5710 disallowed = set_mask & ~safe_set;
5711 if (disallowed) {
5712 names = btrfs_printable_features(set, disallowed);
5713 if (names) {
5714 btrfs_warn(fs_info,
5715 "can't set the %s feature bit%s while mounted",
5716 names, strchr(names, ',') ? "s" : "");
5717 kfree(names);
5718 } else
5719 btrfs_warn(fs_info,
5720 "can't set %s bits 0x%llx while mounted",
5721 type, disallowed);
5722 return -EPERM;
5725 disallowed = clear_mask & ~safe_clear;
5726 if (disallowed) {
5727 names = btrfs_printable_features(set, disallowed);
5728 if (names) {
5729 btrfs_warn(fs_info,
5730 "can't clear the %s feature bit%s while mounted",
5731 names, strchr(names, ',') ? "s" : "");
5732 kfree(names);
5733 } else
5734 btrfs_warn(fs_info,
5735 "can't clear %s bits 0x%llx while mounted",
5736 type, disallowed);
5737 return -EPERM;
5740 return 0;
5743 #define check_feature(fs_info, change_mask, flags, mask_base) \
5744 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5745 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5746 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5747 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5749 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5751 struct inode *inode = file_inode(file);
5752 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5753 struct btrfs_root *root = BTRFS_I(inode)->root;
5754 struct btrfs_super_block *super_block = fs_info->super_copy;
5755 struct btrfs_ioctl_feature_flags flags[2];
5756 struct btrfs_trans_handle *trans;
5757 u64 newflags;
5758 int ret;
5760 if (!capable(CAP_SYS_ADMIN))
5761 return -EPERM;
5763 if (copy_from_user(flags, arg, sizeof(flags)))
5764 return -EFAULT;
5766 /* Nothing to do */
5767 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5768 !flags[0].incompat_flags)
5769 return 0;
5771 ret = check_feature(fs_info, flags[0].compat_flags,
5772 flags[1].compat_flags, COMPAT);
5773 if (ret)
5774 return ret;
5776 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5777 flags[1].compat_ro_flags, COMPAT_RO);
5778 if (ret)
5779 return ret;
5781 ret = check_feature(fs_info, flags[0].incompat_flags,
5782 flags[1].incompat_flags, INCOMPAT);
5783 if (ret)
5784 return ret;
5786 ret = mnt_want_write_file(file);
5787 if (ret)
5788 return ret;
5790 trans = btrfs_start_transaction(root, 0);
5791 if (IS_ERR(trans)) {
5792 ret = PTR_ERR(trans);
5793 goto out_drop_write;
5796 spin_lock(&fs_info->super_lock);
5797 newflags = btrfs_super_compat_flags(super_block);
5798 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5799 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5800 btrfs_set_super_compat_flags(super_block, newflags);
5802 newflags = btrfs_super_compat_ro_flags(super_block);
5803 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5804 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5805 btrfs_set_super_compat_ro_flags(super_block, newflags);
5807 newflags = btrfs_super_incompat_flags(super_block);
5808 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5809 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5810 btrfs_set_super_incompat_flags(super_block, newflags);
5811 spin_unlock(&fs_info->super_lock);
5813 ret = btrfs_commit_transaction(trans);
5814 out_drop_write:
5815 mnt_drop_write_file(file);
5817 return ret;
5820 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5822 struct btrfs_ioctl_send_args *arg;
5823 int ret;
5825 if (compat) {
5826 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5827 struct btrfs_ioctl_send_args_32 args32;
5829 ret = copy_from_user(&args32, argp, sizeof(args32));
5830 if (ret)
5831 return -EFAULT;
5832 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5833 if (!arg)
5834 return -ENOMEM;
5835 arg->send_fd = args32.send_fd;
5836 arg->clone_sources_count = args32.clone_sources_count;
5837 arg->clone_sources = compat_ptr(args32.clone_sources);
5838 arg->parent_root = args32.parent_root;
5839 arg->flags = args32.flags;
5840 memcpy(arg->reserved, args32.reserved,
5841 sizeof(args32.reserved));
5842 #else
5843 return -ENOTTY;
5844 #endif
5845 } else {
5846 arg = memdup_user(argp, sizeof(*arg));
5847 if (IS_ERR(arg))
5848 return PTR_ERR(arg);
5850 ret = btrfs_ioctl_send(file, arg);
5851 kfree(arg);
5852 return ret;
5855 long btrfs_ioctl(struct file *file, unsigned int
5856 cmd, unsigned long arg)
5858 struct inode *inode = file_inode(file);
5859 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5860 struct btrfs_root *root = BTRFS_I(inode)->root;
5861 void __user *argp = (void __user *)arg;
5863 switch (cmd) {
5864 case FS_IOC_GETFLAGS:
5865 return btrfs_ioctl_getflags(file, argp);
5866 case FS_IOC_SETFLAGS:
5867 return btrfs_ioctl_setflags(file, argp);
5868 case FS_IOC_GETVERSION:
5869 return btrfs_ioctl_getversion(file, argp);
5870 case FITRIM:
5871 return btrfs_ioctl_fitrim(file, argp);
5872 case BTRFS_IOC_SNAP_CREATE:
5873 return btrfs_ioctl_snap_create(file, argp, 0);
5874 case BTRFS_IOC_SNAP_CREATE_V2:
5875 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5876 case BTRFS_IOC_SUBVOL_CREATE:
5877 return btrfs_ioctl_snap_create(file, argp, 1);
5878 case BTRFS_IOC_SUBVOL_CREATE_V2:
5879 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5880 case BTRFS_IOC_SNAP_DESTROY:
5881 return btrfs_ioctl_snap_destroy(file, argp);
5882 case BTRFS_IOC_SUBVOL_GETFLAGS:
5883 return btrfs_ioctl_subvol_getflags(file, argp);
5884 case BTRFS_IOC_SUBVOL_SETFLAGS:
5885 return btrfs_ioctl_subvol_setflags(file, argp);
5886 case BTRFS_IOC_DEFAULT_SUBVOL:
5887 return btrfs_ioctl_default_subvol(file, argp);
5888 case BTRFS_IOC_DEFRAG:
5889 return btrfs_ioctl_defrag(file, NULL);
5890 case BTRFS_IOC_DEFRAG_RANGE:
5891 return btrfs_ioctl_defrag(file, argp);
5892 case BTRFS_IOC_RESIZE:
5893 return btrfs_ioctl_resize(file, argp);
5894 case BTRFS_IOC_ADD_DEV:
5895 return btrfs_ioctl_add_dev(fs_info, argp);
5896 case BTRFS_IOC_RM_DEV:
5897 return btrfs_ioctl_rm_dev(file, argp);
5898 case BTRFS_IOC_RM_DEV_V2:
5899 return btrfs_ioctl_rm_dev_v2(file, argp);
5900 case BTRFS_IOC_FS_INFO:
5901 return btrfs_ioctl_fs_info(fs_info, argp);
5902 case BTRFS_IOC_DEV_INFO:
5903 return btrfs_ioctl_dev_info(fs_info, argp);
5904 case BTRFS_IOC_BALANCE:
5905 return btrfs_ioctl_balance(file, NULL);
5906 case BTRFS_IOC_TREE_SEARCH:
5907 return btrfs_ioctl_tree_search(file, argp);
5908 case BTRFS_IOC_TREE_SEARCH_V2:
5909 return btrfs_ioctl_tree_search_v2(file, argp);
5910 case BTRFS_IOC_INO_LOOKUP:
5911 return btrfs_ioctl_ino_lookup(file, argp);
5912 case BTRFS_IOC_INO_PATHS:
5913 return btrfs_ioctl_ino_to_path(root, argp);
5914 case BTRFS_IOC_LOGICAL_INO:
5915 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5916 case BTRFS_IOC_LOGICAL_INO_V2:
5917 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5918 case BTRFS_IOC_SPACE_INFO:
5919 return btrfs_ioctl_space_info(fs_info, argp);
5920 case BTRFS_IOC_SYNC: {
5921 int ret;
5923 ret = btrfs_start_delalloc_roots(fs_info, -1);
5924 if (ret)
5925 return ret;
5926 ret = btrfs_sync_fs(inode->i_sb, 1);
5928 * The transaction thread may want to do more work,
5929 * namely it pokes the cleaner kthread that will start
5930 * processing uncleaned subvols.
5932 wake_up_process(fs_info->transaction_kthread);
5933 return ret;
5935 case BTRFS_IOC_START_SYNC:
5936 return btrfs_ioctl_start_sync(root, argp);
5937 case BTRFS_IOC_WAIT_SYNC:
5938 return btrfs_ioctl_wait_sync(fs_info, argp);
5939 case BTRFS_IOC_SCRUB:
5940 return btrfs_ioctl_scrub(file, argp);
5941 case BTRFS_IOC_SCRUB_CANCEL:
5942 return btrfs_ioctl_scrub_cancel(fs_info);
5943 case BTRFS_IOC_SCRUB_PROGRESS:
5944 return btrfs_ioctl_scrub_progress(fs_info, argp);
5945 case BTRFS_IOC_BALANCE_V2:
5946 return btrfs_ioctl_balance(file, argp);
5947 case BTRFS_IOC_BALANCE_CTL:
5948 return btrfs_ioctl_balance_ctl(fs_info, arg);
5949 case BTRFS_IOC_BALANCE_PROGRESS:
5950 return btrfs_ioctl_balance_progress(fs_info, argp);
5951 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5952 return btrfs_ioctl_set_received_subvol(file, argp);
5953 #ifdef CONFIG_64BIT
5954 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5955 return btrfs_ioctl_set_received_subvol_32(file, argp);
5956 #endif
5957 case BTRFS_IOC_SEND:
5958 return _btrfs_ioctl_send(file, argp, false);
5959 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5960 case BTRFS_IOC_SEND_32:
5961 return _btrfs_ioctl_send(file, argp, true);
5962 #endif
5963 case BTRFS_IOC_GET_DEV_STATS:
5964 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5965 case BTRFS_IOC_QUOTA_CTL:
5966 return btrfs_ioctl_quota_ctl(file, argp);
5967 case BTRFS_IOC_QGROUP_ASSIGN:
5968 return btrfs_ioctl_qgroup_assign(file, argp);
5969 case BTRFS_IOC_QGROUP_CREATE:
5970 return btrfs_ioctl_qgroup_create(file, argp);
5971 case BTRFS_IOC_QGROUP_LIMIT:
5972 return btrfs_ioctl_qgroup_limit(file, argp);
5973 case BTRFS_IOC_QUOTA_RESCAN:
5974 return btrfs_ioctl_quota_rescan(file, argp);
5975 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5976 return btrfs_ioctl_quota_rescan_status(file, argp);
5977 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5978 return btrfs_ioctl_quota_rescan_wait(file, argp);
5979 case BTRFS_IOC_DEV_REPLACE:
5980 return btrfs_ioctl_dev_replace(fs_info, argp);
5981 case BTRFS_IOC_GET_FSLABEL:
5982 return btrfs_ioctl_get_fslabel(file, argp);
5983 case BTRFS_IOC_SET_FSLABEL:
5984 return btrfs_ioctl_set_fslabel(file, argp);
5985 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5986 return btrfs_ioctl_get_supported_features(argp);
5987 case BTRFS_IOC_GET_FEATURES:
5988 return btrfs_ioctl_get_features(file, argp);
5989 case BTRFS_IOC_SET_FEATURES:
5990 return btrfs_ioctl_set_features(file, argp);
5991 case FS_IOC_FSGETXATTR:
5992 return btrfs_ioctl_fsgetxattr(file, argp);
5993 case FS_IOC_FSSETXATTR:
5994 return btrfs_ioctl_fssetxattr(file, argp);
5995 case BTRFS_IOC_GET_SUBVOL_INFO:
5996 return btrfs_ioctl_get_subvol_info(file, argp);
5997 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5998 return btrfs_ioctl_get_subvol_rootref(file, argp);
5999 case BTRFS_IOC_INO_LOOKUP_USER:
6000 return btrfs_ioctl_ino_lookup_user(file, argp);
6003 return -ENOTTY;
6006 #ifdef CONFIG_COMPAT
6007 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6010 * These all access 32-bit values anyway so no further
6011 * handling is necessary.
6013 switch (cmd) {
6014 case FS_IOC32_GETFLAGS:
6015 cmd = FS_IOC_GETFLAGS;
6016 break;
6017 case FS_IOC32_SETFLAGS:
6018 cmd = FS_IOC_SETFLAGS;
6019 break;
6020 case FS_IOC32_GETVERSION:
6021 cmd = FS_IOC_GETVERSION;
6022 break;
6025 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
6027 #endif