perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / net / mac80211 / rx.c
blob428f7ad5f9b59f7964405c1c534d2b1a130fe25e
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/jiffies.h>
16 #include <linux/slab.h>
17 #include <linux/kernel.h>
18 #include <linux/skbuff.h>
19 #include <linux/netdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/rcupdate.h>
22 #include <linux/export.h>
23 #include <linux/bitops.h>
24 #include <net/mac80211.h>
25 #include <net/ieee80211_radiotap.h>
26 #include <asm/unaligned.h>
28 #include "ieee80211_i.h"
29 #include "driver-ops.h"
30 #include "led.h"
31 #include "mesh.h"
32 #include "wep.h"
33 #include "wpa.h"
34 #include "tkip.h"
35 #include "wme.h"
36 #include "rate.h"
38 static inline void ieee80211_rx_stats(struct net_device *dev, u32 len)
40 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
42 u64_stats_update_begin(&tstats->syncp);
43 tstats->rx_packets++;
44 tstats->rx_bytes += len;
45 u64_stats_update_end(&tstats->syncp);
48 static u8 *ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len,
49 enum nl80211_iftype type)
51 __le16 fc = hdr->frame_control;
53 if (ieee80211_is_data(fc)) {
54 if (len < 24) /* drop incorrect hdr len (data) */
55 return NULL;
57 if (ieee80211_has_a4(fc))
58 return NULL;
59 if (ieee80211_has_tods(fc))
60 return hdr->addr1;
61 if (ieee80211_has_fromds(fc))
62 return hdr->addr2;
64 return hdr->addr3;
67 if (ieee80211_is_mgmt(fc)) {
68 if (len < 24) /* drop incorrect hdr len (mgmt) */
69 return NULL;
70 return hdr->addr3;
73 if (ieee80211_is_ctl(fc)) {
74 if (ieee80211_is_pspoll(fc))
75 return hdr->addr1;
77 if (ieee80211_is_back_req(fc)) {
78 switch (type) {
79 case NL80211_IFTYPE_STATION:
80 return hdr->addr2;
81 case NL80211_IFTYPE_AP:
82 case NL80211_IFTYPE_AP_VLAN:
83 return hdr->addr1;
84 default:
85 break; /* fall through to the return */
90 return NULL;
94 * monitor mode reception
96 * This function cleans up the SKB, i.e. it removes all the stuff
97 * only useful for monitoring.
99 static void remove_monitor_info(struct sk_buff *skb,
100 unsigned int present_fcs_len,
101 unsigned int rtap_space)
103 if (present_fcs_len)
104 __pskb_trim(skb, skb->len - present_fcs_len);
105 __pskb_pull(skb, rtap_space);
108 static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
109 unsigned int rtap_space)
111 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
112 struct ieee80211_hdr *hdr;
114 hdr = (void *)(skb->data + rtap_space);
116 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
117 RX_FLAG_FAILED_PLCP_CRC |
118 RX_FLAG_ONLY_MONITOR |
119 RX_FLAG_NO_PSDU))
120 return true;
122 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
123 return true;
125 if (ieee80211_is_ctl(hdr->frame_control) &&
126 !ieee80211_is_pspoll(hdr->frame_control) &&
127 !ieee80211_is_back_req(hdr->frame_control))
128 return true;
130 return false;
133 static int
134 ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
135 struct ieee80211_rx_status *status,
136 struct sk_buff *skb)
138 int len;
140 /* always present fields */
141 len = sizeof(struct ieee80211_radiotap_header) + 8;
143 /* allocate extra bitmaps */
144 if (status->chains)
145 len += 4 * hweight8(status->chains);
147 if (ieee80211_have_rx_timestamp(status)) {
148 len = ALIGN(len, 8);
149 len += 8;
151 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
152 len += 1;
154 /* antenna field, if we don't have per-chain info */
155 if (!status->chains)
156 len += 1;
158 /* padding for RX_FLAGS if necessary */
159 len = ALIGN(len, 2);
161 if (status->encoding == RX_ENC_HT) /* HT info */
162 len += 3;
164 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
165 len = ALIGN(len, 4);
166 len += 8;
169 if (status->encoding == RX_ENC_VHT) {
170 len = ALIGN(len, 2);
171 len += 12;
174 if (local->hw.radiotap_timestamp.units_pos >= 0) {
175 len = ALIGN(len, 8);
176 len += 12;
179 if (status->encoding == RX_ENC_HE &&
180 status->flag & RX_FLAG_RADIOTAP_HE) {
181 len = ALIGN(len, 2);
182 len += 12;
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
186 if (status->encoding == RX_ENC_HE &&
187 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
188 len = ALIGN(len, 2);
189 len += 12;
190 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
193 if (status->flag & RX_FLAG_NO_PSDU)
194 len += 1;
196 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
197 len = ALIGN(len, 2);
198 len += 4;
199 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
202 if (status->chains) {
203 /* antenna and antenna signal fields */
204 len += 2 * hweight8(status->chains);
207 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
208 struct ieee80211_vendor_radiotap *rtap = (void *)skb->data;
210 /* vendor presence bitmap */
211 len += 4;
212 /* alignment for fixed 6-byte vendor data header */
213 len = ALIGN(len, 2);
214 /* vendor data header */
215 len += 6;
216 if (WARN_ON(rtap->align == 0))
217 rtap->align = 1;
218 len = ALIGN(len, rtap->align);
219 len += rtap->len + rtap->pad;
222 return len;
225 static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
226 struct sk_buff *skb,
227 int rtap_space)
229 struct {
230 struct ieee80211_hdr_3addr hdr;
231 u8 category;
232 u8 action_code;
233 } __packed action;
235 if (!sdata)
236 return;
238 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
240 if (skb->len < rtap_space + sizeof(action) +
241 VHT_MUMIMO_GROUPS_DATA_LEN)
242 return;
244 if (!is_valid_ether_addr(sdata->u.mntr.mu_follow_addr))
245 return;
247 skb_copy_bits(skb, rtap_space, &action, sizeof(action));
249 if (!ieee80211_is_action(action.hdr.frame_control))
250 return;
252 if (action.category != WLAN_CATEGORY_VHT)
253 return;
255 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
256 return;
258 if (!ether_addr_equal(action.hdr.addr1, sdata->u.mntr.mu_follow_addr))
259 return;
261 skb = skb_copy(skb, GFP_ATOMIC);
262 if (!skb)
263 return;
265 skb_queue_tail(&sdata->skb_queue, skb);
266 ieee80211_queue_work(&sdata->local->hw, &sdata->work);
270 * ieee80211_add_rx_radiotap_header - add radiotap header
272 * add a radiotap header containing all the fields which the hardware provided.
274 static void
275 ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
276 struct sk_buff *skb,
277 struct ieee80211_rate *rate,
278 int rtap_len, bool has_fcs)
280 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
281 struct ieee80211_radiotap_header *rthdr;
282 unsigned char *pos;
283 __le32 *it_present;
284 u32 it_present_val;
285 u16 rx_flags = 0;
286 u16 channel_flags = 0;
287 int mpdulen, chain;
288 unsigned long chains = status->chains;
289 struct ieee80211_vendor_radiotap rtap = {};
290 struct ieee80211_radiotap_he he = {};
291 struct ieee80211_radiotap_he_mu he_mu = {};
292 struct ieee80211_radiotap_lsig lsig = {};
294 if (status->flag & RX_FLAG_RADIOTAP_HE) {
295 he = *(struct ieee80211_radiotap_he *)skb->data;
296 skb_pull(skb, sizeof(he));
297 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
300 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
301 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
302 skb_pull(skb, sizeof(he_mu));
305 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
306 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
307 skb_pull(skb, sizeof(lsig));
310 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
311 rtap = *(struct ieee80211_vendor_radiotap *)skb->data;
312 /* rtap.len and rtap.pad are undone immediately */
313 skb_pull(skb, sizeof(rtap) + rtap.len + rtap.pad);
316 mpdulen = skb->len;
317 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
318 mpdulen += FCS_LEN;
320 rthdr = skb_push(skb, rtap_len);
321 memset(rthdr, 0, rtap_len - rtap.len - rtap.pad);
322 it_present = &rthdr->it_present;
324 /* radiotap header, set always present flags */
325 rthdr->it_len = cpu_to_le16(rtap_len);
326 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
327 BIT(IEEE80211_RADIOTAP_CHANNEL) |
328 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
330 if (!status->chains)
331 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
333 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
334 it_present_val |=
335 BIT(IEEE80211_RADIOTAP_EXT) |
336 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
337 put_unaligned_le32(it_present_val, it_present);
338 it_present++;
339 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
340 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
343 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
344 it_present_val |= BIT(IEEE80211_RADIOTAP_VENDOR_NAMESPACE) |
345 BIT(IEEE80211_RADIOTAP_EXT);
346 put_unaligned_le32(it_present_val, it_present);
347 it_present++;
348 it_present_val = rtap.present;
351 put_unaligned_le32(it_present_val, it_present);
353 pos = (void *)(it_present + 1);
355 /* the order of the following fields is important */
357 /* IEEE80211_RADIOTAP_TSFT */
358 if (ieee80211_have_rx_timestamp(status)) {
359 /* padding */
360 while ((pos - (u8 *)rthdr) & 7)
361 *pos++ = 0;
362 put_unaligned_le64(
363 ieee80211_calculate_rx_timestamp(local, status,
364 mpdulen, 0),
365 pos);
366 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
367 pos += 8;
370 /* IEEE80211_RADIOTAP_FLAGS */
371 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
372 *pos |= IEEE80211_RADIOTAP_F_FCS;
373 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
374 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
375 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
376 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
377 pos++;
379 /* IEEE80211_RADIOTAP_RATE */
380 if (!rate || status->encoding != RX_ENC_LEGACY) {
382 * Without rate information don't add it. If we have,
383 * MCS information is a separate field in radiotap,
384 * added below. The byte here is needed as padding
385 * for the channel though, so initialise it to 0.
387 *pos = 0;
388 } else {
389 int shift = 0;
390 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_RATE);
391 if (status->bw == RATE_INFO_BW_10)
392 shift = 1;
393 else if (status->bw == RATE_INFO_BW_5)
394 shift = 2;
395 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
397 pos++;
399 /* IEEE80211_RADIOTAP_CHANNEL */
400 put_unaligned_le16(status->freq, pos);
401 pos += 2;
402 if (status->bw == RATE_INFO_BW_10)
403 channel_flags |= IEEE80211_CHAN_HALF;
404 else if (status->bw == RATE_INFO_BW_5)
405 channel_flags |= IEEE80211_CHAN_QUARTER;
407 if (status->band == NL80211_BAND_5GHZ)
408 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
409 else if (status->encoding != RX_ENC_LEGACY)
410 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
411 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
412 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
413 else if (rate)
414 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
415 else
416 channel_flags |= IEEE80211_CHAN_2GHZ;
417 put_unaligned_le16(channel_flags, pos);
418 pos += 2;
420 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
421 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
422 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
423 *pos = status->signal;
424 rthdr->it_present |=
425 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
426 pos++;
429 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
431 if (!status->chains) {
432 /* IEEE80211_RADIOTAP_ANTENNA */
433 *pos = status->antenna;
434 pos++;
437 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
439 /* IEEE80211_RADIOTAP_RX_FLAGS */
440 /* ensure 2 byte alignment for the 2 byte field as required */
441 if ((pos - (u8 *)rthdr) & 1)
442 *pos++ = 0;
443 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
444 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
445 put_unaligned_le16(rx_flags, pos);
446 pos += 2;
448 if (status->encoding == RX_ENC_HT) {
449 unsigned int stbc;
451 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_MCS);
452 *pos++ = local->hw.radiotap_mcs_details;
453 *pos = 0;
454 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
455 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
456 if (status->bw == RATE_INFO_BW_40)
457 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
458 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
459 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
460 if (status->enc_flags & RX_ENC_FLAG_LDPC)
461 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
462 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
463 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
464 pos++;
465 *pos++ = status->rate_idx;
468 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
469 u16 flags = 0;
471 /* ensure 4 byte alignment */
472 while ((pos - (u8 *)rthdr) & 3)
473 pos++;
474 rthdr->it_present |=
475 cpu_to_le32(1 << IEEE80211_RADIOTAP_AMPDU_STATUS);
476 put_unaligned_le32(status->ampdu_reference, pos);
477 pos += 4;
478 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
479 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
480 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
481 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
482 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
483 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
484 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
485 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
486 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
487 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
488 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
489 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
490 put_unaligned_le16(flags, pos);
491 pos += 2;
492 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
493 *pos++ = status->ampdu_delimiter_crc;
494 else
495 *pos++ = 0;
496 *pos++ = 0;
499 if (status->encoding == RX_ENC_VHT) {
500 u16 known = local->hw.radiotap_vht_details;
502 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_VHT);
503 put_unaligned_le16(known, pos);
504 pos += 2;
505 /* flags */
506 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
507 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
508 /* in VHT, STBC is binary */
509 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
510 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
511 if (status->enc_flags & RX_ENC_FLAG_BF)
512 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
513 pos++;
514 /* bandwidth */
515 switch (status->bw) {
516 case RATE_INFO_BW_80:
517 *pos++ = 4;
518 break;
519 case RATE_INFO_BW_160:
520 *pos++ = 11;
521 break;
522 case RATE_INFO_BW_40:
523 *pos++ = 1;
524 break;
525 default:
526 *pos++ = 0;
528 /* MCS/NSS */
529 *pos = (status->rate_idx << 4) | status->nss;
530 pos += 4;
531 /* coding field */
532 if (status->enc_flags & RX_ENC_FLAG_LDPC)
533 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
534 pos++;
535 /* group ID */
536 pos++;
537 /* partial_aid */
538 pos += 2;
541 if (local->hw.radiotap_timestamp.units_pos >= 0) {
542 u16 accuracy = 0;
543 u8 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
545 rthdr->it_present |=
546 cpu_to_le32(1 << IEEE80211_RADIOTAP_TIMESTAMP);
548 /* ensure 8 byte alignment */
549 while ((pos - (u8 *)rthdr) & 7)
550 pos++;
552 put_unaligned_le64(status->device_timestamp, pos);
553 pos += sizeof(u64);
555 if (local->hw.radiotap_timestamp.accuracy >= 0) {
556 accuracy = local->hw.radiotap_timestamp.accuracy;
557 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
559 put_unaligned_le16(accuracy, pos);
560 pos += sizeof(u16);
562 *pos++ = local->hw.radiotap_timestamp.units_pos;
563 *pos++ = flags;
566 if (status->encoding == RX_ENC_HE &&
567 status->flag & RX_FLAG_RADIOTAP_HE) {
568 #define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
570 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
571 he.data6 |= HE_PREP(DATA6_NSTS,
572 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
573 status->enc_flags));
574 he.data3 |= HE_PREP(DATA3_STBC, 1);
575 } else {
576 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
579 #define CHECK_GI(s) \
580 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
581 (int)NL80211_RATE_INFO_HE_GI_##s)
583 CHECK_GI(0_8);
584 CHECK_GI(1_6);
585 CHECK_GI(3_2);
587 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
588 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
589 he.data3 |= HE_PREP(DATA3_CODING,
590 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
592 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
594 switch (status->bw) {
595 case RATE_INFO_BW_20:
596 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
597 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
598 break;
599 case RATE_INFO_BW_40:
600 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
601 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
602 break;
603 case RATE_INFO_BW_80:
604 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
605 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
606 break;
607 case RATE_INFO_BW_160:
608 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
609 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
610 break;
611 case RATE_INFO_BW_HE_RU:
612 #define CHECK_RU_ALLOC(s) \
613 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
614 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
616 CHECK_RU_ALLOC(26);
617 CHECK_RU_ALLOC(52);
618 CHECK_RU_ALLOC(106);
619 CHECK_RU_ALLOC(242);
620 CHECK_RU_ALLOC(484);
621 CHECK_RU_ALLOC(996);
622 CHECK_RU_ALLOC(2x996);
624 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
625 status->he_ru + 4);
626 break;
627 default:
628 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
631 /* ensure 2 byte alignment */
632 while ((pos - (u8 *)rthdr) & 1)
633 pos++;
634 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE);
635 memcpy(pos, &he, sizeof(he));
636 pos += sizeof(he);
639 if (status->encoding == RX_ENC_HE &&
640 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
641 /* ensure 2 byte alignment */
642 while ((pos - (u8 *)rthdr) & 1)
643 pos++;
644 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_HE_MU);
645 memcpy(pos, &he_mu, sizeof(he_mu));
646 pos += sizeof(he_mu);
649 if (status->flag & RX_FLAG_NO_PSDU) {
650 rthdr->it_present |=
651 cpu_to_le32(1 << IEEE80211_RADIOTAP_ZERO_LEN_PSDU);
652 *pos++ = status->zero_length_psdu_type;
655 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
656 /* ensure 2 byte alignment */
657 while ((pos - (u8 *)rthdr) & 1)
658 pos++;
659 rthdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_LSIG);
660 memcpy(pos, &lsig, sizeof(lsig));
661 pos += sizeof(lsig);
664 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
665 *pos++ = status->chain_signal[chain];
666 *pos++ = chain;
669 if (status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
670 /* ensure 2 byte alignment for the vendor field as required */
671 if ((pos - (u8 *)rthdr) & 1)
672 *pos++ = 0;
673 *pos++ = rtap.oui[0];
674 *pos++ = rtap.oui[1];
675 *pos++ = rtap.oui[2];
676 *pos++ = rtap.subns;
677 put_unaligned_le16(rtap.len, pos);
678 pos += 2;
679 /* align the actual payload as requested */
680 while ((pos - (u8 *)rthdr) & (rtap.align - 1))
681 *pos++ = 0;
682 /* data (and possible padding) already follows */
686 static struct sk_buff *
687 ieee80211_make_monitor_skb(struct ieee80211_local *local,
688 struct sk_buff **origskb,
689 struct ieee80211_rate *rate,
690 int rtap_space, bool use_origskb)
692 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(*origskb);
693 int rt_hdrlen, needed_headroom;
694 struct sk_buff *skb;
696 /* room for the radiotap header based on driver features */
697 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, *origskb);
698 needed_headroom = rt_hdrlen - rtap_space;
700 if (use_origskb) {
701 /* only need to expand headroom if necessary */
702 skb = *origskb;
703 *origskb = NULL;
706 * This shouldn't trigger often because most devices have an
707 * RX header they pull before we get here, and that should
708 * be big enough for our radiotap information. We should
709 * probably export the length to drivers so that we can have
710 * them allocate enough headroom to start with.
712 if (skb_headroom(skb) < needed_headroom &&
713 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
714 dev_kfree_skb(skb);
715 return NULL;
717 } else {
719 * Need to make a copy and possibly remove radiotap header
720 * and FCS from the original.
722 skb = skb_copy_expand(*origskb, needed_headroom, 0, GFP_ATOMIC);
724 if (!skb)
725 return NULL;
728 /* prepend radiotap information */
729 ieee80211_add_rx_radiotap_header(local, skb, rate, rt_hdrlen, true);
731 skb_reset_mac_header(skb);
732 skb->ip_summed = CHECKSUM_UNNECESSARY;
733 skb->pkt_type = PACKET_OTHERHOST;
734 skb->protocol = htons(ETH_P_802_2);
736 return skb;
740 * This function copies a received frame to all monitor interfaces and
741 * returns a cleaned-up SKB that no longer includes the FCS nor the
742 * radiotap header the driver might have added.
744 static struct sk_buff *
745 ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
746 struct ieee80211_rate *rate)
748 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(origskb);
749 struct ieee80211_sub_if_data *sdata;
750 struct sk_buff *monskb = NULL;
751 int present_fcs_len = 0;
752 unsigned int rtap_space = 0;
753 struct ieee80211_sub_if_data *monitor_sdata =
754 rcu_dereference(local->monitor_sdata);
755 bool only_monitor = false;
757 if (status->flag & RX_FLAG_RADIOTAP_HE)
758 rtap_space += sizeof(struct ieee80211_radiotap_he);
760 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
761 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
763 if (unlikely(status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA)) {
764 struct ieee80211_vendor_radiotap *rtap = (void *)origskb->data;
766 rtap_space += sizeof(*rtap) + rtap->len + rtap->pad;
770 * First, we may need to make a copy of the skb because
771 * (1) we need to modify it for radiotap (if not present), and
772 * (2) the other RX handlers will modify the skb we got.
774 * We don't need to, of course, if we aren't going to return
775 * the SKB because it has a bad FCS/PLCP checksum.
778 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
779 if (unlikely(origskb->len <= FCS_LEN)) {
780 /* driver bug */
781 WARN_ON(1);
782 dev_kfree_skb(origskb);
783 return NULL;
785 present_fcs_len = FCS_LEN;
788 /* ensure hdr->frame_control and vendor radiotap data are in skb head */
789 if (!pskb_may_pull(origskb, 2 + rtap_space)) {
790 dev_kfree_skb(origskb);
791 return NULL;
794 only_monitor = should_drop_frame(origskb, present_fcs_len, rtap_space);
796 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
797 if (only_monitor) {
798 dev_kfree_skb(origskb);
799 return NULL;
802 remove_monitor_info(origskb, present_fcs_len, rtap_space);
803 return origskb;
806 ieee80211_handle_mu_mimo_mon(monitor_sdata, origskb, rtap_space);
808 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
809 bool last_monitor = list_is_last(&sdata->u.mntr.list,
810 &local->mon_list);
812 if (!monskb)
813 monskb = ieee80211_make_monitor_skb(local, &origskb,
814 rate, rtap_space,
815 only_monitor &&
816 last_monitor);
818 if (monskb) {
819 struct sk_buff *skb;
821 if (last_monitor) {
822 skb = monskb;
823 monskb = NULL;
824 } else {
825 skb = skb_clone(monskb, GFP_ATOMIC);
828 if (skb) {
829 skb->dev = sdata->dev;
830 ieee80211_rx_stats(skb->dev, skb->len);
831 netif_receive_skb(skb);
835 if (last_monitor)
836 break;
839 /* this happens if last_monitor was erroneously false */
840 dev_kfree_skb(monskb);
842 /* ditto */
843 if (!origskb)
844 return NULL;
846 remove_monitor_info(origskb, present_fcs_len, rtap_space);
847 return origskb;
850 static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
853 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
854 int tid, seqno_idx, security_idx;
856 /* does the frame have a qos control field? */
857 if (ieee80211_is_data_qos(hdr->frame_control)) {
858 u8 *qc = ieee80211_get_qos_ctl(hdr);
859 /* frame has qos control */
860 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
861 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
862 status->rx_flags |= IEEE80211_RX_AMSDU;
864 seqno_idx = tid;
865 security_idx = tid;
866 } else {
868 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
870 * Sequence numbers for management frames, QoS data
871 * frames with a broadcast/multicast address in the
872 * Address 1 field, and all non-QoS data frames sent
873 * by QoS STAs are assigned using an additional single
874 * modulo-4096 counter, [...]
876 * We also use that counter for non-QoS STAs.
878 seqno_idx = IEEE80211_NUM_TIDS;
879 security_idx = 0;
880 if (ieee80211_is_mgmt(hdr->frame_control))
881 security_idx = IEEE80211_NUM_TIDS;
882 tid = 0;
885 rx->seqno_idx = seqno_idx;
886 rx->security_idx = security_idx;
887 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
888 * For now, set skb->priority to 0 for other cases. */
889 rx->skb->priority = (tid > 7) ? 0 : tid;
893 * DOC: Packet alignment
895 * Drivers always need to pass packets that are aligned to two-byte boundaries
896 * to the stack.
898 * Additionally, should, if possible, align the payload data in a way that
899 * guarantees that the contained IP header is aligned to a four-byte
900 * boundary. In the case of regular frames, this simply means aligning the
901 * payload to a four-byte boundary (because either the IP header is directly
902 * contained, or IV/RFC1042 headers that have a length divisible by four are
903 * in front of it). If the payload data is not properly aligned and the
904 * architecture doesn't support efficient unaligned operations, mac80211
905 * will align the data.
907 * With A-MSDU frames, however, the payload data address must yield two modulo
908 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
909 * push the IP header further back to a multiple of four again. Thankfully, the
910 * specs were sane enough this time around to require padding each A-MSDU
911 * subframe to a length that is a multiple of four.
913 * Padding like Atheros hardware adds which is between the 802.11 header and
914 * the payload is not supported, the driver is required to move the 802.11
915 * header to be directly in front of the payload in that case.
917 static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
919 #ifdef CONFIG_MAC80211_VERBOSE_DEBUG
920 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
921 #endif
925 /* rx handlers */
927 static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
929 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
931 if (is_multicast_ether_addr(hdr->addr1))
932 return 0;
934 return ieee80211_is_robust_mgmt_frame(skb);
938 static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
940 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
942 if (!is_multicast_ether_addr(hdr->addr1))
943 return 0;
945 return ieee80211_is_robust_mgmt_frame(skb);
949 /* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
950 static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
952 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
953 struct ieee80211_mmie *mmie;
954 struct ieee80211_mmie_16 *mmie16;
956 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(hdr->da))
957 return -1;
959 if (!ieee80211_is_robust_mgmt_frame(skb))
960 return -1; /* not a robust management frame */
962 mmie = (struct ieee80211_mmie *)
963 (skb->data + skb->len - sizeof(*mmie));
964 if (mmie->element_id == WLAN_EID_MMIE &&
965 mmie->length == sizeof(*mmie) - 2)
966 return le16_to_cpu(mmie->key_id);
968 mmie16 = (struct ieee80211_mmie_16 *)
969 (skb->data + skb->len - sizeof(*mmie16));
970 if (skb->len >= 24 + sizeof(*mmie16) &&
971 mmie16->element_id == WLAN_EID_MMIE &&
972 mmie16->length == sizeof(*mmie16) - 2)
973 return le16_to_cpu(mmie16->key_id);
975 return -1;
978 static int ieee80211_get_cs_keyid(const struct ieee80211_cipher_scheme *cs,
979 struct sk_buff *skb)
981 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
982 __le16 fc;
983 int hdrlen;
984 u8 keyid;
986 fc = hdr->frame_control;
987 hdrlen = ieee80211_hdrlen(fc);
989 if (skb->len < hdrlen + cs->hdr_len)
990 return -EINVAL;
992 skb_copy_bits(skb, hdrlen + cs->key_idx_off, &keyid, 1);
993 keyid &= cs->key_idx_mask;
994 keyid >>= cs->key_idx_shift;
996 return keyid;
999 static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1001 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1002 char *dev_addr = rx->sdata->vif.addr;
1004 if (ieee80211_is_data(hdr->frame_control)) {
1005 if (is_multicast_ether_addr(hdr->addr1)) {
1006 if (ieee80211_has_tods(hdr->frame_control) ||
1007 !ieee80211_has_fromds(hdr->frame_control))
1008 return RX_DROP_MONITOR;
1009 if (ether_addr_equal(hdr->addr3, dev_addr))
1010 return RX_DROP_MONITOR;
1011 } else {
1012 if (!ieee80211_has_a4(hdr->frame_control))
1013 return RX_DROP_MONITOR;
1014 if (ether_addr_equal(hdr->addr4, dev_addr))
1015 return RX_DROP_MONITOR;
1019 /* If there is not an established peer link and this is not a peer link
1020 * establisment frame, beacon or probe, drop the frame.
1023 if (!rx->sta || sta_plink_state(rx->sta) != NL80211_PLINK_ESTAB) {
1024 struct ieee80211_mgmt *mgmt;
1026 if (!ieee80211_is_mgmt(hdr->frame_control))
1027 return RX_DROP_MONITOR;
1029 if (ieee80211_is_action(hdr->frame_control)) {
1030 u8 category;
1032 /* make sure category field is present */
1033 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1034 return RX_DROP_MONITOR;
1036 mgmt = (struct ieee80211_mgmt *)hdr;
1037 category = mgmt->u.action.category;
1038 if (category != WLAN_CATEGORY_MESH_ACTION &&
1039 category != WLAN_CATEGORY_SELF_PROTECTED)
1040 return RX_DROP_MONITOR;
1041 return RX_CONTINUE;
1044 if (ieee80211_is_probe_req(hdr->frame_control) ||
1045 ieee80211_is_probe_resp(hdr->frame_control) ||
1046 ieee80211_is_beacon(hdr->frame_control) ||
1047 ieee80211_is_auth(hdr->frame_control))
1048 return RX_CONTINUE;
1050 return RX_DROP_MONITOR;
1053 return RX_CONTINUE;
1056 static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1057 int index)
1059 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1060 struct sk_buff *tail = skb_peek_tail(frames);
1061 struct ieee80211_rx_status *status;
1063 if (tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1064 return true;
1066 if (!tail)
1067 return false;
1069 status = IEEE80211_SKB_RXCB(tail);
1070 if (status->flag & RX_FLAG_AMSDU_MORE)
1071 return false;
1073 return true;
1076 static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1077 struct tid_ampdu_rx *tid_agg_rx,
1078 int index,
1079 struct sk_buff_head *frames)
1081 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1082 struct sk_buff *skb;
1083 struct ieee80211_rx_status *status;
1085 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1087 if (skb_queue_empty(skb_list))
1088 goto no_frame;
1090 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1091 __skb_queue_purge(skb_list);
1092 goto no_frame;
1095 /* release frames from the reorder ring buffer */
1096 tid_agg_rx->stored_mpdu_num--;
1097 while ((skb = __skb_dequeue(skb_list))) {
1098 status = IEEE80211_SKB_RXCB(skb);
1099 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1100 __skb_queue_tail(frames, skb);
1103 no_frame:
1104 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1105 tid_agg_rx->head_seq_num = ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1108 static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1109 struct tid_ampdu_rx *tid_agg_rx,
1110 u16 head_seq_num,
1111 struct sk_buff_head *frames)
1113 int index;
1115 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1117 while (ieee80211_sn_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1118 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1119 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1120 frames);
1125 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1126 * the skb was added to the buffer longer than this time ago, the earlier
1127 * frames that have not yet been received are assumed to be lost and the skb
1128 * can be released for processing. This may also release other skb's from the
1129 * reorder buffer if there are no additional gaps between the frames.
1131 * Callers must hold tid_agg_rx->reorder_lock.
1133 #define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1135 static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1136 struct tid_ampdu_rx *tid_agg_rx,
1137 struct sk_buff_head *frames)
1139 int index, i, j;
1141 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1143 /* release the buffer until next missing frame */
1144 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1145 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1146 tid_agg_rx->stored_mpdu_num) {
1148 * No buffers ready to be released, but check whether any
1149 * frames in the reorder buffer have timed out.
1151 int skipped = 1;
1152 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1153 j = (j + 1) % tid_agg_rx->buf_size) {
1154 if (!ieee80211_rx_reorder_ready(tid_agg_rx, j)) {
1155 skipped++;
1156 continue;
1158 if (skipped &&
1159 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1160 HT_RX_REORDER_BUF_TIMEOUT))
1161 goto set_release_timer;
1163 /* don't leave incomplete A-MSDUs around */
1164 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1165 i = (i + 1) % tid_agg_rx->buf_size)
1166 __skb_queue_purge(&tid_agg_rx->reorder_buf[i]);
1168 ht_dbg_ratelimited(sdata,
1169 "release an RX reorder frame due to timeout on earlier frames\n");
1170 ieee80211_release_reorder_frame(sdata, tid_agg_rx, j,
1171 frames);
1174 * Increment the head seq# also for the skipped slots.
1176 tid_agg_rx->head_seq_num =
1177 (tid_agg_rx->head_seq_num +
1178 skipped) & IEEE80211_SN_MASK;
1179 skipped = 0;
1181 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1182 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1183 frames);
1184 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1187 if (tid_agg_rx->stored_mpdu_num) {
1188 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1190 for (; j != (index - 1) % tid_agg_rx->buf_size;
1191 j = (j + 1) % tid_agg_rx->buf_size) {
1192 if (ieee80211_rx_reorder_ready(tid_agg_rx, j))
1193 break;
1196 set_release_timer:
1198 if (!tid_agg_rx->removed)
1199 mod_timer(&tid_agg_rx->reorder_timer,
1200 tid_agg_rx->reorder_time[j] + 1 +
1201 HT_RX_REORDER_BUF_TIMEOUT);
1202 } else {
1203 del_timer(&tid_agg_rx->reorder_timer);
1208 * As this function belongs to the RX path it must be under
1209 * rcu_read_lock protection. It returns false if the frame
1210 * can be processed immediately, true if it was consumed.
1212 static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1213 struct tid_ampdu_rx *tid_agg_rx,
1214 struct sk_buff *skb,
1215 struct sk_buff_head *frames)
1217 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1218 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1219 u16 sc = le16_to_cpu(hdr->seq_ctrl);
1220 u16 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
1221 u16 head_seq_num, buf_size;
1222 int index;
1223 bool ret = true;
1225 spin_lock(&tid_agg_rx->reorder_lock);
1228 * Offloaded BA sessions have no known starting sequence number so pick
1229 * one from first Rxed frame for this tid after BA was started.
1231 if (unlikely(tid_agg_rx->auto_seq)) {
1232 tid_agg_rx->auto_seq = false;
1233 tid_agg_rx->ssn = mpdu_seq_num;
1234 tid_agg_rx->head_seq_num = mpdu_seq_num;
1237 buf_size = tid_agg_rx->buf_size;
1238 head_seq_num = tid_agg_rx->head_seq_num;
1241 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1242 * be reordered.
1244 if (unlikely(!tid_agg_rx->started)) {
1245 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1246 ret = false;
1247 goto out;
1249 tid_agg_rx->started = true;
1252 /* frame with out of date sequence number */
1253 if (ieee80211_sn_less(mpdu_seq_num, head_seq_num)) {
1254 dev_kfree_skb(skb);
1255 goto out;
1259 * If frame the sequence number exceeds our buffering window
1260 * size release some previous frames to make room for this one.
1262 if (!ieee80211_sn_less(mpdu_seq_num, head_seq_num + buf_size)) {
1263 head_seq_num = ieee80211_sn_inc(
1264 ieee80211_sn_sub(mpdu_seq_num, buf_size));
1265 /* release stored frames up to new head to stack */
1266 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1267 head_seq_num, frames);
1270 /* Now the new frame is always in the range of the reordering buffer */
1272 index = mpdu_seq_num % tid_agg_rx->buf_size;
1274 /* check if we already stored this frame */
1275 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1276 dev_kfree_skb(skb);
1277 goto out;
1281 * If the current MPDU is in the right order and nothing else
1282 * is stored we can process it directly, no need to buffer it.
1283 * If it is first but there's something stored, we may be able
1284 * to release frames after this one.
1286 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1287 tid_agg_rx->stored_mpdu_num == 0) {
1288 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1289 tid_agg_rx->head_seq_num =
1290 ieee80211_sn_inc(tid_agg_rx->head_seq_num);
1291 ret = false;
1292 goto out;
1295 /* put the frame in the reordering buffer */
1296 __skb_queue_tail(&tid_agg_rx->reorder_buf[index], skb);
1297 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1298 tid_agg_rx->reorder_time[index] = jiffies;
1299 tid_agg_rx->stored_mpdu_num++;
1300 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1303 out:
1304 spin_unlock(&tid_agg_rx->reorder_lock);
1305 return ret;
1309 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1310 * true if the MPDU was buffered, false if it should be processed.
1312 static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1313 struct sk_buff_head *frames)
1315 struct sk_buff *skb = rx->skb;
1316 struct ieee80211_local *local = rx->local;
1317 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1318 struct sta_info *sta = rx->sta;
1319 struct tid_ampdu_rx *tid_agg_rx;
1320 u16 sc;
1321 u8 tid, ack_policy;
1323 if (!ieee80211_is_data_qos(hdr->frame_control) ||
1324 is_multicast_ether_addr(hdr->addr1))
1325 goto dont_reorder;
1328 * filter the QoS data rx stream according to
1329 * STA/TID and check if this STA/TID is on aggregation
1332 if (!sta)
1333 goto dont_reorder;
1335 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1336 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1337 tid = ieee80211_get_tid(hdr);
1339 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1340 if (!tid_agg_rx) {
1341 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1342 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1343 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
1344 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
1345 WLAN_BACK_RECIPIENT,
1346 WLAN_REASON_QSTA_REQUIRE_SETUP);
1347 goto dont_reorder;
1350 /* qos null data frames are excluded */
1351 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1352 goto dont_reorder;
1354 /* not part of a BA session */
1355 if (ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1356 ack_policy != IEEE80211_QOS_CTL_ACK_POLICY_NORMAL)
1357 goto dont_reorder;
1359 /* new, potentially un-ordered, ampdu frame - process it */
1361 /* reset session timer */
1362 if (tid_agg_rx->timeout)
1363 tid_agg_rx->last_rx = jiffies;
1365 /* if this mpdu is fragmented - terminate rx aggregation session */
1366 sc = le16_to_cpu(hdr->seq_ctrl);
1367 if (sc & IEEE80211_SCTL_FRAG) {
1368 skb_queue_tail(&rx->sdata->skb_queue, skb);
1369 ieee80211_queue_work(&local->hw, &rx->sdata->work);
1370 return;
1374 * No locking needed -- we will only ever process one
1375 * RX packet at a time, and thus own tid_agg_rx. All
1376 * other code manipulating it needs to (and does) make
1377 * sure that we cannot get to it any more before doing
1378 * anything with it.
1380 if (ieee80211_sta_manage_reorder_buf(rx->sdata, tid_agg_rx, skb,
1381 frames))
1382 return;
1384 dont_reorder:
1385 __skb_queue_tail(frames, skb);
1388 static ieee80211_rx_result debug_noinline
1389 ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1391 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1392 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1394 if (status->flag & RX_FLAG_DUP_VALIDATED)
1395 return RX_CONTINUE;
1398 * Drop duplicate 802.11 retransmissions
1399 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1402 if (rx->skb->len < 24)
1403 return RX_CONTINUE;
1405 if (ieee80211_is_ctl(hdr->frame_control) ||
1406 ieee80211_is_nullfunc(hdr->frame_control) ||
1407 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
1408 is_multicast_ether_addr(hdr->addr1))
1409 return RX_CONTINUE;
1411 if (!rx->sta)
1412 return RX_CONTINUE;
1414 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1415 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1416 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1417 rx->sta->rx_stats.num_duplicates++;
1418 return RX_DROP_UNUSABLE;
1419 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1420 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1423 return RX_CONTINUE;
1426 static ieee80211_rx_result debug_noinline
1427 ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1429 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1431 /* Drop disallowed frame classes based on STA auth/assoc state;
1432 * IEEE 802.11, Chap 5.5.
1434 * mac80211 filters only based on association state, i.e. it drops
1435 * Class 3 frames from not associated stations. hostapd sends
1436 * deauth/disassoc frames when needed. In addition, hostapd is
1437 * responsible for filtering on both auth and assoc states.
1440 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1441 return ieee80211_rx_mesh_check(rx);
1443 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1444 ieee80211_is_pspoll(hdr->frame_control)) &&
1445 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1446 rx->sdata->vif.type != NL80211_IFTYPE_WDS &&
1447 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1448 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1450 * accept port control frames from the AP even when it's not
1451 * yet marked ASSOC to prevent a race where we don't set the
1452 * assoc bit quickly enough before it sends the first frame
1454 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1455 ieee80211_is_data_present(hdr->frame_control)) {
1456 unsigned int hdrlen;
1457 __be16 ethertype;
1459 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1461 if (rx->skb->len < hdrlen + 8)
1462 return RX_DROP_MONITOR;
1464 skb_copy_bits(rx->skb, hdrlen + 6, &ethertype, 2);
1465 if (ethertype == rx->sdata->control_port_protocol)
1466 return RX_CONTINUE;
1469 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1470 cfg80211_rx_spurious_frame(rx->sdata->dev,
1471 hdr->addr2,
1472 GFP_ATOMIC))
1473 return RX_DROP_UNUSABLE;
1475 return RX_DROP_MONITOR;
1478 return RX_CONTINUE;
1482 static ieee80211_rx_result debug_noinline
1483 ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1485 struct ieee80211_local *local;
1486 struct ieee80211_hdr *hdr;
1487 struct sk_buff *skb;
1489 local = rx->local;
1490 skb = rx->skb;
1491 hdr = (struct ieee80211_hdr *) skb->data;
1493 if (!local->pspolling)
1494 return RX_CONTINUE;
1496 if (!ieee80211_has_fromds(hdr->frame_control))
1497 /* this is not from AP */
1498 return RX_CONTINUE;
1500 if (!ieee80211_is_data(hdr->frame_control))
1501 return RX_CONTINUE;
1503 if (!ieee80211_has_moredata(hdr->frame_control)) {
1504 /* AP has no more frames buffered for us */
1505 local->pspolling = false;
1506 return RX_CONTINUE;
1509 /* more data bit is set, let's request a new frame from the AP */
1510 ieee80211_send_pspoll(local, rx->sdata);
1512 return RX_CONTINUE;
1515 static void sta_ps_start(struct sta_info *sta)
1517 struct ieee80211_sub_if_data *sdata = sta->sdata;
1518 struct ieee80211_local *local = sdata->local;
1519 struct ps_data *ps;
1520 int tid;
1522 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1523 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1524 ps = &sdata->bss->ps;
1525 else
1526 return;
1528 atomic_inc(&ps->num_sta_ps);
1529 set_sta_flag(sta, WLAN_STA_PS_STA);
1530 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1531 drv_sta_notify(local, sdata, STA_NOTIFY_SLEEP, &sta->sta);
1532 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1533 sta->sta.addr, sta->sta.aid);
1535 ieee80211_clear_fast_xmit(sta);
1537 if (!sta->sta.txq[0])
1538 return;
1540 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1541 if (txq_has_queue(sta->sta.txq[tid]))
1542 set_bit(tid, &sta->txq_buffered_tids);
1543 else
1544 clear_bit(tid, &sta->txq_buffered_tids);
1548 static void sta_ps_end(struct sta_info *sta)
1550 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1551 sta->sta.addr, sta->sta.aid);
1553 if (test_sta_flag(sta, WLAN_STA_PS_DRIVER)) {
1555 * Clear the flag only if the other one is still set
1556 * so that the TX path won't start TX'ing new frames
1557 * directly ... In the case that the driver flag isn't
1558 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1560 clear_sta_flag(sta, WLAN_STA_PS_STA);
1561 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1562 sta->sta.addr, sta->sta.aid);
1563 return;
1566 set_sta_flag(sta, WLAN_STA_PS_DELIVER);
1567 clear_sta_flag(sta, WLAN_STA_PS_STA);
1568 ieee80211_sta_ps_deliver_wakeup(sta);
1571 int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1573 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1574 bool in_ps;
1576 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1578 /* Don't let the same PS state be set twice */
1579 in_ps = test_sta_flag(sta, WLAN_STA_PS_STA);
1580 if ((start && in_ps) || (!start && !in_ps))
1581 return -EINVAL;
1583 if (start)
1584 sta_ps_start(sta);
1585 else
1586 sta_ps_end(sta);
1588 return 0;
1590 EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1592 void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1594 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1596 if (test_sta_flag(sta, WLAN_STA_SP))
1597 return;
1599 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1600 ieee80211_sta_ps_deliver_poll_response(sta);
1601 else
1602 set_sta_flag(sta, WLAN_STA_PSPOLL);
1604 EXPORT_SYMBOL(ieee80211_sta_pspoll);
1606 void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1608 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1609 int ac = ieee80211_ac_from_tid(tid);
1612 * If this AC is not trigger-enabled do nothing unless the
1613 * driver is calling us after it already checked.
1615 * NB: This could/should check a separate bitmap of trigger-
1616 * enabled queues, but for now we only implement uAPSD w/o
1617 * TSPEC changes to the ACs, so they're always the same.
1619 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1620 tid != IEEE80211_NUM_TIDS)
1621 return;
1623 /* if we are in a service period, do nothing */
1624 if (test_sta_flag(sta, WLAN_STA_SP))
1625 return;
1627 if (!test_sta_flag(sta, WLAN_STA_PS_DRIVER))
1628 ieee80211_sta_ps_deliver_uapsd(sta);
1629 else
1630 set_sta_flag(sta, WLAN_STA_UAPSD);
1632 EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1634 static ieee80211_rx_result debug_noinline
1635 ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1637 struct ieee80211_sub_if_data *sdata = rx->sdata;
1638 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1639 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
1641 if (!rx->sta)
1642 return RX_CONTINUE;
1644 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1645 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1646 return RX_CONTINUE;
1649 * The device handles station powersave, so don't do anything about
1650 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1651 * it to mac80211 since they're handled.)
1653 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1654 return RX_CONTINUE;
1657 * Don't do anything if the station isn't already asleep. In
1658 * the uAPSD case, the station will probably be marked asleep,
1659 * in the PS-Poll case the station must be confused ...
1661 if (!test_sta_flag(rx->sta, WLAN_STA_PS_STA))
1662 return RX_CONTINUE;
1664 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1665 ieee80211_sta_pspoll(&rx->sta->sta);
1667 /* Free PS Poll skb here instead of returning RX_DROP that would
1668 * count as an dropped frame. */
1669 dev_kfree_skb(rx->skb);
1671 return RX_QUEUED;
1672 } else if (!ieee80211_has_morefrags(hdr->frame_control) &&
1673 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1674 ieee80211_has_pm(hdr->frame_control) &&
1675 (ieee80211_is_data_qos(hdr->frame_control) ||
1676 ieee80211_is_qos_nullfunc(hdr->frame_control))) {
1677 u8 tid = ieee80211_get_tid(hdr);
1679 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1682 return RX_CONTINUE;
1685 static ieee80211_rx_result debug_noinline
1686 ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1688 struct sta_info *sta = rx->sta;
1689 struct sk_buff *skb = rx->skb;
1690 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1691 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1692 int i;
1694 if (!sta)
1695 return RX_CONTINUE;
1698 * Update last_rx only for IBSS packets which are for the current
1699 * BSSID and for station already AUTHORIZED to avoid keeping the
1700 * current IBSS network alive in cases where other STAs start
1701 * using different BSSID. This will also give the station another
1702 * chance to restart the authentication/authorization in case
1703 * something went wrong the first time.
1705 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1706 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
1707 NL80211_IFTYPE_ADHOC);
1708 if (ether_addr_equal(bssid, rx->sdata->u.ibss.bssid) &&
1709 test_sta_flag(sta, WLAN_STA_AUTHORIZED)) {
1710 sta->rx_stats.last_rx = jiffies;
1711 if (ieee80211_is_data(hdr->frame_control) &&
1712 !is_multicast_ether_addr(hdr->addr1))
1713 sta->rx_stats.last_rate =
1714 sta_stats_encode_rate(status);
1716 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1717 sta->rx_stats.last_rx = jiffies;
1718 } else if (!is_multicast_ether_addr(hdr->addr1)) {
1720 * Mesh beacons will update last_rx when if they are found to
1721 * match the current local configuration when processed.
1723 sta->rx_stats.last_rx = jiffies;
1724 if (ieee80211_is_data(hdr->frame_control))
1725 sta->rx_stats.last_rate = sta_stats_encode_rate(status);
1728 if (rx->sdata->vif.type == NL80211_IFTYPE_STATION)
1729 ieee80211_sta_rx_notify(rx->sdata, hdr);
1731 sta->rx_stats.fragments++;
1733 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
1734 sta->rx_stats.bytes += rx->skb->len;
1735 u64_stats_update_end(&rx->sta->rx_stats.syncp);
1737 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1738 sta->rx_stats.last_signal = status->signal;
1739 ewma_signal_add(&sta->rx_stats_avg.signal, -status->signal);
1742 if (status->chains) {
1743 sta->rx_stats.chains = status->chains;
1744 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1745 int signal = status->chain_signal[i];
1747 if (!(status->chains & BIT(i)))
1748 continue;
1750 sta->rx_stats.chain_signal_last[i] = signal;
1751 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
1752 -signal);
1757 * Change STA power saving mode only at the end of a frame
1758 * exchange sequence, and only for a data or management
1759 * frame as specified in IEEE 802.11-2016 11.2.3.2
1761 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1762 !ieee80211_has_morefrags(hdr->frame_control) &&
1763 !is_multicast_ether_addr(hdr->addr1) &&
1764 (ieee80211_is_mgmt(hdr->frame_control) ||
1765 ieee80211_is_data(hdr->frame_control)) &&
1766 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1767 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1768 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1769 if (test_sta_flag(sta, WLAN_STA_PS_STA)) {
1770 if (!ieee80211_has_pm(hdr->frame_control))
1771 sta_ps_end(sta);
1772 } else {
1773 if (ieee80211_has_pm(hdr->frame_control))
1774 sta_ps_start(sta);
1778 /* mesh power save support */
1779 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
1780 ieee80211_mps_rx_h_sta_process(sta, hdr);
1783 * Drop (qos-)data::nullfunc frames silently, since they
1784 * are used only to control station power saving mode.
1786 if (ieee80211_is_nullfunc(hdr->frame_control) ||
1787 ieee80211_is_qos_nullfunc(hdr->frame_control)) {
1788 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1791 * If we receive a 4-addr nullfunc frame from a STA
1792 * that was not moved to a 4-addr STA vlan yet send
1793 * the event to userspace and for older hostapd drop
1794 * the frame to the monitor interface.
1796 if (ieee80211_has_a4(hdr->frame_control) &&
1797 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1798 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1799 !rx->sdata->u.vlan.sta))) {
1800 if (!test_and_set_sta_flag(sta, WLAN_STA_4ADDR_EVENT))
1801 cfg80211_rx_unexpected_4addr_frame(
1802 rx->sdata->dev, sta->sta.addr,
1803 GFP_ATOMIC);
1804 return RX_DROP_MONITOR;
1807 * Update counter and free packet here to avoid
1808 * counting this as a dropped packed.
1810 sta->rx_stats.packets++;
1811 dev_kfree_skb(rx->skb);
1812 return RX_QUEUED;
1815 return RX_CONTINUE;
1816 } /* ieee80211_rx_h_sta_process */
1818 static ieee80211_rx_result debug_noinline
1819 ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1821 struct sk_buff *skb = rx->skb;
1822 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1823 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1824 int keyidx;
1825 int hdrlen;
1826 ieee80211_rx_result result = RX_DROP_UNUSABLE;
1827 struct ieee80211_key *sta_ptk = NULL;
1828 int mmie_keyidx = -1;
1829 __le16 fc;
1830 const struct ieee80211_cipher_scheme *cs = NULL;
1833 * Key selection 101
1835 * There are four types of keys:
1836 * - GTK (group keys)
1837 * - IGTK (group keys for management frames)
1838 * - PTK (pairwise keys)
1839 * - STK (station-to-station pairwise keys)
1841 * When selecting a key, we have to distinguish between multicast
1842 * (including broadcast) and unicast frames, the latter can only
1843 * use PTKs and STKs while the former always use GTKs and IGTKs.
1844 * Unless, of course, actual WEP keys ("pre-RSNA") are used, then
1845 * unicast frames can also use key indices like GTKs. Hence, if we
1846 * don't have a PTK/STK we check the key index for a WEP key.
1848 * Note that in a regular BSS, multicast frames are sent by the
1849 * AP only, associated stations unicast the frame to the AP first
1850 * which then multicasts it on their behalf.
1852 * There is also a slight problem in IBSS mode: GTKs are negotiated
1853 * with each station, that is something we don't currently handle.
1854 * The spec seems to expect that one negotiates the same key with
1855 * every station but there's no such requirement; VLANs could be
1856 * possible.
1859 /* start without a key */
1860 rx->key = NULL;
1861 fc = hdr->frame_control;
1863 if (rx->sta) {
1864 int keyid = rx->sta->ptk_idx;
1866 if (ieee80211_has_protected(fc) && rx->sta->cipher_scheme) {
1867 cs = rx->sta->cipher_scheme;
1868 keyid = ieee80211_get_cs_keyid(cs, rx->skb);
1869 if (unlikely(keyid < 0))
1870 return RX_DROP_UNUSABLE;
1872 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1875 if (!ieee80211_has_protected(fc))
1876 mmie_keyidx = ieee80211_get_mmie_keyidx(rx->skb);
1878 if (!is_multicast_ether_addr(hdr->addr1) && sta_ptk) {
1879 rx->key = sta_ptk;
1880 if ((status->flag & RX_FLAG_DECRYPTED) &&
1881 (status->flag & RX_FLAG_IV_STRIPPED))
1882 return RX_CONTINUE;
1883 /* Skip decryption if the frame is not protected. */
1884 if (!ieee80211_has_protected(fc))
1885 return RX_CONTINUE;
1886 } else if (mmie_keyidx >= 0) {
1887 /* Broadcast/multicast robust management frame / BIP */
1888 if ((status->flag & RX_FLAG_DECRYPTED) &&
1889 (status->flag & RX_FLAG_IV_STRIPPED))
1890 return RX_CONTINUE;
1892 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
1893 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1894 return RX_DROP_MONITOR; /* unexpected BIP keyidx */
1895 if (rx->sta) {
1896 if (ieee80211_is_group_privacy_action(skb) &&
1897 test_sta_flag(rx->sta, WLAN_STA_MFP))
1898 return RX_DROP_MONITOR;
1900 rx->key = rcu_dereference(rx->sta->gtk[mmie_keyidx]);
1902 if (!rx->key)
1903 rx->key = rcu_dereference(rx->sdata->keys[mmie_keyidx]);
1904 } else if (!ieee80211_has_protected(fc)) {
1906 * The frame was not protected, so skip decryption. However, we
1907 * need to set rx->key if there is a key that could have been
1908 * used so that the frame may be dropped if encryption would
1909 * have been expected.
1911 struct ieee80211_key *key = NULL;
1912 struct ieee80211_sub_if_data *sdata = rx->sdata;
1913 int i;
1915 if (ieee80211_is_mgmt(fc) &&
1916 is_multicast_ether_addr(hdr->addr1) &&
1917 (key = rcu_dereference(rx->sdata->default_mgmt_key)))
1918 rx->key = key;
1919 else {
1920 if (rx->sta) {
1921 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1922 key = rcu_dereference(rx->sta->gtk[i]);
1923 if (key)
1924 break;
1927 if (!key) {
1928 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
1929 key = rcu_dereference(sdata->keys[i]);
1930 if (key)
1931 break;
1934 if (key)
1935 rx->key = key;
1937 return RX_CONTINUE;
1938 } else {
1939 u8 keyid;
1942 * The device doesn't give us the IV so we won't be
1943 * able to look up the key. That's ok though, we
1944 * don't need to decrypt the frame, we just won't
1945 * be able to keep statistics accurate.
1946 * Except for key threshold notifications, should
1947 * we somehow allow the driver to tell us which key
1948 * the hardware used if this flag is set?
1950 if ((status->flag & RX_FLAG_DECRYPTED) &&
1951 (status->flag & RX_FLAG_IV_STRIPPED))
1952 return RX_CONTINUE;
1954 hdrlen = ieee80211_hdrlen(fc);
1956 if (cs) {
1957 keyidx = ieee80211_get_cs_keyid(cs, rx->skb);
1959 if (unlikely(keyidx < 0))
1960 return RX_DROP_UNUSABLE;
1961 } else {
1962 if (rx->skb->len < 8 + hdrlen)
1963 return RX_DROP_UNUSABLE; /* TODO: count this? */
1965 * no need to call ieee80211_wep_get_keyidx,
1966 * it verifies a bunch of things we've done already
1968 skb_copy_bits(rx->skb, hdrlen + 3, &keyid, 1);
1969 keyidx = keyid >> 6;
1972 /* check per-station GTK first, if multicast packet */
1973 if (is_multicast_ether_addr(hdr->addr1) && rx->sta)
1974 rx->key = rcu_dereference(rx->sta->gtk[keyidx]);
1976 /* if not found, try default key */
1977 if (!rx->key) {
1978 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
1981 * RSNA-protected unicast frames should always be
1982 * sent with pairwise or station-to-station keys,
1983 * but for WEP we allow using a key index as well.
1985 if (rx->key &&
1986 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
1987 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
1988 !is_multicast_ether_addr(hdr->addr1))
1989 rx->key = NULL;
1993 if (rx->key) {
1994 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
1995 return RX_DROP_MONITOR;
1997 /* TODO: add threshold stuff again */
1998 } else {
1999 return RX_DROP_MONITOR;
2002 switch (rx->key->conf.cipher) {
2003 case WLAN_CIPHER_SUITE_WEP40:
2004 case WLAN_CIPHER_SUITE_WEP104:
2005 result = ieee80211_crypto_wep_decrypt(rx);
2006 break;
2007 case WLAN_CIPHER_SUITE_TKIP:
2008 result = ieee80211_crypto_tkip_decrypt(rx);
2009 break;
2010 case WLAN_CIPHER_SUITE_CCMP:
2011 result = ieee80211_crypto_ccmp_decrypt(
2012 rx, IEEE80211_CCMP_MIC_LEN);
2013 break;
2014 case WLAN_CIPHER_SUITE_CCMP_256:
2015 result = ieee80211_crypto_ccmp_decrypt(
2016 rx, IEEE80211_CCMP_256_MIC_LEN);
2017 break;
2018 case WLAN_CIPHER_SUITE_AES_CMAC:
2019 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2020 break;
2021 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2022 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2023 break;
2024 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2025 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2026 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2027 break;
2028 case WLAN_CIPHER_SUITE_GCMP:
2029 case WLAN_CIPHER_SUITE_GCMP_256:
2030 result = ieee80211_crypto_gcmp_decrypt(rx);
2031 break;
2032 default:
2033 result = ieee80211_crypto_hw_decrypt(rx);
2036 /* the hdr variable is invalid after the decrypt handlers */
2038 /* either the frame has been decrypted or will be dropped */
2039 status->flag |= RX_FLAG_DECRYPTED;
2041 return result;
2044 static inline struct ieee80211_fragment_entry *
2045 ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
2046 unsigned int frag, unsigned int seq, int rx_queue,
2047 struct sk_buff **skb)
2049 struct ieee80211_fragment_entry *entry;
2051 entry = &sdata->fragments[sdata->fragment_next++];
2052 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
2053 sdata->fragment_next = 0;
2055 if (!skb_queue_empty(&entry->skb_list))
2056 __skb_queue_purge(&entry->skb_list);
2058 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
2059 *skb = NULL;
2060 entry->first_frag_time = jiffies;
2061 entry->seq = seq;
2062 entry->rx_queue = rx_queue;
2063 entry->last_frag = frag;
2064 entry->check_sequential_pn = false;
2065 entry->extra_len = 0;
2067 return entry;
2070 static inline struct ieee80211_fragment_entry *
2071 ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
2072 unsigned int frag, unsigned int seq,
2073 int rx_queue, struct ieee80211_hdr *hdr)
2075 struct ieee80211_fragment_entry *entry;
2076 int i, idx;
2078 idx = sdata->fragment_next;
2079 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2080 struct ieee80211_hdr *f_hdr;
2081 struct sk_buff *f_skb;
2083 idx--;
2084 if (idx < 0)
2085 idx = IEEE80211_FRAGMENT_MAX - 1;
2087 entry = &sdata->fragments[idx];
2088 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
2089 entry->rx_queue != rx_queue ||
2090 entry->last_frag + 1 != frag)
2091 continue;
2093 f_skb = __skb_peek(&entry->skb_list);
2094 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2097 * Check ftype and addresses are equal, else check next fragment
2099 if (((hdr->frame_control ^ f_hdr->frame_control) &
2100 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2101 !ether_addr_equal(hdr->addr1, f_hdr->addr1) ||
2102 !ether_addr_equal(hdr->addr2, f_hdr->addr2))
2103 continue;
2105 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2106 __skb_queue_purge(&entry->skb_list);
2107 continue;
2109 return entry;
2112 return NULL;
2115 static ieee80211_rx_result debug_noinline
2116 ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2118 struct ieee80211_hdr *hdr;
2119 u16 sc;
2120 __le16 fc;
2121 unsigned int frag, seq;
2122 struct ieee80211_fragment_entry *entry;
2123 struct sk_buff *skb;
2125 hdr = (struct ieee80211_hdr *)rx->skb->data;
2126 fc = hdr->frame_control;
2128 if (ieee80211_is_ctl(fc))
2129 return RX_CONTINUE;
2131 sc = le16_to_cpu(hdr->seq_ctrl);
2132 frag = sc & IEEE80211_SCTL_FRAG;
2134 if (is_multicast_ether_addr(hdr->addr1)) {
2135 I802_DEBUG_INC(rx->local->dot11MulticastReceivedFrameCount);
2136 goto out_no_led;
2139 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2140 goto out;
2142 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2144 if (skb_linearize(rx->skb))
2145 return RX_DROP_UNUSABLE;
2148 * skb_linearize() might change the skb->data and
2149 * previously cached variables (in this case, hdr) need to
2150 * be refreshed with the new data.
2152 hdr = (struct ieee80211_hdr *)rx->skb->data;
2153 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2155 if (frag == 0) {
2156 /* This is the first fragment of a new frame. */
2157 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
2158 rx->seqno_idx, &(rx->skb));
2159 if (rx->key &&
2160 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2161 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2162 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2163 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2164 ieee80211_has_protected(fc)) {
2165 int queue = rx->security_idx;
2167 /* Store CCMP/GCMP PN so that we can verify that the
2168 * next fragment has a sequential PN value.
2170 entry->check_sequential_pn = true;
2171 memcpy(entry->last_pn,
2172 rx->key->u.ccmp.rx_pn[queue],
2173 IEEE80211_CCMP_PN_LEN);
2174 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2175 u.ccmp.rx_pn) !=
2176 offsetof(struct ieee80211_key,
2177 u.gcmp.rx_pn));
2178 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2179 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2180 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2181 IEEE80211_GCMP_PN_LEN);
2183 return RX_QUEUED;
2186 /* This is a fragment for a frame that should already be pending in
2187 * fragment cache. Add this fragment to the end of the pending entry.
2189 entry = ieee80211_reassemble_find(rx->sdata, frag, seq,
2190 rx->seqno_idx, hdr);
2191 if (!entry) {
2192 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2193 return RX_DROP_MONITOR;
2196 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2197 * MPDU PN values are not incrementing in steps of 1."
2198 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2199 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2201 if (entry->check_sequential_pn) {
2202 int i;
2203 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2204 int queue;
2206 if (!rx->key ||
2207 (rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP &&
2208 rx->key->conf.cipher != WLAN_CIPHER_SUITE_CCMP_256 &&
2209 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP &&
2210 rx->key->conf.cipher != WLAN_CIPHER_SUITE_GCMP_256))
2211 return RX_DROP_UNUSABLE;
2212 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2213 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2214 pn[i]++;
2215 if (pn[i])
2216 break;
2218 queue = rx->security_idx;
2219 rpn = rx->key->u.ccmp.rx_pn[queue];
2220 if (memcmp(pn, rpn, IEEE80211_CCMP_PN_LEN))
2221 return RX_DROP_UNUSABLE;
2222 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2225 skb_pull(rx->skb, ieee80211_hdrlen(fc));
2226 __skb_queue_tail(&entry->skb_list, rx->skb);
2227 entry->last_frag = frag;
2228 entry->extra_len += rx->skb->len;
2229 if (ieee80211_has_morefrags(fc)) {
2230 rx->skb = NULL;
2231 return RX_QUEUED;
2234 rx->skb = __skb_dequeue(&entry->skb_list);
2235 if (skb_tailroom(rx->skb) < entry->extra_len) {
2236 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2237 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2238 GFP_ATOMIC))) {
2239 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2240 __skb_queue_purge(&entry->skb_list);
2241 return RX_DROP_UNUSABLE;
2244 while ((skb = __skb_dequeue(&entry->skb_list))) {
2245 skb_put_data(rx->skb, skb->data, skb->len);
2246 dev_kfree_skb(skb);
2249 out:
2250 ieee80211_led_rx(rx->local);
2251 out_no_led:
2252 if (rx->sta)
2253 rx->sta->rx_stats.packets++;
2254 return RX_CONTINUE;
2257 static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2259 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2260 return -EACCES;
2262 return 0;
2265 static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2267 struct sk_buff *skb = rx->skb;
2268 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2271 * Pass through unencrypted frames if the hardware has
2272 * decrypted them already.
2274 if (status->flag & RX_FLAG_DECRYPTED)
2275 return 0;
2277 /* Drop unencrypted frames if key is set. */
2278 if (unlikely(!ieee80211_has_protected(fc) &&
2279 !ieee80211_is_nullfunc(fc) &&
2280 ieee80211_is_data(fc) && rx->key))
2281 return -EACCES;
2283 return 0;
2286 static int ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2288 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2289 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2290 __le16 fc = hdr->frame_control;
2293 * Pass through unencrypted frames if the hardware has
2294 * decrypted them already.
2296 if (status->flag & RX_FLAG_DECRYPTED)
2297 return 0;
2299 if (rx->sta && test_sta_flag(rx->sta, WLAN_STA_MFP)) {
2300 if (unlikely(!ieee80211_has_protected(fc) &&
2301 ieee80211_is_unicast_robust_mgmt_frame(rx->skb) &&
2302 rx->key)) {
2303 if (ieee80211_is_deauth(fc) ||
2304 ieee80211_is_disassoc(fc))
2305 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2306 rx->skb->data,
2307 rx->skb->len);
2308 return -EACCES;
2310 /* BIP does not use Protected field, so need to check MMIE */
2311 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2312 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2313 if (ieee80211_is_deauth(fc) ||
2314 ieee80211_is_disassoc(fc))
2315 cfg80211_rx_unprot_mlme_mgmt(rx->sdata->dev,
2316 rx->skb->data,
2317 rx->skb->len);
2318 return -EACCES;
2321 * When using MFP, Action frames are not allowed prior to
2322 * having configured keys.
2324 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2325 ieee80211_is_robust_mgmt_frame(rx->skb)))
2326 return -EACCES;
2329 return 0;
2332 static int
2333 __ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2335 struct ieee80211_sub_if_data *sdata = rx->sdata;
2336 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2337 bool check_port_control = false;
2338 struct ethhdr *ehdr;
2339 int ret;
2341 *port_control = false;
2342 if (ieee80211_has_a4(hdr->frame_control) &&
2343 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2344 return -1;
2346 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2347 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(hdr->frame_control)) {
2349 if (!sdata->u.mgd.use_4addr)
2350 return -1;
2351 else if (!ether_addr_equal(hdr->addr1, sdata->vif.addr))
2352 check_port_control = true;
2355 if (is_multicast_ether_addr(hdr->addr1) &&
2356 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2357 return -1;
2359 ret = ieee80211_data_to_8023(rx->skb, sdata->vif.addr, sdata->vif.type);
2360 if (ret < 0)
2361 return ret;
2363 ehdr = (struct ethhdr *) rx->skb->data;
2364 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2365 *port_control = true;
2366 else if (check_port_control)
2367 return -1;
2369 return 0;
2373 * requires that rx->skb is a frame with ethernet header
2375 static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2377 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2378 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2379 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2382 * Allow EAPOL frames to us/the PAE group address regardless
2383 * of whether the frame was encrypted or not.
2385 if (ehdr->h_proto == rx->sdata->control_port_protocol &&
2386 (ether_addr_equal(ehdr->h_dest, rx->sdata->vif.addr) ||
2387 ether_addr_equal(ehdr->h_dest, pae_group_addr)))
2388 return true;
2390 if (ieee80211_802_1x_port_control(rx) ||
2391 ieee80211_drop_unencrypted(rx, fc))
2392 return false;
2394 return true;
2397 static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2398 struct ieee80211_rx_data *rx)
2400 struct ieee80211_sub_if_data *sdata = rx->sdata;
2401 struct net_device *dev = sdata->dev;
2403 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2404 skb->protocol == cpu_to_be16(ETH_P_PREAUTH)) &&
2405 sdata->control_port_over_nl80211)) {
2406 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2407 bool noencrypt = status->flag & RX_FLAG_DECRYPTED;
2409 cfg80211_rx_control_port(dev, skb, noencrypt);
2410 dev_kfree_skb(skb);
2411 } else {
2412 /* deliver to local stack */
2413 if (rx->napi)
2414 napi_gro_receive(rx->napi, skb);
2415 else
2416 netif_receive_skb(skb);
2421 * requires that rx->skb is a frame with ethernet header
2423 static void
2424 ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2426 struct ieee80211_sub_if_data *sdata = rx->sdata;
2427 struct net_device *dev = sdata->dev;
2428 struct sk_buff *skb, *xmit_skb;
2429 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2430 struct sta_info *dsta;
2432 skb = rx->skb;
2433 xmit_skb = NULL;
2435 ieee80211_rx_stats(dev, skb->len);
2437 if (rx->sta) {
2438 /* The seqno index has the same property as needed
2439 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2440 * for non-QoS-data frames. Here we know it's a data
2441 * frame, so count MSDUs.
2443 u64_stats_update_begin(&rx->sta->rx_stats.syncp);
2444 rx->sta->rx_stats.msdu[rx->seqno_idx]++;
2445 u64_stats_update_end(&rx->sta->rx_stats.syncp);
2448 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2449 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2450 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2451 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2452 if (is_multicast_ether_addr(ehdr->h_dest) &&
2453 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2455 * send multicast frames both to higher layers in
2456 * local net stack and back to the wireless medium
2458 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2459 if (!xmit_skb)
2460 net_info_ratelimited("%s: failed to clone multicast frame\n",
2461 dev->name);
2462 } else if (!is_multicast_ether_addr(ehdr->h_dest) &&
2463 !ether_addr_equal(ehdr->h_dest, ehdr->h_source)) {
2464 dsta = sta_info_get(sdata, ehdr->h_dest);
2465 if (dsta) {
2467 * The destination station is associated to
2468 * this AP (in this VLAN), so send the frame
2469 * directly to it and do not pass it to local
2470 * net stack.
2472 xmit_skb = skb;
2473 skb = NULL;
2478 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2479 if (skb) {
2480 /* 'align' will only take the values 0 or 2 here since all
2481 * frames are required to be aligned to 2-byte boundaries
2482 * when being passed to mac80211; the code here works just
2483 * as well if that isn't true, but mac80211 assumes it can
2484 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2486 int align;
2488 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2489 if (align) {
2490 if (WARN_ON(skb_headroom(skb) < 3)) {
2491 dev_kfree_skb(skb);
2492 skb = NULL;
2493 } else {
2494 u8 *data = skb->data;
2495 size_t len = skb_headlen(skb);
2496 skb->data -= align;
2497 memmove(skb->data, data, len);
2498 skb_set_tail_pointer(skb, len);
2502 #endif
2504 if (skb) {
2505 skb->protocol = eth_type_trans(skb, dev);
2506 memset(skb->cb, 0, sizeof(skb->cb));
2508 ieee80211_deliver_skb_to_local_stack(skb, rx);
2511 if (xmit_skb) {
2513 * Send to wireless media and increase priority by 256 to
2514 * keep the received priority instead of reclassifying
2515 * the frame (see cfg80211_classify8021d).
2517 xmit_skb->priority += 256;
2518 xmit_skb->protocol = htons(ETH_P_802_3);
2519 skb_reset_network_header(xmit_skb);
2520 skb_reset_mac_header(xmit_skb);
2521 dev_queue_xmit(xmit_skb);
2525 static ieee80211_rx_result debug_noinline
2526 __ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
2528 struct net_device *dev = rx->sdata->dev;
2529 struct sk_buff *skb = rx->skb;
2530 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2531 __le16 fc = hdr->frame_control;
2532 struct sk_buff_head frame_list;
2533 struct ethhdr ethhdr;
2534 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
2536 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2537 check_da = NULL;
2538 check_sa = NULL;
2539 } else switch (rx->sdata->vif.type) {
2540 case NL80211_IFTYPE_AP:
2541 case NL80211_IFTYPE_AP_VLAN:
2542 check_da = NULL;
2543 break;
2544 case NL80211_IFTYPE_STATION:
2545 if (!rx->sta ||
2546 !test_sta_flag(rx->sta, WLAN_STA_TDLS_PEER))
2547 check_sa = NULL;
2548 break;
2549 case NL80211_IFTYPE_MESH_POINT:
2550 check_sa = NULL;
2551 break;
2552 default:
2553 break;
2556 skb->dev = dev;
2557 __skb_queue_head_init(&frame_list);
2559 if (ieee80211_data_to_8023_exthdr(skb, &ethhdr,
2560 rx->sdata->vif.addr,
2561 rx->sdata->vif.type,
2562 data_offset))
2563 return RX_DROP_UNUSABLE;
2565 ieee80211_amsdu_to_8023s(skb, &frame_list, dev->dev_addr,
2566 rx->sdata->vif.type,
2567 rx->local->hw.extra_tx_headroom,
2568 check_da, check_sa);
2570 while (!skb_queue_empty(&frame_list)) {
2571 rx->skb = __skb_dequeue(&frame_list);
2573 if (!ieee80211_frame_allowed(rx, fc)) {
2574 dev_kfree_skb(rx->skb);
2575 continue;
2578 ieee80211_deliver_skb(rx);
2581 return RX_QUEUED;
2584 static ieee80211_rx_result debug_noinline
2585 ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
2587 struct sk_buff *skb = rx->skb;
2588 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2589 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2590 __le16 fc = hdr->frame_control;
2592 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
2593 return RX_CONTINUE;
2595 if (unlikely(!ieee80211_is_data(fc)))
2596 return RX_CONTINUE;
2598 if (unlikely(!ieee80211_is_data_present(fc)))
2599 return RX_DROP_MONITOR;
2601 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
2602 switch (rx->sdata->vif.type) {
2603 case NL80211_IFTYPE_AP_VLAN:
2604 if (!rx->sdata->u.vlan.sta)
2605 return RX_DROP_UNUSABLE;
2606 break;
2607 case NL80211_IFTYPE_STATION:
2608 if (!rx->sdata->u.mgd.use_4addr)
2609 return RX_DROP_UNUSABLE;
2610 break;
2611 default:
2612 return RX_DROP_UNUSABLE;
2616 if (is_multicast_ether_addr(hdr->addr1))
2617 return RX_DROP_UNUSABLE;
2619 return __ieee80211_rx_h_amsdu(rx, 0);
2622 #ifdef CONFIG_MAC80211_MESH
2623 static ieee80211_rx_result
2624 ieee80211_rx_h_mesh_fwding(struct ieee80211_rx_data *rx)
2626 struct ieee80211_hdr *fwd_hdr, *hdr;
2627 struct ieee80211_tx_info *info;
2628 struct ieee80211s_hdr *mesh_hdr;
2629 struct sk_buff *skb = rx->skb, *fwd_skb;
2630 struct ieee80211_local *local = rx->local;
2631 struct ieee80211_sub_if_data *sdata = rx->sdata;
2632 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2633 u16 ac, q, hdrlen;
2635 hdr = (struct ieee80211_hdr *) skb->data;
2636 hdrlen = ieee80211_hdrlen(hdr->frame_control);
2638 /* make sure fixed part of mesh header is there, also checks skb len */
2639 if (!pskb_may_pull(rx->skb, hdrlen + 6))
2640 return RX_DROP_MONITOR;
2642 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2644 /* make sure full mesh header is there, also checks skb len */
2645 if (!pskb_may_pull(rx->skb,
2646 hdrlen + ieee80211_get_mesh_hdrlen(mesh_hdr)))
2647 return RX_DROP_MONITOR;
2649 /* reload pointers */
2650 hdr = (struct ieee80211_hdr *) skb->data;
2651 mesh_hdr = (struct ieee80211s_hdr *) (skb->data + hdrlen);
2653 if (ieee80211_drop_unencrypted(rx, hdr->frame_control))
2654 return RX_DROP_MONITOR;
2656 /* frame is in RMC, don't forward */
2657 if (ieee80211_is_data(hdr->frame_control) &&
2658 is_multicast_ether_addr(hdr->addr1) &&
2659 mesh_rmc_check(rx->sdata, hdr->addr3, mesh_hdr))
2660 return RX_DROP_MONITOR;
2662 if (!ieee80211_is_data(hdr->frame_control))
2663 return RX_CONTINUE;
2665 if (!mesh_hdr->ttl)
2666 return RX_DROP_MONITOR;
2668 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2669 struct mesh_path *mppath;
2670 char *proxied_addr;
2671 char *mpp_addr;
2673 if (is_multicast_ether_addr(hdr->addr1)) {
2674 mpp_addr = hdr->addr3;
2675 proxied_addr = mesh_hdr->eaddr1;
2676 } else if ((mesh_hdr->flags & MESH_FLAGS_AE) ==
2677 MESH_FLAGS_AE_A5_A6) {
2678 /* has_a4 already checked in ieee80211_rx_mesh_check */
2679 mpp_addr = hdr->addr4;
2680 proxied_addr = mesh_hdr->eaddr2;
2681 } else {
2682 return RX_DROP_MONITOR;
2685 rcu_read_lock();
2686 mppath = mpp_path_lookup(sdata, proxied_addr);
2687 if (!mppath) {
2688 mpp_path_add(sdata, proxied_addr, mpp_addr);
2689 } else {
2690 spin_lock_bh(&mppath->state_lock);
2691 if (!ether_addr_equal(mppath->mpp, mpp_addr))
2692 memcpy(mppath->mpp, mpp_addr, ETH_ALEN);
2693 mppath->exp_time = jiffies;
2694 spin_unlock_bh(&mppath->state_lock);
2696 rcu_read_unlock();
2699 /* Frame has reached destination. Don't forward */
2700 if (!is_multicast_ether_addr(hdr->addr1) &&
2701 ether_addr_equal(sdata->vif.addr, hdr->addr3))
2702 return RX_CONTINUE;
2704 ac = ieee80211_select_queue_80211(sdata, skb, hdr);
2705 q = sdata->vif.hw_queue[ac];
2706 if (ieee80211_queue_stopped(&local->hw, q)) {
2707 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_congestion);
2708 return RX_DROP_MONITOR;
2710 skb_set_queue_mapping(skb, q);
2712 if (!--mesh_hdr->ttl) {
2713 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2714 goto out;
2717 if (!ifmsh->mshcfg.dot11MeshForwarding)
2718 goto out;
2720 fwd_skb = skb_copy_expand(skb, local->tx_headroom +
2721 sdata->encrypt_headroom, 0, GFP_ATOMIC);
2722 if (!fwd_skb)
2723 goto out;
2725 fwd_hdr = (struct ieee80211_hdr *) fwd_skb->data;
2726 fwd_hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_RETRY);
2727 info = IEEE80211_SKB_CB(fwd_skb);
2728 memset(info, 0, sizeof(*info));
2729 info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING;
2730 info->control.vif = &rx->sdata->vif;
2731 info->control.jiffies = jiffies;
2732 if (is_multicast_ether_addr(fwd_hdr->addr1)) {
2733 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2734 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2735 /* update power mode indication when forwarding */
2736 ieee80211_mps_set_frame_flags(sdata, NULL, fwd_hdr);
2737 } else if (!mesh_nexthop_lookup(sdata, fwd_skb)) {
2738 /* mesh power mode flags updated in mesh_nexthop_lookup */
2739 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2740 } else {
2741 /* unable to resolve next hop */
2742 mesh_path_error_tx(sdata, ifmsh->mshcfg.element_ttl,
2743 fwd_hdr->addr3, 0,
2744 WLAN_REASON_MESH_PATH_NOFORWARD,
2745 fwd_hdr->addr2);
2746 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2747 kfree_skb(fwd_skb);
2748 return RX_DROP_MONITOR;
2751 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2752 ieee80211_add_pending_skb(local, fwd_skb);
2753 out:
2754 if (is_multicast_ether_addr(hdr->addr1))
2755 return RX_CONTINUE;
2756 return RX_DROP_MONITOR;
2758 #endif
2760 static ieee80211_rx_result debug_noinline
2761 ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
2763 struct ieee80211_sub_if_data *sdata = rx->sdata;
2764 struct ieee80211_local *local = rx->local;
2765 struct net_device *dev = sdata->dev;
2766 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2767 __le16 fc = hdr->frame_control;
2768 bool port_control;
2769 int err;
2771 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
2772 return RX_CONTINUE;
2774 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
2775 return RX_DROP_MONITOR;
2778 * Send unexpected-4addr-frame event to hostapd. For older versions,
2779 * also drop the frame to cooked monitor interfaces.
2781 if (ieee80211_has_a4(hdr->frame_control) &&
2782 sdata->vif.type == NL80211_IFTYPE_AP) {
2783 if (rx->sta &&
2784 !test_and_set_sta_flag(rx->sta, WLAN_STA_4ADDR_EVENT))
2785 cfg80211_rx_unexpected_4addr_frame(
2786 rx->sdata->dev, rx->sta->sta.addr, GFP_ATOMIC);
2787 return RX_DROP_MONITOR;
2790 err = __ieee80211_data_to_8023(rx, &port_control);
2791 if (unlikely(err))
2792 return RX_DROP_UNUSABLE;
2794 if (!ieee80211_frame_allowed(rx, fc))
2795 return RX_DROP_MONITOR;
2797 /* directly handle TDLS channel switch requests/responses */
2798 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
2799 cpu_to_be16(ETH_P_TDLS))) {
2800 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
2802 if (pskb_may_pull(rx->skb,
2803 offsetof(struct ieee80211_tdls_data, u)) &&
2804 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
2805 tf->category == WLAN_CATEGORY_TDLS &&
2806 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
2807 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
2808 skb_queue_tail(&local->skb_queue_tdls_chsw, rx->skb);
2809 schedule_work(&local->tdls_chsw_work);
2810 if (rx->sta)
2811 rx->sta->rx_stats.packets++;
2813 return RX_QUEUED;
2817 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
2818 unlikely(port_control) && sdata->bss) {
2819 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
2820 u.ap);
2821 dev = sdata->dev;
2822 rx->sdata = sdata;
2825 rx->skb->dev = dev;
2827 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
2828 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
2829 !is_multicast_ether_addr(
2830 ((struct ethhdr *)rx->skb->data)->h_dest) &&
2831 (!local->scanning &&
2832 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
2833 mod_timer(&local->dynamic_ps_timer, jiffies +
2834 msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout));
2836 ieee80211_deliver_skb(rx);
2838 return RX_QUEUED;
2841 static ieee80211_rx_result debug_noinline
2842 ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
2844 struct sk_buff *skb = rx->skb;
2845 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
2846 struct tid_ampdu_rx *tid_agg_rx;
2847 u16 start_seq_num;
2848 u16 tid;
2850 if (likely(!ieee80211_is_ctl(bar->frame_control)))
2851 return RX_CONTINUE;
2853 if (ieee80211_is_back_req(bar->frame_control)) {
2854 struct {
2855 __le16 control, start_seq_num;
2856 } __packed bar_data;
2857 struct ieee80211_event event = {
2858 .type = BAR_RX_EVENT,
2861 if (!rx->sta)
2862 return RX_DROP_MONITOR;
2864 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
2865 &bar_data, sizeof(bar_data)))
2866 return RX_DROP_MONITOR;
2868 tid = le16_to_cpu(bar_data.control) >> 12;
2870 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
2871 !test_and_set_bit(tid, rx->sta->ampdu_mlme.unexpected_agg))
2872 ieee80211_send_delba(rx->sdata, rx->sta->sta.addr, tid,
2873 WLAN_BACK_RECIPIENT,
2874 WLAN_REASON_QSTA_REQUIRE_SETUP);
2876 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
2877 if (!tid_agg_rx)
2878 return RX_DROP_MONITOR;
2880 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
2881 event.u.ba.tid = tid;
2882 event.u.ba.ssn = start_seq_num;
2883 event.u.ba.sta = &rx->sta->sta;
2885 /* reset session timer */
2886 if (tid_agg_rx->timeout)
2887 mod_timer(&tid_agg_rx->session_timer,
2888 TU_TO_EXP_TIME(tid_agg_rx->timeout));
2890 spin_lock(&tid_agg_rx->reorder_lock);
2891 /* release stored frames up to start of BAR */
2892 ieee80211_release_reorder_frames(rx->sdata, tid_agg_rx,
2893 start_seq_num, frames);
2894 spin_unlock(&tid_agg_rx->reorder_lock);
2896 drv_event_callback(rx->local, rx->sdata, &event);
2898 kfree_skb(skb);
2899 return RX_QUEUED;
2903 * After this point, we only want management frames,
2904 * so we can drop all remaining control frames to
2905 * cooked monitor interfaces.
2907 return RX_DROP_MONITOR;
2910 static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
2911 struct ieee80211_mgmt *mgmt,
2912 size_t len)
2914 struct ieee80211_local *local = sdata->local;
2915 struct sk_buff *skb;
2916 struct ieee80211_mgmt *resp;
2918 if (!ether_addr_equal(mgmt->da, sdata->vif.addr)) {
2919 /* Not to own unicast address */
2920 return;
2923 if (!ether_addr_equal(mgmt->sa, sdata->u.mgd.bssid) ||
2924 !ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid)) {
2925 /* Not from the current AP or not associated yet. */
2926 return;
2929 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
2930 /* Too short SA Query request frame */
2931 return;
2934 skb = dev_alloc_skb(sizeof(*resp) + local->hw.extra_tx_headroom);
2935 if (skb == NULL)
2936 return;
2938 skb_reserve(skb, local->hw.extra_tx_headroom);
2939 resp = skb_put_zero(skb, 24);
2940 memcpy(resp->da, mgmt->sa, ETH_ALEN);
2941 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
2942 memcpy(resp->bssid, sdata->u.mgd.bssid, ETH_ALEN);
2943 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
2944 IEEE80211_STYPE_ACTION);
2945 skb_put(skb, 1 + sizeof(resp->u.action.u.sa_query));
2946 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
2947 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
2948 memcpy(resp->u.action.u.sa_query.trans_id,
2949 mgmt->u.action.u.sa_query.trans_id,
2950 WLAN_SA_QUERY_TR_ID_LEN);
2952 ieee80211_tx_skb(sdata, skb);
2955 static ieee80211_rx_result debug_noinline
2956 ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
2958 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2959 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
2962 * From here on, look only at management frames.
2963 * Data and control frames are already handled,
2964 * and unknown (reserved) frames are useless.
2966 if (rx->skb->len < 24)
2967 return RX_DROP_MONITOR;
2969 if (!ieee80211_is_mgmt(mgmt->frame_control))
2970 return RX_DROP_MONITOR;
2972 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
2973 ieee80211_is_beacon(mgmt->frame_control) &&
2974 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
2975 int sig = 0;
2977 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
2978 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
2979 sig = status->signal;
2981 cfg80211_report_obss_beacon(rx->local->hw.wiphy,
2982 rx->skb->data, rx->skb->len,
2983 status->freq, sig);
2984 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
2987 if (ieee80211_drop_unencrypted_mgmt(rx))
2988 return RX_DROP_UNUSABLE;
2990 return RX_CONTINUE;
2993 static ieee80211_rx_result debug_noinline
2994 ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
2996 struct ieee80211_local *local = rx->local;
2997 struct ieee80211_sub_if_data *sdata = rx->sdata;
2998 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
2999 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3000 int len = rx->skb->len;
3002 if (!ieee80211_is_action(mgmt->frame_control))
3003 return RX_CONTINUE;
3005 /* drop too small frames */
3006 if (len < IEEE80211_MIN_ACTION_SIZE)
3007 return RX_DROP_UNUSABLE;
3009 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3010 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3011 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3012 return RX_DROP_UNUSABLE;
3014 switch (mgmt->u.action.category) {
3015 case WLAN_CATEGORY_HT:
3016 /* reject HT action frames from stations not supporting HT */
3017 if (!rx->sta->sta.ht_cap.ht_supported)
3018 goto invalid;
3020 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3021 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3022 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3023 sdata->vif.type != NL80211_IFTYPE_AP &&
3024 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3025 break;
3027 /* verify action & smps_control/chanwidth are present */
3028 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3029 goto invalid;
3031 switch (mgmt->u.action.u.ht_smps.action) {
3032 case WLAN_HT_ACTION_SMPS: {
3033 struct ieee80211_supported_band *sband;
3034 enum ieee80211_smps_mode smps_mode;
3035 struct sta_opmode_info sta_opmode = {};
3037 /* convert to HT capability */
3038 switch (mgmt->u.action.u.ht_smps.smps_control) {
3039 case WLAN_HT_SMPS_CONTROL_DISABLED:
3040 smps_mode = IEEE80211_SMPS_OFF;
3041 break;
3042 case WLAN_HT_SMPS_CONTROL_STATIC:
3043 smps_mode = IEEE80211_SMPS_STATIC;
3044 break;
3045 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3046 smps_mode = IEEE80211_SMPS_DYNAMIC;
3047 break;
3048 default:
3049 goto invalid;
3052 /* if no change do nothing */
3053 if (rx->sta->sta.smps_mode == smps_mode)
3054 goto handled;
3055 rx->sta->sta.smps_mode = smps_mode;
3056 sta_opmode.smps_mode =
3057 ieee80211_smps_mode_to_smps_mode(smps_mode);
3058 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3060 sband = rx->local->hw.wiphy->bands[status->band];
3062 rate_control_rate_update(local, sband, rx->sta,
3063 IEEE80211_RC_SMPS_CHANGED);
3064 cfg80211_sta_opmode_change_notify(sdata->dev,
3065 rx->sta->addr,
3066 &sta_opmode,
3067 GFP_ATOMIC);
3068 goto handled;
3070 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3071 struct ieee80211_supported_band *sband;
3072 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3073 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3074 struct sta_opmode_info sta_opmode = {};
3076 /* If it doesn't support 40 MHz it can't change ... */
3077 if (!(rx->sta->sta.ht_cap.cap &
3078 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3079 goto handled;
3081 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3082 max_bw = IEEE80211_STA_RX_BW_20;
3083 else
3084 max_bw = ieee80211_sta_cap_rx_bw(rx->sta);
3086 /* set cur_max_bandwidth and recalc sta bw */
3087 rx->sta->cur_max_bandwidth = max_bw;
3088 new_bw = ieee80211_sta_cur_vht_bw(rx->sta);
3090 if (rx->sta->sta.bandwidth == new_bw)
3091 goto handled;
3093 rx->sta->sta.bandwidth = new_bw;
3094 sband = rx->local->hw.wiphy->bands[status->band];
3095 sta_opmode.bw =
3096 ieee80211_sta_rx_bw_to_chan_width(rx->sta);
3097 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3099 rate_control_rate_update(local, sband, rx->sta,
3100 IEEE80211_RC_BW_CHANGED);
3101 cfg80211_sta_opmode_change_notify(sdata->dev,
3102 rx->sta->addr,
3103 &sta_opmode,
3104 GFP_ATOMIC);
3105 goto handled;
3107 default:
3108 goto invalid;
3111 break;
3112 case WLAN_CATEGORY_PUBLIC:
3113 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3114 goto invalid;
3115 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3116 break;
3117 if (!rx->sta)
3118 break;
3119 if (!ether_addr_equal(mgmt->bssid, sdata->u.mgd.bssid))
3120 break;
3121 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3122 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3123 break;
3124 if (len < offsetof(struct ieee80211_mgmt,
3125 u.action.u.ext_chan_switch.variable))
3126 goto invalid;
3127 goto queue;
3128 case WLAN_CATEGORY_VHT:
3129 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3130 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3131 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3132 sdata->vif.type != NL80211_IFTYPE_AP &&
3133 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3134 break;
3136 /* verify action code is present */
3137 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3138 goto invalid;
3140 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3141 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3142 /* verify opmode is present */
3143 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3144 goto invalid;
3145 goto queue;
3147 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3148 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3149 goto invalid;
3150 goto queue;
3152 default:
3153 break;
3155 break;
3156 case WLAN_CATEGORY_BACK:
3157 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3158 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3159 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3160 sdata->vif.type != NL80211_IFTYPE_AP &&
3161 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3162 break;
3164 /* verify action_code is present */
3165 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3166 break;
3168 switch (mgmt->u.action.u.addba_req.action_code) {
3169 case WLAN_ACTION_ADDBA_REQ:
3170 if (len < (IEEE80211_MIN_ACTION_SIZE +
3171 sizeof(mgmt->u.action.u.addba_req)))
3172 goto invalid;
3173 break;
3174 case WLAN_ACTION_ADDBA_RESP:
3175 if (len < (IEEE80211_MIN_ACTION_SIZE +
3176 sizeof(mgmt->u.action.u.addba_resp)))
3177 goto invalid;
3178 break;
3179 case WLAN_ACTION_DELBA:
3180 if (len < (IEEE80211_MIN_ACTION_SIZE +
3181 sizeof(mgmt->u.action.u.delba)))
3182 goto invalid;
3183 break;
3184 default:
3185 goto invalid;
3188 goto queue;
3189 case WLAN_CATEGORY_SPECTRUM_MGMT:
3190 /* verify action_code is present */
3191 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3192 break;
3194 switch (mgmt->u.action.u.measurement.action_code) {
3195 case WLAN_ACTION_SPCT_MSR_REQ:
3196 if (status->band != NL80211_BAND_5GHZ)
3197 break;
3199 if (len < (IEEE80211_MIN_ACTION_SIZE +
3200 sizeof(mgmt->u.action.u.measurement)))
3201 break;
3203 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3204 break;
3206 ieee80211_process_measurement_req(sdata, mgmt, len);
3207 goto handled;
3208 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3209 u8 *bssid;
3210 if (len < (IEEE80211_MIN_ACTION_SIZE +
3211 sizeof(mgmt->u.action.u.chan_switch)))
3212 break;
3214 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3215 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3216 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3217 break;
3219 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3220 bssid = sdata->u.mgd.bssid;
3221 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3222 bssid = sdata->u.ibss.bssid;
3223 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3224 bssid = mgmt->sa;
3225 else
3226 break;
3228 if (!ether_addr_equal(mgmt->bssid, bssid))
3229 break;
3231 goto queue;
3234 break;
3235 case WLAN_CATEGORY_SA_QUERY:
3236 if (len < (IEEE80211_MIN_ACTION_SIZE +
3237 sizeof(mgmt->u.action.u.sa_query)))
3238 break;
3240 switch (mgmt->u.action.u.sa_query.action) {
3241 case WLAN_ACTION_SA_QUERY_REQUEST:
3242 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3243 break;
3244 ieee80211_process_sa_query_req(sdata, mgmt, len);
3245 goto handled;
3247 break;
3248 case WLAN_CATEGORY_SELF_PROTECTED:
3249 if (len < (IEEE80211_MIN_ACTION_SIZE +
3250 sizeof(mgmt->u.action.u.self_prot.action_code)))
3251 break;
3253 switch (mgmt->u.action.u.self_prot.action_code) {
3254 case WLAN_SP_MESH_PEERING_OPEN:
3255 case WLAN_SP_MESH_PEERING_CLOSE:
3256 case WLAN_SP_MESH_PEERING_CONFIRM:
3257 if (!ieee80211_vif_is_mesh(&sdata->vif))
3258 goto invalid;
3259 if (sdata->u.mesh.user_mpm)
3260 /* userspace handles this frame */
3261 break;
3262 goto queue;
3263 case WLAN_SP_MGK_INFORM:
3264 case WLAN_SP_MGK_ACK:
3265 if (!ieee80211_vif_is_mesh(&sdata->vif))
3266 goto invalid;
3267 break;
3269 break;
3270 case WLAN_CATEGORY_MESH_ACTION:
3271 if (len < (IEEE80211_MIN_ACTION_SIZE +
3272 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3273 break;
3275 if (!ieee80211_vif_is_mesh(&sdata->vif))
3276 break;
3277 if (mesh_action_is_path_sel(mgmt) &&
3278 !mesh_path_sel_is_hwmp(sdata))
3279 break;
3280 goto queue;
3283 return RX_CONTINUE;
3285 invalid:
3286 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3287 /* will return in the next handlers */
3288 return RX_CONTINUE;
3290 handled:
3291 if (rx->sta)
3292 rx->sta->rx_stats.packets++;
3293 dev_kfree_skb(rx->skb);
3294 return RX_QUEUED;
3296 queue:
3297 skb_queue_tail(&sdata->skb_queue, rx->skb);
3298 ieee80211_queue_work(&local->hw, &sdata->work);
3299 if (rx->sta)
3300 rx->sta->rx_stats.packets++;
3301 return RX_QUEUED;
3304 static ieee80211_rx_result debug_noinline
3305 ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3307 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3308 int sig = 0;
3310 /* skip known-bad action frames and return them in the next handler */
3311 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3312 return RX_CONTINUE;
3315 * Getting here means the kernel doesn't know how to handle
3316 * it, but maybe userspace does ... include returned frames
3317 * so userspace can register for those to know whether ones
3318 * it transmitted were processed or returned.
3321 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3322 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3323 sig = status->signal;
3325 if (cfg80211_rx_mgmt(&rx->sdata->wdev, status->freq, sig,
3326 rx->skb->data, rx->skb->len, 0)) {
3327 if (rx->sta)
3328 rx->sta->rx_stats.packets++;
3329 dev_kfree_skb(rx->skb);
3330 return RX_QUEUED;
3333 return RX_CONTINUE;
3336 static ieee80211_rx_result debug_noinline
3337 ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3339 struct ieee80211_local *local = rx->local;
3340 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3341 struct sk_buff *nskb;
3342 struct ieee80211_sub_if_data *sdata = rx->sdata;
3343 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(rx->skb);
3345 if (!ieee80211_is_action(mgmt->frame_control))
3346 return RX_CONTINUE;
3349 * For AP mode, hostapd is responsible for handling any action
3350 * frames that we didn't handle, including returning unknown
3351 * ones. For all other modes we will return them to the sender,
3352 * setting the 0x80 bit in the action category, as required by
3353 * 802.11-2012 9.24.4.
3354 * Newer versions of hostapd shall also use the management frame
3355 * registration mechanisms, but older ones still use cooked
3356 * monitor interfaces so push all frames there.
3358 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3359 (sdata->vif.type == NL80211_IFTYPE_AP ||
3360 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3361 return RX_DROP_MONITOR;
3363 if (is_multicast_ether_addr(mgmt->da))
3364 return RX_DROP_MONITOR;
3366 /* do not return rejected action frames */
3367 if (mgmt->u.action.category & 0x80)
3368 return RX_DROP_UNUSABLE;
3370 nskb = skb_copy_expand(rx->skb, local->hw.extra_tx_headroom, 0,
3371 GFP_ATOMIC);
3372 if (nskb) {
3373 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3375 nmgmt->u.action.category |= 0x80;
3376 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3377 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3379 memset(nskb->cb, 0, sizeof(nskb->cb));
3381 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3382 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(nskb);
3384 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3385 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3386 IEEE80211_TX_CTL_NO_CCK_RATE;
3387 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3388 info->hw_queue =
3389 local->hw.offchannel_tx_hw_queue;
3392 __ieee80211_tx_skb_tid_band(rx->sdata, nskb, 7,
3393 status->band, 0);
3395 dev_kfree_skb(rx->skb);
3396 return RX_QUEUED;
3399 static ieee80211_rx_result debug_noinline
3400 ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3402 struct ieee80211_sub_if_data *sdata = rx->sdata;
3403 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3404 __le16 stype;
3406 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3408 if (!ieee80211_vif_is_mesh(&sdata->vif) &&
3409 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3410 sdata->vif.type != NL80211_IFTYPE_OCB &&
3411 sdata->vif.type != NL80211_IFTYPE_STATION)
3412 return RX_DROP_MONITOR;
3414 switch (stype) {
3415 case cpu_to_le16(IEEE80211_STYPE_AUTH):
3416 case cpu_to_le16(IEEE80211_STYPE_BEACON):
3417 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
3418 /* process for all: mesh, mlme, ibss */
3419 break;
3420 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
3421 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
3422 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
3423 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
3424 if (is_multicast_ether_addr(mgmt->da) &&
3425 !is_broadcast_ether_addr(mgmt->da))
3426 return RX_DROP_MONITOR;
3428 /* process only for station */
3429 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3430 return RX_DROP_MONITOR;
3431 break;
3432 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
3433 /* process only for ibss and mesh */
3434 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3435 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3436 return RX_DROP_MONITOR;
3437 break;
3438 default:
3439 return RX_DROP_MONITOR;
3442 /* queue up frame and kick off work to process it */
3443 skb_queue_tail(&sdata->skb_queue, rx->skb);
3444 ieee80211_queue_work(&rx->local->hw, &sdata->work);
3445 if (rx->sta)
3446 rx->sta->rx_stats.packets++;
3448 return RX_QUEUED;
3451 static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
3452 struct ieee80211_rate *rate)
3454 struct ieee80211_sub_if_data *sdata;
3455 struct ieee80211_local *local = rx->local;
3456 struct sk_buff *skb = rx->skb, *skb2;
3457 struct net_device *prev_dev = NULL;
3458 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3459 int needed_headroom;
3462 * If cooked monitor has been processed already, then
3463 * don't do it again. If not, set the flag.
3465 if (rx->flags & IEEE80211_RX_CMNTR)
3466 goto out_free_skb;
3467 rx->flags |= IEEE80211_RX_CMNTR;
3469 /* If there are no cooked monitor interfaces, just free the SKB */
3470 if (!local->cooked_mntrs)
3471 goto out_free_skb;
3473 /* vendor data is long removed here */
3474 status->flag &= ~RX_FLAG_RADIOTAP_VENDOR_DATA;
3475 /* room for the radiotap header based on driver features */
3476 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
3478 if (skb_headroom(skb) < needed_headroom &&
3479 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC))
3480 goto out_free_skb;
3482 /* prepend radiotap information */
3483 ieee80211_add_rx_radiotap_header(local, skb, rate, needed_headroom,
3484 false);
3486 skb_reset_mac_header(skb);
3487 skb->ip_summed = CHECKSUM_UNNECESSARY;
3488 skb->pkt_type = PACKET_OTHERHOST;
3489 skb->protocol = htons(ETH_P_802_2);
3491 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
3492 if (!ieee80211_sdata_running(sdata))
3493 continue;
3495 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
3496 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
3497 continue;
3499 if (prev_dev) {
3500 skb2 = skb_clone(skb, GFP_ATOMIC);
3501 if (skb2) {
3502 skb2->dev = prev_dev;
3503 netif_receive_skb(skb2);
3507 prev_dev = sdata->dev;
3508 ieee80211_rx_stats(sdata->dev, skb->len);
3511 if (prev_dev) {
3512 skb->dev = prev_dev;
3513 netif_receive_skb(skb);
3514 return;
3517 out_free_skb:
3518 dev_kfree_skb(skb);
3521 static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
3522 ieee80211_rx_result res)
3524 switch (res) {
3525 case RX_DROP_MONITOR:
3526 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3527 if (rx->sta)
3528 rx->sta->rx_stats.dropped++;
3529 /* fall through */
3530 case RX_CONTINUE: {
3531 struct ieee80211_rate *rate = NULL;
3532 struct ieee80211_supported_band *sband;
3533 struct ieee80211_rx_status *status;
3535 status = IEEE80211_SKB_RXCB((rx->skb));
3537 sband = rx->local->hw.wiphy->bands[status->band];
3538 if (status->encoding == RX_ENC_LEGACY)
3539 rate = &sband->bitrates[status->rate_idx];
3541 ieee80211_rx_cooked_monitor(rx, rate);
3542 break;
3544 case RX_DROP_UNUSABLE:
3545 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
3546 if (rx->sta)
3547 rx->sta->rx_stats.dropped++;
3548 dev_kfree_skb(rx->skb);
3549 break;
3550 case RX_QUEUED:
3551 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
3552 break;
3556 static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
3557 struct sk_buff_head *frames)
3559 ieee80211_rx_result res = RX_DROP_MONITOR;
3560 struct sk_buff *skb;
3562 #define CALL_RXH(rxh) \
3563 do { \
3564 res = rxh(rx); \
3565 if (res != RX_CONTINUE) \
3566 goto rxh_next; \
3567 } while (0)
3569 /* Lock here to avoid hitting all of the data used in the RX
3570 * path (e.g. key data, station data, ...) concurrently when
3571 * a frame is released from the reorder buffer due to timeout
3572 * from the timer, potentially concurrently with RX from the
3573 * driver.
3575 spin_lock_bh(&rx->local->rx_path_lock);
3577 while ((skb = __skb_dequeue(frames))) {
3579 * all the other fields are valid across frames
3580 * that belong to an aMPDU since they are on the
3581 * same TID from the same station
3583 rx->skb = skb;
3585 CALL_RXH(ieee80211_rx_h_check_more_data);
3586 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
3587 CALL_RXH(ieee80211_rx_h_sta_process);
3588 CALL_RXH(ieee80211_rx_h_decrypt);
3589 CALL_RXH(ieee80211_rx_h_defragment);
3590 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
3591 /* must be after MMIC verify so header is counted in MPDU mic */
3592 #ifdef CONFIG_MAC80211_MESH
3593 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
3594 CALL_RXH(ieee80211_rx_h_mesh_fwding);
3595 #endif
3596 CALL_RXH(ieee80211_rx_h_amsdu);
3597 CALL_RXH(ieee80211_rx_h_data);
3599 /* special treatment -- needs the queue */
3600 res = ieee80211_rx_h_ctrl(rx, frames);
3601 if (res != RX_CONTINUE)
3602 goto rxh_next;
3604 CALL_RXH(ieee80211_rx_h_mgmt_check);
3605 CALL_RXH(ieee80211_rx_h_action);
3606 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
3607 CALL_RXH(ieee80211_rx_h_action_return);
3608 CALL_RXH(ieee80211_rx_h_mgmt);
3610 rxh_next:
3611 ieee80211_rx_handlers_result(rx, res);
3613 #undef CALL_RXH
3616 spin_unlock_bh(&rx->local->rx_path_lock);
3619 static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
3621 struct sk_buff_head reorder_release;
3622 ieee80211_rx_result res = RX_DROP_MONITOR;
3624 __skb_queue_head_init(&reorder_release);
3626 #define CALL_RXH(rxh) \
3627 do { \
3628 res = rxh(rx); \
3629 if (res != RX_CONTINUE) \
3630 goto rxh_next; \
3631 } while (0)
3633 CALL_RXH(ieee80211_rx_h_check_dup);
3634 CALL_RXH(ieee80211_rx_h_check);
3636 ieee80211_rx_reorder_ampdu(rx, &reorder_release);
3638 ieee80211_rx_handlers(rx, &reorder_release);
3639 return;
3641 rxh_next:
3642 ieee80211_rx_handlers_result(rx, res);
3644 #undef CALL_RXH
3648 * This function makes calls into the RX path, therefore
3649 * it has to be invoked under RCU read lock.
3651 void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
3653 struct sk_buff_head frames;
3654 struct ieee80211_rx_data rx = {
3655 .sta = sta,
3656 .sdata = sta->sdata,
3657 .local = sta->local,
3658 /* This is OK -- must be QoS data frame */
3659 .security_idx = tid,
3660 .seqno_idx = tid,
3661 .napi = NULL, /* must be NULL to not have races */
3663 struct tid_ampdu_rx *tid_agg_rx;
3665 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3666 if (!tid_agg_rx)
3667 return;
3669 __skb_queue_head_init(&frames);
3671 spin_lock(&tid_agg_rx->reorder_lock);
3672 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3673 spin_unlock(&tid_agg_rx->reorder_lock);
3675 if (!skb_queue_empty(&frames)) {
3676 struct ieee80211_event event = {
3677 .type = BA_FRAME_TIMEOUT,
3678 .u.ba.tid = tid,
3679 .u.ba.sta = &sta->sta,
3681 drv_event_callback(rx.local, rx.sdata, &event);
3684 ieee80211_rx_handlers(&rx, &frames);
3687 void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
3688 u16 ssn, u64 filtered,
3689 u16 received_mpdus)
3691 struct sta_info *sta;
3692 struct tid_ampdu_rx *tid_agg_rx;
3693 struct sk_buff_head frames;
3694 struct ieee80211_rx_data rx = {
3695 /* This is OK -- must be QoS data frame */
3696 .security_idx = tid,
3697 .seqno_idx = tid,
3699 int i, diff;
3701 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
3702 return;
3704 __skb_queue_head_init(&frames);
3706 sta = container_of(pubsta, struct sta_info, sta);
3708 rx.sta = sta;
3709 rx.sdata = sta->sdata;
3710 rx.local = sta->local;
3712 rcu_read_lock();
3713 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
3714 if (!tid_agg_rx)
3715 goto out;
3717 spin_lock_bh(&tid_agg_rx->reorder_lock);
3719 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
3720 int release;
3722 /* release all frames in the reorder buffer */
3723 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
3724 IEEE80211_SN_MODULO;
3725 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx,
3726 release, &frames);
3727 /* update ssn to match received ssn */
3728 tid_agg_rx->head_seq_num = ssn;
3729 } else {
3730 ieee80211_release_reorder_frames(sta->sdata, tid_agg_rx, ssn,
3731 &frames);
3734 /* handle the case that received ssn is behind the mac ssn.
3735 * it can be tid_agg_rx->buf_size behind and still be valid */
3736 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
3737 if (diff >= tid_agg_rx->buf_size) {
3738 tid_agg_rx->reorder_buf_filtered = 0;
3739 goto release;
3741 filtered = filtered >> diff;
3742 ssn += diff;
3744 /* update bitmap */
3745 for (i = 0; i < tid_agg_rx->buf_size; i++) {
3746 int index = (ssn + i) % tid_agg_rx->buf_size;
3748 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
3749 if (filtered & BIT_ULL(i))
3750 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
3753 /* now process also frames that the filter marking released */
3754 ieee80211_sta_reorder_release(sta->sdata, tid_agg_rx, &frames);
3756 release:
3757 spin_unlock_bh(&tid_agg_rx->reorder_lock);
3759 ieee80211_rx_handlers(&rx, &frames);
3761 out:
3762 rcu_read_unlock();
3764 EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
3766 /* main receive path */
3768 static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
3770 struct ieee80211_sub_if_data *sdata = rx->sdata;
3771 struct sk_buff *skb = rx->skb;
3772 struct ieee80211_hdr *hdr = (void *)skb->data;
3773 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3774 u8 *bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
3775 bool multicast = is_multicast_ether_addr(hdr->addr1);
3777 switch (sdata->vif.type) {
3778 case NL80211_IFTYPE_STATION:
3779 if (!bssid && !sdata->u.mgd.use_4addr)
3780 return false;
3781 if (multicast)
3782 return true;
3783 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3784 case NL80211_IFTYPE_ADHOC:
3785 if (!bssid)
3786 return false;
3787 if (ether_addr_equal(sdata->vif.addr, hdr->addr2) ||
3788 ether_addr_equal(sdata->u.ibss.bssid, hdr->addr2))
3789 return false;
3790 if (ieee80211_is_beacon(hdr->frame_control))
3791 return true;
3792 if (!ieee80211_bssid_match(bssid, sdata->u.ibss.bssid))
3793 return false;
3794 if (!multicast &&
3795 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3796 return false;
3797 if (!rx->sta) {
3798 int rate_idx;
3799 if (status->encoding != RX_ENC_LEGACY)
3800 rate_idx = 0; /* TODO: HT/VHT rates */
3801 else
3802 rate_idx = status->rate_idx;
3803 ieee80211_ibss_rx_no_sta(sdata, bssid, hdr->addr2,
3804 BIT(rate_idx));
3806 return true;
3807 case NL80211_IFTYPE_OCB:
3808 if (!bssid)
3809 return false;
3810 if (!ieee80211_is_data_present(hdr->frame_control))
3811 return false;
3812 if (!is_broadcast_ether_addr(bssid))
3813 return false;
3814 if (!multicast &&
3815 !ether_addr_equal(sdata->dev->dev_addr, hdr->addr1))
3816 return false;
3817 if (!rx->sta) {
3818 int rate_idx;
3819 if (status->encoding != RX_ENC_LEGACY)
3820 rate_idx = 0; /* TODO: HT rates */
3821 else
3822 rate_idx = status->rate_idx;
3823 ieee80211_ocb_rx_no_sta(sdata, bssid, hdr->addr2,
3824 BIT(rate_idx));
3826 return true;
3827 case NL80211_IFTYPE_MESH_POINT:
3828 if (ether_addr_equal(sdata->vif.addr, hdr->addr2))
3829 return false;
3830 if (multicast)
3831 return true;
3832 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3833 case NL80211_IFTYPE_AP_VLAN:
3834 case NL80211_IFTYPE_AP:
3835 if (!bssid)
3836 return ether_addr_equal(sdata->vif.addr, hdr->addr1);
3838 if (!ieee80211_bssid_match(bssid, sdata->vif.addr)) {
3840 * Accept public action frames even when the
3841 * BSSID doesn't match, this is used for P2P
3842 * and location updates. Note that mac80211
3843 * itself never looks at these frames.
3845 if (!multicast &&
3846 !ether_addr_equal(sdata->vif.addr, hdr->addr1))
3847 return false;
3848 if (ieee80211_is_public_action(hdr, skb->len))
3849 return true;
3850 return ieee80211_is_beacon(hdr->frame_control);
3853 if (!ieee80211_has_tods(hdr->frame_control)) {
3854 /* ignore data frames to TDLS-peers */
3855 if (ieee80211_is_data(hdr->frame_control))
3856 return false;
3857 /* ignore action frames to TDLS-peers */
3858 if (ieee80211_is_action(hdr->frame_control) &&
3859 !is_broadcast_ether_addr(bssid) &&
3860 !ether_addr_equal(bssid, hdr->addr1))
3861 return false;
3865 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
3866 * the BSSID - we've checked that already but may have accepted
3867 * the wildcard (ff:ff:ff:ff:ff:ff).
3869 * It also says:
3870 * The BSSID of the Data frame is determined as follows:
3871 * a) If the STA is contained within an AP or is associated
3872 * with an AP, the BSSID is the address currently in use
3873 * by the STA contained in the AP.
3875 * So we should not accept data frames with an address that's
3876 * multicast.
3878 * Accepting it also opens a security problem because stations
3879 * could encrypt it with the GTK and inject traffic that way.
3881 if (ieee80211_is_data(hdr->frame_control) && multicast)
3882 return false;
3884 return true;
3885 case NL80211_IFTYPE_WDS:
3886 if (bssid || !ieee80211_is_data(hdr->frame_control))
3887 return false;
3888 return ether_addr_equal(sdata->u.wds.remote_addr, hdr->addr2);
3889 case NL80211_IFTYPE_P2P_DEVICE:
3890 return ieee80211_is_public_action(hdr, skb->len) ||
3891 ieee80211_is_probe_req(hdr->frame_control) ||
3892 ieee80211_is_probe_resp(hdr->frame_control) ||
3893 ieee80211_is_beacon(hdr->frame_control);
3894 case NL80211_IFTYPE_NAN:
3895 /* Currently no frames on NAN interface are allowed */
3896 return false;
3897 default:
3898 break;
3901 WARN_ON_ONCE(1);
3902 return false;
3905 void ieee80211_check_fast_rx(struct sta_info *sta)
3907 struct ieee80211_sub_if_data *sdata = sta->sdata;
3908 struct ieee80211_local *local = sdata->local;
3909 struct ieee80211_key *key;
3910 struct ieee80211_fast_rx fastrx = {
3911 .dev = sdata->dev,
3912 .vif_type = sdata->vif.type,
3913 .control_port_protocol = sdata->control_port_protocol,
3914 }, *old, *new = NULL;
3915 bool assign = false;
3917 /* use sparse to check that we don't return without updating */
3918 __acquire(check_fast_rx);
3920 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
3921 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
3922 ether_addr_copy(fastrx.rfc1042_hdr, rfc1042_header);
3923 ether_addr_copy(fastrx.vif_addr, sdata->vif.addr);
3925 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
3927 /* fast-rx doesn't do reordering */
3928 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
3929 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
3930 goto clear;
3932 switch (sdata->vif.type) {
3933 case NL80211_IFTYPE_STATION:
3934 if (sta->sta.tdls) {
3935 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3936 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3937 fastrx.expected_ds_bits = 0;
3938 } else {
3939 fastrx.sta_notify = sdata->u.mgd.probe_send_count > 0;
3940 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
3941 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
3942 fastrx.expected_ds_bits =
3943 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3946 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
3947 fastrx.expected_ds_bits |=
3948 cpu_to_le16(IEEE80211_FCTL_TODS);
3949 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3950 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3953 if (!sdata->u.mgd.powersave)
3954 break;
3956 /* software powersave is a huge mess, avoid all of it */
3957 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
3958 goto clear;
3959 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
3960 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
3961 goto clear;
3962 break;
3963 case NL80211_IFTYPE_AP_VLAN:
3964 case NL80211_IFTYPE_AP:
3965 /* parallel-rx requires this, at least with calls to
3966 * ieee80211_sta_ps_transition()
3968 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
3969 goto clear;
3970 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
3971 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
3972 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
3974 fastrx.internal_forward =
3975 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
3976 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
3977 !sdata->u.vlan.sta);
3979 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3980 sdata->u.vlan.sta) {
3981 fastrx.expected_ds_bits |=
3982 cpu_to_le16(IEEE80211_FCTL_FROMDS);
3983 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
3984 fastrx.internal_forward = 0;
3987 break;
3988 default:
3989 goto clear;
3992 if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED))
3993 goto clear;
3995 rcu_read_lock();
3996 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
3997 if (key) {
3998 switch (key->conf.cipher) {
3999 case WLAN_CIPHER_SUITE_TKIP:
4000 /* we don't want to deal with MMIC in fast-rx */
4001 goto clear_rcu;
4002 case WLAN_CIPHER_SUITE_CCMP:
4003 case WLAN_CIPHER_SUITE_CCMP_256:
4004 case WLAN_CIPHER_SUITE_GCMP:
4005 case WLAN_CIPHER_SUITE_GCMP_256:
4006 break;
4007 default:
4008 /* we also don't want to deal with WEP or cipher scheme
4009 * since those require looking up the key idx in the
4010 * frame, rather than assuming the PTK is used
4011 * (we need to revisit this once we implement the real
4012 * PTK index, which is now valid in the spec, but we
4013 * haven't implemented that part yet)
4015 goto clear_rcu;
4018 fastrx.key = true;
4019 fastrx.icv_len = key->conf.icv_len;
4022 assign = true;
4023 clear_rcu:
4024 rcu_read_unlock();
4025 clear:
4026 __release(check_fast_rx);
4028 if (assign)
4029 new = kmemdup(&fastrx, sizeof(fastrx), GFP_KERNEL);
4031 spin_lock_bh(&sta->lock);
4032 old = rcu_dereference_protected(sta->fast_rx, true);
4033 rcu_assign_pointer(sta->fast_rx, new);
4034 spin_unlock_bh(&sta->lock);
4036 if (old)
4037 kfree_rcu(old, rcu_head);
4040 void ieee80211_clear_fast_rx(struct sta_info *sta)
4042 struct ieee80211_fast_rx *old;
4044 spin_lock_bh(&sta->lock);
4045 old = rcu_dereference_protected(sta->fast_rx, true);
4046 RCU_INIT_POINTER(sta->fast_rx, NULL);
4047 spin_unlock_bh(&sta->lock);
4049 if (old)
4050 kfree_rcu(old, rcu_head);
4053 void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4055 struct ieee80211_local *local = sdata->local;
4056 struct sta_info *sta;
4058 lockdep_assert_held(&local->sta_mtx);
4060 list_for_each_entry_rcu(sta, &local->sta_list, list) {
4061 if (sdata != sta->sdata &&
4062 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4063 continue;
4064 ieee80211_check_fast_rx(sta);
4068 void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4070 struct ieee80211_local *local = sdata->local;
4072 mutex_lock(&local->sta_mtx);
4073 __ieee80211_check_fast_rx_iface(sdata);
4074 mutex_unlock(&local->sta_mtx);
4077 static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4078 struct ieee80211_fast_rx *fast_rx)
4080 struct sk_buff *skb = rx->skb;
4081 struct ieee80211_hdr *hdr = (void *)skb->data;
4082 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4083 struct sta_info *sta = rx->sta;
4084 int orig_len = skb->len;
4085 int hdrlen = ieee80211_hdrlen(hdr->frame_control);
4086 int snap_offs = hdrlen;
4087 struct {
4088 u8 snap[sizeof(rfc1042_header)];
4089 __be16 proto;
4090 } *payload __aligned(2);
4091 struct {
4092 u8 da[ETH_ALEN];
4093 u8 sa[ETH_ALEN];
4094 } addrs __aligned(2);
4095 struct ieee80211_sta_rx_stats *stats = &sta->rx_stats;
4097 if (fast_rx->uses_rss)
4098 stats = this_cpu_ptr(sta->pcpu_rx_stats);
4100 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4101 * to a common data structure; drivers can implement that per queue
4102 * but we don't have that information in mac80211
4104 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4105 return false;
4107 #define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4109 /* If using encryption, we also need to have:
4110 * - PN_VALIDATED: similar, but the implementation is tricky
4111 * - DECRYPTED: necessary for PN_VALIDATED
4113 if (fast_rx->key &&
4114 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4115 return false;
4117 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4118 return false;
4120 if (unlikely(ieee80211_is_frag(hdr)))
4121 return false;
4123 /* Since our interface address cannot be multicast, this
4124 * implicitly also rejects multicast frames without the
4125 * explicit check.
4127 * We shouldn't get any *data* frames not addressed to us
4128 * (AP mode will accept multicast *management* frames), but
4129 * punting here will make it go through the full checks in
4130 * ieee80211_accept_frame().
4132 if (!ether_addr_equal(fast_rx->vif_addr, hdr->addr1))
4133 return false;
4135 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4136 IEEE80211_FCTL_TODS)) !=
4137 fast_rx->expected_ds_bits)
4138 return false;
4140 /* assign the key to drop unencrypted frames (later)
4141 * and strip the IV/MIC if necessary
4143 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4144 /* GCMP header length is the same */
4145 snap_offs += IEEE80211_CCMP_HDR_LEN;
4148 if (!(status->rx_flags & IEEE80211_RX_AMSDU)) {
4149 if (!pskb_may_pull(skb, snap_offs + sizeof(*payload)))
4150 goto drop;
4152 payload = (void *)(skb->data + snap_offs);
4154 if (!ether_addr_equal(payload->snap, fast_rx->rfc1042_hdr))
4155 return false;
4157 /* Don't handle these here since they require special code.
4158 * Accept AARP and IPX even though they should come with a
4159 * bridge-tunnel header - but if we get them this way then
4160 * there's little point in discarding them.
4162 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4163 payload->proto == fast_rx->control_port_protocol))
4164 return false;
4167 /* after this point, don't punt to the slowpath! */
4169 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4170 pskb_trim(skb, skb->len - fast_rx->icv_len))
4171 goto drop;
4173 if (unlikely(fast_rx->sta_notify)) {
4174 ieee80211_sta_rx_notify(rx->sdata, hdr);
4175 fast_rx->sta_notify = false;
4178 /* statistics part of ieee80211_rx_h_sta_process() */
4179 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4180 stats->last_signal = status->signal;
4181 if (!fast_rx->uses_rss)
4182 ewma_signal_add(&sta->rx_stats_avg.signal,
4183 -status->signal);
4186 if (status->chains) {
4187 int i;
4189 stats->chains = status->chains;
4190 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4191 int signal = status->chain_signal[i];
4193 if (!(status->chains & BIT(i)))
4194 continue;
4196 stats->chain_signal_last[i] = signal;
4197 if (!fast_rx->uses_rss)
4198 ewma_signal_add(&sta->rx_stats_avg.chain_signal[i],
4199 -signal);
4202 /* end of statistics */
4204 if (rx->key && !ieee80211_has_protected(hdr->frame_control))
4205 goto drop;
4207 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4208 if (__ieee80211_rx_h_amsdu(rx, snap_offs - hdrlen) !=
4209 RX_QUEUED)
4210 goto drop;
4212 return true;
4215 stats->last_rx = jiffies;
4216 stats->last_rate = sta_stats_encode_rate(status);
4218 stats->fragments++;
4219 stats->packets++;
4221 /* do the header conversion - first grab the addresses */
4222 ether_addr_copy(addrs.da, skb->data + fast_rx->da_offs);
4223 ether_addr_copy(addrs.sa, skb->data + fast_rx->sa_offs);
4224 /* remove the SNAP but leave the ethertype */
4225 skb_pull(skb, snap_offs + sizeof(rfc1042_header));
4226 /* push the addresses in front */
4227 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4229 skb->dev = fast_rx->dev;
4231 ieee80211_rx_stats(fast_rx->dev, skb->len);
4233 /* The seqno index has the same property as needed
4234 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4235 * for non-QoS-data frames. Here we know it's a data
4236 * frame, so count MSDUs.
4238 u64_stats_update_begin(&stats->syncp);
4239 stats->msdu[rx->seqno_idx]++;
4240 stats->bytes += orig_len;
4241 u64_stats_update_end(&stats->syncp);
4243 if (fast_rx->internal_forward) {
4244 struct sk_buff *xmit_skb = NULL;
4245 if (is_multicast_ether_addr(addrs.da)) {
4246 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4247 } else if (!ether_addr_equal(addrs.da, addrs.sa) &&
4248 sta_info_get(rx->sdata, addrs.da)) {
4249 xmit_skb = skb;
4250 skb = NULL;
4253 if (xmit_skb) {
4255 * Send to wireless media and increase priority by 256
4256 * to keep the received priority instead of
4257 * reclassifying the frame (see cfg80211_classify8021d).
4259 xmit_skb->priority += 256;
4260 xmit_skb->protocol = htons(ETH_P_802_3);
4261 skb_reset_network_header(xmit_skb);
4262 skb_reset_mac_header(xmit_skb);
4263 dev_queue_xmit(xmit_skb);
4266 if (!skb)
4267 return true;
4270 /* deliver to local stack */
4271 skb->protocol = eth_type_trans(skb, fast_rx->dev);
4272 memset(skb->cb, 0, sizeof(skb->cb));
4273 if (rx->napi)
4274 napi_gro_receive(rx->napi, skb);
4275 else
4276 netif_receive_skb(skb);
4278 return true;
4279 drop:
4280 dev_kfree_skb(skb);
4281 stats->dropped++;
4282 return true;
4286 * This function returns whether or not the SKB
4287 * was destined for RX processing or not, which,
4288 * if consume is true, is equivalent to whether
4289 * or not the skb was consumed.
4291 static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
4292 struct sk_buff *skb, bool consume)
4294 struct ieee80211_local *local = rx->local;
4295 struct ieee80211_sub_if_data *sdata = rx->sdata;
4297 rx->skb = skb;
4299 /* See if we can do fast-rx; if we have to copy we already lost,
4300 * so punt in that case. We should never have to deliver a data
4301 * frame to multiple interfaces anyway.
4303 * We skip the ieee80211_accept_frame() call and do the necessary
4304 * checking inside ieee80211_invoke_fast_rx().
4306 if (consume && rx->sta) {
4307 struct ieee80211_fast_rx *fast_rx;
4309 fast_rx = rcu_dereference(rx->sta->fast_rx);
4310 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
4311 return true;
4314 if (!ieee80211_accept_frame(rx))
4315 return false;
4317 if (!consume) {
4318 skb = skb_copy(skb, GFP_ATOMIC);
4319 if (!skb) {
4320 if (net_ratelimit())
4321 wiphy_debug(local->hw.wiphy,
4322 "failed to copy skb for %s\n",
4323 sdata->name);
4324 return true;
4327 rx->skb = skb;
4330 ieee80211_invoke_rx_handlers(rx);
4331 return true;
4335 * This is the actual Rx frames handler. as it belongs to Rx path it must
4336 * be called with rcu_read_lock protection.
4338 static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
4339 struct ieee80211_sta *pubsta,
4340 struct sk_buff *skb,
4341 struct napi_struct *napi)
4343 struct ieee80211_local *local = hw_to_local(hw);
4344 struct ieee80211_sub_if_data *sdata;
4345 struct ieee80211_hdr *hdr;
4346 __le16 fc;
4347 struct ieee80211_rx_data rx;
4348 struct ieee80211_sub_if_data *prev;
4349 struct rhlist_head *tmp;
4350 int err = 0;
4352 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
4353 memset(&rx, 0, sizeof(rx));
4354 rx.skb = skb;
4355 rx.local = local;
4356 rx.napi = napi;
4358 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
4359 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
4361 if (ieee80211_is_mgmt(fc)) {
4362 /* drop frame if too short for header */
4363 if (skb->len < ieee80211_hdrlen(fc))
4364 err = -ENOBUFS;
4365 else
4366 err = skb_linearize(skb);
4367 } else {
4368 err = !pskb_may_pull(skb, ieee80211_hdrlen(fc));
4371 if (err) {
4372 dev_kfree_skb(skb);
4373 return;
4376 hdr = (struct ieee80211_hdr *)skb->data;
4377 ieee80211_parse_qos(&rx);
4378 ieee80211_verify_alignment(&rx);
4380 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
4381 ieee80211_is_beacon(hdr->frame_control)))
4382 ieee80211_scan_rx(local, skb);
4384 if (ieee80211_is_data(fc)) {
4385 struct sta_info *sta, *prev_sta;
4387 if (pubsta) {
4388 rx.sta = container_of(pubsta, struct sta_info, sta);
4389 rx.sdata = rx.sta->sdata;
4390 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4391 return;
4392 goto out;
4395 prev_sta = NULL;
4397 for_each_sta_info(local, hdr->addr2, sta, tmp) {
4398 if (!prev_sta) {
4399 prev_sta = sta;
4400 continue;
4403 rx.sta = prev_sta;
4404 rx.sdata = prev_sta->sdata;
4405 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4407 prev_sta = sta;
4410 if (prev_sta) {
4411 rx.sta = prev_sta;
4412 rx.sdata = prev_sta->sdata;
4414 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4415 return;
4416 goto out;
4420 prev = NULL;
4422 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4423 if (!ieee80211_sdata_running(sdata))
4424 continue;
4426 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
4427 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
4428 continue;
4431 * frame is destined for this interface, but if it's
4432 * not also for the previous one we handle that after
4433 * the loop to avoid copying the SKB once too much
4436 if (!prev) {
4437 prev = sdata;
4438 continue;
4441 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4442 rx.sdata = prev;
4443 ieee80211_prepare_and_rx_handle(&rx, skb, false);
4445 prev = sdata;
4448 if (prev) {
4449 rx.sta = sta_info_get_bss(prev, hdr->addr2);
4450 rx.sdata = prev;
4452 if (ieee80211_prepare_and_rx_handle(&rx, skb, true))
4453 return;
4456 out:
4457 dev_kfree_skb(skb);
4461 * This is the receive path handler. It is called by a low level driver when an
4462 * 802.11 MPDU is received from the hardware.
4464 void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
4465 struct sk_buff *skb, struct napi_struct *napi)
4467 struct ieee80211_local *local = hw_to_local(hw);
4468 struct ieee80211_rate *rate = NULL;
4469 struct ieee80211_supported_band *sband;
4470 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4472 WARN_ON_ONCE(softirq_count() == 0);
4474 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
4475 goto drop;
4477 sband = local->hw.wiphy->bands[status->band];
4478 if (WARN_ON(!sband))
4479 goto drop;
4482 * If we're suspending, it is possible although not too likely
4483 * that we'd be receiving frames after having already partially
4484 * quiesced the stack. We can't process such frames then since
4485 * that might, for example, cause stations to be added or other
4486 * driver callbacks be invoked.
4488 if (unlikely(local->quiescing || local->suspended))
4489 goto drop;
4491 /* We might be during a HW reconfig, prevent Rx for the same reason */
4492 if (unlikely(local->in_reconfig))
4493 goto drop;
4496 * The same happens when we're not even started,
4497 * but that's worth a warning.
4499 if (WARN_ON(!local->started))
4500 goto drop;
4502 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
4504 * Validate the rate, unless a PLCP error means that
4505 * we probably can't have a valid rate here anyway.
4508 switch (status->encoding) {
4509 case RX_ENC_HT:
4511 * rate_idx is MCS index, which can be [0-76]
4512 * as documented on:
4514 * http://wireless.kernel.org/en/developers/Documentation/ieee80211/802.11n
4516 * Anything else would be some sort of driver or
4517 * hardware error. The driver should catch hardware
4518 * errors.
4520 if (WARN(status->rate_idx > 76,
4521 "Rate marked as an HT rate but passed "
4522 "status->rate_idx is not "
4523 "an MCS index [0-76]: %d (0x%02x)\n",
4524 status->rate_idx,
4525 status->rate_idx))
4526 goto drop;
4527 break;
4528 case RX_ENC_VHT:
4529 if (WARN_ONCE(status->rate_idx > 9 ||
4530 !status->nss ||
4531 status->nss > 8,
4532 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
4533 status->rate_idx, status->nss))
4534 goto drop;
4535 break;
4536 case RX_ENC_HE:
4537 if (WARN_ONCE(status->rate_idx > 11 ||
4538 !status->nss ||
4539 status->nss > 8,
4540 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
4541 status->rate_idx, status->nss))
4542 goto drop;
4543 break;
4544 default:
4545 WARN_ON_ONCE(1);
4546 /* fall through */
4547 case RX_ENC_LEGACY:
4548 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
4549 goto drop;
4550 rate = &sband->bitrates[status->rate_idx];
4554 status->rx_flags = 0;
4557 * key references and virtual interfaces are protected using RCU
4558 * and this requires that we are in a read-side RCU section during
4559 * receive processing
4561 rcu_read_lock();
4564 * Frames with failed FCS/PLCP checksum are not returned,
4565 * all other frames are returned without radiotap header
4566 * if it was previously present.
4567 * Also, frames with less than 16 bytes are dropped.
4569 skb = ieee80211_rx_monitor(local, skb, rate);
4570 if (!skb) {
4571 rcu_read_unlock();
4572 return;
4575 ieee80211_tpt_led_trig_rx(local,
4576 ((struct ieee80211_hdr *)skb->data)->frame_control,
4577 skb->len);
4579 __ieee80211_rx_handle_packet(hw, pubsta, skb, napi);
4581 rcu_read_unlock();
4583 return;
4584 drop:
4585 kfree_skb(skb);
4587 EXPORT_SYMBOL(ieee80211_rx_napi);
4589 /* This is a version of the rx handler that can be called from hard irq
4590 * context. Post the skb on the queue and schedule the tasklet */
4591 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
4593 struct ieee80211_local *local = hw_to_local(hw);
4595 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
4597 skb->pkt_type = IEEE80211_RX_MSG;
4598 skb_queue_tail(&local->skb_queue, skb);
4599 tasklet_schedule(&local->tasklet);
4601 EXPORT_SYMBOL(ieee80211_rx_irqsafe);