perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / fs / ext4 / super.c
blob53ff6c2a26ed999e008f17c3b0170af9a05e158e
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/super.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
20 #include <linux/module.h>
21 #include <linux/string.h>
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/vmalloc.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/parser.h>
30 #include <linux/buffer_head.h>
31 #include <linux/exportfs.h>
32 #include <linux/vfs.h>
33 #include <linux/random.h>
34 #include <linux/mount.h>
35 #include <linux/namei.h>
36 #include <linux/quotaops.h>
37 #include <linux/seq_file.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/dax.h>
42 #include <linux/cleancache.h>
43 #include <linux/uaccess.h>
44 #include <linux/iversion.h>
46 #include <linux/kthread.h>
47 #include <linux/freezer.h>
49 #include "ext4.h"
50 #include "ext4_extents.h" /* Needed for trace points definition */
51 #include "ext4_jbd2.h"
52 #include "xattr.h"
53 #include "acl.h"
54 #include "mballoc.h"
55 #include "fsmap.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/ext4.h>
60 static struct ext4_lazy_init *ext4_li_info;
61 static struct mutex ext4_li_mtx;
62 static struct ratelimit_state ext4_mount_msg_ratelimit;
64 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
65 unsigned long journal_devnum);
66 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
67 static int ext4_commit_super(struct super_block *sb, int sync);
68 static void ext4_mark_recovery_complete(struct super_block *sb,
69 struct ext4_super_block *es);
70 static void ext4_clear_journal_err(struct super_block *sb,
71 struct ext4_super_block *es);
72 static int ext4_sync_fs(struct super_block *sb, int wait);
73 static int ext4_remount(struct super_block *sb, int *flags, char *data);
74 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
75 static int ext4_unfreeze(struct super_block *sb);
76 static int ext4_freeze(struct super_block *sb);
77 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
78 const char *dev_name, void *data);
79 static inline int ext2_feature_set_ok(struct super_block *sb);
80 static inline int ext3_feature_set_ok(struct super_block *sb);
81 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
82 static void ext4_destroy_lazyinit_thread(void);
83 static void ext4_unregister_li_request(struct super_block *sb);
84 static void ext4_clear_request_list(void);
85 static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
89 * Lock ordering
91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
94 * page fault path:
95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
96 * page lock -> i_data_sem (rw)
98 * buffered write path:
99 * sb_start_write -> i_mutex -> mmap_sem
100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
101 * i_data_sem (rw)
103 * truncate:
104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
106 * i_data_sem (rw)
108 * direct IO:
109 * sb_start_write -> i_mutex -> mmap_sem
110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
161 return cpu_to_le32(csum);
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
170 return es->s_checksum == ext4_superblock_csum(sb, es);
173 void ext4_superblock_csum_set(struct super_block *sb)
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
177 if (!ext4_has_metadata_csum(sb))
178 return;
180 es->s_checksum = ext4_superblock_csum(sb, es);
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
185 void *ret;
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
195 void *ret;
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
315 static void __ext4_update_tstamp(__le32 *lo, __u8 *hi)
317 time64_t now = ktime_get_real_seconds();
319 now = clamp_val(now, 0, (1ull << 40) - 1);
321 *lo = cpu_to_le32(lower_32_bits(now));
322 *hi = upper_32_bits(now);
325 static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
327 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
329 #define ext4_update_tstamp(es, tstamp) \
330 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
331 #define ext4_get_tstamp(es, tstamp) \
332 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
334 static void __save_error_info(struct super_block *sb, const char *func,
335 unsigned int line)
337 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
339 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
340 if (bdev_read_only(sb->s_bdev))
341 return;
342 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
343 ext4_update_tstamp(es, s_last_error_time);
344 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
345 es->s_last_error_line = cpu_to_le32(line);
346 if (!es->s_first_error_time) {
347 es->s_first_error_time = es->s_last_error_time;
348 es->s_first_error_time_hi = es->s_last_error_time_hi;
349 strncpy(es->s_first_error_func, func,
350 sizeof(es->s_first_error_func));
351 es->s_first_error_line = cpu_to_le32(line);
352 es->s_first_error_ino = es->s_last_error_ino;
353 es->s_first_error_block = es->s_last_error_block;
356 * Start the daily error reporting function if it hasn't been
357 * started already
359 if (!es->s_error_count)
360 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
361 le32_add_cpu(&es->s_error_count, 1);
364 static void save_error_info(struct super_block *sb, const char *func,
365 unsigned int line)
367 __save_error_info(sb, func, line);
368 ext4_commit_super(sb, 1);
372 * The del_gendisk() function uninitializes the disk-specific data
373 * structures, including the bdi structure, without telling anyone
374 * else. Once this happens, any attempt to call mark_buffer_dirty()
375 * (for example, by ext4_commit_super), will cause a kernel OOPS.
376 * This is a kludge to prevent these oops until we can put in a proper
377 * hook in del_gendisk() to inform the VFS and file system layers.
379 static int block_device_ejected(struct super_block *sb)
381 struct inode *bd_inode = sb->s_bdev->bd_inode;
382 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
384 return bdi->dev == NULL;
387 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
389 struct super_block *sb = journal->j_private;
390 struct ext4_sb_info *sbi = EXT4_SB(sb);
391 int error = is_journal_aborted(journal);
392 struct ext4_journal_cb_entry *jce;
394 BUG_ON(txn->t_state == T_FINISHED);
396 ext4_process_freed_data(sb, txn->t_tid);
398 spin_lock(&sbi->s_md_lock);
399 while (!list_empty(&txn->t_private_list)) {
400 jce = list_entry(txn->t_private_list.next,
401 struct ext4_journal_cb_entry, jce_list);
402 list_del_init(&jce->jce_list);
403 spin_unlock(&sbi->s_md_lock);
404 jce->jce_func(sb, jce, error);
405 spin_lock(&sbi->s_md_lock);
407 spin_unlock(&sbi->s_md_lock);
410 /* Deal with the reporting of failure conditions on a filesystem such as
411 * inconsistencies detected or read IO failures.
413 * On ext2, we can store the error state of the filesystem in the
414 * superblock. That is not possible on ext4, because we may have other
415 * write ordering constraints on the superblock which prevent us from
416 * writing it out straight away; and given that the journal is about to
417 * be aborted, we can't rely on the current, or future, transactions to
418 * write out the superblock safely.
420 * We'll just use the jbd2_journal_abort() error code to record an error in
421 * the journal instead. On recovery, the journal will complain about
422 * that error until we've noted it down and cleared it.
425 static void ext4_handle_error(struct super_block *sb)
427 if (test_opt(sb, WARN_ON_ERROR))
428 WARN_ON_ONCE(1);
430 if (sb_rdonly(sb))
431 return;
433 if (!test_opt(sb, ERRORS_CONT)) {
434 journal_t *journal = EXT4_SB(sb)->s_journal;
436 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
437 if (journal)
438 jbd2_journal_abort(journal, -EIO);
440 if (test_opt(sb, ERRORS_RO)) {
441 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
443 * Make sure updated value of ->s_mount_flags will be visible
444 * before ->s_flags update
446 smp_wmb();
447 sb->s_flags |= SB_RDONLY;
449 if (test_opt(sb, ERRORS_PANIC)) {
450 if (EXT4_SB(sb)->s_journal &&
451 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
452 return;
453 panic("EXT4-fs (device %s): panic forced after error\n",
454 sb->s_id);
458 #define ext4_error_ratelimit(sb) \
459 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
460 "EXT4-fs error")
462 void __ext4_error(struct super_block *sb, const char *function,
463 unsigned int line, const char *fmt, ...)
465 struct va_format vaf;
466 va_list args;
468 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
469 return;
471 trace_ext4_error(sb, function, line);
472 if (ext4_error_ratelimit(sb)) {
473 va_start(args, fmt);
474 vaf.fmt = fmt;
475 vaf.va = &args;
476 printk(KERN_CRIT
477 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
478 sb->s_id, function, line, current->comm, &vaf);
479 va_end(args);
481 save_error_info(sb, function, line);
482 ext4_handle_error(sb);
485 void __ext4_error_inode(struct inode *inode, const char *function,
486 unsigned int line, ext4_fsblk_t block,
487 const char *fmt, ...)
489 va_list args;
490 struct va_format vaf;
491 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
493 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
494 return;
496 trace_ext4_error(inode->i_sb, function, line);
497 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
498 es->s_last_error_block = cpu_to_le64(block);
499 if (ext4_error_ratelimit(inode->i_sb)) {
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
505 "inode #%lu: block %llu: comm %s: %pV\n",
506 inode->i_sb->s_id, function, line, inode->i_ino,
507 block, current->comm, &vaf);
508 else
509 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
510 "inode #%lu: comm %s: %pV\n",
511 inode->i_sb->s_id, function, line, inode->i_ino,
512 current->comm, &vaf);
513 va_end(args);
515 save_error_info(inode->i_sb, function, line);
516 ext4_handle_error(inode->i_sb);
519 void __ext4_error_file(struct file *file, const char *function,
520 unsigned int line, ext4_fsblk_t block,
521 const char *fmt, ...)
523 va_list args;
524 struct va_format vaf;
525 struct ext4_super_block *es;
526 struct inode *inode = file_inode(file);
527 char pathname[80], *path;
529 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
530 return;
532 trace_ext4_error(inode->i_sb, function, line);
533 es = EXT4_SB(inode->i_sb)->s_es;
534 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
535 if (ext4_error_ratelimit(inode->i_sb)) {
536 path = file_path(file, pathname, sizeof(pathname));
537 if (IS_ERR(path))
538 path = "(unknown)";
539 va_start(args, fmt);
540 vaf.fmt = fmt;
541 vaf.va = &args;
542 if (block)
543 printk(KERN_CRIT
544 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
545 "block %llu: comm %s: path %s: %pV\n",
546 inode->i_sb->s_id, function, line, inode->i_ino,
547 block, current->comm, path, &vaf);
548 else
549 printk(KERN_CRIT
550 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
551 "comm %s: path %s: %pV\n",
552 inode->i_sb->s_id, function, line, inode->i_ino,
553 current->comm, path, &vaf);
554 va_end(args);
556 save_error_info(inode->i_sb, function, line);
557 ext4_handle_error(inode->i_sb);
560 const char *ext4_decode_error(struct super_block *sb, int errno,
561 char nbuf[16])
563 char *errstr = NULL;
565 switch (errno) {
566 case -EFSCORRUPTED:
567 errstr = "Corrupt filesystem";
568 break;
569 case -EFSBADCRC:
570 errstr = "Filesystem failed CRC";
571 break;
572 case -EIO:
573 errstr = "IO failure";
574 break;
575 case -ENOMEM:
576 errstr = "Out of memory";
577 break;
578 case -EROFS:
579 if (!sb || (EXT4_SB(sb)->s_journal &&
580 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
581 errstr = "Journal has aborted";
582 else
583 errstr = "Readonly filesystem";
584 break;
585 default:
586 /* If the caller passed in an extra buffer for unknown
587 * errors, textualise them now. Else we just return
588 * NULL. */
589 if (nbuf) {
590 /* Check for truncated error codes... */
591 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
592 errstr = nbuf;
594 break;
597 return errstr;
600 /* __ext4_std_error decodes expected errors from journaling functions
601 * automatically and invokes the appropriate error response. */
603 void __ext4_std_error(struct super_block *sb, const char *function,
604 unsigned int line, int errno)
606 char nbuf[16];
607 const char *errstr;
609 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
610 return;
612 /* Special case: if the error is EROFS, and we're not already
613 * inside a transaction, then there's really no point in logging
614 * an error. */
615 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
616 return;
618 if (ext4_error_ratelimit(sb)) {
619 errstr = ext4_decode_error(sb, errno, nbuf);
620 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
621 sb->s_id, function, line, errstr);
624 save_error_info(sb, function, line);
625 ext4_handle_error(sb);
629 * ext4_abort is a much stronger failure handler than ext4_error. The
630 * abort function may be used to deal with unrecoverable failures such
631 * as journal IO errors or ENOMEM at a critical moment in log management.
633 * We unconditionally force the filesystem into an ABORT|READONLY state,
634 * unless the error response on the fs has been set to panic in which
635 * case we take the easy way out and panic immediately.
638 void __ext4_abort(struct super_block *sb, const char *function,
639 unsigned int line, const char *fmt, ...)
641 struct va_format vaf;
642 va_list args;
644 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
645 return;
647 save_error_info(sb, function, line);
648 va_start(args, fmt);
649 vaf.fmt = fmt;
650 vaf.va = &args;
651 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
652 sb->s_id, function, line, &vaf);
653 va_end(args);
655 if (sb_rdonly(sb) == 0) {
656 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
657 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
659 * Make sure updated value of ->s_mount_flags will be visible
660 * before ->s_flags update
662 smp_wmb();
663 sb->s_flags |= SB_RDONLY;
664 if (EXT4_SB(sb)->s_journal)
665 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
666 save_error_info(sb, function, line);
668 if (test_opt(sb, ERRORS_PANIC)) {
669 if (EXT4_SB(sb)->s_journal &&
670 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
671 return;
672 panic("EXT4-fs panic from previous error\n");
676 void __ext4_msg(struct super_block *sb,
677 const char *prefix, const char *fmt, ...)
679 struct va_format vaf;
680 va_list args;
682 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
683 return;
685 va_start(args, fmt);
686 vaf.fmt = fmt;
687 vaf.va = &args;
688 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
689 va_end(args);
692 #define ext4_warning_ratelimit(sb) \
693 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
694 "EXT4-fs warning")
696 void __ext4_warning(struct super_block *sb, const char *function,
697 unsigned int line, const char *fmt, ...)
699 struct va_format vaf;
700 va_list args;
702 if (!ext4_warning_ratelimit(sb))
703 return;
705 va_start(args, fmt);
706 vaf.fmt = fmt;
707 vaf.va = &args;
708 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
709 sb->s_id, function, line, &vaf);
710 va_end(args);
713 void __ext4_warning_inode(const struct inode *inode, const char *function,
714 unsigned int line, const char *fmt, ...)
716 struct va_format vaf;
717 va_list args;
719 if (!ext4_warning_ratelimit(inode->i_sb))
720 return;
722 va_start(args, fmt);
723 vaf.fmt = fmt;
724 vaf.va = &args;
725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
726 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
727 function, line, inode->i_ino, current->comm, &vaf);
728 va_end(args);
731 void __ext4_grp_locked_error(const char *function, unsigned int line,
732 struct super_block *sb, ext4_group_t grp,
733 unsigned long ino, ext4_fsblk_t block,
734 const char *fmt, ...)
735 __releases(bitlock)
736 __acquires(bitlock)
738 struct va_format vaf;
739 va_list args;
740 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
743 return;
745 trace_ext4_error(sb, function, line);
746 es->s_last_error_ino = cpu_to_le32(ino);
747 es->s_last_error_block = cpu_to_le64(block);
748 __save_error_info(sb, function, line);
750 if (ext4_error_ratelimit(sb)) {
751 va_start(args, fmt);
752 vaf.fmt = fmt;
753 vaf.va = &args;
754 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
755 sb->s_id, function, line, grp);
756 if (ino)
757 printk(KERN_CONT "inode %lu: ", ino);
758 if (block)
759 printk(KERN_CONT "block %llu:",
760 (unsigned long long) block);
761 printk(KERN_CONT "%pV\n", &vaf);
762 va_end(args);
765 if (test_opt(sb, WARN_ON_ERROR))
766 WARN_ON_ONCE(1);
768 if (test_opt(sb, ERRORS_CONT)) {
769 ext4_commit_super(sb, 0);
770 return;
773 ext4_unlock_group(sb, grp);
774 ext4_commit_super(sb, 1);
775 ext4_handle_error(sb);
777 * We only get here in the ERRORS_RO case; relocking the group
778 * may be dangerous, but nothing bad will happen since the
779 * filesystem will have already been marked read/only and the
780 * journal has been aborted. We return 1 as a hint to callers
781 * who might what to use the return value from
782 * ext4_grp_locked_error() to distinguish between the
783 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
784 * aggressively from the ext4 function in question, with a
785 * more appropriate error code.
787 ext4_lock_group(sb, grp);
788 return;
791 void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
792 ext4_group_t group,
793 unsigned int flags)
795 struct ext4_sb_info *sbi = EXT4_SB(sb);
796 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
797 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
798 int ret;
800 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
801 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
802 &grp->bb_state);
803 if (!ret)
804 percpu_counter_sub(&sbi->s_freeclusters_counter,
805 grp->bb_free);
808 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
809 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
810 &grp->bb_state);
811 if (!ret && gdp) {
812 int count;
814 count = ext4_free_inodes_count(sb, gdp);
815 percpu_counter_sub(&sbi->s_freeinodes_counter,
816 count);
821 void ext4_update_dynamic_rev(struct super_block *sb)
823 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
825 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
826 return;
828 ext4_warning(sb,
829 "updating to rev %d because of new feature flag, "
830 "running e2fsck is recommended",
831 EXT4_DYNAMIC_REV);
833 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
834 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
835 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
836 /* leave es->s_feature_*compat flags alone */
837 /* es->s_uuid will be set by e2fsck if empty */
840 * The rest of the superblock fields should be zero, and if not it
841 * means they are likely already in use, so leave them alone. We
842 * can leave it up to e2fsck to clean up any inconsistencies there.
847 * Open the external journal device
849 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
851 struct block_device *bdev;
852 char b[BDEVNAME_SIZE];
854 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
855 if (IS_ERR(bdev))
856 goto fail;
857 return bdev;
859 fail:
860 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
861 __bdevname(dev, b), PTR_ERR(bdev));
862 return NULL;
866 * Release the journal device
868 static void ext4_blkdev_put(struct block_device *bdev)
870 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
873 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
875 struct block_device *bdev;
876 bdev = sbi->journal_bdev;
877 if (bdev) {
878 ext4_blkdev_put(bdev);
879 sbi->journal_bdev = NULL;
883 static inline struct inode *orphan_list_entry(struct list_head *l)
885 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
888 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
890 struct list_head *l;
892 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
893 le32_to_cpu(sbi->s_es->s_last_orphan));
895 printk(KERN_ERR "sb_info orphan list:\n");
896 list_for_each(l, &sbi->s_orphan) {
897 struct inode *inode = orphan_list_entry(l);
898 printk(KERN_ERR " "
899 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
900 inode->i_sb->s_id, inode->i_ino, inode,
901 inode->i_mode, inode->i_nlink,
902 NEXT_ORPHAN(inode));
906 #ifdef CONFIG_QUOTA
907 static int ext4_quota_off(struct super_block *sb, int type);
909 static inline void ext4_quota_off_umount(struct super_block *sb)
911 int type;
913 /* Use our quota_off function to clear inode flags etc. */
914 for (type = 0; type < EXT4_MAXQUOTAS; type++)
915 ext4_quota_off(sb, type);
919 * This is a helper function which is used in the mount/remount
920 * codepaths (which holds s_umount) to fetch the quota file name.
922 static inline char *get_qf_name(struct super_block *sb,
923 struct ext4_sb_info *sbi,
924 int type)
926 return rcu_dereference_protected(sbi->s_qf_names[type],
927 lockdep_is_held(&sb->s_umount));
929 #else
930 static inline void ext4_quota_off_umount(struct super_block *sb)
933 #endif
935 static void ext4_put_super(struct super_block *sb)
937 struct ext4_sb_info *sbi = EXT4_SB(sb);
938 struct ext4_super_block *es = sbi->s_es;
939 int aborted = 0;
940 int i, err;
942 ext4_unregister_li_request(sb);
943 ext4_quota_off_umount(sb);
945 destroy_workqueue(sbi->rsv_conversion_wq);
947 if (sbi->s_journal) {
948 aborted = is_journal_aborted(sbi->s_journal);
949 err = jbd2_journal_destroy(sbi->s_journal);
950 sbi->s_journal = NULL;
951 if ((err < 0) && !aborted)
952 ext4_abort(sb, "Couldn't clean up the journal");
955 ext4_unregister_sysfs(sb);
956 ext4_es_unregister_shrinker(sbi);
957 del_timer_sync(&sbi->s_err_report);
958 ext4_release_system_zone(sb);
959 ext4_mb_release(sb);
960 ext4_ext_release(sb);
962 if (!sb_rdonly(sb) && !aborted) {
963 ext4_clear_feature_journal_needs_recovery(sb);
964 es->s_state = cpu_to_le16(sbi->s_mount_state);
966 if (!sb_rdonly(sb))
967 ext4_commit_super(sb, 1);
969 for (i = 0; i < sbi->s_gdb_count; i++)
970 brelse(sbi->s_group_desc[i]);
971 kvfree(sbi->s_group_desc);
972 kvfree(sbi->s_flex_groups);
973 percpu_counter_destroy(&sbi->s_freeclusters_counter);
974 percpu_counter_destroy(&sbi->s_freeinodes_counter);
975 percpu_counter_destroy(&sbi->s_dirs_counter);
976 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
977 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
978 #ifdef CONFIG_QUOTA
979 for (i = 0; i < EXT4_MAXQUOTAS; i++)
980 kfree(get_qf_name(sb, sbi, i));
981 #endif
983 /* Debugging code just in case the in-memory inode orphan list
984 * isn't empty. The on-disk one can be non-empty if we've
985 * detected an error and taken the fs readonly, but the
986 * in-memory list had better be clean by this point. */
987 if (!list_empty(&sbi->s_orphan))
988 dump_orphan_list(sb, sbi);
989 J_ASSERT(list_empty(&sbi->s_orphan));
991 sync_blockdev(sb->s_bdev);
992 invalidate_bdev(sb->s_bdev);
993 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
995 * Invalidate the journal device's buffers. We don't want them
996 * floating about in memory - the physical journal device may
997 * hotswapped, and it breaks the `ro-after' testing code.
999 sync_blockdev(sbi->journal_bdev);
1000 invalidate_bdev(sbi->journal_bdev);
1001 ext4_blkdev_remove(sbi);
1003 if (sbi->s_ea_inode_cache) {
1004 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1005 sbi->s_ea_inode_cache = NULL;
1007 if (sbi->s_ea_block_cache) {
1008 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1009 sbi->s_ea_block_cache = NULL;
1011 if (sbi->s_mmp_tsk)
1012 kthread_stop(sbi->s_mmp_tsk);
1013 brelse(sbi->s_sbh);
1014 sb->s_fs_info = NULL;
1016 * Now that we are completely done shutting down the
1017 * superblock, we need to actually destroy the kobject.
1019 kobject_put(&sbi->s_kobj);
1020 wait_for_completion(&sbi->s_kobj_unregister);
1021 if (sbi->s_chksum_driver)
1022 crypto_free_shash(sbi->s_chksum_driver);
1023 kfree(sbi->s_blockgroup_lock);
1024 fs_put_dax(sbi->s_daxdev);
1025 kfree(sbi);
1028 static struct kmem_cache *ext4_inode_cachep;
1031 * Called inside transaction, so use GFP_NOFS
1033 static struct inode *ext4_alloc_inode(struct super_block *sb)
1035 struct ext4_inode_info *ei;
1037 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1038 if (!ei)
1039 return NULL;
1041 inode_set_iversion(&ei->vfs_inode, 1);
1042 spin_lock_init(&ei->i_raw_lock);
1043 INIT_LIST_HEAD(&ei->i_prealloc_list);
1044 spin_lock_init(&ei->i_prealloc_lock);
1045 ext4_es_init_tree(&ei->i_es_tree);
1046 rwlock_init(&ei->i_es_lock);
1047 INIT_LIST_HEAD(&ei->i_es_list);
1048 ei->i_es_all_nr = 0;
1049 ei->i_es_shk_nr = 0;
1050 ei->i_es_shrink_lblk = 0;
1051 ei->i_reserved_data_blocks = 0;
1052 ei->i_da_metadata_calc_len = 0;
1053 ei->i_da_metadata_calc_last_lblock = 0;
1054 spin_lock_init(&(ei->i_block_reservation_lock));
1055 ext4_init_pending_tree(&ei->i_pending_tree);
1056 #ifdef CONFIG_QUOTA
1057 ei->i_reserved_quota = 0;
1058 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1059 #endif
1060 ei->jinode = NULL;
1061 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1062 spin_lock_init(&ei->i_completed_io_lock);
1063 ei->i_sync_tid = 0;
1064 ei->i_datasync_tid = 0;
1065 atomic_set(&ei->i_unwritten, 0);
1066 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1067 return &ei->vfs_inode;
1070 static int ext4_drop_inode(struct inode *inode)
1072 int drop = generic_drop_inode(inode);
1074 trace_ext4_drop_inode(inode, drop);
1075 return drop;
1078 static void ext4_i_callback(struct rcu_head *head)
1080 struct inode *inode = container_of(head, struct inode, i_rcu);
1081 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1084 static void ext4_destroy_inode(struct inode *inode)
1086 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1087 ext4_msg(inode->i_sb, KERN_ERR,
1088 "Inode %lu (%p): orphan list check failed!",
1089 inode->i_ino, EXT4_I(inode));
1090 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1091 EXT4_I(inode), sizeof(struct ext4_inode_info),
1092 true);
1093 dump_stack();
1095 call_rcu(&inode->i_rcu, ext4_i_callback);
1098 static void init_once(void *foo)
1100 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1102 INIT_LIST_HEAD(&ei->i_orphan);
1103 init_rwsem(&ei->xattr_sem);
1104 init_rwsem(&ei->i_data_sem);
1105 init_rwsem(&ei->i_mmap_sem);
1106 inode_init_once(&ei->vfs_inode);
1109 static int __init init_inodecache(void)
1111 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1112 sizeof(struct ext4_inode_info), 0,
1113 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1114 SLAB_ACCOUNT),
1115 offsetof(struct ext4_inode_info, i_data),
1116 sizeof_field(struct ext4_inode_info, i_data),
1117 init_once);
1118 if (ext4_inode_cachep == NULL)
1119 return -ENOMEM;
1120 return 0;
1123 static void destroy_inodecache(void)
1126 * Make sure all delayed rcu free inodes are flushed before we
1127 * destroy cache.
1129 rcu_barrier();
1130 kmem_cache_destroy(ext4_inode_cachep);
1133 void ext4_clear_inode(struct inode *inode)
1135 invalidate_inode_buffers(inode);
1136 clear_inode(inode);
1137 dquot_drop(inode);
1138 ext4_discard_preallocations(inode);
1139 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1140 if (EXT4_I(inode)->jinode) {
1141 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1142 EXT4_I(inode)->jinode);
1143 jbd2_free_inode(EXT4_I(inode)->jinode);
1144 EXT4_I(inode)->jinode = NULL;
1146 fscrypt_put_encryption_info(inode);
1149 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1150 u64 ino, u32 generation)
1152 struct inode *inode;
1154 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1155 return ERR_PTR(-ESTALE);
1156 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1157 return ERR_PTR(-ESTALE);
1159 /* iget isn't really right if the inode is currently unallocated!!
1161 * ext4_read_inode will return a bad_inode if the inode had been
1162 * deleted, so we should be safe.
1164 * Currently we don't know the generation for parent directory, so
1165 * a generation of 0 means "accept any"
1167 inode = ext4_iget_normal(sb, ino);
1168 if (IS_ERR(inode))
1169 return ERR_CAST(inode);
1170 if (generation && inode->i_generation != generation) {
1171 iput(inode);
1172 return ERR_PTR(-ESTALE);
1175 return inode;
1178 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1179 int fh_len, int fh_type)
1181 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1182 ext4_nfs_get_inode);
1185 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1186 int fh_len, int fh_type)
1188 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1189 ext4_nfs_get_inode);
1193 * Try to release metadata pages (indirect blocks, directories) which are
1194 * mapped via the block device. Since these pages could have journal heads
1195 * which would prevent try_to_free_buffers() from freeing them, we must use
1196 * jbd2 layer's try_to_free_buffers() function to release them.
1198 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1199 gfp_t wait)
1201 journal_t *journal = EXT4_SB(sb)->s_journal;
1203 WARN_ON(PageChecked(page));
1204 if (!page_has_buffers(page))
1205 return 0;
1206 if (journal)
1207 return jbd2_journal_try_to_free_buffers(journal, page,
1208 wait & ~__GFP_DIRECT_RECLAIM);
1209 return try_to_free_buffers(page);
1212 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1213 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1215 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1216 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1219 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1220 void *fs_data)
1222 handle_t *handle = fs_data;
1223 int res, res2, credits, retries = 0;
1226 * Encrypting the root directory is not allowed because e2fsck expects
1227 * lost+found to exist and be unencrypted, and encrypting the root
1228 * directory would imply encrypting the lost+found directory as well as
1229 * the filename "lost+found" itself.
1231 if (inode->i_ino == EXT4_ROOT_INO)
1232 return -EPERM;
1234 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1235 return -EINVAL;
1237 res = ext4_convert_inline_data(inode);
1238 if (res)
1239 return res;
1242 * If a journal handle was specified, then the encryption context is
1243 * being set on a new inode via inheritance and is part of a larger
1244 * transaction to create the inode. Otherwise the encryption context is
1245 * being set on an existing inode in its own transaction. Only in the
1246 * latter case should the "retry on ENOSPC" logic be used.
1249 if (handle) {
1250 res = ext4_xattr_set_handle(handle, inode,
1251 EXT4_XATTR_INDEX_ENCRYPTION,
1252 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1253 ctx, len, 0);
1254 if (!res) {
1255 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1256 ext4_clear_inode_state(inode,
1257 EXT4_STATE_MAY_INLINE_DATA);
1259 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1260 * S_DAX may be disabled
1262 ext4_set_inode_flags(inode);
1264 return res;
1267 res = dquot_initialize(inode);
1268 if (res)
1269 return res;
1270 retry:
1271 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1272 &credits);
1273 if (res)
1274 return res;
1276 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1277 if (IS_ERR(handle))
1278 return PTR_ERR(handle);
1280 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1281 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1282 ctx, len, 0);
1283 if (!res) {
1284 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1286 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1287 * S_DAX may be disabled
1289 ext4_set_inode_flags(inode);
1290 res = ext4_mark_inode_dirty(handle, inode);
1291 if (res)
1292 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1294 res2 = ext4_journal_stop(handle);
1296 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1297 goto retry;
1298 if (!res)
1299 res = res2;
1300 return res;
1303 static bool ext4_dummy_context(struct inode *inode)
1305 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1308 static const struct fscrypt_operations ext4_cryptops = {
1309 .key_prefix = "ext4:",
1310 .get_context = ext4_get_context,
1311 .set_context = ext4_set_context,
1312 .dummy_context = ext4_dummy_context,
1313 .empty_dir = ext4_empty_dir,
1314 .max_namelen = EXT4_NAME_LEN,
1316 #endif
1318 #ifdef CONFIG_QUOTA
1319 static const char * const quotatypes[] = INITQFNAMES;
1320 #define QTYPE2NAME(t) (quotatypes[t])
1322 static int ext4_write_dquot(struct dquot *dquot);
1323 static int ext4_acquire_dquot(struct dquot *dquot);
1324 static int ext4_release_dquot(struct dquot *dquot);
1325 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1326 static int ext4_write_info(struct super_block *sb, int type);
1327 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1328 const struct path *path);
1329 static int ext4_quota_on_mount(struct super_block *sb, int type);
1330 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1331 size_t len, loff_t off);
1332 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1333 const char *data, size_t len, loff_t off);
1334 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1335 unsigned int flags);
1336 static int ext4_enable_quotas(struct super_block *sb);
1337 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1339 static struct dquot **ext4_get_dquots(struct inode *inode)
1341 return EXT4_I(inode)->i_dquot;
1344 static const struct dquot_operations ext4_quota_operations = {
1345 .get_reserved_space = ext4_get_reserved_space,
1346 .write_dquot = ext4_write_dquot,
1347 .acquire_dquot = ext4_acquire_dquot,
1348 .release_dquot = ext4_release_dquot,
1349 .mark_dirty = ext4_mark_dquot_dirty,
1350 .write_info = ext4_write_info,
1351 .alloc_dquot = dquot_alloc,
1352 .destroy_dquot = dquot_destroy,
1353 .get_projid = ext4_get_projid,
1354 .get_inode_usage = ext4_get_inode_usage,
1355 .get_next_id = ext4_get_next_id,
1358 static const struct quotactl_ops ext4_qctl_operations = {
1359 .quota_on = ext4_quota_on,
1360 .quota_off = ext4_quota_off,
1361 .quota_sync = dquot_quota_sync,
1362 .get_state = dquot_get_state,
1363 .set_info = dquot_set_dqinfo,
1364 .get_dqblk = dquot_get_dqblk,
1365 .set_dqblk = dquot_set_dqblk,
1366 .get_nextdqblk = dquot_get_next_dqblk,
1368 #endif
1370 static const struct super_operations ext4_sops = {
1371 .alloc_inode = ext4_alloc_inode,
1372 .destroy_inode = ext4_destroy_inode,
1373 .write_inode = ext4_write_inode,
1374 .dirty_inode = ext4_dirty_inode,
1375 .drop_inode = ext4_drop_inode,
1376 .evict_inode = ext4_evict_inode,
1377 .put_super = ext4_put_super,
1378 .sync_fs = ext4_sync_fs,
1379 .freeze_fs = ext4_freeze,
1380 .unfreeze_fs = ext4_unfreeze,
1381 .statfs = ext4_statfs,
1382 .remount_fs = ext4_remount,
1383 .show_options = ext4_show_options,
1384 #ifdef CONFIG_QUOTA
1385 .quota_read = ext4_quota_read,
1386 .quota_write = ext4_quota_write,
1387 .get_dquots = ext4_get_dquots,
1388 #endif
1389 .bdev_try_to_free_page = bdev_try_to_free_page,
1392 static const struct export_operations ext4_export_ops = {
1393 .fh_to_dentry = ext4_fh_to_dentry,
1394 .fh_to_parent = ext4_fh_to_parent,
1395 .get_parent = ext4_get_parent,
1398 enum {
1399 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1400 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1401 Opt_nouid32, Opt_debug, Opt_removed,
1402 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1403 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1404 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1405 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1406 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1407 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1408 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1409 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1410 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1411 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1412 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1413 Opt_nowarn_on_error, Opt_mblk_io_submit,
1414 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1415 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1416 Opt_inode_readahead_blks, Opt_journal_ioprio,
1417 Opt_dioread_nolock, Opt_dioread_lock,
1418 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1419 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1422 static const match_table_t tokens = {
1423 {Opt_bsd_df, "bsddf"},
1424 {Opt_minix_df, "minixdf"},
1425 {Opt_grpid, "grpid"},
1426 {Opt_grpid, "bsdgroups"},
1427 {Opt_nogrpid, "nogrpid"},
1428 {Opt_nogrpid, "sysvgroups"},
1429 {Opt_resgid, "resgid=%u"},
1430 {Opt_resuid, "resuid=%u"},
1431 {Opt_sb, "sb=%u"},
1432 {Opt_err_cont, "errors=continue"},
1433 {Opt_err_panic, "errors=panic"},
1434 {Opt_err_ro, "errors=remount-ro"},
1435 {Opt_nouid32, "nouid32"},
1436 {Opt_debug, "debug"},
1437 {Opt_removed, "oldalloc"},
1438 {Opt_removed, "orlov"},
1439 {Opt_user_xattr, "user_xattr"},
1440 {Opt_nouser_xattr, "nouser_xattr"},
1441 {Opt_acl, "acl"},
1442 {Opt_noacl, "noacl"},
1443 {Opt_noload, "norecovery"},
1444 {Opt_noload, "noload"},
1445 {Opt_removed, "nobh"},
1446 {Opt_removed, "bh"},
1447 {Opt_commit, "commit=%u"},
1448 {Opt_min_batch_time, "min_batch_time=%u"},
1449 {Opt_max_batch_time, "max_batch_time=%u"},
1450 {Opt_journal_dev, "journal_dev=%u"},
1451 {Opt_journal_path, "journal_path=%s"},
1452 {Opt_journal_checksum, "journal_checksum"},
1453 {Opt_nojournal_checksum, "nojournal_checksum"},
1454 {Opt_journal_async_commit, "journal_async_commit"},
1455 {Opt_abort, "abort"},
1456 {Opt_data_journal, "data=journal"},
1457 {Opt_data_ordered, "data=ordered"},
1458 {Opt_data_writeback, "data=writeback"},
1459 {Opt_data_err_abort, "data_err=abort"},
1460 {Opt_data_err_ignore, "data_err=ignore"},
1461 {Opt_offusrjquota, "usrjquota="},
1462 {Opt_usrjquota, "usrjquota=%s"},
1463 {Opt_offgrpjquota, "grpjquota="},
1464 {Opt_grpjquota, "grpjquota=%s"},
1465 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1466 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1467 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1468 {Opt_grpquota, "grpquota"},
1469 {Opt_noquota, "noquota"},
1470 {Opt_quota, "quota"},
1471 {Opt_usrquota, "usrquota"},
1472 {Opt_prjquota, "prjquota"},
1473 {Opt_barrier, "barrier=%u"},
1474 {Opt_barrier, "barrier"},
1475 {Opt_nobarrier, "nobarrier"},
1476 {Opt_i_version, "i_version"},
1477 {Opt_dax, "dax"},
1478 {Opt_stripe, "stripe=%u"},
1479 {Opt_delalloc, "delalloc"},
1480 {Opt_warn_on_error, "warn_on_error"},
1481 {Opt_nowarn_on_error, "nowarn_on_error"},
1482 {Opt_lazytime, "lazytime"},
1483 {Opt_nolazytime, "nolazytime"},
1484 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1485 {Opt_nodelalloc, "nodelalloc"},
1486 {Opt_removed, "mblk_io_submit"},
1487 {Opt_removed, "nomblk_io_submit"},
1488 {Opt_block_validity, "block_validity"},
1489 {Opt_noblock_validity, "noblock_validity"},
1490 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1491 {Opt_journal_ioprio, "journal_ioprio=%u"},
1492 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1493 {Opt_auto_da_alloc, "auto_da_alloc"},
1494 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1495 {Opt_dioread_nolock, "dioread_nolock"},
1496 {Opt_dioread_lock, "dioread_lock"},
1497 {Opt_discard, "discard"},
1498 {Opt_nodiscard, "nodiscard"},
1499 {Opt_init_itable, "init_itable=%u"},
1500 {Opt_init_itable, "init_itable"},
1501 {Opt_noinit_itable, "noinit_itable"},
1502 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1503 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1504 {Opt_nombcache, "nombcache"},
1505 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1506 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1507 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1508 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1509 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1510 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1511 {Opt_err, NULL},
1514 static ext4_fsblk_t get_sb_block(void **data)
1516 ext4_fsblk_t sb_block;
1517 char *options = (char *) *data;
1519 if (!options || strncmp(options, "sb=", 3) != 0)
1520 return 1; /* Default location */
1522 options += 3;
1523 /* TODO: use simple_strtoll with >32bit ext4 */
1524 sb_block = simple_strtoul(options, &options, 0);
1525 if (*options && *options != ',') {
1526 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1527 (char *) *data);
1528 return 1;
1530 if (*options == ',')
1531 options++;
1532 *data = (void *) options;
1534 return sb_block;
1537 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1538 static const char deprecated_msg[] =
1539 "Mount option \"%s\" will be removed by %s\n"
1540 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1542 #ifdef CONFIG_QUOTA
1543 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1545 struct ext4_sb_info *sbi = EXT4_SB(sb);
1546 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1547 int ret = -1;
1549 if (sb_any_quota_loaded(sb) && !old_qname) {
1550 ext4_msg(sb, KERN_ERR,
1551 "Cannot change journaled "
1552 "quota options when quota turned on");
1553 return -1;
1555 if (ext4_has_feature_quota(sb)) {
1556 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1557 "ignored when QUOTA feature is enabled");
1558 return 1;
1560 qname = match_strdup(args);
1561 if (!qname) {
1562 ext4_msg(sb, KERN_ERR,
1563 "Not enough memory for storing quotafile name");
1564 return -1;
1566 if (old_qname) {
1567 if (strcmp(old_qname, qname) == 0)
1568 ret = 1;
1569 else
1570 ext4_msg(sb, KERN_ERR,
1571 "%s quota file already specified",
1572 QTYPE2NAME(qtype));
1573 goto errout;
1575 if (strchr(qname, '/')) {
1576 ext4_msg(sb, KERN_ERR,
1577 "quotafile must be on filesystem root");
1578 goto errout;
1580 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1581 set_opt(sb, QUOTA);
1582 return 1;
1583 errout:
1584 kfree(qname);
1585 return ret;
1588 static int clear_qf_name(struct super_block *sb, int qtype)
1591 struct ext4_sb_info *sbi = EXT4_SB(sb);
1592 char *old_qname = get_qf_name(sb, sbi, qtype);
1594 if (sb_any_quota_loaded(sb) && old_qname) {
1595 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1596 " when quota turned on");
1597 return -1;
1599 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1600 synchronize_rcu();
1601 kfree(old_qname);
1602 return 1;
1604 #endif
1606 #define MOPT_SET 0x0001
1607 #define MOPT_CLEAR 0x0002
1608 #define MOPT_NOSUPPORT 0x0004
1609 #define MOPT_EXPLICIT 0x0008
1610 #define MOPT_CLEAR_ERR 0x0010
1611 #define MOPT_GTE0 0x0020
1612 #ifdef CONFIG_QUOTA
1613 #define MOPT_Q 0
1614 #define MOPT_QFMT 0x0040
1615 #else
1616 #define MOPT_Q MOPT_NOSUPPORT
1617 #define MOPT_QFMT MOPT_NOSUPPORT
1618 #endif
1619 #define MOPT_DATAJ 0x0080
1620 #define MOPT_NO_EXT2 0x0100
1621 #define MOPT_NO_EXT3 0x0200
1622 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1623 #define MOPT_STRING 0x0400
1625 static const struct mount_opts {
1626 int token;
1627 int mount_opt;
1628 int flags;
1629 } ext4_mount_opts[] = {
1630 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1631 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1632 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1633 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1634 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1635 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1636 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1637 MOPT_EXT4_ONLY | MOPT_SET},
1638 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1639 MOPT_EXT4_ONLY | MOPT_CLEAR},
1640 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1641 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1642 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1643 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1644 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1645 MOPT_EXT4_ONLY | MOPT_CLEAR},
1646 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1647 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1648 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1649 MOPT_EXT4_ONLY | MOPT_CLEAR},
1650 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1651 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1652 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1653 EXT4_MOUNT_JOURNAL_CHECKSUM),
1654 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1655 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1656 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1657 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1658 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1659 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1660 MOPT_NO_EXT2},
1661 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1662 MOPT_NO_EXT2},
1663 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1664 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1665 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1666 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1667 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1668 {Opt_commit, 0, MOPT_GTE0},
1669 {Opt_max_batch_time, 0, MOPT_GTE0},
1670 {Opt_min_batch_time, 0, MOPT_GTE0},
1671 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1672 {Opt_init_itable, 0, MOPT_GTE0},
1673 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1674 {Opt_stripe, 0, MOPT_GTE0},
1675 {Opt_resuid, 0, MOPT_GTE0},
1676 {Opt_resgid, 0, MOPT_GTE0},
1677 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1678 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1679 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1680 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1681 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1682 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1683 MOPT_NO_EXT2 | MOPT_DATAJ},
1684 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1685 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1686 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1687 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1688 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1689 #else
1690 {Opt_acl, 0, MOPT_NOSUPPORT},
1691 {Opt_noacl, 0, MOPT_NOSUPPORT},
1692 #endif
1693 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1694 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1695 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1696 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1697 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1698 MOPT_SET | MOPT_Q},
1699 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1700 MOPT_SET | MOPT_Q},
1701 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1702 MOPT_SET | MOPT_Q},
1703 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1704 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1705 MOPT_CLEAR | MOPT_Q},
1706 {Opt_usrjquota, 0, MOPT_Q},
1707 {Opt_grpjquota, 0, MOPT_Q},
1708 {Opt_offusrjquota, 0, MOPT_Q},
1709 {Opt_offgrpjquota, 0, MOPT_Q},
1710 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1711 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1712 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1713 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1714 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1715 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1716 {Opt_err, 0, 0}
1719 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1720 substring_t *args, unsigned long *journal_devnum,
1721 unsigned int *journal_ioprio, int is_remount)
1723 struct ext4_sb_info *sbi = EXT4_SB(sb);
1724 const struct mount_opts *m;
1725 kuid_t uid;
1726 kgid_t gid;
1727 int arg = 0;
1729 #ifdef CONFIG_QUOTA
1730 if (token == Opt_usrjquota)
1731 return set_qf_name(sb, USRQUOTA, &args[0]);
1732 else if (token == Opt_grpjquota)
1733 return set_qf_name(sb, GRPQUOTA, &args[0]);
1734 else if (token == Opt_offusrjquota)
1735 return clear_qf_name(sb, USRQUOTA);
1736 else if (token == Opt_offgrpjquota)
1737 return clear_qf_name(sb, GRPQUOTA);
1738 #endif
1739 switch (token) {
1740 case Opt_noacl:
1741 case Opt_nouser_xattr:
1742 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1743 break;
1744 case Opt_sb:
1745 return 1; /* handled by get_sb_block() */
1746 case Opt_removed:
1747 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1748 return 1;
1749 case Opt_abort:
1750 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1751 return 1;
1752 case Opt_i_version:
1753 sb->s_flags |= SB_I_VERSION;
1754 return 1;
1755 case Opt_lazytime:
1756 sb->s_flags |= SB_LAZYTIME;
1757 return 1;
1758 case Opt_nolazytime:
1759 sb->s_flags &= ~SB_LAZYTIME;
1760 return 1;
1763 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1764 if (token == m->token)
1765 break;
1767 if (m->token == Opt_err) {
1768 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1769 "or missing value", opt);
1770 return -1;
1773 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1774 ext4_msg(sb, KERN_ERR,
1775 "Mount option \"%s\" incompatible with ext2", opt);
1776 return -1;
1778 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1779 ext4_msg(sb, KERN_ERR,
1780 "Mount option \"%s\" incompatible with ext3", opt);
1781 return -1;
1784 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1785 return -1;
1786 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1787 return -1;
1788 if (m->flags & MOPT_EXPLICIT) {
1789 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1790 set_opt2(sb, EXPLICIT_DELALLOC);
1791 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1792 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1793 } else
1794 return -1;
1796 if (m->flags & MOPT_CLEAR_ERR)
1797 clear_opt(sb, ERRORS_MASK);
1798 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1799 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1800 "options when quota turned on");
1801 return -1;
1804 if (m->flags & MOPT_NOSUPPORT) {
1805 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1806 } else if (token == Opt_commit) {
1807 if (arg == 0)
1808 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1809 sbi->s_commit_interval = HZ * arg;
1810 } else if (token == Opt_debug_want_extra_isize) {
1811 sbi->s_want_extra_isize = arg;
1812 } else if (token == Opt_max_batch_time) {
1813 sbi->s_max_batch_time = arg;
1814 } else if (token == Opt_min_batch_time) {
1815 sbi->s_min_batch_time = arg;
1816 } else if (token == Opt_inode_readahead_blks) {
1817 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1818 ext4_msg(sb, KERN_ERR,
1819 "EXT4-fs: inode_readahead_blks must be "
1820 "0 or a power of 2 smaller than 2^31");
1821 return -1;
1823 sbi->s_inode_readahead_blks = arg;
1824 } else if (token == Opt_init_itable) {
1825 set_opt(sb, INIT_INODE_TABLE);
1826 if (!args->from)
1827 arg = EXT4_DEF_LI_WAIT_MULT;
1828 sbi->s_li_wait_mult = arg;
1829 } else if (token == Opt_max_dir_size_kb) {
1830 sbi->s_max_dir_size_kb = arg;
1831 } else if (token == Opt_stripe) {
1832 sbi->s_stripe = arg;
1833 } else if (token == Opt_resuid) {
1834 uid = make_kuid(current_user_ns(), arg);
1835 if (!uid_valid(uid)) {
1836 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1837 return -1;
1839 sbi->s_resuid = uid;
1840 } else if (token == Opt_resgid) {
1841 gid = make_kgid(current_user_ns(), arg);
1842 if (!gid_valid(gid)) {
1843 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1844 return -1;
1846 sbi->s_resgid = gid;
1847 } else if (token == Opt_journal_dev) {
1848 if (is_remount) {
1849 ext4_msg(sb, KERN_ERR,
1850 "Cannot specify journal on remount");
1851 return -1;
1853 *journal_devnum = arg;
1854 } else if (token == Opt_journal_path) {
1855 char *journal_path;
1856 struct inode *journal_inode;
1857 struct path path;
1858 int error;
1860 if (is_remount) {
1861 ext4_msg(sb, KERN_ERR,
1862 "Cannot specify journal on remount");
1863 return -1;
1865 journal_path = match_strdup(&args[0]);
1866 if (!journal_path) {
1867 ext4_msg(sb, KERN_ERR, "error: could not dup "
1868 "journal device string");
1869 return -1;
1872 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1873 if (error) {
1874 ext4_msg(sb, KERN_ERR, "error: could not find "
1875 "journal device path: error %d", error);
1876 kfree(journal_path);
1877 return -1;
1880 journal_inode = d_inode(path.dentry);
1881 if (!S_ISBLK(journal_inode->i_mode)) {
1882 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1883 "is not a block device", journal_path);
1884 path_put(&path);
1885 kfree(journal_path);
1886 return -1;
1889 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1890 path_put(&path);
1891 kfree(journal_path);
1892 } else if (token == Opt_journal_ioprio) {
1893 if (arg > 7) {
1894 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1895 " (must be 0-7)");
1896 return -1;
1898 *journal_ioprio =
1899 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1900 } else if (token == Opt_test_dummy_encryption) {
1901 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1902 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1903 ext4_msg(sb, KERN_WARNING,
1904 "Test dummy encryption mode enabled");
1905 #else
1906 ext4_msg(sb, KERN_WARNING,
1907 "Test dummy encryption mount option ignored");
1908 #endif
1909 } else if (m->flags & MOPT_DATAJ) {
1910 if (is_remount) {
1911 if (!sbi->s_journal)
1912 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1913 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1914 ext4_msg(sb, KERN_ERR,
1915 "Cannot change data mode on remount");
1916 return -1;
1918 } else {
1919 clear_opt(sb, DATA_FLAGS);
1920 sbi->s_mount_opt |= m->mount_opt;
1922 #ifdef CONFIG_QUOTA
1923 } else if (m->flags & MOPT_QFMT) {
1924 if (sb_any_quota_loaded(sb) &&
1925 sbi->s_jquota_fmt != m->mount_opt) {
1926 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1927 "quota options when quota turned on");
1928 return -1;
1930 if (ext4_has_feature_quota(sb)) {
1931 ext4_msg(sb, KERN_INFO,
1932 "Quota format mount options ignored "
1933 "when QUOTA feature is enabled");
1934 return 1;
1936 sbi->s_jquota_fmt = m->mount_opt;
1937 #endif
1938 } else if (token == Opt_dax) {
1939 #ifdef CONFIG_FS_DAX
1940 ext4_msg(sb, KERN_WARNING,
1941 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1942 sbi->s_mount_opt |= m->mount_opt;
1943 #else
1944 ext4_msg(sb, KERN_INFO, "dax option not supported");
1945 return -1;
1946 #endif
1947 } else if (token == Opt_data_err_abort) {
1948 sbi->s_mount_opt |= m->mount_opt;
1949 } else if (token == Opt_data_err_ignore) {
1950 sbi->s_mount_opt &= ~m->mount_opt;
1951 } else {
1952 if (!args->from)
1953 arg = 1;
1954 if (m->flags & MOPT_CLEAR)
1955 arg = !arg;
1956 else if (unlikely(!(m->flags & MOPT_SET))) {
1957 ext4_msg(sb, KERN_WARNING,
1958 "buggy handling of option %s", opt);
1959 WARN_ON(1);
1960 return -1;
1962 if (arg != 0)
1963 sbi->s_mount_opt |= m->mount_opt;
1964 else
1965 sbi->s_mount_opt &= ~m->mount_opt;
1967 return 1;
1970 static int parse_options(char *options, struct super_block *sb,
1971 unsigned long *journal_devnum,
1972 unsigned int *journal_ioprio,
1973 int is_remount)
1975 struct ext4_sb_info *sbi = EXT4_SB(sb);
1976 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
1977 substring_t args[MAX_OPT_ARGS];
1978 int token;
1980 if (!options)
1981 return 1;
1983 while ((p = strsep(&options, ",")) != NULL) {
1984 if (!*p)
1985 continue;
1987 * Initialize args struct so we know whether arg was
1988 * found; some options take optional arguments.
1990 args[0].to = args[0].from = NULL;
1991 token = match_token(p, tokens, args);
1992 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1993 journal_ioprio, is_remount) < 0)
1994 return 0;
1996 #ifdef CONFIG_QUOTA
1998 * We do the test below only for project quotas. 'usrquota' and
1999 * 'grpquota' mount options are allowed even without quota feature
2000 * to support legacy quotas in quota files.
2002 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2003 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2004 "Cannot enable project quota enforcement.");
2005 return 0;
2007 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2008 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2009 if (usr_qf_name || grp_qf_name) {
2010 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2011 clear_opt(sb, USRQUOTA);
2013 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2014 clear_opt(sb, GRPQUOTA);
2016 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2017 ext4_msg(sb, KERN_ERR, "old and new quota "
2018 "format mixing");
2019 return 0;
2022 if (!sbi->s_jquota_fmt) {
2023 ext4_msg(sb, KERN_ERR, "journaled quota format "
2024 "not specified");
2025 return 0;
2028 #endif
2029 if (test_opt(sb, DIOREAD_NOLOCK)) {
2030 int blocksize =
2031 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2033 if (blocksize < PAGE_SIZE) {
2034 ext4_msg(sb, KERN_ERR, "can't mount with "
2035 "dioread_nolock if block size != PAGE_SIZE");
2036 return 0;
2039 return 1;
2042 static inline void ext4_show_quota_options(struct seq_file *seq,
2043 struct super_block *sb)
2045 #if defined(CONFIG_QUOTA)
2046 struct ext4_sb_info *sbi = EXT4_SB(sb);
2047 char *usr_qf_name, *grp_qf_name;
2049 if (sbi->s_jquota_fmt) {
2050 char *fmtname = "";
2052 switch (sbi->s_jquota_fmt) {
2053 case QFMT_VFS_OLD:
2054 fmtname = "vfsold";
2055 break;
2056 case QFMT_VFS_V0:
2057 fmtname = "vfsv0";
2058 break;
2059 case QFMT_VFS_V1:
2060 fmtname = "vfsv1";
2061 break;
2063 seq_printf(seq, ",jqfmt=%s", fmtname);
2066 rcu_read_lock();
2067 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2068 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2069 if (usr_qf_name)
2070 seq_show_option(seq, "usrjquota", usr_qf_name);
2071 if (grp_qf_name)
2072 seq_show_option(seq, "grpjquota", grp_qf_name);
2073 rcu_read_unlock();
2074 #endif
2077 static const char *token2str(int token)
2079 const struct match_token *t;
2081 for (t = tokens; t->token != Opt_err; t++)
2082 if (t->token == token && !strchr(t->pattern, '='))
2083 break;
2084 return t->pattern;
2088 * Show an option if
2089 * - it's set to a non-default value OR
2090 * - if the per-sb default is different from the global default
2092 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2093 int nodefs)
2095 struct ext4_sb_info *sbi = EXT4_SB(sb);
2096 struct ext4_super_block *es = sbi->s_es;
2097 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2098 const struct mount_opts *m;
2099 char sep = nodefs ? '\n' : ',';
2101 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2102 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2104 if (sbi->s_sb_block != 1)
2105 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2107 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2108 int want_set = m->flags & MOPT_SET;
2109 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2110 (m->flags & MOPT_CLEAR_ERR))
2111 continue;
2112 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2113 continue; /* skip if same as the default */
2114 if ((want_set &&
2115 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2116 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2117 continue; /* select Opt_noFoo vs Opt_Foo */
2118 SEQ_OPTS_PRINT("%s", token2str(m->token));
2121 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2122 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2123 SEQ_OPTS_PRINT("resuid=%u",
2124 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2125 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2126 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2127 SEQ_OPTS_PRINT("resgid=%u",
2128 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2129 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2130 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2131 SEQ_OPTS_PUTS("errors=remount-ro");
2132 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2133 SEQ_OPTS_PUTS("errors=continue");
2134 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2135 SEQ_OPTS_PUTS("errors=panic");
2136 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2137 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2138 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2139 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2140 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2141 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2142 if (sb->s_flags & SB_I_VERSION)
2143 SEQ_OPTS_PUTS("i_version");
2144 if (nodefs || sbi->s_stripe)
2145 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2146 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2147 (sbi->s_mount_opt ^ def_mount_opt)) {
2148 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2149 SEQ_OPTS_PUTS("data=journal");
2150 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2151 SEQ_OPTS_PUTS("data=ordered");
2152 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2153 SEQ_OPTS_PUTS("data=writeback");
2155 if (nodefs ||
2156 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2157 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2158 sbi->s_inode_readahead_blks);
2160 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2161 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2162 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2163 if (nodefs || sbi->s_max_dir_size_kb)
2164 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2165 if (test_opt(sb, DATA_ERR_ABORT))
2166 SEQ_OPTS_PUTS("data_err=abort");
2167 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2168 SEQ_OPTS_PUTS("test_dummy_encryption");
2170 ext4_show_quota_options(seq, sb);
2171 return 0;
2174 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2176 return _ext4_show_options(seq, root->d_sb, 0);
2179 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2181 struct super_block *sb = seq->private;
2182 int rc;
2184 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2185 rc = _ext4_show_options(seq, sb, 1);
2186 seq_puts(seq, "\n");
2187 return rc;
2190 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2191 int read_only)
2193 struct ext4_sb_info *sbi = EXT4_SB(sb);
2194 int err = 0;
2196 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2197 ext4_msg(sb, KERN_ERR, "revision level too high, "
2198 "forcing read-only mode");
2199 err = -EROFS;
2201 if (read_only)
2202 goto done;
2203 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2204 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2205 "running e2fsck is recommended");
2206 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2207 ext4_msg(sb, KERN_WARNING,
2208 "warning: mounting fs with errors, "
2209 "running e2fsck is recommended");
2210 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2211 le16_to_cpu(es->s_mnt_count) >=
2212 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2213 ext4_msg(sb, KERN_WARNING,
2214 "warning: maximal mount count reached, "
2215 "running e2fsck is recommended");
2216 else if (le32_to_cpu(es->s_checkinterval) &&
2217 (ext4_get_tstamp(es, s_lastcheck) +
2218 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2219 ext4_msg(sb, KERN_WARNING,
2220 "warning: checktime reached, "
2221 "running e2fsck is recommended");
2222 if (!sbi->s_journal)
2223 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2224 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2225 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2226 le16_add_cpu(&es->s_mnt_count, 1);
2227 ext4_update_tstamp(es, s_mtime);
2228 ext4_update_dynamic_rev(sb);
2229 if (sbi->s_journal)
2230 ext4_set_feature_journal_needs_recovery(sb);
2232 err = ext4_commit_super(sb, 1);
2233 done:
2234 if (test_opt(sb, DEBUG))
2235 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2236 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2237 sb->s_blocksize,
2238 sbi->s_groups_count,
2239 EXT4_BLOCKS_PER_GROUP(sb),
2240 EXT4_INODES_PER_GROUP(sb),
2241 sbi->s_mount_opt, sbi->s_mount_opt2);
2243 cleancache_init_fs(sb);
2244 return err;
2247 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2249 struct ext4_sb_info *sbi = EXT4_SB(sb);
2250 struct flex_groups *new_groups;
2251 int size;
2253 if (!sbi->s_log_groups_per_flex)
2254 return 0;
2256 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2257 if (size <= sbi->s_flex_groups_allocated)
2258 return 0;
2260 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2261 new_groups = kvzalloc(size, GFP_KERNEL);
2262 if (!new_groups) {
2263 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2264 size / (int) sizeof(struct flex_groups));
2265 return -ENOMEM;
2268 if (sbi->s_flex_groups) {
2269 memcpy(new_groups, sbi->s_flex_groups,
2270 (sbi->s_flex_groups_allocated *
2271 sizeof(struct flex_groups)));
2272 kvfree(sbi->s_flex_groups);
2274 sbi->s_flex_groups = new_groups;
2275 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2276 return 0;
2279 static int ext4_fill_flex_info(struct super_block *sb)
2281 struct ext4_sb_info *sbi = EXT4_SB(sb);
2282 struct ext4_group_desc *gdp = NULL;
2283 ext4_group_t flex_group;
2284 int i, err;
2286 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2287 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2288 sbi->s_log_groups_per_flex = 0;
2289 return 1;
2292 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2293 if (err)
2294 goto failed;
2296 for (i = 0; i < sbi->s_groups_count; i++) {
2297 gdp = ext4_get_group_desc(sb, i, NULL);
2299 flex_group = ext4_flex_group(sbi, i);
2300 atomic_add(ext4_free_inodes_count(sb, gdp),
2301 &sbi->s_flex_groups[flex_group].free_inodes);
2302 atomic64_add(ext4_free_group_clusters(sb, gdp),
2303 &sbi->s_flex_groups[flex_group].free_clusters);
2304 atomic_add(ext4_used_dirs_count(sb, gdp),
2305 &sbi->s_flex_groups[flex_group].used_dirs);
2308 return 1;
2309 failed:
2310 return 0;
2313 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2314 struct ext4_group_desc *gdp)
2316 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2317 __u16 crc = 0;
2318 __le32 le_group = cpu_to_le32(block_group);
2319 struct ext4_sb_info *sbi = EXT4_SB(sb);
2321 if (ext4_has_metadata_csum(sbi->s_sb)) {
2322 /* Use new metadata_csum algorithm */
2323 __u32 csum32;
2324 __u16 dummy_csum = 0;
2326 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2327 sizeof(le_group));
2328 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2329 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2330 sizeof(dummy_csum));
2331 offset += sizeof(dummy_csum);
2332 if (offset < sbi->s_desc_size)
2333 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2334 sbi->s_desc_size - offset);
2336 crc = csum32 & 0xFFFF;
2337 goto out;
2340 /* old crc16 code */
2341 if (!ext4_has_feature_gdt_csum(sb))
2342 return 0;
2344 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2345 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2346 crc = crc16(crc, (__u8 *)gdp, offset);
2347 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2348 /* for checksum of struct ext4_group_desc do the rest...*/
2349 if (ext4_has_feature_64bit(sb) &&
2350 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2351 crc = crc16(crc, (__u8 *)gdp + offset,
2352 le16_to_cpu(sbi->s_es->s_desc_size) -
2353 offset);
2355 out:
2356 return cpu_to_le16(crc);
2359 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2360 struct ext4_group_desc *gdp)
2362 if (ext4_has_group_desc_csum(sb) &&
2363 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2364 return 0;
2366 return 1;
2369 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2370 struct ext4_group_desc *gdp)
2372 if (!ext4_has_group_desc_csum(sb))
2373 return;
2374 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2377 /* Called at mount-time, super-block is locked */
2378 static int ext4_check_descriptors(struct super_block *sb,
2379 ext4_fsblk_t sb_block,
2380 ext4_group_t *first_not_zeroed)
2382 struct ext4_sb_info *sbi = EXT4_SB(sb);
2383 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2384 ext4_fsblk_t last_block;
2385 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2386 ext4_fsblk_t block_bitmap;
2387 ext4_fsblk_t inode_bitmap;
2388 ext4_fsblk_t inode_table;
2389 int flexbg_flag = 0;
2390 ext4_group_t i, grp = sbi->s_groups_count;
2392 if (ext4_has_feature_flex_bg(sb))
2393 flexbg_flag = 1;
2395 ext4_debug("Checking group descriptors");
2397 for (i = 0; i < sbi->s_groups_count; i++) {
2398 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2400 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2401 last_block = ext4_blocks_count(sbi->s_es) - 1;
2402 else
2403 last_block = first_block +
2404 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2406 if ((grp == sbi->s_groups_count) &&
2407 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2408 grp = i;
2410 block_bitmap = ext4_block_bitmap(sb, gdp);
2411 if (block_bitmap == sb_block) {
2412 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2413 "Block bitmap for group %u overlaps "
2414 "superblock", i);
2415 if (!sb_rdonly(sb))
2416 return 0;
2418 if (block_bitmap >= sb_block + 1 &&
2419 block_bitmap <= last_bg_block) {
2420 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2421 "Block bitmap for group %u overlaps "
2422 "block group descriptors", i);
2423 if (!sb_rdonly(sb))
2424 return 0;
2426 if (block_bitmap < first_block || block_bitmap > last_block) {
2427 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2428 "Block bitmap for group %u not in group "
2429 "(block %llu)!", i, block_bitmap);
2430 return 0;
2432 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2433 if (inode_bitmap == sb_block) {
2434 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2435 "Inode bitmap for group %u overlaps "
2436 "superblock", i);
2437 if (!sb_rdonly(sb))
2438 return 0;
2440 if (inode_bitmap >= sb_block + 1 &&
2441 inode_bitmap <= last_bg_block) {
2442 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2443 "Inode bitmap for group %u overlaps "
2444 "block group descriptors", i);
2445 if (!sb_rdonly(sb))
2446 return 0;
2448 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2449 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2450 "Inode bitmap for group %u not in group "
2451 "(block %llu)!", i, inode_bitmap);
2452 return 0;
2454 inode_table = ext4_inode_table(sb, gdp);
2455 if (inode_table == sb_block) {
2456 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2457 "Inode table for group %u overlaps "
2458 "superblock", i);
2459 if (!sb_rdonly(sb))
2460 return 0;
2462 if (inode_table >= sb_block + 1 &&
2463 inode_table <= last_bg_block) {
2464 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2465 "Inode table for group %u overlaps "
2466 "block group descriptors", i);
2467 if (!sb_rdonly(sb))
2468 return 0;
2470 if (inode_table < first_block ||
2471 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2472 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2473 "Inode table for group %u not in group "
2474 "(block %llu)!", i, inode_table);
2475 return 0;
2477 ext4_lock_group(sb, i);
2478 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2479 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2480 "Checksum for group %u failed (%u!=%u)",
2481 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2482 gdp)), le16_to_cpu(gdp->bg_checksum));
2483 if (!sb_rdonly(sb)) {
2484 ext4_unlock_group(sb, i);
2485 return 0;
2488 ext4_unlock_group(sb, i);
2489 if (!flexbg_flag)
2490 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2492 if (NULL != first_not_zeroed)
2493 *first_not_zeroed = grp;
2494 return 1;
2497 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2498 * the superblock) which were deleted from all directories, but held open by
2499 * a process at the time of a crash. We walk the list and try to delete these
2500 * inodes at recovery time (only with a read-write filesystem).
2502 * In order to keep the orphan inode chain consistent during traversal (in
2503 * case of crash during recovery), we link each inode into the superblock
2504 * orphan list_head and handle it the same way as an inode deletion during
2505 * normal operation (which journals the operations for us).
2507 * We only do an iget() and an iput() on each inode, which is very safe if we
2508 * accidentally point at an in-use or already deleted inode. The worst that
2509 * can happen in this case is that we get a "bit already cleared" message from
2510 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2511 * e2fsck was run on this filesystem, and it must have already done the orphan
2512 * inode cleanup for us, so we can safely abort without any further action.
2514 static void ext4_orphan_cleanup(struct super_block *sb,
2515 struct ext4_super_block *es)
2517 unsigned int s_flags = sb->s_flags;
2518 int ret, nr_orphans = 0, nr_truncates = 0;
2519 #ifdef CONFIG_QUOTA
2520 int quota_update = 0;
2521 int i;
2522 #endif
2523 if (!es->s_last_orphan) {
2524 jbd_debug(4, "no orphan inodes to clean up\n");
2525 return;
2528 if (bdev_read_only(sb->s_bdev)) {
2529 ext4_msg(sb, KERN_ERR, "write access "
2530 "unavailable, skipping orphan cleanup");
2531 return;
2534 /* Check if feature set would not allow a r/w mount */
2535 if (!ext4_feature_set_ok(sb, 0)) {
2536 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2537 "unknown ROCOMPAT features");
2538 return;
2541 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2542 /* don't clear list on RO mount w/ errors */
2543 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2544 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2545 "clearing orphan list.\n");
2546 es->s_last_orphan = 0;
2548 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2549 return;
2552 if (s_flags & SB_RDONLY) {
2553 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2554 sb->s_flags &= ~SB_RDONLY;
2556 #ifdef CONFIG_QUOTA
2557 /* Needed for iput() to work correctly and not trash data */
2558 sb->s_flags |= SB_ACTIVE;
2561 * Turn on quotas which were not enabled for read-only mounts if
2562 * filesystem has quota feature, so that they are updated correctly.
2564 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2565 int ret = ext4_enable_quotas(sb);
2567 if (!ret)
2568 quota_update = 1;
2569 else
2570 ext4_msg(sb, KERN_ERR,
2571 "Cannot turn on quotas: error %d", ret);
2574 /* Turn on journaled quotas used for old sytle */
2575 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576 if (EXT4_SB(sb)->s_qf_names[i]) {
2577 int ret = ext4_quota_on_mount(sb, i);
2579 if (!ret)
2580 quota_update = 1;
2581 else
2582 ext4_msg(sb, KERN_ERR,
2583 "Cannot turn on journaled "
2584 "quota: type %d: error %d", i, ret);
2587 #endif
2589 while (es->s_last_orphan) {
2590 struct inode *inode;
2593 * We may have encountered an error during cleanup; if
2594 * so, skip the rest.
2596 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2597 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2598 es->s_last_orphan = 0;
2599 break;
2602 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2603 if (IS_ERR(inode)) {
2604 es->s_last_orphan = 0;
2605 break;
2608 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2609 dquot_initialize(inode);
2610 if (inode->i_nlink) {
2611 if (test_opt(sb, DEBUG))
2612 ext4_msg(sb, KERN_DEBUG,
2613 "%s: truncating inode %lu to %lld bytes",
2614 __func__, inode->i_ino, inode->i_size);
2615 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2616 inode->i_ino, inode->i_size);
2617 inode_lock(inode);
2618 truncate_inode_pages(inode->i_mapping, inode->i_size);
2619 ret = ext4_truncate(inode);
2620 if (ret)
2621 ext4_std_error(inode->i_sb, ret);
2622 inode_unlock(inode);
2623 nr_truncates++;
2624 } else {
2625 if (test_opt(sb, DEBUG))
2626 ext4_msg(sb, KERN_DEBUG,
2627 "%s: deleting unreferenced inode %lu",
2628 __func__, inode->i_ino);
2629 jbd_debug(2, "deleting unreferenced inode %lu\n",
2630 inode->i_ino);
2631 nr_orphans++;
2633 iput(inode); /* The delete magic happens here! */
2636 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2638 if (nr_orphans)
2639 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2640 PLURAL(nr_orphans));
2641 if (nr_truncates)
2642 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2643 PLURAL(nr_truncates));
2644 #ifdef CONFIG_QUOTA
2645 /* Turn off quotas if they were enabled for orphan cleanup */
2646 if (quota_update) {
2647 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2648 if (sb_dqopt(sb)->files[i])
2649 dquot_quota_off(sb, i);
2652 #endif
2653 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2657 * Maximal extent format file size.
2658 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2659 * extent format containers, within a sector_t, and within i_blocks
2660 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2661 * so that won't be a limiting factor.
2663 * However there is other limiting factor. We do store extents in the form
2664 * of starting block and length, hence the resulting length of the extent
2665 * covering maximum file size must fit into on-disk format containers as
2666 * well. Given that length is always by 1 unit bigger than max unit (because
2667 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2669 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2671 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2673 loff_t res;
2674 loff_t upper_limit = MAX_LFS_FILESIZE;
2676 /* small i_blocks in vfs inode? */
2677 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2679 * CONFIG_LBDAF is not enabled implies the inode
2680 * i_block represent total blocks in 512 bytes
2681 * 32 == size of vfs inode i_blocks * 8
2683 upper_limit = (1LL << 32) - 1;
2685 /* total blocks in file system block size */
2686 upper_limit >>= (blkbits - 9);
2687 upper_limit <<= blkbits;
2691 * 32-bit extent-start container, ee_block. We lower the maxbytes
2692 * by one fs block, so ee_len can cover the extent of maximum file
2693 * size
2695 res = (1LL << 32) - 1;
2696 res <<= blkbits;
2698 /* Sanity check against vm- & vfs- imposed limits */
2699 if (res > upper_limit)
2700 res = upper_limit;
2702 return res;
2706 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2707 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2708 * We need to be 1 filesystem block less than the 2^48 sector limit.
2710 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2712 loff_t res = EXT4_NDIR_BLOCKS;
2713 int meta_blocks;
2714 loff_t upper_limit;
2715 /* This is calculated to be the largest file size for a dense, block
2716 * mapped file such that the file's total number of 512-byte sectors,
2717 * including data and all indirect blocks, does not exceed (2^48 - 1).
2719 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2720 * number of 512-byte sectors of the file.
2723 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2725 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2726 * the inode i_block field represents total file blocks in
2727 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2729 upper_limit = (1LL << 32) - 1;
2731 /* total blocks in file system block size */
2732 upper_limit >>= (bits - 9);
2734 } else {
2736 * We use 48 bit ext4_inode i_blocks
2737 * With EXT4_HUGE_FILE_FL set the i_blocks
2738 * represent total number of blocks in
2739 * file system block size
2741 upper_limit = (1LL << 48) - 1;
2745 /* indirect blocks */
2746 meta_blocks = 1;
2747 /* double indirect blocks */
2748 meta_blocks += 1 + (1LL << (bits-2));
2749 /* tripple indirect blocks */
2750 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2752 upper_limit -= meta_blocks;
2753 upper_limit <<= bits;
2755 res += 1LL << (bits-2);
2756 res += 1LL << (2*(bits-2));
2757 res += 1LL << (3*(bits-2));
2758 res <<= bits;
2759 if (res > upper_limit)
2760 res = upper_limit;
2762 if (res > MAX_LFS_FILESIZE)
2763 res = MAX_LFS_FILESIZE;
2765 return res;
2768 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2769 ext4_fsblk_t logical_sb_block, int nr)
2771 struct ext4_sb_info *sbi = EXT4_SB(sb);
2772 ext4_group_t bg, first_meta_bg;
2773 int has_super = 0;
2775 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2777 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2778 return logical_sb_block + nr + 1;
2779 bg = sbi->s_desc_per_block * nr;
2780 if (ext4_bg_has_super(sb, bg))
2781 has_super = 1;
2784 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2785 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2786 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2787 * compensate.
2789 if (sb->s_blocksize == 1024 && nr == 0 &&
2790 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2791 has_super++;
2793 return (has_super + ext4_group_first_block_no(sb, bg));
2797 * ext4_get_stripe_size: Get the stripe size.
2798 * @sbi: In memory super block info
2800 * If we have specified it via mount option, then
2801 * use the mount option value. If the value specified at mount time is
2802 * greater than the blocks per group use the super block value.
2803 * If the super block value is greater than blocks per group return 0.
2804 * Allocator needs it be less than blocks per group.
2807 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2809 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2810 unsigned long stripe_width =
2811 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2812 int ret;
2814 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2815 ret = sbi->s_stripe;
2816 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2817 ret = stripe_width;
2818 else if (stride && stride <= sbi->s_blocks_per_group)
2819 ret = stride;
2820 else
2821 ret = 0;
2824 * If the stripe width is 1, this makes no sense and
2825 * we set it to 0 to turn off stripe handling code.
2827 if (ret <= 1)
2828 ret = 0;
2830 return ret;
2834 * Check whether this filesystem can be mounted based on
2835 * the features present and the RDONLY/RDWR mount requested.
2836 * Returns 1 if this filesystem can be mounted as requested,
2837 * 0 if it cannot be.
2839 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2841 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2842 ext4_msg(sb, KERN_ERR,
2843 "Couldn't mount because of "
2844 "unsupported optional features (%x)",
2845 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2846 ~EXT4_FEATURE_INCOMPAT_SUPP));
2847 return 0;
2850 if (readonly)
2851 return 1;
2853 if (ext4_has_feature_readonly(sb)) {
2854 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2855 sb->s_flags |= SB_RDONLY;
2856 return 1;
2859 /* Check that feature set is OK for a read-write mount */
2860 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2861 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2862 "unsupported optional features (%x)",
2863 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2864 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2865 return 0;
2868 * Large file size enabled file system can only be mounted
2869 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2871 if (ext4_has_feature_huge_file(sb)) {
2872 if (sizeof(blkcnt_t) < sizeof(u64)) {
2873 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2874 "cannot be mounted RDWR without "
2875 "CONFIG_LBDAF");
2876 return 0;
2879 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2880 ext4_msg(sb, KERN_ERR,
2881 "Can't support bigalloc feature without "
2882 "extents feature\n");
2883 return 0;
2886 #ifndef CONFIG_QUOTA
2887 if (ext4_has_feature_quota(sb) && !readonly) {
2888 ext4_msg(sb, KERN_ERR,
2889 "Filesystem with quota feature cannot be mounted RDWR "
2890 "without CONFIG_QUOTA");
2891 return 0;
2893 if (ext4_has_feature_project(sb) && !readonly) {
2894 ext4_msg(sb, KERN_ERR,
2895 "Filesystem with project quota feature cannot be mounted RDWR "
2896 "without CONFIG_QUOTA");
2897 return 0;
2899 #endif /* CONFIG_QUOTA */
2900 return 1;
2904 * This function is called once a day if we have errors logged
2905 * on the file system
2907 static void print_daily_error_info(struct timer_list *t)
2909 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2910 struct super_block *sb = sbi->s_sb;
2911 struct ext4_super_block *es = sbi->s_es;
2913 if (es->s_error_count)
2914 /* fsck newer than v1.41.13 is needed to clean this condition. */
2915 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2916 le32_to_cpu(es->s_error_count));
2917 if (es->s_first_error_time) {
2918 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
2919 sb->s_id,
2920 ext4_get_tstamp(es, s_first_error_time),
2921 (int) sizeof(es->s_first_error_func),
2922 es->s_first_error_func,
2923 le32_to_cpu(es->s_first_error_line));
2924 if (es->s_first_error_ino)
2925 printk(KERN_CONT ": inode %u",
2926 le32_to_cpu(es->s_first_error_ino));
2927 if (es->s_first_error_block)
2928 printk(KERN_CONT ": block %llu", (unsigned long long)
2929 le64_to_cpu(es->s_first_error_block));
2930 printk(KERN_CONT "\n");
2932 if (es->s_last_error_time) {
2933 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
2934 sb->s_id,
2935 ext4_get_tstamp(es, s_last_error_time),
2936 (int) sizeof(es->s_last_error_func),
2937 es->s_last_error_func,
2938 le32_to_cpu(es->s_last_error_line));
2939 if (es->s_last_error_ino)
2940 printk(KERN_CONT ": inode %u",
2941 le32_to_cpu(es->s_last_error_ino));
2942 if (es->s_last_error_block)
2943 printk(KERN_CONT ": block %llu", (unsigned long long)
2944 le64_to_cpu(es->s_last_error_block));
2945 printk(KERN_CONT "\n");
2947 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2950 /* Find next suitable group and run ext4_init_inode_table */
2951 static int ext4_run_li_request(struct ext4_li_request *elr)
2953 struct ext4_group_desc *gdp = NULL;
2954 ext4_group_t group, ngroups;
2955 struct super_block *sb;
2956 unsigned long timeout = 0;
2957 int ret = 0;
2959 sb = elr->lr_super;
2960 ngroups = EXT4_SB(sb)->s_groups_count;
2962 for (group = elr->lr_next_group; group < ngroups; group++) {
2963 gdp = ext4_get_group_desc(sb, group, NULL);
2964 if (!gdp) {
2965 ret = 1;
2966 break;
2969 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2970 break;
2973 if (group >= ngroups)
2974 ret = 1;
2976 if (!ret) {
2977 timeout = jiffies;
2978 ret = ext4_init_inode_table(sb, group,
2979 elr->lr_timeout ? 0 : 1);
2980 if (elr->lr_timeout == 0) {
2981 timeout = (jiffies - timeout) *
2982 elr->lr_sbi->s_li_wait_mult;
2983 elr->lr_timeout = timeout;
2985 elr->lr_next_sched = jiffies + elr->lr_timeout;
2986 elr->lr_next_group = group + 1;
2988 return ret;
2992 * Remove lr_request from the list_request and free the
2993 * request structure. Should be called with li_list_mtx held
2995 static void ext4_remove_li_request(struct ext4_li_request *elr)
2997 struct ext4_sb_info *sbi;
2999 if (!elr)
3000 return;
3002 sbi = elr->lr_sbi;
3004 list_del(&elr->lr_request);
3005 sbi->s_li_request = NULL;
3006 kfree(elr);
3009 static void ext4_unregister_li_request(struct super_block *sb)
3011 mutex_lock(&ext4_li_mtx);
3012 if (!ext4_li_info) {
3013 mutex_unlock(&ext4_li_mtx);
3014 return;
3017 mutex_lock(&ext4_li_info->li_list_mtx);
3018 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3019 mutex_unlock(&ext4_li_info->li_list_mtx);
3020 mutex_unlock(&ext4_li_mtx);
3023 static struct task_struct *ext4_lazyinit_task;
3026 * This is the function where ext4lazyinit thread lives. It walks
3027 * through the request list searching for next scheduled filesystem.
3028 * When such a fs is found, run the lazy initialization request
3029 * (ext4_rn_li_request) and keep track of the time spend in this
3030 * function. Based on that time we compute next schedule time of
3031 * the request. When walking through the list is complete, compute
3032 * next waking time and put itself into sleep.
3034 static int ext4_lazyinit_thread(void *arg)
3036 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3037 struct list_head *pos, *n;
3038 struct ext4_li_request *elr;
3039 unsigned long next_wakeup, cur;
3041 BUG_ON(NULL == eli);
3043 cont_thread:
3044 while (true) {
3045 next_wakeup = MAX_JIFFY_OFFSET;
3047 mutex_lock(&eli->li_list_mtx);
3048 if (list_empty(&eli->li_request_list)) {
3049 mutex_unlock(&eli->li_list_mtx);
3050 goto exit_thread;
3052 list_for_each_safe(pos, n, &eli->li_request_list) {
3053 int err = 0;
3054 int progress = 0;
3055 elr = list_entry(pos, struct ext4_li_request,
3056 lr_request);
3058 if (time_before(jiffies, elr->lr_next_sched)) {
3059 if (time_before(elr->lr_next_sched, next_wakeup))
3060 next_wakeup = elr->lr_next_sched;
3061 continue;
3063 if (down_read_trylock(&elr->lr_super->s_umount)) {
3064 if (sb_start_write_trylock(elr->lr_super)) {
3065 progress = 1;
3067 * We hold sb->s_umount, sb can not
3068 * be removed from the list, it is
3069 * now safe to drop li_list_mtx
3071 mutex_unlock(&eli->li_list_mtx);
3072 err = ext4_run_li_request(elr);
3073 sb_end_write(elr->lr_super);
3074 mutex_lock(&eli->li_list_mtx);
3075 n = pos->next;
3077 up_read((&elr->lr_super->s_umount));
3079 /* error, remove the lazy_init job */
3080 if (err) {
3081 ext4_remove_li_request(elr);
3082 continue;
3084 if (!progress) {
3085 elr->lr_next_sched = jiffies +
3086 (prandom_u32()
3087 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3089 if (time_before(elr->lr_next_sched, next_wakeup))
3090 next_wakeup = elr->lr_next_sched;
3092 mutex_unlock(&eli->li_list_mtx);
3094 try_to_freeze();
3096 cur = jiffies;
3097 if ((time_after_eq(cur, next_wakeup)) ||
3098 (MAX_JIFFY_OFFSET == next_wakeup)) {
3099 cond_resched();
3100 continue;
3103 schedule_timeout_interruptible(next_wakeup - cur);
3105 if (kthread_should_stop()) {
3106 ext4_clear_request_list();
3107 goto exit_thread;
3111 exit_thread:
3113 * It looks like the request list is empty, but we need
3114 * to check it under the li_list_mtx lock, to prevent any
3115 * additions into it, and of course we should lock ext4_li_mtx
3116 * to atomically free the list and ext4_li_info, because at
3117 * this point another ext4 filesystem could be registering
3118 * new one.
3120 mutex_lock(&ext4_li_mtx);
3121 mutex_lock(&eli->li_list_mtx);
3122 if (!list_empty(&eli->li_request_list)) {
3123 mutex_unlock(&eli->li_list_mtx);
3124 mutex_unlock(&ext4_li_mtx);
3125 goto cont_thread;
3127 mutex_unlock(&eli->li_list_mtx);
3128 kfree(ext4_li_info);
3129 ext4_li_info = NULL;
3130 mutex_unlock(&ext4_li_mtx);
3132 return 0;
3135 static void ext4_clear_request_list(void)
3137 struct list_head *pos, *n;
3138 struct ext4_li_request *elr;
3140 mutex_lock(&ext4_li_info->li_list_mtx);
3141 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3142 elr = list_entry(pos, struct ext4_li_request,
3143 lr_request);
3144 ext4_remove_li_request(elr);
3146 mutex_unlock(&ext4_li_info->li_list_mtx);
3149 static int ext4_run_lazyinit_thread(void)
3151 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3152 ext4_li_info, "ext4lazyinit");
3153 if (IS_ERR(ext4_lazyinit_task)) {
3154 int err = PTR_ERR(ext4_lazyinit_task);
3155 ext4_clear_request_list();
3156 kfree(ext4_li_info);
3157 ext4_li_info = NULL;
3158 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3159 "initialization thread\n",
3160 err);
3161 return err;
3163 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3164 return 0;
3168 * Check whether it make sense to run itable init. thread or not.
3169 * If there is at least one uninitialized inode table, return
3170 * corresponding group number, else the loop goes through all
3171 * groups and return total number of groups.
3173 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3175 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3176 struct ext4_group_desc *gdp = NULL;
3178 if (!ext4_has_group_desc_csum(sb))
3179 return ngroups;
3181 for (group = 0; group < ngroups; group++) {
3182 gdp = ext4_get_group_desc(sb, group, NULL);
3183 if (!gdp)
3184 continue;
3186 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3187 break;
3190 return group;
3193 static int ext4_li_info_new(void)
3195 struct ext4_lazy_init *eli = NULL;
3197 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3198 if (!eli)
3199 return -ENOMEM;
3201 INIT_LIST_HEAD(&eli->li_request_list);
3202 mutex_init(&eli->li_list_mtx);
3204 eli->li_state |= EXT4_LAZYINIT_QUIT;
3206 ext4_li_info = eli;
3208 return 0;
3211 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3212 ext4_group_t start)
3214 struct ext4_sb_info *sbi = EXT4_SB(sb);
3215 struct ext4_li_request *elr;
3217 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3218 if (!elr)
3219 return NULL;
3221 elr->lr_super = sb;
3222 elr->lr_sbi = sbi;
3223 elr->lr_next_group = start;
3226 * Randomize first schedule time of the request to
3227 * spread the inode table initialization requests
3228 * better.
3230 elr->lr_next_sched = jiffies + (prandom_u32() %
3231 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3232 return elr;
3235 int ext4_register_li_request(struct super_block *sb,
3236 ext4_group_t first_not_zeroed)
3238 struct ext4_sb_info *sbi = EXT4_SB(sb);
3239 struct ext4_li_request *elr = NULL;
3240 ext4_group_t ngroups = sbi->s_groups_count;
3241 int ret = 0;
3243 mutex_lock(&ext4_li_mtx);
3244 if (sbi->s_li_request != NULL) {
3246 * Reset timeout so it can be computed again, because
3247 * s_li_wait_mult might have changed.
3249 sbi->s_li_request->lr_timeout = 0;
3250 goto out;
3253 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3254 !test_opt(sb, INIT_INODE_TABLE))
3255 goto out;
3257 elr = ext4_li_request_new(sb, first_not_zeroed);
3258 if (!elr) {
3259 ret = -ENOMEM;
3260 goto out;
3263 if (NULL == ext4_li_info) {
3264 ret = ext4_li_info_new();
3265 if (ret)
3266 goto out;
3269 mutex_lock(&ext4_li_info->li_list_mtx);
3270 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3271 mutex_unlock(&ext4_li_info->li_list_mtx);
3273 sbi->s_li_request = elr;
3275 * set elr to NULL here since it has been inserted to
3276 * the request_list and the removal and free of it is
3277 * handled by ext4_clear_request_list from now on.
3279 elr = NULL;
3281 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3282 ret = ext4_run_lazyinit_thread();
3283 if (ret)
3284 goto out;
3286 out:
3287 mutex_unlock(&ext4_li_mtx);
3288 if (ret)
3289 kfree(elr);
3290 return ret;
3294 * We do not need to lock anything since this is called on
3295 * module unload.
3297 static void ext4_destroy_lazyinit_thread(void)
3300 * If thread exited earlier
3301 * there's nothing to be done.
3303 if (!ext4_li_info || !ext4_lazyinit_task)
3304 return;
3306 kthread_stop(ext4_lazyinit_task);
3309 static int set_journal_csum_feature_set(struct super_block *sb)
3311 int ret = 1;
3312 int compat, incompat;
3313 struct ext4_sb_info *sbi = EXT4_SB(sb);
3315 if (ext4_has_metadata_csum(sb)) {
3316 /* journal checksum v3 */
3317 compat = 0;
3318 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3319 } else {
3320 /* journal checksum v1 */
3321 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3322 incompat = 0;
3325 jbd2_journal_clear_features(sbi->s_journal,
3326 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3327 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3328 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3329 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3330 ret = jbd2_journal_set_features(sbi->s_journal,
3331 compat, 0,
3332 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3333 incompat);
3334 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3335 ret = jbd2_journal_set_features(sbi->s_journal,
3336 compat, 0,
3337 incompat);
3338 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3339 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3340 } else {
3341 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3342 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3345 return ret;
3349 * Note: calculating the overhead so we can be compatible with
3350 * historical BSD practice is quite difficult in the face of
3351 * clusters/bigalloc. This is because multiple metadata blocks from
3352 * different block group can end up in the same allocation cluster.
3353 * Calculating the exact overhead in the face of clustered allocation
3354 * requires either O(all block bitmaps) in memory or O(number of block
3355 * groups**2) in time. We will still calculate the superblock for
3356 * older file systems --- and if we come across with a bigalloc file
3357 * system with zero in s_overhead_clusters the estimate will be close to
3358 * correct especially for very large cluster sizes --- but for newer
3359 * file systems, it's better to calculate this figure once at mkfs
3360 * time, and store it in the superblock. If the superblock value is
3361 * present (even for non-bigalloc file systems), we will use it.
3363 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3364 char *buf)
3366 struct ext4_sb_info *sbi = EXT4_SB(sb);
3367 struct ext4_group_desc *gdp;
3368 ext4_fsblk_t first_block, last_block, b;
3369 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3370 int s, j, count = 0;
3372 if (!ext4_has_feature_bigalloc(sb))
3373 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3374 sbi->s_itb_per_group + 2);
3376 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3377 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3378 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3379 for (i = 0; i < ngroups; i++) {
3380 gdp = ext4_get_group_desc(sb, i, NULL);
3381 b = ext4_block_bitmap(sb, gdp);
3382 if (b >= first_block && b <= last_block) {
3383 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3384 count++;
3386 b = ext4_inode_bitmap(sb, gdp);
3387 if (b >= first_block && b <= last_block) {
3388 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3389 count++;
3391 b = ext4_inode_table(sb, gdp);
3392 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3393 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3394 int c = EXT4_B2C(sbi, b - first_block);
3395 ext4_set_bit(c, buf);
3396 count++;
3398 if (i != grp)
3399 continue;
3400 s = 0;
3401 if (ext4_bg_has_super(sb, grp)) {
3402 ext4_set_bit(s++, buf);
3403 count++;
3405 j = ext4_bg_num_gdb(sb, grp);
3406 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3407 ext4_error(sb, "Invalid number of block group "
3408 "descriptor blocks: %d", j);
3409 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3411 count += j;
3412 for (; j > 0; j--)
3413 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3415 if (!count)
3416 return 0;
3417 return EXT4_CLUSTERS_PER_GROUP(sb) -
3418 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3422 * Compute the overhead and stash it in sbi->s_overhead
3424 int ext4_calculate_overhead(struct super_block *sb)
3426 struct ext4_sb_info *sbi = EXT4_SB(sb);
3427 struct ext4_super_block *es = sbi->s_es;
3428 struct inode *j_inode;
3429 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3430 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3431 ext4_fsblk_t overhead = 0;
3432 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3434 if (!buf)
3435 return -ENOMEM;
3438 * Compute the overhead (FS structures). This is constant
3439 * for a given filesystem unless the number of block groups
3440 * changes so we cache the previous value until it does.
3444 * All of the blocks before first_data_block are overhead
3446 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3449 * Add the overhead found in each block group
3451 for (i = 0; i < ngroups; i++) {
3452 int blks;
3454 blks = count_overhead(sb, i, buf);
3455 overhead += blks;
3456 if (blks)
3457 memset(buf, 0, PAGE_SIZE);
3458 cond_resched();
3462 * Add the internal journal blocks whether the journal has been
3463 * loaded or not
3465 if (sbi->s_journal && !sbi->journal_bdev)
3466 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3467 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3468 j_inode = ext4_get_journal_inode(sb, j_inum);
3469 if (j_inode) {
3470 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3471 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3472 iput(j_inode);
3473 } else {
3474 ext4_msg(sb, KERN_ERR, "can't get journal size");
3477 sbi->s_overhead = overhead;
3478 smp_wmb();
3479 free_page((unsigned long) buf);
3480 return 0;
3483 static void ext4_set_resv_clusters(struct super_block *sb)
3485 ext4_fsblk_t resv_clusters;
3486 struct ext4_sb_info *sbi = EXT4_SB(sb);
3489 * There's no need to reserve anything when we aren't using extents.
3490 * The space estimates are exact, there are no unwritten extents,
3491 * hole punching doesn't need new metadata... This is needed especially
3492 * to keep ext2/3 backward compatibility.
3494 if (!ext4_has_feature_extents(sb))
3495 return;
3497 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3498 * This should cover the situations where we can not afford to run
3499 * out of space like for example punch hole, or converting
3500 * unwritten extents in delalloc path. In most cases such
3501 * allocation would require 1, or 2 blocks, higher numbers are
3502 * very rare.
3504 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3505 sbi->s_cluster_bits);
3507 do_div(resv_clusters, 50);
3508 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3510 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3513 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3515 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3516 char *orig_data = kstrdup(data, GFP_KERNEL);
3517 struct buffer_head *bh;
3518 struct ext4_super_block *es = NULL;
3519 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3520 ext4_fsblk_t block;
3521 ext4_fsblk_t sb_block = get_sb_block(&data);
3522 ext4_fsblk_t logical_sb_block;
3523 unsigned long offset = 0;
3524 unsigned long journal_devnum = 0;
3525 unsigned long def_mount_opts;
3526 struct inode *root;
3527 const char *descr;
3528 int ret = -ENOMEM;
3529 int blocksize, clustersize;
3530 unsigned int db_count;
3531 unsigned int i;
3532 int needs_recovery, has_huge_files, has_bigalloc;
3533 __u64 blocks_count;
3534 int err = 0;
3535 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3536 ext4_group_t first_not_zeroed;
3538 if ((data && !orig_data) || !sbi)
3539 goto out_free_base;
3541 sbi->s_daxdev = dax_dev;
3542 sbi->s_blockgroup_lock =
3543 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3544 if (!sbi->s_blockgroup_lock)
3545 goto out_free_base;
3547 sb->s_fs_info = sbi;
3548 sbi->s_sb = sb;
3549 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3550 sbi->s_sb_block = sb_block;
3551 if (sb->s_bdev->bd_part)
3552 sbi->s_sectors_written_start =
3553 part_stat_read(sb->s_bdev->bd_part, sectors[STAT_WRITE]);
3555 /* Cleanup superblock name */
3556 strreplace(sb->s_id, '/', '!');
3558 /* -EINVAL is default */
3559 ret = -EINVAL;
3560 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3561 if (!blocksize) {
3562 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3563 goto out_fail;
3567 * The ext4 superblock will not be buffer aligned for other than 1kB
3568 * block sizes. We need to calculate the offset from buffer start.
3570 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3571 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3572 offset = do_div(logical_sb_block, blocksize);
3573 } else {
3574 logical_sb_block = sb_block;
3577 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3578 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3579 goto out_fail;
3582 * Note: s_es must be initialized as soon as possible because
3583 * some ext4 macro-instructions depend on its value
3585 es = (struct ext4_super_block *) (bh->b_data + offset);
3586 sbi->s_es = es;
3587 sb->s_magic = le16_to_cpu(es->s_magic);
3588 if (sb->s_magic != EXT4_SUPER_MAGIC)
3589 goto cantfind_ext4;
3590 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3592 /* Warn if metadata_csum and gdt_csum are both set. */
3593 if (ext4_has_feature_metadata_csum(sb) &&
3594 ext4_has_feature_gdt_csum(sb))
3595 ext4_warning(sb, "metadata_csum and uninit_bg are "
3596 "redundant flags; please run fsck.");
3598 /* Check for a known checksum algorithm */
3599 if (!ext4_verify_csum_type(sb, es)) {
3600 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3601 "unknown checksum algorithm.");
3602 silent = 1;
3603 goto cantfind_ext4;
3606 /* Load the checksum driver */
3607 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3608 if (IS_ERR(sbi->s_chksum_driver)) {
3609 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3610 ret = PTR_ERR(sbi->s_chksum_driver);
3611 sbi->s_chksum_driver = NULL;
3612 goto failed_mount;
3615 /* Check superblock checksum */
3616 if (!ext4_superblock_csum_verify(sb, es)) {
3617 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3618 "invalid superblock checksum. Run e2fsck?");
3619 silent = 1;
3620 ret = -EFSBADCRC;
3621 goto cantfind_ext4;
3624 /* Precompute checksum seed for all metadata */
3625 if (ext4_has_feature_csum_seed(sb))
3626 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3627 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3628 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3629 sizeof(es->s_uuid));
3631 /* Set defaults before we parse the mount options */
3632 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3633 set_opt(sb, INIT_INODE_TABLE);
3634 if (def_mount_opts & EXT4_DEFM_DEBUG)
3635 set_opt(sb, DEBUG);
3636 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3637 set_opt(sb, GRPID);
3638 if (def_mount_opts & EXT4_DEFM_UID16)
3639 set_opt(sb, NO_UID32);
3640 /* xattr user namespace & acls are now defaulted on */
3641 set_opt(sb, XATTR_USER);
3642 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3643 set_opt(sb, POSIX_ACL);
3644 #endif
3645 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3646 if (ext4_has_metadata_csum(sb))
3647 set_opt(sb, JOURNAL_CHECKSUM);
3649 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3650 set_opt(sb, JOURNAL_DATA);
3651 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3652 set_opt(sb, ORDERED_DATA);
3653 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3654 set_opt(sb, WRITEBACK_DATA);
3656 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3657 set_opt(sb, ERRORS_PANIC);
3658 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3659 set_opt(sb, ERRORS_CONT);
3660 else
3661 set_opt(sb, ERRORS_RO);
3662 /* block_validity enabled by default; disable with noblock_validity */
3663 set_opt(sb, BLOCK_VALIDITY);
3664 if (def_mount_opts & EXT4_DEFM_DISCARD)
3665 set_opt(sb, DISCARD);
3667 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3668 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3669 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3670 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3671 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3673 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3674 set_opt(sb, BARRIER);
3677 * enable delayed allocation by default
3678 * Use -o nodelalloc to turn it off
3680 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3681 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3682 set_opt(sb, DELALLOC);
3685 * set default s_li_wait_mult for lazyinit, for the case there is
3686 * no mount option specified.
3688 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3690 if (sbi->s_es->s_mount_opts[0]) {
3691 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3692 sizeof(sbi->s_es->s_mount_opts),
3693 GFP_KERNEL);
3694 if (!s_mount_opts)
3695 goto failed_mount;
3696 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3697 &journal_ioprio, 0)) {
3698 ext4_msg(sb, KERN_WARNING,
3699 "failed to parse options in superblock: %s",
3700 s_mount_opts);
3702 kfree(s_mount_opts);
3704 sbi->s_def_mount_opt = sbi->s_mount_opt;
3705 if (!parse_options((char *) data, sb, &journal_devnum,
3706 &journal_ioprio, 0))
3707 goto failed_mount;
3709 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3710 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3711 "with data=journal disables delayed "
3712 "allocation and O_DIRECT support!\n");
3713 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3714 ext4_msg(sb, KERN_ERR, "can't mount with "
3715 "both data=journal and delalloc");
3716 goto failed_mount;
3718 if (test_opt(sb, DIOREAD_NOLOCK)) {
3719 ext4_msg(sb, KERN_ERR, "can't mount with "
3720 "both data=journal and dioread_nolock");
3721 goto failed_mount;
3723 if (test_opt(sb, DAX)) {
3724 ext4_msg(sb, KERN_ERR, "can't mount with "
3725 "both data=journal and dax");
3726 goto failed_mount;
3728 if (ext4_has_feature_encrypt(sb)) {
3729 ext4_msg(sb, KERN_WARNING,
3730 "encrypted files will use data=ordered "
3731 "instead of data journaling mode");
3733 if (test_opt(sb, DELALLOC))
3734 clear_opt(sb, DELALLOC);
3735 } else {
3736 sb->s_iflags |= SB_I_CGROUPWB;
3739 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3740 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
3742 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3743 (ext4_has_compat_features(sb) ||
3744 ext4_has_ro_compat_features(sb) ||
3745 ext4_has_incompat_features(sb)))
3746 ext4_msg(sb, KERN_WARNING,
3747 "feature flags set on rev 0 fs, "
3748 "running e2fsck is recommended");
3750 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3751 set_opt2(sb, HURD_COMPAT);
3752 if (ext4_has_feature_64bit(sb)) {
3753 ext4_msg(sb, KERN_ERR,
3754 "The Hurd can't support 64-bit file systems");
3755 goto failed_mount;
3759 * ea_inode feature uses l_i_version field which is not
3760 * available in HURD_COMPAT mode.
3762 if (ext4_has_feature_ea_inode(sb)) {
3763 ext4_msg(sb, KERN_ERR,
3764 "ea_inode feature is not supported for Hurd");
3765 goto failed_mount;
3769 if (IS_EXT2_SB(sb)) {
3770 if (ext2_feature_set_ok(sb))
3771 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3772 "using the ext4 subsystem");
3773 else {
3775 * If we're probing be silent, if this looks like
3776 * it's actually an ext[34] filesystem.
3778 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3779 goto failed_mount;
3780 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3781 "to feature incompatibilities");
3782 goto failed_mount;
3786 if (IS_EXT3_SB(sb)) {
3787 if (ext3_feature_set_ok(sb))
3788 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3789 "using the ext4 subsystem");
3790 else {
3792 * If we're probing be silent, if this looks like
3793 * it's actually an ext4 filesystem.
3795 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3796 goto failed_mount;
3797 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3798 "to feature incompatibilities");
3799 goto failed_mount;
3804 * Check feature flags regardless of the revision level, since we
3805 * previously didn't change the revision level when setting the flags,
3806 * so there is a chance incompat flags are set on a rev 0 filesystem.
3808 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3809 goto failed_mount;
3811 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3812 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3813 blocksize > EXT4_MAX_BLOCK_SIZE) {
3814 ext4_msg(sb, KERN_ERR,
3815 "Unsupported filesystem blocksize %d (%d log_block_size)",
3816 blocksize, le32_to_cpu(es->s_log_block_size));
3817 goto failed_mount;
3819 if (le32_to_cpu(es->s_log_block_size) >
3820 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3821 ext4_msg(sb, KERN_ERR,
3822 "Invalid log block size: %u",
3823 le32_to_cpu(es->s_log_block_size));
3824 goto failed_mount;
3826 if (le32_to_cpu(es->s_log_cluster_size) >
3827 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3828 ext4_msg(sb, KERN_ERR,
3829 "Invalid log cluster size: %u",
3830 le32_to_cpu(es->s_log_cluster_size));
3831 goto failed_mount;
3834 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3835 ext4_msg(sb, KERN_ERR,
3836 "Number of reserved GDT blocks insanely large: %d",
3837 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3838 goto failed_mount;
3841 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3842 if (ext4_has_feature_inline_data(sb)) {
3843 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3844 " that may contain inline data");
3845 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3847 if (!bdev_dax_supported(sb->s_bdev, blocksize)) {
3848 ext4_msg(sb, KERN_ERR,
3849 "DAX unsupported by block device. Turning off DAX.");
3850 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3854 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3855 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3856 es->s_encryption_level);
3857 goto failed_mount;
3860 if (sb->s_blocksize != blocksize) {
3861 /* Validate the filesystem blocksize */
3862 if (!sb_set_blocksize(sb, blocksize)) {
3863 ext4_msg(sb, KERN_ERR, "bad block size %d",
3864 blocksize);
3865 goto failed_mount;
3868 brelse(bh);
3869 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3870 offset = do_div(logical_sb_block, blocksize);
3871 bh = sb_bread_unmovable(sb, logical_sb_block);
3872 if (!bh) {
3873 ext4_msg(sb, KERN_ERR,
3874 "Can't read superblock on 2nd try");
3875 goto failed_mount;
3877 es = (struct ext4_super_block *)(bh->b_data + offset);
3878 sbi->s_es = es;
3879 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3880 ext4_msg(sb, KERN_ERR,
3881 "Magic mismatch, very weird!");
3882 goto failed_mount;
3886 has_huge_files = ext4_has_feature_huge_file(sb);
3887 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3888 has_huge_files);
3889 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3891 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3892 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3893 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3894 } else {
3895 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3896 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3897 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3898 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3899 sbi->s_first_ino);
3900 goto failed_mount;
3902 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3903 (!is_power_of_2(sbi->s_inode_size)) ||
3904 (sbi->s_inode_size > blocksize)) {
3905 ext4_msg(sb, KERN_ERR,
3906 "unsupported inode size: %d",
3907 sbi->s_inode_size);
3908 goto failed_mount;
3910 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3911 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3914 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3915 if (ext4_has_feature_64bit(sb)) {
3916 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3917 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3918 !is_power_of_2(sbi->s_desc_size)) {
3919 ext4_msg(sb, KERN_ERR,
3920 "unsupported descriptor size %lu",
3921 sbi->s_desc_size);
3922 goto failed_mount;
3924 } else
3925 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3927 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3928 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3930 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3931 if (sbi->s_inodes_per_block == 0)
3932 goto cantfind_ext4;
3933 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3934 sbi->s_inodes_per_group > blocksize * 8) {
3935 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3936 sbi->s_blocks_per_group);
3937 goto failed_mount;
3939 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3940 sbi->s_inodes_per_block;
3941 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3942 sbi->s_sbh = bh;
3943 sbi->s_mount_state = le16_to_cpu(es->s_state);
3944 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3945 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3947 for (i = 0; i < 4; i++)
3948 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3949 sbi->s_def_hash_version = es->s_def_hash_version;
3950 if (ext4_has_feature_dir_index(sb)) {
3951 i = le32_to_cpu(es->s_flags);
3952 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3953 sbi->s_hash_unsigned = 3;
3954 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3955 #ifdef __CHAR_UNSIGNED__
3956 if (!sb_rdonly(sb))
3957 es->s_flags |=
3958 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3959 sbi->s_hash_unsigned = 3;
3960 #else
3961 if (!sb_rdonly(sb))
3962 es->s_flags |=
3963 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3964 #endif
3968 /* Handle clustersize */
3969 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3970 has_bigalloc = ext4_has_feature_bigalloc(sb);
3971 if (has_bigalloc) {
3972 if (clustersize < blocksize) {
3973 ext4_msg(sb, KERN_ERR,
3974 "cluster size (%d) smaller than "
3975 "block size (%d)", clustersize, blocksize);
3976 goto failed_mount;
3978 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3979 le32_to_cpu(es->s_log_block_size);
3980 sbi->s_clusters_per_group =
3981 le32_to_cpu(es->s_clusters_per_group);
3982 if (sbi->s_clusters_per_group > blocksize * 8) {
3983 ext4_msg(sb, KERN_ERR,
3984 "#clusters per group too big: %lu",
3985 sbi->s_clusters_per_group);
3986 goto failed_mount;
3988 if (sbi->s_blocks_per_group !=
3989 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3990 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3991 "clusters per group (%lu) inconsistent",
3992 sbi->s_blocks_per_group,
3993 sbi->s_clusters_per_group);
3994 goto failed_mount;
3996 } else {
3997 if (clustersize != blocksize) {
3998 ext4_msg(sb, KERN_ERR,
3999 "fragment/cluster size (%d) != "
4000 "block size (%d)", clustersize, blocksize);
4001 goto failed_mount;
4003 if (sbi->s_blocks_per_group > blocksize * 8) {
4004 ext4_msg(sb, KERN_ERR,
4005 "#blocks per group too big: %lu",
4006 sbi->s_blocks_per_group);
4007 goto failed_mount;
4009 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4010 sbi->s_cluster_bits = 0;
4012 sbi->s_cluster_ratio = clustersize / blocksize;
4014 /* Do we have standard group size of clustersize * 8 blocks ? */
4015 if (sbi->s_blocks_per_group == clustersize << 3)
4016 set_opt2(sb, STD_GROUP_SIZE);
4019 * Test whether we have more sectors than will fit in sector_t,
4020 * and whether the max offset is addressable by the page cache.
4022 err = generic_check_addressable(sb->s_blocksize_bits,
4023 ext4_blocks_count(es));
4024 if (err) {
4025 ext4_msg(sb, KERN_ERR, "filesystem"
4026 " too large to mount safely on this system");
4027 if (sizeof(sector_t) < 8)
4028 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
4029 goto failed_mount;
4032 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4033 goto cantfind_ext4;
4035 /* check blocks count against device size */
4036 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4037 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4038 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4039 "exceeds size of device (%llu blocks)",
4040 ext4_blocks_count(es), blocks_count);
4041 goto failed_mount;
4045 * It makes no sense for the first data block to be beyond the end
4046 * of the filesystem.
4048 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4049 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4050 "block %u is beyond end of filesystem (%llu)",
4051 le32_to_cpu(es->s_first_data_block),
4052 ext4_blocks_count(es));
4053 goto failed_mount;
4055 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4056 (sbi->s_cluster_ratio == 1)) {
4057 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4058 "block is 0 with a 1k block and cluster size");
4059 goto failed_mount;
4062 blocks_count = (ext4_blocks_count(es) -
4063 le32_to_cpu(es->s_first_data_block) +
4064 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4065 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4066 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4067 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4068 "(block count %llu, first data block %u, "
4069 "blocks per group %lu)", sbi->s_groups_count,
4070 ext4_blocks_count(es),
4071 le32_to_cpu(es->s_first_data_block),
4072 EXT4_BLOCKS_PER_GROUP(sb));
4073 goto failed_mount;
4075 sbi->s_groups_count = blocks_count;
4076 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4077 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4078 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4079 le32_to_cpu(es->s_inodes_count)) {
4080 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4081 le32_to_cpu(es->s_inodes_count),
4082 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4083 ret = -EINVAL;
4084 goto failed_mount;
4086 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4087 EXT4_DESC_PER_BLOCK(sb);
4088 if (ext4_has_feature_meta_bg(sb)) {
4089 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4090 ext4_msg(sb, KERN_WARNING,
4091 "first meta block group too large: %u "
4092 "(group descriptor block count %u)",
4093 le32_to_cpu(es->s_first_meta_bg), db_count);
4094 goto failed_mount;
4097 sbi->s_group_desc = kvmalloc_array(db_count,
4098 sizeof(struct buffer_head *),
4099 GFP_KERNEL);
4100 if (sbi->s_group_desc == NULL) {
4101 ext4_msg(sb, KERN_ERR, "not enough memory");
4102 ret = -ENOMEM;
4103 goto failed_mount;
4106 bgl_lock_init(sbi->s_blockgroup_lock);
4108 /* Pre-read the descriptors into the buffer cache */
4109 for (i = 0; i < db_count; i++) {
4110 block = descriptor_loc(sb, logical_sb_block, i);
4111 sb_breadahead(sb, block);
4114 for (i = 0; i < db_count; i++) {
4115 block = descriptor_loc(sb, logical_sb_block, i);
4116 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4117 if (!sbi->s_group_desc[i]) {
4118 ext4_msg(sb, KERN_ERR,
4119 "can't read group descriptor %d", i);
4120 db_count = i;
4121 goto failed_mount2;
4124 sbi->s_gdb_count = db_count;
4125 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4126 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4127 ret = -EFSCORRUPTED;
4128 goto failed_mount2;
4131 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4133 /* Register extent status tree shrinker */
4134 if (ext4_es_register_shrinker(sbi))
4135 goto failed_mount3;
4137 sbi->s_stripe = ext4_get_stripe_size(sbi);
4138 sbi->s_extent_max_zeroout_kb = 32;
4141 * set up enough so that it can read an inode
4143 sb->s_op = &ext4_sops;
4144 sb->s_export_op = &ext4_export_ops;
4145 sb->s_xattr = ext4_xattr_handlers;
4146 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4147 sb->s_cop = &ext4_cryptops;
4148 #endif
4149 #ifdef CONFIG_QUOTA
4150 sb->dq_op = &ext4_quota_operations;
4151 if (ext4_has_feature_quota(sb))
4152 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4153 else
4154 sb->s_qcop = &ext4_qctl_operations;
4155 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4156 #endif
4157 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4159 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4160 mutex_init(&sbi->s_orphan_lock);
4162 sb->s_root = NULL;
4164 needs_recovery = (es->s_last_orphan != 0 ||
4165 ext4_has_feature_journal_needs_recovery(sb));
4167 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4168 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4169 goto failed_mount3a;
4172 * The first inode we look at is the journal inode. Don't try
4173 * root first: it may be modified in the journal!
4175 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4176 err = ext4_load_journal(sb, es, journal_devnum);
4177 if (err)
4178 goto failed_mount3a;
4179 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4180 ext4_has_feature_journal_needs_recovery(sb)) {
4181 ext4_msg(sb, KERN_ERR, "required journal recovery "
4182 "suppressed and not mounted read-only");
4183 goto failed_mount_wq;
4184 } else {
4185 /* Nojournal mode, all journal mount options are illegal */
4186 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4187 ext4_msg(sb, KERN_ERR, "can't mount with "
4188 "journal_checksum, fs mounted w/o journal");
4189 goto failed_mount_wq;
4191 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4192 ext4_msg(sb, KERN_ERR, "can't mount with "
4193 "journal_async_commit, fs mounted w/o journal");
4194 goto failed_mount_wq;
4196 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4197 ext4_msg(sb, KERN_ERR, "can't mount with "
4198 "commit=%lu, fs mounted w/o journal",
4199 sbi->s_commit_interval / HZ);
4200 goto failed_mount_wq;
4202 if (EXT4_MOUNT_DATA_FLAGS &
4203 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4204 ext4_msg(sb, KERN_ERR, "can't mount with "
4205 "data=, fs mounted w/o journal");
4206 goto failed_mount_wq;
4208 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4209 clear_opt(sb, JOURNAL_CHECKSUM);
4210 clear_opt(sb, DATA_FLAGS);
4211 sbi->s_journal = NULL;
4212 needs_recovery = 0;
4213 goto no_journal;
4216 if (ext4_has_feature_64bit(sb) &&
4217 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4218 JBD2_FEATURE_INCOMPAT_64BIT)) {
4219 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4220 goto failed_mount_wq;
4223 if (!set_journal_csum_feature_set(sb)) {
4224 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4225 "feature set");
4226 goto failed_mount_wq;
4229 /* We have now updated the journal if required, so we can
4230 * validate the data journaling mode. */
4231 switch (test_opt(sb, DATA_FLAGS)) {
4232 case 0:
4233 /* No mode set, assume a default based on the journal
4234 * capabilities: ORDERED_DATA if the journal can
4235 * cope, else JOURNAL_DATA
4237 if (jbd2_journal_check_available_features
4238 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4239 set_opt(sb, ORDERED_DATA);
4240 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4241 } else {
4242 set_opt(sb, JOURNAL_DATA);
4243 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4245 break;
4247 case EXT4_MOUNT_ORDERED_DATA:
4248 case EXT4_MOUNT_WRITEBACK_DATA:
4249 if (!jbd2_journal_check_available_features
4250 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4251 ext4_msg(sb, KERN_ERR, "Journal does not support "
4252 "requested data journaling mode");
4253 goto failed_mount_wq;
4255 default:
4256 break;
4259 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4260 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4261 ext4_msg(sb, KERN_ERR, "can't mount with "
4262 "journal_async_commit in data=ordered mode");
4263 goto failed_mount_wq;
4266 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4268 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4270 no_journal:
4271 if (!test_opt(sb, NO_MBCACHE)) {
4272 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4273 if (!sbi->s_ea_block_cache) {
4274 ext4_msg(sb, KERN_ERR,
4275 "Failed to create ea_block_cache");
4276 goto failed_mount_wq;
4279 if (ext4_has_feature_ea_inode(sb)) {
4280 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4281 if (!sbi->s_ea_inode_cache) {
4282 ext4_msg(sb, KERN_ERR,
4283 "Failed to create ea_inode_cache");
4284 goto failed_mount_wq;
4289 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4290 (blocksize != PAGE_SIZE)) {
4291 ext4_msg(sb, KERN_ERR,
4292 "Unsupported blocksize for fs encryption");
4293 goto failed_mount_wq;
4296 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4297 !ext4_has_feature_encrypt(sb)) {
4298 ext4_set_feature_encrypt(sb);
4299 ext4_commit_super(sb, 1);
4303 * Get the # of file system overhead blocks from the
4304 * superblock if present.
4306 if (es->s_overhead_clusters)
4307 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4308 else {
4309 err = ext4_calculate_overhead(sb);
4310 if (err)
4311 goto failed_mount_wq;
4315 * The maximum number of concurrent works can be high and
4316 * concurrency isn't really necessary. Limit it to 1.
4318 EXT4_SB(sb)->rsv_conversion_wq =
4319 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4320 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4321 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4322 ret = -ENOMEM;
4323 goto failed_mount4;
4327 * The jbd2_journal_load will have done any necessary log recovery,
4328 * so we can safely mount the rest of the filesystem now.
4331 root = ext4_iget(sb, EXT4_ROOT_INO);
4332 if (IS_ERR(root)) {
4333 ext4_msg(sb, KERN_ERR, "get root inode failed");
4334 ret = PTR_ERR(root);
4335 root = NULL;
4336 goto failed_mount4;
4338 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4339 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4340 iput(root);
4341 goto failed_mount4;
4343 sb->s_root = d_make_root(root);
4344 if (!sb->s_root) {
4345 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4346 ret = -ENOMEM;
4347 goto failed_mount4;
4350 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4351 if (ret == -EROFS) {
4352 sb->s_flags |= SB_RDONLY;
4353 ret = 0;
4354 } else if (ret)
4355 goto failed_mount4a;
4357 /* determine the minimum size of new large inodes, if present */
4358 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4359 sbi->s_want_extra_isize == 0) {
4360 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4361 EXT4_GOOD_OLD_INODE_SIZE;
4362 if (ext4_has_feature_extra_isize(sb)) {
4363 if (sbi->s_want_extra_isize <
4364 le16_to_cpu(es->s_want_extra_isize))
4365 sbi->s_want_extra_isize =
4366 le16_to_cpu(es->s_want_extra_isize);
4367 if (sbi->s_want_extra_isize <
4368 le16_to_cpu(es->s_min_extra_isize))
4369 sbi->s_want_extra_isize =
4370 le16_to_cpu(es->s_min_extra_isize);
4373 /* Check if enough inode space is available */
4374 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4375 sbi->s_inode_size) {
4376 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4377 EXT4_GOOD_OLD_INODE_SIZE;
4378 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4379 "available");
4382 ext4_set_resv_clusters(sb);
4384 err = ext4_setup_system_zone(sb);
4385 if (err) {
4386 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4387 "zone (%d)", err);
4388 goto failed_mount4a;
4391 ext4_ext_init(sb);
4392 err = ext4_mb_init(sb);
4393 if (err) {
4394 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4395 err);
4396 goto failed_mount5;
4399 block = ext4_count_free_clusters(sb);
4400 ext4_free_blocks_count_set(sbi->s_es,
4401 EXT4_C2B(sbi, block));
4402 ext4_superblock_csum_set(sb);
4403 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4404 GFP_KERNEL);
4405 if (!err) {
4406 unsigned long freei = ext4_count_free_inodes(sb);
4407 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4408 ext4_superblock_csum_set(sb);
4409 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4410 GFP_KERNEL);
4412 if (!err)
4413 err = percpu_counter_init(&sbi->s_dirs_counter,
4414 ext4_count_dirs(sb), GFP_KERNEL);
4415 if (!err)
4416 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4417 GFP_KERNEL);
4418 if (!err)
4419 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4421 if (err) {
4422 ext4_msg(sb, KERN_ERR, "insufficient memory");
4423 goto failed_mount6;
4426 if (ext4_has_feature_flex_bg(sb))
4427 if (!ext4_fill_flex_info(sb)) {
4428 ext4_msg(sb, KERN_ERR,
4429 "unable to initialize "
4430 "flex_bg meta info!");
4431 goto failed_mount6;
4434 err = ext4_register_li_request(sb, first_not_zeroed);
4435 if (err)
4436 goto failed_mount6;
4438 err = ext4_register_sysfs(sb);
4439 if (err)
4440 goto failed_mount7;
4442 #ifdef CONFIG_QUOTA
4443 /* Enable quota usage during mount. */
4444 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4445 err = ext4_enable_quotas(sb);
4446 if (err)
4447 goto failed_mount8;
4449 #endif /* CONFIG_QUOTA */
4451 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4452 ext4_orphan_cleanup(sb, es);
4453 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4454 if (needs_recovery) {
4455 ext4_msg(sb, KERN_INFO, "recovery complete");
4456 ext4_mark_recovery_complete(sb, es);
4458 if (EXT4_SB(sb)->s_journal) {
4459 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4460 descr = " journalled data mode";
4461 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4462 descr = " ordered data mode";
4463 else
4464 descr = " writeback data mode";
4465 } else
4466 descr = "out journal";
4468 if (test_opt(sb, DISCARD)) {
4469 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4470 if (!blk_queue_discard(q))
4471 ext4_msg(sb, KERN_WARNING,
4472 "mounting with \"discard\" option, but "
4473 "the device does not support discard");
4476 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4477 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4478 "Opts: %.*s%s%s", descr,
4479 (int) sizeof(sbi->s_es->s_mount_opts),
4480 sbi->s_es->s_mount_opts,
4481 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4483 if (es->s_error_count)
4484 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4486 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4487 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4488 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4489 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4491 kfree(orig_data);
4492 return 0;
4494 cantfind_ext4:
4495 if (!silent)
4496 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4497 goto failed_mount;
4499 #ifdef CONFIG_QUOTA
4500 failed_mount8:
4501 ext4_unregister_sysfs(sb);
4502 #endif
4503 failed_mount7:
4504 ext4_unregister_li_request(sb);
4505 failed_mount6:
4506 ext4_mb_release(sb);
4507 if (sbi->s_flex_groups)
4508 kvfree(sbi->s_flex_groups);
4509 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4510 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4511 percpu_counter_destroy(&sbi->s_dirs_counter);
4512 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4513 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4514 failed_mount5:
4515 ext4_ext_release(sb);
4516 ext4_release_system_zone(sb);
4517 failed_mount4a:
4518 dput(sb->s_root);
4519 sb->s_root = NULL;
4520 failed_mount4:
4521 ext4_msg(sb, KERN_ERR, "mount failed");
4522 if (EXT4_SB(sb)->rsv_conversion_wq)
4523 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4524 failed_mount_wq:
4525 if (sbi->s_ea_inode_cache) {
4526 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4527 sbi->s_ea_inode_cache = NULL;
4529 if (sbi->s_ea_block_cache) {
4530 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4531 sbi->s_ea_block_cache = NULL;
4533 if (sbi->s_journal) {
4534 jbd2_journal_destroy(sbi->s_journal);
4535 sbi->s_journal = NULL;
4537 failed_mount3a:
4538 ext4_es_unregister_shrinker(sbi);
4539 failed_mount3:
4540 del_timer_sync(&sbi->s_err_report);
4541 if (sbi->s_mmp_tsk)
4542 kthread_stop(sbi->s_mmp_tsk);
4543 failed_mount2:
4544 for (i = 0; i < db_count; i++)
4545 brelse(sbi->s_group_desc[i]);
4546 kvfree(sbi->s_group_desc);
4547 failed_mount:
4548 if (sbi->s_chksum_driver)
4549 crypto_free_shash(sbi->s_chksum_driver);
4550 #ifdef CONFIG_QUOTA
4551 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4552 kfree(sbi->s_qf_names[i]);
4553 #endif
4554 ext4_blkdev_remove(sbi);
4555 brelse(bh);
4556 out_fail:
4557 sb->s_fs_info = NULL;
4558 kfree(sbi->s_blockgroup_lock);
4559 out_free_base:
4560 kfree(sbi);
4561 kfree(orig_data);
4562 fs_put_dax(dax_dev);
4563 return err ? err : ret;
4567 * Setup any per-fs journal parameters now. We'll do this both on
4568 * initial mount, once the journal has been initialised but before we've
4569 * done any recovery; and again on any subsequent remount.
4571 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4573 struct ext4_sb_info *sbi = EXT4_SB(sb);
4575 journal->j_commit_interval = sbi->s_commit_interval;
4576 journal->j_min_batch_time = sbi->s_min_batch_time;
4577 journal->j_max_batch_time = sbi->s_max_batch_time;
4579 write_lock(&journal->j_state_lock);
4580 if (test_opt(sb, BARRIER))
4581 journal->j_flags |= JBD2_BARRIER;
4582 else
4583 journal->j_flags &= ~JBD2_BARRIER;
4584 if (test_opt(sb, DATA_ERR_ABORT))
4585 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4586 else
4587 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4588 write_unlock(&journal->j_state_lock);
4591 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4592 unsigned int journal_inum)
4594 struct inode *journal_inode;
4597 * Test for the existence of a valid inode on disk. Bad things
4598 * happen if we iget() an unused inode, as the subsequent iput()
4599 * will try to delete it.
4601 journal_inode = ext4_iget(sb, journal_inum);
4602 if (IS_ERR(journal_inode)) {
4603 ext4_msg(sb, KERN_ERR, "no journal found");
4604 return NULL;
4606 if (!journal_inode->i_nlink) {
4607 make_bad_inode(journal_inode);
4608 iput(journal_inode);
4609 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4610 return NULL;
4613 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4614 journal_inode, journal_inode->i_size);
4615 if (!S_ISREG(journal_inode->i_mode)) {
4616 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4617 iput(journal_inode);
4618 return NULL;
4620 return journal_inode;
4623 static journal_t *ext4_get_journal(struct super_block *sb,
4624 unsigned int journal_inum)
4626 struct inode *journal_inode;
4627 journal_t *journal;
4629 BUG_ON(!ext4_has_feature_journal(sb));
4631 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4632 if (!journal_inode)
4633 return NULL;
4635 journal = jbd2_journal_init_inode(journal_inode);
4636 if (!journal) {
4637 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4638 iput(journal_inode);
4639 return NULL;
4641 journal->j_private = sb;
4642 ext4_init_journal_params(sb, journal);
4643 return journal;
4646 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4647 dev_t j_dev)
4649 struct buffer_head *bh;
4650 journal_t *journal;
4651 ext4_fsblk_t start;
4652 ext4_fsblk_t len;
4653 int hblock, blocksize;
4654 ext4_fsblk_t sb_block;
4655 unsigned long offset;
4656 struct ext4_super_block *es;
4657 struct block_device *bdev;
4659 BUG_ON(!ext4_has_feature_journal(sb));
4661 bdev = ext4_blkdev_get(j_dev, sb);
4662 if (bdev == NULL)
4663 return NULL;
4665 blocksize = sb->s_blocksize;
4666 hblock = bdev_logical_block_size(bdev);
4667 if (blocksize < hblock) {
4668 ext4_msg(sb, KERN_ERR,
4669 "blocksize too small for journal device");
4670 goto out_bdev;
4673 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4674 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4675 set_blocksize(bdev, blocksize);
4676 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4677 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4678 "external journal");
4679 goto out_bdev;
4682 es = (struct ext4_super_block *) (bh->b_data + offset);
4683 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4684 !(le32_to_cpu(es->s_feature_incompat) &
4685 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4686 ext4_msg(sb, KERN_ERR, "external journal has "
4687 "bad superblock");
4688 brelse(bh);
4689 goto out_bdev;
4692 if ((le32_to_cpu(es->s_feature_ro_compat) &
4693 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4694 es->s_checksum != ext4_superblock_csum(sb, es)) {
4695 ext4_msg(sb, KERN_ERR, "external journal has "
4696 "corrupt superblock");
4697 brelse(bh);
4698 goto out_bdev;
4701 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4702 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4703 brelse(bh);
4704 goto out_bdev;
4707 len = ext4_blocks_count(es);
4708 start = sb_block + 1;
4709 brelse(bh); /* we're done with the superblock */
4711 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4712 start, len, blocksize);
4713 if (!journal) {
4714 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4715 goto out_bdev;
4717 journal->j_private = sb;
4718 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4719 wait_on_buffer(journal->j_sb_buffer);
4720 if (!buffer_uptodate(journal->j_sb_buffer)) {
4721 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4722 goto out_journal;
4724 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4725 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4726 "user (unsupported) - %d",
4727 be32_to_cpu(journal->j_superblock->s_nr_users));
4728 goto out_journal;
4730 EXT4_SB(sb)->journal_bdev = bdev;
4731 ext4_init_journal_params(sb, journal);
4732 return journal;
4734 out_journal:
4735 jbd2_journal_destroy(journal);
4736 out_bdev:
4737 ext4_blkdev_put(bdev);
4738 return NULL;
4741 static int ext4_load_journal(struct super_block *sb,
4742 struct ext4_super_block *es,
4743 unsigned long journal_devnum)
4745 journal_t *journal;
4746 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4747 dev_t journal_dev;
4748 int err = 0;
4749 int really_read_only;
4751 BUG_ON(!ext4_has_feature_journal(sb));
4753 if (journal_devnum &&
4754 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4755 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4756 "numbers have changed");
4757 journal_dev = new_decode_dev(journal_devnum);
4758 } else
4759 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4761 really_read_only = bdev_read_only(sb->s_bdev);
4764 * Are we loading a blank journal or performing recovery after a
4765 * crash? For recovery, we need to check in advance whether we
4766 * can get read-write access to the device.
4768 if (ext4_has_feature_journal_needs_recovery(sb)) {
4769 if (sb_rdonly(sb)) {
4770 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4771 "required on readonly filesystem");
4772 if (really_read_only) {
4773 ext4_msg(sb, KERN_ERR, "write access "
4774 "unavailable, cannot proceed "
4775 "(try mounting with noload)");
4776 return -EROFS;
4778 ext4_msg(sb, KERN_INFO, "write access will "
4779 "be enabled during recovery");
4783 if (journal_inum && journal_dev) {
4784 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4785 "and inode journals!");
4786 return -EINVAL;
4789 if (journal_inum) {
4790 if (!(journal = ext4_get_journal(sb, journal_inum)))
4791 return -EINVAL;
4792 } else {
4793 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4794 return -EINVAL;
4797 if (!(journal->j_flags & JBD2_BARRIER))
4798 ext4_msg(sb, KERN_INFO, "barriers disabled");
4800 if (!ext4_has_feature_journal_needs_recovery(sb))
4801 err = jbd2_journal_wipe(journal, !really_read_only);
4802 if (!err) {
4803 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4804 if (save)
4805 memcpy(save, ((char *) es) +
4806 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4807 err = jbd2_journal_load(journal);
4808 if (save)
4809 memcpy(((char *) es) + EXT4_S_ERR_START,
4810 save, EXT4_S_ERR_LEN);
4811 kfree(save);
4814 if (err) {
4815 ext4_msg(sb, KERN_ERR, "error loading journal");
4816 jbd2_journal_destroy(journal);
4817 return err;
4820 EXT4_SB(sb)->s_journal = journal;
4821 ext4_clear_journal_err(sb, es);
4823 if (!really_read_only && journal_devnum &&
4824 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4825 es->s_journal_dev = cpu_to_le32(journal_devnum);
4827 /* Make sure we flush the recovery flag to disk. */
4828 ext4_commit_super(sb, 1);
4831 return 0;
4834 static int ext4_commit_super(struct super_block *sb, int sync)
4836 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4837 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4838 int error = 0;
4840 if (!sbh || block_device_ejected(sb))
4841 return error;
4844 * The superblock bh should be mapped, but it might not be if the
4845 * device was hot-removed. Not much we can do but fail the I/O.
4847 if (!buffer_mapped(sbh))
4848 return error;
4851 * If the file system is mounted read-only, don't update the
4852 * superblock write time. This avoids updating the superblock
4853 * write time when we are mounting the root file system
4854 * read/only but we need to replay the journal; at that point,
4855 * for people who are east of GMT and who make their clock
4856 * tick in localtime for Windows bug-for-bug compatibility,
4857 * the clock is set in the future, and this will cause e2fsck
4858 * to complain and force a full file system check.
4860 if (!(sb->s_flags & SB_RDONLY))
4861 ext4_update_tstamp(es, s_wtime);
4862 if (sb->s_bdev->bd_part)
4863 es->s_kbytes_written =
4864 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4865 ((part_stat_read(sb->s_bdev->bd_part,
4866 sectors[STAT_WRITE]) -
4867 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4868 else
4869 es->s_kbytes_written =
4870 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4871 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4872 ext4_free_blocks_count_set(es,
4873 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4874 &EXT4_SB(sb)->s_freeclusters_counter)));
4875 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4876 es->s_free_inodes_count =
4877 cpu_to_le32(percpu_counter_sum_positive(
4878 &EXT4_SB(sb)->s_freeinodes_counter));
4879 BUFFER_TRACE(sbh, "marking dirty");
4880 ext4_superblock_csum_set(sb);
4881 if (sync)
4882 lock_buffer(sbh);
4883 if (buffer_write_io_error(sbh)) {
4885 * Oh, dear. A previous attempt to write the
4886 * superblock failed. This could happen because the
4887 * USB device was yanked out. Or it could happen to
4888 * be a transient write error and maybe the block will
4889 * be remapped. Nothing we can do but to retry the
4890 * write and hope for the best.
4892 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4893 "superblock detected");
4894 clear_buffer_write_io_error(sbh);
4895 set_buffer_uptodate(sbh);
4897 mark_buffer_dirty(sbh);
4898 if (sync) {
4899 unlock_buffer(sbh);
4900 error = __sync_dirty_buffer(sbh,
4901 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4902 if (buffer_write_io_error(sbh)) {
4903 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4904 "superblock");
4905 clear_buffer_write_io_error(sbh);
4906 set_buffer_uptodate(sbh);
4909 return error;
4913 * Have we just finished recovery? If so, and if we are mounting (or
4914 * remounting) the filesystem readonly, then we will end up with a
4915 * consistent fs on disk. Record that fact.
4917 static void ext4_mark_recovery_complete(struct super_block *sb,
4918 struct ext4_super_block *es)
4920 journal_t *journal = EXT4_SB(sb)->s_journal;
4922 if (!ext4_has_feature_journal(sb)) {
4923 BUG_ON(journal != NULL);
4924 return;
4926 jbd2_journal_lock_updates(journal);
4927 if (jbd2_journal_flush(journal) < 0)
4928 goto out;
4930 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4931 ext4_clear_feature_journal_needs_recovery(sb);
4932 ext4_commit_super(sb, 1);
4935 out:
4936 jbd2_journal_unlock_updates(journal);
4940 * If we are mounting (or read-write remounting) a filesystem whose journal
4941 * has recorded an error from a previous lifetime, move that error to the
4942 * main filesystem now.
4944 static void ext4_clear_journal_err(struct super_block *sb,
4945 struct ext4_super_block *es)
4947 journal_t *journal;
4948 int j_errno;
4949 const char *errstr;
4951 BUG_ON(!ext4_has_feature_journal(sb));
4953 journal = EXT4_SB(sb)->s_journal;
4956 * Now check for any error status which may have been recorded in the
4957 * journal by a prior ext4_error() or ext4_abort()
4960 j_errno = jbd2_journal_errno(journal);
4961 if (j_errno) {
4962 char nbuf[16];
4964 errstr = ext4_decode_error(sb, j_errno, nbuf);
4965 ext4_warning(sb, "Filesystem error recorded "
4966 "from previous mount: %s", errstr);
4967 ext4_warning(sb, "Marking fs in need of filesystem check.");
4969 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4970 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4971 ext4_commit_super(sb, 1);
4973 jbd2_journal_clear_err(journal);
4974 jbd2_journal_update_sb_errno(journal);
4979 * Force the running and committing transactions to commit,
4980 * and wait on the commit.
4982 int ext4_force_commit(struct super_block *sb)
4984 journal_t *journal;
4986 if (sb_rdonly(sb))
4987 return 0;
4989 journal = EXT4_SB(sb)->s_journal;
4990 return ext4_journal_force_commit(journal);
4993 static int ext4_sync_fs(struct super_block *sb, int wait)
4995 int ret = 0;
4996 tid_t target;
4997 bool needs_barrier = false;
4998 struct ext4_sb_info *sbi = EXT4_SB(sb);
5000 if (unlikely(ext4_forced_shutdown(sbi)))
5001 return 0;
5003 trace_ext4_sync_fs(sb, wait);
5004 flush_workqueue(sbi->rsv_conversion_wq);
5006 * Writeback quota in non-journalled quota case - journalled quota has
5007 * no dirty dquots
5009 dquot_writeback_dquots(sb, -1);
5011 * Data writeback is possible w/o journal transaction, so barrier must
5012 * being sent at the end of the function. But we can skip it if
5013 * transaction_commit will do it for us.
5015 if (sbi->s_journal) {
5016 target = jbd2_get_latest_transaction(sbi->s_journal);
5017 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5018 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5019 needs_barrier = true;
5021 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5022 if (wait)
5023 ret = jbd2_log_wait_commit(sbi->s_journal,
5024 target);
5026 } else if (wait && test_opt(sb, BARRIER))
5027 needs_barrier = true;
5028 if (needs_barrier) {
5029 int err;
5030 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
5031 if (!ret)
5032 ret = err;
5035 return ret;
5039 * LVM calls this function before a (read-only) snapshot is created. This
5040 * gives us a chance to flush the journal completely and mark the fs clean.
5042 * Note that only this function cannot bring a filesystem to be in a clean
5043 * state independently. It relies on upper layer to stop all data & metadata
5044 * modifications.
5046 static int ext4_freeze(struct super_block *sb)
5048 int error = 0;
5049 journal_t *journal;
5051 if (sb_rdonly(sb))
5052 return 0;
5054 journal = EXT4_SB(sb)->s_journal;
5056 if (journal) {
5057 /* Now we set up the journal barrier. */
5058 jbd2_journal_lock_updates(journal);
5061 * Don't clear the needs_recovery flag if we failed to
5062 * flush the journal.
5064 error = jbd2_journal_flush(journal);
5065 if (error < 0)
5066 goto out;
5068 /* Journal blocked and flushed, clear needs_recovery flag. */
5069 ext4_clear_feature_journal_needs_recovery(sb);
5072 error = ext4_commit_super(sb, 1);
5073 out:
5074 if (journal)
5075 /* we rely on upper layer to stop further updates */
5076 jbd2_journal_unlock_updates(journal);
5077 return error;
5081 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5082 * flag here, even though the filesystem is not technically dirty yet.
5084 static int ext4_unfreeze(struct super_block *sb)
5086 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5087 return 0;
5089 if (EXT4_SB(sb)->s_journal) {
5090 /* Reset the needs_recovery flag before the fs is unlocked. */
5091 ext4_set_feature_journal_needs_recovery(sb);
5094 ext4_commit_super(sb, 1);
5095 return 0;
5099 * Structure to save mount options for ext4_remount's benefit
5101 struct ext4_mount_options {
5102 unsigned long s_mount_opt;
5103 unsigned long s_mount_opt2;
5104 kuid_t s_resuid;
5105 kgid_t s_resgid;
5106 unsigned long s_commit_interval;
5107 u32 s_min_batch_time, s_max_batch_time;
5108 #ifdef CONFIG_QUOTA
5109 int s_jquota_fmt;
5110 char *s_qf_names[EXT4_MAXQUOTAS];
5111 #endif
5114 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5116 struct ext4_super_block *es;
5117 struct ext4_sb_info *sbi = EXT4_SB(sb);
5118 unsigned long old_sb_flags;
5119 struct ext4_mount_options old_opts;
5120 int enable_quota = 0;
5121 ext4_group_t g;
5122 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5123 int err = 0;
5124 #ifdef CONFIG_QUOTA
5125 int i, j;
5126 char *to_free[EXT4_MAXQUOTAS];
5127 #endif
5128 char *orig_data = kstrdup(data, GFP_KERNEL);
5130 if (data && !orig_data)
5131 return -ENOMEM;
5133 /* Store the original options */
5134 old_sb_flags = sb->s_flags;
5135 old_opts.s_mount_opt = sbi->s_mount_opt;
5136 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5137 old_opts.s_resuid = sbi->s_resuid;
5138 old_opts.s_resgid = sbi->s_resgid;
5139 old_opts.s_commit_interval = sbi->s_commit_interval;
5140 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5141 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5142 #ifdef CONFIG_QUOTA
5143 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5144 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5145 if (sbi->s_qf_names[i]) {
5146 char *qf_name = get_qf_name(sb, sbi, i);
5148 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5149 if (!old_opts.s_qf_names[i]) {
5150 for (j = 0; j < i; j++)
5151 kfree(old_opts.s_qf_names[j]);
5152 kfree(orig_data);
5153 return -ENOMEM;
5155 } else
5156 old_opts.s_qf_names[i] = NULL;
5157 #endif
5158 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5159 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5161 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5162 err = -EINVAL;
5163 goto restore_opts;
5166 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5167 test_opt(sb, JOURNAL_CHECKSUM)) {
5168 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5169 "during remount not supported; ignoring");
5170 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5173 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5174 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5175 ext4_msg(sb, KERN_ERR, "can't mount with "
5176 "both data=journal and delalloc");
5177 err = -EINVAL;
5178 goto restore_opts;
5180 if (test_opt(sb, DIOREAD_NOLOCK)) {
5181 ext4_msg(sb, KERN_ERR, "can't mount with "
5182 "both data=journal and dioread_nolock");
5183 err = -EINVAL;
5184 goto restore_opts;
5186 if (test_opt(sb, DAX)) {
5187 ext4_msg(sb, KERN_ERR, "can't mount with "
5188 "both data=journal and dax");
5189 err = -EINVAL;
5190 goto restore_opts;
5192 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5193 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5194 ext4_msg(sb, KERN_ERR, "can't mount with "
5195 "journal_async_commit in data=ordered mode");
5196 err = -EINVAL;
5197 goto restore_opts;
5201 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5202 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5203 err = -EINVAL;
5204 goto restore_opts;
5207 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5208 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5209 "dax flag with busy inodes while remounting");
5210 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5213 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5214 ext4_abort(sb, "Abort forced by user");
5216 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5217 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5219 es = sbi->s_es;
5221 if (sbi->s_journal) {
5222 ext4_init_journal_params(sb, sbi->s_journal);
5223 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5226 if (*flags & SB_LAZYTIME)
5227 sb->s_flags |= SB_LAZYTIME;
5229 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5230 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5231 err = -EROFS;
5232 goto restore_opts;
5235 if (*flags & SB_RDONLY) {
5236 err = sync_filesystem(sb);
5237 if (err < 0)
5238 goto restore_opts;
5239 err = dquot_suspend(sb, -1);
5240 if (err < 0)
5241 goto restore_opts;
5244 * First of all, the unconditional stuff we have to do
5245 * to disable replay of the journal when we next remount
5247 sb->s_flags |= SB_RDONLY;
5250 * OK, test if we are remounting a valid rw partition
5251 * readonly, and if so set the rdonly flag and then
5252 * mark the partition as valid again.
5254 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5255 (sbi->s_mount_state & EXT4_VALID_FS))
5256 es->s_state = cpu_to_le16(sbi->s_mount_state);
5258 if (sbi->s_journal)
5259 ext4_mark_recovery_complete(sb, es);
5260 if (sbi->s_mmp_tsk)
5261 kthread_stop(sbi->s_mmp_tsk);
5262 } else {
5263 /* Make sure we can mount this feature set readwrite */
5264 if (ext4_has_feature_readonly(sb) ||
5265 !ext4_feature_set_ok(sb, 0)) {
5266 err = -EROFS;
5267 goto restore_opts;
5270 * Make sure the group descriptor checksums
5271 * are sane. If they aren't, refuse to remount r/w.
5273 for (g = 0; g < sbi->s_groups_count; g++) {
5274 struct ext4_group_desc *gdp =
5275 ext4_get_group_desc(sb, g, NULL);
5277 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5278 ext4_msg(sb, KERN_ERR,
5279 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5280 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5281 le16_to_cpu(gdp->bg_checksum));
5282 err = -EFSBADCRC;
5283 goto restore_opts;
5288 * If we have an unprocessed orphan list hanging
5289 * around from a previously readonly bdev mount,
5290 * require a full umount/remount for now.
5292 if (es->s_last_orphan) {
5293 ext4_msg(sb, KERN_WARNING, "Couldn't "
5294 "remount RDWR because of unprocessed "
5295 "orphan inode list. Please "
5296 "umount/remount instead");
5297 err = -EINVAL;
5298 goto restore_opts;
5302 * Mounting a RDONLY partition read-write, so reread
5303 * and store the current valid flag. (It may have
5304 * been changed by e2fsck since we originally mounted
5305 * the partition.)
5307 if (sbi->s_journal)
5308 ext4_clear_journal_err(sb, es);
5309 sbi->s_mount_state = le16_to_cpu(es->s_state);
5311 err = ext4_setup_super(sb, es, 0);
5312 if (err)
5313 goto restore_opts;
5315 sb->s_flags &= ~SB_RDONLY;
5316 if (ext4_has_feature_mmp(sb))
5317 if (ext4_multi_mount_protect(sb,
5318 le64_to_cpu(es->s_mmp_block))) {
5319 err = -EROFS;
5320 goto restore_opts;
5322 enable_quota = 1;
5327 * Reinitialize lazy itable initialization thread based on
5328 * current settings
5330 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5331 ext4_unregister_li_request(sb);
5332 else {
5333 ext4_group_t first_not_zeroed;
5334 first_not_zeroed = ext4_has_uninit_itable(sb);
5335 ext4_register_li_request(sb, first_not_zeroed);
5338 ext4_setup_system_zone(sb);
5339 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
5340 err = ext4_commit_super(sb, 1);
5341 if (err)
5342 goto restore_opts;
5345 #ifdef CONFIG_QUOTA
5346 /* Release old quota file names */
5347 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5348 kfree(old_opts.s_qf_names[i]);
5349 if (enable_quota) {
5350 if (sb_any_quota_suspended(sb))
5351 dquot_resume(sb, -1);
5352 else if (ext4_has_feature_quota(sb)) {
5353 err = ext4_enable_quotas(sb);
5354 if (err)
5355 goto restore_opts;
5358 #endif
5360 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5361 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5362 kfree(orig_data);
5363 return 0;
5365 restore_opts:
5366 sb->s_flags = old_sb_flags;
5367 sbi->s_mount_opt = old_opts.s_mount_opt;
5368 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5369 sbi->s_resuid = old_opts.s_resuid;
5370 sbi->s_resgid = old_opts.s_resgid;
5371 sbi->s_commit_interval = old_opts.s_commit_interval;
5372 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5373 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5374 #ifdef CONFIG_QUOTA
5375 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5376 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5377 to_free[i] = get_qf_name(sb, sbi, i);
5378 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5380 synchronize_rcu();
5381 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5382 kfree(to_free[i]);
5383 #endif
5384 kfree(orig_data);
5385 return err;
5388 #ifdef CONFIG_QUOTA
5389 static int ext4_statfs_project(struct super_block *sb,
5390 kprojid_t projid, struct kstatfs *buf)
5392 struct kqid qid;
5393 struct dquot *dquot;
5394 u64 limit;
5395 u64 curblock;
5397 qid = make_kqid_projid(projid);
5398 dquot = dqget(sb, qid);
5399 if (IS_ERR(dquot))
5400 return PTR_ERR(dquot);
5401 spin_lock(&dquot->dq_dqb_lock);
5403 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5404 dquot->dq_dqb.dqb_bsoftlimit :
5405 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5406 if (limit && buf->f_blocks > limit) {
5407 curblock = (dquot->dq_dqb.dqb_curspace +
5408 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
5409 buf->f_blocks = limit;
5410 buf->f_bfree = buf->f_bavail =
5411 (buf->f_blocks > curblock) ?
5412 (buf->f_blocks - curblock) : 0;
5415 limit = dquot->dq_dqb.dqb_isoftlimit ?
5416 dquot->dq_dqb.dqb_isoftlimit :
5417 dquot->dq_dqb.dqb_ihardlimit;
5418 if (limit && buf->f_files > limit) {
5419 buf->f_files = limit;
5420 buf->f_ffree =
5421 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5422 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5425 spin_unlock(&dquot->dq_dqb_lock);
5426 dqput(dquot);
5427 return 0;
5429 #endif
5431 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5433 struct super_block *sb = dentry->d_sb;
5434 struct ext4_sb_info *sbi = EXT4_SB(sb);
5435 struct ext4_super_block *es = sbi->s_es;
5436 ext4_fsblk_t overhead = 0, resv_blocks;
5437 u64 fsid;
5438 s64 bfree;
5439 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5441 if (!test_opt(sb, MINIX_DF))
5442 overhead = sbi->s_overhead;
5444 buf->f_type = EXT4_SUPER_MAGIC;
5445 buf->f_bsize = sb->s_blocksize;
5446 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5447 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5448 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5449 /* prevent underflow in case that few free space is available */
5450 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5451 buf->f_bavail = buf->f_bfree -
5452 (ext4_r_blocks_count(es) + resv_blocks);
5453 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5454 buf->f_bavail = 0;
5455 buf->f_files = le32_to_cpu(es->s_inodes_count);
5456 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5457 buf->f_namelen = EXT4_NAME_LEN;
5458 fsid = le64_to_cpup((void *)es->s_uuid) ^
5459 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5460 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5461 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5463 #ifdef CONFIG_QUOTA
5464 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5465 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5466 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5467 #endif
5468 return 0;
5472 #ifdef CONFIG_QUOTA
5475 * Helper functions so that transaction is started before we acquire dqio_sem
5476 * to keep correct lock ordering of transaction > dqio_sem
5478 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5480 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5483 static int ext4_write_dquot(struct dquot *dquot)
5485 int ret, err;
5486 handle_t *handle;
5487 struct inode *inode;
5489 inode = dquot_to_inode(dquot);
5490 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5491 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5492 if (IS_ERR(handle))
5493 return PTR_ERR(handle);
5494 ret = dquot_commit(dquot);
5495 err = ext4_journal_stop(handle);
5496 if (!ret)
5497 ret = err;
5498 return ret;
5501 static int ext4_acquire_dquot(struct dquot *dquot)
5503 int ret, err;
5504 handle_t *handle;
5506 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5507 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5508 if (IS_ERR(handle))
5509 return PTR_ERR(handle);
5510 ret = dquot_acquire(dquot);
5511 err = ext4_journal_stop(handle);
5512 if (!ret)
5513 ret = err;
5514 return ret;
5517 static int ext4_release_dquot(struct dquot *dquot)
5519 int ret, err;
5520 handle_t *handle;
5522 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5523 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5524 if (IS_ERR(handle)) {
5525 /* Release dquot anyway to avoid endless cycle in dqput() */
5526 dquot_release(dquot);
5527 return PTR_ERR(handle);
5529 ret = dquot_release(dquot);
5530 err = ext4_journal_stop(handle);
5531 if (!ret)
5532 ret = err;
5533 return ret;
5536 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5538 struct super_block *sb = dquot->dq_sb;
5539 struct ext4_sb_info *sbi = EXT4_SB(sb);
5541 /* Are we journaling quotas? */
5542 if (ext4_has_feature_quota(sb) ||
5543 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5544 dquot_mark_dquot_dirty(dquot);
5545 return ext4_write_dquot(dquot);
5546 } else {
5547 return dquot_mark_dquot_dirty(dquot);
5551 static int ext4_write_info(struct super_block *sb, int type)
5553 int ret, err;
5554 handle_t *handle;
5556 /* Data block + inode block */
5557 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5558 if (IS_ERR(handle))
5559 return PTR_ERR(handle);
5560 ret = dquot_commit_info(sb, type);
5561 err = ext4_journal_stop(handle);
5562 if (!ret)
5563 ret = err;
5564 return ret;
5568 * Turn on quotas during mount time - we need to find
5569 * the quota file and such...
5571 static int ext4_quota_on_mount(struct super_block *sb, int type)
5573 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5574 EXT4_SB(sb)->s_jquota_fmt, type);
5577 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5579 struct ext4_inode_info *ei = EXT4_I(inode);
5581 /* The first argument of lockdep_set_subclass has to be
5582 * *exactly* the same as the argument to init_rwsem() --- in
5583 * this case, in init_once() --- or lockdep gets unhappy
5584 * because the name of the lock is set using the
5585 * stringification of the argument to init_rwsem().
5587 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5588 lockdep_set_subclass(&ei->i_data_sem, subclass);
5592 * Standard function to be called on quota_on
5594 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5595 const struct path *path)
5597 int err;
5599 if (!test_opt(sb, QUOTA))
5600 return -EINVAL;
5602 /* Quotafile not on the same filesystem? */
5603 if (path->dentry->d_sb != sb)
5604 return -EXDEV;
5605 /* Journaling quota? */
5606 if (EXT4_SB(sb)->s_qf_names[type]) {
5607 /* Quotafile not in fs root? */
5608 if (path->dentry->d_parent != sb->s_root)
5609 ext4_msg(sb, KERN_WARNING,
5610 "Quota file not on filesystem root. "
5611 "Journaled quota will not work");
5612 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5613 } else {
5615 * Clear the flag just in case mount options changed since
5616 * last time.
5618 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5622 * When we journal data on quota file, we have to flush journal to see
5623 * all updates to the file when we bypass pagecache...
5625 if (EXT4_SB(sb)->s_journal &&
5626 ext4_should_journal_data(d_inode(path->dentry))) {
5628 * We don't need to lock updates but journal_flush() could
5629 * otherwise be livelocked...
5631 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5632 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5633 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5634 if (err)
5635 return err;
5638 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5639 err = dquot_quota_on(sb, type, format_id, path);
5640 if (err) {
5641 lockdep_set_quota_inode(path->dentry->d_inode,
5642 I_DATA_SEM_NORMAL);
5643 } else {
5644 struct inode *inode = d_inode(path->dentry);
5645 handle_t *handle;
5648 * Set inode flags to prevent userspace from messing with quota
5649 * files. If this fails, we return success anyway since quotas
5650 * are already enabled and this is not a hard failure.
5652 inode_lock(inode);
5653 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5654 if (IS_ERR(handle))
5655 goto unlock_inode;
5656 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5657 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5658 S_NOATIME | S_IMMUTABLE);
5659 ext4_mark_inode_dirty(handle, inode);
5660 ext4_journal_stop(handle);
5661 unlock_inode:
5662 inode_unlock(inode);
5664 return err;
5667 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5668 unsigned int flags)
5670 int err;
5671 struct inode *qf_inode;
5672 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5673 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5674 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5675 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5678 BUG_ON(!ext4_has_feature_quota(sb));
5680 if (!qf_inums[type])
5681 return -EPERM;
5683 qf_inode = ext4_iget(sb, qf_inums[type]);
5684 if (IS_ERR(qf_inode)) {
5685 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5686 return PTR_ERR(qf_inode);
5689 /* Don't account quota for quota files to avoid recursion */
5690 qf_inode->i_flags |= S_NOQUOTA;
5691 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5692 err = dquot_enable(qf_inode, type, format_id, flags);
5693 iput(qf_inode);
5694 if (err)
5695 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5697 return err;
5700 /* Enable usage tracking for all quota types. */
5701 static int ext4_enable_quotas(struct super_block *sb)
5703 int type, err = 0;
5704 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5705 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5706 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5707 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5709 bool quota_mopt[EXT4_MAXQUOTAS] = {
5710 test_opt(sb, USRQUOTA),
5711 test_opt(sb, GRPQUOTA),
5712 test_opt(sb, PRJQUOTA),
5715 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5716 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5717 if (qf_inums[type]) {
5718 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5719 DQUOT_USAGE_ENABLED |
5720 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5721 if (err) {
5722 ext4_warning(sb,
5723 "Failed to enable quota tracking "
5724 "(type=%d, err=%d). Please run "
5725 "e2fsck to fix.", type, err);
5726 for (type--; type >= 0; type--)
5727 dquot_quota_off(sb, type);
5729 return err;
5733 return 0;
5736 static int ext4_quota_off(struct super_block *sb, int type)
5738 struct inode *inode = sb_dqopt(sb)->files[type];
5739 handle_t *handle;
5740 int err;
5742 /* Force all delayed allocation blocks to be allocated.
5743 * Caller already holds s_umount sem */
5744 if (test_opt(sb, DELALLOC))
5745 sync_filesystem(sb);
5747 if (!inode || !igrab(inode))
5748 goto out;
5750 err = dquot_quota_off(sb, type);
5751 if (err || ext4_has_feature_quota(sb))
5752 goto out_put;
5754 inode_lock(inode);
5756 * Update modification times of quota files when userspace can
5757 * start looking at them. If we fail, we return success anyway since
5758 * this is not a hard failure and quotas are already disabled.
5760 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5761 if (IS_ERR(handle))
5762 goto out_unlock;
5763 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5764 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5765 inode->i_mtime = inode->i_ctime = current_time(inode);
5766 ext4_mark_inode_dirty(handle, inode);
5767 ext4_journal_stop(handle);
5768 out_unlock:
5769 inode_unlock(inode);
5770 out_put:
5771 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5772 iput(inode);
5773 return err;
5774 out:
5775 return dquot_quota_off(sb, type);
5778 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5779 * acquiring the locks... As quota files are never truncated and quota code
5780 * itself serializes the operations (and no one else should touch the files)
5781 * we don't have to be afraid of races */
5782 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5783 size_t len, loff_t off)
5785 struct inode *inode = sb_dqopt(sb)->files[type];
5786 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5787 int offset = off & (sb->s_blocksize - 1);
5788 int tocopy;
5789 size_t toread;
5790 struct buffer_head *bh;
5791 loff_t i_size = i_size_read(inode);
5793 if (off > i_size)
5794 return 0;
5795 if (off+len > i_size)
5796 len = i_size-off;
5797 toread = len;
5798 while (toread > 0) {
5799 tocopy = sb->s_blocksize - offset < toread ?
5800 sb->s_blocksize - offset : toread;
5801 bh = ext4_bread(NULL, inode, blk, 0);
5802 if (IS_ERR(bh))
5803 return PTR_ERR(bh);
5804 if (!bh) /* A hole? */
5805 memset(data, 0, tocopy);
5806 else
5807 memcpy(data, bh->b_data+offset, tocopy);
5808 brelse(bh);
5809 offset = 0;
5810 toread -= tocopy;
5811 data += tocopy;
5812 blk++;
5814 return len;
5817 /* Write to quotafile (we know the transaction is already started and has
5818 * enough credits) */
5819 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5820 const char *data, size_t len, loff_t off)
5822 struct inode *inode = sb_dqopt(sb)->files[type];
5823 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5824 int err, offset = off & (sb->s_blocksize - 1);
5825 int retries = 0;
5826 struct buffer_head *bh;
5827 handle_t *handle = journal_current_handle();
5829 if (EXT4_SB(sb)->s_journal && !handle) {
5830 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5831 " cancelled because transaction is not started",
5832 (unsigned long long)off, (unsigned long long)len);
5833 return -EIO;
5836 * Since we account only one data block in transaction credits,
5837 * then it is impossible to cross a block boundary.
5839 if (sb->s_blocksize - offset < len) {
5840 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5841 " cancelled because not block aligned",
5842 (unsigned long long)off, (unsigned long long)len);
5843 return -EIO;
5846 do {
5847 bh = ext4_bread(handle, inode, blk,
5848 EXT4_GET_BLOCKS_CREATE |
5849 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5850 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5851 ext4_should_retry_alloc(inode->i_sb, &retries));
5852 if (IS_ERR(bh))
5853 return PTR_ERR(bh);
5854 if (!bh)
5855 goto out;
5856 BUFFER_TRACE(bh, "get write access");
5857 err = ext4_journal_get_write_access(handle, bh);
5858 if (err) {
5859 brelse(bh);
5860 return err;
5862 lock_buffer(bh);
5863 memcpy(bh->b_data+offset, data, len);
5864 flush_dcache_page(bh->b_page);
5865 unlock_buffer(bh);
5866 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5867 brelse(bh);
5868 out:
5869 if (inode->i_size < off + len) {
5870 i_size_write(inode, off + len);
5871 EXT4_I(inode)->i_disksize = inode->i_size;
5872 ext4_mark_inode_dirty(handle, inode);
5874 return len;
5877 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5879 const struct quota_format_ops *ops;
5881 if (!sb_has_quota_loaded(sb, qid->type))
5882 return -ESRCH;
5883 ops = sb_dqopt(sb)->ops[qid->type];
5884 if (!ops || !ops->get_next_id)
5885 return -ENOSYS;
5886 return dquot_get_next_id(sb, qid);
5888 #endif
5890 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5891 const char *dev_name, void *data)
5893 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5896 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5897 static inline void register_as_ext2(void)
5899 int err = register_filesystem(&ext2_fs_type);
5900 if (err)
5901 printk(KERN_WARNING
5902 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5905 static inline void unregister_as_ext2(void)
5907 unregister_filesystem(&ext2_fs_type);
5910 static inline int ext2_feature_set_ok(struct super_block *sb)
5912 if (ext4_has_unknown_ext2_incompat_features(sb))
5913 return 0;
5914 if (sb_rdonly(sb))
5915 return 1;
5916 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5917 return 0;
5918 return 1;
5920 #else
5921 static inline void register_as_ext2(void) { }
5922 static inline void unregister_as_ext2(void) { }
5923 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5924 #endif
5926 static inline void register_as_ext3(void)
5928 int err = register_filesystem(&ext3_fs_type);
5929 if (err)
5930 printk(KERN_WARNING
5931 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5934 static inline void unregister_as_ext3(void)
5936 unregister_filesystem(&ext3_fs_type);
5939 static inline int ext3_feature_set_ok(struct super_block *sb)
5941 if (ext4_has_unknown_ext3_incompat_features(sb))
5942 return 0;
5943 if (!ext4_has_feature_journal(sb))
5944 return 0;
5945 if (sb_rdonly(sb))
5946 return 1;
5947 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5948 return 0;
5949 return 1;
5952 static struct file_system_type ext4_fs_type = {
5953 .owner = THIS_MODULE,
5954 .name = "ext4",
5955 .mount = ext4_mount,
5956 .kill_sb = kill_block_super,
5957 .fs_flags = FS_REQUIRES_DEV,
5959 MODULE_ALIAS_FS("ext4");
5961 /* Shared across all ext4 file systems */
5962 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5964 static int __init ext4_init_fs(void)
5966 int i, err;
5968 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5969 ext4_li_info = NULL;
5970 mutex_init(&ext4_li_mtx);
5972 /* Build-time check for flags consistency */
5973 ext4_check_flag_values();
5975 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5976 init_waitqueue_head(&ext4__ioend_wq[i]);
5978 err = ext4_init_es();
5979 if (err)
5980 return err;
5982 err = ext4_init_pending();
5983 if (err)
5984 goto out6;
5986 err = ext4_init_pageio();
5987 if (err)
5988 goto out5;
5990 err = ext4_init_system_zone();
5991 if (err)
5992 goto out4;
5994 err = ext4_init_sysfs();
5995 if (err)
5996 goto out3;
5998 err = ext4_init_mballoc();
5999 if (err)
6000 goto out2;
6001 err = init_inodecache();
6002 if (err)
6003 goto out1;
6004 register_as_ext3();
6005 register_as_ext2();
6006 err = register_filesystem(&ext4_fs_type);
6007 if (err)
6008 goto out;
6010 return 0;
6011 out:
6012 unregister_as_ext2();
6013 unregister_as_ext3();
6014 destroy_inodecache();
6015 out1:
6016 ext4_exit_mballoc();
6017 out2:
6018 ext4_exit_sysfs();
6019 out3:
6020 ext4_exit_system_zone();
6021 out4:
6022 ext4_exit_pageio();
6023 out5:
6024 ext4_exit_pending();
6025 out6:
6026 ext4_exit_es();
6028 return err;
6031 static void __exit ext4_exit_fs(void)
6033 ext4_destroy_lazyinit_thread();
6034 unregister_as_ext2();
6035 unregister_as_ext3();
6036 unregister_filesystem(&ext4_fs_type);
6037 destroy_inodecache();
6038 ext4_exit_mballoc();
6039 ext4_exit_sysfs();
6040 ext4_exit_system_zone();
6041 ext4_exit_pageio();
6042 ext4_exit_es();
6043 ext4_exit_pending();
6046 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6047 MODULE_DESCRIPTION("Fourth Extended Filesystem");
6048 MODULE_LICENSE("GPL");
6049 MODULE_SOFTDEP("pre: crc32c");
6050 module_init(ext4_init_fs)
6051 module_exit(ext4_exit_fs)