2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
38 static inline void ieee80211_rx_stats(struct net_device
*dev
, u32 len
)
40 struct pcpu_sw_netstats
*tstats
= this_cpu_ptr(dev
->tstats
);
42 u64_stats_update_begin(&tstats
->syncp
);
44 tstats
->rx_bytes
+= len
;
45 u64_stats_update_end(&tstats
->syncp
);
48 static u8
*ieee80211_get_bssid(struct ieee80211_hdr
*hdr
, size_t len
,
49 enum nl80211_iftype type
)
51 __le16 fc
= hdr
->frame_control
;
53 if (ieee80211_is_data(fc
)) {
54 if (len
< 24) /* drop incorrect hdr len (data) */
57 if (ieee80211_has_a4(fc
))
59 if (ieee80211_has_tods(fc
))
61 if (ieee80211_has_fromds(fc
))
67 if (ieee80211_is_mgmt(fc
)) {
68 if (len
< 24) /* drop incorrect hdr len (mgmt) */
73 if (ieee80211_is_ctl(fc
)) {
74 if (ieee80211_is_pspoll(fc
))
77 if (ieee80211_is_back_req(fc
)) {
79 case NL80211_IFTYPE_STATION
:
81 case NL80211_IFTYPE_AP
:
82 case NL80211_IFTYPE_AP_VLAN
:
85 break; /* fall through to the return */
94 * monitor mode reception
96 * This function cleans up the SKB, i.e. it removes all the stuff
97 * only useful for monitoring.
99 static void remove_monitor_info(struct sk_buff
*skb
,
100 unsigned int present_fcs_len
,
101 unsigned int rtap_space
)
104 __pskb_trim(skb
, skb
->len
- present_fcs_len
);
105 __pskb_pull(skb
, rtap_space
);
108 static inline bool should_drop_frame(struct sk_buff
*skb
, int present_fcs_len
,
109 unsigned int rtap_space
)
111 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
112 struct ieee80211_hdr
*hdr
;
114 hdr
= (void *)(skb
->data
+ rtap_space
);
116 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
|
117 RX_FLAG_FAILED_PLCP_CRC
|
118 RX_FLAG_ONLY_MONITOR
|
122 if (unlikely(skb
->len
< 16 + present_fcs_len
+ rtap_space
))
125 if (ieee80211_is_ctl(hdr
->frame_control
) &&
126 !ieee80211_is_pspoll(hdr
->frame_control
) &&
127 !ieee80211_is_back_req(hdr
->frame_control
))
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local
*local
,
135 struct ieee80211_rx_status
*status
,
140 /* always present fields */
141 len
= sizeof(struct ieee80211_radiotap_header
) + 8;
143 /* allocate extra bitmaps */
145 len
+= 4 * hweight8(status
->chains
);
147 if (ieee80211_have_rx_timestamp(status
)) {
151 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
))
154 /* antenna field, if we don't have per-chain info */
158 /* padding for RX_FLAGS if necessary */
161 if (status
->encoding
== RX_ENC_HT
) /* HT info */
164 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
169 if (status
->encoding
== RX_ENC_VHT
) {
174 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
179 if (status
->encoding
== RX_ENC_HE
&&
180 status
->flag
& RX_FLAG_RADIOTAP_HE
) {
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he
) != 12);
186 if (status
->encoding
== RX_ENC_HE
&&
187 status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu
) != 12);
193 if (status
->flag
& RX_FLAG_NO_PSDU
)
196 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig
) != 4);
202 if (status
->chains
) {
203 /* antenna and antenna signal fields */
204 len
+= 2 * hweight8(status
->chains
);
207 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
208 struct ieee80211_vendor_radiotap
*rtap
= (void *)skb
->data
;
210 /* vendor presence bitmap */
212 /* alignment for fixed 6-byte vendor data header */
214 /* vendor data header */
216 if (WARN_ON(rtap
->align
== 0))
218 len
= ALIGN(len
, rtap
->align
);
219 len
+= rtap
->len
+ rtap
->pad
;
225 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data
*sdata
,
230 struct ieee80211_hdr_3addr hdr
;
238 BUILD_BUG_ON(sizeof(action
) != IEEE80211_MIN_ACTION_SIZE
+ 1);
240 if (skb
->len
< rtap_space
+ sizeof(action
) +
241 VHT_MUMIMO_GROUPS_DATA_LEN
)
244 if (!is_valid_ether_addr(sdata
->u
.mntr
.mu_follow_addr
))
247 skb_copy_bits(skb
, rtap_space
, &action
, sizeof(action
));
249 if (!ieee80211_is_action(action
.hdr
.frame_control
))
252 if (action
.category
!= WLAN_CATEGORY_VHT
)
255 if (action
.action_code
!= WLAN_VHT_ACTION_GROUPID_MGMT
)
258 if (!ether_addr_equal(action
.hdr
.addr1
, sdata
->u
.mntr
.mu_follow_addr
))
261 skb
= skb_copy(skb
, GFP_ATOMIC
);
265 skb_queue_tail(&sdata
->skb_queue
, skb
);
266 ieee80211_queue_work(&sdata
->local
->hw
, &sdata
->work
);
270 * ieee80211_add_rx_radiotap_header - add radiotap header
272 * add a radiotap header containing all the fields which the hardware provided.
275 ieee80211_add_rx_radiotap_header(struct ieee80211_local
*local
,
277 struct ieee80211_rate
*rate
,
278 int rtap_len
, bool has_fcs
)
280 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
281 struct ieee80211_radiotap_header
*rthdr
;
286 u16 channel_flags
= 0;
288 unsigned long chains
= status
->chains
;
289 struct ieee80211_vendor_radiotap rtap
= {};
290 struct ieee80211_radiotap_he he
= {};
291 struct ieee80211_radiotap_he_mu he_mu
= {};
292 struct ieee80211_radiotap_lsig lsig
= {};
294 if (status
->flag
& RX_FLAG_RADIOTAP_HE
) {
295 he
= *(struct ieee80211_radiotap_he
*)skb
->data
;
296 skb_pull(skb
, sizeof(he
));
297 WARN_ON_ONCE(status
->encoding
!= RX_ENC_HE
);
300 if (status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
301 he_mu
= *(struct ieee80211_radiotap_he_mu
*)skb
->data
;
302 skb_pull(skb
, sizeof(he_mu
));
305 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
306 lsig
= *(struct ieee80211_radiotap_lsig
*)skb
->data
;
307 skb_pull(skb
, sizeof(lsig
));
310 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
311 rtap
= *(struct ieee80211_vendor_radiotap
*)skb
->data
;
312 /* rtap.len and rtap.pad are undone immediately */
313 skb_pull(skb
, sizeof(rtap
) + rtap
.len
+ rtap
.pad
);
317 if (!(has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)))
320 rthdr
= skb_push(skb
, rtap_len
);
321 memset(rthdr
, 0, rtap_len
- rtap
.len
- rtap
.pad
);
322 it_present
= &rthdr
->it_present
;
324 /* radiotap header, set always present flags */
325 rthdr
->it_len
= cpu_to_le16(rtap_len
);
326 it_present_val
= BIT(IEEE80211_RADIOTAP_FLAGS
) |
327 BIT(IEEE80211_RADIOTAP_CHANNEL
) |
328 BIT(IEEE80211_RADIOTAP_RX_FLAGS
);
331 it_present_val
|= BIT(IEEE80211_RADIOTAP_ANTENNA
);
333 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
335 BIT(IEEE80211_RADIOTAP_EXT
) |
336 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE
);
337 put_unaligned_le32(it_present_val
, it_present
);
339 it_present_val
= BIT(IEEE80211_RADIOTAP_ANTENNA
) |
340 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
343 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
344 it_present_val
|= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE
) |
345 BIT(IEEE80211_RADIOTAP_EXT
);
346 put_unaligned_le32(it_present_val
, it_present
);
348 it_present_val
= rtap
.present
;
351 put_unaligned_le32(it_present_val
, it_present
);
353 pos
= (void *)(it_present
+ 1);
355 /* the order of the following fields is important */
357 /* IEEE80211_RADIOTAP_TSFT */
358 if (ieee80211_have_rx_timestamp(status
)) {
360 while ((pos
- (u8
*)rthdr
) & 7)
363 ieee80211_calculate_rx_timestamp(local
, status
,
366 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT
);
370 /* IEEE80211_RADIOTAP_FLAGS */
371 if (has_fcs
&& ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
))
372 *pos
|= IEEE80211_RADIOTAP_F_FCS
;
373 if (status
->flag
& (RX_FLAG_FAILED_FCS_CRC
| RX_FLAG_FAILED_PLCP_CRC
))
374 *pos
|= IEEE80211_RADIOTAP_F_BADFCS
;
375 if (status
->enc_flags
& RX_ENC_FLAG_SHORTPRE
)
376 *pos
|= IEEE80211_RADIOTAP_F_SHORTPRE
;
379 /* IEEE80211_RADIOTAP_RATE */
380 if (!rate
|| status
->encoding
!= RX_ENC_LEGACY
) {
382 * Without rate information don't add it. If we have,
383 * MCS information is a separate field in radiotap,
384 * added below. The byte here is needed as padding
385 * for the channel though, so initialise it to 0.
390 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE
);
391 if (status
->bw
== RATE_INFO_BW_10
)
393 else if (status
->bw
== RATE_INFO_BW_5
)
395 *pos
= DIV_ROUND_UP(rate
->bitrate
, 5 * (1 << shift
));
399 /* IEEE80211_RADIOTAP_CHANNEL */
400 put_unaligned_le16(status
->freq
, pos
);
402 if (status
->bw
== RATE_INFO_BW_10
)
403 channel_flags
|= IEEE80211_CHAN_HALF
;
404 else if (status
->bw
== RATE_INFO_BW_5
)
405 channel_flags
|= IEEE80211_CHAN_QUARTER
;
407 if (status
->band
== NL80211_BAND_5GHZ
)
408 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_5GHZ
;
409 else if (status
->encoding
!= RX_ENC_LEGACY
)
410 channel_flags
|= IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
411 else if (rate
&& rate
->flags
& IEEE80211_RATE_ERP_G
)
412 channel_flags
|= IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_2GHZ
;
414 channel_flags
|= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_2GHZ
;
416 channel_flags
|= IEEE80211_CHAN_2GHZ
;
417 put_unaligned_le16(channel_flags
, pos
);
420 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
421 if (ieee80211_hw_check(&local
->hw
, SIGNAL_DBM
) &&
422 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
423 *pos
= status
->signal
;
425 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL
);
429 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
431 if (!status
->chains
) {
432 /* IEEE80211_RADIOTAP_ANTENNA */
433 *pos
= status
->antenna
;
437 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
439 /* IEEE80211_RADIOTAP_RX_FLAGS */
440 /* ensure 2 byte alignment for the 2 byte field as required */
441 if ((pos
- (u8
*)rthdr
) & 1)
443 if (status
->flag
& RX_FLAG_FAILED_PLCP_CRC
)
444 rx_flags
|= IEEE80211_RADIOTAP_F_RX_BADPLCP
;
445 put_unaligned_le16(rx_flags
, pos
);
448 if (status
->encoding
== RX_ENC_HT
) {
451 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS
);
452 *pos
++ = local
->hw
.radiotap_mcs_details
;
454 if (status
->enc_flags
& RX_ENC_FLAG_SHORT_GI
)
455 *pos
|= IEEE80211_RADIOTAP_MCS_SGI
;
456 if (status
->bw
== RATE_INFO_BW_40
)
457 *pos
|= IEEE80211_RADIOTAP_MCS_BW_40
;
458 if (status
->enc_flags
& RX_ENC_FLAG_HT_GF
)
459 *pos
|= IEEE80211_RADIOTAP_MCS_FMT_GF
;
460 if (status
->enc_flags
& RX_ENC_FLAG_LDPC
)
461 *pos
|= IEEE80211_RADIOTAP_MCS_FEC_LDPC
;
462 stbc
= (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
) >> RX_ENC_FLAG_STBC_SHIFT
;
463 *pos
|= stbc
<< IEEE80211_RADIOTAP_MCS_STBC_SHIFT
;
465 *pos
++ = status
->rate_idx
;
468 if (status
->flag
& RX_FLAG_AMPDU_DETAILS
) {
471 /* ensure 4 byte alignment */
472 while ((pos
- (u8
*)rthdr
) & 3)
475 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS
);
476 put_unaligned_le32(status
->ampdu_reference
, pos
);
478 if (status
->flag
& RX_FLAG_AMPDU_LAST_KNOWN
)
479 flags
|= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN
;
480 if (status
->flag
& RX_FLAG_AMPDU_IS_LAST
)
481 flags
|= IEEE80211_RADIOTAP_AMPDU_IS_LAST
;
482 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_ERROR
)
483 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR
;
484 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
485 flags
|= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN
;
486 if (status
->flag
& RX_FLAG_AMPDU_EOF_BIT_KNOWN
)
487 flags
|= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN
;
488 if (status
->flag
& RX_FLAG_AMPDU_EOF_BIT
)
489 flags
|= IEEE80211_RADIOTAP_AMPDU_EOF
;
490 put_unaligned_le16(flags
, pos
);
492 if (status
->flag
& RX_FLAG_AMPDU_DELIM_CRC_KNOWN
)
493 *pos
++ = status
->ampdu_delimiter_crc
;
499 if (status
->encoding
== RX_ENC_VHT
) {
500 u16 known
= local
->hw
.radiotap_vht_details
;
502 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT
);
503 put_unaligned_le16(known
, pos
);
506 if (status
->enc_flags
& RX_ENC_FLAG_SHORT_GI
)
507 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_SGI
;
508 /* in VHT, STBC is binary */
509 if (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
)
510 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_STBC
;
511 if (status
->enc_flags
& RX_ENC_FLAG_BF
)
512 *pos
|= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED
;
515 switch (status
->bw
) {
516 case RATE_INFO_BW_80
:
519 case RATE_INFO_BW_160
:
522 case RATE_INFO_BW_40
:
529 *pos
= (status
->rate_idx
<< 4) | status
->nss
;
532 if (status
->enc_flags
& RX_ENC_FLAG_LDPC
)
533 *pos
|= IEEE80211_RADIOTAP_CODING_LDPC_USER0
;
541 if (local
->hw
.radiotap_timestamp
.units_pos
>= 0) {
543 u8 flags
= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT
;
546 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP
);
548 /* ensure 8 byte alignment */
549 while ((pos
- (u8
*)rthdr
) & 7)
552 put_unaligned_le64(status
->device_timestamp
, pos
);
555 if (local
->hw
.radiotap_timestamp
.accuracy
>= 0) {
556 accuracy
= local
->hw
.radiotap_timestamp
.accuracy
;
557 flags
|= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY
;
559 put_unaligned_le16(accuracy
, pos
);
562 *pos
++ = local
->hw
.radiotap_timestamp
.units_pos
;
566 if (status
->encoding
== RX_ENC_HE
&&
567 status
->flag
& RX_FLAG_RADIOTAP_HE
) {
568 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
570 if (status
->enc_flags
& RX_ENC_FLAG_STBC_MASK
) {
571 he
.data6
|= HE_PREP(DATA6_NSTS
,
572 FIELD_GET(RX_ENC_FLAG_STBC_MASK
,
574 he
.data3
|= HE_PREP(DATA3_STBC
, 1);
576 he
.data6
|= HE_PREP(DATA6_NSTS
, status
->nss
);
579 #define CHECK_GI(s) \
580 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
581 (int)NL80211_RATE_INFO_HE_GI_##s)
587 he
.data3
|= HE_PREP(DATA3_DATA_MCS
, status
->rate_idx
);
588 he
.data3
|= HE_PREP(DATA3_DATA_DCM
, status
->he_dcm
);
589 he
.data3
|= HE_PREP(DATA3_CODING
,
590 !!(status
->enc_flags
& RX_ENC_FLAG_LDPC
));
592 he
.data5
|= HE_PREP(DATA5_GI
, status
->he_gi
);
594 switch (status
->bw
) {
595 case RATE_INFO_BW_20
:
596 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
597 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ
);
599 case RATE_INFO_BW_40
:
600 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
601 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ
);
603 case RATE_INFO_BW_80
:
604 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
605 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ
);
607 case RATE_INFO_BW_160
:
608 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
609 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ
);
611 case RATE_INFO_BW_HE_RU
:
612 #define CHECK_RU_ALLOC(s) \
613 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
614 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
622 CHECK_RU_ALLOC(2x996
);
624 he
.data5
|= HE_PREP(DATA5_DATA_BW_RU_ALLOC
,
628 WARN_ONCE(1, "Invalid SU BW %d\n", status
->bw
);
631 /* ensure 2 byte alignment */
632 while ((pos
- (u8
*)rthdr
) & 1)
634 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE
);
635 memcpy(pos
, &he
, sizeof(he
));
639 if (status
->encoding
== RX_ENC_HE
&&
640 status
->flag
& RX_FLAG_RADIOTAP_HE_MU
) {
641 /* ensure 2 byte alignment */
642 while ((pos
- (u8
*)rthdr
) & 1)
644 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU
);
645 memcpy(pos
, &he_mu
, sizeof(he_mu
));
646 pos
+= sizeof(he_mu
);
649 if (status
->flag
& RX_FLAG_NO_PSDU
) {
651 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU
);
652 *pos
++ = status
->zero_length_psdu_type
;
655 if (status
->flag
& RX_FLAG_RADIOTAP_LSIG
) {
656 /* ensure 2 byte alignment */
657 while ((pos
- (u8
*)rthdr
) & 1)
659 rthdr
->it_present
|= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG
);
660 memcpy(pos
, &lsig
, sizeof(lsig
));
664 for_each_set_bit(chain
, &chains
, IEEE80211_MAX_CHAINS
) {
665 *pos
++ = status
->chain_signal
[chain
];
669 if (status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
) {
670 /* ensure 2 byte alignment for the vendor field as required */
671 if ((pos
- (u8
*)rthdr
) & 1)
673 *pos
++ = rtap
.oui
[0];
674 *pos
++ = rtap
.oui
[1];
675 *pos
++ = rtap
.oui
[2];
677 put_unaligned_le16(rtap
.len
, pos
);
679 /* align the actual payload as requested */
680 while ((pos
- (u8
*)rthdr
) & (rtap
.align
- 1))
682 /* data (and possible padding) already follows */
686 static struct sk_buff
*
687 ieee80211_make_monitor_skb(struct ieee80211_local
*local
,
688 struct sk_buff
**origskb
,
689 struct ieee80211_rate
*rate
,
690 int rtap_space
, bool use_origskb
)
692 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(*origskb
);
693 int rt_hdrlen
, needed_headroom
;
696 /* room for the radiotap header based on driver features */
697 rt_hdrlen
= ieee80211_rx_radiotap_hdrlen(local
, status
, *origskb
);
698 needed_headroom
= rt_hdrlen
- rtap_space
;
701 /* only need to expand headroom if necessary */
706 * This shouldn't trigger often because most devices have an
707 * RX header they pull before we get here, and that should
708 * be big enough for our radiotap information. We should
709 * probably export the length to drivers so that we can have
710 * them allocate enough headroom to start with.
712 if (skb_headroom(skb
) < needed_headroom
&&
713 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
)) {
719 * Need to make a copy and possibly remove radiotap header
720 * and FCS from the original.
722 skb
= skb_copy_expand(*origskb
, needed_headroom
, 0, GFP_ATOMIC
);
728 /* prepend radiotap information */
729 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, rt_hdrlen
, true);
731 skb_reset_mac_header(skb
);
732 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
733 skb
->pkt_type
= PACKET_OTHERHOST
;
734 skb
->protocol
= htons(ETH_P_802_2
);
740 * This function copies a received frame to all monitor interfaces and
741 * returns a cleaned-up SKB that no longer includes the FCS nor the
742 * radiotap header the driver might have added.
744 static struct sk_buff
*
745 ieee80211_rx_monitor(struct ieee80211_local
*local
, struct sk_buff
*origskb
,
746 struct ieee80211_rate
*rate
)
748 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(origskb
);
749 struct ieee80211_sub_if_data
*sdata
;
750 struct sk_buff
*monskb
= NULL
;
751 int present_fcs_len
= 0;
752 unsigned int rtap_space
= 0;
753 struct ieee80211_sub_if_data
*monitor_sdata
=
754 rcu_dereference(local
->monitor_sdata
);
755 bool only_monitor
= false;
757 if (status
->flag
& RX_FLAG_RADIOTAP_HE
)
758 rtap_space
+= sizeof(struct ieee80211_radiotap_he
);
760 if (status
->flag
& RX_FLAG_RADIOTAP_HE_MU
)
761 rtap_space
+= sizeof(struct ieee80211_radiotap_he_mu
);
763 if (unlikely(status
->flag
& RX_FLAG_RADIOTAP_VENDOR_DATA
)) {
764 struct ieee80211_vendor_radiotap
*rtap
= (void *)origskb
->data
;
766 rtap_space
+= sizeof(*rtap
) + rtap
->len
+ rtap
->pad
;
770 * First, we may need to make a copy of the skb because
771 * (1) we need to modify it for radiotap (if not present), and
772 * (2) the other RX handlers will modify the skb we got.
774 * We don't need to, of course, if we aren't going to return
775 * the SKB because it has a bad FCS/PLCP checksum.
778 if (ieee80211_hw_check(&local
->hw
, RX_INCLUDES_FCS
)) {
779 if (unlikely(origskb
->len
<= FCS_LEN
)) {
782 dev_kfree_skb(origskb
);
785 present_fcs_len
= FCS_LEN
;
788 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
789 if (!pskb_may_pull(origskb
, 2 + rtap_space
)) {
790 dev_kfree_skb(origskb
);
794 only_monitor
= should_drop_frame(origskb
, present_fcs_len
, rtap_space
);
796 if (!local
->monitors
|| (status
->flag
& RX_FLAG_SKIP_MONITOR
)) {
798 dev_kfree_skb(origskb
);
802 remove_monitor_info(origskb
, present_fcs_len
, rtap_space
);
806 ieee80211_handle_mu_mimo_mon(monitor_sdata
, origskb
, rtap_space
);
808 list_for_each_entry_rcu(sdata
, &local
->mon_list
, u
.mntr
.list
) {
809 bool last_monitor
= list_is_last(&sdata
->u
.mntr
.list
,
813 monskb
= ieee80211_make_monitor_skb(local
, &origskb
,
825 skb
= skb_clone(monskb
, GFP_ATOMIC
);
829 skb
->dev
= sdata
->dev
;
830 ieee80211_rx_stats(skb
->dev
, skb
->len
);
831 netif_receive_skb(skb
);
839 /* this happens if last_monitor was erroneously false */
840 dev_kfree_skb(monskb
);
846 remove_monitor_info(origskb
, present_fcs_len
, rtap_space
);
850 static void ieee80211_parse_qos(struct ieee80211_rx_data
*rx
)
852 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
853 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
854 int tid
, seqno_idx
, security_idx
;
856 /* does the frame have a qos control field? */
857 if (ieee80211_is_data_qos(hdr
->frame_control
)) {
858 u8
*qc
= ieee80211_get_qos_ctl(hdr
);
859 /* frame has qos control */
860 tid
= *qc
& IEEE80211_QOS_CTL_TID_MASK
;
861 if (*qc
& IEEE80211_QOS_CTL_A_MSDU_PRESENT
)
862 status
->rx_flags
|= IEEE80211_RX_AMSDU
;
868 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
870 * Sequence numbers for management frames, QoS data
871 * frames with a broadcast/multicast address in the
872 * Address 1 field, and all non-QoS data frames sent
873 * by QoS STAs are assigned using an additional single
874 * modulo-4096 counter, [...]
876 * We also use that counter for non-QoS STAs.
878 seqno_idx
= IEEE80211_NUM_TIDS
;
880 if (ieee80211_is_mgmt(hdr
->frame_control
))
881 security_idx
= IEEE80211_NUM_TIDS
;
885 rx
->seqno_idx
= seqno_idx
;
886 rx
->security_idx
= security_idx
;
887 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
888 * For now, set skb->priority to 0 for other cases. */
889 rx
->skb
->priority
= (tid
> 7) ? 0 : tid
;
893 * DOC: Packet alignment
895 * Drivers always need to pass packets that are aligned to two-byte boundaries
898 * Additionally, should, if possible, align the payload data in a way that
899 * guarantees that the contained IP header is aligned to a four-byte
900 * boundary. In the case of regular frames, this simply means aligning the
901 * payload to a four-byte boundary (because either the IP header is directly
902 * contained, or IV/RFC1042 headers that have a length divisible by four are
903 * in front of it). If the payload data is not properly aligned and the
904 * architecture doesn't support efficient unaligned operations, mac80211
905 * will align the data.
907 * With A-MSDU frames, however, the payload data address must yield two modulo
908 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
909 * push the IP header further back to a multiple of four again. Thankfully, the
910 * specs were sane enough this time around to require padding each A-MSDU
911 * subframe to a length that is a multiple of four.
913 * Padding like Atheros hardware adds which is between the 802.11 header and
914 * the payload is not supported, the driver is required to move the 802.11
915 * header to be directly in front of the payload in that case.
917 static void ieee80211_verify_alignment(struct ieee80211_rx_data
*rx
)
919 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
920 WARN_ON_ONCE((unsigned long)rx
->skb
->data
& 1);
927 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff
*skb
)
929 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
931 if (is_multicast_ether_addr(hdr
->addr1
))
934 return ieee80211_is_robust_mgmt_frame(skb
);
938 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff
*skb
)
940 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
942 if (!is_multicast_ether_addr(hdr
->addr1
))
945 return ieee80211_is_robust_mgmt_frame(skb
);
949 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
950 static int ieee80211_get_mmie_keyidx(struct sk_buff
*skb
)
952 struct ieee80211_mgmt
*hdr
= (struct ieee80211_mgmt
*) skb
->data
;
953 struct ieee80211_mmie
*mmie
;
954 struct ieee80211_mmie_16
*mmie16
;
956 if (skb
->len
< 24 + sizeof(*mmie
) || !is_multicast_ether_addr(hdr
->da
))
959 if (!ieee80211_is_robust_mgmt_frame(skb
))
960 return -1; /* not a robust management frame */
962 mmie
= (struct ieee80211_mmie
*)
963 (skb
->data
+ skb
->len
- sizeof(*mmie
));
964 if (mmie
->element_id
== WLAN_EID_MMIE
&&
965 mmie
->length
== sizeof(*mmie
) - 2)
966 return le16_to_cpu(mmie
->key_id
);
968 mmie16
= (struct ieee80211_mmie_16
*)
969 (skb
->data
+ skb
->len
- sizeof(*mmie16
));
970 if (skb
->len
>= 24 + sizeof(*mmie16
) &&
971 mmie16
->element_id
== WLAN_EID_MMIE
&&
972 mmie16
->length
== sizeof(*mmie16
) - 2)
973 return le16_to_cpu(mmie16
->key_id
);
978 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme
*cs
,
981 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
986 fc
= hdr
->frame_control
;
987 hdrlen
= ieee80211_hdrlen(fc
);
989 if (skb
->len
< hdrlen
+ cs
->hdr_len
)
992 skb_copy_bits(skb
, hdrlen
+ cs
->key_idx_off
, &keyid
, 1);
993 keyid
&= cs
->key_idx_mask
;
994 keyid
>>= cs
->key_idx_shift
;
999 static ieee80211_rx_result
ieee80211_rx_mesh_check(struct ieee80211_rx_data
*rx
)
1001 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1002 char *dev_addr
= rx
->sdata
->vif
.addr
;
1004 if (ieee80211_is_data(hdr
->frame_control
)) {
1005 if (is_multicast_ether_addr(hdr
->addr1
)) {
1006 if (ieee80211_has_tods(hdr
->frame_control
) ||
1007 !ieee80211_has_fromds(hdr
->frame_control
))
1008 return RX_DROP_MONITOR
;
1009 if (ether_addr_equal(hdr
->addr3
, dev_addr
))
1010 return RX_DROP_MONITOR
;
1012 if (!ieee80211_has_a4(hdr
->frame_control
))
1013 return RX_DROP_MONITOR
;
1014 if (ether_addr_equal(hdr
->addr4
, dev_addr
))
1015 return RX_DROP_MONITOR
;
1019 /* If there is not an established peer link and this is not a peer link
1020 * establisment frame, beacon or probe, drop the frame.
1023 if (!rx
->sta
|| sta_plink_state(rx
->sta
) != NL80211_PLINK_ESTAB
) {
1024 struct ieee80211_mgmt
*mgmt
;
1026 if (!ieee80211_is_mgmt(hdr
->frame_control
))
1027 return RX_DROP_MONITOR
;
1029 if (ieee80211_is_action(hdr
->frame_control
)) {
1032 /* make sure category field is present */
1033 if (rx
->skb
->len
< IEEE80211_MIN_ACTION_SIZE
)
1034 return RX_DROP_MONITOR
;
1036 mgmt
= (struct ieee80211_mgmt
*)hdr
;
1037 category
= mgmt
->u
.action
.category
;
1038 if (category
!= WLAN_CATEGORY_MESH_ACTION
&&
1039 category
!= WLAN_CATEGORY_SELF_PROTECTED
)
1040 return RX_DROP_MONITOR
;
1044 if (ieee80211_is_probe_req(hdr
->frame_control
) ||
1045 ieee80211_is_probe_resp(hdr
->frame_control
) ||
1046 ieee80211_is_beacon(hdr
->frame_control
) ||
1047 ieee80211_is_auth(hdr
->frame_control
))
1050 return RX_DROP_MONITOR
;
1056 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx
*tid_agg_rx
,
1059 struct sk_buff_head
*frames
= &tid_agg_rx
->reorder_buf
[index
];
1060 struct sk_buff
*tail
= skb_peek_tail(frames
);
1061 struct ieee80211_rx_status
*status
;
1063 if (tid_agg_rx
->reorder_buf_filtered
& BIT_ULL(index
))
1069 status
= IEEE80211_SKB_RXCB(tail
);
1070 if (status
->flag
& RX_FLAG_AMSDU_MORE
)
1076 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data
*sdata
,
1077 struct tid_ampdu_rx
*tid_agg_rx
,
1079 struct sk_buff_head
*frames
)
1081 struct sk_buff_head
*skb_list
= &tid_agg_rx
->reorder_buf
[index
];
1082 struct sk_buff
*skb
;
1083 struct ieee80211_rx_status
*status
;
1085 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1087 if (skb_queue_empty(skb_list
))
1090 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1091 __skb_queue_purge(skb_list
);
1095 /* release frames from the reorder ring buffer */
1096 tid_agg_rx
->stored_mpdu_num
--;
1097 while ((skb
= __skb_dequeue(skb_list
))) {
1098 status
= IEEE80211_SKB_RXCB(skb
);
1099 status
->rx_flags
|= IEEE80211_RX_DEFERRED_RELEASE
;
1100 __skb_queue_tail(frames
, skb
);
1104 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
1105 tid_agg_rx
->head_seq_num
= ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1108 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data
*sdata
,
1109 struct tid_ampdu_rx
*tid_agg_rx
,
1111 struct sk_buff_head
*frames
)
1115 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1117 while (ieee80211_sn_less(tid_agg_rx
->head_seq_num
, head_seq_num
)) {
1118 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1119 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
1125 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1126 * the skb was added to the buffer longer than this time ago, the earlier
1127 * frames that have not yet been received are assumed to be lost and the skb
1128 * can be released for processing. This may also release other skb's from the
1129 * reorder buffer if there are no additional gaps between the frames.
1131 * Callers must hold tid_agg_rx->reorder_lock.
1133 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1135 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data
*sdata
,
1136 struct tid_ampdu_rx
*tid_agg_rx
,
1137 struct sk_buff_head
*frames
)
1141 lockdep_assert_held(&tid_agg_rx
->reorder_lock
);
1143 /* release the buffer until next missing frame */
1144 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1145 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, index
) &&
1146 tid_agg_rx
->stored_mpdu_num
) {
1148 * No buffers ready to be released, but check whether any
1149 * frames in the reorder buffer have timed out.
1152 for (j
= (index
+ 1) % tid_agg_rx
->buf_size
; j
!= index
;
1153 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
1154 if (!ieee80211_rx_reorder_ready(tid_agg_rx
, j
)) {
1159 !time_after(jiffies
, tid_agg_rx
->reorder_time
[j
] +
1160 HT_RX_REORDER_BUF_TIMEOUT
))
1161 goto set_release_timer
;
1163 /* don't leave incomplete A-MSDUs around */
1164 for (i
= (index
+ 1) % tid_agg_rx
->buf_size
; i
!= j
;
1165 i
= (i
+ 1) % tid_agg_rx
->buf_size
)
1166 __skb_queue_purge(&tid_agg_rx
->reorder_buf
[i
]);
1168 ht_dbg_ratelimited(sdata
,
1169 "release an RX reorder frame due to timeout on earlier frames\n");
1170 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, j
,
1174 * Increment the head seq# also for the skipped slots.
1176 tid_agg_rx
->head_seq_num
=
1177 (tid_agg_rx
->head_seq_num
+
1178 skipped
) & IEEE80211_SN_MASK
;
1181 } else while (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1182 ieee80211_release_reorder_frame(sdata
, tid_agg_rx
, index
,
1184 index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1187 if (tid_agg_rx
->stored_mpdu_num
) {
1188 j
= index
= tid_agg_rx
->head_seq_num
% tid_agg_rx
->buf_size
;
1190 for (; j
!= (index
- 1) % tid_agg_rx
->buf_size
;
1191 j
= (j
+ 1) % tid_agg_rx
->buf_size
) {
1192 if (ieee80211_rx_reorder_ready(tid_agg_rx
, j
))
1198 if (!tid_agg_rx
->removed
)
1199 mod_timer(&tid_agg_rx
->reorder_timer
,
1200 tid_agg_rx
->reorder_time
[j
] + 1 +
1201 HT_RX_REORDER_BUF_TIMEOUT
);
1203 del_timer(&tid_agg_rx
->reorder_timer
);
1208 * As this function belongs to the RX path it must be under
1209 * rcu_read_lock protection. It returns false if the frame
1210 * can be processed immediately, true if it was consumed.
1212 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data
*sdata
,
1213 struct tid_ampdu_rx
*tid_agg_rx
,
1214 struct sk_buff
*skb
,
1215 struct sk_buff_head
*frames
)
1217 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1218 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1219 u16 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1220 u16 mpdu_seq_num
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
1221 u16 head_seq_num
, buf_size
;
1225 spin_lock(&tid_agg_rx
->reorder_lock
);
1228 * Offloaded BA sessions have no known starting sequence number so pick
1229 * one from first Rxed frame for this tid after BA was started.
1231 if (unlikely(tid_agg_rx
->auto_seq
)) {
1232 tid_agg_rx
->auto_seq
= false;
1233 tid_agg_rx
->ssn
= mpdu_seq_num
;
1234 tid_agg_rx
->head_seq_num
= mpdu_seq_num
;
1237 buf_size
= tid_agg_rx
->buf_size
;
1238 head_seq_num
= tid_agg_rx
->head_seq_num
;
1241 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1244 if (unlikely(!tid_agg_rx
->started
)) {
1245 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1249 tid_agg_rx
->started
= true;
1252 /* frame with out of date sequence number */
1253 if (ieee80211_sn_less(mpdu_seq_num
, head_seq_num
)) {
1259 * If frame the sequence number exceeds our buffering window
1260 * size release some previous frames to make room for this one.
1262 if (!ieee80211_sn_less(mpdu_seq_num
, head_seq_num
+ buf_size
)) {
1263 head_seq_num
= ieee80211_sn_inc(
1264 ieee80211_sn_sub(mpdu_seq_num
, buf_size
));
1265 /* release stored frames up to new head to stack */
1266 ieee80211_release_reorder_frames(sdata
, tid_agg_rx
,
1267 head_seq_num
, frames
);
1270 /* Now the new frame is always in the range of the reordering buffer */
1272 index
= mpdu_seq_num
% tid_agg_rx
->buf_size
;
1274 /* check if we already stored this frame */
1275 if (ieee80211_rx_reorder_ready(tid_agg_rx
, index
)) {
1281 * If the current MPDU is in the right order and nothing else
1282 * is stored we can process it directly, no need to buffer it.
1283 * If it is first but there's something stored, we may be able
1284 * to release frames after this one.
1286 if (mpdu_seq_num
== tid_agg_rx
->head_seq_num
&&
1287 tid_agg_rx
->stored_mpdu_num
== 0) {
1288 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
))
1289 tid_agg_rx
->head_seq_num
=
1290 ieee80211_sn_inc(tid_agg_rx
->head_seq_num
);
1295 /* put the frame in the reordering buffer */
1296 __skb_queue_tail(&tid_agg_rx
->reorder_buf
[index
], skb
);
1297 if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1298 tid_agg_rx
->reorder_time
[index
] = jiffies
;
1299 tid_agg_rx
->stored_mpdu_num
++;
1300 ieee80211_sta_reorder_release(sdata
, tid_agg_rx
, frames
);
1304 spin_unlock(&tid_agg_rx
->reorder_lock
);
1309 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1310 * true if the MPDU was buffered, false if it should be processed.
1312 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data
*rx
,
1313 struct sk_buff_head
*frames
)
1315 struct sk_buff
*skb
= rx
->skb
;
1316 struct ieee80211_local
*local
= rx
->local
;
1317 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*) skb
->data
;
1318 struct sta_info
*sta
= rx
->sta
;
1319 struct tid_ampdu_rx
*tid_agg_rx
;
1323 if (!ieee80211_is_data_qos(hdr
->frame_control
) ||
1324 is_multicast_ether_addr(hdr
->addr1
))
1328 * filter the QoS data rx stream according to
1329 * STA/TID and check if this STA/TID is on aggregation
1335 ack_policy
= *ieee80211_get_qos_ctl(hdr
) &
1336 IEEE80211_QOS_CTL_ACK_POLICY_MASK
;
1337 tid
= ieee80211_get_tid(hdr
);
1339 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
1341 if (ack_policy
== IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1342 !test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
1343 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
1344 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
1345 WLAN_BACK_RECIPIENT
,
1346 WLAN_REASON_QSTA_REQUIRE_SETUP
);
1350 /* qos null data frames are excluded */
1351 if (unlikely(hdr
->frame_control
& cpu_to_le16(IEEE80211_STYPE_NULLFUNC
)))
1354 /* not part of a BA session */
1355 if (ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK
&&
1356 ack_policy
!= IEEE80211_QOS_CTL_ACK_POLICY_NORMAL
)
1359 /* new, potentially un-ordered, ampdu frame - process it */
1361 /* reset session timer */
1362 if (tid_agg_rx
->timeout
)
1363 tid_agg_rx
->last_rx
= jiffies
;
1365 /* if this mpdu is fragmented - terminate rx aggregation session */
1366 sc
= le16_to_cpu(hdr
->seq_ctrl
);
1367 if (sc
& IEEE80211_SCTL_FRAG
) {
1368 skb_queue_tail(&rx
->sdata
->skb_queue
, skb
);
1369 ieee80211_queue_work(&local
->hw
, &rx
->sdata
->work
);
1374 * No locking needed -- we will only ever process one
1375 * RX packet at a time, and thus own tid_agg_rx. All
1376 * other code manipulating it needs to (and does) make
1377 * sure that we cannot get to it any more before doing
1380 if (ieee80211_sta_manage_reorder_buf(rx
->sdata
, tid_agg_rx
, skb
,
1385 __skb_queue_tail(frames
, skb
);
1388 static ieee80211_rx_result debug_noinline
1389 ieee80211_rx_h_check_dup(struct ieee80211_rx_data
*rx
)
1391 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1392 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1394 if (status
->flag
& RX_FLAG_DUP_VALIDATED
)
1398 * Drop duplicate 802.11 retransmissions
1399 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1402 if (rx
->skb
->len
< 24)
1405 if (ieee80211_is_ctl(hdr
->frame_control
) ||
1406 ieee80211_is_nullfunc(hdr
->frame_control
) ||
1407 ieee80211_is_qos_nullfunc(hdr
->frame_control
) ||
1408 is_multicast_ether_addr(hdr
->addr1
))
1414 if (unlikely(ieee80211_has_retry(hdr
->frame_control
) &&
1415 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] == hdr
->seq_ctrl
)) {
1416 I802_DEBUG_INC(rx
->local
->dot11FrameDuplicateCount
);
1417 rx
->sta
->rx_stats
.num_duplicates
++;
1418 return RX_DROP_UNUSABLE
;
1419 } else if (!(status
->flag
& RX_FLAG_AMSDU_MORE
)) {
1420 rx
->sta
->last_seq_ctrl
[rx
->seqno_idx
] = hdr
->seq_ctrl
;
1426 static ieee80211_rx_result debug_noinline
1427 ieee80211_rx_h_check(struct ieee80211_rx_data
*rx
)
1429 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
1431 /* Drop disallowed frame classes based on STA auth/assoc state;
1432 * IEEE 802.11, Chap 5.5.
1434 * mac80211 filters only based on association state, i.e. it drops
1435 * Class 3 frames from not associated stations. hostapd sends
1436 * deauth/disassoc frames when needed. In addition, hostapd is
1437 * responsible for filtering on both auth and assoc states.
1440 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1441 return ieee80211_rx_mesh_check(rx
);
1443 if (unlikely((ieee80211_is_data(hdr
->frame_control
) ||
1444 ieee80211_is_pspoll(hdr
->frame_control
)) &&
1445 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
1446 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_WDS
&&
1447 rx
->sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
1448 (!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_ASSOC
)))) {
1450 * accept port control frames from the AP even when it's not
1451 * yet marked ASSOC to prevent a race where we don't set the
1452 * assoc bit quickly enough before it sends the first frame
1454 if (rx
->sta
&& rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
1455 ieee80211_is_data_present(hdr
->frame_control
)) {
1456 unsigned int hdrlen
;
1459 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
1461 if (rx
->skb
->len
< hdrlen
+ 8)
1462 return RX_DROP_MONITOR
;
1464 skb_copy_bits(rx
->skb
, hdrlen
+ 6, ðertype
, 2);
1465 if (ethertype
== rx
->sdata
->control_port_protocol
)
1469 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
1470 cfg80211_rx_spurious_frame(rx
->sdata
->dev
,
1473 return RX_DROP_UNUSABLE
;
1475 return RX_DROP_MONITOR
;
1482 static ieee80211_rx_result debug_noinline
1483 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data
*rx
)
1485 struct ieee80211_local
*local
;
1486 struct ieee80211_hdr
*hdr
;
1487 struct sk_buff
*skb
;
1491 hdr
= (struct ieee80211_hdr
*) skb
->data
;
1493 if (!local
->pspolling
)
1496 if (!ieee80211_has_fromds(hdr
->frame_control
))
1497 /* this is not from AP */
1500 if (!ieee80211_is_data(hdr
->frame_control
))
1503 if (!ieee80211_has_moredata(hdr
->frame_control
)) {
1504 /* AP has no more frames buffered for us */
1505 local
->pspolling
= false;
1509 /* more data bit is set, let's request a new frame from the AP */
1510 ieee80211_send_pspoll(local
, rx
->sdata
);
1515 static void sta_ps_start(struct sta_info
*sta
)
1517 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
1518 struct ieee80211_local
*local
= sdata
->local
;
1522 if (sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1523 sta
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
1524 ps
= &sdata
->bss
->ps
;
1528 atomic_inc(&ps
->num_sta_ps
);
1529 set_sta_flag(sta
, WLAN_STA_PS_STA
);
1530 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
1531 drv_sta_notify(local
, sdata
, STA_NOTIFY_SLEEP
, &sta
->sta
);
1532 ps_dbg(sdata
, "STA %pM aid %d enters power save mode\n",
1533 sta
->sta
.addr
, sta
->sta
.aid
);
1535 ieee80211_clear_fast_xmit(sta
);
1537 if (!sta
->sta
.txq
[0])
1540 for (tid
= 0; tid
< IEEE80211_NUM_TIDS
; tid
++) {
1541 if (txq_has_queue(sta
->sta
.txq
[tid
]))
1542 set_bit(tid
, &sta
->txq_buffered_tids
);
1544 clear_bit(tid
, &sta
->txq_buffered_tids
);
1548 static void sta_ps_end(struct sta_info
*sta
)
1550 ps_dbg(sta
->sdata
, "STA %pM aid %d exits power save mode\n",
1551 sta
->sta
.addr
, sta
->sta
.aid
);
1553 if (test_sta_flag(sta
, WLAN_STA_PS_DRIVER
)) {
1555 * Clear the flag only if the other one is still set
1556 * so that the TX path won't start TX'ing new frames
1557 * directly ... In the case that the driver flag isn't
1558 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1560 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1561 ps_dbg(sta
->sdata
, "STA %pM aid %d driver-ps-blocked\n",
1562 sta
->sta
.addr
, sta
->sta
.aid
);
1566 set_sta_flag(sta
, WLAN_STA_PS_DELIVER
);
1567 clear_sta_flag(sta
, WLAN_STA_PS_STA
);
1568 ieee80211_sta_ps_deliver_wakeup(sta
);
1571 int ieee80211_sta_ps_transition(struct ieee80211_sta
*pubsta
, bool start
)
1573 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1576 WARN_ON(!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
));
1578 /* Don't let the same PS state be set twice */
1579 in_ps
= test_sta_flag(sta
, WLAN_STA_PS_STA
);
1580 if ((start
&& in_ps
) || (!start
&& !in_ps
))
1590 EXPORT_SYMBOL(ieee80211_sta_ps_transition
);
1592 void ieee80211_sta_pspoll(struct ieee80211_sta
*pubsta
)
1594 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1596 if (test_sta_flag(sta
, WLAN_STA_SP
))
1599 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1600 ieee80211_sta_ps_deliver_poll_response(sta
);
1602 set_sta_flag(sta
, WLAN_STA_PSPOLL
);
1604 EXPORT_SYMBOL(ieee80211_sta_pspoll
);
1606 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta
*pubsta
, u8 tid
)
1608 struct sta_info
*sta
= container_of(pubsta
, struct sta_info
, sta
);
1609 int ac
= ieee80211_ac_from_tid(tid
);
1612 * If this AC is not trigger-enabled do nothing unless the
1613 * driver is calling us after it already checked.
1615 * NB: This could/should check a separate bitmap of trigger-
1616 * enabled queues, but for now we only implement uAPSD w/o
1617 * TSPEC changes to the ACs, so they're always the same.
1619 if (!(sta
->sta
.uapsd_queues
& ieee80211_ac_to_qos_mask
[ac
]) &&
1620 tid
!= IEEE80211_NUM_TIDS
)
1623 /* if we are in a service period, do nothing */
1624 if (test_sta_flag(sta
, WLAN_STA_SP
))
1627 if (!test_sta_flag(sta
, WLAN_STA_PS_DRIVER
))
1628 ieee80211_sta_ps_deliver_uapsd(sta
);
1630 set_sta_flag(sta
, WLAN_STA_UAPSD
);
1632 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger
);
1634 static ieee80211_rx_result debug_noinline
1635 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data
*rx
)
1637 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1638 struct ieee80211_hdr
*hdr
= (void *)rx
->skb
->data
;
1639 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
1644 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
1645 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
1649 * The device handles station powersave, so don't do anything about
1650 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1651 * it to mac80211 since they're handled.)
1653 if (ieee80211_hw_check(&sdata
->local
->hw
, AP_LINK_PS
))
1657 * Don't do anything if the station isn't already asleep. In
1658 * the uAPSD case, the station will probably be marked asleep,
1659 * in the PS-Poll case the station must be confused ...
1661 if (!test_sta_flag(rx
->sta
, WLAN_STA_PS_STA
))
1664 if (unlikely(ieee80211_is_pspoll(hdr
->frame_control
))) {
1665 ieee80211_sta_pspoll(&rx
->sta
->sta
);
1667 /* Free PS Poll skb here instead of returning RX_DROP that would
1668 * count as an dropped frame. */
1669 dev_kfree_skb(rx
->skb
);
1672 } else if (!ieee80211_has_morefrags(hdr
->frame_control
) &&
1673 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1674 ieee80211_has_pm(hdr
->frame_control
) &&
1675 (ieee80211_is_data_qos(hdr
->frame_control
) ||
1676 ieee80211_is_qos_nullfunc(hdr
->frame_control
))) {
1677 u8 tid
= ieee80211_get_tid(hdr
);
1679 ieee80211_sta_uapsd_trigger(&rx
->sta
->sta
, tid
);
1685 static ieee80211_rx_result debug_noinline
1686 ieee80211_rx_h_sta_process(struct ieee80211_rx_data
*rx
)
1688 struct sta_info
*sta
= rx
->sta
;
1689 struct sk_buff
*skb
= rx
->skb
;
1690 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1691 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1698 * Update last_rx only for IBSS packets which are for the current
1699 * BSSID and for station already AUTHORIZED to avoid keeping the
1700 * current IBSS network alive in cases where other STAs start
1701 * using different BSSID. This will also give the station another
1702 * chance to restart the authentication/authorization in case
1703 * something went wrong the first time.
1705 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
) {
1706 u8
*bssid
= ieee80211_get_bssid(hdr
, rx
->skb
->len
,
1707 NL80211_IFTYPE_ADHOC
);
1708 if (ether_addr_equal(bssid
, rx
->sdata
->u
.ibss
.bssid
) &&
1709 test_sta_flag(sta
, WLAN_STA_AUTHORIZED
)) {
1710 sta
->rx_stats
.last_rx
= jiffies
;
1711 if (ieee80211_is_data(hdr
->frame_control
) &&
1712 !is_multicast_ether_addr(hdr
->addr1
))
1713 sta
->rx_stats
.last_rate
=
1714 sta_stats_encode_rate(status
);
1716 } else if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_OCB
) {
1717 sta
->rx_stats
.last_rx
= jiffies
;
1718 } else if (!is_multicast_ether_addr(hdr
->addr1
)) {
1720 * Mesh beacons will update last_rx when if they are found to
1721 * match the current local configuration when processed.
1723 sta
->rx_stats
.last_rx
= jiffies
;
1724 if (ieee80211_is_data(hdr
->frame_control
))
1725 sta
->rx_stats
.last_rate
= sta_stats_encode_rate(status
);
1728 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
1729 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
1731 sta
->rx_stats
.fragments
++;
1733 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
1734 sta
->rx_stats
.bytes
+= rx
->skb
->len
;
1735 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
1737 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
1738 sta
->rx_stats
.last_signal
= status
->signal
;
1739 ewma_signal_add(&sta
->rx_stats_avg
.signal
, -status
->signal
);
1742 if (status
->chains
) {
1743 sta
->rx_stats
.chains
= status
->chains
;
1744 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
1745 int signal
= status
->chain_signal
[i
];
1747 if (!(status
->chains
& BIT(i
)))
1750 sta
->rx_stats
.chain_signal_last
[i
] = signal
;
1751 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
1757 * Change STA power saving mode only at the end of a frame
1758 * exchange sequence, and only for a data or management
1759 * frame as specified in IEEE 802.11-2016 11.2.3.2
1761 if (!ieee80211_hw_check(&sta
->local
->hw
, AP_LINK_PS
) &&
1762 !ieee80211_has_morefrags(hdr
->frame_control
) &&
1763 !is_multicast_ether_addr(hdr
->addr1
) &&
1764 (ieee80211_is_mgmt(hdr
->frame_control
) ||
1765 ieee80211_is_data(hdr
->frame_control
)) &&
1766 !(status
->rx_flags
& IEEE80211_RX_DEFERRED_RELEASE
) &&
1767 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1768 rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)) {
1769 if (test_sta_flag(sta
, WLAN_STA_PS_STA
)) {
1770 if (!ieee80211_has_pm(hdr
->frame_control
))
1773 if (ieee80211_has_pm(hdr
->frame_control
))
1778 /* mesh power save support */
1779 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
1780 ieee80211_mps_rx_h_sta_process(sta
, hdr
);
1783 * Drop (qos-)data::nullfunc frames silently, since they
1784 * are used only to control station power saving mode.
1786 if (ieee80211_is_nullfunc(hdr
->frame_control
) ||
1787 ieee80211_is_qos_nullfunc(hdr
->frame_control
)) {
1788 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_nullfunc
);
1791 * If we receive a 4-addr nullfunc frame from a STA
1792 * that was not moved to a 4-addr STA vlan yet send
1793 * the event to userspace and for older hostapd drop
1794 * the frame to the monitor interface.
1796 if (ieee80211_has_a4(hdr
->frame_control
) &&
1797 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
||
1798 (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
1799 !rx
->sdata
->u
.vlan
.sta
))) {
1800 if (!test_and_set_sta_flag(sta
, WLAN_STA_4ADDR_EVENT
))
1801 cfg80211_rx_unexpected_4addr_frame(
1802 rx
->sdata
->dev
, sta
->sta
.addr
,
1804 return RX_DROP_MONITOR
;
1807 * Update counter and free packet here to avoid
1808 * counting this as a dropped packed.
1810 sta
->rx_stats
.packets
++;
1811 dev_kfree_skb(rx
->skb
);
1816 } /* ieee80211_rx_h_sta_process */
1818 static ieee80211_rx_result debug_noinline
1819 ieee80211_rx_h_decrypt(struct ieee80211_rx_data
*rx
)
1821 struct sk_buff
*skb
= rx
->skb
;
1822 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
1823 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
1826 ieee80211_rx_result result
= RX_DROP_UNUSABLE
;
1827 struct ieee80211_key
*sta_ptk
= NULL
;
1828 int mmie_keyidx
= -1;
1830 const struct ieee80211_cipher_scheme
*cs
= NULL
;
1835 * There are four types of keys:
1836 * - GTK (group keys)
1837 * - IGTK (group keys for management frames)
1838 * - PTK (pairwise keys)
1839 * - STK (station-to-station pairwise keys)
1841 * When selecting a key, we have to distinguish between multicast
1842 * (including broadcast) and unicast frames, the latter can only
1843 * use PTKs and STKs while the former always use GTKs and IGTKs.
1844 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1845 * unicast frames can also use key indices like GTKs. Hence, if we
1846 * don't have a PTK/STK we check the key index for a WEP key.
1848 * Note that in a regular BSS, multicast frames are sent by the
1849 * AP only, associated stations unicast the frame to the AP first
1850 * which then multicasts it on their behalf.
1852 * There is also a slight problem in IBSS mode: GTKs are negotiated
1853 * with each station, that is something we don't currently handle.
1854 * The spec seems to expect that one negotiates the same key with
1855 * every station but there's no such requirement; VLANs could be
1859 /* start without a key */
1861 fc
= hdr
->frame_control
;
1864 int keyid
= rx
->sta
->ptk_idx
;
1866 if (ieee80211_has_protected(fc
) && rx
->sta
->cipher_scheme
) {
1867 cs
= rx
->sta
->cipher_scheme
;
1868 keyid
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1869 if (unlikely(keyid
< 0))
1870 return RX_DROP_UNUSABLE
;
1872 sta_ptk
= rcu_dereference(rx
->sta
->ptk
[keyid
]);
1875 if (!ieee80211_has_protected(fc
))
1876 mmie_keyidx
= ieee80211_get_mmie_keyidx(rx
->skb
);
1878 if (!is_multicast_ether_addr(hdr
->addr1
) && sta_ptk
) {
1880 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1881 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1883 /* Skip decryption if the frame is not protected. */
1884 if (!ieee80211_has_protected(fc
))
1886 } else if (mmie_keyidx
>= 0) {
1887 /* Broadcast/multicast robust management frame / BIP */
1888 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1889 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1892 if (mmie_keyidx
< NUM_DEFAULT_KEYS
||
1893 mmie_keyidx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
1894 return RX_DROP_MONITOR
; /* unexpected BIP keyidx */
1896 if (ieee80211_is_group_privacy_action(skb
) &&
1897 test_sta_flag(rx
->sta
, WLAN_STA_MFP
))
1898 return RX_DROP_MONITOR
;
1900 rx
->key
= rcu_dereference(rx
->sta
->gtk
[mmie_keyidx
]);
1903 rx
->key
= rcu_dereference(rx
->sdata
->keys
[mmie_keyidx
]);
1904 } else if (!ieee80211_has_protected(fc
)) {
1906 * The frame was not protected, so skip decryption. However, we
1907 * need to set rx->key if there is a key that could have been
1908 * used so that the frame may be dropped if encryption would
1909 * have been expected.
1911 struct ieee80211_key
*key
= NULL
;
1912 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
1915 if (ieee80211_is_mgmt(fc
) &&
1916 is_multicast_ether_addr(hdr
->addr1
) &&
1917 (key
= rcu_dereference(rx
->sdata
->default_mgmt_key
)))
1921 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1922 key
= rcu_dereference(rx
->sta
->gtk
[i
]);
1928 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1929 key
= rcu_dereference(sdata
->keys
[i
]);
1942 * The device doesn't give us the IV so we won't be
1943 * able to look up the key. That's ok though, we
1944 * don't need to decrypt the frame, we just won't
1945 * be able to keep statistics accurate.
1946 * Except for key threshold notifications, should
1947 * we somehow allow the driver to tell us which key
1948 * the hardware used if this flag is set?
1950 if ((status
->flag
& RX_FLAG_DECRYPTED
) &&
1951 (status
->flag
& RX_FLAG_IV_STRIPPED
))
1954 hdrlen
= ieee80211_hdrlen(fc
);
1957 keyidx
= ieee80211_get_cs_keyid(cs
, rx
->skb
);
1959 if (unlikely(keyidx
< 0))
1960 return RX_DROP_UNUSABLE
;
1962 if (rx
->skb
->len
< 8 + hdrlen
)
1963 return RX_DROP_UNUSABLE
; /* TODO: count this? */
1965 * no need to call ieee80211_wep_get_keyidx,
1966 * it verifies a bunch of things we've done already
1968 skb_copy_bits(rx
->skb
, hdrlen
+ 3, &keyid
, 1);
1969 keyidx
= keyid
>> 6;
1972 /* check per-station GTK first, if multicast packet */
1973 if (is_multicast_ether_addr(hdr
->addr1
) && rx
->sta
)
1974 rx
->key
= rcu_dereference(rx
->sta
->gtk
[keyidx
]);
1976 /* if not found, try default key */
1978 rx
->key
= rcu_dereference(rx
->sdata
->keys
[keyidx
]);
1981 * RSNA-protected unicast frames should always be
1982 * sent with pairwise or station-to-station keys,
1983 * but for WEP we allow using a key index as well.
1986 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP40
&&
1987 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_WEP104
&&
1988 !is_multicast_ether_addr(hdr
->addr1
))
1994 if (unlikely(rx
->key
->flags
& KEY_FLAG_TAINTED
))
1995 return RX_DROP_MONITOR
;
1997 /* TODO: add threshold stuff again */
1999 return RX_DROP_MONITOR
;
2002 switch (rx
->key
->conf
.cipher
) {
2003 case WLAN_CIPHER_SUITE_WEP40
:
2004 case WLAN_CIPHER_SUITE_WEP104
:
2005 result
= ieee80211_crypto_wep_decrypt(rx
);
2007 case WLAN_CIPHER_SUITE_TKIP
:
2008 result
= ieee80211_crypto_tkip_decrypt(rx
);
2010 case WLAN_CIPHER_SUITE_CCMP
:
2011 result
= ieee80211_crypto_ccmp_decrypt(
2012 rx
, IEEE80211_CCMP_MIC_LEN
);
2014 case WLAN_CIPHER_SUITE_CCMP_256
:
2015 result
= ieee80211_crypto_ccmp_decrypt(
2016 rx
, IEEE80211_CCMP_256_MIC_LEN
);
2018 case WLAN_CIPHER_SUITE_AES_CMAC
:
2019 result
= ieee80211_crypto_aes_cmac_decrypt(rx
);
2021 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
2022 result
= ieee80211_crypto_aes_cmac_256_decrypt(rx
);
2024 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
2025 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
2026 result
= ieee80211_crypto_aes_gmac_decrypt(rx
);
2028 case WLAN_CIPHER_SUITE_GCMP
:
2029 case WLAN_CIPHER_SUITE_GCMP_256
:
2030 result
= ieee80211_crypto_gcmp_decrypt(rx
);
2033 result
= ieee80211_crypto_hw_decrypt(rx
);
2036 /* the hdr variable is invalid after the decrypt handlers */
2038 /* either the frame has been decrypted or will be dropped */
2039 status
->flag
|= RX_FLAG_DECRYPTED
;
2044 static inline struct ieee80211_fragment_entry
*
2045 ieee80211_reassemble_add(struct ieee80211_sub_if_data
*sdata
,
2046 unsigned int frag
, unsigned int seq
, int rx_queue
,
2047 struct sk_buff
**skb
)
2049 struct ieee80211_fragment_entry
*entry
;
2051 entry
= &sdata
->fragments
[sdata
->fragment_next
++];
2052 if (sdata
->fragment_next
>= IEEE80211_FRAGMENT_MAX
)
2053 sdata
->fragment_next
= 0;
2055 if (!skb_queue_empty(&entry
->skb_list
))
2056 __skb_queue_purge(&entry
->skb_list
);
2058 __skb_queue_tail(&entry
->skb_list
, *skb
); /* no need for locking */
2060 entry
->first_frag_time
= jiffies
;
2062 entry
->rx_queue
= rx_queue
;
2063 entry
->last_frag
= frag
;
2064 entry
->check_sequential_pn
= false;
2065 entry
->extra_len
= 0;
2070 static inline struct ieee80211_fragment_entry
*
2071 ieee80211_reassemble_find(struct ieee80211_sub_if_data
*sdata
,
2072 unsigned int frag
, unsigned int seq
,
2073 int rx_queue
, struct ieee80211_hdr
*hdr
)
2075 struct ieee80211_fragment_entry
*entry
;
2078 idx
= sdata
->fragment_next
;
2079 for (i
= 0; i
< IEEE80211_FRAGMENT_MAX
; i
++) {
2080 struct ieee80211_hdr
*f_hdr
;
2081 struct sk_buff
*f_skb
;
2085 idx
= IEEE80211_FRAGMENT_MAX
- 1;
2087 entry
= &sdata
->fragments
[idx
];
2088 if (skb_queue_empty(&entry
->skb_list
) || entry
->seq
!= seq
||
2089 entry
->rx_queue
!= rx_queue
||
2090 entry
->last_frag
+ 1 != frag
)
2093 f_skb
= __skb_peek(&entry
->skb_list
);
2094 f_hdr
= (struct ieee80211_hdr
*) f_skb
->data
;
2097 * Check ftype and addresses are equal, else check next fragment
2099 if (((hdr
->frame_control
^ f_hdr
->frame_control
) &
2100 cpu_to_le16(IEEE80211_FCTL_FTYPE
)) ||
2101 !ether_addr_equal(hdr
->addr1
, f_hdr
->addr1
) ||
2102 !ether_addr_equal(hdr
->addr2
, f_hdr
->addr2
))
2105 if (time_after(jiffies
, entry
->first_frag_time
+ 2 * HZ
)) {
2106 __skb_queue_purge(&entry
->skb_list
);
2115 static ieee80211_rx_result debug_noinline
2116 ieee80211_rx_h_defragment(struct ieee80211_rx_data
*rx
)
2118 struct ieee80211_hdr
*hdr
;
2121 unsigned int frag
, seq
;
2122 struct ieee80211_fragment_entry
*entry
;
2123 struct sk_buff
*skb
;
2125 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2126 fc
= hdr
->frame_control
;
2128 if (ieee80211_is_ctl(fc
))
2131 sc
= le16_to_cpu(hdr
->seq_ctrl
);
2132 frag
= sc
& IEEE80211_SCTL_FRAG
;
2134 if (is_multicast_ether_addr(hdr
->addr1
)) {
2135 I802_DEBUG_INC(rx
->local
->dot11MulticastReceivedFrameCount
);
2139 if (likely(!ieee80211_has_morefrags(fc
) && frag
== 0))
2142 I802_DEBUG_INC(rx
->local
->rx_handlers_fragments
);
2144 if (skb_linearize(rx
->skb
))
2145 return RX_DROP_UNUSABLE
;
2148 * skb_linearize() might change the skb->data and
2149 * previously cached variables (in this case, hdr) need to
2150 * be refreshed with the new data.
2152 hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2153 seq
= (sc
& IEEE80211_SCTL_SEQ
) >> 4;
2156 /* This is the first fragment of a new frame. */
2157 entry
= ieee80211_reassemble_add(rx
->sdata
, frag
, seq
,
2158 rx
->seqno_idx
, &(rx
->skb
));
2160 (rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP
||
2161 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_CCMP_256
||
2162 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP
||
2163 rx
->key
->conf
.cipher
== WLAN_CIPHER_SUITE_GCMP_256
) &&
2164 ieee80211_has_protected(fc
)) {
2165 int queue
= rx
->security_idx
;
2167 /* Store CCMP/GCMP PN so that we can verify that the
2168 * next fragment has a sequential PN value.
2170 entry
->check_sequential_pn
= true;
2171 memcpy(entry
->last_pn
,
2172 rx
->key
->u
.ccmp
.rx_pn
[queue
],
2173 IEEE80211_CCMP_PN_LEN
);
2174 BUILD_BUG_ON(offsetof(struct ieee80211_key
,
2176 offsetof(struct ieee80211_key
,
2178 BUILD_BUG_ON(sizeof(rx
->key
->u
.ccmp
.rx_pn
[queue
]) !=
2179 sizeof(rx
->key
->u
.gcmp
.rx_pn
[queue
]));
2180 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN
!=
2181 IEEE80211_GCMP_PN_LEN
);
2186 /* This is a fragment for a frame that should already be pending in
2187 * fragment cache. Add this fragment to the end of the pending entry.
2189 entry
= ieee80211_reassemble_find(rx
->sdata
, frag
, seq
,
2190 rx
->seqno_idx
, hdr
);
2192 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2193 return RX_DROP_MONITOR
;
2196 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2197 * MPDU PN values are not incrementing in steps of 1."
2198 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2199 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2201 if (entry
->check_sequential_pn
) {
2203 u8 pn
[IEEE80211_CCMP_PN_LEN
], *rpn
;
2207 (rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP
&&
2208 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_CCMP_256
&&
2209 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP
&&
2210 rx
->key
->conf
.cipher
!= WLAN_CIPHER_SUITE_GCMP_256
))
2211 return RX_DROP_UNUSABLE
;
2212 memcpy(pn
, entry
->last_pn
, IEEE80211_CCMP_PN_LEN
);
2213 for (i
= IEEE80211_CCMP_PN_LEN
- 1; i
>= 0; i
--) {
2218 queue
= rx
->security_idx
;
2219 rpn
= rx
->key
->u
.ccmp
.rx_pn
[queue
];
2220 if (memcmp(pn
, rpn
, IEEE80211_CCMP_PN_LEN
))
2221 return RX_DROP_UNUSABLE
;
2222 memcpy(entry
->last_pn
, pn
, IEEE80211_CCMP_PN_LEN
);
2225 skb_pull(rx
->skb
, ieee80211_hdrlen(fc
));
2226 __skb_queue_tail(&entry
->skb_list
, rx
->skb
);
2227 entry
->last_frag
= frag
;
2228 entry
->extra_len
+= rx
->skb
->len
;
2229 if (ieee80211_has_morefrags(fc
)) {
2234 rx
->skb
= __skb_dequeue(&entry
->skb_list
);
2235 if (skb_tailroom(rx
->skb
) < entry
->extra_len
) {
2236 I802_DEBUG_INC(rx
->local
->rx_expand_skb_head_defrag
);
2237 if (unlikely(pskb_expand_head(rx
->skb
, 0, entry
->extra_len
,
2239 I802_DEBUG_INC(rx
->local
->rx_handlers_drop_defrag
);
2240 __skb_queue_purge(&entry
->skb_list
);
2241 return RX_DROP_UNUSABLE
;
2244 while ((skb
= __skb_dequeue(&entry
->skb_list
))) {
2245 skb_put_data(rx
->skb
, skb
->data
, skb
->len
);
2250 ieee80211_led_rx(rx
->local
);
2253 rx
->sta
->rx_stats
.packets
++;
2257 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data
*rx
)
2259 if (unlikely(!rx
->sta
|| !test_sta_flag(rx
->sta
, WLAN_STA_AUTHORIZED
)))
2265 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data
*rx
, __le16 fc
)
2267 struct sk_buff
*skb
= rx
->skb
;
2268 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2271 * Pass through unencrypted frames if the hardware has
2272 * decrypted them already.
2274 if (status
->flag
& RX_FLAG_DECRYPTED
)
2277 /* Drop unencrypted frames if key is set. */
2278 if (unlikely(!ieee80211_has_protected(fc
) &&
2279 !ieee80211_is_nullfunc(fc
) &&
2280 ieee80211_is_data(fc
) && rx
->key
))
2286 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data
*rx
)
2288 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2289 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2290 __le16 fc
= hdr
->frame_control
;
2293 * Pass through unencrypted frames if the hardware has
2294 * decrypted them already.
2296 if (status
->flag
& RX_FLAG_DECRYPTED
)
2299 if (rx
->sta
&& test_sta_flag(rx
->sta
, WLAN_STA_MFP
)) {
2300 if (unlikely(!ieee80211_has_protected(fc
) &&
2301 ieee80211_is_unicast_robust_mgmt_frame(rx
->skb
) &&
2303 if (ieee80211_is_deauth(fc
) ||
2304 ieee80211_is_disassoc(fc
))
2305 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2310 /* BIP does not use Protected field, so need to check MMIE */
2311 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx
->skb
) &&
2312 ieee80211_get_mmie_keyidx(rx
->skb
) < 0)) {
2313 if (ieee80211_is_deauth(fc
) ||
2314 ieee80211_is_disassoc(fc
))
2315 cfg80211_rx_unprot_mlme_mgmt(rx
->sdata
->dev
,
2321 * When using MFP, Action frames are not allowed prior to
2322 * having configured keys.
2324 if (unlikely(ieee80211_is_action(fc
) && !rx
->key
&&
2325 ieee80211_is_robust_mgmt_frame(rx
->skb
)))
2333 __ieee80211_data_to_8023(struct ieee80211_rx_data
*rx
, bool *port_control
)
2335 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2336 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2337 bool check_port_control
= false;
2338 struct ethhdr
*ehdr
;
2341 *port_control
= false;
2342 if (ieee80211_has_a4(hdr
->frame_control
) &&
2343 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& !sdata
->u
.vlan
.sta
)
2346 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
2347 !!sdata
->u
.mgd
.use_4addr
!= !!ieee80211_has_a4(hdr
->frame_control
)) {
2349 if (!sdata
->u
.mgd
.use_4addr
)
2351 else if (!ether_addr_equal(hdr
->addr1
, sdata
->vif
.addr
))
2352 check_port_control
= true;
2355 if (is_multicast_ether_addr(hdr
->addr1
) &&
2356 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&& sdata
->u
.vlan
.sta
)
2359 ret
= ieee80211_data_to_8023(rx
->skb
, sdata
->vif
.addr
, sdata
->vif
.type
);
2363 ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2364 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
)
2365 *port_control
= true;
2366 else if (check_port_control
)
2373 * requires that rx->skb is a frame with ethernet header
2375 static bool ieee80211_frame_allowed(struct ieee80211_rx_data
*rx
, __le16 fc
)
2377 static const u8 pae_group_addr
[ETH_ALEN
] __aligned(2)
2378 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2379 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2382 * Allow EAPOL frames to us/the PAE group address regardless
2383 * of whether the frame was encrypted or not.
2385 if (ehdr
->h_proto
== rx
->sdata
->control_port_protocol
&&
2386 (ether_addr_equal(ehdr
->h_dest
, rx
->sdata
->vif
.addr
) ||
2387 ether_addr_equal(ehdr
->h_dest
, pae_group_addr
)))
2390 if (ieee80211_802_1x_port_control(rx
) ||
2391 ieee80211_drop_unencrypted(rx
, fc
))
2397 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff
*skb
,
2398 struct ieee80211_rx_data
*rx
)
2400 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2401 struct net_device
*dev
= sdata
->dev
;
2403 if (unlikely((skb
->protocol
== sdata
->control_port_protocol
||
2404 skb
->protocol
== cpu_to_be16(ETH_P_PREAUTH
)) &&
2405 sdata
->control_port_over_nl80211
)) {
2406 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2407 bool noencrypt
= status
->flag
& RX_FLAG_DECRYPTED
;
2409 cfg80211_rx_control_port(dev
, skb
, noencrypt
);
2412 /* deliver to local stack */
2414 napi_gro_receive(rx
->napi
, skb
);
2416 netif_receive_skb(skb
);
2421 * requires that rx->skb is a frame with ethernet header
2424 ieee80211_deliver_skb(struct ieee80211_rx_data
*rx
)
2426 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2427 struct net_device
*dev
= sdata
->dev
;
2428 struct sk_buff
*skb
, *xmit_skb
;
2429 struct ethhdr
*ehdr
= (struct ethhdr
*) rx
->skb
->data
;
2430 struct sta_info
*dsta
;
2435 ieee80211_rx_stats(dev
, skb
->len
);
2438 /* The seqno index has the same property as needed
2439 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2440 * for non-QoS-data frames. Here we know it's a data
2441 * frame, so count MSDUs.
2443 u64_stats_update_begin(&rx
->sta
->rx_stats
.syncp
);
2444 rx
->sta
->rx_stats
.msdu
[rx
->seqno_idx
]++;
2445 u64_stats_update_end(&rx
->sta
->rx_stats
.syncp
);
2448 if ((sdata
->vif
.type
== NL80211_IFTYPE_AP
||
2449 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) &&
2450 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
2451 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
|| !sdata
->u
.vlan
.sta
)) {
2452 if (is_multicast_ether_addr(ehdr
->h_dest
) &&
2453 ieee80211_vif_get_num_mcast_if(sdata
) != 0) {
2455 * send multicast frames both to higher layers in
2456 * local net stack and back to the wireless medium
2458 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
2460 net_info_ratelimited("%s: failed to clone multicast frame\n",
2462 } else if (!is_multicast_ether_addr(ehdr
->h_dest
) &&
2463 !ether_addr_equal(ehdr
->h_dest
, ehdr
->h_source
)) {
2464 dsta
= sta_info_get(sdata
, ehdr
->h_dest
);
2467 * The destination station is associated to
2468 * this AP (in this VLAN), so send the frame
2469 * directly to it and do not pass it to local
2478 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2480 /* 'align' will only take the values 0 or 2 here since all
2481 * frames are required to be aligned to 2-byte boundaries
2482 * when being passed to mac80211; the code here works just
2483 * as well if that isn't true, but mac80211 assumes it can
2484 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2488 align
= (unsigned long)(skb
->data
+ sizeof(struct ethhdr
)) & 3;
2490 if (WARN_ON(skb_headroom(skb
) < 3)) {
2494 u8
*data
= skb
->data
;
2495 size_t len
= skb_headlen(skb
);
2497 memmove(skb
->data
, data
, len
);
2498 skb_set_tail_pointer(skb
, len
);
2505 skb
->protocol
= eth_type_trans(skb
, dev
);
2506 memset(skb
->cb
, 0, sizeof(skb
->cb
));
2508 ieee80211_deliver_skb_to_local_stack(skb
, rx
);
2513 * Send to wireless media and increase priority by 256 to
2514 * keep the received priority instead of reclassifying
2515 * the frame (see cfg80211_classify8021d).
2517 xmit_skb
->priority
+= 256;
2518 xmit_skb
->protocol
= htons(ETH_P_802_3
);
2519 skb_reset_network_header(xmit_skb
);
2520 skb_reset_mac_header(xmit_skb
);
2521 dev_queue_xmit(xmit_skb
);
2525 static ieee80211_rx_result debug_noinline
2526 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
, u8 data_offset
)
2528 struct net_device
*dev
= rx
->sdata
->dev
;
2529 struct sk_buff
*skb
= rx
->skb
;
2530 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2531 __le16 fc
= hdr
->frame_control
;
2532 struct sk_buff_head frame_list
;
2533 struct ethhdr ethhdr
;
2534 const u8
*check_da
= ethhdr
.h_dest
, *check_sa
= ethhdr
.h_source
;
2536 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2539 } else switch (rx
->sdata
->vif
.type
) {
2540 case NL80211_IFTYPE_AP
:
2541 case NL80211_IFTYPE_AP_VLAN
:
2544 case NL80211_IFTYPE_STATION
:
2546 !test_sta_flag(rx
->sta
, WLAN_STA_TDLS_PEER
))
2549 case NL80211_IFTYPE_MESH_POINT
:
2557 __skb_queue_head_init(&frame_list
);
2559 if (ieee80211_data_to_8023_exthdr(skb
, ðhdr
,
2560 rx
->sdata
->vif
.addr
,
2561 rx
->sdata
->vif
.type
,
2563 return RX_DROP_UNUSABLE
;
2565 ieee80211_amsdu_to_8023s(skb
, &frame_list
, dev
->dev_addr
,
2566 rx
->sdata
->vif
.type
,
2567 rx
->local
->hw
.extra_tx_headroom
,
2568 check_da
, check_sa
);
2570 while (!skb_queue_empty(&frame_list
)) {
2571 rx
->skb
= __skb_dequeue(&frame_list
);
2573 if (!ieee80211_frame_allowed(rx
, fc
)) {
2574 dev_kfree_skb(rx
->skb
);
2578 ieee80211_deliver_skb(rx
);
2584 static ieee80211_rx_result debug_noinline
2585 ieee80211_rx_h_amsdu(struct ieee80211_rx_data
*rx
)
2587 struct sk_buff
*skb
= rx
->skb
;
2588 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
2589 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)skb
->data
;
2590 __le16 fc
= hdr
->frame_control
;
2592 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
))
2595 if (unlikely(!ieee80211_is_data(fc
)))
2598 if (unlikely(!ieee80211_is_data_present(fc
)))
2599 return RX_DROP_MONITOR
;
2601 if (unlikely(ieee80211_has_a4(hdr
->frame_control
))) {
2602 switch (rx
->sdata
->vif
.type
) {
2603 case NL80211_IFTYPE_AP_VLAN
:
2604 if (!rx
->sdata
->u
.vlan
.sta
)
2605 return RX_DROP_UNUSABLE
;
2607 case NL80211_IFTYPE_STATION
:
2608 if (!rx
->sdata
->u
.mgd
.use_4addr
)
2609 return RX_DROP_UNUSABLE
;
2612 return RX_DROP_UNUSABLE
;
2616 if (is_multicast_ether_addr(hdr
->addr1
))
2617 return RX_DROP_UNUSABLE
;
2619 return __ieee80211_rx_h_amsdu(rx
, 0);
2622 #ifdef CONFIG_MAC80211_MESH
2623 static ieee80211_rx_result
2624 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data
*rx
)
2626 struct ieee80211_hdr
*fwd_hdr
, *hdr
;
2627 struct ieee80211_tx_info
*info
;
2628 struct ieee80211s_hdr
*mesh_hdr
;
2629 struct sk_buff
*skb
= rx
->skb
, *fwd_skb
;
2630 struct ieee80211_local
*local
= rx
->local
;
2631 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2632 struct ieee80211_if_mesh
*ifmsh
= &sdata
->u
.mesh
;
2635 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2636 hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
2638 /* make sure fixed part of mesh header is there, also checks skb len */
2639 if (!pskb_may_pull(rx
->skb
, hdrlen
+ 6))
2640 return RX_DROP_MONITOR
;
2642 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2644 /* make sure full mesh header is there, also checks skb len */
2645 if (!pskb_may_pull(rx
->skb
,
2646 hdrlen
+ ieee80211_get_mesh_hdrlen(mesh_hdr
)))
2647 return RX_DROP_MONITOR
;
2649 /* reload pointers */
2650 hdr
= (struct ieee80211_hdr
*) skb
->data
;
2651 mesh_hdr
= (struct ieee80211s_hdr
*) (skb
->data
+ hdrlen
);
2653 if (ieee80211_drop_unencrypted(rx
, hdr
->frame_control
))
2654 return RX_DROP_MONITOR
;
2656 /* frame is in RMC, don't forward */
2657 if (ieee80211_is_data(hdr
->frame_control
) &&
2658 is_multicast_ether_addr(hdr
->addr1
) &&
2659 mesh_rmc_check(rx
->sdata
, hdr
->addr3
, mesh_hdr
))
2660 return RX_DROP_MONITOR
;
2662 if (!ieee80211_is_data(hdr
->frame_control
))
2666 return RX_DROP_MONITOR
;
2668 if (mesh_hdr
->flags
& MESH_FLAGS_AE
) {
2669 struct mesh_path
*mppath
;
2673 if (is_multicast_ether_addr(hdr
->addr1
)) {
2674 mpp_addr
= hdr
->addr3
;
2675 proxied_addr
= mesh_hdr
->eaddr1
;
2676 } else if ((mesh_hdr
->flags
& MESH_FLAGS_AE
) ==
2677 MESH_FLAGS_AE_A5_A6
) {
2678 /* has_a4 already checked in ieee80211_rx_mesh_check */
2679 mpp_addr
= hdr
->addr4
;
2680 proxied_addr
= mesh_hdr
->eaddr2
;
2682 return RX_DROP_MONITOR
;
2686 mppath
= mpp_path_lookup(sdata
, proxied_addr
);
2688 mpp_path_add(sdata
, proxied_addr
, mpp_addr
);
2690 spin_lock_bh(&mppath
->state_lock
);
2691 if (!ether_addr_equal(mppath
->mpp
, mpp_addr
))
2692 memcpy(mppath
->mpp
, mpp_addr
, ETH_ALEN
);
2693 mppath
->exp_time
= jiffies
;
2694 spin_unlock_bh(&mppath
->state_lock
);
2699 /* Frame has reached destination. Don't forward */
2700 if (!is_multicast_ether_addr(hdr
->addr1
) &&
2701 ether_addr_equal(sdata
->vif
.addr
, hdr
->addr3
))
2704 ac
= ieee80211_select_queue_80211(sdata
, skb
, hdr
);
2705 q
= sdata
->vif
.hw_queue
[ac
];
2706 if (ieee80211_queue_stopped(&local
->hw
, q
)) {
2707 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_congestion
);
2708 return RX_DROP_MONITOR
;
2710 skb_set_queue_mapping(skb
, q
);
2712 if (!--mesh_hdr
->ttl
) {
2713 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_ttl
);
2717 if (!ifmsh
->mshcfg
.dot11MeshForwarding
)
2720 fwd_skb
= skb_copy_expand(skb
, local
->tx_headroom
+
2721 sdata
->encrypt_headroom
, 0, GFP_ATOMIC
);
2725 fwd_hdr
= (struct ieee80211_hdr
*) fwd_skb
->data
;
2726 fwd_hdr
->frame_control
&= ~cpu_to_le16(IEEE80211_FCTL_RETRY
);
2727 info
= IEEE80211_SKB_CB(fwd_skb
);
2728 memset(info
, 0, sizeof(*info
));
2729 info
->flags
|= IEEE80211_TX_INTFL_NEED_TXPROCESSING
;
2730 info
->control
.vif
= &rx
->sdata
->vif
;
2731 info
->control
.jiffies
= jiffies
;
2732 if (is_multicast_ether_addr(fwd_hdr
->addr1
)) {
2733 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_mcast
);
2734 memcpy(fwd_hdr
->addr2
, sdata
->vif
.addr
, ETH_ALEN
);
2735 /* update power mode indication when forwarding */
2736 ieee80211_mps_set_frame_flags(sdata
, NULL
, fwd_hdr
);
2737 } else if (!mesh_nexthop_lookup(sdata
, fwd_skb
)) {
2738 /* mesh power mode flags updated in mesh_nexthop_lookup */
2739 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_unicast
);
2741 /* unable to resolve next hop */
2742 mesh_path_error_tx(sdata
, ifmsh
->mshcfg
.element_ttl
,
2744 WLAN_REASON_MESH_PATH_NOFORWARD
,
2746 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, dropped_frames_no_route
);
2748 return RX_DROP_MONITOR
;
2751 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh
, fwded_frames
);
2752 ieee80211_add_pending_skb(local
, fwd_skb
);
2754 if (is_multicast_ether_addr(hdr
->addr1
))
2756 return RX_DROP_MONITOR
;
2760 static ieee80211_rx_result debug_noinline
2761 ieee80211_rx_h_data(struct ieee80211_rx_data
*rx
)
2763 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2764 struct ieee80211_local
*local
= rx
->local
;
2765 struct net_device
*dev
= sdata
->dev
;
2766 struct ieee80211_hdr
*hdr
= (struct ieee80211_hdr
*)rx
->skb
->data
;
2767 __le16 fc
= hdr
->frame_control
;
2771 if (unlikely(!ieee80211_is_data(hdr
->frame_control
)))
2774 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
2775 return RX_DROP_MONITOR
;
2778 * Send unexpected-4addr-frame event to hostapd. For older versions,
2779 * also drop the frame to cooked monitor interfaces.
2781 if (ieee80211_has_a4(hdr
->frame_control
) &&
2782 sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
2784 !test_and_set_sta_flag(rx
->sta
, WLAN_STA_4ADDR_EVENT
))
2785 cfg80211_rx_unexpected_4addr_frame(
2786 rx
->sdata
->dev
, rx
->sta
->sta
.addr
, GFP_ATOMIC
);
2787 return RX_DROP_MONITOR
;
2790 err
= __ieee80211_data_to_8023(rx
, &port_control
);
2792 return RX_DROP_UNUSABLE
;
2794 if (!ieee80211_frame_allowed(rx
, fc
))
2795 return RX_DROP_MONITOR
;
2797 /* directly handle TDLS channel switch requests/responses */
2798 if (unlikely(((struct ethhdr
*)rx
->skb
->data
)->h_proto
==
2799 cpu_to_be16(ETH_P_TDLS
))) {
2800 struct ieee80211_tdls_data
*tf
= (void *)rx
->skb
->data
;
2802 if (pskb_may_pull(rx
->skb
,
2803 offsetof(struct ieee80211_tdls_data
, u
)) &&
2804 tf
->payload_type
== WLAN_TDLS_SNAP_RFTYPE
&&
2805 tf
->category
== WLAN_CATEGORY_TDLS
&&
2806 (tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_REQUEST
||
2807 tf
->action_code
== WLAN_TDLS_CHANNEL_SWITCH_RESPONSE
)) {
2808 skb_queue_tail(&local
->skb_queue_tdls_chsw
, rx
->skb
);
2809 schedule_work(&local
->tdls_chsw_work
);
2811 rx
->sta
->rx_stats
.packets
++;
2817 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
2818 unlikely(port_control
) && sdata
->bss
) {
2819 sdata
= container_of(sdata
->bss
, struct ieee80211_sub_if_data
,
2827 if (!ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
) &&
2828 local
->ps_sdata
&& local
->hw
.conf
.dynamic_ps_timeout
> 0 &&
2829 !is_multicast_ether_addr(
2830 ((struct ethhdr
*)rx
->skb
->data
)->h_dest
) &&
2831 (!local
->scanning
&&
2832 !test_bit(SDATA_STATE_OFFCHANNEL
, &sdata
->state
)))
2833 mod_timer(&local
->dynamic_ps_timer
, jiffies
+
2834 msecs_to_jiffies(local
->hw
.conf
.dynamic_ps_timeout
));
2836 ieee80211_deliver_skb(rx
);
2841 static ieee80211_rx_result debug_noinline
2842 ieee80211_rx_h_ctrl(struct ieee80211_rx_data
*rx
, struct sk_buff_head
*frames
)
2844 struct sk_buff
*skb
= rx
->skb
;
2845 struct ieee80211_bar
*bar
= (struct ieee80211_bar
*)skb
->data
;
2846 struct tid_ampdu_rx
*tid_agg_rx
;
2850 if (likely(!ieee80211_is_ctl(bar
->frame_control
)))
2853 if (ieee80211_is_back_req(bar
->frame_control
)) {
2855 __le16 control
, start_seq_num
;
2856 } __packed bar_data
;
2857 struct ieee80211_event event
= {
2858 .type
= BAR_RX_EVENT
,
2862 return RX_DROP_MONITOR
;
2864 if (skb_copy_bits(skb
, offsetof(struct ieee80211_bar
, control
),
2865 &bar_data
, sizeof(bar_data
)))
2866 return RX_DROP_MONITOR
;
2868 tid
= le16_to_cpu(bar_data
.control
) >> 12;
2870 if (!test_bit(tid
, rx
->sta
->ampdu_mlme
.agg_session_valid
) &&
2871 !test_and_set_bit(tid
, rx
->sta
->ampdu_mlme
.unexpected_agg
))
2872 ieee80211_send_delba(rx
->sdata
, rx
->sta
->sta
.addr
, tid
,
2873 WLAN_BACK_RECIPIENT
,
2874 WLAN_REASON_QSTA_REQUIRE_SETUP
);
2876 tid_agg_rx
= rcu_dereference(rx
->sta
->ampdu_mlme
.tid_rx
[tid
]);
2878 return RX_DROP_MONITOR
;
2880 start_seq_num
= le16_to_cpu(bar_data
.start_seq_num
) >> 4;
2881 event
.u
.ba
.tid
= tid
;
2882 event
.u
.ba
.ssn
= start_seq_num
;
2883 event
.u
.ba
.sta
= &rx
->sta
->sta
;
2885 /* reset session timer */
2886 if (tid_agg_rx
->timeout
)
2887 mod_timer(&tid_agg_rx
->session_timer
,
2888 TU_TO_EXP_TIME(tid_agg_rx
->timeout
));
2890 spin_lock(&tid_agg_rx
->reorder_lock
);
2891 /* release stored frames up to start of BAR */
2892 ieee80211_release_reorder_frames(rx
->sdata
, tid_agg_rx
,
2893 start_seq_num
, frames
);
2894 spin_unlock(&tid_agg_rx
->reorder_lock
);
2896 drv_event_callback(rx
->local
, rx
->sdata
, &event
);
2903 * After this point, we only want management frames,
2904 * so we can drop all remaining control frames to
2905 * cooked monitor interfaces.
2907 return RX_DROP_MONITOR
;
2910 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data
*sdata
,
2911 struct ieee80211_mgmt
*mgmt
,
2914 struct ieee80211_local
*local
= sdata
->local
;
2915 struct sk_buff
*skb
;
2916 struct ieee80211_mgmt
*resp
;
2918 if (!ether_addr_equal(mgmt
->da
, sdata
->vif
.addr
)) {
2919 /* Not to own unicast address */
2923 if (!ether_addr_equal(mgmt
->sa
, sdata
->u
.mgd
.bssid
) ||
2924 !ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
)) {
2925 /* Not from the current AP or not associated yet. */
2929 if (len
< 24 + 1 + sizeof(resp
->u
.action
.u
.sa_query
)) {
2930 /* Too short SA Query request frame */
2934 skb
= dev_alloc_skb(sizeof(*resp
) + local
->hw
.extra_tx_headroom
);
2938 skb_reserve(skb
, local
->hw
.extra_tx_headroom
);
2939 resp
= skb_put_zero(skb
, 24);
2940 memcpy(resp
->da
, mgmt
->sa
, ETH_ALEN
);
2941 memcpy(resp
->sa
, sdata
->vif
.addr
, ETH_ALEN
);
2942 memcpy(resp
->bssid
, sdata
->u
.mgd
.bssid
, ETH_ALEN
);
2943 resp
->frame_control
= cpu_to_le16(IEEE80211_FTYPE_MGMT
|
2944 IEEE80211_STYPE_ACTION
);
2945 skb_put(skb
, 1 + sizeof(resp
->u
.action
.u
.sa_query
));
2946 resp
->u
.action
.category
= WLAN_CATEGORY_SA_QUERY
;
2947 resp
->u
.action
.u
.sa_query
.action
= WLAN_ACTION_SA_QUERY_RESPONSE
;
2948 memcpy(resp
->u
.action
.u
.sa_query
.trans_id
,
2949 mgmt
->u
.action
.u
.sa_query
.trans_id
,
2950 WLAN_SA_QUERY_TR_ID_LEN
);
2952 ieee80211_tx_skb(sdata
, skb
);
2955 static ieee80211_rx_result debug_noinline
2956 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data
*rx
)
2958 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2959 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
2962 * From here on, look only at management frames.
2963 * Data and control frames are already handled,
2964 * and unknown (reserved) frames are useless.
2966 if (rx
->skb
->len
< 24)
2967 return RX_DROP_MONITOR
;
2969 if (!ieee80211_is_mgmt(mgmt
->frame_control
))
2970 return RX_DROP_MONITOR
;
2972 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_AP
&&
2973 ieee80211_is_beacon(mgmt
->frame_control
) &&
2974 !(rx
->flags
& IEEE80211_RX_BEACON_REPORTED
)) {
2977 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
) &&
2978 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
))
2979 sig
= status
->signal
;
2981 cfg80211_report_obss_beacon(rx
->local
->hw
.wiphy
,
2982 rx
->skb
->data
, rx
->skb
->len
,
2984 rx
->flags
|= IEEE80211_RX_BEACON_REPORTED
;
2987 if (ieee80211_drop_unencrypted_mgmt(rx
))
2988 return RX_DROP_UNUSABLE
;
2993 static ieee80211_rx_result debug_noinline
2994 ieee80211_rx_h_action(struct ieee80211_rx_data
*rx
)
2996 struct ieee80211_local
*local
= rx
->local
;
2997 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
2998 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
2999 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3000 int len
= rx
->skb
->len
;
3002 if (!ieee80211_is_action(mgmt
->frame_control
))
3005 /* drop too small frames */
3006 if (len
< IEEE80211_MIN_ACTION_SIZE
)
3007 return RX_DROP_UNUSABLE
;
3009 if (!rx
->sta
&& mgmt
->u
.action
.category
!= WLAN_CATEGORY_PUBLIC
&&
3010 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SELF_PROTECTED
&&
3011 mgmt
->u
.action
.category
!= WLAN_CATEGORY_SPECTRUM_MGMT
)
3012 return RX_DROP_UNUSABLE
;
3014 switch (mgmt
->u
.action
.category
) {
3015 case WLAN_CATEGORY_HT
:
3016 /* reject HT action frames from stations not supporting HT */
3017 if (!rx
->sta
->sta
.ht_cap
.ht_supported
)
3020 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3021 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3022 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3023 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3024 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3027 /* verify action & smps_control/chanwidth are present */
3028 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
3031 switch (mgmt
->u
.action
.u
.ht_smps
.action
) {
3032 case WLAN_HT_ACTION_SMPS
: {
3033 struct ieee80211_supported_band
*sband
;
3034 enum ieee80211_smps_mode smps_mode
;
3035 struct sta_opmode_info sta_opmode
= {};
3037 /* convert to HT capability */
3038 switch (mgmt
->u
.action
.u
.ht_smps
.smps_control
) {
3039 case WLAN_HT_SMPS_CONTROL_DISABLED
:
3040 smps_mode
= IEEE80211_SMPS_OFF
;
3042 case WLAN_HT_SMPS_CONTROL_STATIC
:
3043 smps_mode
= IEEE80211_SMPS_STATIC
;
3045 case WLAN_HT_SMPS_CONTROL_DYNAMIC
:
3046 smps_mode
= IEEE80211_SMPS_DYNAMIC
;
3052 /* if no change do nothing */
3053 if (rx
->sta
->sta
.smps_mode
== smps_mode
)
3055 rx
->sta
->sta
.smps_mode
= smps_mode
;
3056 sta_opmode
.smps_mode
=
3057 ieee80211_smps_mode_to_smps_mode(smps_mode
);
3058 sta_opmode
.changed
= STA_OPMODE_SMPS_MODE_CHANGED
;
3060 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3062 rate_control_rate_update(local
, sband
, rx
->sta
,
3063 IEEE80211_RC_SMPS_CHANGED
);
3064 cfg80211_sta_opmode_change_notify(sdata
->dev
,
3070 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH
: {
3071 struct ieee80211_supported_band
*sband
;
3072 u8 chanwidth
= mgmt
->u
.action
.u
.ht_notify_cw
.chanwidth
;
3073 enum ieee80211_sta_rx_bandwidth max_bw
, new_bw
;
3074 struct sta_opmode_info sta_opmode
= {};
3076 /* If it doesn't support 40 MHz it can't change ... */
3077 if (!(rx
->sta
->sta
.ht_cap
.cap
&
3078 IEEE80211_HT_CAP_SUP_WIDTH_20_40
))
3081 if (chanwidth
== IEEE80211_HT_CHANWIDTH_20MHZ
)
3082 max_bw
= IEEE80211_STA_RX_BW_20
;
3084 max_bw
= ieee80211_sta_cap_rx_bw(rx
->sta
);
3086 /* set cur_max_bandwidth and recalc sta bw */
3087 rx
->sta
->cur_max_bandwidth
= max_bw
;
3088 new_bw
= ieee80211_sta_cur_vht_bw(rx
->sta
);
3090 if (rx
->sta
->sta
.bandwidth
== new_bw
)
3093 rx
->sta
->sta
.bandwidth
= new_bw
;
3094 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3096 ieee80211_sta_rx_bw_to_chan_width(rx
->sta
);
3097 sta_opmode
.changed
= STA_OPMODE_MAX_BW_CHANGED
;
3099 rate_control_rate_update(local
, sband
, rx
->sta
,
3100 IEEE80211_RC_BW_CHANGED
);
3101 cfg80211_sta_opmode_change_notify(sdata
->dev
,
3112 case WLAN_CATEGORY_PUBLIC
:
3113 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3115 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3119 if (!ether_addr_equal(mgmt
->bssid
, sdata
->u
.mgd
.bssid
))
3121 if (mgmt
->u
.action
.u
.ext_chan_switch
.action_code
!=
3122 WLAN_PUB_ACTION_EXT_CHANSW_ANN
)
3124 if (len
< offsetof(struct ieee80211_mgmt
,
3125 u
.action
.u
.ext_chan_switch
.variable
))
3128 case WLAN_CATEGORY_VHT
:
3129 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3130 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3131 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3132 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3133 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3136 /* verify action code is present */
3137 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3140 switch (mgmt
->u
.action
.u
.vht_opmode_notif
.action_code
) {
3141 case WLAN_VHT_ACTION_OPMODE_NOTIF
: {
3142 /* verify opmode is present */
3143 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 2)
3147 case WLAN_VHT_ACTION_GROUPID_MGMT
: {
3148 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 25)
3156 case WLAN_CATEGORY_BACK
:
3157 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3158 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
&&
3159 sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
&&
3160 sdata
->vif
.type
!= NL80211_IFTYPE_AP
&&
3161 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
)
3164 /* verify action_code is present */
3165 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3168 switch (mgmt
->u
.action
.u
.addba_req
.action_code
) {
3169 case WLAN_ACTION_ADDBA_REQ
:
3170 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3171 sizeof(mgmt
->u
.action
.u
.addba_req
)))
3174 case WLAN_ACTION_ADDBA_RESP
:
3175 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3176 sizeof(mgmt
->u
.action
.u
.addba_resp
)))
3179 case WLAN_ACTION_DELBA
:
3180 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3181 sizeof(mgmt
->u
.action
.u
.delba
)))
3189 case WLAN_CATEGORY_SPECTRUM_MGMT
:
3190 /* verify action_code is present */
3191 if (len
< IEEE80211_MIN_ACTION_SIZE
+ 1)
3194 switch (mgmt
->u
.action
.u
.measurement
.action_code
) {
3195 case WLAN_ACTION_SPCT_MSR_REQ
:
3196 if (status
->band
!= NL80211_BAND_5GHZ
)
3199 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3200 sizeof(mgmt
->u
.action
.u
.measurement
)))
3203 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3206 ieee80211_process_measurement_req(sdata
, mgmt
, len
);
3208 case WLAN_ACTION_SPCT_CHL_SWITCH
: {
3210 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3211 sizeof(mgmt
->u
.action
.u
.chan_switch
)))
3214 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
&&
3215 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3216 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3219 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
)
3220 bssid
= sdata
->u
.mgd
.bssid
;
3221 else if (sdata
->vif
.type
== NL80211_IFTYPE_ADHOC
)
3222 bssid
= sdata
->u
.ibss
.bssid
;
3223 else if (sdata
->vif
.type
== NL80211_IFTYPE_MESH_POINT
)
3228 if (!ether_addr_equal(mgmt
->bssid
, bssid
))
3235 case WLAN_CATEGORY_SA_QUERY
:
3236 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3237 sizeof(mgmt
->u
.action
.u
.sa_query
)))
3240 switch (mgmt
->u
.action
.u
.sa_query
.action
) {
3241 case WLAN_ACTION_SA_QUERY_REQUEST
:
3242 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3244 ieee80211_process_sa_query_req(sdata
, mgmt
, len
);
3248 case WLAN_CATEGORY_SELF_PROTECTED
:
3249 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3250 sizeof(mgmt
->u
.action
.u
.self_prot
.action_code
)))
3253 switch (mgmt
->u
.action
.u
.self_prot
.action_code
) {
3254 case WLAN_SP_MESH_PEERING_OPEN
:
3255 case WLAN_SP_MESH_PEERING_CLOSE
:
3256 case WLAN_SP_MESH_PEERING_CONFIRM
:
3257 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3259 if (sdata
->u
.mesh
.user_mpm
)
3260 /* userspace handles this frame */
3263 case WLAN_SP_MGK_INFORM
:
3264 case WLAN_SP_MGK_ACK
:
3265 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3270 case WLAN_CATEGORY_MESH_ACTION
:
3271 if (len
< (IEEE80211_MIN_ACTION_SIZE
+
3272 sizeof(mgmt
->u
.action
.u
.mesh_action
.action_code
)))
3275 if (!ieee80211_vif_is_mesh(&sdata
->vif
))
3277 if (mesh_action_is_path_sel(mgmt
) &&
3278 !mesh_path_sel_is_hwmp(sdata
))
3286 status
->rx_flags
|= IEEE80211_RX_MALFORMED_ACTION_FRM
;
3287 /* will return in the next handlers */
3292 rx
->sta
->rx_stats
.packets
++;
3293 dev_kfree_skb(rx
->skb
);
3297 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3298 ieee80211_queue_work(&local
->hw
, &sdata
->work
);
3300 rx
->sta
->rx_stats
.packets
++;
3304 static ieee80211_rx_result debug_noinline
3305 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data
*rx
)
3307 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3310 /* skip known-bad action frames and return them in the next handler */
3311 if (status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
)
3315 * Getting here means the kernel doesn't know how to handle
3316 * it, but maybe userspace does ... include returned frames
3317 * so userspace can register for those to know whether ones
3318 * it transmitted were processed or returned.
3321 if (ieee80211_hw_check(&rx
->local
->hw
, SIGNAL_DBM
) &&
3322 !(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
))
3323 sig
= status
->signal
;
3325 if (cfg80211_rx_mgmt(&rx
->sdata
->wdev
, status
->freq
, sig
,
3326 rx
->skb
->data
, rx
->skb
->len
, 0)) {
3328 rx
->sta
->rx_stats
.packets
++;
3329 dev_kfree_skb(rx
->skb
);
3336 static ieee80211_rx_result debug_noinline
3337 ieee80211_rx_h_action_return(struct ieee80211_rx_data
*rx
)
3339 struct ieee80211_local
*local
= rx
->local
;
3340 struct ieee80211_mgmt
*mgmt
= (struct ieee80211_mgmt
*) rx
->skb
->data
;
3341 struct sk_buff
*nskb
;
3342 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3343 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(rx
->skb
);
3345 if (!ieee80211_is_action(mgmt
->frame_control
))
3349 * For AP mode, hostapd is responsible for handling any action
3350 * frames that we didn't handle, including returning unknown
3351 * ones. For all other modes we will return them to the sender,
3352 * setting the 0x80 bit in the action category, as required by
3353 * 802.11-2012 9.24.4.
3354 * Newer versions of hostapd shall also use the management frame
3355 * registration mechanisms, but older ones still use cooked
3356 * monitor interfaces so push all frames there.
3358 if (!(status
->rx_flags
& IEEE80211_RX_MALFORMED_ACTION_FRM
) &&
3359 (sdata
->vif
.type
== NL80211_IFTYPE_AP
||
3360 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
))
3361 return RX_DROP_MONITOR
;
3363 if (is_multicast_ether_addr(mgmt
->da
))
3364 return RX_DROP_MONITOR
;
3366 /* do not return rejected action frames */
3367 if (mgmt
->u
.action
.category
& 0x80)
3368 return RX_DROP_UNUSABLE
;
3370 nskb
= skb_copy_expand(rx
->skb
, local
->hw
.extra_tx_headroom
, 0,
3373 struct ieee80211_mgmt
*nmgmt
= (void *)nskb
->data
;
3375 nmgmt
->u
.action
.category
|= 0x80;
3376 memcpy(nmgmt
->da
, nmgmt
->sa
, ETH_ALEN
);
3377 memcpy(nmgmt
->sa
, rx
->sdata
->vif
.addr
, ETH_ALEN
);
3379 memset(nskb
->cb
, 0, sizeof(nskb
->cb
));
3381 if (rx
->sdata
->vif
.type
== NL80211_IFTYPE_P2P_DEVICE
) {
3382 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(nskb
);
3384 info
->flags
= IEEE80211_TX_CTL_TX_OFFCHAN
|
3385 IEEE80211_TX_INTFL_OFFCHAN_TX_OK
|
3386 IEEE80211_TX_CTL_NO_CCK_RATE
;
3387 if (ieee80211_hw_check(&local
->hw
, QUEUE_CONTROL
))
3389 local
->hw
.offchannel_tx_hw_queue
;
3392 __ieee80211_tx_skb_tid_band(rx
->sdata
, nskb
, 7,
3395 dev_kfree_skb(rx
->skb
);
3399 static ieee80211_rx_result debug_noinline
3400 ieee80211_rx_h_mgmt(struct ieee80211_rx_data
*rx
)
3402 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3403 struct ieee80211_mgmt
*mgmt
= (void *)rx
->skb
->data
;
3406 stype
= mgmt
->frame_control
& cpu_to_le16(IEEE80211_FCTL_STYPE
);
3408 if (!ieee80211_vif_is_mesh(&sdata
->vif
) &&
3409 sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3410 sdata
->vif
.type
!= NL80211_IFTYPE_OCB
&&
3411 sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3412 return RX_DROP_MONITOR
;
3415 case cpu_to_le16(IEEE80211_STYPE_AUTH
):
3416 case cpu_to_le16(IEEE80211_STYPE_BEACON
):
3417 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP
):
3418 /* process for all: mesh, mlme, ibss */
3420 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP
):
3421 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP
):
3422 case cpu_to_le16(IEEE80211_STYPE_DEAUTH
):
3423 case cpu_to_le16(IEEE80211_STYPE_DISASSOC
):
3424 if (is_multicast_ether_addr(mgmt
->da
) &&
3425 !is_broadcast_ether_addr(mgmt
->da
))
3426 return RX_DROP_MONITOR
;
3428 /* process only for station */
3429 if (sdata
->vif
.type
!= NL80211_IFTYPE_STATION
)
3430 return RX_DROP_MONITOR
;
3432 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ
):
3433 /* process only for ibss and mesh */
3434 if (sdata
->vif
.type
!= NL80211_IFTYPE_ADHOC
&&
3435 sdata
->vif
.type
!= NL80211_IFTYPE_MESH_POINT
)
3436 return RX_DROP_MONITOR
;
3439 return RX_DROP_MONITOR
;
3442 /* queue up frame and kick off work to process it */
3443 skb_queue_tail(&sdata
->skb_queue
, rx
->skb
);
3444 ieee80211_queue_work(&rx
->local
->hw
, &sdata
->work
);
3446 rx
->sta
->rx_stats
.packets
++;
3451 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data
*rx
,
3452 struct ieee80211_rate
*rate
)
3454 struct ieee80211_sub_if_data
*sdata
;
3455 struct ieee80211_local
*local
= rx
->local
;
3456 struct sk_buff
*skb
= rx
->skb
, *skb2
;
3457 struct net_device
*prev_dev
= NULL
;
3458 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3459 int needed_headroom
;
3462 * If cooked monitor has been processed already, then
3463 * don't do it again. If not, set the flag.
3465 if (rx
->flags
& IEEE80211_RX_CMNTR
)
3467 rx
->flags
|= IEEE80211_RX_CMNTR
;
3469 /* If there are no cooked monitor interfaces, just free the SKB */
3470 if (!local
->cooked_mntrs
)
3473 /* vendor data is long removed here */
3474 status
->flag
&= ~RX_FLAG_RADIOTAP_VENDOR_DATA
;
3475 /* room for the radiotap header based on driver features */
3476 needed_headroom
= ieee80211_rx_radiotap_hdrlen(local
, status
, skb
);
3478 if (skb_headroom(skb
) < needed_headroom
&&
3479 pskb_expand_head(skb
, needed_headroom
, 0, GFP_ATOMIC
))
3482 /* prepend radiotap information */
3483 ieee80211_add_rx_radiotap_header(local
, skb
, rate
, needed_headroom
,
3486 skb_reset_mac_header(skb
);
3487 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3488 skb
->pkt_type
= PACKET_OTHERHOST
;
3489 skb
->protocol
= htons(ETH_P_802_2
);
3491 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
3492 if (!ieee80211_sdata_running(sdata
))
3495 if (sdata
->vif
.type
!= NL80211_IFTYPE_MONITOR
||
3496 !(sdata
->u
.mntr
.flags
& MONITOR_FLAG_COOK_FRAMES
))
3500 skb2
= skb_clone(skb
, GFP_ATOMIC
);
3502 skb2
->dev
= prev_dev
;
3503 netif_receive_skb(skb2
);
3507 prev_dev
= sdata
->dev
;
3508 ieee80211_rx_stats(sdata
->dev
, skb
->len
);
3512 skb
->dev
= prev_dev
;
3513 netif_receive_skb(skb
);
3521 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data
*rx
,
3522 ieee80211_rx_result res
)
3525 case RX_DROP_MONITOR
:
3526 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3528 rx
->sta
->rx_stats
.dropped
++;
3531 struct ieee80211_rate
*rate
= NULL
;
3532 struct ieee80211_supported_band
*sband
;
3533 struct ieee80211_rx_status
*status
;
3535 status
= IEEE80211_SKB_RXCB((rx
->skb
));
3537 sband
= rx
->local
->hw
.wiphy
->bands
[status
->band
];
3538 if (status
->encoding
== RX_ENC_LEGACY
)
3539 rate
= &sband
->bitrates
[status
->rate_idx
];
3541 ieee80211_rx_cooked_monitor(rx
, rate
);
3544 case RX_DROP_UNUSABLE
:
3545 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_drop
);
3547 rx
->sta
->rx_stats
.dropped
++;
3548 dev_kfree_skb(rx
->skb
);
3551 I802_DEBUG_INC(rx
->sdata
->local
->rx_handlers_queued
);
3556 static void ieee80211_rx_handlers(struct ieee80211_rx_data
*rx
,
3557 struct sk_buff_head
*frames
)
3559 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3560 struct sk_buff
*skb
;
3562 #define CALL_RXH(rxh) \
3565 if (res != RX_CONTINUE) \
3569 /* Lock here to avoid hitting all of the data used in the RX
3570 * path (e.g. key data, station data, ...) concurrently when
3571 * a frame is released from the reorder buffer due to timeout
3572 * from the timer, potentially concurrently with RX from the
3575 spin_lock_bh(&rx
->local
->rx_path_lock
);
3577 while ((skb
= __skb_dequeue(frames
))) {
3579 * all the other fields are valid across frames
3580 * that belong to an aMPDU since they are on the
3581 * same TID from the same station
3585 CALL_RXH(ieee80211_rx_h_check_more_data
);
3586 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll
);
3587 CALL_RXH(ieee80211_rx_h_sta_process
);
3588 CALL_RXH(ieee80211_rx_h_decrypt
);
3589 CALL_RXH(ieee80211_rx_h_defragment
);
3590 CALL_RXH(ieee80211_rx_h_michael_mic_verify
);
3591 /* must be after MMIC verify so header is counted in MPDU mic */
3592 #ifdef CONFIG_MAC80211_MESH
3593 if (ieee80211_vif_is_mesh(&rx
->sdata
->vif
))
3594 CALL_RXH(ieee80211_rx_h_mesh_fwding
);
3596 CALL_RXH(ieee80211_rx_h_amsdu
);
3597 CALL_RXH(ieee80211_rx_h_data
);
3599 /* special treatment -- needs the queue */
3600 res
= ieee80211_rx_h_ctrl(rx
, frames
);
3601 if (res
!= RX_CONTINUE
)
3604 CALL_RXH(ieee80211_rx_h_mgmt_check
);
3605 CALL_RXH(ieee80211_rx_h_action
);
3606 CALL_RXH(ieee80211_rx_h_userspace_mgmt
);
3607 CALL_RXH(ieee80211_rx_h_action_return
);
3608 CALL_RXH(ieee80211_rx_h_mgmt
);
3611 ieee80211_rx_handlers_result(rx
, res
);
3616 spin_unlock_bh(&rx
->local
->rx_path_lock
);
3619 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data
*rx
)
3621 struct sk_buff_head reorder_release
;
3622 ieee80211_rx_result res
= RX_DROP_MONITOR
;
3624 __skb_queue_head_init(&reorder_release
);
3626 #define CALL_RXH(rxh) \
3629 if (res != RX_CONTINUE) \
3633 CALL_RXH(ieee80211_rx_h_check_dup
);
3634 CALL_RXH(ieee80211_rx_h_check
);
3636 ieee80211_rx_reorder_ampdu(rx
, &reorder_release
);
3638 ieee80211_rx_handlers(rx
, &reorder_release
);
3642 ieee80211_rx_handlers_result(rx
, res
);
3648 * This function makes calls into the RX path, therefore
3649 * it has to be invoked under RCU read lock.
3651 void ieee80211_release_reorder_timeout(struct sta_info
*sta
, int tid
)
3653 struct sk_buff_head frames
;
3654 struct ieee80211_rx_data rx
= {
3656 .sdata
= sta
->sdata
,
3657 .local
= sta
->local
,
3658 /* This is OK -- must be QoS data frame */
3659 .security_idx
= tid
,
3661 .napi
= NULL
, /* must be NULL to not have races */
3663 struct tid_ampdu_rx
*tid_agg_rx
;
3665 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3669 __skb_queue_head_init(&frames
);
3671 spin_lock(&tid_agg_rx
->reorder_lock
);
3672 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3673 spin_unlock(&tid_agg_rx
->reorder_lock
);
3675 if (!skb_queue_empty(&frames
)) {
3676 struct ieee80211_event event
= {
3677 .type
= BA_FRAME_TIMEOUT
,
3679 .u
.ba
.sta
= &sta
->sta
,
3681 drv_event_callback(rx
.local
, rx
.sdata
, &event
);
3684 ieee80211_rx_handlers(&rx
, &frames
);
3687 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta
*pubsta
, u8 tid
,
3688 u16 ssn
, u64 filtered
,
3691 struct sta_info
*sta
;
3692 struct tid_ampdu_rx
*tid_agg_rx
;
3693 struct sk_buff_head frames
;
3694 struct ieee80211_rx_data rx
= {
3695 /* This is OK -- must be QoS data frame */
3696 .security_idx
= tid
,
3701 if (WARN_ON(!pubsta
|| tid
>= IEEE80211_NUM_TIDS
))
3704 __skb_queue_head_init(&frames
);
3706 sta
= container_of(pubsta
, struct sta_info
, sta
);
3709 rx
.sdata
= sta
->sdata
;
3710 rx
.local
= sta
->local
;
3713 tid_agg_rx
= rcu_dereference(sta
->ampdu_mlme
.tid_rx
[tid
]);
3717 spin_lock_bh(&tid_agg_rx
->reorder_lock
);
3719 if (received_mpdus
>= IEEE80211_SN_MODULO
>> 1) {
3722 /* release all frames in the reorder buffer */
3723 release
= (tid_agg_rx
->head_seq_num
+ tid_agg_rx
->buf_size
) %
3724 IEEE80211_SN_MODULO
;
3725 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
,
3727 /* update ssn to match received ssn */
3728 tid_agg_rx
->head_seq_num
= ssn
;
3730 ieee80211_release_reorder_frames(sta
->sdata
, tid_agg_rx
, ssn
,
3734 /* handle the case that received ssn is behind the mac ssn.
3735 * it can be tid_agg_rx->buf_size behind and still be valid */
3736 diff
= (tid_agg_rx
->head_seq_num
- ssn
) & IEEE80211_SN_MASK
;
3737 if (diff
>= tid_agg_rx
->buf_size
) {
3738 tid_agg_rx
->reorder_buf_filtered
= 0;
3741 filtered
= filtered
>> diff
;
3745 for (i
= 0; i
< tid_agg_rx
->buf_size
; i
++) {
3746 int index
= (ssn
+ i
) % tid_agg_rx
->buf_size
;
3748 tid_agg_rx
->reorder_buf_filtered
&= ~BIT_ULL(index
);
3749 if (filtered
& BIT_ULL(i
))
3750 tid_agg_rx
->reorder_buf_filtered
|= BIT_ULL(index
);
3753 /* now process also frames that the filter marking released */
3754 ieee80211_sta_reorder_release(sta
->sdata
, tid_agg_rx
, &frames
);
3757 spin_unlock_bh(&tid_agg_rx
->reorder_lock
);
3759 ieee80211_rx_handlers(&rx
, &frames
);
3764 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames
);
3766 /* main receive path */
3768 static bool ieee80211_accept_frame(struct ieee80211_rx_data
*rx
)
3770 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
3771 struct sk_buff
*skb
= rx
->skb
;
3772 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
3773 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
3774 u8
*bssid
= ieee80211_get_bssid(hdr
, skb
->len
, sdata
->vif
.type
);
3775 bool multicast
= is_multicast_ether_addr(hdr
->addr1
);
3777 switch (sdata
->vif
.type
) {
3778 case NL80211_IFTYPE_STATION
:
3779 if (!bssid
&& !sdata
->u
.mgd
.use_4addr
)
3783 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3784 case NL80211_IFTYPE_ADHOC
:
3787 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
) ||
3788 ether_addr_equal(sdata
->u
.ibss
.bssid
, hdr
->addr2
))
3790 if (ieee80211_is_beacon(hdr
->frame_control
))
3792 if (!ieee80211_bssid_match(bssid
, sdata
->u
.ibss
.bssid
))
3795 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3799 if (status
->encoding
!= RX_ENC_LEGACY
)
3800 rate_idx
= 0; /* TODO: HT/VHT rates */
3802 rate_idx
= status
->rate_idx
;
3803 ieee80211_ibss_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3807 case NL80211_IFTYPE_OCB
:
3810 if (!ieee80211_is_data_present(hdr
->frame_control
))
3812 if (!is_broadcast_ether_addr(bssid
))
3815 !ether_addr_equal(sdata
->dev
->dev_addr
, hdr
->addr1
))
3819 if (status
->encoding
!= RX_ENC_LEGACY
)
3820 rate_idx
= 0; /* TODO: HT rates */
3822 rate_idx
= status
->rate_idx
;
3823 ieee80211_ocb_rx_no_sta(sdata
, bssid
, hdr
->addr2
,
3827 case NL80211_IFTYPE_MESH_POINT
:
3828 if (ether_addr_equal(sdata
->vif
.addr
, hdr
->addr2
))
3832 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3833 case NL80211_IFTYPE_AP_VLAN
:
3834 case NL80211_IFTYPE_AP
:
3836 return ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
);
3838 if (!ieee80211_bssid_match(bssid
, sdata
->vif
.addr
)) {
3840 * Accept public action frames even when the
3841 * BSSID doesn't match, this is used for P2P
3842 * and location updates. Note that mac80211
3843 * itself never looks at these frames.
3846 !ether_addr_equal(sdata
->vif
.addr
, hdr
->addr1
))
3848 if (ieee80211_is_public_action(hdr
, skb
->len
))
3850 return ieee80211_is_beacon(hdr
->frame_control
);
3853 if (!ieee80211_has_tods(hdr
->frame_control
)) {
3854 /* ignore data frames to TDLS-peers */
3855 if (ieee80211_is_data(hdr
->frame_control
))
3857 /* ignore action frames to TDLS-peers */
3858 if (ieee80211_is_action(hdr
->frame_control
) &&
3859 !is_broadcast_ether_addr(bssid
) &&
3860 !ether_addr_equal(bssid
, hdr
->addr1
))
3865 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3866 * the BSSID - we've checked that already but may have accepted
3867 * the wildcard (ff:ff:ff:ff:ff:ff).
3870 * The BSSID of the Data frame is determined as follows:
3871 * a) If the STA is contained within an AP or is associated
3872 * with an AP, the BSSID is the address currently in use
3873 * by the STA contained in the AP.
3875 * So we should not accept data frames with an address that's
3878 * Accepting it also opens a security problem because stations
3879 * could encrypt it with the GTK and inject traffic that way.
3881 if (ieee80211_is_data(hdr
->frame_control
) && multicast
)
3885 case NL80211_IFTYPE_WDS
:
3886 if (bssid
|| !ieee80211_is_data(hdr
->frame_control
))
3888 return ether_addr_equal(sdata
->u
.wds
.remote_addr
, hdr
->addr2
);
3889 case NL80211_IFTYPE_P2P_DEVICE
:
3890 return ieee80211_is_public_action(hdr
, skb
->len
) ||
3891 ieee80211_is_probe_req(hdr
->frame_control
) ||
3892 ieee80211_is_probe_resp(hdr
->frame_control
) ||
3893 ieee80211_is_beacon(hdr
->frame_control
);
3894 case NL80211_IFTYPE_NAN
:
3895 /* Currently no frames on NAN interface are allowed */
3905 void ieee80211_check_fast_rx(struct sta_info
*sta
)
3907 struct ieee80211_sub_if_data
*sdata
= sta
->sdata
;
3908 struct ieee80211_local
*local
= sdata
->local
;
3909 struct ieee80211_key
*key
;
3910 struct ieee80211_fast_rx fastrx
= {
3912 .vif_type
= sdata
->vif
.type
,
3913 .control_port_protocol
= sdata
->control_port_protocol
,
3914 }, *old
, *new = NULL
;
3915 bool assign
= false;
3917 /* use sparse to check that we don't return without updating */
3918 __acquire(check_fast_rx
);
3920 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != sizeof(rfc1042_header
));
3921 BUILD_BUG_ON(sizeof(fastrx
.rfc1042_hdr
) != ETH_ALEN
);
3922 ether_addr_copy(fastrx
.rfc1042_hdr
, rfc1042_header
);
3923 ether_addr_copy(fastrx
.vif_addr
, sdata
->vif
.addr
);
3925 fastrx
.uses_rss
= ieee80211_hw_check(&local
->hw
, USES_RSS
);
3927 /* fast-rx doesn't do reordering */
3928 if (ieee80211_hw_check(&local
->hw
, AMPDU_AGGREGATION
) &&
3929 !ieee80211_hw_check(&local
->hw
, SUPPORTS_REORDERING_BUFFER
))
3932 switch (sdata
->vif
.type
) {
3933 case NL80211_IFTYPE_STATION
:
3934 if (sta
->sta
.tdls
) {
3935 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3936 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3937 fastrx
.expected_ds_bits
= 0;
3939 fastrx
.sta_notify
= sdata
->u
.mgd
.probe_send_count
> 0;
3940 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr1
);
3941 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3942 fastrx
.expected_ds_bits
=
3943 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
3946 if (sdata
->u
.mgd
.use_4addr
&& !sta
->sta
.tdls
) {
3947 fastrx
.expected_ds_bits
|=
3948 cpu_to_le16(IEEE80211_FCTL_TODS
);
3949 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3950 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr4
);
3953 if (!sdata
->u
.mgd
.powersave
)
3956 /* software powersave is a huge mess, avoid all of it */
3957 if (ieee80211_hw_check(&local
->hw
, PS_NULLFUNC_STACK
))
3959 if (ieee80211_hw_check(&local
->hw
, SUPPORTS_PS
) &&
3960 !ieee80211_hw_check(&local
->hw
, SUPPORTS_DYNAMIC_PS
))
3963 case NL80211_IFTYPE_AP_VLAN
:
3964 case NL80211_IFTYPE_AP
:
3965 /* parallel-rx requires this, at least with calls to
3966 * ieee80211_sta_ps_transition()
3968 if (!ieee80211_hw_check(&local
->hw
, AP_LINK_PS
))
3970 fastrx
.da_offs
= offsetof(struct ieee80211_hdr
, addr3
);
3971 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr2
);
3972 fastrx
.expected_ds_bits
= cpu_to_le16(IEEE80211_FCTL_TODS
);
3974 fastrx
.internal_forward
=
3975 !(sdata
->flags
& IEEE80211_SDATA_DONT_BRIDGE_PACKETS
) &&
3976 (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
||
3977 !sdata
->u
.vlan
.sta
);
3979 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
&&
3980 sdata
->u
.vlan
.sta
) {
3981 fastrx
.expected_ds_bits
|=
3982 cpu_to_le16(IEEE80211_FCTL_FROMDS
);
3983 fastrx
.sa_offs
= offsetof(struct ieee80211_hdr
, addr4
);
3984 fastrx
.internal_forward
= 0;
3992 if (!test_sta_flag(sta
, WLAN_STA_AUTHORIZED
))
3996 key
= rcu_dereference(sta
->ptk
[sta
->ptk_idx
]);
3998 switch (key
->conf
.cipher
) {
3999 case WLAN_CIPHER_SUITE_TKIP
:
4000 /* we don't want to deal with MMIC in fast-rx */
4002 case WLAN_CIPHER_SUITE_CCMP
:
4003 case WLAN_CIPHER_SUITE_CCMP_256
:
4004 case WLAN_CIPHER_SUITE_GCMP
:
4005 case WLAN_CIPHER_SUITE_GCMP_256
:
4008 /* we also don't want to deal with WEP or cipher scheme
4009 * since those require looking up the key idx in the
4010 * frame, rather than assuming the PTK is used
4011 * (we need to revisit this once we implement the real
4012 * PTK index, which is now valid in the spec, but we
4013 * haven't implemented that part yet)
4019 fastrx
.icv_len
= key
->conf
.icv_len
;
4026 __release(check_fast_rx
);
4029 new = kmemdup(&fastrx
, sizeof(fastrx
), GFP_KERNEL
);
4031 spin_lock_bh(&sta
->lock
);
4032 old
= rcu_dereference_protected(sta
->fast_rx
, true);
4033 rcu_assign_pointer(sta
->fast_rx
, new);
4034 spin_unlock_bh(&sta
->lock
);
4037 kfree_rcu(old
, rcu_head
);
4040 void ieee80211_clear_fast_rx(struct sta_info
*sta
)
4042 struct ieee80211_fast_rx
*old
;
4044 spin_lock_bh(&sta
->lock
);
4045 old
= rcu_dereference_protected(sta
->fast_rx
, true);
4046 RCU_INIT_POINTER(sta
->fast_rx
, NULL
);
4047 spin_unlock_bh(&sta
->lock
);
4050 kfree_rcu(old
, rcu_head
);
4053 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
4055 struct ieee80211_local
*local
= sdata
->local
;
4056 struct sta_info
*sta
;
4058 lockdep_assert_held(&local
->sta_mtx
);
4060 list_for_each_entry_rcu(sta
, &local
->sta_list
, list
) {
4061 if (sdata
!= sta
->sdata
&&
4062 (!sta
->sdata
->bss
|| sta
->sdata
->bss
!= sdata
->bss
))
4064 ieee80211_check_fast_rx(sta
);
4068 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data
*sdata
)
4070 struct ieee80211_local
*local
= sdata
->local
;
4072 mutex_lock(&local
->sta_mtx
);
4073 __ieee80211_check_fast_rx_iface(sdata
);
4074 mutex_unlock(&local
->sta_mtx
);
4077 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data
*rx
,
4078 struct ieee80211_fast_rx
*fast_rx
)
4080 struct sk_buff
*skb
= rx
->skb
;
4081 struct ieee80211_hdr
*hdr
= (void *)skb
->data
;
4082 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4083 struct sta_info
*sta
= rx
->sta
;
4084 int orig_len
= skb
->len
;
4085 int hdrlen
= ieee80211_hdrlen(hdr
->frame_control
);
4086 int snap_offs
= hdrlen
;
4088 u8 snap
[sizeof(rfc1042_header
)];
4090 } *payload
__aligned(2);
4094 } addrs
__aligned(2);
4095 struct ieee80211_sta_rx_stats
*stats
= &sta
->rx_stats
;
4097 if (fast_rx
->uses_rss
)
4098 stats
= this_cpu_ptr(sta
->pcpu_rx_stats
);
4100 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4101 * to a common data structure; drivers can implement that per queue
4102 * but we don't have that information in mac80211
4104 if (!(status
->flag
& RX_FLAG_DUP_VALIDATED
))
4107 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4109 /* If using encryption, we also need to have:
4110 * - PN_VALIDATED: similar, but the implementation is tricky
4111 * - DECRYPTED: necessary for PN_VALIDATED
4114 (status
->flag
& FAST_RX_CRYPT_FLAGS
) != FAST_RX_CRYPT_FLAGS
)
4117 if (unlikely(!ieee80211_is_data_present(hdr
->frame_control
)))
4120 if (unlikely(ieee80211_is_frag(hdr
)))
4123 /* Since our interface address cannot be multicast, this
4124 * implicitly also rejects multicast frames without the
4127 * We shouldn't get any *data* frames not addressed to us
4128 * (AP mode will accept multicast *management* frames), but
4129 * punting here will make it go through the full checks in
4130 * ieee80211_accept_frame().
4132 if (!ether_addr_equal(fast_rx
->vif_addr
, hdr
->addr1
))
4135 if ((hdr
->frame_control
& cpu_to_le16(IEEE80211_FCTL_FROMDS
|
4136 IEEE80211_FCTL_TODS
)) !=
4137 fast_rx
->expected_ds_bits
)
4140 /* assign the key to drop unencrypted frames (later)
4141 * and strip the IV/MIC if necessary
4143 if (fast_rx
->key
&& !(status
->flag
& RX_FLAG_IV_STRIPPED
)) {
4144 /* GCMP header length is the same */
4145 snap_offs
+= IEEE80211_CCMP_HDR_LEN
;
4148 if (!(status
->rx_flags
& IEEE80211_RX_AMSDU
)) {
4149 if (!pskb_may_pull(skb
, snap_offs
+ sizeof(*payload
)))
4152 payload
= (void *)(skb
->data
+ snap_offs
);
4154 if (!ether_addr_equal(payload
->snap
, fast_rx
->rfc1042_hdr
))
4157 /* Don't handle these here since they require special code.
4158 * Accept AARP and IPX even though they should come with a
4159 * bridge-tunnel header - but if we get them this way then
4160 * there's little point in discarding them.
4162 if (unlikely(payload
->proto
== cpu_to_be16(ETH_P_TDLS
) ||
4163 payload
->proto
== fast_rx
->control_port_protocol
))
4167 /* after this point, don't punt to the slowpath! */
4169 if (rx
->key
&& !(status
->flag
& RX_FLAG_MIC_STRIPPED
) &&
4170 pskb_trim(skb
, skb
->len
- fast_rx
->icv_len
))
4173 if (unlikely(fast_rx
->sta_notify
)) {
4174 ieee80211_sta_rx_notify(rx
->sdata
, hdr
);
4175 fast_rx
->sta_notify
= false;
4178 /* statistics part of ieee80211_rx_h_sta_process() */
4179 if (!(status
->flag
& RX_FLAG_NO_SIGNAL_VAL
)) {
4180 stats
->last_signal
= status
->signal
;
4181 if (!fast_rx
->uses_rss
)
4182 ewma_signal_add(&sta
->rx_stats_avg
.signal
,
4186 if (status
->chains
) {
4189 stats
->chains
= status
->chains
;
4190 for (i
= 0; i
< ARRAY_SIZE(status
->chain_signal
); i
++) {
4191 int signal
= status
->chain_signal
[i
];
4193 if (!(status
->chains
& BIT(i
)))
4196 stats
->chain_signal_last
[i
] = signal
;
4197 if (!fast_rx
->uses_rss
)
4198 ewma_signal_add(&sta
->rx_stats_avg
.chain_signal
[i
],
4202 /* end of statistics */
4204 if (rx
->key
&& !ieee80211_has_protected(hdr
->frame_control
))
4207 if (status
->rx_flags
& IEEE80211_RX_AMSDU
) {
4208 if (__ieee80211_rx_h_amsdu(rx
, snap_offs
- hdrlen
) !=
4215 stats
->last_rx
= jiffies
;
4216 stats
->last_rate
= sta_stats_encode_rate(status
);
4221 /* do the header conversion - first grab the addresses */
4222 ether_addr_copy(addrs
.da
, skb
->data
+ fast_rx
->da_offs
);
4223 ether_addr_copy(addrs
.sa
, skb
->data
+ fast_rx
->sa_offs
);
4224 /* remove the SNAP but leave the ethertype */
4225 skb_pull(skb
, snap_offs
+ sizeof(rfc1042_header
));
4226 /* push the addresses in front */
4227 memcpy(skb_push(skb
, sizeof(addrs
)), &addrs
, sizeof(addrs
));
4229 skb
->dev
= fast_rx
->dev
;
4231 ieee80211_rx_stats(fast_rx
->dev
, skb
->len
);
4233 /* The seqno index has the same property as needed
4234 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4235 * for non-QoS-data frames. Here we know it's a data
4236 * frame, so count MSDUs.
4238 u64_stats_update_begin(&stats
->syncp
);
4239 stats
->msdu
[rx
->seqno_idx
]++;
4240 stats
->bytes
+= orig_len
;
4241 u64_stats_update_end(&stats
->syncp
);
4243 if (fast_rx
->internal_forward
) {
4244 struct sk_buff
*xmit_skb
= NULL
;
4245 if (is_multicast_ether_addr(addrs
.da
)) {
4246 xmit_skb
= skb_copy(skb
, GFP_ATOMIC
);
4247 } else if (!ether_addr_equal(addrs
.da
, addrs
.sa
) &&
4248 sta_info_get(rx
->sdata
, addrs
.da
)) {
4255 * Send to wireless media and increase priority by 256
4256 * to keep the received priority instead of
4257 * reclassifying the frame (see cfg80211_classify8021d).
4259 xmit_skb
->priority
+= 256;
4260 xmit_skb
->protocol
= htons(ETH_P_802_3
);
4261 skb_reset_network_header(xmit_skb
);
4262 skb_reset_mac_header(xmit_skb
);
4263 dev_queue_xmit(xmit_skb
);
4270 /* deliver to local stack */
4271 skb
->protocol
= eth_type_trans(skb
, fast_rx
->dev
);
4272 memset(skb
->cb
, 0, sizeof(skb
->cb
));
4274 napi_gro_receive(rx
->napi
, skb
);
4276 netif_receive_skb(skb
);
4286 * This function returns whether or not the SKB
4287 * was destined for RX processing or not, which,
4288 * if consume is true, is equivalent to whether
4289 * or not the skb was consumed.
4291 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data
*rx
,
4292 struct sk_buff
*skb
, bool consume
)
4294 struct ieee80211_local
*local
= rx
->local
;
4295 struct ieee80211_sub_if_data
*sdata
= rx
->sdata
;
4299 /* See if we can do fast-rx; if we have to copy we already lost,
4300 * so punt in that case. We should never have to deliver a data
4301 * frame to multiple interfaces anyway.
4303 * We skip the ieee80211_accept_frame() call and do the necessary
4304 * checking inside ieee80211_invoke_fast_rx().
4306 if (consume
&& rx
->sta
) {
4307 struct ieee80211_fast_rx
*fast_rx
;
4309 fast_rx
= rcu_dereference(rx
->sta
->fast_rx
);
4310 if (fast_rx
&& ieee80211_invoke_fast_rx(rx
, fast_rx
))
4314 if (!ieee80211_accept_frame(rx
))
4318 skb
= skb_copy(skb
, GFP_ATOMIC
);
4320 if (net_ratelimit())
4321 wiphy_debug(local
->hw
.wiphy
,
4322 "failed to copy skb for %s\n",
4330 ieee80211_invoke_rx_handlers(rx
);
4335 * This is the actual Rx frames handler. as it belongs to Rx path it must
4336 * be called with rcu_read_lock protection.
4338 static void __ieee80211_rx_handle_packet(struct ieee80211_hw
*hw
,
4339 struct ieee80211_sta
*pubsta
,
4340 struct sk_buff
*skb
,
4341 struct napi_struct
*napi
)
4343 struct ieee80211_local
*local
= hw_to_local(hw
);
4344 struct ieee80211_sub_if_data
*sdata
;
4345 struct ieee80211_hdr
*hdr
;
4347 struct ieee80211_rx_data rx
;
4348 struct ieee80211_sub_if_data
*prev
;
4349 struct rhlist_head
*tmp
;
4352 fc
= ((struct ieee80211_hdr
*)skb
->data
)->frame_control
;
4353 memset(&rx
, 0, sizeof(rx
));
4358 if (ieee80211_is_data(fc
) || ieee80211_is_mgmt(fc
))
4359 I802_DEBUG_INC(local
->dot11ReceivedFragmentCount
);
4361 if (ieee80211_is_mgmt(fc
)) {
4362 /* drop frame if too short for header */
4363 if (skb
->len
< ieee80211_hdrlen(fc
))
4366 err
= skb_linearize(skb
);
4368 err
= !pskb_may_pull(skb
, ieee80211_hdrlen(fc
));
4376 hdr
= (struct ieee80211_hdr
*)skb
->data
;
4377 ieee80211_parse_qos(&rx
);
4378 ieee80211_verify_alignment(&rx
);
4380 if (unlikely(ieee80211_is_probe_resp(hdr
->frame_control
) ||
4381 ieee80211_is_beacon(hdr
->frame_control
)))
4382 ieee80211_scan_rx(local
, skb
);
4384 if (ieee80211_is_data(fc
)) {
4385 struct sta_info
*sta
, *prev_sta
;
4388 rx
.sta
= container_of(pubsta
, struct sta_info
, sta
);
4389 rx
.sdata
= rx
.sta
->sdata
;
4390 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4397 for_each_sta_info(local
, hdr
->addr2
, sta
, tmp
) {
4404 rx
.sdata
= prev_sta
->sdata
;
4405 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4412 rx
.sdata
= prev_sta
->sdata
;
4414 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4422 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
) {
4423 if (!ieee80211_sdata_running(sdata
))
4426 if (sdata
->vif
.type
== NL80211_IFTYPE_MONITOR
||
4427 sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
4431 * frame is destined for this interface, but if it's
4432 * not also for the previous one we handle that after
4433 * the loop to avoid copying the SKB once too much
4441 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4443 ieee80211_prepare_and_rx_handle(&rx
, skb
, false);
4449 rx
.sta
= sta_info_get_bss(prev
, hdr
->addr2
);
4452 if (ieee80211_prepare_and_rx_handle(&rx
, skb
, true))
4461 * This is the receive path handler. It is called by a low level driver when an
4462 * 802.11 MPDU is received from the hardware.
4464 void ieee80211_rx_napi(struct ieee80211_hw
*hw
, struct ieee80211_sta
*pubsta
,
4465 struct sk_buff
*skb
, struct napi_struct
*napi
)
4467 struct ieee80211_local
*local
= hw_to_local(hw
);
4468 struct ieee80211_rate
*rate
= NULL
;
4469 struct ieee80211_supported_band
*sband
;
4470 struct ieee80211_rx_status
*status
= IEEE80211_SKB_RXCB(skb
);
4472 WARN_ON_ONCE(softirq_count() == 0);
4474 if (WARN_ON(status
->band
>= NUM_NL80211_BANDS
))
4477 sband
= local
->hw
.wiphy
->bands
[status
->band
];
4478 if (WARN_ON(!sband
))
4482 * If we're suspending, it is possible although not too likely
4483 * that we'd be receiving frames after having already partially
4484 * quiesced the stack. We can't process such frames then since
4485 * that might, for example, cause stations to be added or other
4486 * driver callbacks be invoked.
4488 if (unlikely(local
->quiescing
|| local
->suspended
))
4491 /* We might be during a HW reconfig, prevent Rx for the same reason */
4492 if (unlikely(local
->in_reconfig
))
4496 * The same happens when we're not even started,
4497 * but that's worth a warning.
4499 if (WARN_ON(!local
->started
))
4502 if (likely(!(status
->flag
& RX_FLAG_FAILED_PLCP_CRC
))) {
4504 * Validate the rate, unless a PLCP error means that
4505 * we probably can't have a valid rate here anyway.
4508 switch (status
->encoding
) {
4511 * rate_idx is MCS index, which can be [0-76]
4514 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4516 * Anything else would be some sort of driver or
4517 * hardware error. The driver should catch hardware
4520 if (WARN(status
->rate_idx
> 76,
4521 "Rate marked as an HT rate but passed "
4522 "status->rate_idx is not "
4523 "an MCS index [0-76]: %d (0x%02x)\n",
4529 if (WARN_ONCE(status
->rate_idx
> 9 ||
4532 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4533 status
->rate_idx
, status
->nss
))
4537 if (WARN_ONCE(status
->rate_idx
> 11 ||
4540 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4541 status
->rate_idx
, status
->nss
))
4548 if (WARN_ON(status
->rate_idx
>= sband
->n_bitrates
))
4550 rate
= &sband
->bitrates
[status
->rate_idx
];
4554 status
->rx_flags
= 0;
4557 * key references and virtual interfaces are protected using RCU
4558 * and this requires that we are in a read-side RCU section during
4559 * receive processing
4564 * Frames with failed FCS/PLCP checksum are not returned,
4565 * all other frames are returned without radiotap header
4566 * if it was previously present.
4567 * Also, frames with less than 16 bytes are dropped.
4569 skb
= ieee80211_rx_monitor(local
, skb
, rate
);
4575 ieee80211_tpt_led_trig_rx(local
,
4576 ((struct ieee80211_hdr
*)skb
->data
)->frame_control
,
4579 __ieee80211_rx_handle_packet(hw
, pubsta
, skb
, napi
);
4587 EXPORT_SYMBOL(ieee80211_rx_napi
);
4589 /* This is a version of the rx handler that can be called from hard irq
4590 * context. Post the skb on the queue and schedule the tasklet */
4591 void ieee80211_rx_irqsafe(struct ieee80211_hw
*hw
, struct sk_buff
*skb
)
4593 struct ieee80211_local
*local
= hw_to_local(hw
);
4595 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status
) > sizeof(skb
->cb
));
4597 skb
->pkt_type
= IEEE80211_RX_MSG
;
4598 skb_queue_tail(&local
->skb_queue
, skb
);
4599 tasklet_schedule(&local
->tasklet
);
4601 EXPORT_SYMBOL(ieee80211_rx_irqsafe
);