perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / net / ipv4 / tcp_output.c
blobd1676d8a6ed70fbe050709a16a650df35a1f4d87
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
25 * : AF independence
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
37 #define pr_fmt(fmt) "TCP: " fmt
39 #include <net/tcp.h>
41 #include <linux/compiler.h>
42 #include <linux/gfp.h>
43 #include <linux/module.h>
44 #include <linux/static_key.h>
46 #include <trace/events/tcp.h>
48 /* Refresh clocks of a TCP socket,
49 * ensuring monotically increasing values.
51 void tcp_mstamp_refresh(struct tcp_sock *tp)
53 u64 val = tcp_clock_ns();
55 if (val > tp->tcp_clock_cache)
56 tp->tcp_clock_cache = val;
58 val = div_u64(val, NSEC_PER_USEC);
59 if (val > tp->tcp_mstamp)
60 tp->tcp_mstamp = val;
63 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
64 int push_one, gfp_t gfp);
66 /* Account for new data that has been sent to the network. */
67 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
69 struct inet_connection_sock *icsk = inet_csk(sk);
70 struct tcp_sock *tp = tcp_sk(sk);
71 unsigned int prior_packets = tp->packets_out;
73 tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
75 __skb_unlink(skb, &sk->sk_write_queue);
76 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
78 tp->packets_out += tcp_skb_pcount(skb);
79 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
80 tcp_rearm_rto(sk);
82 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
83 tcp_skb_pcount(skb));
86 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
87 * window scaling factor due to loss of precision.
88 * If window has been shrunk, what should we make? It is not clear at all.
89 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
90 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
91 * invalid. OK, let's make this for now:
93 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
95 const struct tcp_sock *tp = tcp_sk(sk);
97 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
98 (tp->rx_opt.wscale_ok &&
99 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
100 return tp->snd_nxt;
101 else
102 return tcp_wnd_end(tp);
105 /* Calculate mss to advertise in SYN segment.
106 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
108 * 1. It is independent of path mtu.
109 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
110 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
111 * attached devices, because some buggy hosts are confused by
112 * large MSS.
113 * 4. We do not make 3, we advertise MSS, calculated from first
114 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
115 * This may be overridden via information stored in routing table.
116 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
117 * probably even Jumbo".
119 static __u16 tcp_advertise_mss(struct sock *sk)
121 struct tcp_sock *tp = tcp_sk(sk);
122 const struct dst_entry *dst = __sk_dst_get(sk);
123 int mss = tp->advmss;
125 if (dst) {
126 unsigned int metric = dst_metric_advmss(dst);
128 if (metric < mss) {
129 mss = metric;
130 tp->advmss = mss;
134 return (__u16)mss;
137 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
138 * This is the first part of cwnd validation mechanism.
140 void tcp_cwnd_restart(struct sock *sk, s32 delta)
142 struct tcp_sock *tp = tcp_sk(sk);
143 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
144 u32 cwnd = tp->snd_cwnd;
146 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
148 tp->snd_ssthresh = tcp_current_ssthresh(sk);
149 restart_cwnd = min(restart_cwnd, cwnd);
151 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
152 cwnd >>= 1;
153 tp->snd_cwnd = max(cwnd, restart_cwnd);
154 tp->snd_cwnd_stamp = tcp_jiffies32;
155 tp->snd_cwnd_used = 0;
158 /* Congestion state accounting after a packet has been sent. */
159 static void tcp_event_data_sent(struct tcp_sock *tp,
160 struct sock *sk)
162 struct inet_connection_sock *icsk = inet_csk(sk);
163 const u32 now = tcp_jiffies32;
165 if (tcp_packets_in_flight(tp) == 0)
166 tcp_ca_event(sk, CA_EVENT_TX_START);
168 tp->lsndtime = now;
170 /* If it is a reply for ato after last received
171 * packet, enter pingpong mode.
173 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
174 icsk->icsk_ack.pingpong = 1;
177 /* Account for an ACK we sent. */
178 static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts,
179 u32 rcv_nxt)
181 struct tcp_sock *tp = tcp_sk(sk);
183 if (unlikely(tp->compressed_ack > TCP_FASTRETRANS_THRESH)) {
184 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
185 tp->compressed_ack - TCP_FASTRETRANS_THRESH);
186 tp->compressed_ack = TCP_FASTRETRANS_THRESH;
187 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
188 __sock_put(sk);
191 if (unlikely(rcv_nxt != tp->rcv_nxt))
192 return; /* Special ACK sent by DCTCP to reflect ECN */
193 tcp_dec_quickack_mode(sk, pkts);
194 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
197 /* Determine a window scaling and initial window to offer.
198 * Based on the assumption that the given amount of space
199 * will be offered. Store the results in the tp structure.
200 * NOTE: for smooth operation initial space offering should
201 * be a multiple of mss if possible. We assume here that mss >= 1.
202 * This MUST be enforced by all callers.
204 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
205 __u32 *rcv_wnd, __u32 *window_clamp,
206 int wscale_ok, __u8 *rcv_wscale,
207 __u32 init_rcv_wnd)
209 unsigned int space = (__space < 0 ? 0 : __space);
211 /* If no clamp set the clamp to the max possible scaled window */
212 if (*window_clamp == 0)
213 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
214 space = min(*window_clamp, space);
216 /* Quantize space offering to a multiple of mss if possible. */
217 if (space > mss)
218 space = rounddown(space, mss);
220 /* NOTE: offering an initial window larger than 32767
221 * will break some buggy TCP stacks. If the admin tells us
222 * it is likely we could be speaking with such a buggy stack
223 * we will truncate our initial window offering to 32K-1
224 * unless the remote has sent us a window scaling option,
225 * which we interpret as a sign the remote TCP is not
226 * misinterpreting the window field as a signed quantity.
228 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
229 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
230 else
231 (*rcv_wnd) = min_t(u32, space, U16_MAX);
233 if (init_rcv_wnd)
234 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236 (*rcv_wscale) = 0;
237 if (wscale_ok) {
238 /* Set window scaling on max possible window */
239 space = max_t(u32, space, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
240 space = max_t(u32, space, sysctl_rmem_max);
241 space = min_t(u32, space, *window_clamp);
242 while (space > U16_MAX && (*rcv_wscale) < TCP_MAX_WSCALE) {
243 space >>= 1;
244 (*rcv_wscale)++;
247 /* Set the clamp no higher than max representable value */
248 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
250 EXPORT_SYMBOL(tcp_select_initial_window);
252 /* Chose a new window to advertise, update state in tcp_sock for the
253 * socket, and return result with RFC1323 scaling applied. The return
254 * value can be stuffed directly into th->window for an outgoing
255 * frame.
257 static u16 tcp_select_window(struct sock *sk)
259 struct tcp_sock *tp = tcp_sk(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win = tcp_receive_window(tp);
262 u32 new_win = __tcp_select_window(sk);
264 /* Never shrink the offered window */
265 if (new_win < cur_win) {
266 /* Danger Will Robinson!
267 * Don't update rcv_wup/rcv_wnd here or else
268 * we will not be able to advertise a zero
269 * window in time. --DaveM
271 * Relax Will Robinson.
273 if (new_win == 0)
274 NET_INC_STATS(sock_net(sk),
275 LINUX_MIB_TCPWANTZEROWINDOWADV);
276 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
278 tp->rcv_wnd = new_win;
279 tp->rcv_wup = tp->rcv_nxt;
281 /* Make sure we do not exceed the maximum possible
282 * scaled window.
284 if (!tp->rx_opt.rcv_wscale &&
285 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
286 new_win = min(new_win, MAX_TCP_WINDOW);
287 else
288 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
290 /* RFC1323 scaling applied */
291 new_win >>= tp->rx_opt.rcv_wscale;
293 /* If we advertise zero window, disable fast path. */
294 if (new_win == 0) {
295 tp->pred_flags = 0;
296 if (old_win)
297 NET_INC_STATS(sock_net(sk),
298 LINUX_MIB_TCPTOZEROWINDOWADV);
299 } else if (old_win == 0) {
300 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
303 return new_win;
306 /* Packet ECN state for a SYN-ACK */
307 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
309 const struct tcp_sock *tp = tcp_sk(sk);
311 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
312 if (!(tp->ecn_flags & TCP_ECN_OK))
313 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
314 else if (tcp_ca_needs_ecn(sk) ||
315 tcp_bpf_ca_needs_ecn(sk))
316 INET_ECN_xmit(sk);
319 /* Packet ECN state for a SYN. */
320 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
322 struct tcp_sock *tp = tcp_sk(sk);
323 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
324 bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
325 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
327 if (!use_ecn) {
328 const struct dst_entry *dst = __sk_dst_get(sk);
330 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
331 use_ecn = true;
334 tp->ecn_flags = 0;
336 if (use_ecn) {
337 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
338 tp->ecn_flags = TCP_ECN_OK;
339 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
340 INET_ECN_xmit(sk);
344 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
346 if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
347 /* tp->ecn_flags are cleared at a later point in time when
348 * SYN ACK is ultimatively being received.
350 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
353 static void
354 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
356 if (inet_rsk(req)->ecn_ok)
357 th->ece = 1;
360 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
361 * be sent.
363 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
364 struct tcphdr *th, int tcp_header_len)
366 struct tcp_sock *tp = tcp_sk(sk);
368 if (tp->ecn_flags & TCP_ECN_OK) {
369 /* Not-retransmitted data segment: set ECT and inject CWR. */
370 if (skb->len != tcp_header_len &&
371 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
372 INET_ECN_xmit(sk);
373 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
374 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
375 th->cwr = 1;
376 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
378 } else if (!tcp_ca_needs_ecn(sk)) {
379 /* ACK or retransmitted segment: clear ECT|CE */
380 INET_ECN_dontxmit(sk);
382 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
383 th->ece = 1;
387 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
388 * auto increment end seqno.
390 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
392 skb->ip_summed = CHECKSUM_PARTIAL;
394 TCP_SKB_CB(skb)->tcp_flags = flags;
395 TCP_SKB_CB(skb)->sacked = 0;
397 tcp_skb_pcount_set(skb, 1);
399 TCP_SKB_CB(skb)->seq = seq;
400 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
401 seq++;
402 TCP_SKB_CB(skb)->end_seq = seq;
405 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
407 return tp->snd_una != tp->snd_up;
410 #define OPTION_SACK_ADVERTISE (1 << 0)
411 #define OPTION_TS (1 << 1)
412 #define OPTION_MD5 (1 << 2)
413 #define OPTION_WSCALE (1 << 3)
414 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
415 #define OPTION_SMC (1 << 9)
417 static void smc_options_write(__be32 *ptr, u16 *options)
419 #if IS_ENABLED(CONFIG_SMC)
420 if (static_branch_unlikely(&tcp_have_smc)) {
421 if (unlikely(OPTION_SMC & *options)) {
422 *ptr++ = htonl((TCPOPT_NOP << 24) |
423 (TCPOPT_NOP << 16) |
424 (TCPOPT_EXP << 8) |
425 (TCPOLEN_EXP_SMC_BASE));
426 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
429 #endif
432 struct tcp_out_options {
433 u16 options; /* bit field of OPTION_* */
434 u16 mss; /* 0 to disable */
435 u8 ws; /* window scale, 0 to disable */
436 u8 num_sack_blocks; /* number of SACK blocks to include */
437 u8 hash_size; /* bytes in hash_location */
438 __u8 *hash_location; /* temporary pointer, overloaded */
439 __u32 tsval, tsecr; /* need to include OPTION_TS */
440 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
443 /* Write previously computed TCP options to the packet.
445 * Beware: Something in the Internet is very sensitive to the ordering of
446 * TCP options, we learned this through the hard way, so be careful here.
447 * Luckily we can at least blame others for their non-compliance but from
448 * inter-operability perspective it seems that we're somewhat stuck with
449 * the ordering which we have been using if we want to keep working with
450 * those broken things (not that it currently hurts anybody as there isn't
451 * particular reason why the ordering would need to be changed).
453 * At least SACK_PERM as the first option is known to lead to a disaster
454 * (but it may well be that other scenarios fail similarly).
456 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
457 struct tcp_out_options *opts)
459 u16 options = opts->options; /* mungable copy */
461 if (unlikely(OPTION_MD5 & options)) {
462 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
463 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
464 /* overload cookie hash location */
465 opts->hash_location = (__u8 *)ptr;
466 ptr += 4;
469 if (unlikely(opts->mss)) {
470 *ptr++ = htonl((TCPOPT_MSS << 24) |
471 (TCPOLEN_MSS << 16) |
472 opts->mss);
475 if (likely(OPTION_TS & options)) {
476 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
477 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
478 (TCPOLEN_SACK_PERM << 16) |
479 (TCPOPT_TIMESTAMP << 8) |
480 TCPOLEN_TIMESTAMP);
481 options &= ~OPTION_SACK_ADVERTISE;
482 } else {
483 *ptr++ = htonl((TCPOPT_NOP << 24) |
484 (TCPOPT_NOP << 16) |
485 (TCPOPT_TIMESTAMP << 8) |
486 TCPOLEN_TIMESTAMP);
488 *ptr++ = htonl(opts->tsval);
489 *ptr++ = htonl(opts->tsecr);
492 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
493 *ptr++ = htonl((TCPOPT_NOP << 24) |
494 (TCPOPT_NOP << 16) |
495 (TCPOPT_SACK_PERM << 8) |
496 TCPOLEN_SACK_PERM);
499 if (unlikely(OPTION_WSCALE & options)) {
500 *ptr++ = htonl((TCPOPT_NOP << 24) |
501 (TCPOPT_WINDOW << 16) |
502 (TCPOLEN_WINDOW << 8) |
503 opts->ws);
506 if (unlikely(opts->num_sack_blocks)) {
507 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
508 tp->duplicate_sack : tp->selective_acks;
509 int this_sack;
511 *ptr++ = htonl((TCPOPT_NOP << 24) |
512 (TCPOPT_NOP << 16) |
513 (TCPOPT_SACK << 8) |
514 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
515 TCPOLEN_SACK_PERBLOCK)));
517 for (this_sack = 0; this_sack < opts->num_sack_blocks;
518 ++this_sack) {
519 *ptr++ = htonl(sp[this_sack].start_seq);
520 *ptr++ = htonl(sp[this_sack].end_seq);
523 tp->rx_opt.dsack = 0;
526 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
527 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
528 u8 *p = (u8 *)ptr;
529 u32 len; /* Fast Open option length */
531 if (foc->exp) {
532 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
533 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
534 TCPOPT_FASTOPEN_MAGIC);
535 p += TCPOLEN_EXP_FASTOPEN_BASE;
536 } else {
537 len = TCPOLEN_FASTOPEN_BASE + foc->len;
538 *p++ = TCPOPT_FASTOPEN;
539 *p++ = len;
542 memcpy(p, foc->val, foc->len);
543 if ((len & 3) == 2) {
544 p[foc->len] = TCPOPT_NOP;
545 p[foc->len + 1] = TCPOPT_NOP;
547 ptr += (len + 3) >> 2;
550 smc_options_write(ptr, &options);
553 static void smc_set_option(const struct tcp_sock *tp,
554 struct tcp_out_options *opts,
555 unsigned int *remaining)
557 #if IS_ENABLED(CONFIG_SMC)
558 if (static_branch_unlikely(&tcp_have_smc)) {
559 if (tp->syn_smc) {
560 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
561 opts->options |= OPTION_SMC;
562 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
566 #endif
569 static void smc_set_option_cond(const struct tcp_sock *tp,
570 const struct inet_request_sock *ireq,
571 struct tcp_out_options *opts,
572 unsigned int *remaining)
574 #if IS_ENABLED(CONFIG_SMC)
575 if (static_branch_unlikely(&tcp_have_smc)) {
576 if (tp->syn_smc && ireq->smc_ok) {
577 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
578 opts->options |= OPTION_SMC;
579 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
583 #endif
586 /* Compute TCP options for SYN packets. This is not the final
587 * network wire format yet.
589 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
590 struct tcp_out_options *opts,
591 struct tcp_md5sig_key **md5)
593 struct tcp_sock *tp = tcp_sk(sk);
594 unsigned int remaining = MAX_TCP_OPTION_SPACE;
595 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
597 *md5 = NULL;
598 #ifdef CONFIG_TCP_MD5SIG
599 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
600 *md5 = tp->af_specific->md5_lookup(sk, sk);
601 if (*md5) {
602 opts->options |= OPTION_MD5;
603 remaining -= TCPOLEN_MD5SIG_ALIGNED;
606 #endif
608 /* We always get an MSS option. The option bytes which will be seen in
609 * normal data packets should timestamps be used, must be in the MSS
610 * advertised. But we subtract them from tp->mss_cache so that
611 * calculations in tcp_sendmsg are simpler etc. So account for this
612 * fact here if necessary. If we don't do this correctly, as a
613 * receiver we won't recognize data packets as being full sized when we
614 * should, and thus we won't abide by the delayed ACK rules correctly.
615 * SACKs don't matter, we never delay an ACK when we have any of those
616 * going out. */
617 opts->mss = tcp_advertise_mss(sk);
618 remaining -= TCPOLEN_MSS_ALIGNED;
620 if (likely(sock_net(sk)->ipv4.sysctl_tcp_timestamps && !*md5)) {
621 opts->options |= OPTION_TS;
622 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
623 opts->tsecr = tp->rx_opt.ts_recent;
624 remaining -= TCPOLEN_TSTAMP_ALIGNED;
626 if (likely(sock_net(sk)->ipv4.sysctl_tcp_window_scaling)) {
627 opts->ws = tp->rx_opt.rcv_wscale;
628 opts->options |= OPTION_WSCALE;
629 remaining -= TCPOLEN_WSCALE_ALIGNED;
631 if (likely(sock_net(sk)->ipv4.sysctl_tcp_sack)) {
632 opts->options |= OPTION_SACK_ADVERTISE;
633 if (unlikely(!(OPTION_TS & opts->options)))
634 remaining -= TCPOLEN_SACKPERM_ALIGNED;
637 if (fastopen && fastopen->cookie.len >= 0) {
638 u32 need = fastopen->cookie.len;
640 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
641 TCPOLEN_FASTOPEN_BASE;
642 need = (need + 3) & ~3U; /* Align to 32 bits */
643 if (remaining >= need) {
644 opts->options |= OPTION_FAST_OPEN_COOKIE;
645 opts->fastopen_cookie = &fastopen->cookie;
646 remaining -= need;
647 tp->syn_fastopen = 1;
648 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
652 smc_set_option(tp, opts, &remaining);
654 return MAX_TCP_OPTION_SPACE - remaining;
657 /* Set up TCP options for SYN-ACKs. */
658 static unsigned int tcp_synack_options(const struct sock *sk,
659 struct request_sock *req,
660 unsigned int mss, struct sk_buff *skb,
661 struct tcp_out_options *opts,
662 const struct tcp_md5sig_key *md5,
663 struct tcp_fastopen_cookie *foc)
665 struct inet_request_sock *ireq = inet_rsk(req);
666 unsigned int remaining = MAX_TCP_OPTION_SPACE;
668 #ifdef CONFIG_TCP_MD5SIG
669 if (md5) {
670 opts->options |= OPTION_MD5;
671 remaining -= TCPOLEN_MD5SIG_ALIGNED;
673 /* We can't fit any SACK blocks in a packet with MD5 + TS
674 * options. There was discussion about disabling SACK
675 * rather than TS in order to fit in better with old,
676 * buggy kernels, but that was deemed to be unnecessary.
678 ireq->tstamp_ok &= !ireq->sack_ok;
680 #endif
682 /* We always send an MSS option. */
683 opts->mss = mss;
684 remaining -= TCPOLEN_MSS_ALIGNED;
686 if (likely(ireq->wscale_ok)) {
687 opts->ws = ireq->rcv_wscale;
688 opts->options |= OPTION_WSCALE;
689 remaining -= TCPOLEN_WSCALE_ALIGNED;
691 if (likely(ireq->tstamp_ok)) {
692 opts->options |= OPTION_TS;
693 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
694 opts->tsecr = req->ts_recent;
695 remaining -= TCPOLEN_TSTAMP_ALIGNED;
697 if (likely(ireq->sack_ok)) {
698 opts->options |= OPTION_SACK_ADVERTISE;
699 if (unlikely(!ireq->tstamp_ok))
700 remaining -= TCPOLEN_SACKPERM_ALIGNED;
702 if (foc != NULL && foc->len >= 0) {
703 u32 need = foc->len;
705 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
706 TCPOLEN_FASTOPEN_BASE;
707 need = (need + 3) & ~3U; /* Align to 32 bits */
708 if (remaining >= need) {
709 opts->options |= OPTION_FAST_OPEN_COOKIE;
710 opts->fastopen_cookie = foc;
711 remaining -= need;
715 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
717 return MAX_TCP_OPTION_SPACE - remaining;
720 /* Compute TCP options for ESTABLISHED sockets. This is not the
721 * final wire format yet.
723 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
724 struct tcp_out_options *opts,
725 struct tcp_md5sig_key **md5)
727 struct tcp_sock *tp = tcp_sk(sk);
728 unsigned int size = 0;
729 unsigned int eff_sacks;
731 opts->options = 0;
733 *md5 = NULL;
734 #ifdef CONFIG_TCP_MD5SIG
735 if (unlikely(rcu_access_pointer(tp->md5sig_info))) {
736 *md5 = tp->af_specific->md5_lookup(sk, sk);
737 if (*md5) {
738 opts->options |= OPTION_MD5;
739 size += TCPOLEN_MD5SIG_ALIGNED;
742 #endif
744 if (likely(tp->rx_opt.tstamp_ok)) {
745 opts->options |= OPTION_TS;
746 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
747 opts->tsecr = tp->rx_opt.ts_recent;
748 size += TCPOLEN_TSTAMP_ALIGNED;
751 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
752 if (unlikely(eff_sacks)) {
753 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
754 opts->num_sack_blocks =
755 min_t(unsigned int, eff_sacks,
756 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
757 TCPOLEN_SACK_PERBLOCK);
758 size += TCPOLEN_SACK_BASE_ALIGNED +
759 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
762 return size;
766 /* TCP SMALL QUEUES (TSQ)
768 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
769 * to reduce RTT and bufferbloat.
770 * We do this using a special skb destructor (tcp_wfree).
772 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
773 * needs to be reallocated in a driver.
774 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
776 * Since transmit from skb destructor is forbidden, we use a tasklet
777 * to process all sockets that eventually need to send more skbs.
778 * We use one tasklet per cpu, with its own queue of sockets.
780 struct tsq_tasklet {
781 struct tasklet_struct tasklet;
782 struct list_head head; /* queue of tcp sockets */
784 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
786 static void tcp_tsq_write(struct sock *sk)
788 if ((1 << sk->sk_state) &
789 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
790 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
791 struct tcp_sock *tp = tcp_sk(sk);
793 if (tp->lost_out > tp->retrans_out &&
794 tp->snd_cwnd > tcp_packets_in_flight(tp)) {
795 tcp_mstamp_refresh(tp);
796 tcp_xmit_retransmit_queue(sk);
799 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
800 0, GFP_ATOMIC);
804 static void tcp_tsq_handler(struct sock *sk)
806 bh_lock_sock(sk);
807 if (!sock_owned_by_user(sk))
808 tcp_tsq_write(sk);
809 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
810 sock_hold(sk);
811 bh_unlock_sock(sk);
814 * One tasklet per cpu tries to send more skbs.
815 * We run in tasklet context but need to disable irqs when
816 * transferring tsq->head because tcp_wfree() might
817 * interrupt us (non NAPI drivers)
819 static void tcp_tasklet_func(unsigned long data)
821 struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
822 LIST_HEAD(list);
823 unsigned long flags;
824 struct list_head *q, *n;
825 struct tcp_sock *tp;
826 struct sock *sk;
828 local_irq_save(flags);
829 list_splice_init(&tsq->head, &list);
830 local_irq_restore(flags);
832 list_for_each_safe(q, n, &list) {
833 tp = list_entry(q, struct tcp_sock, tsq_node);
834 list_del(&tp->tsq_node);
836 sk = (struct sock *)tp;
837 smp_mb__before_atomic();
838 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
840 tcp_tsq_handler(sk);
841 sk_free(sk);
845 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
846 TCPF_WRITE_TIMER_DEFERRED | \
847 TCPF_DELACK_TIMER_DEFERRED | \
848 TCPF_MTU_REDUCED_DEFERRED)
850 * tcp_release_cb - tcp release_sock() callback
851 * @sk: socket
853 * called from release_sock() to perform protocol dependent
854 * actions before socket release.
856 void tcp_release_cb(struct sock *sk)
858 unsigned long flags, nflags;
860 /* perform an atomic operation only if at least one flag is set */
861 do {
862 flags = sk->sk_tsq_flags;
863 if (!(flags & TCP_DEFERRED_ALL))
864 return;
865 nflags = flags & ~TCP_DEFERRED_ALL;
866 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
868 if (flags & TCPF_TSQ_DEFERRED) {
869 tcp_tsq_write(sk);
870 __sock_put(sk);
872 /* Here begins the tricky part :
873 * We are called from release_sock() with :
874 * 1) BH disabled
875 * 2) sk_lock.slock spinlock held
876 * 3) socket owned by us (sk->sk_lock.owned == 1)
878 * But following code is meant to be called from BH handlers,
879 * so we should keep BH disabled, but early release socket ownership
881 sock_release_ownership(sk);
883 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
884 tcp_write_timer_handler(sk);
885 __sock_put(sk);
887 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
888 tcp_delack_timer_handler(sk);
889 __sock_put(sk);
891 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
892 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
893 __sock_put(sk);
896 EXPORT_SYMBOL(tcp_release_cb);
898 void __init tcp_tasklet_init(void)
900 int i;
902 for_each_possible_cpu(i) {
903 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
905 INIT_LIST_HEAD(&tsq->head);
906 tasklet_init(&tsq->tasklet,
907 tcp_tasklet_func,
908 (unsigned long)tsq);
913 * Write buffer destructor automatically called from kfree_skb.
914 * We can't xmit new skbs from this context, as we might already
915 * hold qdisc lock.
917 void tcp_wfree(struct sk_buff *skb)
919 struct sock *sk = skb->sk;
920 struct tcp_sock *tp = tcp_sk(sk);
921 unsigned long flags, nval, oval;
923 /* Keep one reference on sk_wmem_alloc.
924 * Will be released by sk_free() from here or tcp_tasklet_func()
926 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
928 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
929 * Wait until our queues (qdisc + devices) are drained.
930 * This gives :
931 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
932 * - chance for incoming ACK (processed by another cpu maybe)
933 * to migrate this flow (skb->ooo_okay will be eventually set)
935 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
936 goto out;
938 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
939 struct tsq_tasklet *tsq;
940 bool empty;
942 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
943 goto out;
945 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
946 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
947 if (nval != oval)
948 continue;
950 /* queue this socket to tasklet queue */
951 local_irq_save(flags);
952 tsq = this_cpu_ptr(&tsq_tasklet);
953 empty = list_empty(&tsq->head);
954 list_add(&tp->tsq_node, &tsq->head);
955 if (empty)
956 tasklet_schedule(&tsq->tasklet);
957 local_irq_restore(flags);
958 return;
960 out:
961 sk_free(sk);
964 /* Note: Called under soft irq.
965 * We can call TCP stack right away, unless socket is owned by user.
967 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
969 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
970 struct sock *sk = (struct sock *)tp;
972 tcp_tsq_handler(sk);
973 sock_put(sk);
975 return HRTIMER_NORESTART;
978 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
979 u64 prior_wstamp)
981 struct tcp_sock *tp = tcp_sk(sk);
983 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
984 if (sk->sk_pacing_status != SK_PACING_NONE) {
985 unsigned long rate = sk->sk_pacing_rate;
987 /* Original sch_fq does not pace first 10 MSS
988 * Note that tp->data_segs_out overflows after 2^32 packets,
989 * this is a minor annoyance.
991 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
992 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
993 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
995 /* take into account OS jitter */
996 len_ns -= min_t(u64, len_ns / 2, credit);
997 tp->tcp_wstamp_ns += len_ns;
1000 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1003 /* This routine actually transmits TCP packets queued in by
1004 * tcp_do_sendmsg(). This is used by both the initial
1005 * transmission and possible later retransmissions.
1006 * All SKB's seen here are completely headerless. It is our
1007 * job to build the TCP header, and pass the packet down to
1008 * IP so it can do the same plus pass the packet off to the
1009 * device.
1011 * We are working here with either a clone of the original
1012 * SKB, or a fresh unique copy made by the retransmit engine.
1014 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1015 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1017 const struct inet_connection_sock *icsk = inet_csk(sk);
1018 struct inet_sock *inet;
1019 struct tcp_sock *tp;
1020 struct tcp_skb_cb *tcb;
1021 struct tcp_out_options opts;
1022 unsigned int tcp_options_size, tcp_header_size;
1023 struct sk_buff *oskb = NULL;
1024 struct tcp_md5sig_key *md5;
1025 struct tcphdr *th;
1026 u64 prior_wstamp;
1027 int err;
1029 BUG_ON(!skb || !tcp_skb_pcount(skb));
1030 tp = tcp_sk(sk);
1032 if (clone_it) {
1033 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1034 - tp->snd_una;
1035 oskb = skb;
1037 tcp_skb_tsorted_save(oskb) {
1038 if (unlikely(skb_cloned(oskb)))
1039 skb = pskb_copy(oskb, gfp_mask);
1040 else
1041 skb = skb_clone(oskb, gfp_mask);
1042 } tcp_skb_tsorted_restore(oskb);
1044 if (unlikely(!skb))
1045 return -ENOBUFS;
1048 prior_wstamp = tp->tcp_wstamp_ns;
1049 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1051 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1053 inet = inet_sk(sk);
1054 tcb = TCP_SKB_CB(skb);
1055 memset(&opts, 0, sizeof(opts));
1057 if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
1058 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1059 else
1060 tcp_options_size = tcp_established_options(sk, skb, &opts,
1061 &md5);
1062 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1064 /* if no packet is in qdisc/device queue, then allow XPS to select
1065 * another queue. We can be called from tcp_tsq_handler()
1066 * which holds one reference to sk.
1068 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1069 * One way to get this would be to set skb->truesize = 2 on them.
1071 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1073 /* If we had to use memory reserve to allocate this skb,
1074 * this might cause drops if packet is looped back :
1075 * Other socket might not have SOCK_MEMALLOC.
1076 * Packets not looped back do not care about pfmemalloc.
1078 skb->pfmemalloc = 0;
1080 skb_push(skb, tcp_header_size);
1081 skb_reset_transport_header(skb);
1083 skb_orphan(skb);
1084 skb->sk = sk;
1085 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1086 skb_set_hash_from_sk(skb, sk);
1087 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1089 skb_set_dst_pending_confirm(skb, sk->sk_dst_pending_confirm);
1091 /* Build TCP header and checksum it. */
1092 th = (struct tcphdr *)skb->data;
1093 th->source = inet->inet_sport;
1094 th->dest = inet->inet_dport;
1095 th->seq = htonl(tcb->seq);
1096 th->ack_seq = htonl(rcv_nxt);
1097 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1098 tcb->tcp_flags);
1100 th->check = 0;
1101 th->urg_ptr = 0;
1103 /* The urg_mode check is necessary during a below snd_una win probe */
1104 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1105 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1106 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1107 th->urg = 1;
1108 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1109 th->urg_ptr = htons(0xFFFF);
1110 th->urg = 1;
1114 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1115 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1116 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1117 th->window = htons(tcp_select_window(sk));
1118 tcp_ecn_send(sk, skb, th, tcp_header_size);
1119 } else {
1120 /* RFC1323: The window in SYN & SYN/ACK segments
1121 * is never scaled.
1123 th->window = htons(min(tp->rcv_wnd, 65535U));
1125 #ifdef CONFIG_TCP_MD5SIG
1126 /* Calculate the MD5 hash, as we have all we need now */
1127 if (md5) {
1128 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1129 tp->af_specific->calc_md5_hash(opts.hash_location,
1130 md5, sk, skb);
1132 #endif
1134 icsk->icsk_af_ops->send_check(sk, skb);
1136 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1137 tcp_event_ack_sent(sk, tcp_skb_pcount(skb), rcv_nxt);
1139 if (skb->len != tcp_header_size) {
1140 tcp_event_data_sent(tp, sk);
1141 tp->data_segs_out += tcp_skb_pcount(skb);
1142 tp->bytes_sent += skb->len - tcp_header_size;
1145 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1146 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1147 tcp_skb_pcount(skb));
1149 tp->segs_out += tcp_skb_pcount(skb);
1150 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1151 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1152 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1154 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1156 /* Cleanup our debris for IP stacks */
1157 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1158 sizeof(struct inet6_skb_parm)));
1160 err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1162 if (unlikely(err > 0)) {
1163 tcp_enter_cwr(sk);
1164 err = net_xmit_eval(err);
1166 if (!err && oskb) {
1167 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1168 tcp_rate_skb_sent(sk, oskb);
1170 return err;
1173 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1174 gfp_t gfp_mask)
1176 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1177 tcp_sk(sk)->rcv_nxt);
1180 /* This routine just queues the buffer for sending.
1182 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1183 * otherwise socket can stall.
1185 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1187 struct tcp_sock *tp = tcp_sk(sk);
1189 /* Advance write_seq and place onto the write_queue. */
1190 tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1191 __skb_header_release(skb);
1192 tcp_add_write_queue_tail(sk, skb);
1193 sk->sk_wmem_queued += skb->truesize;
1194 sk_mem_charge(sk, skb->truesize);
1197 /* Initialize TSO segments for a packet. */
1198 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1200 if (skb->len <= mss_now) {
1201 /* Avoid the costly divide in the normal
1202 * non-TSO case.
1204 tcp_skb_pcount_set(skb, 1);
1205 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1206 } else {
1207 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1208 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1212 /* Pcount in the middle of the write queue got changed, we need to do various
1213 * tweaks to fix counters
1215 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1217 struct tcp_sock *tp = tcp_sk(sk);
1219 tp->packets_out -= decr;
1221 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1222 tp->sacked_out -= decr;
1223 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1224 tp->retrans_out -= decr;
1225 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1226 tp->lost_out -= decr;
1228 /* Reno case is special. Sigh... */
1229 if (tcp_is_reno(tp) && decr > 0)
1230 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1232 if (tp->lost_skb_hint &&
1233 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1234 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1235 tp->lost_cnt_hint -= decr;
1237 tcp_verify_left_out(tp);
1240 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1242 return TCP_SKB_CB(skb)->txstamp_ack ||
1243 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1246 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1248 struct skb_shared_info *shinfo = skb_shinfo(skb);
1250 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1251 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1252 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1253 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1255 shinfo->tx_flags &= ~tsflags;
1256 shinfo2->tx_flags |= tsflags;
1257 swap(shinfo->tskey, shinfo2->tskey);
1258 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1259 TCP_SKB_CB(skb)->txstamp_ack = 0;
1263 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1265 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1266 TCP_SKB_CB(skb)->eor = 0;
1269 /* Insert buff after skb on the write or rtx queue of sk. */
1270 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1271 struct sk_buff *buff,
1272 struct sock *sk,
1273 enum tcp_queue tcp_queue)
1275 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1276 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1277 else
1278 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1281 /* Function to create two new TCP segments. Shrinks the given segment
1282 * to the specified size and appends a new segment with the rest of the
1283 * packet to the list. This won't be called frequently, I hope.
1284 * Remember, these are still headerless SKBs at this point.
1286 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1287 struct sk_buff *skb, u32 len,
1288 unsigned int mss_now, gfp_t gfp)
1290 struct tcp_sock *tp = tcp_sk(sk);
1291 struct sk_buff *buff;
1292 int nsize, old_factor;
1293 int nlen;
1294 u8 flags;
1296 if (WARN_ON(len > skb->len))
1297 return -EINVAL;
1299 nsize = skb_headlen(skb) - len;
1300 if (nsize < 0)
1301 nsize = 0;
1303 if (skb_unclone(skb, gfp))
1304 return -ENOMEM;
1306 /* Get a new skb... force flag on. */
1307 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1308 if (!buff)
1309 return -ENOMEM; /* We'll just try again later. */
1311 sk->sk_wmem_queued += buff->truesize;
1312 sk_mem_charge(sk, buff->truesize);
1313 nlen = skb->len - len - nsize;
1314 buff->truesize += nlen;
1315 skb->truesize -= nlen;
1317 /* Correct the sequence numbers. */
1318 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1319 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1320 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1322 /* PSH and FIN should only be set in the second packet. */
1323 flags = TCP_SKB_CB(skb)->tcp_flags;
1324 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1325 TCP_SKB_CB(buff)->tcp_flags = flags;
1326 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1327 tcp_skb_fragment_eor(skb, buff);
1329 skb_split(skb, buff, len);
1331 buff->ip_summed = CHECKSUM_PARTIAL;
1333 buff->tstamp = skb->tstamp;
1334 tcp_fragment_tstamp(skb, buff);
1336 old_factor = tcp_skb_pcount(skb);
1338 /* Fix up tso_factor for both original and new SKB. */
1339 tcp_set_skb_tso_segs(skb, mss_now);
1340 tcp_set_skb_tso_segs(buff, mss_now);
1342 /* Update delivered info for the new segment */
1343 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1345 /* If this packet has been sent out already, we must
1346 * adjust the various packet counters.
1348 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1349 int diff = old_factor - tcp_skb_pcount(skb) -
1350 tcp_skb_pcount(buff);
1352 if (diff)
1353 tcp_adjust_pcount(sk, skb, diff);
1356 /* Link BUFF into the send queue. */
1357 __skb_header_release(buff);
1358 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1359 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1360 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1362 return 0;
1365 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1366 * data is not copied, but immediately discarded.
1368 static int __pskb_trim_head(struct sk_buff *skb, int len)
1370 struct skb_shared_info *shinfo;
1371 int i, k, eat;
1373 eat = min_t(int, len, skb_headlen(skb));
1374 if (eat) {
1375 __skb_pull(skb, eat);
1376 len -= eat;
1377 if (!len)
1378 return 0;
1380 eat = len;
1381 k = 0;
1382 shinfo = skb_shinfo(skb);
1383 for (i = 0; i < shinfo->nr_frags; i++) {
1384 int size = skb_frag_size(&shinfo->frags[i]);
1386 if (size <= eat) {
1387 skb_frag_unref(skb, i);
1388 eat -= size;
1389 } else {
1390 shinfo->frags[k] = shinfo->frags[i];
1391 if (eat) {
1392 shinfo->frags[k].page_offset += eat;
1393 skb_frag_size_sub(&shinfo->frags[k], eat);
1394 eat = 0;
1396 k++;
1399 shinfo->nr_frags = k;
1401 skb->data_len -= len;
1402 skb->len = skb->data_len;
1403 return len;
1406 /* Remove acked data from a packet in the transmit queue. */
1407 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1409 u32 delta_truesize;
1411 if (skb_unclone(skb, GFP_ATOMIC))
1412 return -ENOMEM;
1414 delta_truesize = __pskb_trim_head(skb, len);
1416 TCP_SKB_CB(skb)->seq += len;
1417 skb->ip_summed = CHECKSUM_PARTIAL;
1419 if (delta_truesize) {
1420 skb->truesize -= delta_truesize;
1421 sk->sk_wmem_queued -= delta_truesize;
1422 sk_mem_uncharge(sk, delta_truesize);
1423 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1426 /* Any change of skb->len requires recalculation of tso factor. */
1427 if (tcp_skb_pcount(skb) > 1)
1428 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1430 return 0;
1433 /* Calculate MSS not accounting any TCP options. */
1434 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1436 const struct tcp_sock *tp = tcp_sk(sk);
1437 const struct inet_connection_sock *icsk = inet_csk(sk);
1438 int mss_now;
1440 /* Calculate base mss without TCP options:
1441 It is MMS_S - sizeof(tcphdr) of rfc1122
1443 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1445 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1446 if (icsk->icsk_af_ops->net_frag_header_len) {
1447 const struct dst_entry *dst = __sk_dst_get(sk);
1449 if (dst && dst_allfrag(dst))
1450 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1453 /* Clamp it (mss_clamp does not include tcp options) */
1454 if (mss_now > tp->rx_opt.mss_clamp)
1455 mss_now = tp->rx_opt.mss_clamp;
1457 /* Now subtract optional transport overhead */
1458 mss_now -= icsk->icsk_ext_hdr_len;
1460 /* Then reserve room for full set of TCP options and 8 bytes of data */
1461 if (mss_now < 48)
1462 mss_now = 48;
1463 return mss_now;
1466 /* Calculate MSS. Not accounting for SACKs here. */
1467 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1469 /* Subtract TCP options size, not including SACKs */
1470 return __tcp_mtu_to_mss(sk, pmtu) -
1471 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1474 /* Inverse of above */
1475 int tcp_mss_to_mtu(struct sock *sk, int mss)
1477 const struct tcp_sock *tp = tcp_sk(sk);
1478 const struct inet_connection_sock *icsk = inet_csk(sk);
1479 int mtu;
1481 mtu = mss +
1482 tp->tcp_header_len +
1483 icsk->icsk_ext_hdr_len +
1484 icsk->icsk_af_ops->net_header_len;
1486 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1487 if (icsk->icsk_af_ops->net_frag_header_len) {
1488 const struct dst_entry *dst = __sk_dst_get(sk);
1490 if (dst && dst_allfrag(dst))
1491 mtu += icsk->icsk_af_ops->net_frag_header_len;
1493 return mtu;
1495 EXPORT_SYMBOL(tcp_mss_to_mtu);
1497 /* MTU probing init per socket */
1498 void tcp_mtup_init(struct sock *sk)
1500 struct tcp_sock *tp = tcp_sk(sk);
1501 struct inet_connection_sock *icsk = inet_csk(sk);
1502 struct net *net = sock_net(sk);
1504 icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1505 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1506 icsk->icsk_af_ops->net_header_len;
1507 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1508 icsk->icsk_mtup.probe_size = 0;
1509 if (icsk->icsk_mtup.enabled)
1510 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1512 EXPORT_SYMBOL(tcp_mtup_init);
1514 /* This function synchronize snd mss to current pmtu/exthdr set.
1516 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1517 for TCP options, but includes only bare TCP header.
1519 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1520 It is minimum of user_mss and mss received with SYN.
1521 It also does not include TCP options.
1523 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1525 tp->mss_cache is current effective sending mss, including
1526 all tcp options except for SACKs. It is evaluated,
1527 taking into account current pmtu, but never exceeds
1528 tp->rx_opt.mss_clamp.
1530 NOTE1. rfc1122 clearly states that advertised MSS
1531 DOES NOT include either tcp or ip options.
1533 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1534 are READ ONLY outside this function. --ANK (980731)
1536 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1538 struct tcp_sock *tp = tcp_sk(sk);
1539 struct inet_connection_sock *icsk = inet_csk(sk);
1540 int mss_now;
1542 if (icsk->icsk_mtup.search_high > pmtu)
1543 icsk->icsk_mtup.search_high = pmtu;
1545 mss_now = tcp_mtu_to_mss(sk, pmtu);
1546 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1548 /* And store cached results */
1549 icsk->icsk_pmtu_cookie = pmtu;
1550 if (icsk->icsk_mtup.enabled)
1551 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1552 tp->mss_cache = mss_now;
1554 return mss_now;
1556 EXPORT_SYMBOL(tcp_sync_mss);
1558 /* Compute the current effective MSS, taking SACKs and IP options,
1559 * and even PMTU discovery events into account.
1561 unsigned int tcp_current_mss(struct sock *sk)
1563 const struct tcp_sock *tp = tcp_sk(sk);
1564 const struct dst_entry *dst = __sk_dst_get(sk);
1565 u32 mss_now;
1566 unsigned int header_len;
1567 struct tcp_out_options opts;
1568 struct tcp_md5sig_key *md5;
1570 mss_now = tp->mss_cache;
1572 if (dst) {
1573 u32 mtu = dst_mtu(dst);
1574 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1575 mss_now = tcp_sync_mss(sk, mtu);
1578 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1579 sizeof(struct tcphdr);
1580 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1581 * some common options. If this is an odd packet (because we have SACK
1582 * blocks etc) then our calculated header_len will be different, and
1583 * we have to adjust mss_now correspondingly */
1584 if (header_len != tp->tcp_header_len) {
1585 int delta = (int) header_len - tp->tcp_header_len;
1586 mss_now -= delta;
1589 return mss_now;
1592 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1593 * As additional protections, we do not touch cwnd in retransmission phases,
1594 * and if application hit its sndbuf limit recently.
1596 static void tcp_cwnd_application_limited(struct sock *sk)
1598 struct tcp_sock *tp = tcp_sk(sk);
1600 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1601 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1602 /* Limited by application or receiver window. */
1603 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1604 u32 win_used = max(tp->snd_cwnd_used, init_win);
1605 if (win_used < tp->snd_cwnd) {
1606 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1607 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1609 tp->snd_cwnd_used = 0;
1611 tp->snd_cwnd_stamp = tcp_jiffies32;
1614 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1616 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1617 struct tcp_sock *tp = tcp_sk(sk);
1619 /* Track the maximum number of outstanding packets in each
1620 * window, and remember whether we were cwnd-limited then.
1622 if (!before(tp->snd_una, tp->max_packets_seq) ||
1623 tp->packets_out > tp->max_packets_out) {
1624 tp->max_packets_out = tp->packets_out;
1625 tp->max_packets_seq = tp->snd_nxt;
1626 tp->is_cwnd_limited = is_cwnd_limited;
1629 if (tcp_is_cwnd_limited(sk)) {
1630 /* Network is feed fully. */
1631 tp->snd_cwnd_used = 0;
1632 tp->snd_cwnd_stamp = tcp_jiffies32;
1633 } else {
1634 /* Network starves. */
1635 if (tp->packets_out > tp->snd_cwnd_used)
1636 tp->snd_cwnd_used = tp->packets_out;
1638 if (sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle &&
1639 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1640 !ca_ops->cong_control)
1641 tcp_cwnd_application_limited(sk);
1643 /* The following conditions together indicate the starvation
1644 * is caused by insufficient sender buffer:
1645 * 1) just sent some data (see tcp_write_xmit)
1646 * 2) not cwnd limited (this else condition)
1647 * 3) no more data to send (tcp_write_queue_empty())
1648 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1650 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1651 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1652 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1653 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1657 /* Minshall's variant of the Nagle send check. */
1658 static bool tcp_minshall_check(const struct tcp_sock *tp)
1660 return after(tp->snd_sml, tp->snd_una) &&
1661 !after(tp->snd_sml, tp->snd_nxt);
1664 /* Update snd_sml if this skb is under mss
1665 * Note that a TSO packet might end with a sub-mss segment
1666 * The test is really :
1667 * if ((skb->len % mss) != 0)
1668 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1669 * But we can avoid doing the divide again given we already have
1670 * skb_pcount = skb->len / mss_now
1672 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1673 const struct sk_buff *skb)
1675 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1676 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1679 /* Return false, if packet can be sent now without violation Nagle's rules:
1680 * 1. It is full sized. (provided by caller in %partial bool)
1681 * 2. Or it contains FIN. (already checked by caller)
1682 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1683 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1684 * With Minshall's modification: all sent small packets are ACKed.
1686 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1687 int nonagle)
1689 return partial &&
1690 ((nonagle & TCP_NAGLE_CORK) ||
1691 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1694 /* Return how many segs we'd like on a TSO packet,
1695 * to send one TSO packet per ms
1697 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1698 int min_tso_segs)
1700 u32 bytes, segs;
1702 bytes = min_t(unsigned long,
1703 sk->sk_pacing_rate >> sk->sk_pacing_shift,
1704 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1706 /* Goal is to send at least one packet per ms,
1707 * not one big TSO packet every 100 ms.
1708 * This preserves ACK clocking and is consistent
1709 * with tcp_tso_should_defer() heuristic.
1711 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1713 return segs;
1716 /* Return the number of segments we want in the skb we are transmitting.
1717 * See if congestion control module wants to decide; otherwise, autosize.
1719 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1721 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1722 u32 min_tso, tso_segs;
1724 min_tso = ca_ops->min_tso_segs ?
1725 ca_ops->min_tso_segs(sk) :
1726 sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs;
1728 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1729 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1732 /* Returns the portion of skb which can be sent right away */
1733 static unsigned int tcp_mss_split_point(const struct sock *sk,
1734 const struct sk_buff *skb,
1735 unsigned int mss_now,
1736 unsigned int max_segs,
1737 int nonagle)
1739 const struct tcp_sock *tp = tcp_sk(sk);
1740 u32 partial, needed, window, max_len;
1742 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1743 max_len = mss_now * max_segs;
1745 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1746 return max_len;
1748 needed = min(skb->len, window);
1750 if (max_len <= needed)
1751 return max_len;
1753 partial = needed % mss_now;
1754 /* If last segment is not a full MSS, check if Nagle rules allow us
1755 * to include this last segment in this skb.
1756 * Otherwise, we'll split the skb at last MSS boundary
1758 if (tcp_nagle_check(partial != 0, tp, nonagle))
1759 return needed - partial;
1761 return needed;
1764 /* Can at least one segment of SKB be sent right now, according to the
1765 * congestion window rules? If so, return how many segments are allowed.
1767 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1768 const struct sk_buff *skb)
1770 u32 in_flight, cwnd, halfcwnd;
1772 /* Don't be strict about the congestion window for the final FIN. */
1773 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1774 tcp_skb_pcount(skb) == 1)
1775 return 1;
1777 in_flight = tcp_packets_in_flight(tp);
1778 cwnd = tp->snd_cwnd;
1779 if (in_flight >= cwnd)
1780 return 0;
1782 /* For better scheduling, ensure we have at least
1783 * 2 GSO packets in flight.
1785 halfcwnd = max(cwnd >> 1, 1U);
1786 return min(halfcwnd, cwnd - in_flight);
1789 /* Initialize TSO state of a skb.
1790 * This must be invoked the first time we consider transmitting
1791 * SKB onto the wire.
1793 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1795 int tso_segs = tcp_skb_pcount(skb);
1797 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1798 tcp_set_skb_tso_segs(skb, mss_now);
1799 tso_segs = tcp_skb_pcount(skb);
1801 return tso_segs;
1805 /* Return true if the Nagle test allows this packet to be
1806 * sent now.
1808 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1809 unsigned int cur_mss, int nonagle)
1811 /* Nagle rule does not apply to frames, which sit in the middle of the
1812 * write_queue (they have no chances to get new data).
1814 * This is implemented in the callers, where they modify the 'nonagle'
1815 * argument based upon the location of SKB in the send queue.
1817 if (nonagle & TCP_NAGLE_PUSH)
1818 return true;
1820 /* Don't use the nagle rule for urgent data (or for the final FIN). */
1821 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1822 return true;
1824 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1825 return true;
1827 return false;
1830 /* Does at least the first segment of SKB fit into the send window? */
1831 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1832 const struct sk_buff *skb,
1833 unsigned int cur_mss)
1835 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1837 if (skb->len > cur_mss)
1838 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1840 return !after(end_seq, tcp_wnd_end(tp));
1843 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1844 * which is put after SKB on the list. It is very much like
1845 * tcp_fragment() except that it may make several kinds of assumptions
1846 * in order to speed up the splitting operation. In particular, we
1847 * know that all the data is in scatter-gather pages, and that the
1848 * packet has never been sent out before (and thus is not cloned).
1850 static int tso_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1851 struct sk_buff *skb, unsigned int len,
1852 unsigned int mss_now, gfp_t gfp)
1854 struct sk_buff *buff;
1855 int nlen = skb->len - len;
1856 u8 flags;
1858 /* All of a TSO frame must be composed of paged data. */
1859 if (skb->len != skb->data_len)
1860 return tcp_fragment(sk, tcp_queue, skb, len, mss_now, gfp);
1862 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1863 if (unlikely(!buff))
1864 return -ENOMEM;
1866 sk->sk_wmem_queued += buff->truesize;
1867 sk_mem_charge(sk, buff->truesize);
1868 buff->truesize += nlen;
1869 skb->truesize -= nlen;
1871 /* Correct the sequence numbers. */
1872 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1873 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1874 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1876 /* PSH and FIN should only be set in the second packet. */
1877 flags = TCP_SKB_CB(skb)->tcp_flags;
1878 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1879 TCP_SKB_CB(buff)->tcp_flags = flags;
1881 /* This packet was never sent out yet, so no SACK bits. */
1882 TCP_SKB_CB(buff)->sacked = 0;
1884 tcp_skb_fragment_eor(skb, buff);
1886 buff->ip_summed = CHECKSUM_PARTIAL;
1887 skb_split(skb, buff, len);
1888 tcp_fragment_tstamp(skb, buff);
1890 /* Fix up tso_factor for both original and new SKB. */
1891 tcp_set_skb_tso_segs(skb, mss_now);
1892 tcp_set_skb_tso_segs(buff, mss_now);
1894 /* Link BUFF into the send queue. */
1895 __skb_header_release(buff);
1896 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1898 return 0;
1901 /* Try to defer sending, if possible, in order to minimize the amount
1902 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1904 * This algorithm is from John Heffner.
1906 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1907 bool *is_cwnd_limited,
1908 bool *is_rwnd_limited,
1909 u32 max_segs)
1911 const struct inet_connection_sock *icsk = inet_csk(sk);
1912 u32 age, send_win, cong_win, limit, in_flight;
1913 struct tcp_sock *tp = tcp_sk(sk);
1914 struct sk_buff *head;
1915 int win_divisor;
1917 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1918 goto send_now;
1920 /* Avoid bursty behavior by allowing defer
1921 * only if the last write was recent.
1923 if ((s32)(tcp_jiffies32 - tp->lsndtime) > 0)
1924 goto send_now;
1926 in_flight = tcp_packets_in_flight(tp);
1928 BUG_ON(tcp_skb_pcount(skb) <= 1);
1929 BUG_ON(tp->snd_cwnd <= in_flight);
1931 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1933 /* From in_flight test above, we know that cwnd > in_flight. */
1934 cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1936 limit = min(send_win, cong_win);
1938 /* If a full-sized TSO skb can be sent, do it. */
1939 if (limit >= max_segs * tp->mss_cache)
1940 goto send_now;
1942 /* Middle in queue won't get any more data, full sendable already? */
1943 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1944 goto send_now;
1946 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
1947 if (win_divisor) {
1948 u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1950 /* If at least some fraction of a window is available,
1951 * just use it.
1953 chunk /= win_divisor;
1954 if (limit >= chunk)
1955 goto send_now;
1956 } else {
1957 /* Different approach, try not to defer past a single
1958 * ACK. Receiver should ACK every other full sized
1959 * frame, so if we have space for more than 3 frames
1960 * then send now.
1962 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1963 goto send_now;
1966 /* TODO : use tsorted_sent_queue ? */
1967 head = tcp_rtx_queue_head(sk);
1968 if (!head)
1969 goto send_now;
1970 age = tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(head));
1971 /* If next ACK is likely to come too late (half srtt), do not defer */
1972 if (age < (tp->srtt_us >> 4))
1973 goto send_now;
1975 /* Ok, it looks like it is advisable to defer.
1976 * Three cases are tracked :
1977 * 1) We are cwnd-limited
1978 * 2) We are rwnd-limited
1979 * 3) We are application limited.
1981 if (cong_win < send_win) {
1982 if (cong_win <= skb->len) {
1983 *is_cwnd_limited = true;
1984 return true;
1986 } else {
1987 if (send_win <= skb->len) {
1988 *is_rwnd_limited = true;
1989 return true;
1993 /* If this packet won't get more data, do not wait. */
1994 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1995 goto send_now;
1997 return true;
1999 send_now:
2000 return false;
2003 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2005 struct inet_connection_sock *icsk = inet_csk(sk);
2006 struct tcp_sock *tp = tcp_sk(sk);
2007 struct net *net = sock_net(sk);
2008 u32 interval;
2009 s32 delta;
2011 interval = net->ipv4.sysctl_tcp_probe_interval;
2012 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2013 if (unlikely(delta >= interval * HZ)) {
2014 int mss = tcp_current_mss(sk);
2016 /* Update current search range */
2017 icsk->icsk_mtup.probe_size = 0;
2018 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2019 sizeof(struct tcphdr) +
2020 icsk->icsk_af_ops->net_header_len;
2021 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2023 /* Update probe time stamp */
2024 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2028 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2030 struct sk_buff *skb, *next;
2032 skb = tcp_send_head(sk);
2033 tcp_for_write_queue_from_safe(skb, next, sk) {
2034 if (len <= skb->len)
2035 break;
2037 if (unlikely(TCP_SKB_CB(skb)->eor))
2038 return false;
2040 len -= skb->len;
2043 return true;
2046 /* Create a new MTU probe if we are ready.
2047 * MTU probe is regularly attempting to increase the path MTU by
2048 * deliberately sending larger packets. This discovers routing
2049 * changes resulting in larger path MTUs.
2051 * Returns 0 if we should wait to probe (no cwnd available),
2052 * 1 if a probe was sent,
2053 * -1 otherwise
2055 static int tcp_mtu_probe(struct sock *sk)
2057 struct inet_connection_sock *icsk = inet_csk(sk);
2058 struct tcp_sock *tp = tcp_sk(sk);
2059 struct sk_buff *skb, *nskb, *next;
2060 struct net *net = sock_net(sk);
2061 int probe_size;
2062 int size_needed;
2063 int copy, len;
2064 int mss_now;
2065 int interval;
2067 /* Not currently probing/verifying,
2068 * not in recovery,
2069 * have enough cwnd, and
2070 * not SACKing (the variable headers throw things off)
2072 if (likely(!icsk->icsk_mtup.enabled ||
2073 icsk->icsk_mtup.probe_size ||
2074 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2075 tp->snd_cwnd < 11 ||
2076 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2077 return -1;
2079 /* Use binary search for probe_size between tcp_mss_base,
2080 * and current mss_clamp. if (search_high - search_low)
2081 * smaller than a threshold, backoff from probing.
2083 mss_now = tcp_current_mss(sk);
2084 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2085 icsk->icsk_mtup.search_low) >> 1);
2086 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2087 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2088 /* When misfortune happens, we are reprobing actively,
2089 * and then reprobe timer has expired. We stick with current
2090 * probing process by not resetting search range to its orignal.
2092 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2093 interval < net->ipv4.sysctl_tcp_probe_threshold) {
2094 /* Check whether enough time has elaplased for
2095 * another round of probing.
2097 tcp_mtu_check_reprobe(sk);
2098 return -1;
2101 /* Have enough data in the send queue to probe? */
2102 if (tp->write_seq - tp->snd_nxt < size_needed)
2103 return -1;
2105 if (tp->snd_wnd < size_needed)
2106 return -1;
2107 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2108 return 0;
2110 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2111 if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
2112 if (!tcp_packets_in_flight(tp))
2113 return -1;
2114 else
2115 return 0;
2118 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2119 return -1;
2121 /* We're allowed to probe. Build it now. */
2122 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2123 if (!nskb)
2124 return -1;
2125 sk->sk_wmem_queued += nskb->truesize;
2126 sk_mem_charge(sk, nskb->truesize);
2128 skb = tcp_send_head(sk);
2130 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2131 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2132 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2133 TCP_SKB_CB(nskb)->sacked = 0;
2134 nskb->csum = 0;
2135 nskb->ip_summed = CHECKSUM_PARTIAL;
2137 tcp_insert_write_queue_before(nskb, skb, sk);
2138 tcp_highest_sack_replace(sk, skb, nskb);
2140 len = 0;
2141 tcp_for_write_queue_from_safe(skb, next, sk) {
2142 copy = min_t(int, skb->len, probe_size - len);
2143 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2145 if (skb->len <= copy) {
2146 /* We've eaten all the data from this skb.
2147 * Throw it away. */
2148 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2149 /* If this is the last SKB we copy and eor is set
2150 * we need to propagate it to the new skb.
2152 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2153 tcp_unlink_write_queue(skb, sk);
2154 sk_wmem_free_skb(sk, skb);
2155 } else {
2156 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2157 ~(TCPHDR_FIN|TCPHDR_PSH);
2158 if (!skb_shinfo(skb)->nr_frags) {
2159 skb_pull(skb, copy);
2160 } else {
2161 __pskb_trim_head(skb, copy);
2162 tcp_set_skb_tso_segs(skb, mss_now);
2164 TCP_SKB_CB(skb)->seq += copy;
2167 len += copy;
2169 if (len >= probe_size)
2170 break;
2172 tcp_init_tso_segs(nskb, nskb->len);
2174 /* We're ready to send. If this fails, the probe will
2175 * be resegmented into mss-sized pieces by tcp_write_xmit().
2177 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2178 /* Decrement cwnd here because we are sending
2179 * effectively two packets. */
2180 tp->snd_cwnd--;
2181 tcp_event_new_data_sent(sk, nskb);
2183 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2184 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2185 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2187 return 1;
2190 return -1;
2193 static bool tcp_pacing_check(struct sock *sk)
2195 struct tcp_sock *tp = tcp_sk(sk);
2197 if (!tcp_needs_internal_pacing(sk))
2198 return false;
2200 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2201 return false;
2203 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2204 hrtimer_start(&tp->pacing_timer,
2205 ns_to_ktime(tp->tcp_wstamp_ns),
2206 HRTIMER_MODE_ABS_PINNED_SOFT);
2207 sock_hold(sk);
2209 return true;
2212 /* TCP Small Queues :
2213 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2214 * (These limits are doubled for retransmits)
2215 * This allows for :
2216 * - better RTT estimation and ACK scheduling
2217 * - faster recovery
2218 * - high rates
2219 * Alas, some drivers / subsystems require a fair amount
2220 * of queued bytes to ensure line rate.
2221 * One example is wifi aggregation (802.11 AMPDU)
2223 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2224 unsigned int factor)
2226 unsigned long limit;
2228 limit = max_t(unsigned long,
2229 2 * skb->truesize,
2230 sk->sk_pacing_rate >> sk->sk_pacing_shift);
2231 limit = min_t(unsigned long, limit,
2232 sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes);
2233 limit <<= factor;
2235 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2236 /* Always send skb if rtx queue is empty.
2237 * No need to wait for TX completion to call us back,
2238 * after softirq/tasklet schedule.
2239 * This helps when TX completions are delayed too much.
2241 if (tcp_rtx_queue_empty(sk))
2242 return false;
2244 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2245 /* It is possible TX completion already happened
2246 * before we set TSQ_THROTTLED, so we must
2247 * test again the condition.
2249 smp_mb__after_atomic();
2250 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2251 return true;
2253 return false;
2256 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2258 const u32 now = tcp_jiffies32;
2259 enum tcp_chrono old = tp->chrono_type;
2261 if (old > TCP_CHRONO_UNSPEC)
2262 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2263 tp->chrono_start = now;
2264 tp->chrono_type = new;
2267 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2269 struct tcp_sock *tp = tcp_sk(sk);
2271 /* If there are multiple conditions worthy of tracking in a
2272 * chronograph then the highest priority enum takes precedence
2273 * over the other conditions. So that if something "more interesting"
2274 * starts happening, stop the previous chrono and start a new one.
2276 if (type > tp->chrono_type)
2277 tcp_chrono_set(tp, type);
2280 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2282 struct tcp_sock *tp = tcp_sk(sk);
2285 /* There are multiple conditions worthy of tracking in a
2286 * chronograph, so that the highest priority enum takes
2287 * precedence over the other conditions (see tcp_chrono_start).
2288 * If a condition stops, we only stop chrono tracking if
2289 * it's the "most interesting" or current chrono we are
2290 * tracking and starts busy chrono if we have pending data.
2292 if (tcp_rtx_and_write_queues_empty(sk))
2293 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2294 else if (type == tp->chrono_type)
2295 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2298 /* This routine writes packets to the network. It advances the
2299 * send_head. This happens as incoming acks open up the remote
2300 * window for us.
2302 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2303 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2304 * account rare use of URG, this is not a big flaw.
2306 * Send at most one packet when push_one > 0. Temporarily ignore
2307 * cwnd limit to force at most one packet out when push_one == 2.
2309 * Returns true, if no segments are in flight and we have queued segments,
2310 * but cannot send anything now because of SWS or another problem.
2312 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2313 int push_one, gfp_t gfp)
2315 struct tcp_sock *tp = tcp_sk(sk);
2316 struct sk_buff *skb;
2317 unsigned int tso_segs, sent_pkts;
2318 int cwnd_quota;
2319 int result;
2320 bool is_cwnd_limited = false, is_rwnd_limited = false;
2321 u32 max_segs;
2323 sent_pkts = 0;
2325 tcp_mstamp_refresh(tp);
2326 if (!push_one) {
2327 /* Do MTU probing. */
2328 result = tcp_mtu_probe(sk);
2329 if (!result) {
2330 return false;
2331 } else if (result > 0) {
2332 sent_pkts = 1;
2336 max_segs = tcp_tso_segs(sk, mss_now);
2337 while ((skb = tcp_send_head(sk))) {
2338 unsigned int limit;
2340 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2341 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2342 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2343 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2344 goto repair; /* Skip network transmission */
2347 if (tcp_pacing_check(sk))
2348 break;
2350 tso_segs = tcp_init_tso_segs(skb, mss_now);
2351 BUG_ON(!tso_segs);
2353 cwnd_quota = tcp_cwnd_test(tp, skb);
2354 if (!cwnd_quota) {
2355 if (push_one == 2)
2356 /* Force out a loss probe pkt. */
2357 cwnd_quota = 1;
2358 else
2359 break;
2362 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2363 is_rwnd_limited = true;
2364 break;
2367 if (tso_segs == 1) {
2368 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2369 (tcp_skb_is_last(sk, skb) ?
2370 nonagle : TCP_NAGLE_PUSH))))
2371 break;
2372 } else {
2373 if (!push_one &&
2374 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2375 &is_rwnd_limited, max_segs))
2376 break;
2379 limit = mss_now;
2380 if (tso_segs > 1 && !tcp_urg_mode(tp))
2381 limit = tcp_mss_split_point(sk, skb, mss_now,
2382 min_t(unsigned int,
2383 cwnd_quota,
2384 max_segs),
2385 nonagle);
2387 if (skb->len > limit &&
2388 unlikely(tso_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2389 skb, limit, mss_now, gfp)))
2390 break;
2392 if (tcp_small_queue_check(sk, skb, 0))
2393 break;
2395 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2396 break;
2398 repair:
2399 /* Advance the send_head. This one is sent out.
2400 * This call will increment packets_out.
2402 tcp_event_new_data_sent(sk, skb);
2404 tcp_minshall_update(tp, mss_now, skb);
2405 sent_pkts += tcp_skb_pcount(skb);
2407 if (push_one)
2408 break;
2411 if (is_rwnd_limited)
2412 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2413 else
2414 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2416 if (likely(sent_pkts)) {
2417 if (tcp_in_cwnd_reduction(sk))
2418 tp->prr_out += sent_pkts;
2420 /* Send one loss probe per tail loss episode. */
2421 if (push_one != 2)
2422 tcp_schedule_loss_probe(sk, false);
2423 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2424 tcp_cwnd_validate(sk, is_cwnd_limited);
2425 return false;
2427 return !tp->packets_out && !tcp_write_queue_empty(sk);
2430 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2432 struct inet_connection_sock *icsk = inet_csk(sk);
2433 struct tcp_sock *tp = tcp_sk(sk);
2434 u32 timeout, rto_delta_us;
2435 int early_retrans;
2437 /* Don't do any loss probe on a Fast Open connection before 3WHS
2438 * finishes.
2440 if (tp->fastopen_rsk)
2441 return false;
2443 early_retrans = sock_net(sk)->ipv4.sysctl_tcp_early_retrans;
2444 /* Schedule a loss probe in 2*RTT for SACK capable connections
2445 * not in loss recovery, that are either limited by cwnd or application.
2447 if ((early_retrans != 3 && early_retrans != 4) ||
2448 !tp->packets_out || !tcp_is_sack(tp) ||
2449 (icsk->icsk_ca_state != TCP_CA_Open &&
2450 icsk->icsk_ca_state != TCP_CA_CWR))
2451 return false;
2453 /* Probe timeout is 2*rtt. Add minimum RTO to account
2454 * for delayed ack when there's one outstanding packet. If no RTT
2455 * sample is available then probe after TCP_TIMEOUT_INIT.
2457 if (tp->srtt_us) {
2458 timeout = usecs_to_jiffies(tp->srtt_us >> 2);
2459 if (tp->packets_out == 1)
2460 timeout += TCP_RTO_MIN;
2461 else
2462 timeout += TCP_TIMEOUT_MIN;
2463 } else {
2464 timeout = TCP_TIMEOUT_INIT;
2467 /* If the RTO formula yields an earlier time, then use that time. */
2468 rto_delta_us = advancing_rto ?
2469 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2470 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2471 if (rto_delta_us > 0)
2472 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2474 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2475 TCP_RTO_MAX, NULL);
2476 return true;
2479 /* Thanks to skb fast clones, we can detect if a prior transmit of
2480 * a packet is still in a qdisc or driver queue.
2481 * In this case, there is very little point doing a retransmit !
2483 static bool skb_still_in_host_queue(const struct sock *sk,
2484 const struct sk_buff *skb)
2486 if (unlikely(skb_fclone_busy(sk, skb))) {
2487 NET_INC_STATS(sock_net(sk),
2488 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2489 return true;
2491 return false;
2494 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2495 * retransmit the last segment.
2497 void tcp_send_loss_probe(struct sock *sk)
2499 struct tcp_sock *tp = tcp_sk(sk);
2500 struct sk_buff *skb;
2501 int pcount;
2502 int mss = tcp_current_mss(sk);
2504 skb = tcp_send_head(sk);
2505 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2506 pcount = tp->packets_out;
2507 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2508 if (tp->packets_out > pcount)
2509 goto probe_sent;
2510 goto rearm_timer;
2512 skb = skb_rb_last(&sk->tcp_rtx_queue);
2513 if (unlikely(!skb)) {
2514 WARN_ONCE(tp->packets_out,
2515 "invalid inflight: %u state %u cwnd %u mss %d\n",
2516 tp->packets_out, sk->sk_state, tp->snd_cwnd, mss);
2517 inet_csk(sk)->icsk_pending = 0;
2518 return;
2521 /* At most one outstanding TLP retransmission. */
2522 if (tp->tlp_high_seq)
2523 goto rearm_timer;
2525 if (skb_still_in_host_queue(sk, skb))
2526 goto rearm_timer;
2528 pcount = tcp_skb_pcount(skb);
2529 if (WARN_ON(!pcount))
2530 goto rearm_timer;
2532 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2533 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2534 (pcount - 1) * mss, mss,
2535 GFP_ATOMIC)))
2536 goto rearm_timer;
2537 skb = skb_rb_next(skb);
2540 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2541 goto rearm_timer;
2543 if (__tcp_retransmit_skb(sk, skb, 1))
2544 goto rearm_timer;
2546 /* Record snd_nxt for loss detection. */
2547 tp->tlp_high_seq = tp->snd_nxt;
2549 probe_sent:
2550 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2551 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2552 inet_csk(sk)->icsk_pending = 0;
2553 rearm_timer:
2554 tcp_rearm_rto(sk);
2557 /* Push out any pending frames which were held back due to
2558 * TCP_CORK or attempt at coalescing tiny packets.
2559 * The socket must be locked by the caller.
2561 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2562 int nonagle)
2564 /* If we are closed, the bytes will have to remain here.
2565 * In time closedown will finish, we empty the write queue and
2566 * all will be happy.
2568 if (unlikely(sk->sk_state == TCP_CLOSE))
2569 return;
2571 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2572 sk_gfp_mask(sk, GFP_ATOMIC)))
2573 tcp_check_probe_timer(sk);
2576 /* Send _single_ skb sitting at the send head. This function requires
2577 * true push pending frames to setup probe timer etc.
2579 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2581 struct sk_buff *skb = tcp_send_head(sk);
2583 BUG_ON(!skb || skb->len < mss_now);
2585 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2588 /* This function returns the amount that we can raise the
2589 * usable window based on the following constraints
2591 * 1. The window can never be shrunk once it is offered (RFC 793)
2592 * 2. We limit memory per socket
2594 * RFC 1122:
2595 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2596 * RECV.NEXT + RCV.WIN fixed until:
2597 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2599 * i.e. don't raise the right edge of the window until you can raise
2600 * it at least MSS bytes.
2602 * Unfortunately, the recommended algorithm breaks header prediction,
2603 * since header prediction assumes th->window stays fixed.
2605 * Strictly speaking, keeping th->window fixed violates the receiver
2606 * side SWS prevention criteria. The problem is that under this rule
2607 * a stream of single byte packets will cause the right side of the
2608 * window to always advance by a single byte.
2610 * Of course, if the sender implements sender side SWS prevention
2611 * then this will not be a problem.
2613 * BSD seems to make the following compromise:
2615 * If the free space is less than the 1/4 of the maximum
2616 * space available and the free space is less than 1/2 mss,
2617 * then set the window to 0.
2618 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2619 * Otherwise, just prevent the window from shrinking
2620 * and from being larger than the largest representable value.
2622 * This prevents incremental opening of the window in the regime
2623 * where TCP is limited by the speed of the reader side taking
2624 * data out of the TCP receive queue. It does nothing about
2625 * those cases where the window is constrained on the sender side
2626 * because the pipeline is full.
2628 * BSD also seems to "accidentally" limit itself to windows that are a
2629 * multiple of MSS, at least until the free space gets quite small.
2630 * This would appear to be a side effect of the mbuf implementation.
2631 * Combining these two algorithms results in the observed behavior
2632 * of having a fixed window size at almost all times.
2634 * Below we obtain similar behavior by forcing the offered window to
2635 * a multiple of the mss when it is feasible to do so.
2637 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2638 * Regular options like TIMESTAMP are taken into account.
2640 u32 __tcp_select_window(struct sock *sk)
2642 struct inet_connection_sock *icsk = inet_csk(sk);
2643 struct tcp_sock *tp = tcp_sk(sk);
2644 /* MSS for the peer's data. Previous versions used mss_clamp
2645 * here. I don't know if the value based on our guesses
2646 * of peer's MSS is better for the performance. It's more correct
2647 * but may be worse for the performance because of rcv_mss
2648 * fluctuations. --SAW 1998/11/1
2650 int mss = icsk->icsk_ack.rcv_mss;
2651 int free_space = tcp_space(sk);
2652 int allowed_space = tcp_full_space(sk);
2653 int full_space = min_t(int, tp->window_clamp, allowed_space);
2654 int window;
2656 if (unlikely(mss > full_space)) {
2657 mss = full_space;
2658 if (mss <= 0)
2659 return 0;
2661 if (free_space < (full_space >> 1)) {
2662 icsk->icsk_ack.quick = 0;
2664 if (tcp_under_memory_pressure(sk))
2665 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2666 4U * tp->advmss);
2668 /* free_space might become our new window, make sure we don't
2669 * increase it due to wscale.
2671 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2673 /* if free space is less than mss estimate, or is below 1/16th
2674 * of the maximum allowed, try to move to zero-window, else
2675 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2676 * new incoming data is dropped due to memory limits.
2677 * With large window, mss test triggers way too late in order
2678 * to announce zero window in time before rmem limit kicks in.
2680 if (free_space < (allowed_space >> 4) || free_space < mss)
2681 return 0;
2684 if (free_space > tp->rcv_ssthresh)
2685 free_space = tp->rcv_ssthresh;
2687 /* Don't do rounding if we are using window scaling, since the
2688 * scaled window will not line up with the MSS boundary anyway.
2690 if (tp->rx_opt.rcv_wscale) {
2691 window = free_space;
2693 /* Advertise enough space so that it won't get scaled away.
2694 * Import case: prevent zero window announcement if
2695 * 1<<rcv_wscale > mss.
2697 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
2698 } else {
2699 window = tp->rcv_wnd;
2700 /* Get the largest window that is a nice multiple of mss.
2701 * Window clamp already applied above.
2702 * If our current window offering is within 1 mss of the
2703 * free space we just keep it. This prevents the divide
2704 * and multiply from happening most of the time.
2705 * We also don't do any window rounding when the free space
2706 * is too small.
2708 if (window <= free_space - mss || window > free_space)
2709 window = rounddown(free_space, mss);
2710 else if (mss == full_space &&
2711 free_space > window + (full_space >> 1))
2712 window = free_space;
2715 return window;
2718 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2719 const struct sk_buff *next_skb)
2721 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
2722 const struct skb_shared_info *next_shinfo =
2723 skb_shinfo(next_skb);
2724 struct skb_shared_info *shinfo = skb_shinfo(skb);
2726 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2727 shinfo->tskey = next_shinfo->tskey;
2728 TCP_SKB_CB(skb)->txstamp_ack |=
2729 TCP_SKB_CB(next_skb)->txstamp_ack;
2733 /* Collapses two adjacent SKB's during retransmission. */
2734 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2736 struct tcp_sock *tp = tcp_sk(sk);
2737 struct sk_buff *next_skb = skb_rb_next(skb);
2738 int next_skb_size;
2740 next_skb_size = next_skb->len;
2742 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2744 if (next_skb_size) {
2745 if (next_skb_size <= skb_availroom(skb))
2746 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
2747 next_skb_size);
2748 else if (!skb_shift(skb, next_skb, next_skb_size))
2749 return false;
2751 tcp_highest_sack_replace(sk, next_skb, skb);
2753 /* Update sequence range on original skb. */
2754 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2756 /* Merge over control information. This moves PSH/FIN etc. over */
2757 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2759 /* All done, get rid of second SKB and account for it so
2760 * packet counting does not break.
2762 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2763 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
2765 /* changed transmit queue under us so clear hints */
2766 tcp_clear_retrans_hints_partial(tp);
2767 if (next_skb == tp->retransmit_skb_hint)
2768 tp->retransmit_skb_hint = skb;
2770 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2772 tcp_skb_collapse_tstamp(skb, next_skb);
2774 tcp_rtx_queue_unlink_and_free(next_skb, sk);
2775 return true;
2778 /* Check if coalescing SKBs is legal. */
2779 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2781 if (tcp_skb_pcount(skb) > 1)
2782 return false;
2783 if (skb_cloned(skb))
2784 return false;
2785 /* Some heuristics for collapsing over SACK'd could be invented */
2786 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2787 return false;
2789 return true;
2792 /* Collapse packets in the retransmit queue to make to create
2793 * less packets on the wire. This is only done on retransmission.
2795 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2796 int space)
2798 struct tcp_sock *tp = tcp_sk(sk);
2799 struct sk_buff *skb = to, *tmp;
2800 bool first = true;
2802 if (!sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse)
2803 return;
2804 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2805 return;
2807 skb_rbtree_walk_from_safe(skb, tmp) {
2808 if (!tcp_can_collapse(sk, skb))
2809 break;
2811 if (!tcp_skb_can_collapse_to(to))
2812 break;
2814 space -= skb->len;
2816 if (first) {
2817 first = false;
2818 continue;
2821 if (space < 0)
2822 break;
2824 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2825 break;
2827 if (!tcp_collapse_retrans(sk, to))
2828 break;
2832 /* This retransmits one SKB. Policy decisions and retransmit queue
2833 * state updates are done by the caller. Returns non-zero if an
2834 * error occurred which prevented the send.
2836 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2838 struct inet_connection_sock *icsk = inet_csk(sk);
2839 struct tcp_sock *tp = tcp_sk(sk);
2840 unsigned int cur_mss;
2841 int diff, len, err;
2844 /* Inconclusive MTU probe */
2845 if (icsk->icsk_mtup.probe_size)
2846 icsk->icsk_mtup.probe_size = 0;
2848 /* Do not sent more than we queued. 1/4 is reserved for possible
2849 * copying overhead: fragmentation, tunneling, mangling etc.
2851 if (refcount_read(&sk->sk_wmem_alloc) >
2852 min_t(u32, sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2),
2853 sk->sk_sndbuf))
2854 return -EAGAIN;
2856 if (skb_still_in_host_queue(sk, skb))
2857 return -EBUSY;
2859 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2860 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
2861 WARN_ON_ONCE(1);
2862 return -EINVAL;
2864 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2865 return -ENOMEM;
2868 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2869 return -EHOSTUNREACH; /* Routing failure or similar. */
2871 cur_mss = tcp_current_mss(sk);
2873 /* If receiver has shrunk his window, and skb is out of
2874 * new window, do not retransmit it. The exception is the
2875 * case, when window is shrunk to zero. In this case
2876 * our retransmit serves as a zero window probe.
2878 if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2879 TCP_SKB_CB(skb)->seq != tp->snd_una)
2880 return -EAGAIN;
2882 len = cur_mss * segs;
2883 if (skb->len > len) {
2884 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
2885 cur_mss, GFP_ATOMIC))
2886 return -ENOMEM; /* We'll try again later. */
2887 } else {
2888 if (skb_unclone(skb, GFP_ATOMIC))
2889 return -ENOMEM;
2891 diff = tcp_skb_pcount(skb);
2892 tcp_set_skb_tso_segs(skb, cur_mss);
2893 diff -= tcp_skb_pcount(skb);
2894 if (diff)
2895 tcp_adjust_pcount(sk, skb, diff);
2896 if (skb->len < cur_mss)
2897 tcp_retrans_try_collapse(sk, skb, cur_mss);
2900 /* RFC3168, section 6.1.1.1. ECN fallback */
2901 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2902 tcp_ecn_clear_syn(sk, skb);
2904 /* Update global and local TCP statistics. */
2905 segs = tcp_skb_pcount(skb);
2906 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
2907 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2908 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2909 tp->total_retrans += segs;
2910 tp->bytes_retrans += skb->len;
2912 /* make sure skb->data is aligned on arches that require it
2913 * and check if ack-trimming & collapsing extended the headroom
2914 * beyond what csum_start can cover.
2916 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2917 skb_headroom(skb) >= 0xFFFF)) {
2918 struct sk_buff *nskb;
2920 tcp_skb_tsorted_save(skb) {
2921 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2922 err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2923 -ENOBUFS;
2924 } tcp_skb_tsorted_restore(skb);
2926 if (!err) {
2927 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
2928 tcp_rate_skb_sent(sk, skb);
2930 } else {
2931 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2934 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
2935 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
2936 TCP_SKB_CB(skb)->seq, segs, err);
2938 if (likely(!err)) {
2939 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2940 trace_tcp_retransmit_skb(sk, skb);
2941 } else if (err != -EBUSY) {
2942 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
2944 return err;
2947 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
2949 struct tcp_sock *tp = tcp_sk(sk);
2950 int err = __tcp_retransmit_skb(sk, skb, segs);
2952 if (err == 0) {
2953 #if FASTRETRANS_DEBUG > 0
2954 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2955 net_dbg_ratelimited("retrans_out leaked\n");
2957 #endif
2958 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2959 tp->retrans_out += tcp_skb_pcount(skb);
2961 /* Save stamp of the first retransmit. */
2962 if (!tp->retrans_stamp)
2963 tp->retrans_stamp = tcp_skb_timestamp(skb);
2967 if (tp->undo_retrans < 0)
2968 tp->undo_retrans = 0;
2969 tp->undo_retrans += tcp_skb_pcount(skb);
2970 return err;
2973 /* This gets called after a retransmit timeout, and the initially
2974 * retransmitted data is acknowledged. It tries to continue
2975 * resending the rest of the retransmit queue, until either
2976 * we've sent it all or the congestion window limit is reached.
2978 void tcp_xmit_retransmit_queue(struct sock *sk)
2980 const struct inet_connection_sock *icsk = inet_csk(sk);
2981 struct sk_buff *skb, *rtx_head, *hole = NULL;
2982 struct tcp_sock *tp = tcp_sk(sk);
2983 u32 max_segs;
2984 int mib_idx;
2986 if (!tp->packets_out)
2987 return;
2989 rtx_head = tcp_rtx_queue_head(sk);
2990 skb = tp->retransmit_skb_hint ?: rtx_head;
2991 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
2992 skb_rbtree_walk_from(skb) {
2993 __u8 sacked;
2994 int segs;
2996 if (tcp_pacing_check(sk))
2997 break;
2999 /* we could do better than to assign each time */
3000 if (!hole)
3001 tp->retransmit_skb_hint = skb;
3003 segs = tp->snd_cwnd - tcp_packets_in_flight(tp);
3004 if (segs <= 0)
3005 return;
3006 sacked = TCP_SKB_CB(skb)->sacked;
3007 /* In case tcp_shift_skb_data() have aggregated large skbs,
3008 * we need to make sure not sending too bigs TSO packets
3010 segs = min_t(int, segs, max_segs);
3012 if (tp->retrans_out >= tp->lost_out) {
3013 break;
3014 } else if (!(sacked & TCPCB_LOST)) {
3015 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3016 hole = skb;
3017 continue;
3019 } else {
3020 if (icsk->icsk_ca_state != TCP_CA_Loss)
3021 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3022 else
3023 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3026 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3027 continue;
3029 if (tcp_small_queue_check(sk, skb, 1))
3030 return;
3032 if (tcp_retransmit_skb(sk, skb, segs))
3033 return;
3035 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3037 if (tcp_in_cwnd_reduction(sk))
3038 tp->prr_out += tcp_skb_pcount(skb);
3040 if (skb == rtx_head &&
3041 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3042 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3043 inet_csk(sk)->icsk_rto,
3044 TCP_RTO_MAX,
3045 skb);
3049 /* We allow to exceed memory limits for FIN packets to expedite
3050 * connection tear down and (memory) recovery.
3051 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3052 * or even be forced to close flow without any FIN.
3053 * In general, we want to allow one skb per socket to avoid hangs
3054 * with edge trigger epoll()
3056 void sk_forced_mem_schedule(struct sock *sk, int size)
3058 int amt;
3060 if (size <= sk->sk_forward_alloc)
3061 return;
3062 amt = sk_mem_pages(size);
3063 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3064 sk_memory_allocated_add(sk, amt);
3066 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3067 mem_cgroup_charge_skmem(sk->sk_memcg, amt);
3070 /* Send a FIN. The caller locks the socket for us.
3071 * We should try to send a FIN packet really hard, but eventually give up.
3073 void tcp_send_fin(struct sock *sk)
3075 struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
3076 struct tcp_sock *tp = tcp_sk(sk);
3078 /* Optimization, tack on the FIN if we have one skb in write queue and
3079 * this skb was not yet sent, or we are under memory pressure.
3080 * Note: in the latter case, FIN packet will be sent after a timeout,
3081 * as TCP stack thinks it has already been transmitted.
3083 if (!tskb && tcp_under_memory_pressure(sk))
3084 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3086 if (tskb) {
3087 coalesce:
3088 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3089 TCP_SKB_CB(tskb)->end_seq++;
3090 tp->write_seq++;
3091 if (tcp_write_queue_empty(sk)) {
3092 /* This means tskb was already sent.
3093 * Pretend we included the FIN on previous transmit.
3094 * We need to set tp->snd_nxt to the value it would have
3095 * if FIN had been sent. This is because retransmit path
3096 * does not change tp->snd_nxt.
3098 tp->snd_nxt++;
3099 return;
3101 } else {
3102 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3103 if (unlikely(!skb)) {
3104 if (tskb)
3105 goto coalesce;
3106 return;
3108 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3109 skb_reserve(skb, MAX_TCP_HEADER);
3110 sk_forced_mem_schedule(sk, skb->truesize);
3111 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3112 tcp_init_nondata_skb(skb, tp->write_seq,
3113 TCPHDR_ACK | TCPHDR_FIN);
3114 tcp_queue_skb(sk, skb);
3116 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3119 /* We get here when a process closes a file descriptor (either due to
3120 * an explicit close() or as a byproduct of exit()'ing) and there
3121 * was unread data in the receive queue. This behavior is recommended
3122 * by RFC 2525, section 2.17. -DaveM
3124 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3126 struct sk_buff *skb;
3128 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3130 /* NOTE: No TCP options attached and we never retransmit this. */
3131 skb = alloc_skb(MAX_TCP_HEADER, priority);
3132 if (!skb) {
3133 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3134 return;
3137 /* Reserve space for headers and prepare control bits. */
3138 skb_reserve(skb, MAX_TCP_HEADER);
3139 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3140 TCPHDR_ACK | TCPHDR_RST);
3141 tcp_mstamp_refresh(tcp_sk(sk));
3142 /* Send it off. */
3143 if (tcp_transmit_skb(sk, skb, 0, priority))
3144 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3146 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3147 * skb here is different to the troublesome skb, so use NULL
3149 trace_tcp_send_reset(sk, NULL);
3152 /* Send a crossed SYN-ACK during socket establishment.
3153 * WARNING: This routine must only be called when we have already sent
3154 * a SYN packet that crossed the incoming SYN that caused this routine
3155 * to get called. If this assumption fails then the initial rcv_wnd
3156 * and rcv_wscale values will not be correct.
3158 int tcp_send_synack(struct sock *sk)
3160 struct sk_buff *skb;
3162 skb = tcp_rtx_queue_head(sk);
3163 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3164 pr_err("%s: wrong queue state\n", __func__);
3165 return -EFAULT;
3167 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3168 if (skb_cloned(skb)) {
3169 struct sk_buff *nskb;
3171 tcp_skb_tsorted_save(skb) {
3172 nskb = skb_copy(skb, GFP_ATOMIC);
3173 } tcp_skb_tsorted_restore(skb);
3174 if (!nskb)
3175 return -ENOMEM;
3176 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3177 tcp_rtx_queue_unlink_and_free(skb, sk);
3178 __skb_header_release(nskb);
3179 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3180 sk->sk_wmem_queued += nskb->truesize;
3181 sk_mem_charge(sk, nskb->truesize);
3182 skb = nskb;
3185 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3186 tcp_ecn_send_synack(sk, skb);
3188 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3192 * tcp_make_synack - Prepare a SYN-ACK.
3193 * sk: listener socket
3194 * dst: dst entry attached to the SYNACK
3195 * req: request_sock pointer
3197 * Allocate one skb and build a SYNACK packet.
3198 * @dst is consumed : Caller should not use it again.
3200 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3201 struct request_sock *req,
3202 struct tcp_fastopen_cookie *foc,
3203 enum tcp_synack_type synack_type)
3205 struct inet_request_sock *ireq = inet_rsk(req);
3206 const struct tcp_sock *tp = tcp_sk(sk);
3207 struct tcp_md5sig_key *md5 = NULL;
3208 struct tcp_out_options opts;
3209 struct sk_buff *skb;
3210 int tcp_header_size;
3211 struct tcphdr *th;
3212 int mss;
3214 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3215 if (unlikely(!skb)) {
3216 dst_release(dst);
3217 return NULL;
3219 /* Reserve space for headers. */
3220 skb_reserve(skb, MAX_TCP_HEADER);
3222 switch (synack_type) {
3223 case TCP_SYNACK_NORMAL:
3224 skb_set_owner_w(skb, req_to_sk(req));
3225 break;
3226 case TCP_SYNACK_COOKIE:
3227 /* Under synflood, we do not attach skb to a socket,
3228 * to avoid false sharing.
3230 break;
3231 case TCP_SYNACK_FASTOPEN:
3232 /* sk is a const pointer, because we want to express multiple
3233 * cpu might call us concurrently.
3234 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3236 skb_set_owner_w(skb, (struct sock *)sk);
3237 break;
3239 skb_dst_set(skb, dst);
3241 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3243 memset(&opts, 0, sizeof(opts));
3244 #ifdef CONFIG_SYN_COOKIES
3245 if (unlikely(req->cookie_ts))
3246 skb->skb_mstamp_ns = cookie_init_timestamp(req);
3247 else
3248 #endif
3249 skb->skb_mstamp_ns = tcp_clock_ns();
3251 #ifdef CONFIG_TCP_MD5SIG
3252 rcu_read_lock();
3253 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3254 #endif
3255 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3256 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3257 foc) + sizeof(*th);
3259 skb_push(skb, tcp_header_size);
3260 skb_reset_transport_header(skb);
3262 th = (struct tcphdr *)skb->data;
3263 memset(th, 0, sizeof(struct tcphdr));
3264 th->syn = 1;
3265 th->ack = 1;
3266 tcp_ecn_make_synack(req, th);
3267 th->source = htons(ireq->ir_num);
3268 th->dest = ireq->ir_rmt_port;
3269 skb->mark = ireq->ir_mark;
3270 skb->ip_summed = CHECKSUM_PARTIAL;
3271 th->seq = htonl(tcp_rsk(req)->snt_isn);
3272 /* XXX data is queued and acked as is. No buffer/window check */
3273 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3275 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3276 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3277 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3278 th->doff = (tcp_header_size >> 2);
3279 __TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3281 #ifdef CONFIG_TCP_MD5SIG
3282 /* Okay, we have all we need - do the md5 hash if needed */
3283 if (md5)
3284 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3285 md5, req_to_sk(req), skb);
3286 rcu_read_unlock();
3287 #endif
3289 /* Do not fool tcpdump (if any), clean our debris */
3290 skb->tstamp = 0;
3291 return skb;
3293 EXPORT_SYMBOL(tcp_make_synack);
3295 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3297 struct inet_connection_sock *icsk = inet_csk(sk);
3298 const struct tcp_congestion_ops *ca;
3299 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3301 if (ca_key == TCP_CA_UNSPEC)
3302 return;
3304 rcu_read_lock();
3305 ca = tcp_ca_find_key(ca_key);
3306 if (likely(ca && try_module_get(ca->owner))) {
3307 module_put(icsk->icsk_ca_ops->owner);
3308 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3309 icsk->icsk_ca_ops = ca;
3311 rcu_read_unlock();
3314 /* Do all connect socket setups that can be done AF independent. */
3315 static void tcp_connect_init(struct sock *sk)
3317 const struct dst_entry *dst = __sk_dst_get(sk);
3318 struct tcp_sock *tp = tcp_sk(sk);
3319 __u8 rcv_wscale;
3320 u32 rcv_wnd;
3322 /* We'll fix this up when we get a response from the other end.
3323 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3325 tp->tcp_header_len = sizeof(struct tcphdr);
3326 if (sock_net(sk)->ipv4.sysctl_tcp_timestamps)
3327 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3329 #ifdef CONFIG_TCP_MD5SIG
3330 if (tp->af_specific->md5_lookup(sk, sk))
3331 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3332 #endif
3334 /* If user gave his TCP_MAXSEG, record it to clamp */
3335 if (tp->rx_opt.user_mss)
3336 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3337 tp->max_window = 0;
3338 tcp_mtup_init(sk);
3339 tcp_sync_mss(sk, dst_mtu(dst));
3341 tcp_ca_dst_init(sk, dst);
3343 if (!tp->window_clamp)
3344 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3345 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3347 tcp_initialize_rcv_mss(sk);
3349 /* limit the window selection if the user enforce a smaller rx buffer */
3350 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3351 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3352 tp->window_clamp = tcp_full_space(sk);
3354 rcv_wnd = tcp_rwnd_init_bpf(sk);
3355 if (rcv_wnd == 0)
3356 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3358 tcp_select_initial_window(sk, tcp_full_space(sk),
3359 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3360 &tp->rcv_wnd,
3361 &tp->window_clamp,
3362 sock_net(sk)->ipv4.sysctl_tcp_window_scaling,
3363 &rcv_wscale,
3364 rcv_wnd);
3366 tp->rx_opt.rcv_wscale = rcv_wscale;
3367 tp->rcv_ssthresh = tp->rcv_wnd;
3369 sk->sk_err = 0;
3370 sock_reset_flag(sk, SOCK_DONE);
3371 tp->snd_wnd = 0;
3372 tcp_init_wl(tp, 0);
3373 tcp_write_queue_purge(sk);
3374 tp->snd_una = tp->write_seq;
3375 tp->snd_sml = tp->write_seq;
3376 tp->snd_up = tp->write_seq;
3377 tp->snd_nxt = tp->write_seq;
3379 if (likely(!tp->repair))
3380 tp->rcv_nxt = 0;
3381 else
3382 tp->rcv_tstamp = tcp_jiffies32;
3383 tp->rcv_wup = tp->rcv_nxt;
3384 tp->copied_seq = tp->rcv_nxt;
3386 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3387 inet_csk(sk)->icsk_retransmits = 0;
3388 tcp_clear_retrans(tp);
3391 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3393 struct tcp_sock *tp = tcp_sk(sk);
3394 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3396 tcb->end_seq += skb->len;
3397 __skb_header_release(skb);
3398 sk->sk_wmem_queued += skb->truesize;
3399 sk_mem_charge(sk, skb->truesize);
3400 tp->write_seq = tcb->end_seq;
3401 tp->packets_out += tcp_skb_pcount(skb);
3404 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3405 * queue a data-only packet after the regular SYN, such that regular SYNs
3406 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3407 * only the SYN sequence, the data are retransmitted in the first ACK.
3408 * If cookie is not cached or other error occurs, falls back to send a
3409 * regular SYN with Fast Open cookie request option.
3411 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3413 struct tcp_sock *tp = tcp_sk(sk);
3414 struct tcp_fastopen_request *fo = tp->fastopen_req;
3415 int space, err = 0;
3416 struct sk_buff *syn_data;
3418 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3419 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3420 goto fallback;
3422 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3423 * user-MSS. Reserve maximum option space for middleboxes that add
3424 * private TCP options. The cost is reduced data space in SYN :(
3426 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3428 space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3429 MAX_TCP_OPTION_SPACE;
3431 space = min_t(size_t, space, fo->size);
3433 /* limit to order-0 allocations */
3434 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3436 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3437 if (!syn_data)
3438 goto fallback;
3439 syn_data->ip_summed = CHECKSUM_PARTIAL;
3440 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3441 if (space) {
3442 int copied = copy_from_iter(skb_put(syn_data, space), space,
3443 &fo->data->msg_iter);
3444 if (unlikely(!copied)) {
3445 tcp_skb_tsorted_anchor_cleanup(syn_data);
3446 kfree_skb(syn_data);
3447 goto fallback;
3449 if (copied != space) {
3450 skb_trim(syn_data, copied);
3451 space = copied;
3454 /* No more data pending in inet_wait_for_connect() */
3455 if (space == fo->size)
3456 fo->data = NULL;
3457 fo->copied = space;
3459 tcp_connect_queue_skb(sk, syn_data);
3460 if (syn_data->len)
3461 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3463 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3465 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3467 /* Now full SYN+DATA was cloned and sent (or not),
3468 * remove the SYN from the original skb (syn_data)
3469 * we keep in write queue in case of a retransmit, as we
3470 * also have the SYN packet (with no data) in the same queue.
3472 TCP_SKB_CB(syn_data)->seq++;
3473 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3474 if (!err) {
3475 tp->syn_data = (fo->copied > 0);
3476 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3477 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3478 goto done;
3481 /* data was not sent, put it in write_queue */
3482 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3483 tp->packets_out -= tcp_skb_pcount(syn_data);
3485 fallback:
3486 /* Send a regular SYN with Fast Open cookie request option */
3487 if (fo->cookie.len > 0)
3488 fo->cookie.len = 0;
3489 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3490 if (err)
3491 tp->syn_fastopen = 0;
3492 done:
3493 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3494 return err;
3497 /* Build a SYN and send it off. */
3498 int tcp_connect(struct sock *sk)
3500 struct tcp_sock *tp = tcp_sk(sk);
3501 struct sk_buff *buff;
3502 int err;
3504 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3506 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3507 return -EHOSTUNREACH; /* Routing failure or similar. */
3509 tcp_connect_init(sk);
3511 if (unlikely(tp->repair)) {
3512 tcp_finish_connect(sk, NULL);
3513 return 0;
3516 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3517 if (unlikely(!buff))
3518 return -ENOBUFS;
3520 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3521 tcp_mstamp_refresh(tp);
3522 tp->retrans_stamp = tcp_time_stamp(tp);
3523 tcp_connect_queue_skb(sk, buff);
3524 tcp_ecn_send_syn(sk, buff);
3525 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3527 /* Send off SYN; include data in Fast Open. */
3528 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3529 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3530 if (err == -ECONNREFUSED)
3531 return err;
3533 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3534 * in order to make this packet get counted in tcpOutSegs.
3536 tp->snd_nxt = tp->write_seq;
3537 tp->pushed_seq = tp->write_seq;
3538 buff = tcp_send_head(sk);
3539 if (unlikely(buff)) {
3540 tp->snd_nxt = TCP_SKB_CB(buff)->seq;
3541 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3543 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3545 /* Timer for repeating the SYN until an answer. */
3546 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3547 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3548 return 0;
3550 EXPORT_SYMBOL(tcp_connect);
3552 /* Send out a delayed ack, the caller does the policy checking
3553 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3554 * for details.
3556 void tcp_send_delayed_ack(struct sock *sk)
3558 struct inet_connection_sock *icsk = inet_csk(sk);
3559 int ato = icsk->icsk_ack.ato;
3560 unsigned long timeout;
3562 if (ato > TCP_DELACK_MIN) {
3563 const struct tcp_sock *tp = tcp_sk(sk);
3564 int max_ato = HZ / 2;
3566 if (icsk->icsk_ack.pingpong ||
3567 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3568 max_ato = TCP_DELACK_MAX;
3570 /* Slow path, intersegment interval is "high". */
3572 /* If some rtt estimate is known, use it to bound delayed ack.
3573 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3574 * directly.
3576 if (tp->srtt_us) {
3577 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3578 TCP_DELACK_MIN);
3580 if (rtt < max_ato)
3581 max_ato = rtt;
3584 ato = min(ato, max_ato);
3587 /* Stay within the limit we were given */
3588 timeout = jiffies + ato;
3590 /* Use new timeout only if there wasn't a older one earlier. */
3591 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3592 /* If delack timer was blocked or is about to expire,
3593 * send ACK now.
3595 if (icsk->icsk_ack.blocked ||
3596 time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3597 tcp_send_ack(sk);
3598 return;
3601 if (!time_before(timeout, icsk->icsk_ack.timeout))
3602 timeout = icsk->icsk_ack.timeout;
3604 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3605 icsk->icsk_ack.timeout = timeout;
3606 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3609 /* This routine sends an ack and also updates the window. */
3610 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3612 struct sk_buff *buff;
3614 /* If we have been reset, we may not send again. */
3615 if (sk->sk_state == TCP_CLOSE)
3616 return;
3618 /* We are not putting this on the write queue, so
3619 * tcp_transmit_skb() will set the ownership to this
3620 * sock.
3622 buff = alloc_skb(MAX_TCP_HEADER,
3623 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3624 if (unlikely(!buff)) {
3625 inet_csk_schedule_ack(sk);
3626 inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3627 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3628 TCP_DELACK_MAX, TCP_RTO_MAX);
3629 return;
3632 /* Reserve space for headers and prepare control bits. */
3633 skb_reserve(buff, MAX_TCP_HEADER);
3634 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3636 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
3637 * too much.
3638 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3640 skb_set_tcp_pure_ack(buff);
3642 /* Send it off, this clears delayed acks for us. */
3643 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
3645 EXPORT_SYMBOL_GPL(__tcp_send_ack);
3647 void tcp_send_ack(struct sock *sk)
3649 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
3652 /* This routine sends a packet with an out of date sequence
3653 * number. It assumes the other end will try to ack it.
3655 * Question: what should we make while urgent mode?
3656 * 4.4BSD forces sending single byte of data. We cannot send
3657 * out of window data, because we have SND.NXT==SND.MAX...
3659 * Current solution: to send TWO zero-length segments in urgent mode:
3660 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3661 * out-of-date with SND.UNA-1 to probe window.
3663 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3665 struct tcp_sock *tp = tcp_sk(sk);
3666 struct sk_buff *skb;
3668 /* We don't queue it, tcp_transmit_skb() sets ownership. */
3669 skb = alloc_skb(MAX_TCP_HEADER,
3670 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3671 if (!skb)
3672 return -1;
3674 /* Reserve space for headers and set control bits. */
3675 skb_reserve(skb, MAX_TCP_HEADER);
3676 /* Use a previous sequence. This should cause the other
3677 * end to send an ack. Don't queue or clone SKB, just
3678 * send it.
3680 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3681 NET_INC_STATS(sock_net(sk), mib);
3682 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3685 /* Called from setsockopt( ... TCP_REPAIR ) */
3686 void tcp_send_window_probe(struct sock *sk)
3688 if (sk->sk_state == TCP_ESTABLISHED) {
3689 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3690 tcp_mstamp_refresh(tcp_sk(sk));
3691 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3695 /* Initiate keepalive or window probe from timer. */
3696 int tcp_write_wakeup(struct sock *sk, int mib)
3698 struct tcp_sock *tp = tcp_sk(sk);
3699 struct sk_buff *skb;
3701 if (sk->sk_state == TCP_CLOSE)
3702 return -1;
3704 skb = tcp_send_head(sk);
3705 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3706 int err;
3707 unsigned int mss = tcp_current_mss(sk);
3708 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3710 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3711 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3713 /* We are probing the opening of a window
3714 * but the window size is != 0
3715 * must have been a result SWS avoidance ( sender )
3717 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3718 skb->len > mss) {
3719 seg_size = min(seg_size, mss);
3720 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3721 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
3722 skb, seg_size, mss, GFP_ATOMIC))
3723 return -1;
3724 } else if (!tcp_skb_pcount(skb))
3725 tcp_set_skb_tso_segs(skb, mss);
3727 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3728 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3729 if (!err)
3730 tcp_event_new_data_sent(sk, skb);
3731 return err;
3732 } else {
3733 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3734 tcp_xmit_probe_skb(sk, 1, mib);
3735 return tcp_xmit_probe_skb(sk, 0, mib);
3739 /* A window probe timeout has occurred. If window is not closed send
3740 * a partial packet else a zero probe.
3742 void tcp_send_probe0(struct sock *sk)
3744 struct inet_connection_sock *icsk = inet_csk(sk);
3745 struct tcp_sock *tp = tcp_sk(sk);
3746 struct net *net = sock_net(sk);
3747 unsigned long probe_max;
3748 int err;
3750 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3752 if (tp->packets_out || tcp_write_queue_empty(sk)) {
3753 /* Cancel probe timer, if it is not required. */
3754 icsk->icsk_probes_out = 0;
3755 icsk->icsk_backoff = 0;
3756 return;
3759 if (err <= 0) {
3760 if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3761 icsk->icsk_backoff++;
3762 icsk->icsk_probes_out++;
3763 probe_max = TCP_RTO_MAX;
3764 } else {
3765 /* If packet was not sent due to local congestion,
3766 * do not backoff and do not remember icsk_probes_out.
3767 * Let local senders to fight for local resources.
3769 * Use accumulated backoff yet.
3771 if (!icsk->icsk_probes_out)
3772 icsk->icsk_probes_out = 1;
3773 probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3775 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3776 tcp_probe0_when(sk, probe_max),
3777 TCP_RTO_MAX,
3778 NULL);
3781 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3783 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3784 struct flowi fl;
3785 int res;
3787 tcp_rsk(req)->txhash = net_tx_rndhash();
3788 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL);
3789 if (!res) {
3790 __TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
3791 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3792 if (unlikely(tcp_passive_fastopen(sk)))
3793 tcp_sk(sk)->total_retrans++;
3794 trace_tcp_retransmit_synack(sk, req);
3796 return res;
3798 EXPORT_SYMBOL(tcp_rtx_synack);