1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
57 static void sctp_check_transmitted(struct sctp_outq
*q
,
58 struct list_head
*transmitted_queue
,
59 struct sctp_transport
*transport
,
60 union sctp_addr
*saddr
,
61 struct sctp_sackhdr
*sack
,
62 __u32
*highest_new_tsn
);
64 static void sctp_mark_missing(struct sctp_outq
*q
,
65 struct list_head
*transmitted_queue
,
66 struct sctp_transport
*transport
,
67 __u32 highest_new_tsn
,
68 int count_of_newacks
);
70 static void sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
);
72 /* Add data to the front of the queue. */
73 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
74 struct sctp_chunk
*ch
)
76 struct sctp_stream_out_ext
*oute
;
79 list_add(&ch
->list
, &q
->out_chunk_list
);
80 q
->out_qlen
+= ch
->skb
->len
;
82 stream
= sctp_chunk_stream_no(ch
);
83 oute
= SCTP_SO(&q
->asoc
->stream
, stream
)->ext
;
84 list_add(&ch
->stream_list
, &oute
->outq
);
87 /* Take data from the front of the queue. */
88 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
90 return q
->sched
->dequeue(q
);
93 /* Add data chunk to the end of the queue. */
94 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
95 struct sctp_chunk
*ch
)
97 struct sctp_stream_out_ext
*oute
;
100 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
101 q
->out_qlen
+= ch
->skb
->len
;
103 stream
= sctp_chunk_stream_no(ch
);
104 oute
= SCTP_SO(&q
->asoc
->stream
, stream
)->ext
;
105 list_add_tail(&ch
->stream_list
, &oute
->outq
);
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
115 struct sctp_transport
*transport
,
116 int count_of_newacks
)
118 if (count_of_newacks
>= 2 && transport
!= primary
)
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
131 int count_of_newacks
)
133 if (count_of_newacks
< 2 &&
134 (transport
&& !transport
->cacc
.cacc_saw_newack
))
140 * SFR-CACC algorithm:
141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142 * execute steps C, D, F.
144 * C has been implemented in sctp_outq_sack
146 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
147 struct sctp_transport
*transport
,
148 int count_of_newacks
)
150 if (!primary
->cacc
.cycling_changeover
) {
151 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
153 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
161 * SFR-CACC algorithm:
162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163 * than next_tsn_at_change of the current primary, then
164 * the sender MUST NOT increment missing report count
167 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
169 if (primary
->cacc
.cycling_changeover
&&
170 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
176 * SFR-CACC algorithm:
177 * 3) If the missing report count for TSN t is to be
178 * incremented according to [RFC2960] and
179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180 * then the sender MUST further execute steps 3.1 and
181 * 3.2 to determine if the missing report count for
182 * TSN t SHOULD NOT be incremented.
184 * 3.3) If 3.1 and 3.2 do not dictate that the missing
185 * report count for t should not be incremented, then
186 * the sender SHOULD increment missing report count for
187 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
189 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
190 struct sctp_transport
*transport
,
191 int count_of_newacks
,
194 if (primary
->cacc
.changeover_active
&&
195 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
) ||
196 sctp_cacc_skip_3_2(primary
, tsn
)))
201 /* Initialize an existing sctp_outq. This does the boring stuff.
202 * You still need to define handlers if you really want to DO
203 * something with this structure...
205 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
207 memset(q
, 0, sizeof(struct sctp_outq
));
210 INIT_LIST_HEAD(&q
->out_chunk_list
);
211 INIT_LIST_HEAD(&q
->control_chunk_list
);
212 INIT_LIST_HEAD(&q
->retransmit
);
213 INIT_LIST_HEAD(&q
->sacked
);
214 INIT_LIST_HEAD(&q
->abandoned
);
215 sctp_sched_set_sched(asoc
, SCTP_SS_DEFAULT
);
218 /* Free the outqueue structure and any related pending chunks.
220 static void __sctp_outq_teardown(struct sctp_outq
*q
)
222 struct sctp_transport
*transport
;
223 struct list_head
*lchunk
, *temp
;
224 struct sctp_chunk
*chunk
, *tmp
;
226 /* Throw away unacknowledged chunks. */
227 list_for_each_entry(transport
, &q
->asoc
->peer
.transport_addr_list
,
229 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
230 chunk
= list_entry(lchunk
, struct sctp_chunk
,
232 /* Mark as part of a failed message. */
233 sctp_chunk_fail(chunk
, q
->error
);
234 sctp_chunk_free(chunk
);
238 /* Throw away chunks that have been gap ACKed. */
239 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
240 list_del_init(lchunk
);
241 chunk
= list_entry(lchunk
, struct sctp_chunk
,
243 sctp_chunk_fail(chunk
, q
->error
);
244 sctp_chunk_free(chunk
);
247 /* Throw away any chunks in the retransmit queue. */
248 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
249 list_del_init(lchunk
);
250 chunk
= list_entry(lchunk
, struct sctp_chunk
,
252 sctp_chunk_fail(chunk
, q
->error
);
253 sctp_chunk_free(chunk
);
256 /* Throw away any chunks that are in the abandoned queue. */
257 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
258 list_del_init(lchunk
);
259 chunk
= list_entry(lchunk
, struct sctp_chunk
,
261 sctp_chunk_fail(chunk
, q
->error
);
262 sctp_chunk_free(chunk
);
265 /* Throw away any leftover data chunks. */
266 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
267 sctp_sched_dequeue_done(q
, chunk
);
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk
, q
->error
);
271 sctp_chunk_free(chunk
);
274 /* Throw away any leftover control chunks. */
275 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
276 list_del_init(&chunk
->list
);
277 sctp_chunk_free(chunk
);
281 void sctp_outq_teardown(struct sctp_outq
*q
)
283 __sctp_outq_teardown(q
);
284 sctp_outq_init(q
->asoc
, q
);
287 /* Free the outqueue structure and any related pending chunks. */
288 void sctp_outq_free(struct sctp_outq
*q
)
290 /* Throw away leftover chunks. */
291 __sctp_outq_teardown(q
);
294 /* Put a new chunk in an sctp_outq. */
295 void sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
, gfp_t gfp
)
297 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
299 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__
, q
, chunk
,
300 chunk
&& chunk
->chunk_hdr
?
301 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
304 /* If it is data, queue it up, otherwise, send it
307 if (sctp_chunk_is_data(chunk
)) {
308 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
309 __func__
, q
, chunk
, chunk
&& chunk
->chunk_hdr
?
310 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
313 sctp_outq_tail_data(q
, chunk
);
314 if (chunk
->asoc
->peer
.prsctp_capable
&&
315 SCTP_PR_PRIO_ENABLED(chunk
->sinfo
.sinfo_flags
))
316 chunk
->asoc
->sent_cnt_removable
++;
317 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
318 SCTP_INC_STATS(net
, SCTP_MIB_OUTUNORDERCHUNKS
);
320 SCTP_INC_STATS(net
, SCTP_MIB_OUTORDERCHUNKS
);
322 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
323 SCTP_INC_STATS(net
, SCTP_MIB_OUTCTRLCHUNKS
);
327 sctp_outq_flush(q
, 0, gfp
);
330 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
331 * and the abandoned list are in ascending order.
333 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
335 struct list_head
*pos
;
336 struct sctp_chunk
*nchunk
, *lchunk
;
340 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
341 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
343 list_for_each(pos
, head
) {
344 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
345 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
346 if (TSN_lt(ntsn
, ltsn
)) {
347 list_add(new, pos
->prev
);
353 list_add_tail(new, head
);
356 static int sctp_prsctp_prune_sent(struct sctp_association
*asoc
,
357 struct sctp_sndrcvinfo
*sinfo
,
358 struct list_head
*queue
, int msg_len
)
360 struct sctp_chunk
*chk
, *temp
;
362 list_for_each_entry_safe(chk
, temp
, queue
, transmitted_list
) {
363 struct sctp_stream_out
*streamout
;
365 if (!chk
->msg
->abandoned
&&
366 (!SCTP_PR_PRIO_ENABLED(chk
->sinfo
.sinfo_flags
) ||
367 chk
->sinfo
.sinfo_timetolive
<= sinfo
->sinfo_timetolive
))
370 chk
->msg
->abandoned
= 1;
371 list_del_init(&chk
->transmitted_list
);
372 sctp_insert_list(&asoc
->outqueue
.abandoned
,
373 &chk
->transmitted_list
);
375 streamout
= SCTP_SO(&asoc
->stream
, chk
->sinfo
.sinfo_stream
);
376 asoc
->sent_cnt_removable
--;
377 asoc
->abandoned_sent
[SCTP_PR_INDEX(PRIO
)]++;
378 streamout
->ext
->abandoned_sent
[SCTP_PR_INDEX(PRIO
)]++;
380 if (queue
!= &asoc
->outqueue
.retransmit
&&
381 !chk
->tsn_gap_acked
) {
383 chk
->transport
->flight_size
-=
385 asoc
->outqueue
.outstanding_bytes
-= sctp_data_size(chk
);
388 msg_len
-= chk
->skb
->truesize
+ sizeof(struct sctp_chunk
);
396 static int sctp_prsctp_prune_unsent(struct sctp_association
*asoc
,
397 struct sctp_sndrcvinfo
*sinfo
, int msg_len
)
399 struct sctp_outq
*q
= &asoc
->outqueue
;
400 struct sctp_chunk
*chk
, *temp
;
402 q
->sched
->unsched_all(&asoc
->stream
);
404 list_for_each_entry_safe(chk
, temp
, &q
->out_chunk_list
, list
) {
405 if (!chk
->msg
->abandoned
&&
406 (!(chk
->chunk_hdr
->flags
& SCTP_DATA_FIRST_FRAG
) ||
407 !SCTP_PR_PRIO_ENABLED(chk
->sinfo
.sinfo_flags
) ||
408 chk
->sinfo
.sinfo_timetolive
<= sinfo
->sinfo_timetolive
))
411 chk
->msg
->abandoned
= 1;
412 sctp_sched_dequeue_common(q
, chk
);
413 asoc
->sent_cnt_removable
--;
414 asoc
->abandoned_unsent
[SCTP_PR_INDEX(PRIO
)]++;
415 if (chk
->sinfo
.sinfo_stream
< asoc
->stream
.outcnt
) {
416 struct sctp_stream_out
*streamout
=
417 SCTP_SO(&asoc
->stream
, chk
->sinfo
.sinfo_stream
);
419 streamout
->ext
->abandoned_unsent
[SCTP_PR_INDEX(PRIO
)]++;
422 msg_len
-= chk
->skb
->truesize
+ sizeof(struct sctp_chunk
);
423 sctp_chunk_free(chk
);
428 q
->sched
->sched_all(&asoc
->stream
);
433 /* Abandon the chunks according their priorities */
434 void sctp_prsctp_prune(struct sctp_association
*asoc
,
435 struct sctp_sndrcvinfo
*sinfo
, int msg_len
)
437 struct sctp_transport
*transport
;
439 if (!asoc
->peer
.prsctp_capable
|| !asoc
->sent_cnt_removable
)
442 msg_len
= sctp_prsctp_prune_sent(asoc
, sinfo
,
443 &asoc
->outqueue
.retransmit
,
448 list_for_each_entry(transport
, &asoc
->peer
.transport_addr_list
,
450 msg_len
= sctp_prsctp_prune_sent(asoc
, sinfo
,
451 &transport
->transmitted
,
457 sctp_prsctp_prune_unsent(asoc
, sinfo
, msg_len
);
460 /* Mark all the eligible packets on a transport for retransmission. */
461 void sctp_retransmit_mark(struct sctp_outq
*q
,
462 struct sctp_transport
*transport
,
465 struct list_head
*lchunk
, *ltemp
;
466 struct sctp_chunk
*chunk
;
468 /* Walk through the specified transmitted queue. */
469 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
470 chunk
= list_entry(lchunk
, struct sctp_chunk
,
473 /* If the chunk is abandoned, move it to abandoned list. */
474 if (sctp_chunk_abandoned(chunk
)) {
475 list_del_init(lchunk
);
476 sctp_insert_list(&q
->abandoned
, lchunk
);
478 /* If this chunk has not been previousely acked,
479 * stop considering it 'outstanding'. Our peer
480 * will most likely never see it since it will
481 * not be retransmitted
483 if (!chunk
->tsn_gap_acked
) {
484 if (chunk
->transport
)
485 chunk
->transport
->flight_size
-=
486 sctp_data_size(chunk
);
487 q
->outstanding_bytes
-= sctp_data_size(chunk
);
488 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
493 /* If we are doing retransmission due to a timeout or pmtu
494 * discovery, only the chunks that are not yet acked should
495 * be added to the retransmit queue.
497 if ((reason
== SCTP_RTXR_FAST_RTX
&&
498 (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)) ||
499 (reason
!= SCTP_RTXR_FAST_RTX
&& !chunk
->tsn_gap_acked
)) {
500 /* RFC 2960 6.2.1 Processing a Received SACK
502 * C) Any time a DATA chunk is marked for
503 * retransmission (via either T3-rtx timer expiration
504 * (Section 6.3.3) or via fast retransmit
505 * (Section 7.2.4)), add the data size of those
506 * chunks to the rwnd.
508 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
509 q
->outstanding_bytes
-= sctp_data_size(chunk
);
510 if (chunk
->transport
)
511 transport
->flight_size
-= sctp_data_size(chunk
);
513 /* sctpimpguide-05 Section 2.8.2
514 * M5) If a T3-rtx timer expires, the
515 * 'TSN.Missing.Report' of all affected TSNs is set
518 chunk
->tsn_missing_report
= 0;
520 /* If a chunk that is being used for RTT measurement
521 * has to be retransmitted, we cannot use this chunk
522 * anymore for RTT measurements. Reset rto_pending so
523 * that a new RTT measurement is started when a new
524 * data chunk is sent.
526 if (chunk
->rtt_in_progress
) {
527 chunk
->rtt_in_progress
= 0;
528 transport
->rto_pending
= 0;
531 /* Move the chunk to the retransmit queue. The chunks
532 * on the retransmit queue are always kept in order.
534 list_del_init(lchunk
);
535 sctp_insert_list(&q
->retransmit
, lchunk
);
539 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
540 "flight_size:%d, pba:%d\n", __func__
, transport
, reason
,
541 transport
->cwnd
, transport
->ssthresh
, transport
->flight_size
,
542 transport
->partial_bytes_acked
);
545 /* Mark all the eligible packets on a transport for retransmission and force
548 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
549 enum sctp_retransmit_reason reason
)
551 struct net
*net
= sock_net(q
->asoc
->base
.sk
);
554 case SCTP_RTXR_T3_RTX
:
555 SCTP_INC_STATS(net
, SCTP_MIB_T3_RETRANSMITS
);
556 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
557 /* Update the retran path if the T3-rtx timer has expired for
558 * the current retran path.
560 if (transport
== transport
->asoc
->peer
.retran_path
)
561 sctp_assoc_update_retran_path(transport
->asoc
);
562 transport
->asoc
->rtx_data_chunks
+=
563 transport
->asoc
->unack_data
;
565 case SCTP_RTXR_FAST_RTX
:
566 SCTP_INC_STATS(net
, SCTP_MIB_FAST_RETRANSMITS
);
567 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
570 case SCTP_RTXR_PMTUD
:
571 SCTP_INC_STATS(net
, SCTP_MIB_PMTUD_RETRANSMITS
);
573 case SCTP_RTXR_T1_RTX
:
574 SCTP_INC_STATS(net
, SCTP_MIB_T1_RETRANSMITS
);
575 transport
->asoc
->init_retries
++;
581 sctp_retransmit_mark(q
, transport
, reason
);
583 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
584 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
585 * following the procedures outlined in C1 - C5.
587 if (reason
== SCTP_RTXR_T3_RTX
)
588 q
->asoc
->stream
.si
->generate_ftsn(q
, q
->asoc
->ctsn_ack_point
);
590 /* Flush the queues only on timeout, since fast_rtx is only
591 * triggered during sack processing and the queue
592 * will be flushed at the end.
594 if (reason
!= SCTP_RTXR_FAST_RTX
)
595 sctp_outq_flush(q
, /* rtx_timeout */ 1, GFP_ATOMIC
);
599 * Transmit DATA chunks on the retransmit queue. Upon return from
600 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
601 * need to be transmitted by the caller.
602 * We assume that pkt->transport has already been set.
604 * The return value is a normal kernel error return value.
606 static int __sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
607 int rtx_timeout
, int *start_timer
, gfp_t gfp
)
609 struct sctp_transport
*transport
= pkt
->transport
;
610 struct sctp_chunk
*chunk
, *chunk1
;
611 struct list_head
*lqueue
;
612 enum sctp_xmit status
;
618 lqueue
= &q
->retransmit
;
619 fast_rtx
= q
->fast_rtx
;
621 /* This loop handles time-out retransmissions, fast retransmissions,
622 * and retransmissions due to opening of whindow.
624 * RFC 2960 6.3.3 Handle T3-rtx Expiration
626 * E3) Determine how many of the earliest (i.e., lowest TSN)
627 * outstanding DATA chunks for the address for which the
628 * T3-rtx has expired will fit into a single packet, subject
629 * to the MTU constraint for the path corresponding to the
630 * destination transport address to which the retransmission
631 * is being sent (this may be different from the address for
632 * which the timer expires [see Section 6.4]). Call this value
633 * K. Bundle and retransmit those K DATA chunks in a single
634 * packet to the destination endpoint.
636 * [Just to be painfully clear, if we are retransmitting
637 * because a timeout just happened, we should send only ONE
638 * packet of retransmitted data.]
640 * For fast retransmissions we also send only ONE packet. However,
641 * if we are just flushing the queue due to open window, we'll
642 * try to send as much as possible.
644 list_for_each_entry_safe(chunk
, chunk1
, lqueue
, transmitted_list
) {
645 /* If the chunk is abandoned, move it to abandoned list. */
646 if (sctp_chunk_abandoned(chunk
)) {
647 list_del_init(&chunk
->transmitted_list
);
648 sctp_insert_list(&q
->abandoned
,
649 &chunk
->transmitted_list
);
653 /* Make sure that Gap Acked TSNs are not retransmitted. A
654 * simple approach is just to move such TSNs out of the
655 * way and into a 'transmitted' queue and skip to the
658 if (chunk
->tsn_gap_acked
) {
659 list_move_tail(&chunk
->transmitted_list
,
660 &transport
->transmitted
);
664 /* If we are doing fast retransmit, ignore non-fast_rtransmit
667 if (fast_rtx
&& !chunk
->fast_retransmit
)
671 /* Attempt to append this chunk to the packet. */
672 status
= sctp_packet_append_chunk(pkt
, chunk
);
675 case SCTP_XMIT_PMTU_FULL
:
676 if (!pkt
->has_data
&& !pkt
->has_cookie_echo
) {
677 /* If this packet did not contain DATA then
678 * retransmission did not happen, so do it
679 * again. We'll ignore the error here since
680 * control chunks are already freed so there
681 * is nothing we can do.
683 sctp_packet_transmit(pkt
, gfp
);
687 /* Send this packet. */
688 error
= sctp_packet_transmit(pkt
, gfp
);
690 /* If we are retransmitting, we should only
691 * send a single packet.
692 * Otherwise, try appending this chunk again.
694 if (rtx_timeout
|| fast_rtx
)
699 /* Bundle next chunk in the next round. */
702 case SCTP_XMIT_RWND_FULL
:
703 /* Send this packet. */
704 error
= sctp_packet_transmit(pkt
, gfp
);
706 /* Stop sending DATA as there is no more room
712 case SCTP_XMIT_DELAY
:
713 /* Send this packet. */
714 error
= sctp_packet_transmit(pkt
, gfp
);
716 /* Stop sending DATA because of nagle delay. */
721 /* The append was successful, so add this chunk to
722 * the transmitted list.
724 list_move_tail(&chunk
->transmitted_list
,
725 &transport
->transmitted
);
727 /* Mark the chunk as ineligible for fast retransmit
728 * after it is retransmitted.
730 if (chunk
->fast_retransmit
== SCTP_NEED_FRTX
)
731 chunk
->fast_retransmit
= SCTP_DONT_FRTX
;
733 q
->asoc
->stats
.rtxchunks
++;
737 /* Set the timer if there were no errors */
738 if (!error
&& !timer
)
745 /* If we are here due to a retransmit timeout or a fast
746 * retransmit and if there are any chunks left in the retransmit
747 * queue that could not fit in the PMTU sized packet, they need
748 * to be marked as ineligible for a subsequent fast retransmit.
750 if (rtx_timeout
|| fast_rtx
) {
751 list_for_each_entry(chunk1
, lqueue
, transmitted_list
) {
752 if (chunk1
->fast_retransmit
== SCTP_NEED_FRTX
)
753 chunk1
->fast_retransmit
= SCTP_DONT_FRTX
;
757 *start_timer
= timer
;
759 /* Clear fast retransmit hint */
766 /* Cork the outqueue so queued chunks are really queued. */
767 void sctp_outq_uncork(struct sctp_outq
*q
, gfp_t gfp
)
772 sctp_outq_flush(q
, 0, gfp
);
775 static int sctp_packet_singleton(struct sctp_transport
*transport
,
776 struct sctp_chunk
*chunk
, gfp_t gfp
)
778 const struct sctp_association
*asoc
= transport
->asoc
;
779 const __u16 sport
= asoc
->base
.bind_addr
.port
;
780 const __u16 dport
= asoc
->peer
.port
;
781 const __u32 vtag
= asoc
->peer
.i
.init_tag
;
782 struct sctp_packet singleton
;
784 sctp_packet_init(&singleton
, transport
, sport
, dport
);
785 sctp_packet_config(&singleton
, vtag
, 0);
786 sctp_packet_append_chunk(&singleton
, chunk
);
787 return sctp_packet_transmit(&singleton
, gfp
);
790 /* Struct to hold the context during sctp outq flush */
791 struct sctp_flush_ctx
{
793 /* Current transport being used. It's NOT the same as curr active one */
794 struct sctp_transport
*transport
;
795 /* These transports have chunks to send. */
796 struct list_head transport_list
;
797 struct sctp_association
*asoc
;
798 /* Packet on the current transport above */
799 struct sctp_packet
*packet
;
803 /* transport: current transport */
804 static void sctp_outq_select_transport(struct sctp_flush_ctx
*ctx
,
805 struct sctp_chunk
*chunk
)
807 struct sctp_transport
*new_transport
= chunk
->transport
;
809 if (!new_transport
) {
810 if (!sctp_chunk_is_data(chunk
)) {
811 /* If we have a prior transport pointer, see if
812 * the destination address of the chunk
813 * matches the destination address of the
814 * current transport. If not a match, then
815 * try to look up the transport with a given
816 * destination address. We do this because
817 * after processing ASCONFs, we may have new
818 * transports created.
820 if (ctx
->transport
&& sctp_cmp_addr_exact(&chunk
->dest
,
821 &ctx
->transport
->ipaddr
))
822 new_transport
= ctx
->transport
;
824 new_transport
= sctp_assoc_lookup_paddr(ctx
->asoc
,
828 /* if we still don't have a new transport, then
829 * use the current active path.
832 new_transport
= ctx
->asoc
->peer
.active_path
;
836 switch (new_transport
->state
) {
838 case SCTP_UNCONFIRMED
:
840 /* If the chunk is Heartbeat or Heartbeat Ack,
841 * send it to chunk->transport, even if it's
844 * 3.3.6 Heartbeat Acknowledgement:
846 * A HEARTBEAT ACK is always sent to the source IP
847 * address of the IP datagram containing the
848 * HEARTBEAT chunk to which this ack is responding.
851 * ASCONF_ACKs also must be sent to the source.
853 type
= chunk
->chunk_hdr
->type
;
854 if (type
!= SCTP_CID_HEARTBEAT
&&
855 type
!= SCTP_CID_HEARTBEAT_ACK
&&
856 type
!= SCTP_CID_ASCONF_ACK
)
857 new_transport
= ctx
->asoc
->peer
.active_path
;
864 /* Are we switching transports? Take care of transport locks. */
865 if (new_transport
!= ctx
->transport
) {
866 ctx
->transport
= new_transport
;
867 ctx
->packet
= &ctx
->transport
->packet
;
869 if (list_empty(&ctx
->transport
->send_ready
))
870 list_add_tail(&ctx
->transport
->send_ready
,
871 &ctx
->transport_list
);
873 sctp_packet_config(ctx
->packet
,
874 ctx
->asoc
->peer
.i
.init_tag
,
875 ctx
->asoc
->peer
.ecn_capable
);
876 /* We've switched transports, so apply the
877 * Burst limit to the new transport.
879 sctp_transport_burst_limited(ctx
->transport
);
883 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx
*ctx
)
885 struct sctp_chunk
*chunk
, *tmp
;
886 enum sctp_xmit status
;
887 int one_packet
, error
;
889 list_for_each_entry_safe(chunk
, tmp
, &ctx
->q
->control_chunk_list
, list
) {
893 * F1) This means that until such time as the ASCONF
894 * containing the add is acknowledged, the sender MUST
895 * NOT use the new IP address as a source for ANY SCTP
896 * packet except on carrying an ASCONF Chunk.
898 if (ctx
->asoc
->src_out_of_asoc_ok
&&
899 chunk
->chunk_hdr
->type
!= SCTP_CID_ASCONF
)
902 list_del_init(&chunk
->list
);
904 /* Pick the right transport to use. Should always be true for
905 * the first chunk as we don't have a transport by then.
907 sctp_outq_select_transport(ctx
, chunk
);
909 switch (chunk
->chunk_hdr
->type
) {
912 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
913 * COMPLETE with any other chunks. [Send them immediately.]
916 case SCTP_CID_INIT_ACK
:
917 case SCTP_CID_SHUTDOWN_COMPLETE
:
918 error
= sctp_packet_singleton(ctx
->transport
, chunk
,
921 ctx
->asoc
->base
.sk
->sk_err
= -error
;
927 if (sctp_test_T_bit(chunk
))
928 ctx
->packet
->vtag
= ctx
->asoc
->c
.my_vtag
;
931 /* The following chunks are "response" chunks, i.e.
932 * they are generated in response to something we
933 * received. If we are sending these, then we can
934 * send only 1 packet containing these chunks.
936 case SCTP_CID_HEARTBEAT_ACK
:
937 case SCTP_CID_SHUTDOWN_ACK
:
938 case SCTP_CID_COOKIE_ACK
:
939 case SCTP_CID_COOKIE_ECHO
:
941 case SCTP_CID_ECN_CWR
:
942 case SCTP_CID_ASCONF_ACK
:
947 case SCTP_CID_HEARTBEAT
:
948 case SCTP_CID_SHUTDOWN
:
949 case SCTP_CID_ECN_ECNE
:
950 case SCTP_CID_ASCONF
:
951 case SCTP_CID_FWD_TSN
:
952 case SCTP_CID_I_FWD_TSN
:
953 case SCTP_CID_RECONF
:
954 status
= sctp_packet_transmit_chunk(ctx
->packet
, chunk
,
955 one_packet
, ctx
->gfp
);
956 if (status
!= SCTP_XMIT_OK
) {
957 /* put the chunk back */
958 list_add(&chunk
->list
, &ctx
->q
->control_chunk_list
);
962 ctx
->asoc
->stats
.octrlchunks
++;
963 /* PR-SCTP C5) If a FORWARD TSN is sent, the
964 * sender MUST assure that at least one T3-rtx
967 if (chunk
->chunk_hdr
->type
== SCTP_CID_FWD_TSN
||
968 chunk
->chunk_hdr
->type
== SCTP_CID_I_FWD_TSN
) {
969 sctp_transport_reset_t3_rtx(ctx
->transport
);
970 ctx
->transport
->last_time_sent
= jiffies
;
973 if (chunk
== ctx
->asoc
->strreset_chunk
)
974 sctp_transport_reset_reconf_timer(ctx
->transport
);
979 /* We built a chunk with an illegal type! */
985 /* Returns false if new data shouldn't be sent */
986 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx
*ctx
,
989 int error
, start_timer
= 0;
991 if (ctx
->asoc
->peer
.retran_path
->state
== SCTP_UNCONFIRMED
)
994 if (ctx
->transport
!= ctx
->asoc
->peer
.retran_path
) {
995 /* Switch transports & prepare the packet. */
996 ctx
->transport
= ctx
->asoc
->peer
.retran_path
;
997 ctx
->packet
= &ctx
->transport
->packet
;
999 if (list_empty(&ctx
->transport
->send_ready
))
1000 list_add_tail(&ctx
->transport
->send_ready
,
1001 &ctx
->transport_list
);
1003 sctp_packet_config(ctx
->packet
, ctx
->asoc
->peer
.i
.init_tag
,
1004 ctx
->asoc
->peer
.ecn_capable
);
1007 error
= __sctp_outq_flush_rtx(ctx
->q
, ctx
->packet
, rtx_timeout
,
1008 &start_timer
, ctx
->gfp
);
1010 ctx
->asoc
->base
.sk
->sk_err
= -error
;
1013 sctp_transport_reset_t3_rtx(ctx
->transport
);
1014 ctx
->transport
->last_time_sent
= jiffies
;
1017 /* This can happen on COOKIE-ECHO resend. Only
1018 * one chunk can get bundled with a COOKIE-ECHO.
1020 if (ctx
->packet
->has_cookie_echo
)
1023 /* Don't send new data if there is still data
1024 * waiting to retransmit.
1026 if (!list_empty(&ctx
->q
->retransmit
))
1032 static void sctp_outq_flush_data(struct sctp_flush_ctx
*ctx
,
1035 struct sctp_chunk
*chunk
;
1036 enum sctp_xmit status
;
1038 /* Is it OK to send data chunks? */
1039 switch (ctx
->asoc
->state
) {
1040 case SCTP_STATE_COOKIE_ECHOED
:
1041 /* Only allow bundling when this packet has a COOKIE-ECHO
1044 if (!ctx
->packet
|| !ctx
->packet
->has_cookie_echo
)
1048 case SCTP_STATE_ESTABLISHED
:
1049 case SCTP_STATE_SHUTDOWN_PENDING
:
1050 case SCTP_STATE_SHUTDOWN_RECEIVED
:
1058 /* RFC 2960 6.1 Transmission of DATA Chunks
1060 * C) When the time comes for the sender to transmit,
1061 * before sending new DATA chunks, the sender MUST
1062 * first transmit any outstanding DATA chunks which
1063 * are marked for retransmission (limited by the
1066 if (!list_empty(&ctx
->q
->retransmit
) &&
1067 !sctp_outq_flush_rtx(ctx
, rtx_timeout
))
1070 /* Apply Max.Burst limitation to the current transport in
1071 * case it will be used for new data. We are going to
1072 * rest it before we return, but we want to apply the limit
1073 * to the currently queued data.
1076 sctp_transport_burst_limited(ctx
->transport
);
1078 /* Finally, transmit new packets. */
1079 while ((chunk
= sctp_outq_dequeue_data(ctx
->q
)) != NULL
) {
1080 __u32 sid
= ntohs(chunk
->subh
.data_hdr
->stream
);
1081 __u8 stream_state
= SCTP_SO(&ctx
->asoc
->stream
, sid
)->state
;
1083 /* Has this chunk expired? */
1084 if (sctp_chunk_abandoned(chunk
)) {
1085 sctp_sched_dequeue_done(ctx
->q
, chunk
);
1086 sctp_chunk_fail(chunk
, 0);
1087 sctp_chunk_free(chunk
);
1091 if (stream_state
== SCTP_STREAM_CLOSED
) {
1092 sctp_outq_head_data(ctx
->q
, chunk
);
1096 sctp_outq_select_transport(ctx
, chunk
);
1098 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1099 __func__
, ctx
->q
, chunk
, chunk
&& chunk
->chunk_hdr
?
1100 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
)) :
1101 "illegal chunk", ntohl(chunk
->subh
.data_hdr
->tsn
),
1102 chunk
->skb
? chunk
->skb
->head
: NULL
, chunk
->skb
?
1103 refcount_read(&chunk
->skb
->users
) : -1);
1105 /* Add the chunk to the packet. */
1106 status
= sctp_packet_transmit_chunk(ctx
->packet
, chunk
, 0,
1108 if (status
!= SCTP_XMIT_OK
) {
1109 /* We could not append this chunk, so put
1110 * the chunk back on the output queue.
1112 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1113 __func__
, ntohl(chunk
->subh
.data_hdr
->tsn
),
1116 sctp_outq_head_data(ctx
->q
, chunk
);
1120 /* The sender is in the SHUTDOWN-PENDING state,
1121 * The sender MAY set the I-bit in the DATA
1124 if (ctx
->asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
)
1125 chunk
->chunk_hdr
->flags
|= SCTP_DATA_SACK_IMM
;
1126 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
1127 ctx
->asoc
->stats
.ouodchunks
++;
1129 ctx
->asoc
->stats
.oodchunks
++;
1131 /* Only now it's safe to consider this
1132 * chunk as sent, sched-wise.
1134 sctp_sched_dequeue_done(ctx
->q
, chunk
);
1136 list_add_tail(&chunk
->transmitted_list
,
1137 &ctx
->transport
->transmitted
);
1139 sctp_transport_reset_t3_rtx(ctx
->transport
);
1140 ctx
->transport
->last_time_sent
= jiffies
;
1142 /* Only let one DATA chunk get bundled with a
1143 * COOKIE-ECHO chunk.
1145 if (ctx
->packet
->has_cookie_echo
)
1150 static void sctp_outq_flush_transports(struct sctp_flush_ctx
*ctx
)
1152 struct list_head
*ltransport
;
1153 struct sctp_packet
*packet
;
1154 struct sctp_transport
*t
;
1157 while ((ltransport
= sctp_list_dequeue(&ctx
->transport_list
)) != NULL
) {
1158 t
= list_entry(ltransport
, struct sctp_transport
, send_ready
);
1159 packet
= &t
->packet
;
1160 if (!sctp_packet_empty(packet
)) {
1161 error
= sctp_packet_transmit(packet
, ctx
->gfp
);
1163 ctx
->q
->asoc
->base
.sk
->sk_err
= -error
;
1166 /* Clear the burst limited state, if any */
1167 sctp_transport_burst_reset(t
);
1171 /* Try to flush an outqueue.
1173 * Description: Send everything in q which we legally can, subject to
1174 * congestion limitations.
1175 * * Note: This function can be called from multiple contexts so appropriate
1176 * locking concerns must be made. Today we use the sock lock to protect
1180 static void sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
, gfp_t gfp
)
1182 struct sctp_flush_ctx ctx
= {
1185 .transport_list
= LIST_HEAD_INIT(ctx
.transport_list
),
1193 * When bundling control chunks with DATA chunks, an
1194 * endpoint MUST place control chunks first in the outbound
1195 * SCTP packet. The transmitter MUST transmit DATA chunks
1196 * within a SCTP packet in increasing order of TSN.
1200 sctp_outq_flush_ctrl(&ctx
);
1202 if (q
->asoc
->src_out_of_asoc_ok
)
1203 goto sctp_flush_out
;
1205 sctp_outq_flush_data(&ctx
, rtx_timeout
);
1209 sctp_outq_flush_transports(&ctx
);
1212 /* Update unack_data based on the incoming SACK chunk */
1213 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
1214 struct sctp_sackhdr
*sack
)
1216 union sctp_sack_variable
*frags
;
1220 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
1222 frags
= sack
->variable
;
1223 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
1224 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
1225 ntohs(frags
[i
].gab
.start
) + 1));
1228 assoc
->unack_data
= unack_data
;
1231 /* This is where we REALLY process a SACK.
1233 * Process the SACK against the outqueue. Mostly, this just frees
1234 * things off the transmitted queue.
1236 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
1238 struct sctp_association
*asoc
= q
->asoc
;
1239 struct sctp_sackhdr
*sack
= chunk
->subh
.sack_hdr
;
1240 struct sctp_transport
*transport
;
1241 struct sctp_chunk
*tchunk
= NULL
;
1242 struct list_head
*lchunk
, *transport_list
, *temp
;
1243 union sctp_sack_variable
*frags
= sack
->variable
;
1244 __u32 sack_ctsn
, ctsn
, tsn
;
1245 __u32 highest_tsn
, highest_new_tsn
;
1247 unsigned int outstanding
;
1248 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1249 int count_of_newacks
= 0;
1253 /* Grab the association's destination address list. */
1254 transport_list
= &asoc
->peer
.transport_addr_list
;
1256 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1257 gap_ack_blocks
= ntohs(sack
->num_gap_ack_blocks
);
1258 asoc
->stats
.gapcnt
+= gap_ack_blocks
;
1260 * SFR-CACC algorithm:
1261 * On receipt of a SACK the sender SHOULD execute the
1262 * following statements.
1264 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1265 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1266 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1268 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1269 * is set the receiver of the SACK MUST take the following actions:
1271 * A) Initialize the cacc_saw_newack to 0 for all destination
1274 * Only bother if changeover_active is set. Otherwise, this is
1275 * totally suboptimal to do on every SACK.
1277 if (primary
->cacc
.changeover_active
) {
1278 u8 clear_cycling
= 0;
1280 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1281 primary
->cacc
.changeover_active
= 0;
1285 if (clear_cycling
|| gap_ack_blocks
) {
1286 list_for_each_entry(transport
, transport_list
,
1289 transport
->cacc
.cycling_changeover
= 0;
1291 transport
->cacc
.cacc_saw_newack
= 0;
1296 /* Get the highest TSN in the sack. */
1297 highest_tsn
= sack_ctsn
;
1299 highest_tsn
+= ntohs(frags
[gap_ack_blocks
- 1].gab
.end
);
1301 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
))
1302 asoc
->highest_sacked
= highest_tsn
;
1304 highest_new_tsn
= sack_ctsn
;
1306 /* Run through the retransmit queue. Credit bytes received
1307 * and free those chunks that we can.
1309 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, NULL
, sack
, &highest_new_tsn
);
1311 /* Run through the transmitted queue.
1312 * Credit bytes received and free those chunks which we can.
1314 * This is a MASSIVE candidate for optimization.
1316 list_for_each_entry(transport
, transport_list
, transports
) {
1317 sctp_check_transmitted(q
, &transport
->transmitted
,
1318 transport
, &chunk
->source
, sack
,
1321 * SFR-CACC algorithm:
1322 * C) Let count_of_newacks be the number of
1323 * destinations for which cacc_saw_newack is set.
1325 if (transport
->cacc
.cacc_saw_newack
)
1329 /* Move the Cumulative TSN Ack Point if appropriate. */
1330 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
)) {
1331 asoc
->ctsn_ack_point
= sack_ctsn
;
1335 if (gap_ack_blocks
) {
1337 if (asoc
->fast_recovery
&& accum_moved
)
1338 highest_new_tsn
= highest_tsn
;
1340 list_for_each_entry(transport
, transport_list
, transports
)
1341 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1342 highest_new_tsn
, count_of_newacks
);
1345 /* Update unack_data field in the assoc. */
1346 sctp_sack_update_unack_data(asoc
, sack
);
1348 ctsn
= asoc
->ctsn_ack_point
;
1350 /* Throw away stuff rotting on the sack queue. */
1351 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1352 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1354 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1355 if (TSN_lte(tsn
, ctsn
)) {
1356 list_del_init(&tchunk
->transmitted_list
);
1357 if (asoc
->peer
.prsctp_capable
&&
1358 SCTP_PR_PRIO_ENABLED(chunk
->sinfo
.sinfo_flags
))
1359 asoc
->sent_cnt_removable
--;
1360 sctp_chunk_free(tchunk
);
1364 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1365 * number of bytes still outstanding after processing the
1366 * Cumulative TSN Ack and the Gap Ack Blocks.
1369 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1370 asoc
->peer
.zero_window_announced
= !sack_a_rwnd
;
1371 outstanding
= q
->outstanding_bytes
;
1373 if (outstanding
< sack_a_rwnd
)
1374 sack_a_rwnd
-= outstanding
;
1378 asoc
->peer
.rwnd
= sack_a_rwnd
;
1380 asoc
->stream
.si
->generate_ftsn(q
, sack_ctsn
);
1382 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__
, sack_ctsn
);
1383 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1384 "advertised peer ack point:0x%x\n", __func__
, asoc
, ctsn
,
1385 asoc
->adv_peer_ack_point
);
1387 return sctp_outq_is_empty(q
);
1390 /* Is the outqueue empty?
1391 * The queue is empty when we have not pending data, no in-flight data
1392 * and nothing pending retransmissions.
1394 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1396 return q
->out_qlen
== 0 && q
->outstanding_bytes
== 0 &&
1397 list_empty(&q
->retransmit
);
1400 /********************************************************************
1401 * 2nd Level Abstractions
1402 ********************************************************************/
1404 /* Go through a transport's transmitted list or the association's retransmit
1405 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1406 * The retransmit list will not have an associated transport.
1408 * I added coherent debug information output. --xguo
1410 * Instead of printing 'sacked' or 'kept' for each TSN on the
1411 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1412 * KEPT TSN6-TSN7, etc.
1414 static void sctp_check_transmitted(struct sctp_outq
*q
,
1415 struct list_head
*transmitted_queue
,
1416 struct sctp_transport
*transport
,
1417 union sctp_addr
*saddr
,
1418 struct sctp_sackhdr
*sack
,
1419 __u32
*highest_new_tsn_in_sack
)
1421 struct list_head
*lchunk
;
1422 struct sctp_chunk
*tchunk
;
1423 struct list_head tlist
;
1427 __u8 restart_timer
= 0;
1428 int bytes_acked
= 0;
1429 int migrate_bytes
= 0;
1430 bool forward_progress
= false;
1432 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1434 INIT_LIST_HEAD(&tlist
);
1436 /* The while loop will skip empty transmitted queues. */
1437 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1438 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1441 if (sctp_chunk_abandoned(tchunk
)) {
1442 /* Move the chunk to abandoned list. */
1443 sctp_insert_list(&q
->abandoned
, lchunk
);
1445 /* If this chunk has not been acked, stop
1446 * considering it as 'outstanding'.
1448 if (transmitted_queue
!= &q
->retransmit
&&
1449 !tchunk
->tsn_gap_acked
) {
1450 if (tchunk
->transport
)
1451 tchunk
->transport
->flight_size
-=
1452 sctp_data_size(tchunk
);
1453 q
->outstanding_bytes
-= sctp_data_size(tchunk
);
1458 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1459 if (sctp_acked(sack
, tsn
)) {
1460 /* If this queue is the retransmit queue, the
1461 * retransmit timer has already reclaimed
1462 * the outstanding bytes for this chunk, so only
1463 * count bytes associated with a transport.
1465 if (transport
&& !tchunk
->tsn_gap_acked
) {
1466 /* If this chunk is being used for RTT
1467 * measurement, calculate the RTT and update
1468 * the RTO using this value.
1470 * 6.3.1 C5) Karn's algorithm: RTT measurements
1471 * MUST NOT be made using packets that were
1472 * retransmitted (and thus for which it is
1473 * ambiguous whether the reply was for the
1474 * first instance of the packet or a later
1477 if (!sctp_chunk_retransmitted(tchunk
) &&
1478 tchunk
->rtt_in_progress
) {
1479 tchunk
->rtt_in_progress
= 0;
1480 rtt
= jiffies
- tchunk
->sent_at
;
1481 sctp_transport_update_rto(transport
,
1485 if (TSN_lte(tsn
, sack_ctsn
)) {
1487 * SFR-CACC algorithm:
1488 * 2) If the SACK contains gap acks
1489 * and the flag CHANGEOVER_ACTIVE is
1490 * set the receiver of the SACK MUST
1491 * take the following action:
1493 * B) For each TSN t being acked that
1494 * has not been acked in any SACK so
1495 * far, set cacc_saw_newack to 1 for
1496 * the destination that the TSN was
1499 if (sack
->num_gap_ack_blocks
&&
1500 q
->asoc
->peer
.primary_path
->cacc
.
1502 transport
->cacc
.cacc_saw_newack
1507 /* If the chunk hasn't been marked as ACKED,
1508 * mark it and account bytes_acked if the
1509 * chunk had a valid transport (it will not
1510 * have a transport if ASCONF had deleted it
1511 * while DATA was outstanding).
1513 if (!tchunk
->tsn_gap_acked
) {
1514 tchunk
->tsn_gap_acked
= 1;
1515 if (TSN_lt(*highest_new_tsn_in_sack
, tsn
))
1516 *highest_new_tsn_in_sack
= tsn
;
1517 bytes_acked
+= sctp_data_size(tchunk
);
1518 if (!tchunk
->transport
)
1519 migrate_bytes
+= sctp_data_size(tchunk
);
1520 forward_progress
= true;
1523 if (TSN_lte(tsn
, sack_ctsn
)) {
1524 /* RFC 2960 6.3.2 Retransmission Timer Rules
1526 * R3) Whenever a SACK is received
1527 * that acknowledges the DATA chunk
1528 * with the earliest outstanding TSN
1529 * for that address, restart T3-rtx
1530 * timer for that address with its
1534 forward_progress
= true;
1536 list_add_tail(&tchunk
->transmitted_list
,
1539 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1540 * M2) Each time a SACK arrives reporting
1541 * 'Stray DATA chunk(s)' record the highest TSN
1542 * reported as newly acknowledged, call this
1543 * value 'HighestTSNinSack'. A newly
1544 * acknowledged DATA chunk is one not
1545 * previously acknowledged in a SACK.
1547 * When the SCTP sender of data receives a SACK
1548 * chunk that acknowledges, for the first time,
1549 * the receipt of a DATA chunk, all the still
1550 * unacknowledged DATA chunks whose TSN is
1551 * older than that newly acknowledged DATA
1552 * chunk, are qualified as 'Stray DATA chunks'.
1554 list_add_tail(lchunk
, &tlist
);
1557 if (tchunk
->tsn_gap_acked
) {
1558 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1561 tchunk
->tsn_gap_acked
= 0;
1563 if (tchunk
->transport
)
1564 bytes_acked
-= sctp_data_size(tchunk
);
1566 /* RFC 2960 6.3.2 Retransmission Timer Rules
1568 * R4) Whenever a SACK is received missing a
1569 * TSN that was previously acknowledged via a
1570 * Gap Ack Block, start T3-rtx for the
1571 * destination address to which the DATA
1572 * chunk was originally
1573 * transmitted if it is not already running.
1578 list_add_tail(lchunk
, &tlist
);
1584 struct sctp_association
*asoc
= transport
->asoc
;
1586 /* We may have counted DATA that was migrated
1587 * to this transport due to DEL-IP operation.
1588 * Subtract those bytes, since the were never
1589 * send on this transport and shouldn't be
1590 * credited to this transport.
1592 bytes_acked
-= migrate_bytes
;
1594 /* 8.2. When an outstanding TSN is acknowledged,
1595 * the endpoint shall clear the error counter of
1596 * the destination transport address to which the
1597 * DATA chunk was last sent.
1598 * The association's overall error counter is
1601 transport
->error_count
= 0;
1602 transport
->asoc
->overall_error_count
= 0;
1603 forward_progress
= true;
1606 * While in SHUTDOWN PENDING, we may have started
1607 * the T5 shutdown guard timer after reaching the
1608 * retransmission limit. Stop that timer as soon
1609 * as the receiver acknowledged any data.
1611 if (asoc
->state
== SCTP_STATE_SHUTDOWN_PENDING
&&
1612 del_timer(&asoc
->timers
1613 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD
]))
1614 sctp_association_put(asoc
);
1616 /* Mark the destination transport address as
1617 * active if it is not so marked.
1619 if ((transport
->state
== SCTP_INACTIVE
||
1620 transport
->state
== SCTP_UNCONFIRMED
) &&
1621 sctp_cmp_addr_exact(&transport
->ipaddr
, saddr
)) {
1622 sctp_assoc_control_transport(
1626 SCTP_RECEIVED_SACK
);
1629 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1632 transport
->flight_size
-= bytes_acked
;
1633 if (transport
->flight_size
== 0)
1634 transport
->partial_bytes_acked
= 0;
1635 q
->outstanding_bytes
-= bytes_acked
+ migrate_bytes
;
1637 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1638 * When a sender is doing zero window probing, it
1639 * should not timeout the association if it continues
1640 * to receive new packets from the receiver. The
1641 * reason is that the receiver MAY keep its window
1642 * closed for an indefinite time.
1643 * A sender is doing zero window probing when the
1644 * receiver's advertised window is zero, and there is
1645 * only one data chunk in flight to the receiver.
1647 * Allow the association to timeout while in SHUTDOWN
1648 * PENDING or SHUTDOWN RECEIVED in case the receiver
1649 * stays in zero window mode forever.
1651 if (!q
->asoc
->peer
.rwnd
&&
1652 !list_empty(&tlist
) &&
1653 (sack_ctsn
+2 == q
->asoc
->next_tsn
) &&
1654 q
->asoc
->state
< SCTP_STATE_SHUTDOWN_PENDING
) {
1655 pr_debug("%s: sack received for zero window "
1656 "probe:%u\n", __func__
, sack_ctsn
);
1658 q
->asoc
->overall_error_count
= 0;
1659 transport
->error_count
= 0;
1663 /* RFC 2960 6.3.2 Retransmission Timer Rules
1665 * R2) Whenever all outstanding data sent to an address have
1666 * been acknowledged, turn off the T3-rtx timer of that
1669 if (!transport
->flight_size
) {
1670 if (del_timer(&transport
->T3_rtx_timer
))
1671 sctp_transport_put(transport
);
1672 } else if (restart_timer
) {
1673 if (!mod_timer(&transport
->T3_rtx_timer
,
1674 jiffies
+ transport
->rto
))
1675 sctp_transport_hold(transport
);
1678 if (forward_progress
) {
1680 sctp_transport_dst_confirm(transport
);
1684 list_splice(&tlist
, transmitted_queue
);
1687 /* Mark chunks as missing and consequently may get retransmitted. */
1688 static void sctp_mark_missing(struct sctp_outq
*q
,
1689 struct list_head
*transmitted_queue
,
1690 struct sctp_transport
*transport
,
1691 __u32 highest_new_tsn_in_sack
,
1692 int count_of_newacks
)
1694 struct sctp_chunk
*chunk
;
1696 char do_fast_retransmit
= 0;
1697 struct sctp_association
*asoc
= q
->asoc
;
1698 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1700 list_for_each_entry(chunk
, transmitted_queue
, transmitted_list
) {
1702 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1704 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1705 * 'Unacknowledged TSN's', if the TSN number of an
1706 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1707 * value, increment the 'TSN.Missing.Report' count on that
1708 * chunk if it has NOT been fast retransmitted or marked for
1709 * fast retransmit already.
1711 if (chunk
->fast_retransmit
== SCTP_CAN_FRTX
&&
1712 !chunk
->tsn_gap_acked
&&
1713 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1715 /* SFR-CACC may require us to skip marking
1716 * this chunk as missing.
1718 if (!transport
|| !sctp_cacc_skip(primary
,
1720 count_of_newacks
, tsn
)) {
1721 chunk
->tsn_missing_report
++;
1723 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1724 __func__
, tsn
, chunk
->tsn_missing_report
);
1728 * M4) If any DATA chunk is found to have a
1729 * 'TSN.Missing.Report'
1730 * value larger than or equal to 3, mark that chunk for
1731 * retransmission and start the fast retransmit procedure.
1734 if (chunk
->tsn_missing_report
>= 3) {
1735 chunk
->fast_retransmit
= SCTP_NEED_FRTX
;
1736 do_fast_retransmit
= 1;
1741 if (do_fast_retransmit
)
1742 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1744 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1745 "flight_size:%d, pba:%d\n", __func__
, transport
,
1746 transport
->cwnd
, transport
->ssthresh
,
1747 transport
->flight_size
, transport
->partial_bytes_acked
);
1751 /* Is the given TSN acked by this packet? */
1752 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1754 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1755 union sctp_sack_variable
*frags
;
1756 __u16 tsn_offset
, blocks
;
1759 if (TSN_lte(tsn
, ctsn
))
1762 /* 3.3.4 Selective Acknowledgment (SACK) (3):
1765 * These fields contain the Gap Ack Blocks. They are repeated
1766 * for each Gap Ack Block up to the number of Gap Ack Blocks
1767 * defined in the Number of Gap Ack Blocks field. All DATA
1768 * chunks with TSNs greater than or equal to (Cumulative TSN
1769 * Ack + Gap Ack Block Start) and less than or equal to
1770 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1771 * Block are assumed to have been received correctly.
1774 frags
= sack
->variable
;
1775 blocks
= ntohs(sack
->num_gap_ack_blocks
);
1776 tsn_offset
= tsn
- ctsn
;
1777 for (i
= 0; i
< blocks
; ++i
) {
1778 if (tsn_offset
>= ntohs(frags
[i
].gab
.start
) &&
1779 tsn_offset
<= ntohs(frags
[i
].gab
.end
))
1788 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1789 int nskips
, __be16 stream
)
1793 for (i
= 0; i
< nskips
; i
++) {
1794 if (skiplist
[i
].stream
== stream
)
1800 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1801 void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1803 struct sctp_association
*asoc
= q
->asoc
;
1804 struct sctp_chunk
*ftsn_chunk
= NULL
;
1805 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1809 struct sctp_chunk
*chunk
;
1810 struct list_head
*lchunk
, *temp
;
1812 if (!asoc
->peer
.prsctp_capable
)
1815 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1818 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1819 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1821 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1822 asoc
->adv_peer_ack_point
= ctsn
;
1824 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1825 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1826 * the chunk next in the out-queue space is marked as "abandoned" as
1827 * shown in the following example:
1829 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1830 * and the Advanced.Peer.Ack.Point is updated to this value:
1832 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1833 * normal SACK processing local advancement
1835 * Adv.Ack.Pt-> 102 acked 102 acked
1836 * 103 abandoned 103 abandoned
1837 * 104 abandoned Adv.Ack.P-> 104 abandoned
1839 * 106 acked 106 acked
1842 * In this example, the data sender successfully advanced the
1843 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1845 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1846 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1848 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1850 /* Remove any chunks in the abandoned queue that are acked by
1853 if (TSN_lte(tsn
, ctsn
)) {
1854 list_del_init(lchunk
);
1855 sctp_chunk_free(chunk
);
1857 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1858 asoc
->adv_peer_ack_point
= tsn
;
1859 if (chunk
->chunk_hdr
->flags
&
1860 SCTP_DATA_UNORDERED
)
1862 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1864 chunk
->subh
.data_hdr
->stream
);
1865 ftsn_skip_arr
[skip_pos
].stream
=
1866 chunk
->subh
.data_hdr
->stream
;
1867 ftsn_skip_arr
[skip_pos
].ssn
=
1868 chunk
->subh
.data_hdr
->ssn
;
1869 if (skip_pos
== nskips
)
1878 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1879 * is greater than the Cumulative TSN ACK carried in the received
1880 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1881 * chunk containing the latest value of the
1882 * "Advanced.Peer.Ack.Point".
1884 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1885 * list each stream and sequence number in the forwarded TSN. This
1886 * information will enable the receiver to easily find any
1887 * stranded TSN's waiting on stream reorder queues. Each stream
1888 * SHOULD only be reported once; this means that if multiple
1889 * abandoned messages occur in the same stream then only the
1890 * highest abandoned stream sequence number is reported. If the
1891 * total size of the FORWARD TSN does NOT fit in a single MTU then
1892 * the sender of the FORWARD TSN SHOULD lower the
1893 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1896 if (asoc
->adv_peer_ack_point
> ctsn
)
1897 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1898 nskips
, &ftsn_skip_arr
[0]);
1901 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1902 SCTP_INC_STATS(sock_net(asoc
->base
.sk
), SCTP_MIB_OUTCTRLCHUNKS
);