2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
8 * & Swedish University of Agricultural Sciences.
10 * Jens Laas <jens.laas@data.slu.se> Swedish University of
11 * Agricultural Sciences.
13 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
15 * This work is based on the LPC-trie which is originally described in:
17 * An experimental study of compression methods for dynamic tries
18 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
19 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
22 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
23 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
26 * Code from fib_hash has been reused which includes the following header:
29 * INET An implementation of the TCP/IP protocol suite for the LINUX
30 * operating system. INET is implemented using the BSD Socket
31 * interface as the means of communication with the user level.
33 * IPv4 FIB: lookup engine and maintenance routines.
36 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
38 * This program is free software; you can redistribute it and/or
39 * modify it under the terms of the GNU General Public License
40 * as published by the Free Software Foundation; either version
41 * 2 of the License, or (at your option) any later version.
43 * Substantial contributions to this work comes from:
45 * David S. Miller, <davem@davemloft.net>
46 * Stephen Hemminger <shemminger@osdl.org>
47 * Paul E. McKenney <paulmck@us.ibm.com>
48 * Patrick McHardy <kaber@trash.net>
51 #define VERSION "0.409"
53 #include <linux/cache.h>
54 #include <linux/uaccess.h>
55 #include <linux/bitops.h>
56 #include <linux/types.h>
57 #include <linux/kernel.h>
59 #include <linux/string.h>
60 #include <linux/socket.h>
61 #include <linux/sockios.h>
62 #include <linux/errno.h>
64 #include <linux/inet.h>
65 #include <linux/inetdevice.h>
66 #include <linux/netdevice.h>
67 #include <linux/if_arp.h>
68 #include <linux/proc_fs.h>
69 #include <linux/rcupdate.h>
70 #include <linux/skbuff.h>
71 #include <linux/netlink.h>
72 #include <linux/init.h>
73 #include <linux/list.h>
74 #include <linux/slab.h>
75 #include <linux/export.h>
76 #include <linux/vmalloc.h>
77 #include <linux/notifier.h>
78 #include <net/net_namespace.h>
80 #include <net/protocol.h>
81 #include <net/route.h>
84 #include <net/ip_fib.h>
85 #include <net/fib_notifier.h>
86 #include <trace/events/fib.h>
87 #include "fib_lookup.h"
89 static int call_fib_entry_notifier(struct notifier_block
*nb
, struct net
*net
,
90 enum fib_event_type event_type
, u32 dst
,
91 int dst_len
, struct fib_alias
*fa
)
93 struct fib_entry_notifier_info info
= {
101 return call_fib4_notifier(nb
, net
, event_type
, &info
.info
);
104 static int call_fib_entry_notifiers(struct net
*net
,
105 enum fib_event_type event_type
, u32 dst
,
106 int dst_len
, struct fib_alias
*fa
,
107 struct netlink_ext_ack
*extack
)
109 struct fib_entry_notifier_info info
= {
110 .info
.extack
= extack
,
118 return call_fib4_notifiers(net
, event_type
, &info
.info
);
121 #define MAX_STAT_DEPTH 32
123 #define KEYLENGTH (8*sizeof(t_key))
124 #define KEY_MAX ((t_key)~0)
126 typedef unsigned int t_key
;
128 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
129 #define IS_TNODE(n) ((n)->bits)
130 #define IS_LEAF(n) (!(n)->bits)
134 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
135 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
138 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
139 struct hlist_head leaf
;
140 /* This array is valid if (pos | bits) > 0 (TNODE) */
141 struct key_vector __rcu
*tnode
[0];
147 t_key empty_children
; /* KEYLENGTH bits needed */
148 t_key full_children
; /* KEYLENGTH bits needed */
149 struct key_vector __rcu
*parent
;
150 struct key_vector kv
[1];
151 #define tn_bits kv[0].bits
154 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
155 #define LEAF_SIZE TNODE_SIZE(1)
157 #ifdef CONFIG_IP_FIB_TRIE_STATS
158 struct trie_use_stats
{
160 unsigned int backtrack
;
161 unsigned int semantic_match_passed
;
162 unsigned int semantic_match_miss
;
163 unsigned int null_node_hit
;
164 unsigned int resize_node_skipped
;
169 unsigned int totdepth
;
170 unsigned int maxdepth
;
173 unsigned int nullpointers
;
174 unsigned int prefixes
;
175 unsigned int nodesizes
[MAX_STAT_DEPTH
];
179 struct key_vector kv
[1];
180 #ifdef CONFIG_IP_FIB_TRIE_STATS
181 struct trie_use_stats __percpu
*stats
;
185 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
186 static size_t tnode_free_size
;
189 * synchronize_rcu after call_rcu for that many pages; it should be especially
190 * useful before resizing the root node with PREEMPT_NONE configs; the value was
191 * obtained experimentally, aiming to avoid visible slowdown.
193 static const int sync_pages
= 128;
195 static struct kmem_cache
*fn_alias_kmem __ro_after_init
;
196 static struct kmem_cache
*trie_leaf_kmem __ro_after_init
;
198 static inline struct tnode
*tn_info(struct key_vector
*kv
)
200 return container_of(kv
, struct tnode
, kv
[0]);
203 /* caller must hold RTNL */
204 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
205 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
207 /* caller must hold RCU read lock or RTNL */
208 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
209 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
211 /* wrapper for rcu_assign_pointer */
212 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
215 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
218 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
220 /* This provides us with the number of children in this node, in the case of a
221 * leaf this will return 0 meaning none of the children are accessible.
223 static inline unsigned long child_length(const struct key_vector
*tn
)
225 return (1ul << tn
->bits
) & ~(1ul);
228 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
230 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
232 unsigned long index
= key
^ kv
->key
;
234 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
237 return index
>> kv
->pos
;
240 /* To understand this stuff, an understanding of keys and all their bits is
241 * necessary. Every node in the trie has a key associated with it, but not
242 * all of the bits in that key are significant.
244 * Consider a node 'n' and its parent 'tp'.
246 * If n is a leaf, every bit in its key is significant. Its presence is
247 * necessitated by path compression, since during a tree traversal (when
248 * searching for a leaf - unless we are doing an insertion) we will completely
249 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
250 * a potentially successful search, that we have indeed been walking the
253 * Note that we can never "miss" the correct key in the tree if present by
254 * following the wrong path. Path compression ensures that segments of the key
255 * that are the same for all keys with a given prefix are skipped, but the
256 * skipped part *is* identical for each node in the subtrie below the skipped
257 * bit! trie_insert() in this implementation takes care of that.
259 * if n is an internal node - a 'tnode' here, the various parts of its key
260 * have many different meanings.
263 * _________________________________________________________________
264 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
265 * -----------------------------------------------------------------
266 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
268 * _________________________________________________________________
269 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
270 * -----------------------------------------------------------------
271 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
278 * First, let's just ignore the bits that come before the parent tp, that is
279 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
280 * point we do not use them for anything.
282 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
283 * index into the parent's child array. That is, they will be used to find
284 * 'n' among tp's children.
286 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
289 * All the bits we have seen so far are significant to the node n. The rest
290 * of the bits are really not needed or indeed known in n->key.
292 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
293 * n's child array, and will of course be different for each child.
295 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
299 static const int halve_threshold
= 25;
300 static const int inflate_threshold
= 50;
301 static const int halve_threshold_root
= 15;
302 static const int inflate_threshold_root
= 30;
304 static void __alias_free_mem(struct rcu_head
*head
)
306 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
307 kmem_cache_free(fn_alias_kmem
, fa
);
310 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
312 call_rcu(&fa
->rcu
, __alias_free_mem
);
315 #define TNODE_KMALLOC_MAX \
316 ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
317 #define TNODE_VMALLOC_MAX \
318 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
320 static void __node_free_rcu(struct rcu_head
*head
)
322 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
325 kmem_cache_free(trie_leaf_kmem
, n
);
330 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
332 static struct tnode
*tnode_alloc(int bits
)
336 /* verify bits is within bounds */
337 if (bits
> TNODE_VMALLOC_MAX
)
340 /* determine size and verify it is non-zero and didn't overflow */
341 size
= TNODE_SIZE(1ul << bits
);
343 if (size
<= PAGE_SIZE
)
344 return kzalloc(size
, GFP_KERNEL
);
346 return vzalloc(size
);
349 static inline void empty_child_inc(struct key_vector
*n
)
351 ++tn_info(n
)->empty_children
? : ++tn_info(n
)->full_children
;
354 static inline void empty_child_dec(struct key_vector
*n
)
356 tn_info(n
)->empty_children
-- ? : tn_info(n
)->full_children
--;
359 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
361 struct key_vector
*l
;
364 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
368 /* initialize key vector */
373 l
->slen
= fa
->fa_slen
;
375 /* link leaf to fib alias */
376 INIT_HLIST_HEAD(&l
->leaf
);
377 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
382 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
384 unsigned int shift
= pos
+ bits
;
385 struct key_vector
*tn
;
388 /* verify bits and pos their msb bits clear and values are valid */
389 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
391 tnode
= tnode_alloc(bits
);
395 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
396 sizeof(struct key_vector
*) << bits
);
398 if (bits
== KEYLENGTH
)
399 tnode
->full_children
= 1;
401 tnode
->empty_children
= 1ul << bits
;
404 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
412 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
413 * and no bits are skipped. See discussion in dyntree paper p. 6
415 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
417 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
420 /* Add a child at position i overwriting the old value.
421 * Update the value of full_children and empty_children.
423 static void put_child(struct key_vector
*tn
, unsigned long i
,
424 struct key_vector
*n
)
426 struct key_vector
*chi
= get_child(tn
, i
);
429 BUG_ON(i
>= child_length(tn
));
431 /* update emptyChildren, overflow into fullChildren */
437 /* update fullChildren */
438 wasfull
= tnode_full(tn
, chi
);
439 isfull
= tnode_full(tn
, n
);
441 if (wasfull
&& !isfull
)
442 tn_info(tn
)->full_children
--;
443 else if (!wasfull
&& isfull
)
444 tn_info(tn
)->full_children
++;
446 if (n
&& (tn
->slen
< n
->slen
))
449 rcu_assign_pointer(tn
->tnode
[i
], n
);
452 static void update_children(struct key_vector
*tn
)
456 /* update all of the child parent pointers */
457 for (i
= child_length(tn
); i
;) {
458 struct key_vector
*inode
= get_child(tn
, --i
);
463 /* Either update the children of a tnode that
464 * already belongs to us or update the child
465 * to point to ourselves.
467 if (node_parent(inode
) == tn
)
468 update_children(inode
);
470 node_set_parent(inode
, tn
);
474 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
475 struct key_vector
*n
)
478 rcu_assign_pointer(tp
->tnode
[0], n
);
480 put_child(tp
, get_index(key
, tp
), n
);
483 static inline void tnode_free_init(struct key_vector
*tn
)
485 tn_info(tn
)->rcu
.next
= NULL
;
488 static inline void tnode_free_append(struct key_vector
*tn
,
489 struct key_vector
*n
)
491 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
492 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
495 static void tnode_free(struct key_vector
*tn
)
497 struct callback_head
*head
= &tn_info(tn
)->rcu
;
501 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
504 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
507 if (tnode_free_size
>= PAGE_SIZE
* sync_pages
) {
513 static struct key_vector
*replace(struct trie
*t
,
514 struct key_vector
*oldtnode
,
515 struct key_vector
*tn
)
517 struct key_vector
*tp
= node_parent(oldtnode
);
520 /* setup the parent pointer out of and back into this node */
521 NODE_INIT_PARENT(tn
, tp
);
522 put_child_root(tp
, tn
->key
, tn
);
524 /* update all of the child parent pointers */
527 /* all pointers should be clean so we are done */
528 tnode_free(oldtnode
);
530 /* resize children now that oldtnode is freed */
531 for (i
= child_length(tn
); i
;) {
532 struct key_vector
*inode
= get_child(tn
, --i
);
534 /* resize child node */
535 if (tnode_full(tn
, inode
))
536 tn
= resize(t
, inode
);
542 static struct key_vector
*inflate(struct trie
*t
,
543 struct key_vector
*oldtnode
)
545 struct key_vector
*tn
;
549 pr_debug("In inflate\n");
551 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
555 /* prepare oldtnode to be freed */
556 tnode_free_init(oldtnode
);
558 /* Assemble all of the pointers in our cluster, in this case that
559 * represents all of the pointers out of our allocated nodes that
560 * point to existing tnodes and the links between our allocated
563 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
564 struct key_vector
*inode
= get_child(oldtnode
, --i
);
565 struct key_vector
*node0
, *node1
;
572 /* A leaf or an internal node with skipped bits */
573 if (!tnode_full(oldtnode
, inode
)) {
574 put_child(tn
, get_index(inode
->key
, tn
), inode
);
578 /* drop the node in the old tnode free list */
579 tnode_free_append(oldtnode
, inode
);
581 /* An internal node with two children */
582 if (inode
->bits
== 1) {
583 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
584 put_child(tn
, 2 * i
, get_child(inode
, 0));
588 /* We will replace this node 'inode' with two new
589 * ones, 'node0' and 'node1', each with half of the
590 * original children. The two new nodes will have
591 * a position one bit further down the key and this
592 * means that the "significant" part of their keys
593 * (see the discussion near the top of this file)
594 * will differ by one bit, which will be "0" in
595 * node0's key and "1" in node1's key. Since we are
596 * moving the key position by one step, the bit that
597 * we are moving away from - the bit at position
598 * (tn->pos) - is the one that will differ between
599 * node0 and node1. So... we synthesize that bit in the
602 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
605 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
607 tnode_free_append(tn
, node1
);
610 tnode_free_append(tn
, node0
);
612 /* populate child pointers in new nodes */
613 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
614 put_child(node1
, --j
, get_child(inode
, --k
));
615 put_child(node0
, j
, get_child(inode
, j
));
616 put_child(node1
, --j
, get_child(inode
, --k
));
617 put_child(node0
, j
, get_child(inode
, j
));
620 /* link new nodes to parent */
621 NODE_INIT_PARENT(node1
, tn
);
622 NODE_INIT_PARENT(node0
, tn
);
624 /* link parent to nodes */
625 put_child(tn
, 2 * i
+ 1, node1
);
626 put_child(tn
, 2 * i
, node0
);
629 /* setup the parent pointers into and out of this node */
630 return replace(t
, oldtnode
, tn
);
632 /* all pointers should be clean so we are done */
638 static struct key_vector
*halve(struct trie
*t
,
639 struct key_vector
*oldtnode
)
641 struct key_vector
*tn
;
644 pr_debug("In halve\n");
646 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
650 /* prepare oldtnode to be freed */
651 tnode_free_init(oldtnode
);
653 /* Assemble all of the pointers in our cluster, in this case that
654 * represents all of the pointers out of our allocated nodes that
655 * point to existing tnodes and the links between our allocated
658 for (i
= child_length(oldtnode
); i
;) {
659 struct key_vector
*node1
= get_child(oldtnode
, --i
);
660 struct key_vector
*node0
= get_child(oldtnode
, --i
);
661 struct key_vector
*inode
;
663 /* At least one of the children is empty */
664 if (!node1
|| !node0
) {
665 put_child(tn
, i
/ 2, node1
? : node0
);
669 /* Two nonempty children */
670 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
673 tnode_free_append(tn
, inode
);
675 /* initialize pointers out of node */
676 put_child(inode
, 1, node1
);
677 put_child(inode
, 0, node0
);
678 NODE_INIT_PARENT(inode
, tn
);
680 /* link parent to node */
681 put_child(tn
, i
/ 2, inode
);
684 /* setup the parent pointers into and out of this node */
685 return replace(t
, oldtnode
, tn
);
687 /* all pointers should be clean so we are done */
693 static struct key_vector
*collapse(struct trie
*t
,
694 struct key_vector
*oldtnode
)
696 struct key_vector
*n
, *tp
;
699 /* scan the tnode looking for that one child that might still exist */
700 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
701 n
= get_child(oldtnode
, --i
);
703 /* compress one level */
704 tp
= node_parent(oldtnode
);
705 put_child_root(tp
, oldtnode
->key
, n
);
706 node_set_parent(n
, tp
);
714 static unsigned char update_suffix(struct key_vector
*tn
)
716 unsigned char slen
= tn
->pos
;
717 unsigned long stride
, i
;
718 unsigned char slen_max
;
720 /* only vector 0 can have a suffix length greater than or equal to
721 * tn->pos + tn->bits, the second highest node will have a suffix
722 * length at most of tn->pos + tn->bits - 1
724 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
726 /* search though the list of children looking for nodes that might
727 * have a suffix greater than the one we currently have. This is
728 * why we start with a stride of 2 since a stride of 1 would
729 * represent the nodes with suffix length equal to tn->pos
731 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
732 struct key_vector
*n
= get_child(tn
, i
);
734 if (!n
|| (n
->slen
<= slen
))
737 /* update stride and slen based on new value */
738 stride
<<= (n
->slen
- slen
);
742 /* stop searching if we have hit the maximum possible value */
743 if (slen
>= slen_max
)
752 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
753 * the Helsinki University of Technology and Matti Tikkanen of Nokia
754 * Telecommunications, page 6:
755 * "A node is doubled if the ratio of non-empty children to all
756 * children in the *doubled* node is at least 'high'."
758 * 'high' in this instance is the variable 'inflate_threshold'. It
759 * is expressed as a percentage, so we multiply it with
760 * child_length() and instead of multiplying by 2 (since the
761 * child array will be doubled by inflate()) and multiplying
762 * the left-hand side by 100 (to handle the percentage thing) we
763 * multiply the left-hand side by 50.
765 * The left-hand side may look a bit weird: child_length(tn)
766 * - tn->empty_children is of course the number of non-null children
767 * in the current node. tn->full_children is the number of "full"
768 * children, that is non-null tnodes with a skip value of 0.
769 * All of those will be doubled in the resulting inflated tnode, so
770 * we just count them one extra time here.
772 * A clearer way to write this would be:
774 * to_be_doubled = tn->full_children;
775 * not_to_be_doubled = child_length(tn) - tn->empty_children -
778 * new_child_length = child_length(tn) * 2;
780 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
782 * if (new_fill_factor >= inflate_threshold)
784 * ...and so on, tho it would mess up the while () loop.
787 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
791 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
792 * inflate_threshold * new_child_length
794 * expand not_to_be_doubled and to_be_doubled, and shorten:
795 * 100 * (child_length(tn) - tn->empty_children +
796 * tn->full_children) >= inflate_threshold * new_child_length
798 * expand new_child_length:
799 * 100 * (child_length(tn) - tn->empty_children +
800 * tn->full_children) >=
801 * inflate_threshold * child_length(tn) * 2
804 * 50 * (tn->full_children + child_length(tn) -
805 * tn->empty_children) >= inflate_threshold *
809 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
811 unsigned long used
= child_length(tn
);
812 unsigned long threshold
= used
;
814 /* Keep root node larger */
815 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
816 used
-= tn_info(tn
)->empty_children
;
817 used
+= tn_info(tn
)->full_children
;
819 /* if bits == KEYLENGTH then pos = 0, and will fail below */
821 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
824 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
826 unsigned long used
= child_length(tn
);
827 unsigned long threshold
= used
;
829 /* Keep root node larger */
830 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
831 used
-= tn_info(tn
)->empty_children
;
833 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
835 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
838 static inline bool should_collapse(struct key_vector
*tn
)
840 unsigned long used
= child_length(tn
);
842 used
-= tn_info(tn
)->empty_children
;
844 /* account for bits == KEYLENGTH case */
845 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
848 /* One child or none, time to drop us from the trie */
853 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
855 #ifdef CONFIG_IP_FIB_TRIE_STATS
856 struct trie_use_stats __percpu
*stats
= t
->stats
;
858 struct key_vector
*tp
= node_parent(tn
);
859 unsigned long cindex
= get_index(tn
->key
, tp
);
860 int max_work
= MAX_WORK
;
862 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
863 tn
, inflate_threshold
, halve_threshold
);
865 /* track the tnode via the pointer from the parent instead of
866 * doing it ourselves. This way we can let RCU fully do its
867 * thing without us interfering
869 BUG_ON(tn
!= get_child(tp
, cindex
));
871 /* Double as long as the resulting node has a number of
872 * nonempty nodes that are above the threshold.
874 while (should_inflate(tp
, tn
) && max_work
) {
877 #ifdef CONFIG_IP_FIB_TRIE_STATS
878 this_cpu_inc(stats
->resize_node_skipped
);
884 tn
= get_child(tp
, cindex
);
887 /* update parent in case inflate failed */
888 tp
= node_parent(tn
);
890 /* Return if at least one inflate is run */
891 if (max_work
!= MAX_WORK
)
894 /* Halve as long as the number of empty children in this
895 * node is above threshold.
897 while (should_halve(tp
, tn
) && max_work
) {
900 #ifdef CONFIG_IP_FIB_TRIE_STATS
901 this_cpu_inc(stats
->resize_node_skipped
);
907 tn
= get_child(tp
, cindex
);
910 /* Only one child remains */
911 if (should_collapse(tn
))
912 return collapse(t
, tn
);
914 /* update parent in case halve failed */
915 return node_parent(tn
);
918 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
920 unsigned char node_slen
= tn
->slen
;
922 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
923 slen
= update_suffix(tn
);
924 if (node_slen
== slen
)
927 tn
= node_parent(tn
);
928 node_slen
= tn
->slen
;
932 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
934 while (tn
->slen
< slen
) {
936 tn
= node_parent(tn
);
940 /* rcu_read_lock needs to be hold by caller from readside */
941 static struct key_vector
*fib_find_node(struct trie
*t
,
942 struct key_vector
**tp
, u32 key
)
944 struct key_vector
*pn
, *n
= t
->kv
;
945 unsigned long index
= 0;
949 n
= get_child_rcu(n
, index
);
954 index
= get_cindex(key
, n
);
956 /* This bit of code is a bit tricky but it combines multiple
957 * checks into a single check. The prefix consists of the
958 * prefix plus zeros for the bits in the cindex. The index
959 * is the difference between the key and this value. From
960 * this we can actually derive several pieces of data.
961 * if (index >= (1ul << bits))
962 * we have a mismatch in skip bits and failed
964 * we know the value is cindex
966 * This check is safe even if bits == KEYLENGTH due to the
967 * fact that we can only allocate a node with 32 bits if a
968 * long is greater than 32 bits.
970 if (index
>= (1ul << n
->bits
)) {
975 /* keep searching until we find a perfect match leaf or NULL */
976 } while (IS_TNODE(n
));
983 /* Return the first fib alias matching TOS with
984 * priority less than or equal to PRIO.
986 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
987 u8 tos
, u32 prio
, u32 tb_id
)
989 struct fib_alias
*fa
;
994 hlist_for_each_entry(fa
, fah
, fa_list
) {
995 if (fa
->fa_slen
< slen
)
997 if (fa
->fa_slen
!= slen
)
999 if (fa
->tb_id
> tb_id
)
1001 if (fa
->tb_id
!= tb_id
)
1003 if (fa
->fa_tos
> tos
)
1005 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1012 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1014 while (!IS_TRIE(tn
))
1018 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1019 struct fib_alias
*new, t_key key
)
1021 struct key_vector
*n
, *l
;
1023 l
= leaf_new(key
, new);
1027 /* retrieve child from parent node */
1028 n
= get_child(tp
, get_index(key
, tp
));
1030 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1032 * Add a new tnode here
1033 * first tnode need some special handling
1034 * leaves us in position for handling as case 3
1037 struct key_vector
*tn
;
1039 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1043 /* initialize routes out of node */
1044 NODE_INIT_PARENT(tn
, tp
);
1045 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1047 /* start adding routes into the node */
1048 put_child_root(tp
, key
, tn
);
1049 node_set_parent(n
, tn
);
1051 /* parent now has a NULL spot where the leaf can go */
1055 /* Case 3: n is NULL, and will just insert a new leaf */
1056 node_push_suffix(tp
, new->fa_slen
);
1057 NODE_INIT_PARENT(l
, tp
);
1058 put_child_root(tp
, key
, l
);
1059 trie_rebalance(t
, tp
);
1068 /* fib notifier for ADD is sent before calling fib_insert_alias with
1069 * the expectation that the only possible failure ENOMEM
1071 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1072 struct key_vector
*l
, struct fib_alias
*new,
1073 struct fib_alias
*fa
, t_key key
)
1076 return fib_insert_node(t
, tp
, new, key
);
1079 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1081 struct fib_alias
*last
;
1083 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1084 if (new->fa_slen
< last
->fa_slen
)
1086 if ((new->fa_slen
== last
->fa_slen
) &&
1087 (new->tb_id
> last
->tb_id
))
1093 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1095 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1098 /* if we added to the tail node then we need to update slen */
1099 if (l
->slen
< new->fa_slen
) {
1100 l
->slen
= new->fa_slen
;
1101 node_push_suffix(tp
, new->fa_slen
);
1107 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1109 if (plen
> KEYLENGTH
) {
1110 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1114 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1115 NL_SET_ERR_MSG(extack
,
1116 "Invalid prefix for given prefix length");
1123 /* Caller must hold RTNL. */
1124 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1125 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1127 enum fib_event_type event
= FIB_EVENT_ENTRY_ADD
;
1128 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1129 struct fib_alias
*fa
, *new_fa
;
1130 struct key_vector
*l
, *tp
;
1131 u16 nlflags
= NLM_F_EXCL
;
1132 struct fib_info
*fi
;
1133 u8 plen
= cfg
->fc_dst_len
;
1134 u8 slen
= KEYLENGTH
- plen
;
1135 u8 tos
= cfg
->fc_tos
;
1139 key
= ntohl(cfg
->fc_dst
);
1141 if (!fib_valid_key_len(key
, plen
, extack
))
1144 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1146 fi
= fib_create_info(cfg
, extack
);
1152 l
= fib_find_node(t
, &tp
, key
);
1153 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1156 /* Now fa, if non-NULL, points to the first fib alias
1157 * with the same keys [prefix,tos,priority], if such key already
1158 * exists or to the node before which we will insert new one.
1160 * If fa is NULL, we will need to allocate a new one and
1161 * insert to the tail of the section matching the suffix length
1165 if (fa
&& fa
->fa_tos
== tos
&&
1166 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1167 struct fib_alias
*fa_first
, *fa_match
;
1170 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1173 nlflags
&= ~NLM_F_EXCL
;
1176 * 1. Find exact match for type, scope, fib_info to avoid
1178 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1182 hlist_for_each_entry_from(fa
, fa_list
) {
1183 if ((fa
->fa_slen
!= slen
) ||
1184 (fa
->tb_id
!= tb
->tb_id
) ||
1185 (fa
->fa_tos
!= tos
))
1187 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1189 if (fa
->fa_type
== cfg
->fc_type
&&
1190 fa
->fa_info
== fi
) {
1196 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1197 struct fib_info
*fi_drop
;
1200 nlflags
|= NLM_F_REPLACE
;
1208 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1212 fi_drop
= fa
->fa_info
;
1213 new_fa
->fa_tos
= fa
->fa_tos
;
1214 new_fa
->fa_info
= fi
;
1215 new_fa
->fa_type
= cfg
->fc_type
;
1216 state
= fa
->fa_state
;
1217 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1218 new_fa
->fa_slen
= fa
->fa_slen
;
1219 new_fa
->tb_id
= tb
->tb_id
;
1220 new_fa
->fa_default
= -1;
1222 err
= call_fib_entry_notifiers(net
,
1223 FIB_EVENT_ENTRY_REPLACE
,
1227 goto out_free_new_fa
;
1229 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1230 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1232 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1234 alias_free_mem_rcu(fa
);
1236 fib_release_info(fi_drop
);
1237 if (state
& FA_S_ACCESSED
)
1238 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1242 /* Error if we find a perfect match which
1243 * uses the same scope, type, and nexthop
1249 if (cfg
->fc_nlflags
& NLM_F_APPEND
) {
1250 event
= FIB_EVENT_ENTRY_APPEND
;
1251 nlflags
|= NLM_F_APPEND
;
1257 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1260 nlflags
|= NLM_F_CREATE
;
1262 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1266 new_fa
->fa_info
= fi
;
1267 new_fa
->fa_tos
= tos
;
1268 new_fa
->fa_type
= cfg
->fc_type
;
1269 new_fa
->fa_state
= 0;
1270 new_fa
->fa_slen
= slen
;
1271 new_fa
->tb_id
= tb
->tb_id
;
1272 new_fa
->fa_default
= -1;
1274 err
= call_fib_entry_notifiers(net
, event
, key
, plen
, new_fa
, extack
);
1276 goto out_free_new_fa
;
1278 /* Insert new entry to the list. */
1279 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1284 tb
->tb_num_default
++;
1286 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1287 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1288 &cfg
->fc_nlinfo
, nlflags
);
1293 /* notifier was sent that entry would be added to trie, but
1294 * the add failed and need to recover. Only failure for
1295 * fib_insert_alias is ENOMEM.
1297 NL_SET_ERR_MSG(extack
, "Failed to insert route into trie");
1298 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
,
1299 plen
, new_fa
, NULL
);
1301 kmem_cache_free(fn_alias_kmem
, new_fa
);
1303 fib_release_info(fi
);
1308 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1310 t_key prefix
= n
->key
;
1312 return (key
^ prefix
) & (prefix
| -prefix
);
1315 /* should be called with rcu_read_lock */
1316 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1317 struct fib_result
*res
, int fib_flags
)
1319 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1320 #ifdef CONFIG_IP_FIB_TRIE_STATS
1321 struct trie_use_stats __percpu
*stats
= t
->stats
;
1323 const t_key key
= ntohl(flp
->daddr
);
1324 struct key_vector
*n
, *pn
;
1325 struct fib_alias
*fa
;
1326 unsigned long index
;
1332 n
= get_child_rcu(pn
, cindex
);
1334 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, -EAGAIN
);
1338 #ifdef CONFIG_IP_FIB_TRIE_STATS
1339 this_cpu_inc(stats
->gets
);
1342 /* Step 1: Travel to the longest prefix match in the trie */
1344 index
= get_cindex(key
, n
);
1346 /* This bit of code is a bit tricky but it combines multiple
1347 * checks into a single check. The prefix consists of the
1348 * prefix plus zeros for the "bits" in the prefix. The index
1349 * is the difference between the key and this value. From
1350 * this we can actually derive several pieces of data.
1351 * if (index >= (1ul << bits))
1352 * we have a mismatch in skip bits and failed
1354 * we know the value is cindex
1356 * This check is safe even if bits == KEYLENGTH due to the
1357 * fact that we can only allocate a node with 32 bits if a
1358 * long is greater than 32 bits.
1360 if (index
>= (1ul << n
->bits
))
1363 /* we have found a leaf. Prefixes have already been compared */
1367 /* only record pn and cindex if we are going to be chopping
1368 * bits later. Otherwise we are just wasting cycles.
1370 if (n
->slen
> n
->pos
) {
1375 n
= get_child_rcu(n
, index
);
1380 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1382 /* record the pointer where our next node pointer is stored */
1383 struct key_vector __rcu
**cptr
= n
->tnode
;
1385 /* This test verifies that none of the bits that differ
1386 * between the key and the prefix exist in the region of
1387 * the lsb and higher in the prefix.
1389 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1392 /* exit out and process leaf */
1393 if (unlikely(IS_LEAF(n
)))
1396 /* Don't bother recording parent info. Since we are in
1397 * prefix match mode we will have to come back to wherever
1398 * we started this traversal anyway
1401 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1403 #ifdef CONFIG_IP_FIB_TRIE_STATS
1405 this_cpu_inc(stats
->null_node_hit
);
1407 /* If we are at cindex 0 there are no more bits for
1408 * us to strip at this level so we must ascend back
1409 * up one level to see if there are any more bits to
1410 * be stripped there.
1413 t_key pkey
= pn
->key
;
1415 /* If we don't have a parent then there is
1416 * nothing for us to do as we do not have any
1417 * further nodes to parse.
1420 trace_fib_table_lookup(tb
->tb_id
, flp
,
1424 #ifdef CONFIG_IP_FIB_TRIE_STATS
1425 this_cpu_inc(stats
->backtrack
);
1427 /* Get Child's index */
1428 pn
= node_parent_rcu(pn
);
1429 cindex
= get_index(pkey
, pn
);
1432 /* strip the least significant bit from the cindex */
1433 cindex
&= cindex
- 1;
1435 /* grab pointer for next child node */
1436 cptr
= &pn
->tnode
[cindex
];
1441 /* this line carries forward the xor from earlier in the function */
1442 index
= key
^ n
->key
;
1444 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1445 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1446 struct fib_info
*fi
= fa
->fa_info
;
1449 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1450 if (index
>= (1ul << fa
->fa_slen
))
1453 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1457 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1459 fib_alias_accessed(fa
);
1460 err
= fib_props
[fa
->fa_type
].error
;
1461 if (unlikely(err
< 0)) {
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1463 this_cpu_inc(stats
->semantic_match_passed
);
1465 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, err
);
1468 if (fi
->fib_flags
& RTNH_F_DEAD
)
1470 for (nhsel
= 0; nhsel
< fi
->fib_nhs
; nhsel
++) {
1471 const struct fib_nh
*nh
= &fi
->fib_nh
[nhsel
];
1472 struct in_device
*in_dev
= __in_dev_get_rcu(nh
->nh_dev
);
1474 if (nh
->nh_flags
& RTNH_F_DEAD
)
1477 IN_DEV_IGNORE_ROUTES_WITH_LINKDOWN(in_dev
) &&
1478 nh
->nh_flags
& RTNH_F_LINKDOWN
&&
1479 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1481 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1482 if (flp
->flowi4_oif
&&
1483 flp
->flowi4_oif
!= nh
->nh_oif
)
1487 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1488 refcount_inc(&fi
->fib_clntref
);
1490 res
->prefix
= htonl(n
->key
);
1491 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1492 res
->nh_sel
= nhsel
;
1493 res
->type
= fa
->fa_type
;
1494 res
->scope
= fi
->fib_scope
;
1497 res
->fa_head
= &n
->leaf
;
1498 #ifdef CONFIG_IP_FIB_TRIE_STATS
1499 this_cpu_inc(stats
->semantic_match_passed
);
1501 trace_fib_table_lookup(tb
->tb_id
, flp
, nh
, err
);
1506 #ifdef CONFIG_IP_FIB_TRIE_STATS
1507 this_cpu_inc(stats
->semantic_match_miss
);
1511 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1513 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1514 struct key_vector
*l
, struct fib_alias
*old
)
1516 /* record the location of the previous list_info entry */
1517 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1518 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1520 /* remove the fib_alias from the list */
1521 hlist_del_rcu(&old
->fa_list
);
1523 /* if we emptied the list this leaf will be freed and we can sort
1524 * out parent suffix lengths as a part of trie_rebalance
1526 if (hlist_empty(&l
->leaf
)) {
1527 if (tp
->slen
== l
->slen
)
1528 node_pull_suffix(tp
, tp
->pos
);
1529 put_child_root(tp
, l
->key
, NULL
);
1531 trie_rebalance(t
, tp
);
1535 /* only access fa if it is pointing at the last valid hlist_node */
1539 /* update the trie with the latest suffix length */
1540 l
->slen
= fa
->fa_slen
;
1541 node_pull_suffix(tp
, fa
->fa_slen
);
1544 /* Caller must hold RTNL. */
1545 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1546 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1548 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1549 struct fib_alias
*fa
, *fa_to_delete
;
1550 struct key_vector
*l
, *tp
;
1551 u8 plen
= cfg
->fc_dst_len
;
1552 u8 slen
= KEYLENGTH
- plen
;
1553 u8 tos
= cfg
->fc_tos
;
1556 key
= ntohl(cfg
->fc_dst
);
1558 if (!fib_valid_key_len(key
, plen
, extack
))
1561 l
= fib_find_node(t
, &tp
, key
);
1565 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
);
1569 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1571 fa_to_delete
= NULL
;
1572 hlist_for_each_entry_from(fa
, fa_list
) {
1573 struct fib_info
*fi
= fa
->fa_info
;
1575 if ((fa
->fa_slen
!= slen
) ||
1576 (fa
->tb_id
!= tb
->tb_id
) ||
1577 (fa
->fa_tos
!= tos
))
1580 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1581 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1582 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1583 (!cfg
->fc_prefsrc
||
1584 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1585 (!cfg
->fc_protocol
||
1586 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1587 fib_nh_match(cfg
, fi
, extack
) == 0 &&
1588 fib_metrics_match(cfg
, fi
)) {
1597 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
, key
, plen
,
1598 fa_to_delete
, extack
);
1599 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1600 &cfg
->fc_nlinfo
, 0);
1603 tb
->tb_num_default
--;
1605 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1607 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1608 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1610 fib_release_info(fa_to_delete
->fa_info
);
1611 alias_free_mem_rcu(fa_to_delete
);
1615 /* Scan for the next leaf starting at the provided key value */
1616 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1618 struct key_vector
*pn
, *n
= *tn
;
1619 unsigned long cindex
;
1621 /* this loop is meant to try and find the key in the trie */
1623 /* record parent and next child index */
1625 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1627 if (cindex
>> pn
->bits
)
1630 /* descend into the next child */
1631 n
= get_child_rcu(pn
, cindex
++);
1635 /* guarantee forward progress on the keys */
1636 if (IS_LEAF(n
) && (n
->key
>= key
))
1638 } while (IS_TNODE(n
));
1640 /* this loop will search for the next leaf with a greater key */
1641 while (!IS_TRIE(pn
)) {
1642 /* if we exhausted the parent node we will need to climb */
1643 if (cindex
>= (1ul << pn
->bits
)) {
1644 t_key pkey
= pn
->key
;
1646 pn
= node_parent_rcu(pn
);
1647 cindex
= get_index(pkey
, pn
) + 1;
1651 /* grab the next available node */
1652 n
= get_child_rcu(pn
, cindex
++);
1656 /* no need to compare keys since we bumped the index */
1660 /* Rescan start scanning in new node */
1666 return NULL
; /* Root of trie */
1668 /* if we are at the limit for keys just return NULL for the tnode */
1673 static void fib_trie_free(struct fib_table
*tb
)
1675 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1676 struct key_vector
*pn
= t
->kv
;
1677 unsigned long cindex
= 1;
1678 struct hlist_node
*tmp
;
1679 struct fib_alias
*fa
;
1681 /* walk trie in reverse order and free everything */
1683 struct key_vector
*n
;
1686 t_key pkey
= pn
->key
;
1692 pn
= node_parent(pn
);
1694 /* drop emptied tnode */
1695 put_child_root(pn
, n
->key
, NULL
);
1698 cindex
= get_index(pkey
, pn
);
1703 /* grab the next available node */
1704 n
= get_child(pn
, cindex
);
1709 /* record pn and cindex for leaf walking */
1711 cindex
= 1ul << n
->bits
;
1716 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1717 hlist_del_rcu(&fa
->fa_list
);
1718 alias_free_mem_rcu(fa
);
1721 put_child_root(pn
, n
->key
, NULL
);
1725 #ifdef CONFIG_IP_FIB_TRIE_STATS
1726 free_percpu(t
->stats
);
1731 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1733 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1734 struct key_vector
*l
, *tp
= ot
->kv
;
1735 struct fib_table
*local_tb
;
1736 struct fib_alias
*fa
;
1740 if (oldtb
->tb_data
== oldtb
->__data
)
1743 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1747 lt
= (struct trie
*)local_tb
->tb_data
;
1749 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1750 struct key_vector
*local_l
= NULL
, *local_tp
;
1752 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1753 struct fib_alias
*new_fa
;
1755 if (local_tb
->tb_id
!= fa
->tb_id
)
1758 /* clone fa for new local table */
1759 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1763 memcpy(new_fa
, fa
, sizeof(*fa
));
1765 /* insert clone into table */
1767 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1769 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1771 kmem_cache_free(fn_alias_kmem
, new_fa
);
1776 /* stop loop if key wrapped back to 0 */
1784 fib_trie_free(local_tb
);
1789 /* Caller must hold RTNL */
1790 void fib_table_flush_external(struct fib_table
*tb
)
1792 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1793 struct key_vector
*pn
= t
->kv
;
1794 unsigned long cindex
= 1;
1795 struct hlist_node
*tmp
;
1796 struct fib_alias
*fa
;
1798 /* walk trie in reverse order */
1800 unsigned char slen
= 0;
1801 struct key_vector
*n
;
1804 t_key pkey
= pn
->key
;
1806 /* cannot resize the trie vector */
1810 /* update the suffix to address pulled leaves */
1811 if (pn
->slen
> pn
->pos
)
1814 /* resize completed node */
1816 cindex
= get_index(pkey
, pn
);
1821 /* grab the next available node */
1822 n
= get_child(pn
, cindex
);
1827 /* record pn and cindex for leaf walking */
1829 cindex
= 1ul << n
->bits
;
1834 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1835 /* if alias was cloned to local then we just
1836 * need to remove the local copy from main
1838 if (tb
->tb_id
!= fa
->tb_id
) {
1839 hlist_del_rcu(&fa
->fa_list
);
1840 alias_free_mem_rcu(fa
);
1844 /* record local slen */
1848 /* update leaf slen */
1851 if (hlist_empty(&n
->leaf
)) {
1852 put_child_root(pn
, n
->key
, NULL
);
1858 /* Caller must hold RTNL. */
1859 int fib_table_flush(struct net
*net
, struct fib_table
*tb
)
1861 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1862 struct key_vector
*pn
= t
->kv
;
1863 unsigned long cindex
= 1;
1864 struct hlist_node
*tmp
;
1865 struct fib_alias
*fa
;
1868 /* walk trie in reverse order */
1870 unsigned char slen
= 0;
1871 struct key_vector
*n
;
1874 t_key pkey
= pn
->key
;
1876 /* cannot resize the trie vector */
1880 /* update the suffix to address pulled leaves */
1881 if (pn
->slen
> pn
->pos
)
1884 /* resize completed node */
1886 cindex
= get_index(pkey
, pn
);
1891 /* grab the next available node */
1892 n
= get_child(pn
, cindex
);
1897 /* record pn and cindex for leaf walking */
1899 cindex
= 1ul << n
->bits
;
1904 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1905 struct fib_info
*fi
= fa
->fa_info
;
1907 if (!fi
|| !(fi
->fib_flags
& RTNH_F_DEAD
) ||
1908 tb
->tb_id
!= fa
->tb_id
) {
1913 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_DEL
,
1915 KEYLENGTH
- fa
->fa_slen
, fa
,
1917 hlist_del_rcu(&fa
->fa_list
);
1918 fib_release_info(fa
->fa_info
);
1919 alias_free_mem_rcu(fa
);
1923 /* update leaf slen */
1926 if (hlist_empty(&n
->leaf
)) {
1927 put_child_root(pn
, n
->key
, NULL
);
1932 pr_debug("trie_flush found=%d\n", found
);
1936 static void fib_leaf_notify(struct net
*net
, struct key_vector
*l
,
1937 struct fib_table
*tb
, struct notifier_block
*nb
)
1939 struct fib_alias
*fa
;
1941 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1942 struct fib_info
*fi
= fa
->fa_info
;
1947 /* local and main table can share the same trie,
1948 * so don't notify twice for the same entry.
1950 if (tb
->tb_id
!= fa
->tb_id
)
1953 call_fib_entry_notifier(nb
, net
, FIB_EVENT_ENTRY_ADD
, l
->key
,
1954 KEYLENGTH
- fa
->fa_slen
, fa
);
1958 static void fib_table_notify(struct net
*net
, struct fib_table
*tb
,
1959 struct notifier_block
*nb
)
1961 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1962 struct key_vector
*l
, *tp
= t
->kv
;
1965 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1966 fib_leaf_notify(net
, l
, tb
, nb
);
1969 /* stop in case of wrap around */
1975 void fib_notify(struct net
*net
, struct notifier_block
*nb
)
1979 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
1980 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
1981 struct fib_table
*tb
;
1983 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
1984 fib_table_notify(net
, tb
, nb
);
1988 static void __trie_free_rcu(struct rcu_head
*head
)
1990 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
1991 #ifdef CONFIG_IP_FIB_TRIE_STATS
1992 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1994 if (tb
->tb_data
== tb
->__data
)
1995 free_percpu(t
->stats
);
1996 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2000 void fib_free_table(struct fib_table
*tb
)
2002 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2005 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2006 struct sk_buff
*skb
, struct netlink_callback
*cb
,
2007 struct fib_dump_filter
*filter
)
2009 unsigned int flags
= NLM_F_MULTI
;
2010 __be32 xkey
= htonl(l
->key
);
2011 struct fib_alias
*fa
;
2014 if (filter
->filter_set
)
2015 flags
|= NLM_F_DUMP_FILTERED
;
2020 /* rcu_read_lock is hold by caller */
2021 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2027 if (tb
->tb_id
!= fa
->tb_id
)
2030 if (filter
->filter_set
) {
2031 if (filter
->rt_type
&& fa
->fa_type
!= filter
->rt_type
)
2034 if ((filter
->protocol
&&
2035 fa
->fa_info
->fib_protocol
!= filter
->protocol
))
2039 !fib_info_nh_uses_dev(fa
->fa_info
, filter
->dev
))
2043 err
= fib_dump_info(skb
, NETLINK_CB(cb
->skb
).portid
,
2044 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2045 tb
->tb_id
, fa
->fa_type
,
2046 xkey
, KEYLENGTH
- fa
->fa_slen
,
2047 fa
->fa_tos
, fa
->fa_info
, flags
);
2060 /* rcu_read_lock needs to be hold by caller from readside */
2061 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2062 struct netlink_callback
*cb
, struct fib_dump_filter
*filter
)
2064 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2065 struct key_vector
*l
, *tp
= t
->kv
;
2066 /* Dump starting at last key.
2067 * Note: 0.0.0.0/0 (ie default) is first key.
2069 int count
= cb
->args
[2];
2070 t_key key
= cb
->args
[3];
2072 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2075 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
, filter
);
2078 cb
->args
[2] = count
;
2085 memset(&cb
->args
[4], 0,
2086 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2088 /* stop loop if key wrapped back to 0 */
2094 cb
->args
[2] = count
;
2099 void __init
fib_trie_init(void)
2101 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2102 sizeof(struct fib_alias
),
2103 0, SLAB_PANIC
, NULL
);
2105 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2107 0, SLAB_PANIC
, NULL
);
2110 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2112 struct fib_table
*tb
;
2114 size_t sz
= sizeof(*tb
);
2117 sz
+= sizeof(struct trie
);
2119 tb
= kzalloc(sz
, GFP_KERNEL
);
2124 tb
->tb_num_default
= 0;
2125 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2130 t
= (struct trie
*) tb
->tb_data
;
2131 t
->kv
[0].pos
= KEYLENGTH
;
2132 t
->kv
[0].slen
= KEYLENGTH
;
2133 #ifdef CONFIG_IP_FIB_TRIE_STATS
2134 t
->stats
= alloc_percpu(struct trie_use_stats
);
2144 #ifdef CONFIG_PROC_FS
2145 /* Depth first Trie walk iterator */
2146 struct fib_trie_iter
{
2147 struct seq_net_private p
;
2148 struct fib_table
*tb
;
2149 struct key_vector
*tnode
;
2154 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2156 unsigned long cindex
= iter
->index
;
2157 struct key_vector
*pn
= iter
->tnode
;
2160 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2161 iter
->tnode
, iter
->index
, iter
->depth
);
2163 while (!IS_TRIE(pn
)) {
2164 while (cindex
< child_length(pn
)) {
2165 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2172 iter
->index
= cindex
;
2174 /* push down one level */
2183 /* Current node exhausted, pop back up */
2185 pn
= node_parent_rcu(pn
);
2186 cindex
= get_index(pkey
, pn
) + 1;
2190 /* record root node so further searches know we are done */
2197 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2200 struct key_vector
*n
, *pn
;
2206 n
= rcu_dereference(pn
->tnode
[0]);
2223 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2225 struct key_vector
*n
;
2226 struct fib_trie_iter iter
;
2228 memset(s
, 0, sizeof(*s
));
2231 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2233 struct fib_alias
*fa
;
2236 s
->totdepth
+= iter
.depth
;
2237 if (iter
.depth
> s
->maxdepth
)
2238 s
->maxdepth
= iter
.depth
;
2240 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2244 if (n
->bits
< MAX_STAT_DEPTH
)
2245 s
->nodesizes
[n
->bits
]++;
2246 s
->nullpointers
+= tn_info(n
)->empty_children
;
2253 * This outputs /proc/net/fib_triestats
2255 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2257 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2260 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2264 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2265 avdepth
/ 100, avdepth
% 100);
2266 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2268 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2269 bytes
= LEAF_SIZE
* stat
->leaves
;
2271 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2272 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2274 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2275 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2277 max
= MAX_STAT_DEPTH
;
2278 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2282 for (i
= 1; i
< max
; i
++)
2283 if (stat
->nodesizes
[i
] != 0) {
2284 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2285 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2287 seq_putc(seq
, '\n');
2288 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2290 bytes
+= sizeof(struct key_vector
*) * pointers
;
2291 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2292 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2295 #ifdef CONFIG_IP_FIB_TRIE_STATS
2296 static void trie_show_usage(struct seq_file
*seq
,
2297 const struct trie_use_stats __percpu
*stats
)
2299 struct trie_use_stats s
= { 0 };
2302 /* loop through all of the CPUs and gather up the stats */
2303 for_each_possible_cpu(cpu
) {
2304 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2306 s
.gets
+= pcpu
->gets
;
2307 s
.backtrack
+= pcpu
->backtrack
;
2308 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2309 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2310 s
.null_node_hit
+= pcpu
->null_node_hit
;
2311 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2314 seq_printf(seq
, "\nCounters:\n---------\n");
2315 seq_printf(seq
, "gets = %u\n", s
.gets
);
2316 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2317 seq_printf(seq
, "semantic match passed = %u\n",
2318 s
.semantic_match_passed
);
2319 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2320 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2321 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2323 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2325 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2327 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2328 seq_puts(seq
, "Local:\n");
2329 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2330 seq_puts(seq
, "Main:\n");
2332 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2336 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2338 struct net
*net
= (struct net
*)seq
->private;
2342 "Basic info: size of leaf:"
2343 " %zd bytes, size of tnode: %zd bytes.\n",
2344 LEAF_SIZE
, TNODE_SIZE(0));
2346 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2347 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2348 struct fib_table
*tb
;
2350 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2351 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2352 struct trie_stat stat
;
2357 fib_table_print(seq
, tb
);
2359 trie_collect_stats(t
, &stat
);
2360 trie_show_stats(seq
, &stat
);
2361 #ifdef CONFIG_IP_FIB_TRIE_STATS
2362 trie_show_usage(seq
, t
->stats
);
2370 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2372 struct fib_trie_iter
*iter
= seq
->private;
2373 struct net
*net
= seq_file_net(seq
);
2377 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2378 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2379 struct fib_table
*tb
;
2381 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2382 struct key_vector
*n
;
2384 for (n
= fib_trie_get_first(iter
,
2385 (struct trie
*) tb
->tb_data
);
2386 n
; n
= fib_trie_get_next(iter
))
2397 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2401 return fib_trie_get_idx(seq
, *pos
);
2404 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2406 struct fib_trie_iter
*iter
= seq
->private;
2407 struct net
*net
= seq_file_net(seq
);
2408 struct fib_table
*tb
= iter
->tb
;
2409 struct hlist_node
*tb_node
;
2411 struct key_vector
*n
;
2414 /* next node in same table */
2415 n
= fib_trie_get_next(iter
);
2419 /* walk rest of this hash chain */
2420 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2421 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2422 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2423 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2428 /* new hash chain */
2429 while (++h
< FIB_TABLE_HASHSZ
) {
2430 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2431 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2432 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2444 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2450 static void seq_indent(struct seq_file
*seq
, int n
)
2456 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2459 case RT_SCOPE_UNIVERSE
: return "universe";
2460 case RT_SCOPE_SITE
: return "site";
2461 case RT_SCOPE_LINK
: return "link";
2462 case RT_SCOPE_HOST
: return "host";
2463 case RT_SCOPE_NOWHERE
: return "nowhere";
2465 snprintf(buf
, len
, "scope=%d", s
);
2470 static const char *const rtn_type_names
[__RTN_MAX
] = {
2471 [RTN_UNSPEC
] = "UNSPEC",
2472 [RTN_UNICAST
] = "UNICAST",
2473 [RTN_LOCAL
] = "LOCAL",
2474 [RTN_BROADCAST
] = "BROADCAST",
2475 [RTN_ANYCAST
] = "ANYCAST",
2476 [RTN_MULTICAST
] = "MULTICAST",
2477 [RTN_BLACKHOLE
] = "BLACKHOLE",
2478 [RTN_UNREACHABLE
] = "UNREACHABLE",
2479 [RTN_PROHIBIT
] = "PROHIBIT",
2480 [RTN_THROW
] = "THROW",
2482 [RTN_XRESOLVE
] = "XRESOLVE",
2485 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2487 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2488 return rtn_type_names
[t
];
2489 snprintf(buf
, len
, "type %u", t
);
2493 /* Pretty print the trie */
2494 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2496 const struct fib_trie_iter
*iter
= seq
->private;
2497 struct key_vector
*n
= v
;
2499 if (IS_TRIE(node_parent_rcu(n
)))
2500 fib_table_print(seq
, iter
->tb
);
2503 __be32 prf
= htonl(n
->key
);
2505 seq_indent(seq
, iter
->depth
-1);
2506 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2507 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2508 tn_info(n
)->full_children
,
2509 tn_info(n
)->empty_children
);
2511 __be32 val
= htonl(n
->key
);
2512 struct fib_alias
*fa
;
2514 seq_indent(seq
, iter
->depth
);
2515 seq_printf(seq
, " |-- %pI4\n", &val
);
2517 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2518 char buf1
[32], buf2
[32];
2520 seq_indent(seq
, iter
->depth
+ 1);
2521 seq_printf(seq
, " /%zu %s %s",
2522 KEYLENGTH
- fa
->fa_slen
,
2523 rtn_scope(buf1
, sizeof(buf1
),
2524 fa
->fa_info
->fib_scope
),
2525 rtn_type(buf2
, sizeof(buf2
),
2528 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2529 seq_putc(seq
, '\n');
2536 static const struct seq_operations fib_trie_seq_ops
= {
2537 .start
= fib_trie_seq_start
,
2538 .next
= fib_trie_seq_next
,
2539 .stop
= fib_trie_seq_stop
,
2540 .show
= fib_trie_seq_show
,
2543 struct fib_route_iter
{
2544 struct seq_net_private p
;
2545 struct fib_table
*main_tb
;
2546 struct key_vector
*tnode
;
2551 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2554 struct key_vector
*l
, **tp
= &iter
->tnode
;
2557 /* use cached location of previously found key */
2558 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2567 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2572 /* handle unlikely case of a key wrap */
2578 iter
->key
= l
->key
; /* remember it */
2580 iter
->pos
= 0; /* forget it */
2585 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2588 struct fib_route_iter
*iter
= seq
->private;
2589 struct fib_table
*tb
;
2594 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2599 t
= (struct trie
*)tb
->tb_data
;
2600 iter
->tnode
= t
->kv
;
2603 return fib_route_get_idx(iter
, *pos
);
2606 iter
->key
= KEY_MAX
;
2608 return SEQ_START_TOKEN
;
2611 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2613 struct fib_route_iter
*iter
= seq
->private;
2614 struct key_vector
*l
= NULL
;
2615 t_key key
= iter
->key
+ 1;
2619 /* only allow key of 0 for start of sequence */
2620 if ((v
== SEQ_START_TOKEN
) || key
)
2621 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2633 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2639 static unsigned int fib_flag_trans(int type
, __be32 mask
, const struct fib_info
*fi
)
2641 unsigned int flags
= 0;
2643 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2645 if (fi
&& fi
->fib_nh
->nh_gw
)
2646 flags
|= RTF_GATEWAY
;
2647 if (mask
== htonl(0xFFFFFFFF))
2654 * This outputs /proc/net/route.
2655 * The format of the file is not supposed to be changed
2656 * and needs to be same as fib_hash output to avoid breaking
2659 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2661 struct fib_route_iter
*iter
= seq
->private;
2662 struct fib_table
*tb
= iter
->main_tb
;
2663 struct fib_alias
*fa
;
2664 struct key_vector
*l
= v
;
2667 if (v
== SEQ_START_TOKEN
) {
2668 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2669 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2674 prefix
= htonl(l
->key
);
2676 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2677 const struct fib_info
*fi
= fa
->fa_info
;
2678 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2679 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2681 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2682 (fa
->fa_type
== RTN_MULTICAST
))
2685 if (fa
->tb_id
!= tb
->tb_id
)
2688 seq_setwidth(seq
, 127);
2692 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2693 "%d\t%08X\t%d\t%u\t%u",
2694 fi
->fib_dev
? fi
->fib_dev
->name
: "*",
2696 fi
->fib_nh
->nh_gw
, flags
, 0, 0,
2700 fi
->fib_advmss
+ 40 : 0),
2705 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2706 "%d\t%08X\t%d\t%u\t%u",
2707 prefix
, 0, flags
, 0, 0, 0,
2716 static const struct seq_operations fib_route_seq_ops
= {
2717 .start
= fib_route_seq_start
,
2718 .next
= fib_route_seq_next
,
2719 .stop
= fib_route_seq_stop
,
2720 .show
= fib_route_seq_show
,
2723 int __net_init
fib_proc_init(struct net
*net
)
2725 if (!proc_create_net("fib_trie", 0444, net
->proc_net
, &fib_trie_seq_ops
,
2726 sizeof(struct fib_trie_iter
)))
2729 if (!proc_create_net_single("fib_triestat", 0444, net
->proc_net
,
2730 fib_triestat_seq_show
, NULL
))
2733 if (!proc_create_net("route", 0444, net
->proc_net
, &fib_route_seq_ops
,
2734 sizeof(struct fib_route_iter
)))
2740 remove_proc_entry("fib_triestat", net
->proc_net
);
2742 remove_proc_entry("fib_trie", net
->proc_net
);
2747 void __net_exit
fib_proc_exit(struct net
*net
)
2749 remove_proc_entry("fib_trie", net
->proc_net
);
2750 remove_proc_entry("fib_triestat", net
->proc_net
);
2751 remove_proc_entry("route", net
->proc_net
);
2754 #endif /* CONFIG_PROC_FS */