2 * This contains encryption functions for per-file encryption.
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
7 * Written by Michael Halcrow, 2014.
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
16 * This has not yet undergone a rigorous security audit.
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
33 static unsigned int num_prealloc_crypto_pages
= 32;
34 static unsigned int num_prealloc_crypto_ctxs
= 128;
36 module_param(num_prealloc_crypto_pages
, uint
, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
41 "Number of crypto contexts to preallocate");
43 static mempool_t
*fscrypt_bounce_page_pool
= NULL
;
45 static LIST_HEAD(fscrypt_free_ctxs
);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock
);
48 static struct workqueue_struct
*fscrypt_read_workqueue
;
49 static DEFINE_MUTEX(fscrypt_init_mutex
);
51 static struct kmem_cache
*fscrypt_ctx_cachep
;
52 struct kmem_cache
*fscrypt_info_cachep
;
54 void fscrypt_enqueue_decrypt_work(struct work_struct
*work
)
56 queue_work(fscrypt_read_workqueue
, work
);
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work
);
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
67 * If there's a bounce page in the context, this frees that.
69 void fscrypt_release_ctx(struct fscrypt_ctx
*ctx
)
73 if (ctx
->flags
& FS_CTX_HAS_BOUNCE_BUFFER_FL
&& ctx
->w
.bounce_page
) {
74 mempool_free(ctx
->w
.bounce_page
, fscrypt_bounce_page_pool
);
75 ctx
->w
.bounce_page
= NULL
;
77 ctx
->w
.control_page
= NULL
;
78 if (ctx
->flags
& FS_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
79 kmem_cache_free(fscrypt_ctx_cachep
, ctx
);
81 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
82 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
86 EXPORT_SYMBOL(fscrypt_release_ctx
);
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
91 * @gfp_flags: The gfp flag for memory allocation
93 * Allocates and initializes an encryption context.
95 * Return: An allocated and initialized encryption context on success; error
96 * value or NULL otherwise.
98 struct fscrypt_ctx
*fscrypt_get_ctx(const struct inode
*inode
, gfp_t gfp_flags
)
100 struct fscrypt_ctx
*ctx
= NULL
;
101 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
105 return ERR_PTR(-ENOKEY
);
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
117 spin_lock_irqsave(&fscrypt_ctx_lock
, flags
);
118 ctx
= list_first_entry_or_null(&fscrypt_free_ctxs
,
119 struct fscrypt_ctx
, free_list
);
121 list_del(&ctx
->free_list
);
122 spin_unlock_irqrestore(&fscrypt_ctx_lock
, flags
);
124 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, gfp_flags
);
126 return ERR_PTR(-ENOMEM
);
127 ctx
->flags
|= FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
129 ctx
->flags
&= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL
;
131 ctx
->flags
&= ~FS_CTX_HAS_BOUNCE_BUFFER_FL
;
134 EXPORT_SYMBOL(fscrypt_get_ctx
);
136 int fscrypt_do_page_crypto(const struct inode
*inode
, fscrypt_direction_t rw
,
137 u64 lblk_num
, struct page
*src_page
,
138 struct page
*dest_page
, unsigned int len
,
139 unsigned int offs
, gfp_t gfp_flags
)
143 u8 padding
[FS_IV_SIZE
- sizeof(__le64
)];
145 struct skcipher_request
*req
= NULL
;
146 DECLARE_CRYPTO_WAIT(wait
);
147 struct scatterlist dst
, src
;
148 struct fscrypt_info
*ci
= inode
->i_crypt_info
;
149 struct crypto_skcipher
*tfm
= ci
->ci_ctfm
;
154 BUILD_BUG_ON(sizeof(iv
) != FS_IV_SIZE
);
155 BUILD_BUG_ON(AES_BLOCK_SIZE
!= FS_IV_SIZE
);
156 iv
.index
= cpu_to_le64(lblk_num
);
157 memset(iv
.padding
, 0, sizeof(iv
.padding
));
159 if (ci
->ci_essiv_tfm
!= NULL
) {
160 crypto_cipher_encrypt_one(ci
->ci_essiv_tfm
, (u8
*)&iv
,
164 req
= skcipher_request_alloc(tfm
, gfp_flags
);
168 skcipher_request_set_callback(
169 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
170 crypto_req_done
, &wait
);
172 sg_init_table(&dst
, 1);
173 sg_set_page(&dst
, dest_page
, len
, offs
);
174 sg_init_table(&src
, 1);
175 sg_set_page(&src
, src_page
, len
, offs
);
176 skcipher_request_set_crypt(req
, &src
, &dst
, len
, &iv
);
177 if (rw
== FS_DECRYPT
)
178 res
= crypto_wait_req(crypto_skcipher_decrypt(req
), &wait
);
180 res
= crypto_wait_req(crypto_skcipher_encrypt(req
), &wait
);
181 skcipher_request_free(req
);
183 fscrypt_err(inode
->i_sb
,
184 "%scryption failed for inode %lu, block %llu: %d",
185 (rw
== FS_DECRYPT
? "de" : "en"),
186 inode
->i_ino
, lblk_num
, res
);
192 struct page
*fscrypt_alloc_bounce_page(struct fscrypt_ctx
*ctx
,
195 ctx
->w
.bounce_page
= mempool_alloc(fscrypt_bounce_page_pool
, gfp_flags
);
196 if (ctx
->w
.bounce_page
== NULL
)
197 return ERR_PTR(-ENOMEM
);
198 ctx
->flags
|= FS_CTX_HAS_BOUNCE_BUFFER_FL
;
199 return ctx
->w
.bounce_page
;
203 * fscypt_encrypt_page() - Encrypts a page
204 * @inode: The inode for which the encryption should take place
205 * @page: The page to encrypt. Must be locked for bounce-page
207 * @len: Length of data to encrypt in @page and encrypted
208 * data in returned page.
209 * @offs: Offset of data within @page and returned
210 * page holding encrypted data.
211 * @lblk_num: Logical block number. This must be unique for multiple
212 * calls with same inode, except when overwriting
213 * previously written data.
214 * @gfp_flags: The gfp flag for memory allocation
216 * Encrypts @page using the ctx encryption context. Performs encryption
217 * either in-place or into a newly allocated bounce page.
218 * Called on the page write path.
220 * Bounce page allocation is the default.
221 * In this case, the contents of @page are encrypted and stored in an
222 * allocated bounce page. @page has to be locked and the caller must call
223 * fscrypt_restore_control_page() on the returned ciphertext page to
224 * release the bounce buffer and the encryption context.
226 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
227 * fscrypt_operations. Here, the input-page is returned with its content
230 * Return: A page with the encrypted content on success. Else, an
231 * error value or NULL.
233 struct page
*fscrypt_encrypt_page(const struct inode
*inode
,
237 u64 lblk_num
, gfp_t gfp_flags
)
240 struct fscrypt_ctx
*ctx
;
241 struct page
*ciphertext_page
= page
;
244 BUG_ON(len
% FS_CRYPTO_BLOCK_SIZE
!= 0);
246 if (inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
) {
247 /* with inplace-encryption we just encrypt the page */
248 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
, page
,
249 ciphertext_page
, len
, offs
,
254 return ciphertext_page
;
257 BUG_ON(!PageLocked(page
));
259 ctx
= fscrypt_get_ctx(inode
, gfp_flags
);
261 return (struct page
*)ctx
;
263 /* The encryption operation will require a bounce page. */
264 ciphertext_page
= fscrypt_alloc_bounce_page(ctx
, gfp_flags
);
265 if (IS_ERR(ciphertext_page
))
268 ctx
->w
.control_page
= page
;
269 err
= fscrypt_do_page_crypto(inode
, FS_ENCRYPT
, lblk_num
,
270 page
, ciphertext_page
, len
, offs
,
273 ciphertext_page
= ERR_PTR(err
);
276 SetPagePrivate(ciphertext_page
);
277 set_page_private(ciphertext_page
, (unsigned long)ctx
);
278 lock_page(ciphertext_page
);
279 return ciphertext_page
;
282 fscrypt_release_ctx(ctx
);
283 return ciphertext_page
;
285 EXPORT_SYMBOL(fscrypt_encrypt_page
);
288 * fscrypt_decrypt_page() - Decrypts a page in-place
289 * @inode: The corresponding inode for the page to decrypt.
290 * @page: The page to decrypt. Must be locked in case
291 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
292 * @len: Number of bytes in @page to be decrypted.
293 * @offs: Start of data in @page.
294 * @lblk_num: Logical block number.
296 * Decrypts page in-place using the ctx encryption context.
298 * Called from the read completion callback.
300 * Return: Zero on success, non-zero otherwise.
302 int fscrypt_decrypt_page(const struct inode
*inode
, struct page
*page
,
303 unsigned int len
, unsigned int offs
, u64 lblk_num
)
305 if (!(inode
->i_sb
->s_cop
->flags
& FS_CFLG_OWN_PAGES
))
306 BUG_ON(!PageLocked(page
));
308 return fscrypt_do_page_crypto(inode
, FS_DECRYPT
, lblk_num
, page
, page
,
309 len
, offs
, GFP_NOFS
);
311 EXPORT_SYMBOL(fscrypt_decrypt_page
);
314 * Validate dentries for encrypted directories to make sure we aren't
315 * potentially caching stale data after a key has been added or
318 static int fscrypt_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
321 int dir_has_key
, cached_with_key
;
323 if (flags
& LOOKUP_RCU
)
326 dir
= dget_parent(dentry
);
327 if (!IS_ENCRYPTED(d_inode(dir
))) {
332 spin_lock(&dentry
->d_lock
);
333 cached_with_key
= dentry
->d_flags
& DCACHE_ENCRYPTED_WITH_KEY
;
334 spin_unlock(&dentry
->d_lock
);
335 dir_has_key
= (d_inode(dir
)->i_crypt_info
!= NULL
);
339 * If the dentry was cached without the key, and it is a
340 * negative dentry, it might be a valid name. We can't check
341 * if the key has since been made available due to locking
342 * reasons, so we fail the validation so ext4_lookup() can do
345 * We also fail the validation if the dentry was created with
346 * the key present, but we no longer have the key, or vice versa.
348 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
349 (!cached_with_key
&& dir_has_key
) ||
350 (cached_with_key
&& !dir_has_key
))
355 const struct dentry_operations fscrypt_d_ops
= {
356 .d_revalidate
= fscrypt_d_revalidate
,
359 void fscrypt_restore_control_page(struct page
*page
)
361 struct fscrypt_ctx
*ctx
;
363 ctx
= (struct fscrypt_ctx
*)page_private(page
);
364 set_page_private(page
, (unsigned long)NULL
);
365 ClearPagePrivate(page
);
367 fscrypt_release_ctx(ctx
);
369 EXPORT_SYMBOL(fscrypt_restore_control_page
);
371 static void fscrypt_destroy(void)
373 struct fscrypt_ctx
*pos
, *n
;
375 list_for_each_entry_safe(pos
, n
, &fscrypt_free_ctxs
, free_list
)
376 kmem_cache_free(fscrypt_ctx_cachep
, pos
);
377 INIT_LIST_HEAD(&fscrypt_free_ctxs
);
378 mempool_destroy(fscrypt_bounce_page_pool
);
379 fscrypt_bounce_page_pool
= NULL
;
383 * fscrypt_initialize() - allocate major buffers for fs encryption.
384 * @cop_flags: fscrypt operations flags
386 * We only call this when we start accessing encrypted files, since it
387 * results in memory getting allocated that wouldn't otherwise be used.
389 * Return: Zero on success, non-zero otherwise.
391 int fscrypt_initialize(unsigned int cop_flags
)
393 int i
, res
= -ENOMEM
;
395 /* No need to allocate a bounce page pool if this FS won't use it. */
396 if (cop_flags
& FS_CFLG_OWN_PAGES
)
399 mutex_lock(&fscrypt_init_mutex
);
400 if (fscrypt_bounce_page_pool
)
401 goto already_initialized
;
403 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
404 struct fscrypt_ctx
*ctx
;
406 ctx
= kmem_cache_zalloc(fscrypt_ctx_cachep
, GFP_NOFS
);
409 list_add(&ctx
->free_list
, &fscrypt_free_ctxs
);
412 fscrypt_bounce_page_pool
=
413 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
414 if (!fscrypt_bounce_page_pool
)
418 mutex_unlock(&fscrypt_init_mutex
);
422 mutex_unlock(&fscrypt_init_mutex
);
426 void fscrypt_msg(struct super_block
*sb
, const char *level
,
427 const char *fmt
, ...)
429 static DEFINE_RATELIMIT_STATE(rs
, DEFAULT_RATELIMIT_INTERVAL
,
430 DEFAULT_RATELIMIT_BURST
);
431 struct va_format vaf
;
434 if (!__ratelimit(&rs
))
441 printk("%sfscrypt (%s): %pV\n", level
, sb
->s_id
, &vaf
);
443 printk("%sfscrypt: %pV\n", level
, &vaf
);
448 * fscrypt_init() - Set up for fs encryption.
450 static int __init
fscrypt_init(void)
453 * Use an unbound workqueue to allow bios to be decrypted in parallel
454 * even when they happen to complete on the same CPU. This sacrifices
455 * locality, but it's worthwhile since decryption is CPU-intensive.
457 * Also use a high-priority workqueue to prioritize decryption work,
458 * which blocks reads from completing, over regular application tasks.
460 fscrypt_read_workqueue
= alloc_workqueue("fscrypt_read_queue",
461 WQ_UNBOUND
| WQ_HIGHPRI
,
463 if (!fscrypt_read_workqueue
)
466 fscrypt_ctx_cachep
= KMEM_CACHE(fscrypt_ctx
, SLAB_RECLAIM_ACCOUNT
);
467 if (!fscrypt_ctx_cachep
)
468 goto fail_free_queue
;
470 fscrypt_info_cachep
= KMEM_CACHE(fscrypt_info
, SLAB_RECLAIM_ACCOUNT
);
471 if (!fscrypt_info_cachep
)
477 kmem_cache_destroy(fscrypt_ctx_cachep
);
479 destroy_workqueue(fscrypt_read_workqueue
);
483 module_init(fscrypt_init
)
486 * fscrypt_exit() - Shutdown the fs encryption system
488 static void __exit
fscrypt_exit(void)
492 if (fscrypt_read_workqueue
)
493 destroy_workqueue(fscrypt_read_workqueue
);
494 kmem_cache_destroy(fscrypt_ctx_cachep
);
495 kmem_cache_destroy(fscrypt_info_cachep
);
497 fscrypt_essiv_cleanup();
499 module_exit(fscrypt_exit
);
501 MODULE_LICENSE("GPL");