perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / net / ipv4 / ip_fragment.c
blobaa0b22697998ab60f0013bf65cea9cef2913f61f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The IP fragmentation functionality.
9 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox <alan@lxorguk.ukuu.org.uk>
12 * Fixes:
13 * Alan Cox : Split from ip.c , see ip_input.c for history.
14 * David S. Miller : Begin massive cleanup...
15 * Andi Kleen : Add sysctls.
16 * xxxx : Overlapfrag bug.
17 * Ultima : ip_expire() kernel panic.
18 * Bill Hawes : Frag accounting and evictor fixes.
19 * John McDonald : 0 length frag bug.
20 * Alexey Kuznetsov: SMP races, threading, cleanup.
21 * Patrick McHardy : LRU queue of frag heads for evictor.
24 #define pr_fmt(fmt) "IPv4: " fmt
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/mm.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
33 #include <linux/ip.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
40 #include <net/dst.h>
41 #include <net/sock.h>
42 #include <net/ip.h>
43 #include <net/icmp.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56 * as well. Or notify me, at least. --ANK
58 static const char ip_frag_cache_name[] = "ip4-frags";
60 /* Use skb->cb to track consecutive/adjacent fragments coming at
61 * the end of the queue. Nodes in the rb-tree queue will
62 * contain "runs" of one or more adjacent fragments.
64 * Invariants:
65 * - next_frag is NULL at the tail of a "run";
66 * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
68 struct ipfrag_skb_cb {
69 struct inet_skb_parm h;
70 struct sk_buff *next_frag;
71 int frag_run_len;
74 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
76 static void ip4_frag_init_run(struct sk_buff *skb)
78 BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
80 FRAG_CB(skb)->next_frag = NULL;
81 FRAG_CB(skb)->frag_run_len = skb->len;
84 /* Append skb to the last "run". */
85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
86 struct sk_buff *skb)
88 RB_CLEAR_NODE(&skb->rbnode);
89 FRAG_CB(skb)->next_frag = NULL;
91 FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
92 FRAG_CB(q->fragments_tail)->next_frag = skb;
93 q->fragments_tail = skb;
96 /* Create a new "run" with the skb. */
97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
99 if (q->last_run_head)
100 rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
101 &q->last_run_head->rbnode.rb_right);
102 else
103 rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
104 rb_insert_color(&skb->rbnode, &q->rb_fragments);
106 ip4_frag_init_run(skb);
107 q->fragments_tail = skb;
108 q->last_run_head = skb;
111 /* Describe an entry in the "incomplete datagrams" queue. */
112 struct ipq {
113 struct inet_frag_queue q;
115 u8 ecn; /* RFC3168 support */
116 u16 max_df_size; /* largest frag with DF set seen */
117 int iif;
118 unsigned int rid;
119 struct inet_peer *peer;
122 static u8 ip4_frag_ecn(u8 tos)
124 return 1 << (tos & INET_ECN_MASK);
127 static struct inet_frags ip4_frags;
129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
130 struct sk_buff *prev_tail, struct net_device *dev);
133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
135 struct ipq *qp = container_of(q, struct ipq, q);
136 struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 frags);
138 struct net *net = container_of(ipv4, struct net, ipv4);
140 const struct frag_v4_compare_key *key = a;
142 q->key.v4 = *key;
143 qp->ecn = 0;
144 qp->peer = q->net->max_dist ?
145 inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
146 NULL;
149 static void ip4_frag_free(struct inet_frag_queue *q)
151 struct ipq *qp;
153 qp = container_of(q, struct ipq, q);
154 if (qp->peer)
155 inet_putpeer(qp->peer);
159 /* Destruction primitives. */
161 static void ipq_put(struct ipq *ipq)
163 inet_frag_put(&ipq->q);
166 /* Kill ipq entry. It is not destroyed immediately,
167 * because caller (and someone more) holds reference count.
169 static void ipq_kill(struct ipq *ipq)
171 inet_frag_kill(&ipq->q);
174 static bool frag_expire_skip_icmp(u32 user)
176 return user == IP_DEFRAG_AF_PACKET ||
177 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
178 __IP_DEFRAG_CONNTRACK_IN_END) ||
179 ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
180 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
184 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
186 static void ip_expire(struct timer_list *t)
188 struct inet_frag_queue *frag = from_timer(frag, t, timer);
189 const struct iphdr *iph;
190 struct sk_buff *head = NULL;
191 struct net *net;
192 struct ipq *qp;
193 int err;
195 qp = container_of(frag, struct ipq, q);
196 net = container_of(qp->q.net, struct net, ipv4.frags);
198 rcu_read_lock();
199 spin_lock(&qp->q.lock);
201 if (qp->q.flags & INET_FRAG_COMPLETE)
202 goto out;
204 ipq_kill(qp);
205 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
206 __IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
208 if (!(qp->q.flags & INET_FRAG_FIRST_IN))
209 goto out;
211 /* sk_buff::dev and sk_buff::rbnode are unionized. So we
212 * pull the head out of the tree in order to be able to
213 * deal with head->dev.
215 if (qp->q.fragments) {
216 head = qp->q.fragments;
217 qp->q.fragments = head->next;
218 } else {
219 head = skb_rb_first(&qp->q.rb_fragments);
220 if (!head)
221 goto out;
222 if (FRAG_CB(head)->next_frag)
223 rb_replace_node(&head->rbnode,
224 &FRAG_CB(head)->next_frag->rbnode,
225 &qp->q.rb_fragments);
226 else
227 rb_erase(&head->rbnode, &qp->q.rb_fragments);
228 memset(&head->rbnode, 0, sizeof(head->rbnode));
229 barrier();
231 if (head == qp->q.fragments_tail)
232 qp->q.fragments_tail = NULL;
234 sub_frag_mem_limit(qp->q.net, head->truesize);
236 head->dev = dev_get_by_index_rcu(net, qp->iif);
237 if (!head->dev)
238 goto out;
241 /* skb has no dst, perform route lookup again */
242 iph = ip_hdr(head);
243 err = ip_route_input_noref(head, iph->daddr, iph->saddr,
244 iph->tos, head->dev);
245 if (err)
246 goto out;
248 /* Only an end host needs to send an ICMP
249 * "Fragment Reassembly Timeout" message, per RFC792.
251 if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
252 (skb_rtable(head)->rt_type != RTN_LOCAL))
253 goto out;
255 spin_unlock(&qp->q.lock);
256 icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
257 goto out_rcu_unlock;
259 out:
260 spin_unlock(&qp->q.lock);
261 out_rcu_unlock:
262 rcu_read_unlock();
263 kfree_skb(head);
264 ipq_put(qp);
267 /* Find the correct entry in the "incomplete datagrams" queue for
268 * this IP datagram, and create new one, if nothing is found.
270 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
271 u32 user, int vif)
273 struct frag_v4_compare_key key = {
274 .saddr = iph->saddr,
275 .daddr = iph->daddr,
276 .user = user,
277 .vif = vif,
278 .id = iph->id,
279 .protocol = iph->protocol,
281 struct inet_frag_queue *q;
283 q = inet_frag_find(&net->ipv4.frags, &key);
284 if (!q)
285 return NULL;
287 return container_of(q, struct ipq, q);
290 /* Is the fragment too far ahead to be part of ipq? */
291 static int ip_frag_too_far(struct ipq *qp)
293 struct inet_peer *peer = qp->peer;
294 unsigned int max = qp->q.net->max_dist;
295 unsigned int start, end;
297 int rc;
299 if (!peer || !max)
300 return 0;
302 start = qp->rid;
303 end = atomic_inc_return(&peer->rid);
304 qp->rid = end;
306 rc = qp->q.fragments_tail && (end - start) > max;
308 if (rc) {
309 struct net *net;
311 net = container_of(qp->q.net, struct net, ipv4.frags);
312 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
315 return rc;
318 static int ip_frag_reinit(struct ipq *qp)
320 unsigned int sum_truesize = 0;
322 if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
323 refcount_inc(&qp->q.refcnt);
324 return -ETIMEDOUT;
327 sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
328 sub_frag_mem_limit(qp->q.net, sum_truesize);
330 qp->q.flags = 0;
331 qp->q.len = 0;
332 qp->q.meat = 0;
333 qp->q.fragments = NULL;
334 qp->q.rb_fragments = RB_ROOT;
335 qp->q.fragments_tail = NULL;
336 qp->q.last_run_head = NULL;
337 qp->iif = 0;
338 qp->ecn = 0;
340 return 0;
343 /* Add new segment to existing queue. */
344 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
346 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
347 struct rb_node **rbn, *parent;
348 struct sk_buff *skb1, *prev_tail;
349 struct net_device *dev;
350 unsigned int fragsize;
351 int flags, offset;
352 int ihl, end;
353 int err = -ENOENT;
354 u8 ecn;
356 if (qp->q.flags & INET_FRAG_COMPLETE)
357 goto err;
359 if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
360 unlikely(ip_frag_too_far(qp)) &&
361 unlikely(err = ip_frag_reinit(qp))) {
362 ipq_kill(qp);
363 goto err;
366 ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
367 offset = ntohs(ip_hdr(skb)->frag_off);
368 flags = offset & ~IP_OFFSET;
369 offset &= IP_OFFSET;
370 offset <<= 3; /* offset is in 8-byte chunks */
371 ihl = ip_hdrlen(skb);
373 /* Determine the position of this fragment. */
374 end = offset + skb->len - skb_network_offset(skb) - ihl;
375 err = -EINVAL;
377 /* Is this the final fragment? */
378 if ((flags & IP_MF) == 0) {
379 /* If we already have some bits beyond end
380 * or have different end, the segment is corrupted.
382 if (end < qp->q.len ||
383 ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
384 goto discard_qp;
385 qp->q.flags |= INET_FRAG_LAST_IN;
386 qp->q.len = end;
387 } else {
388 if (end&7) {
389 end &= ~7;
390 if (skb->ip_summed != CHECKSUM_UNNECESSARY)
391 skb->ip_summed = CHECKSUM_NONE;
393 if (end > qp->q.len) {
394 /* Some bits beyond end -> corruption. */
395 if (qp->q.flags & INET_FRAG_LAST_IN)
396 goto discard_qp;
397 qp->q.len = end;
400 if (end == offset)
401 goto discard_qp;
403 err = -ENOMEM;
404 if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
405 goto discard_qp;
407 err = pskb_trim_rcsum(skb, end - offset);
408 if (err)
409 goto discard_qp;
411 /* Note : skb->rbnode and skb->dev share the same location. */
412 dev = skb->dev;
413 /* Makes sure compiler wont do silly aliasing games */
414 barrier();
416 /* RFC5722, Section 4, amended by Errata ID : 3089
417 * When reassembling an IPv6 datagram, if
418 * one or more its constituent fragments is determined to be an
419 * overlapping fragment, the entire datagram (and any constituent
420 * fragments) MUST be silently discarded.
422 * We do the same here for IPv4 (and increment an snmp counter).
425 err = -EINVAL;
426 /* Find out where to put this fragment. */
427 prev_tail = qp->q.fragments_tail;
428 if (!prev_tail)
429 ip4_frag_create_run(&qp->q, skb); /* First fragment. */
430 else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
431 /* This is the common case: skb goes to the end. */
432 /* Detect and discard overlaps. */
433 if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
434 goto overlap;
435 if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
436 ip4_frag_append_to_last_run(&qp->q, skb);
437 else
438 ip4_frag_create_run(&qp->q, skb);
439 } else {
440 /* Binary search. Note that skb can become the first fragment,
441 * but not the last (covered above).
443 rbn = &qp->q.rb_fragments.rb_node;
444 do {
445 parent = *rbn;
446 skb1 = rb_to_skb(parent);
447 if (end <= skb1->ip_defrag_offset)
448 rbn = &parent->rb_left;
449 else if (offset >= skb1->ip_defrag_offset +
450 FRAG_CB(skb1)->frag_run_len)
451 rbn = &parent->rb_right;
452 else /* Found an overlap with skb1. */
453 goto overlap;
454 } while (*rbn);
455 /* Here we have parent properly set, and rbn pointing to
456 * one of its NULL left/right children. Insert skb.
458 ip4_frag_init_run(skb);
459 rb_link_node(&skb->rbnode, parent, rbn);
460 rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
463 if (dev)
464 qp->iif = dev->ifindex;
465 skb->ip_defrag_offset = offset;
467 qp->q.stamp = skb->tstamp;
468 qp->q.meat += skb->len;
469 qp->ecn |= ecn;
470 add_frag_mem_limit(qp->q.net, skb->truesize);
471 if (offset == 0)
472 qp->q.flags |= INET_FRAG_FIRST_IN;
474 fragsize = skb->len + ihl;
476 if (fragsize > qp->q.max_size)
477 qp->q.max_size = fragsize;
479 if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
480 fragsize > qp->max_df_size)
481 qp->max_df_size = fragsize;
483 if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
484 qp->q.meat == qp->q.len) {
485 unsigned long orefdst = skb->_skb_refdst;
487 skb->_skb_refdst = 0UL;
488 err = ip_frag_reasm(qp, skb, prev_tail, dev);
489 skb->_skb_refdst = orefdst;
490 if (err)
491 inet_frag_kill(&qp->q);
492 return err;
495 skb_dst_drop(skb);
496 return -EINPROGRESS;
498 overlap:
499 __IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
500 discard_qp:
501 inet_frag_kill(&qp->q);
502 err:
503 kfree_skb(skb);
504 return err;
507 /* Build a new IP datagram from all its fragments. */
508 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
509 struct sk_buff *prev_tail, struct net_device *dev)
511 struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
512 struct iphdr *iph;
513 struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
514 struct sk_buff **nextp; /* To build frag_list. */
515 struct rb_node *rbn;
516 int len;
517 int ihlen;
518 int delta;
519 int err;
520 u8 ecn;
522 ipq_kill(qp);
524 ecn = ip_frag_ecn_table[qp->ecn];
525 if (unlikely(ecn == 0xff)) {
526 err = -EINVAL;
527 goto out_fail;
529 /* Make the one we just received the head. */
530 if (head != skb) {
531 fp = skb_clone(skb, GFP_ATOMIC);
532 if (!fp)
533 goto out_nomem;
534 FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
535 if (RB_EMPTY_NODE(&skb->rbnode))
536 FRAG_CB(prev_tail)->next_frag = fp;
537 else
538 rb_replace_node(&skb->rbnode, &fp->rbnode,
539 &qp->q.rb_fragments);
540 if (qp->q.fragments_tail == skb)
541 qp->q.fragments_tail = fp;
542 skb_morph(skb, head);
543 FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
544 rb_replace_node(&head->rbnode, &skb->rbnode,
545 &qp->q.rb_fragments);
546 consume_skb(head);
547 head = skb;
550 WARN_ON(head->ip_defrag_offset != 0);
552 /* Allocate a new buffer for the datagram. */
553 ihlen = ip_hdrlen(head);
554 len = ihlen + qp->q.len;
556 err = -E2BIG;
557 if (len > 65535)
558 goto out_oversize;
560 delta = - head->truesize;
562 /* Head of list must not be cloned. */
563 if (skb_unclone(head, GFP_ATOMIC))
564 goto out_nomem;
566 delta += head->truesize;
567 if (delta)
568 add_frag_mem_limit(qp->q.net, delta);
570 /* If the first fragment is fragmented itself, we split
571 * it to two chunks: the first with data and paged part
572 * and the second, holding only fragments. */
573 if (skb_has_frag_list(head)) {
574 struct sk_buff *clone;
575 int i, plen = 0;
577 clone = alloc_skb(0, GFP_ATOMIC);
578 if (!clone)
579 goto out_nomem;
580 skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
581 skb_frag_list_init(head);
582 for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
583 plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
584 clone->len = clone->data_len = head->data_len - plen;
585 head->truesize += clone->truesize;
586 clone->csum = 0;
587 clone->ip_summed = head->ip_summed;
588 add_frag_mem_limit(qp->q.net, clone->truesize);
589 skb_shinfo(head)->frag_list = clone;
590 nextp = &clone->next;
591 } else {
592 nextp = &skb_shinfo(head)->frag_list;
595 skb_push(head, head->data - skb_network_header(head));
597 /* Traverse the tree in order, to build frag_list. */
598 fp = FRAG_CB(head)->next_frag;
599 rbn = rb_next(&head->rbnode);
600 rb_erase(&head->rbnode, &qp->q.rb_fragments);
601 while (rbn || fp) {
602 /* fp points to the next sk_buff in the current run;
603 * rbn points to the next run.
605 /* Go through the current run. */
606 while (fp) {
607 *nextp = fp;
608 nextp = &fp->next;
609 fp->prev = NULL;
610 memset(&fp->rbnode, 0, sizeof(fp->rbnode));
611 fp->sk = NULL;
612 head->data_len += fp->len;
613 head->len += fp->len;
614 if (head->ip_summed != fp->ip_summed)
615 head->ip_summed = CHECKSUM_NONE;
616 else if (head->ip_summed == CHECKSUM_COMPLETE)
617 head->csum = csum_add(head->csum, fp->csum);
618 head->truesize += fp->truesize;
619 fp = FRAG_CB(fp)->next_frag;
621 /* Move to the next run. */
622 if (rbn) {
623 struct rb_node *rbnext = rb_next(rbn);
625 fp = rb_to_skb(rbn);
626 rb_erase(rbn, &qp->q.rb_fragments);
627 rbn = rbnext;
630 sub_frag_mem_limit(qp->q.net, head->truesize);
632 *nextp = NULL;
633 skb_mark_not_on_list(head);
634 head->prev = NULL;
635 head->dev = dev;
636 head->tstamp = qp->q.stamp;
637 IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
639 iph = ip_hdr(head);
640 iph->tot_len = htons(len);
641 iph->tos |= ecn;
643 /* When we set IP_DF on a refragmented skb we must also force a
644 * call to ip_fragment to avoid forwarding a DF-skb of size s while
645 * original sender only sent fragments of size f (where f < s).
647 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
648 * frag seen to avoid sending tiny DF-fragments in case skb was built
649 * from one very small df-fragment and one large non-df frag.
651 if (qp->max_df_size == qp->q.max_size) {
652 IPCB(head)->flags |= IPSKB_FRAG_PMTU;
653 iph->frag_off = htons(IP_DF);
654 } else {
655 iph->frag_off = 0;
658 ip_send_check(iph);
660 __IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
661 qp->q.fragments = NULL;
662 qp->q.rb_fragments = RB_ROOT;
663 qp->q.fragments_tail = NULL;
664 qp->q.last_run_head = NULL;
665 return 0;
667 out_nomem:
668 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
669 err = -ENOMEM;
670 goto out_fail;
671 out_oversize:
672 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
673 out_fail:
674 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
675 return err;
678 /* Process an incoming IP datagram fragment. */
679 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
681 struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
682 int vif = l3mdev_master_ifindex_rcu(dev);
683 struct ipq *qp;
685 __IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
686 skb_orphan(skb);
688 /* Lookup (or create) queue header */
689 qp = ip_find(net, ip_hdr(skb), user, vif);
690 if (qp) {
691 int ret;
693 spin_lock(&qp->q.lock);
695 ret = ip_frag_queue(qp, skb);
697 spin_unlock(&qp->q.lock);
698 ipq_put(qp);
699 return ret;
702 __IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
703 kfree_skb(skb);
704 return -ENOMEM;
706 EXPORT_SYMBOL(ip_defrag);
708 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
710 struct iphdr iph;
711 int netoff;
712 u32 len;
714 if (skb->protocol != htons(ETH_P_IP))
715 return skb;
717 netoff = skb_network_offset(skb);
719 if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
720 return skb;
722 if (iph.ihl < 5 || iph.version != 4)
723 return skb;
725 len = ntohs(iph.tot_len);
726 if (skb->len < netoff + len || len < (iph.ihl * 4))
727 return skb;
729 if (ip_is_fragment(&iph)) {
730 skb = skb_share_check(skb, GFP_ATOMIC);
731 if (skb) {
732 if (!pskb_may_pull(skb, netoff + iph.ihl * 4)) {
733 kfree_skb(skb);
734 return NULL;
736 if (pskb_trim_rcsum(skb, netoff + len)) {
737 kfree_skb(skb);
738 return NULL;
740 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
741 if (ip_defrag(net, skb, user))
742 return NULL;
743 skb_clear_hash(skb);
746 return skb;
748 EXPORT_SYMBOL(ip_check_defrag);
750 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
752 struct rb_node *p = rb_first(root);
753 unsigned int sum = 0;
755 while (p) {
756 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
758 p = rb_next(p);
759 rb_erase(&skb->rbnode, root);
760 while (skb) {
761 struct sk_buff *next = FRAG_CB(skb)->next_frag;
763 sum += skb->truesize;
764 kfree_skb(skb);
765 skb = next;
768 return sum;
770 EXPORT_SYMBOL(inet_frag_rbtree_purge);
772 #ifdef CONFIG_SYSCTL
773 static int dist_min;
775 static struct ctl_table ip4_frags_ns_ctl_table[] = {
777 .procname = "ipfrag_high_thresh",
778 .data = &init_net.ipv4.frags.high_thresh,
779 .maxlen = sizeof(unsigned long),
780 .mode = 0644,
781 .proc_handler = proc_doulongvec_minmax,
782 .extra1 = &init_net.ipv4.frags.low_thresh
785 .procname = "ipfrag_low_thresh",
786 .data = &init_net.ipv4.frags.low_thresh,
787 .maxlen = sizeof(unsigned long),
788 .mode = 0644,
789 .proc_handler = proc_doulongvec_minmax,
790 .extra2 = &init_net.ipv4.frags.high_thresh
793 .procname = "ipfrag_time",
794 .data = &init_net.ipv4.frags.timeout,
795 .maxlen = sizeof(int),
796 .mode = 0644,
797 .proc_handler = proc_dointvec_jiffies,
800 .procname = "ipfrag_max_dist",
801 .data = &init_net.ipv4.frags.max_dist,
802 .maxlen = sizeof(int),
803 .mode = 0644,
804 .proc_handler = proc_dointvec_minmax,
805 .extra1 = &dist_min,
810 /* secret interval has been deprecated */
811 static int ip4_frags_secret_interval_unused;
812 static struct ctl_table ip4_frags_ctl_table[] = {
814 .procname = "ipfrag_secret_interval",
815 .data = &ip4_frags_secret_interval_unused,
816 .maxlen = sizeof(int),
817 .mode = 0644,
818 .proc_handler = proc_dointvec_jiffies,
823 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
825 struct ctl_table *table;
826 struct ctl_table_header *hdr;
828 table = ip4_frags_ns_ctl_table;
829 if (!net_eq(net, &init_net)) {
830 table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
831 if (!table)
832 goto err_alloc;
834 table[0].data = &net->ipv4.frags.high_thresh;
835 table[0].extra1 = &net->ipv4.frags.low_thresh;
836 table[1].data = &net->ipv4.frags.low_thresh;
837 table[1].extra2 = &net->ipv4.frags.high_thresh;
838 table[2].data = &net->ipv4.frags.timeout;
839 table[3].data = &net->ipv4.frags.max_dist;
842 hdr = register_net_sysctl(net, "net/ipv4", table);
843 if (!hdr)
844 goto err_reg;
846 net->ipv4.frags_hdr = hdr;
847 return 0;
849 err_reg:
850 if (!net_eq(net, &init_net))
851 kfree(table);
852 err_alloc:
853 return -ENOMEM;
856 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
858 struct ctl_table *table;
860 table = net->ipv4.frags_hdr->ctl_table_arg;
861 unregister_net_sysctl_table(net->ipv4.frags_hdr);
862 kfree(table);
865 static void __init ip4_frags_ctl_register(void)
867 register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
869 #else
870 static int ip4_frags_ns_ctl_register(struct net *net)
872 return 0;
875 static void ip4_frags_ns_ctl_unregister(struct net *net)
879 static void __init ip4_frags_ctl_register(void)
882 #endif
884 static int __net_init ipv4_frags_init_net(struct net *net)
886 int res;
888 /* Fragment cache limits.
890 * The fragment memory accounting code, (tries to) account for
891 * the real memory usage, by measuring both the size of frag
892 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
893 * and the SKB's truesize.
895 * A 64K fragment consumes 129736 bytes (44*2944)+200
896 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
898 * We will commit 4MB at one time. Should we cross that limit
899 * we will prune down to 3MB, making room for approx 8 big 64K
900 * fragments 8x128k.
902 net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
903 net->ipv4.frags.low_thresh = 3 * 1024 * 1024;
905 * Important NOTE! Fragment queue must be destroyed before MSL expires.
906 * RFC791 is wrong proposing to prolongate timer each fragment arrival
907 * by TTL.
909 net->ipv4.frags.timeout = IP_FRAG_TIME;
911 net->ipv4.frags.max_dist = 64;
912 net->ipv4.frags.f = &ip4_frags;
914 res = inet_frags_init_net(&net->ipv4.frags);
915 if (res < 0)
916 return res;
917 res = ip4_frags_ns_ctl_register(net);
918 if (res < 0)
919 inet_frags_exit_net(&net->ipv4.frags);
920 return res;
923 static void __net_exit ipv4_frags_exit_net(struct net *net)
925 ip4_frags_ns_ctl_unregister(net);
926 inet_frags_exit_net(&net->ipv4.frags);
929 static struct pernet_operations ip4_frags_ops = {
930 .init = ipv4_frags_init_net,
931 .exit = ipv4_frags_exit_net,
935 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
937 return jhash2(data,
938 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
941 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
943 const struct inet_frag_queue *fq = data;
945 return jhash2((const u32 *)&fq->key.v4,
946 sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
949 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
951 const struct frag_v4_compare_key *key = arg->key;
952 const struct inet_frag_queue *fq = ptr;
954 return !!memcmp(&fq->key, key, sizeof(*key));
957 static const struct rhashtable_params ip4_rhash_params = {
958 .head_offset = offsetof(struct inet_frag_queue, node),
959 .key_offset = offsetof(struct inet_frag_queue, key),
960 .key_len = sizeof(struct frag_v4_compare_key),
961 .hashfn = ip4_key_hashfn,
962 .obj_hashfn = ip4_obj_hashfn,
963 .obj_cmpfn = ip4_obj_cmpfn,
964 .automatic_shrinking = true,
967 void __init ipfrag_init(void)
969 ip4_frags.constructor = ip4_frag_init;
970 ip4_frags.destructor = ip4_frag_free;
971 ip4_frags.qsize = sizeof(struct ipq);
972 ip4_frags.frag_expire = ip_expire;
973 ip4_frags.frags_cache_name = ip_frag_cache_name;
974 ip4_frags.rhash_params = ip4_rhash_params;
975 if (inet_frags_init(&ip4_frags))
976 panic("IP: failed to allocate ip4_frags cache\n");
977 ip4_frags_ctl_register();
978 register_pernet_subsys(&ip4_frags_ops);