perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / fs / jbd2 / revoke.c
bloba1143e57a718ee20c83b0c813fb13425beff2d16
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/revoke.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
7 * Copyright 2000 Red Hat corp --- All Rights Reserved
9 * Journal revoke routines for the generic filesystem journaling code;
10 * part of the ext2fs journaling system.
12 * Revoke is the mechanism used to prevent old log records for deleted
13 * metadata from being replayed on top of newer data using the same
14 * blocks. The revoke mechanism is used in two separate places:
16 * + Commit: during commit we write the entire list of the current
17 * transaction's revoked blocks to the journal
19 * + Recovery: during recovery we record the transaction ID of all
20 * revoked blocks. If there are multiple revoke records in the log
21 * for a single block, only the last one counts, and if there is a log
22 * entry for a block beyond the last revoke, then that log entry still
23 * gets replayed.
25 * We can get interactions between revokes and new log data within a
26 * single transaction:
28 * Block is revoked and then journaled:
29 * The desired end result is the journaling of the new block, so we
30 * cancel the revoke before the transaction commits.
32 * Block is journaled and then revoked:
33 * The revoke must take precedence over the write of the block, so we
34 * need either to cancel the journal entry or to write the revoke
35 * later in the log than the log block. In this case, we choose the
36 * latter: journaling a block cancels any revoke record for that block
37 * in the current transaction, so any revoke for that block in the
38 * transaction must have happened after the block was journaled and so
39 * the revoke must take precedence.
41 * Block is revoked and then written as data:
42 * The data write is allowed to succeed, but the revoke is _not_
43 * cancelled. We still need to prevent old log records from
44 * overwriting the new data. We don't even need to clear the revoke
45 * bit here.
47 * We cache revoke status of a buffer in the current transaction in b_states
48 * bits. As the name says, revokevalid flag indicates that the cached revoke
49 * status of a buffer is valid and we can rely on the cached status.
51 * Revoke information on buffers is a tri-state value:
53 * RevokeValid clear: no cached revoke status, need to look it up
54 * RevokeValid set, Revoked clear:
55 * buffer has not been revoked, and cancel_revoke
56 * need do nothing.
57 * RevokeValid set, Revoked set:
58 * buffer has been revoked.
60 * Locking rules:
61 * We keep two hash tables of revoke records. One hashtable belongs to the
62 * running transaction (is pointed to by journal->j_revoke), the other one
63 * belongs to the committing transaction. Accesses to the second hash table
64 * happen only from the kjournald and no other thread touches this table. Also
65 * journal_switch_revoke_table() which switches which hashtable belongs to the
66 * running and which to the committing transaction is called only from
67 * kjournald. Therefore we need no locks when accessing the hashtable belonging
68 * to the committing transaction.
70 * All users operating on the hash table belonging to the running transaction
71 * have a handle to the transaction. Therefore they are safe from kjournald
72 * switching hash tables under them. For operations on the lists of entries in
73 * the hash table j_revoke_lock is used.
75 * Finally, also replay code uses the hash tables but at this moment no one else
76 * can touch them (filesystem isn't mounted yet) and hence no locking is
77 * needed.
80 #ifndef __KERNEL__
81 #include "jfs_user.h"
82 #else
83 #include <linux/time.h>
84 #include <linux/fs.h>
85 #include <linux/jbd2.h>
86 #include <linux/errno.h>
87 #include <linux/slab.h>
88 #include <linux/list.h>
89 #include <linux/init.h>
90 #include <linux/bio.h>
91 #include <linux/log2.h>
92 #include <linux/hash.h>
93 #endif
95 static struct kmem_cache *jbd2_revoke_record_cache;
96 static struct kmem_cache *jbd2_revoke_table_cache;
98 /* Each revoke record represents one single revoked block. During
99 journal replay, this involves recording the transaction ID of the
100 last transaction to revoke this block. */
102 struct jbd2_revoke_record_s
104 struct list_head hash;
105 tid_t sequence; /* Used for recovery only */
106 unsigned long long blocknr;
110 /* The revoke table is just a simple hash table of revoke records. */
111 struct jbd2_revoke_table_s
113 /* It is conceivable that we might want a larger hash table
114 * for recovery. Must be a power of two. */
115 int hash_size;
116 int hash_shift;
117 struct list_head *hash_table;
121 #ifdef __KERNEL__
122 static void write_one_revoke_record(transaction_t *,
123 struct list_head *,
124 struct buffer_head **, int *,
125 struct jbd2_revoke_record_s *);
126 static void flush_descriptor(journal_t *, struct buffer_head *, int);
127 #endif
129 /* Utility functions to maintain the revoke table */
131 static inline int hash(journal_t *journal, unsigned long long block)
133 return hash_64(block, journal->j_revoke->hash_shift);
136 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
137 tid_t seq)
139 struct list_head *hash_list;
140 struct jbd2_revoke_record_s *record;
141 gfp_t gfp_mask = GFP_NOFS;
143 if (journal_oom_retry)
144 gfp_mask |= __GFP_NOFAIL;
145 record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
146 if (!record)
147 return -ENOMEM;
149 record->sequence = seq;
150 record->blocknr = blocknr;
151 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
152 spin_lock(&journal->j_revoke_lock);
153 list_add(&record->hash, hash_list);
154 spin_unlock(&journal->j_revoke_lock);
155 return 0;
158 /* Find a revoke record in the journal's hash table. */
160 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
161 unsigned long long blocknr)
163 struct list_head *hash_list;
164 struct jbd2_revoke_record_s *record;
166 hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
168 spin_lock(&journal->j_revoke_lock);
169 record = (struct jbd2_revoke_record_s *) hash_list->next;
170 while (&(record->hash) != hash_list) {
171 if (record->blocknr == blocknr) {
172 spin_unlock(&journal->j_revoke_lock);
173 return record;
175 record = (struct jbd2_revoke_record_s *) record->hash.next;
177 spin_unlock(&journal->j_revoke_lock);
178 return NULL;
181 void jbd2_journal_destroy_revoke_caches(void)
183 kmem_cache_destroy(jbd2_revoke_record_cache);
184 jbd2_revoke_record_cache = NULL;
185 kmem_cache_destroy(jbd2_revoke_table_cache);
186 jbd2_revoke_table_cache = NULL;
189 int __init jbd2_journal_init_revoke_caches(void)
191 J_ASSERT(!jbd2_revoke_record_cache);
192 J_ASSERT(!jbd2_revoke_table_cache);
194 jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
195 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
196 if (!jbd2_revoke_record_cache)
197 goto record_cache_failure;
199 jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
200 SLAB_TEMPORARY);
201 if (!jbd2_revoke_table_cache)
202 goto table_cache_failure;
203 return 0;
204 table_cache_failure:
205 jbd2_journal_destroy_revoke_caches();
206 record_cache_failure:
207 return -ENOMEM;
210 static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
212 int shift = 0;
213 int tmp = hash_size;
214 struct jbd2_revoke_table_s *table;
216 table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
217 if (!table)
218 goto out;
220 while((tmp >>= 1UL) != 0UL)
221 shift++;
223 table->hash_size = hash_size;
224 table->hash_shift = shift;
225 table->hash_table =
226 kmalloc_array(hash_size, sizeof(struct list_head), GFP_KERNEL);
227 if (!table->hash_table) {
228 kmem_cache_free(jbd2_revoke_table_cache, table);
229 table = NULL;
230 goto out;
233 for (tmp = 0; tmp < hash_size; tmp++)
234 INIT_LIST_HEAD(&table->hash_table[tmp]);
236 out:
237 return table;
240 static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
242 int i;
243 struct list_head *hash_list;
245 for (i = 0; i < table->hash_size; i++) {
246 hash_list = &table->hash_table[i];
247 J_ASSERT(list_empty(hash_list));
250 kfree(table->hash_table);
251 kmem_cache_free(jbd2_revoke_table_cache, table);
254 /* Initialise the revoke table for a given journal to a given size. */
255 int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
257 J_ASSERT(journal->j_revoke_table[0] == NULL);
258 J_ASSERT(is_power_of_2(hash_size));
260 journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
261 if (!journal->j_revoke_table[0])
262 goto fail0;
264 journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
265 if (!journal->j_revoke_table[1])
266 goto fail1;
268 journal->j_revoke = journal->j_revoke_table[1];
270 spin_lock_init(&journal->j_revoke_lock);
272 return 0;
274 fail1:
275 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
276 journal->j_revoke_table[0] = NULL;
277 fail0:
278 return -ENOMEM;
281 /* Destroy a journal's revoke table. The table must already be empty! */
282 void jbd2_journal_destroy_revoke(journal_t *journal)
284 journal->j_revoke = NULL;
285 if (journal->j_revoke_table[0])
286 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
287 if (journal->j_revoke_table[1])
288 jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
292 #ifdef __KERNEL__
295 * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
296 * prevents the block from being replayed during recovery if we take a
297 * crash after this current transaction commits. Any subsequent
298 * metadata writes of the buffer in this transaction cancel the
299 * revoke.
301 * Note that this call may block --- it is up to the caller to make
302 * sure that there are no further calls to journal_write_metadata
303 * before the revoke is complete. In ext3, this implies calling the
304 * revoke before clearing the block bitmap when we are deleting
305 * metadata.
307 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
308 * parameter, but does _not_ forget the buffer_head if the bh was only
309 * found implicitly.
311 * bh_in may not be a journalled buffer - it may have come off
312 * the hash tables without an attached journal_head.
314 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
315 * by one.
318 int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
319 struct buffer_head *bh_in)
321 struct buffer_head *bh = NULL;
322 journal_t *journal;
323 struct block_device *bdev;
324 int err;
326 might_sleep();
327 if (bh_in)
328 BUFFER_TRACE(bh_in, "enter");
330 journal = handle->h_transaction->t_journal;
331 if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
332 J_ASSERT (!"Cannot set revoke feature!");
333 return -EINVAL;
336 bdev = journal->j_fs_dev;
337 bh = bh_in;
339 if (!bh) {
340 bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
341 if (bh)
342 BUFFER_TRACE(bh, "found on hash");
344 #ifdef JBD2_EXPENSIVE_CHECKING
345 else {
346 struct buffer_head *bh2;
348 /* If there is a different buffer_head lying around in
349 * memory anywhere... */
350 bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
351 if (bh2) {
352 /* ... and it has RevokeValid status... */
353 if (bh2 != bh && buffer_revokevalid(bh2))
354 /* ...then it better be revoked too,
355 * since it's illegal to create a revoke
356 * record against a buffer_head which is
357 * not marked revoked --- that would
358 * risk missing a subsequent revoke
359 * cancel. */
360 J_ASSERT_BH(bh2, buffer_revoked(bh2));
361 put_bh(bh2);
364 #endif
366 /* We really ought not ever to revoke twice in a row without
367 first having the revoke cancelled: it's illegal to free a
368 block twice without allocating it in between! */
369 if (bh) {
370 if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
371 "inconsistent data on disk")) {
372 if (!bh_in)
373 brelse(bh);
374 return -EIO;
376 set_buffer_revoked(bh);
377 set_buffer_revokevalid(bh);
378 if (bh_in) {
379 BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
380 jbd2_journal_forget(handle, bh_in);
381 } else {
382 BUFFER_TRACE(bh, "call brelse");
383 __brelse(bh);
387 jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
388 err = insert_revoke_hash(journal, blocknr,
389 handle->h_transaction->t_tid);
390 BUFFER_TRACE(bh_in, "exit");
391 return err;
395 * Cancel an outstanding revoke. For use only internally by the
396 * journaling code (called from jbd2_journal_get_write_access).
398 * We trust buffer_revoked() on the buffer if the buffer is already
399 * being journaled: if there is no revoke pending on the buffer, then we
400 * don't do anything here.
402 * This would break if it were possible for a buffer to be revoked and
403 * discarded, and then reallocated within the same transaction. In such
404 * a case we would have lost the revoked bit, but when we arrived here
405 * the second time we would still have a pending revoke to cancel. So,
406 * do not trust the Revoked bit on buffers unless RevokeValid is also
407 * set.
409 int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
411 struct jbd2_revoke_record_s *record;
412 journal_t *journal = handle->h_transaction->t_journal;
413 int need_cancel;
414 int did_revoke = 0; /* akpm: debug */
415 struct buffer_head *bh = jh2bh(jh);
417 jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
419 /* Is the existing Revoke bit valid? If so, we trust it, and
420 * only perform the full cancel if the revoke bit is set. If
421 * not, we can't trust the revoke bit, and we need to do the
422 * full search for a revoke record. */
423 if (test_set_buffer_revokevalid(bh)) {
424 need_cancel = test_clear_buffer_revoked(bh);
425 } else {
426 need_cancel = 1;
427 clear_buffer_revoked(bh);
430 if (need_cancel) {
431 record = find_revoke_record(journal, bh->b_blocknr);
432 if (record) {
433 jbd_debug(4, "cancelled existing revoke on "
434 "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
435 spin_lock(&journal->j_revoke_lock);
436 list_del(&record->hash);
437 spin_unlock(&journal->j_revoke_lock);
438 kmem_cache_free(jbd2_revoke_record_cache, record);
439 did_revoke = 1;
443 #ifdef JBD2_EXPENSIVE_CHECKING
444 /* There better not be one left behind by now! */
445 record = find_revoke_record(journal, bh->b_blocknr);
446 J_ASSERT_JH(jh, record == NULL);
447 #endif
449 /* Finally, have we just cleared revoke on an unhashed
450 * buffer_head? If so, we'd better make sure we clear the
451 * revoked status on any hashed alias too, otherwise the revoke
452 * state machine will get very upset later on. */
453 if (need_cancel) {
454 struct buffer_head *bh2;
455 bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
456 if (bh2) {
457 if (bh2 != bh)
458 clear_buffer_revoked(bh2);
459 __brelse(bh2);
462 return did_revoke;
466 * journal_clear_revoked_flag clears revoked flag of buffers in
467 * revoke table to reflect there is no revoked buffers in the next
468 * transaction which is going to be started.
470 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
472 struct jbd2_revoke_table_s *revoke = journal->j_revoke;
473 int i = 0;
475 for (i = 0; i < revoke->hash_size; i++) {
476 struct list_head *hash_list;
477 struct list_head *list_entry;
478 hash_list = &revoke->hash_table[i];
480 list_for_each(list_entry, hash_list) {
481 struct jbd2_revoke_record_s *record;
482 struct buffer_head *bh;
483 record = (struct jbd2_revoke_record_s *)list_entry;
484 bh = __find_get_block(journal->j_fs_dev,
485 record->blocknr,
486 journal->j_blocksize);
487 if (bh) {
488 clear_buffer_revoked(bh);
489 __brelse(bh);
495 /* journal_switch_revoke table select j_revoke for next transaction
496 * we do not want to suspend any processing until all revokes are
497 * written -bzzz
499 void jbd2_journal_switch_revoke_table(journal_t *journal)
501 int i;
503 if (journal->j_revoke == journal->j_revoke_table[0])
504 journal->j_revoke = journal->j_revoke_table[1];
505 else
506 journal->j_revoke = journal->j_revoke_table[0];
508 for (i = 0; i < journal->j_revoke->hash_size; i++)
509 INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
513 * Write revoke records to the journal for all entries in the current
514 * revoke hash, deleting the entries as we go.
516 void jbd2_journal_write_revoke_records(transaction_t *transaction,
517 struct list_head *log_bufs)
519 journal_t *journal = transaction->t_journal;
520 struct buffer_head *descriptor;
521 struct jbd2_revoke_record_s *record;
522 struct jbd2_revoke_table_s *revoke;
523 struct list_head *hash_list;
524 int i, offset, count;
526 descriptor = NULL;
527 offset = 0;
528 count = 0;
530 /* select revoke table for committing transaction */
531 revoke = journal->j_revoke == journal->j_revoke_table[0] ?
532 journal->j_revoke_table[1] : journal->j_revoke_table[0];
534 for (i = 0; i < revoke->hash_size; i++) {
535 hash_list = &revoke->hash_table[i];
537 while (!list_empty(hash_list)) {
538 record = (struct jbd2_revoke_record_s *)
539 hash_list->next;
540 write_one_revoke_record(transaction, log_bufs,
541 &descriptor, &offset, record);
542 count++;
543 list_del(&record->hash);
544 kmem_cache_free(jbd2_revoke_record_cache, record);
547 if (descriptor)
548 flush_descriptor(journal, descriptor, offset);
549 jbd_debug(1, "Wrote %d revoke records\n", count);
553 * Write out one revoke record. We need to create a new descriptor
554 * block if the old one is full or if we have not already created one.
557 static void write_one_revoke_record(transaction_t *transaction,
558 struct list_head *log_bufs,
559 struct buffer_head **descriptorp,
560 int *offsetp,
561 struct jbd2_revoke_record_s *record)
563 journal_t *journal = transaction->t_journal;
564 int csum_size = 0;
565 struct buffer_head *descriptor;
566 int sz, offset;
568 /* If we are already aborting, this all becomes a noop. We
569 still need to go round the loop in
570 jbd2_journal_write_revoke_records in order to free all of the
571 revoke records: only the IO to the journal is omitted. */
572 if (is_journal_aborted(journal))
573 return;
575 descriptor = *descriptorp;
576 offset = *offsetp;
578 /* Do we need to leave space at the end for a checksum? */
579 if (jbd2_journal_has_csum_v2or3(journal))
580 csum_size = sizeof(struct jbd2_journal_block_tail);
582 if (jbd2_has_feature_64bit(journal))
583 sz = 8;
584 else
585 sz = 4;
587 /* Make sure we have a descriptor with space left for the record */
588 if (descriptor) {
589 if (offset + sz > journal->j_blocksize - csum_size) {
590 flush_descriptor(journal, descriptor, offset);
591 descriptor = NULL;
595 if (!descriptor) {
596 descriptor = jbd2_journal_get_descriptor_buffer(transaction,
597 JBD2_REVOKE_BLOCK);
598 if (!descriptor)
599 return;
601 /* Record it so that we can wait for IO completion later */
602 BUFFER_TRACE(descriptor, "file in log_bufs");
603 jbd2_file_log_bh(log_bufs, descriptor);
605 offset = sizeof(jbd2_journal_revoke_header_t);
606 *descriptorp = descriptor;
609 if (jbd2_has_feature_64bit(journal))
610 * ((__be64 *)(&descriptor->b_data[offset])) =
611 cpu_to_be64(record->blocknr);
612 else
613 * ((__be32 *)(&descriptor->b_data[offset])) =
614 cpu_to_be32(record->blocknr);
615 offset += sz;
617 *offsetp = offset;
621 * Flush a revoke descriptor out to the journal. If we are aborting,
622 * this is a noop; otherwise we are generating a buffer which needs to
623 * be waited for during commit, so it has to go onto the appropriate
624 * journal buffer list.
627 static void flush_descriptor(journal_t *journal,
628 struct buffer_head *descriptor,
629 int offset)
631 jbd2_journal_revoke_header_t *header;
633 if (is_journal_aborted(journal)) {
634 put_bh(descriptor);
635 return;
638 header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
639 header->r_count = cpu_to_be32(offset);
640 jbd2_descriptor_block_csum_set(journal, descriptor);
642 set_buffer_jwrite(descriptor);
643 BUFFER_TRACE(descriptor, "write");
644 set_buffer_dirty(descriptor);
645 write_dirty_buffer(descriptor, REQ_SYNC);
647 #endif
650 * Revoke support for recovery.
652 * Recovery needs to be able to:
654 * record all revoke records, including the tid of the latest instance
655 * of each revoke in the journal
657 * check whether a given block in a given transaction should be replayed
658 * (ie. has not been revoked by a revoke record in that or a subsequent
659 * transaction)
661 * empty the revoke table after recovery.
665 * First, setting revoke records. We create a new revoke record for
666 * every block ever revoked in the log as we scan it for recovery, and
667 * we update the existing records if we find multiple revokes for a
668 * single block.
671 int jbd2_journal_set_revoke(journal_t *journal,
672 unsigned long long blocknr,
673 tid_t sequence)
675 struct jbd2_revoke_record_s *record;
677 record = find_revoke_record(journal, blocknr);
678 if (record) {
679 /* If we have multiple occurrences, only record the
680 * latest sequence number in the hashed record */
681 if (tid_gt(sequence, record->sequence))
682 record->sequence = sequence;
683 return 0;
685 return insert_revoke_hash(journal, blocknr, sequence);
689 * Test revoke records. For a given block referenced in the log, has
690 * that block been revoked? A revoke record with a given transaction
691 * sequence number revokes all blocks in that transaction and earlier
692 * ones, but later transactions still need replayed.
695 int jbd2_journal_test_revoke(journal_t *journal,
696 unsigned long long blocknr,
697 tid_t sequence)
699 struct jbd2_revoke_record_s *record;
701 record = find_revoke_record(journal, blocknr);
702 if (!record)
703 return 0;
704 if (tid_gt(sequence, record->sequence))
705 return 0;
706 return 1;
710 * Finally, once recovery is over, we need to clear the revoke table so
711 * that it can be reused by the running filesystem.
714 void jbd2_journal_clear_revoke(journal_t *journal)
716 int i;
717 struct list_head *hash_list;
718 struct jbd2_revoke_record_s *record;
719 struct jbd2_revoke_table_s *revoke;
721 revoke = journal->j_revoke;
723 for (i = 0; i < revoke->hash_size; i++) {
724 hash_list = &revoke->hash_table[i];
725 while (!list_empty(hash_list)) {
726 record = (struct jbd2_revoke_record_s*) hash_list->next;
727 list_del(&record->hash);
728 kmem_cache_free(jbd2_revoke_record_cache, record);