perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / net / sctp / associola.c
blob914750b819b2661986a1dca9d0b049a68d020e67
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
59 static void sctp_assoc_bh_rcv(struct work_struct *work);
60 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
61 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
63 /* 1st Level Abstractions. */
65 /* Initialize a new association from provided memory. */
66 static struct sctp_association *sctp_association_init(
67 struct sctp_association *asoc,
68 const struct sctp_endpoint *ep,
69 const struct sock *sk,
70 enum sctp_scope scope, gfp_t gfp)
72 struct net *net = sock_net(sk);
73 struct sctp_sock *sp;
74 struct sctp_paramhdr *p;
75 int i;
77 /* Retrieve the SCTP per socket area. */
78 sp = sctp_sk((struct sock *)sk);
80 /* Discarding const is appropriate here. */
81 asoc->ep = (struct sctp_endpoint *)ep;
82 asoc->base.sk = (struct sock *)sk;
84 sctp_endpoint_hold(asoc->ep);
85 sock_hold(asoc->base.sk);
87 /* Initialize the common base substructure. */
88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 /* Initialize the object handling fields. */
91 refcount_set(&asoc->base.refcnt, 1);
93 /* Initialize the bind addr area. */
94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 asoc->state = SCTP_STATE_CLOSED;
97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 asoc->user_frag = sp->user_frag;
100 /* Set the association max_retrans and RTO values from the
101 * socket values.
103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 asoc->pf_retrans = net->sctp.pf_retrans;
106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 /* Initialize the association's heartbeat interval based on the
111 * sock configured value.
113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 /* Initialize path max retrans value. */
116 asoc->pathmaxrxt = sp->pathmaxrxt;
118 asoc->flowlabel = sp->flowlabel;
119 asoc->dscp = sp->dscp;
121 /* Set association default SACK delay */
122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 asoc->sackfreq = sp->sackfreq;
125 /* Set the association default flags controlling
126 * Heartbeat, SACK delay, and Path MTU Discovery.
128 asoc->param_flags = sp->param_flags;
130 /* Initialize the maximum number of new data packets that can be sent
131 * in a burst.
133 asoc->max_burst = sp->max_burst;
135 /* initialize association timers */
136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140 /* sctpimpguide Section 2.12.2
141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 * recommended value of 5 times 'RTO.Max'.
144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 = 5 * asoc->rto_max;
147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150 /* Initializes the timers */
151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
154 /* Pull default initialization values from the sock options.
155 * Note: This assumes that the values have already been
156 * validated in the sock.
158 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
159 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
160 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
162 asoc->max_init_timeo =
163 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
165 /* Set the local window size for receive.
166 * This is also the rcvbuf space per association.
167 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
168 * 1500 bytes in one SCTP packet.
170 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
171 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
172 else
173 asoc->rwnd = sk->sk_rcvbuf/2;
175 asoc->a_rwnd = asoc->rwnd;
177 /* Use my own max window until I learn something better. */
178 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
180 /* Initialize the receive memory counter */
181 atomic_set(&asoc->rmem_alloc, 0);
183 init_waitqueue_head(&asoc->wait);
185 asoc->c.my_vtag = sctp_generate_tag(ep);
186 asoc->c.my_port = ep->base.bind_addr.port;
188 asoc->c.initial_tsn = sctp_generate_tsn(ep);
190 asoc->next_tsn = asoc->c.initial_tsn;
192 asoc->ctsn_ack_point = asoc->next_tsn - 1;
193 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
194 asoc->highest_sacked = asoc->ctsn_ack_point;
195 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
197 /* ADDIP Section 4.1 Asconf Chunk Procedures
199 * When an endpoint has an ASCONF signaled change to be sent to the
200 * remote endpoint it should do the following:
201 * ...
202 * A2) a serial number should be assigned to the chunk. The serial
203 * number SHOULD be a monotonically increasing number. The serial
204 * numbers SHOULD be initialized at the start of the
205 * association to the same value as the initial TSN.
207 asoc->addip_serial = asoc->c.initial_tsn;
208 asoc->strreset_outseq = asoc->c.initial_tsn;
210 INIT_LIST_HEAD(&asoc->addip_chunk_list);
211 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 /* Make an empty list of remote transport addresses. */
214 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 /* RFC 2960 5.1 Normal Establishment of an Association
218 * After the reception of the first data chunk in an
219 * association the endpoint must immediately respond with a
220 * sack to acknowledge the data chunk. Subsequent
221 * acknowledgements should be done as described in Section
222 * 6.2.
224 * [We implement this by telling a new association that it
225 * already received one packet.]
227 asoc->peer.sack_needed = 1;
228 asoc->peer.sack_generation = 1;
230 /* Assume that the peer will tell us if he recognizes ASCONF
231 * as part of INIT exchange.
232 * The sctp_addip_noauth option is there for backward compatibility
233 * and will revert old behavior.
235 if (net->sctp.addip_noauth)
236 asoc->peer.asconf_capable = 1;
238 /* Create an input queue. */
239 sctp_inq_init(&asoc->base.inqueue);
240 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 /* Create an output queue. */
243 sctp_outq_init(asoc, &asoc->outqueue);
245 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
246 goto fail_init;
248 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
249 0, gfp))
250 goto fail_init;
252 /* Initialize default path MTU. */
253 asoc->pathmtu = sp->pathmtu;
254 sctp_assoc_update_frag_point(asoc);
256 /* Assume that peer would support both address types unless we are
257 * told otherwise.
259 asoc->peer.ipv4_address = 1;
260 if (asoc->base.sk->sk_family == PF_INET6)
261 asoc->peer.ipv6_address = 1;
262 INIT_LIST_HEAD(&asoc->asocs);
264 asoc->default_stream = sp->default_stream;
265 asoc->default_ppid = sp->default_ppid;
266 asoc->default_flags = sp->default_flags;
267 asoc->default_context = sp->default_context;
268 asoc->default_timetolive = sp->default_timetolive;
269 asoc->default_rcv_context = sp->default_rcv_context;
271 /* AUTH related initializations */
272 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
273 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
274 goto stream_free;
276 asoc->active_key_id = ep->active_key_id;
277 asoc->prsctp_enable = ep->prsctp_enable;
278 asoc->reconf_enable = ep->reconf_enable;
279 asoc->strreset_enable = ep->strreset_enable;
281 /* Save the hmacs and chunks list into this association */
282 if (ep->auth_hmacs_list)
283 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
284 ntohs(ep->auth_hmacs_list->param_hdr.length));
285 if (ep->auth_chunk_list)
286 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
287 ntohs(ep->auth_chunk_list->param_hdr.length));
289 /* Get the AUTH random number for this association */
290 p = (struct sctp_paramhdr *)asoc->c.auth_random;
291 p->type = SCTP_PARAM_RANDOM;
292 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
293 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
295 return asoc;
297 stream_free:
298 sctp_stream_free(&asoc->stream);
299 fail_init:
300 sock_put(asoc->base.sk);
301 sctp_endpoint_put(asoc->ep);
302 return NULL;
305 /* Allocate and initialize a new association */
306 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
307 const struct sock *sk,
308 enum sctp_scope scope, gfp_t gfp)
310 struct sctp_association *asoc;
312 asoc = kzalloc(sizeof(*asoc), gfp);
313 if (!asoc)
314 goto fail;
316 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
317 goto fail_init;
319 SCTP_DBG_OBJCNT_INC(assoc);
321 pr_debug("Created asoc %p\n", asoc);
323 return asoc;
325 fail_init:
326 kfree(asoc);
327 fail:
328 return NULL;
331 /* Free this association if possible. There may still be users, so
332 * the actual deallocation may be delayed.
334 void sctp_association_free(struct sctp_association *asoc)
336 struct sock *sk = asoc->base.sk;
337 struct sctp_transport *transport;
338 struct list_head *pos, *temp;
339 int i;
341 /* Only real associations count against the endpoint, so
342 * don't bother for if this is a temporary association.
344 if (!list_empty(&asoc->asocs)) {
345 list_del(&asoc->asocs);
347 /* Decrement the backlog value for a TCP-style listening
348 * socket.
350 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
351 sk->sk_ack_backlog--;
354 /* Mark as dead, so other users can know this structure is
355 * going away.
357 asoc->base.dead = true;
359 /* Dispose of any data lying around in the outqueue. */
360 sctp_outq_free(&asoc->outqueue);
362 /* Dispose of any pending messages for the upper layer. */
363 sctp_ulpq_free(&asoc->ulpq);
365 /* Dispose of any pending chunks on the inqueue. */
366 sctp_inq_free(&asoc->base.inqueue);
368 sctp_tsnmap_free(&asoc->peer.tsn_map);
370 /* Free stream information. */
371 sctp_stream_free(&asoc->stream);
373 if (asoc->strreset_chunk)
374 sctp_chunk_free(asoc->strreset_chunk);
376 /* Clean up the bound address list. */
377 sctp_bind_addr_free(&asoc->base.bind_addr);
379 /* Do we need to go through all of our timers and
380 * delete them? To be safe we will try to delete all, but we
381 * should be able to go through and make a guess based
382 * on our state.
384 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
385 if (del_timer(&asoc->timers[i]))
386 sctp_association_put(asoc);
389 /* Free peer's cached cookie. */
390 kfree(asoc->peer.cookie);
391 kfree(asoc->peer.peer_random);
392 kfree(asoc->peer.peer_chunks);
393 kfree(asoc->peer.peer_hmacs);
395 /* Release the transport structures. */
396 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
397 transport = list_entry(pos, struct sctp_transport, transports);
398 list_del_rcu(pos);
399 sctp_unhash_transport(transport);
400 sctp_transport_free(transport);
403 asoc->peer.transport_count = 0;
405 sctp_asconf_queue_teardown(asoc);
407 /* Free pending address space being deleted */
408 kfree(asoc->asconf_addr_del_pending);
410 /* AUTH - Free the endpoint shared keys */
411 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
413 /* AUTH - Free the association shared key */
414 sctp_auth_key_put(asoc->asoc_shared_key);
416 sctp_association_put(asoc);
419 /* Cleanup and free up an association. */
420 static void sctp_association_destroy(struct sctp_association *asoc)
422 if (unlikely(!asoc->base.dead)) {
423 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
424 return;
427 sctp_endpoint_put(asoc->ep);
428 sock_put(asoc->base.sk);
430 if (asoc->assoc_id != 0) {
431 spin_lock_bh(&sctp_assocs_id_lock);
432 idr_remove(&sctp_assocs_id, asoc->assoc_id);
433 spin_unlock_bh(&sctp_assocs_id_lock);
436 WARN_ON(atomic_read(&asoc->rmem_alloc));
438 kfree_rcu(asoc, rcu);
439 SCTP_DBG_OBJCNT_DEC(assoc);
442 /* Change the primary destination address for the peer. */
443 void sctp_assoc_set_primary(struct sctp_association *asoc,
444 struct sctp_transport *transport)
446 int changeover = 0;
448 /* it's a changeover only if we already have a primary path
449 * that we are changing
451 if (asoc->peer.primary_path != NULL &&
452 asoc->peer.primary_path != transport)
453 changeover = 1 ;
455 asoc->peer.primary_path = transport;
457 /* Set a default msg_name for events. */
458 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
459 sizeof(union sctp_addr));
461 /* If the primary path is changing, assume that the
462 * user wants to use this new path.
464 if ((transport->state == SCTP_ACTIVE) ||
465 (transport->state == SCTP_UNKNOWN))
466 asoc->peer.active_path = transport;
469 * SFR-CACC algorithm:
470 * Upon the receipt of a request to change the primary
471 * destination address, on the data structure for the new
472 * primary destination, the sender MUST do the following:
474 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
475 * to this destination address earlier. The sender MUST set
476 * CYCLING_CHANGEOVER to indicate that this switch is a
477 * double switch to the same destination address.
479 * Really, only bother is we have data queued or outstanding on
480 * the association.
482 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
483 return;
485 if (transport->cacc.changeover_active)
486 transport->cacc.cycling_changeover = changeover;
488 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
489 * a changeover has occurred.
491 transport->cacc.changeover_active = changeover;
493 /* 3) The sender MUST store the next TSN to be sent in
494 * next_tsn_at_change.
496 transport->cacc.next_tsn_at_change = asoc->next_tsn;
499 /* Remove a transport from an association. */
500 void sctp_assoc_rm_peer(struct sctp_association *asoc,
501 struct sctp_transport *peer)
503 struct sctp_transport *transport;
504 struct list_head *pos;
505 struct sctp_chunk *ch;
507 pr_debug("%s: association:%p addr:%pISpc\n",
508 __func__, asoc, &peer->ipaddr.sa);
510 /* If we are to remove the current retran_path, update it
511 * to the next peer before removing this peer from the list.
513 if (asoc->peer.retran_path == peer)
514 sctp_assoc_update_retran_path(asoc);
516 /* Remove this peer from the list. */
517 list_del_rcu(&peer->transports);
518 /* Remove this peer from the transport hashtable */
519 sctp_unhash_transport(peer);
521 /* Get the first transport of asoc. */
522 pos = asoc->peer.transport_addr_list.next;
523 transport = list_entry(pos, struct sctp_transport, transports);
525 /* Update any entries that match the peer to be deleted. */
526 if (asoc->peer.primary_path == peer)
527 sctp_assoc_set_primary(asoc, transport);
528 if (asoc->peer.active_path == peer)
529 asoc->peer.active_path = transport;
530 if (asoc->peer.retran_path == peer)
531 asoc->peer.retran_path = transport;
532 if (asoc->peer.last_data_from == peer)
533 asoc->peer.last_data_from = transport;
535 if (asoc->strreset_chunk &&
536 asoc->strreset_chunk->transport == peer) {
537 asoc->strreset_chunk->transport = transport;
538 sctp_transport_reset_reconf_timer(transport);
541 /* If we remove the transport an INIT was last sent to, set it to
542 * NULL. Combined with the update of the retran path above, this
543 * will cause the next INIT to be sent to the next available
544 * transport, maintaining the cycle.
546 if (asoc->init_last_sent_to == peer)
547 asoc->init_last_sent_to = NULL;
549 /* If we remove the transport an SHUTDOWN was last sent to, set it
550 * to NULL. Combined with the update of the retran path above, this
551 * will cause the next SHUTDOWN to be sent to the next available
552 * transport, maintaining the cycle.
554 if (asoc->shutdown_last_sent_to == peer)
555 asoc->shutdown_last_sent_to = NULL;
557 /* If we remove the transport an ASCONF was last sent to, set it to
558 * NULL.
560 if (asoc->addip_last_asconf &&
561 asoc->addip_last_asconf->transport == peer)
562 asoc->addip_last_asconf->transport = NULL;
564 /* If we have something on the transmitted list, we have to
565 * save it off. The best place is the active path.
567 if (!list_empty(&peer->transmitted)) {
568 struct sctp_transport *active = asoc->peer.active_path;
570 /* Reset the transport of each chunk on this list */
571 list_for_each_entry(ch, &peer->transmitted,
572 transmitted_list) {
573 ch->transport = NULL;
574 ch->rtt_in_progress = 0;
577 list_splice_tail_init(&peer->transmitted,
578 &active->transmitted);
580 /* Start a T3 timer here in case it wasn't running so
581 * that these migrated packets have a chance to get
582 * retransmitted.
584 if (!timer_pending(&active->T3_rtx_timer))
585 if (!mod_timer(&active->T3_rtx_timer,
586 jiffies + active->rto))
587 sctp_transport_hold(active);
590 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
591 if (ch->transport == peer)
592 ch->transport = NULL;
594 asoc->peer.transport_count--;
596 sctp_transport_free(peer);
599 /* Add a transport address to an association. */
600 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
601 const union sctp_addr *addr,
602 const gfp_t gfp,
603 const int peer_state)
605 struct net *net = sock_net(asoc->base.sk);
606 struct sctp_transport *peer;
607 struct sctp_sock *sp;
608 unsigned short port;
610 sp = sctp_sk(asoc->base.sk);
612 /* AF_INET and AF_INET6 share common port field. */
613 port = ntohs(addr->v4.sin_port);
615 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
616 asoc, &addr->sa, peer_state);
618 /* Set the port if it has not been set yet. */
619 if (0 == asoc->peer.port)
620 asoc->peer.port = port;
622 /* Check to see if this is a duplicate. */
623 peer = sctp_assoc_lookup_paddr(asoc, addr);
624 if (peer) {
625 /* An UNKNOWN state is only set on transports added by
626 * user in sctp_connectx() call. Such transports should be
627 * considered CONFIRMED per RFC 4960, Section 5.4.
629 if (peer->state == SCTP_UNKNOWN) {
630 peer->state = SCTP_ACTIVE;
632 return peer;
635 peer = sctp_transport_new(net, addr, gfp);
636 if (!peer)
637 return NULL;
639 sctp_transport_set_owner(peer, asoc);
641 /* Initialize the peer's heartbeat interval based on the
642 * association configured value.
644 peer->hbinterval = asoc->hbinterval;
646 /* Set the path max_retrans. */
647 peer->pathmaxrxt = asoc->pathmaxrxt;
649 /* And the partial failure retrans threshold */
650 peer->pf_retrans = asoc->pf_retrans;
652 /* Initialize the peer's SACK delay timeout based on the
653 * association configured value.
655 peer->sackdelay = asoc->sackdelay;
656 peer->sackfreq = asoc->sackfreq;
658 if (addr->sa.sa_family == AF_INET6) {
659 __be32 info = addr->v6.sin6_flowinfo;
661 if (info) {
662 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
663 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
664 } else {
665 peer->flowlabel = asoc->flowlabel;
668 peer->dscp = asoc->dscp;
670 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
671 * based on association setting.
673 peer->param_flags = asoc->param_flags;
675 /* Initialize the pmtu of the transport. */
676 sctp_transport_route(peer, NULL, sp);
678 /* If this is the first transport addr on this association,
679 * initialize the association PMTU to the peer's PMTU.
680 * If not and the current association PMTU is higher than the new
681 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
683 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
684 min_t(int, peer->pathmtu, asoc->pathmtu) :
685 peer->pathmtu);
687 peer->pmtu_pending = 0;
689 /* The asoc->peer.port might not be meaningful yet, but
690 * initialize the packet structure anyway.
692 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
693 asoc->peer.port);
695 /* 7.2.1 Slow-Start
697 * o The initial cwnd before DATA transmission or after a sufficiently
698 * long idle period MUST be set to
699 * min(4*MTU, max(2*MTU, 4380 bytes))
701 * o The initial value of ssthresh MAY be arbitrarily high
702 * (for example, implementations MAY use the size of the
703 * receiver advertised window).
705 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
707 /* At this point, we may not have the receiver's advertised window,
708 * so initialize ssthresh to the default value and it will be set
709 * later when we process the INIT.
711 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
713 peer->partial_bytes_acked = 0;
714 peer->flight_size = 0;
715 peer->burst_limited = 0;
717 /* Set the transport's RTO.initial value */
718 peer->rto = asoc->rto_initial;
719 sctp_max_rto(asoc, peer);
721 /* Set the peer's active state. */
722 peer->state = peer_state;
724 /* Add this peer into the transport hashtable */
725 if (sctp_hash_transport(peer)) {
726 sctp_transport_free(peer);
727 return NULL;
730 /* Attach the remote transport to our asoc. */
731 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
732 asoc->peer.transport_count++;
734 /* If we do not yet have a primary path, set one. */
735 if (!asoc->peer.primary_path) {
736 sctp_assoc_set_primary(asoc, peer);
737 asoc->peer.retran_path = peer;
740 if (asoc->peer.active_path == asoc->peer.retran_path &&
741 peer->state != SCTP_UNCONFIRMED) {
742 asoc->peer.retran_path = peer;
745 return peer;
748 /* Delete a transport address from an association. */
749 void sctp_assoc_del_peer(struct sctp_association *asoc,
750 const union sctp_addr *addr)
752 struct list_head *pos;
753 struct list_head *temp;
754 struct sctp_transport *transport;
756 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
757 transport = list_entry(pos, struct sctp_transport, transports);
758 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
759 /* Do book keeping for removing the peer and free it. */
760 sctp_assoc_rm_peer(asoc, transport);
761 break;
766 /* Lookup a transport by address. */
767 struct sctp_transport *sctp_assoc_lookup_paddr(
768 const struct sctp_association *asoc,
769 const union sctp_addr *address)
771 struct sctp_transport *t;
773 /* Cycle through all transports searching for a peer address. */
775 list_for_each_entry(t, &asoc->peer.transport_addr_list,
776 transports) {
777 if (sctp_cmp_addr_exact(address, &t->ipaddr))
778 return t;
781 return NULL;
784 /* Remove all transports except a give one */
785 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
786 struct sctp_transport *primary)
788 struct sctp_transport *temp;
789 struct sctp_transport *t;
791 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
792 transports) {
793 /* if the current transport is not the primary one, delete it */
794 if (t != primary)
795 sctp_assoc_rm_peer(asoc, t);
799 /* Engage in transport control operations.
800 * Mark the transport up or down and send a notification to the user.
801 * Select and update the new active and retran paths.
803 void sctp_assoc_control_transport(struct sctp_association *asoc,
804 struct sctp_transport *transport,
805 enum sctp_transport_cmd command,
806 sctp_sn_error_t error)
808 struct sctp_ulpevent *event;
809 struct sockaddr_storage addr;
810 int spc_state = 0;
811 bool ulp_notify = true;
813 /* Record the transition on the transport. */
814 switch (command) {
815 case SCTP_TRANSPORT_UP:
816 /* If we are moving from UNCONFIRMED state due
817 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
818 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
820 if (SCTP_UNCONFIRMED == transport->state &&
821 SCTP_HEARTBEAT_SUCCESS == error)
822 spc_state = SCTP_ADDR_CONFIRMED;
823 else
824 spc_state = SCTP_ADDR_AVAILABLE;
825 /* Don't inform ULP about transition from PF to
826 * active state and set cwnd to 1 MTU, see SCTP
827 * Quick failover draft section 5.1, point 5
829 if (transport->state == SCTP_PF) {
830 ulp_notify = false;
831 transport->cwnd = asoc->pathmtu;
833 transport->state = SCTP_ACTIVE;
834 break;
836 case SCTP_TRANSPORT_DOWN:
837 /* If the transport was never confirmed, do not transition it
838 * to inactive state. Also, release the cached route since
839 * there may be a better route next time.
841 if (transport->state != SCTP_UNCONFIRMED)
842 transport->state = SCTP_INACTIVE;
843 else {
844 sctp_transport_dst_release(transport);
845 ulp_notify = false;
848 spc_state = SCTP_ADDR_UNREACHABLE;
849 break;
851 case SCTP_TRANSPORT_PF:
852 transport->state = SCTP_PF;
853 ulp_notify = false;
854 break;
856 default:
857 return;
860 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
861 * to the user.
863 if (ulp_notify) {
864 memset(&addr, 0, sizeof(struct sockaddr_storage));
865 memcpy(&addr, &transport->ipaddr,
866 transport->af_specific->sockaddr_len);
868 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
869 0, spc_state, error, GFP_ATOMIC);
870 if (event)
871 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
874 /* Select new active and retran paths. */
875 sctp_select_active_and_retran_path(asoc);
878 /* Hold a reference to an association. */
879 void sctp_association_hold(struct sctp_association *asoc)
881 refcount_inc(&asoc->base.refcnt);
884 /* Release a reference to an association and cleanup
885 * if there are no more references.
887 void sctp_association_put(struct sctp_association *asoc)
889 if (refcount_dec_and_test(&asoc->base.refcnt))
890 sctp_association_destroy(asoc);
893 /* Allocate the next TSN, Transmission Sequence Number, for the given
894 * association.
896 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
898 /* From Section 1.6 Serial Number Arithmetic:
899 * Transmission Sequence Numbers wrap around when they reach
900 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
901 * after transmitting TSN = 2*32 - 1 is TSN = 0.
903 __u32 retval = asoc->next_tsn;
904 asoc->next_tsn++;
905 asoc->unack_data++;
907 return retval;
910 /* Compare two addresses to see if they match. Wildcard addresses
911 * only match themselves.
913 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
914 const union sctp_addr *ss2)
916 struct sctp_af *af;
918 af = sctp_get_af_specific(ss1->sa.sa_family);
919 if (unlikely(!af))
920 return 0;
922 return af->cmp_addr(ss1, ss2);
925 /* Return an ecne chunk to get prepended to a packet.
926 * Note: We are sly and return a shared, prealloced chunk. FIXME:
927 * No we don't, but we could/should.
929 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
931 if (!asoc->need_ecne)
932 return NULL;
934 /* Send ECNE if needed.
935 * Not being able to allocate a chunk here is not deadly.
937 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
941 * Find which transport this TSN was sent on.
943 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
944 __u32 tsn)
946 struct sctp_transport *active;
947 struct sctp_transport *match;
948 struct sctp_transport *transport;
949 struct sctp_chunk *chunk;
950 __be32 key = htonl(tsn);
952 match = NULL;
955 * FIXME: In general, find a more efficient data structure for
956 * searching.
960 * The general strategy is to search each transport's transmitted
961 * list. Return which transport this TSN lives on.
963 * Let's be hopeful and check the active_path first.
964 * Another optimization would be to know if there is only one
965 * outbound path and not have to look for the TSN at all.
969 active = asoc->peer.active_path;
971 list_for_each_entry(chunk, &active->transmitted,
972 transmitted_list) {
974 if (key == chunk->subh.data_hdr->tsn) {
975 match = active;
976 goto out;
980 /* If not found, go search all the other transports. */
981 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
982 transports) {
984 if (transport == active)
985 continue;
986 list_for_each_entry(chunk, &transport->transmitted,
987 transmitted_list) {
988 if (key == chunk->subh.data_hdr->tsn) {
989 match = transport;
990 goto out;
994 out:
995 return match;
998 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
999 static void sctp_assoc_bh_rcv(struct work_struct *work)
1001 struct sctp_association *asoc =
1002 container_of(work, struct sctp_association,
1003 base.inqueue.immediate);
1004 struct net *net = sock_net(asoc->base.sk);
1005 union sctp_subtype subtype;
1006 struct sctp_endpoint *ep;
1007 struct sctp_chunk *chunk;
1008 struct sctp_inq *inqueue;
1009 int first_time = 1; /* is this the first time through the loop */
1010 int error = 0;
1011 int state;
1013 /* The association should be held so we should be safe. */
1014 ep = asoc->ep;
1016 inqueue = &asoc->base.inqueue;
1017 sctp_association_hold(asoc);
1018 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1019 state = asoc->state;
1020 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1022 /* If the first chunk in the packet is AUTH, do special
1023 * processing specified in Section 6.3 of SCTP-AUTH spec
1025 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1026 struct sctp_chunkhdr *next_hdr;
1028 next_hdr = sctp_inq_peek(inqueue);
1029 if (!next_hdr)
1030 goto normal;
1032 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1033 * chunk while saving a pointer to it so we can do
1034 * Authentication later (during cookie-echo
1035 * processing).
1037 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1038 chunk->auth_chunk = skb_clone(chunk->skb,
1039 GFP_ATOMIC);
1040 chunk->auth = 1;
1041 continue;
1045 normal:
1046 /* SCTP-AUTH, Section 6.3:
1047 * The receiver has a list of chunk types which it expects
1048 * to be received only after an AUTH-chunk. This list has
1049 * been sent to the peer during the association setup. It
1050 * MUST silently discard these chunks if they are not placed
1051 * after an AUTH chunk in the packet.
1053 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1054 continue;
1056 /* Remember where the last DATA chunk came from so we
1057 * know where to send the SACK.
1059 if (sctp_chunk_is_data(chunk))
1060 asoc->peer.last_data_from = chunk->transport;
1061 else {
1062 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1063 asoc->stats.ictrlchunks++;
1064 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1065 asoc->stats.isacks++;
1068 if (chunk->transport)
1069 chunk->transport->last_time_heard = ktime_get();
1071 /* Run through the state machine. */
1072 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1073 state, ep, asoc, chunk, GFP_ATOMIC);
1075 /* Check to see if the association is freed in response to
1076 * the incoming chunk. If so, get out of the while loop.
1078 if (asoc->base.dead)
1079 break;
1081 /* If there is an error on chunk, discard this packet. */
1082 if (error && chunk)
1083 chunk->pdiscard = 1;
1085 if (first_time)
1086 first_time = 0;
1088 sctp_association_put(asoc);
1091 /* This routine moves an association from its old sk to a new sk. */
1092 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1094 struct sctp_sock *newsp = sctp_sk(newsk);
1095 struct sock *oldsk = assoc->base.sk;
1097 /* Delete the association from the old endpoint's list of
1098 * associations.
1100 list_del_init(&assoc->asocs);
1102 /* Decrement the backlog value for a TCP-style socket. */
1103 if (sctp_style(oldsk, TCP))
1104 oldsk->sk_ack_backlog--;
1106 /* Release references to the old endpoint and the sock. */
1107 sctp_endpoint_put(assoc->ep);
1108 sock_put(assoc->base.sk);
1110 /* Get a reference to the new endpoint. */
1111 assoc->ep = newsp->ep;
1112 sctp_endpoint_hold(assoc->ep);
1114 /* Get a reference to the new sock. */
1115 assoc->base.sk = newsk;
1116 sock_hold(assoc->base.sk);
1118 /* Add the association to the new endpoint's list of associations. */
1119 sctp_endpoint_add_asoc(newsp->ep, assoc);
1122 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1123 int sctp_assoc_update(struct sctp_association *asoc,
1124 struct sctp_association *new)
1126 struct sctp_transport *trans;
1127 struct list_head *pos, *temp;
1129 /* Copy in new parameters of peer. */
1130 asoc->c = new->c;
1131 asoc->peer.rwnd = new->peer.rwnd;
1132 asoc->peer.sack_needed = new->peer.sack_needed;
1133 asoc->peer.auth_capable = new->peer.auth_capable;
1134 asoc->peer.i = new->peer.i;
1136 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1137 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1138 return -ENOMEM;
1140 /* Remove any peer addresses not present in the new association. */
1141 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1142 trans = list_entry(pos, struct sctp_transport, transports);
1143 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1144 sctp_assoc_rm_peer(asoc, trans);
1145 continue;
1148 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1149 sctp_transport_reset(trans);
1152 /* If the case is A (association restart), use
1153 * initial_tsn as next_tsn. If the case is B, use
1154 * current next_tsn in case data sent to peer
1155 * has been discarded and needs retransmission.
1157 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1158 asoc->next_tsn = new->next_tsn;
1159 asoc->ctsn_ack_point = new->ctsn_ack_point;
1160 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1162 /* Reinitialize SSN for both local streams
1163 * and peer's streams.
1165 sctp_stream_clear(&asoc->stream);
1167 /* Flush the ULP reassembly and ordered queue.
1168 * Any data there will now be stale and will
1169 * cause problems.
1171 sctp_ulpq_flush(&asoc->ulpq);
1173 /* reset the overall association error count so
1174 * that the restarted association doesn't get torn
1175 * down on the next retransmission timer.
1177 asoc->overall_error_count = 0;
1179 } else {
1180 /* Add any peer addresses from the new association. */
1181 list_for_each_entry(trans, &new->peer.transport_addr_list,
1182 transports)
1183 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1184 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1185 GFP_ATOMIC, trans->state))
1186 return -ENOMEM;
1188 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1189 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1191 if (sctp_state(asoc, COOKIE_WAIT))
1192 sctp_stream_update(&asoc->stream, &new->stream);
1194 /* get a new assoc id if we don't have one yet. */
1195 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1196 return -ENOMEM;
1199 /* SCTP-AUTH: Save the peer parameters from the new associations
1200 * and also move the association shared keys over
1202 kfree(asoc->peer.peer_random);
1203 asoc->peer.peer_random = new->peer.peer_random;
1204 new->peer.peer_random = NULL;
1206 kfree(asoc->peer.peer_chunks);
1207 asoc->peer.peer_chunks = new->peer.peer_chunks;
1208 new->peer.peer_chunks = NULL;
1210 kfree(asoc->peer.peer_hmacs);
1211 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1212 new->peer.peer_hmacs = NULL;
1214 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1217 /* Update the retran path for sending a retransmitted packet.
1218 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1220 * When there is outbound data to send and the primary path
1221 * becomes inactive (e.g., due to failures), or where the
1222 * SCTP user explicitly requests to send data to an
1223 * inactive destination transport address, before reporting
1224 * an error to its ULP, the SCTP endpoint should try to send
1225 * the data to an alternate active destination transport
1226 * address if one exists.
1228 * When retransmitting data that timed out, if the endpoint
1229 * is multihomed, it should consider each source-destination
1230 * address pair in its retransmission selection policy.
1231 * When retransmitting timed-out data, the endpoint should
1232 * attempt to pick the most divergent source-destination
1233 * pair from the original source-destination pair to which
1234 * the packet was transmitted.
1236 * Note: Rules for picking the most divergent source-destination
1237 * pair are an implementation decision and are not specified
1238 * within this document.
1240 * Our basic strategy is to round-robin transports in priorities
1241 * according to sctp_trans_score() e.g., if no such
1242 * transport with state SCTP_ACTIVE exists, round-robin through
1243 * SCTP_UNKNOWN, etc. You get the picture.
1245 static u8 sctp_trans_score(const struct sctp_transport *trans)
1247 switch (trans->state) {
1248 case SCTP_ACTIVE:
1249 return 3; /* best case */
1250 case SCTP_UNKNOWN:
1251 return 2;
1252 case SCTP_PF:
1253 return 1;
1254 default: /* case SCTP_INACTIVE */
1255 return 0; /* worst case */
1259 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1260 struct sctp_transport *trans2)
1262 if (trans1->error_count > trans2->error_count) {
1263 return trans2;
1264 } else if (trans1->error_count == trans2->error_count &&
1265 ktime_after(trans2->last_time_heard,
1266 trans1->last_time_heard)) {
1267 return trans2;
1268 } else {
1269 return trans1;
1273 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1274 struct sctp_transport *best)
1276 u8 score_curr, score_best;
1278 if (best == NULL || curr == best)
1279 return curr;
1281 score_curr = sctp_trans_score(curr);
1282 score_best = sctp_trans_score(best);
1284 /* First, try a score-based selection if both transport states
1285 * differ. If we're in a tie, lets try to make a more clever
1286 * decision here based on error counts and last time heard.
1288 if (score_curr > score_best)
1289 return curr;
1290 else if (score_curr == score_best)
1291 return sctp_trans_elect_tie(best, curr);
1292 else
1293 return best;
1296 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1298 struct sctp_transport *trans = asoc->peer.retran_path;
1299 struct sctp_transport *trans_next = NULL;
1301 /* We're done as we only have the one and only path. */
1302 if (asoc->peer.transport_count == 1)
1303 return;
1304 /* If active_path and retran_path are the same and active,
1305 * then this is the only active path. Use it.
1307 if (asoc->peer.active_path == asoc->peer.retran_path &&
1308 asoc->peer.active_path->state == SCTP_ACTIVE)
1309 return;
1311 /* Iterate from retran_path's successor back to retran_path. */
1312 for (trans = list_next_entry(trans, transports); 1;
1313 trans = list_next_entry(trans, transports)) {
1314 /* Manually skip the head element. */
1315 if (&trans->transports == &asoc->peer.transport_addr_list)
1316 continue;
1317 if (trans->state == SCTP_UNCONFIRMED)
1318 continue;
1319 trans_next = sctp_trans_elect_best(trans, trans_next);
1320 /* Active is good enough for immediate return. */
1321 if (trans_next->state == SCTP_ACTIVE)
1322 break;
1323 /* We've reached the end, time to update path. */
1324 if (trans == asoc->peer.retran_path)
1325 break;
1328 asoc->peer.retran_path = trans_next;
1330 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1331 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1334 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1336 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1337 struct sctp_transport *trans_pf = NULL;
1339 /* Look for the two most recently used active transports. */
1340 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1341 transports) {
1342 /* Skip uninteresting transports. */
1343 if (trans->state == SCTP_INACTIVE ||
1344 trans->state == SCTP_UNCONFIRMED)
1345 continue;
1346 /* Keep track of the best PF transport from our
1347 * list in case we don't find an active one.
1349 if (trans->state == SCTP_PF) {
1350 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1351 continue;
1353 /* For active transports, pick the most recent ones. */
1354 if (trans_pri == NULL ||
1355 ktime_after(trans->last_time_heard,
1356 trans_pri->last_time_heard)) {
1357 trans_sec = trans_pri;
1358 trans_pri = trans;
1359 } else if (trans_sec == NULL ||
1360 ktime_after(trans->last_time_heard,
1361 trans_sec->last_time_heard)) {
1362 trans_sec = trans;
1366 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1368 * By default, an endpoint should always transmit to the primary
1369 * path, unless the SCTP user explicitly specifies the
1370 * destination transport address (and possibly source transport
1371 * address) to use. [If the primary is active but not most recent,
1372 * bump the most recently used transport.]
1374 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1375 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1376 asoc->peer.primary_path != trans_pri) {
1377 trans_sec = trans_pri;
1378 trans_pri = asoc->peer.primary_path;
1381 /* We did not find anything useful for a possible retransmission
1382 * path; either primary path that we found is the the same as
1383 * the current one, or we didn't generally find an active one.
1385 if (trans_sec == NULL)
1386 trans_sec = trans_pri;
1388 /* If we failed to find a usable transport, just camp on the
1389 * active or pick a PF iff it's the better choice.
1391 if (trans_pri == NULL) {
1392 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1393 trans_sec = trans_pri;
1396 /* Set the active and retran transports. */
1397 asoc->peer.active_path = trans_pri;
1398 asoc->peer.retran_path = trans_sec;
1401 struct sctp_transport *
1402 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1403 struct sctp_transport *last_sent_to)
1405 /* If this is the first time packet is sent, use the active path,
1406 * else use the retran path. If the last packet was sent over the
1407 * retran path, update the retran path and use it.
1409 if (last_sent_to == NULL) {
1410 return asoc->peer.active_path;
1411 } else {
1412 if (last_sent_to == asoc->peer.retran_path)
1413 sctp_assoc_update_retran_path(asoc);
1415 return asoc->peer.retran_path;
1419 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1421 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1422 sctp_datachk_len(&asoc->stream));
1424 if (asoc->user_frag)
1425 frag = min_t(int, frag, asoc->user_frag);
1427 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1428 sctp_datachk_len(&asoc->stream));
1430 asoc->frag_point = SCTP_TRUNC4(frag);
1433 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1435 if (asoc->pathmtu != pmtu) {
1436 asoc->pathmtu = pmtu;
1437 sctp_assoc_update_frag_point(asoc);
1440 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1441 asoc->pathmtu, asoc->frag_point);
1444 /* Update the association's pmtu and frag_point by going through all the
1445 * transports. This routine is called when a transport's PMTU has changed.
1447 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1449 struct sctp_transport *t;
1450 __u32 pmtu = 0;
1452 if (!asoc)
1453 return;
1455 /* Get the lowest pmtu of all the transports. */
1456 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1457 if (t->pmtu_pending && t->dst) {
1458 sctp_transport_update_pmtu(t,
1459 atomic_read(&t->mtu_info));
1460 t->pmtu_pending = 0;
1462 if (!pmtu || (t->pathmtu < pmtu))
1463 pmtu = t->pathmtu;
1466 sctp_assoc_set_pmtu(asoc, pmtu);
1469 /* Should we send a SACK to update our peer? */
1470 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1472 struct net *net = sock_net(asoc->base.sk);
1473 switch (asoc->state) {
1474 case SCTP_STATE_ESTABLISHED:
1475 case SCTP_STATE_SHUTDOWN_PENDING:
1476 case SCTP_STATE_SHUTDOWN_RECEIVED:
1477 case SCTP_STATE_SHUTDOWN_SENT:
1478 if ((asoc->rwnd > asoc->a_rwnd) &&
1479 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1480 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1481 asoc->pathmtu)))
1482 return true;
1483 break;
1484 default:
1485 break;
1487 return false;
1490 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1491 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1493 struct sctp_chunk *sack;
1494 struct timer_list *timer;
1496 if (asoc->rwnd_over) {
1497 if (asoc->rwnd_over >= len) {
1498 asoc->rwnd_over -= len;
1499 } else {
1500 asoc->rwnd += (len - asoc->rwnd_over);
1501 asoc->rwnd_over = 0;
1503 } else {
1504 asoc->rwnd += len;
1507 /* If we had window pressure, start recovering it
1508 * once our rwnd had reached the accumulated pressure
1509 * threshold. The idea is to recover slowly, but up
1510 * to the initial advertised window.
1512 if (asoc->rwnd_press) {
1513 int change = min(asoc->pathmtu, asoc->rwnd_press);
1514 asoc->rwnd += change;
1515 asoc->rwnd_press -= change;
1518 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1519 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1520 asoc->a_rwnd);
1522 /* Send a window update SACK if the rwnd has increased by at least the
1523 * minimum of the association's PMTU and half of the receive buffer.
1524 * The algorithm used is similar to the one described in
1525 * Section 4.2.3.3 of RFC 1122.
1527 if (sctp_peer_needs_update(asoc)) {
1528 asoc->a_rwnd = asoc->rwnd;
1530 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1531 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1532 asoc->a_rwnd);
1534 sack = sctp_make_sack(asoc);
1535 if (!sack)
1536 return;
1538 asoc->peer.sack_needed = 0;
1540 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1542 /* Stop the SACK timer. */
1543 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1544 if (del_timer(timer))
1545 sctp_association_put(asoc);
1549 /* Decrease asoc's rwnd by len. */
1550 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1552 int rx_count;
1553 int over = 0;
1555 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1556 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1557 "asoc->rwnd_over:%u!\n", __func__, asoc,
1558 asoc->rwnd, asoc->rwnd_over);
1560 if (asoc->ep->rcvbuf_policy)
1561 rx_count = atomic_read(&asoc->rmem_alloc);
1562 else
1563 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1565 /* If we've reached or overflowed our receive buffer, announce
1566 * a 0 rwnd if rwnd would still be positive. Store the
1567 * the potential pressure overflow so that the window can be restored
1568 * back to original value.
1570 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1571 over = 1;
1573 if (asoc->rwnd >= len) {
1574 asoc->rwnd -= len;
1575 if (over) {
1576 asoc->rwnd_press += asoc->rwnd;
1577 asoc->rwnd = 0;
1579 } else {
1580 asoc->rwnd_over += len - asoc->rwnd;
1581 asoc->rwnd = 0;
1584 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1585 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1586 asoc->rwnd_press);
1589 /* Build the bind address list for the association based on info from the
1590 * local endpoint and the remote peer.
1592 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1593 enum sctp_scope scope, gfp_t gfp)
1595 int flags;
1597 /* Use scoping rules to determine the subset of addresses from
1598 * the endpoint.
1600 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1601 if (asoc->peer.ipv4_address)
1602 flags |= SCTP_ADDR4_PEERSUPP;
1603 if (asoc->peer.ipv6_address)
1604 flags |= SCTP_ADDR6_PEERSUPP;
1606 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1607 &asoc->base.bind_addr,
1608 &asoc->ep->base.bind_addr,
1609 scope, gfp, flags);
1612 /* Build the association's bind address list from the cookie. */
1613 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1614 struct sctp_cookie *cookie,
1615 gfp_t gfp)
1617 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1618 int var_size3 = cookie->raw_addr_list_len;
1619 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1621 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1622 asoc->ep->base.bind_addr.port, gfp);
1625 /* Lookup laddr in the bind address list of an association. */
1626 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1627 const union sctp_addr *laddr)
1629 int found = 0;
1631 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1632 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1633 sctp_sk(asoc->base.sk)))
1634 found = 1;
1636 return found;
1639 /* Set an association id for a given association */
1640 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1642 bool preload = gfpflags_allow_blocking(gfp);
1643 int ret;
1645 /* If the id is already assigned, keep it. */
1646 if (asoc->assoc_id)
1647 return 0;
1649 if (preload)
1650 idr_preload(gfp);
1651 spin_lock_bh(&sctp_assocs_id_lock);
1652 /* 0 is not a valid assoc_id, must be >= 1 */
1653 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1654 spin_unlock_bh(&sctp_assocs_id_lock);
1655 if (preload)
1656 idr_preload_end();
1657 if (ret < 0)
1658 return ret;
1660 asoc->assoc_id = (sctp_assoc_t)ret;
1661 return 0;
1664 /* Free the ASCONF queue */
1665 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1667 struct sctp_chunk *asconf;
1668 struct sctp_chunk *tmp;
1670 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1671 list_del_init(&asconf->list);
1672 sctp_chunk_free(asconf);
1676 /* Free asconf_ack cache */
1677 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1679 struct sctp_chunk *ack;
1680 struct sctp_chunk *tmp;
1682 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1683 transmitted_list) {
1684 list_del_init(&ack->transmitted_list);
1685 sctp_chunk_free(ack);
1689 /* Clean up the ASCONF_ACK queue */
1690 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1692 struct sctp_chunk *ack;
1693 struct sctp_chunk *tmp;
1695 /* We can remove all the entries from the queue up to
1696 * the "Peer-Sequence-Number".
1698 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1699 transmitted_list) {
1700 if (ack->subh.addip_hdr->serial ==
1701 htonl(asoc->peer.addip_serial))
1702 break;
1704 list_del_init(&ack->transmitted_list);
1705 sctp_chunk_free(ack);
1709 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1710 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1711 const struct sctp_association *asoc,
1712 __be32 serial)
1714 struct sctp_chunk *ack;
1716 /* Walk through the list of cached ASCONF-ACKs and find the
1717 * ack chunk whose serial number matches that of the request.
1719 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1720 if (sctp_chunk_pending(ack))
1721 continue;
1722 if (ack->subh.addip_hdr->serial == serial) {
1723 sctp_chunk_hold(ack);
1724 return ack;
1728 return NULL;
1731 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1733 /* Free any cached ASCONF_ACK chunk. */
1734 sctp_assoc_free_asconf_acks(asoc);
1736 /* Free the ASCONF queue. */
1737 sctp_assoc_free_asconf_queue(asoc);
1739 /* Free any cached ASCONF chunk. */
1740 if (asoc->addip_last_asconf)
1741 sctp_chunk_free(asoc->addip_last_asconf);