perf bpf: Move perf_event_output() from stdio.h to bpf.h
[linux/fpc-iii.git] / net / sunrpc / cache.c
blobf96345b1180ee9cf41013008ac2f052a29496818
1 /*
2 * net/sunrpc/cache.c
4 * Generic code for various authentication-related caches
5 * used by sunrpc clients and servers.
7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
9 * Released under terms in GPL version 2. See COPYING.
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <linux/string_helpers.h>
24 #include <linux/uaccess.h>
25 #include <linux/poll.h>
26 #include <linux/seq_file.h>
27 #include <linux/proc_fs.h>
28 #include <linux/net.h>
29 #include <linux/workqueue.h>
30 #include <linux/mutex.h>
31 #include <linux/pagemap.h>
32 #include <asm/ioctls.h>
33 #include <linux/sunrpc/types.h>
34 #include <linux/sunrpc/cache.h>
35 #include <linux/sunrpc/stats.h>
36 #include <linux/sunrpc/rpc_pipe_fs.h>
37 #include "netns.h"
39 #define RPCDBG_FACILITY RPCDBG_CACHE
41 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
42 static void cache_revisit_request(struct cache_head *item);
44 static void cache_init(struct cache_head *h, struct cache_detail *detail)
46 time_t now = seconds_since_boot();
47 INIT_HLIST_NODE(&h->cache_list);
48 h->flags = 0;
49 kref_init(&h->ref);
50 h->expiry_time = now + CACHE_NEW_EXPIRY;
51 if (now <= detail->flush_time)
52 /* ensure it isn't already expired */
53 now = detail->flush_time + 1;
54 h->last_refresh = now;
57 static struct cache_head *sunrpc_cache_find_rcu(struct cache_detail *detail,
58 struct cache_head *key,
59 int hash)
61 struct hlist_head *head = &detail->hash_table[hash];
62 struct cache_head *tmp;
64 rcu_read_lock();
65 hlist_for_each_entry_rcu(tmp, head, cache_list) {
66 if (detail->match(tmp, key)) {
67 if (cache_is_expired(detail, tmp))
68 continue;
69 tmp = cache_get_rcu(tmp);
70 rcu_read_unlock();
71 return tmp;
74 rcu_read_unlock();
75 return NULL;
78 static struct cache_head *sunrpc_cache_add_entry(struct cache_detail *detail,
79 struct cache_head *key,
80 int hash)
82 struct cache_head *new, *tmp, *freeme = NULL;
83 struct hlist_head *head = &detail->hash_table[hash];
85 new = detail->alloc();
86 if (!new)
87 return NULL;
88 /* must fully initialise 'new', else
89 * we might get lose if we need to
90 * cache_put it soon.
92 cache_init(new, detail);
93 detail->init(new, key);
95 spin_lock(&detail->hash_lock);
97 /* check if entry appeared while we slept */
98 hlist_for_each_entry_rcu(tmp, head, cache_list) {
99 if (detail->match(tmp, key)) {
100 if (cache_is_expired(detail, tmp)) {
101 hlist_del_init_rcu(&tmp->cache_list);
102 detail->entries --;
103 freeme = tmp;
104 break;
106 cache_get(tmp);
107 spin_unlock(&detail->hash_lock);
108 cache_put(new, detail);
109 return tmp;
113 hlist_add_head_rcu(&new->cache_list, head);
114 detail->entries++;
115 cache_get(new);
116 spin_unlock(&detail->hash_lock);
118 if (freeme)
119 cache_put(freeme, detail);
120 return new;
123 struct cache_head *sunrpc_cache_lookup_rcu(struct cache_detail *detail,
124 struct cache_head *key, int hash)
126 struct cache_head *ret;
128 ret = sunrpc_cache_find_rcu(detail, key, hash);
129 if (ret)
130 return ret;
131 /* Didn't find anything, insert an empty entry */
132 return sunrpc_cache_add_entry(detail, key, hash);
134 EXPORT_SYMBOL_GPL(sunrpc_cache_lookup_rcu);
136 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
138 static void cache_fresh_locked(struct cache_head *head, time_t expiry,
139 struct cache_detail *detail)
141 time_t now = seconds_since_boot();
142 if (now <= detail->flush_time)
143 /* ensure it isn't immediately treated as expired */
144 now = detail->flush_time + 1;
145 head->expiry_time = expiry;
146 head->last_refresh = now;
147 smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
148 set_bit(CACHE_VALID, &head->flags);
151 static void cache_fresh_unlocked(struct cache_head *head,
152 struct cache_detail *detail)
154 if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
155 cache_revisit_request(head);
156 cache_dequeue(detail, head);
160 struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
161 struct cache_head *new, struct cache_head *old, int hash)
163 /* The 'old' entry is to be replaced by 'new'.
164 * If 'old' is not VALID, we update it directly,
165 * otherwise we need to replace it
167 struct cache_head *tmp;
169 if (!test_bit(CACHE_VALID, &old->flags)) {
170 spin_lock(&detail->hash_lock);
171 if (!test_bit(CACHE_VALID, &old->flags)) {
172 if (test_bit(CACHE_NEGATIVE, &new->flags))
173 set_bit(CACHE_NEGATIVE, &old->flags);
174 else
175 detail->update(old, new);
176 cache_fresh_locked(old, new->expiry_time, detail);
177 spin_unlock(&detail->hash_lock);
178 cache_fresh_unlocked(old, detail);
179 return old;
181 spin_unlock(&detail->hash_lock);
183 /* We need to insert a new entry */
184 tmp = detail->alloc();
185 if (!tmp) {
186 cache_put(old, detail);
187 return NULL;
189 cache_init(tmp, detail);
190 detail->init(tmp, old);
192 spin_lock(&detail->hash_lock);
193 if (test_bit(CACHE_NEGATIVE, &new->flags))
194 set_bit(CACHE_NEGATIVE, &tmp->flags);
195 else
196 detail->update(tmp, new);
197 hlist_add_head(&tmp->cache_list, &detail->hash_table[hash]);
198 detail->entries++;
199 cache_get(tmp);
200 cache_fresh_locked(tmp, new->expiry_time, detail);
201 cache_fresh_locked(old, 0, detail);
202 spin_unlock(&detail->hash_lock);
203 cache_fresh_unlocked(tmp, detail);
204 cache_fresh_unlocked(old, detail);
205 cache_put(old, detail);
206 return tmp;
208 EXPORT_SYMBOL_GPL(sunrpc_cache_update);
210 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
212 if (cd->cache_upcall)
213 return cd->cache_upcall(cd, h);
214 return sunrpc_cache_pipe_upcall(cd, h);
217 static inline int cache_is_valid(struct cache_head *h)
219 if (!test_bit(CACHE_VALID, &h->flags))
220 return -EAGAIN;
221 else {
222 /* entry is valid */
223 if (test_bit(CACHE_NEGATIVE, &h->flags))
224 return -ENOENT;
225 else {
227 * In combination with write barrier in
228 * sunrpc_cache_update, ensures that anyone
229 * using the cache entry after this sees the
230 * updated contents:
232 smp_rmb();
233 return 0;
238 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
240 int rv;
242 spin_lock(&detail->hash_lock);
243 rv = cache_is_valid(h);
244 if (rv == -EAGAIN) {
245 set_bit(CACHE_NEGATIVE, &h->flags);
246 cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY,
247 detail);
248 rv = -ENOENT;
250 spin_unlock(&detail->hash_lock);
251 cache_fresh_unlocked(h, detail);
252 return rv;
256 * This is the generic cache management routine for all
257 * the authentication caches.
258 * It checks the currency of a cache item and will (later)
259 * initiate an upcall to fill it if needed.
262 * Returns 0 if the cache_head can be used, or cache_puts it and returns
263 * -EAGAIN if upcall is pending and request has been queued
264 * -ETIMEDOUT if upcall failed or request could not be queue or
265 * upcall completed but item is still invalid (implying that
266 * the cache item has been replaced with a newer one).
267 * -ENOENT if cache entry was negative
269 int cache_check(struct cache_detail *detail,
270 struct cache_head *h, struct cache_req *rqstp)
272 int rv;
273 long refresh_age, age;
275 /* First decide return status as best we can */
276 rv = cache_is_valid(h);
278 /* now see if we want to start an upcall */
279 refresh_age = (h->expiry_time - h->last_refresh);
280 age = seconds_since_boot() - h->last_refresh;
282 if (rqstp == NULL) {
283 if (rv == -EAGAIN)
284 rv = -ENOENT;
285 } else if (rv == -EAGAIN ||
286 (h->expiry_time != 0 && age > refresh_age/2)) {
287 dprintk("RPC: Want update, refage=%ld, age=%ld\n",
288 refresh_age, age);
289 if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
290 switch (cache_make_upcall(detail, h)) {
291 case -EINVAL:
292 rv = try_to_negate_entry(detail, h);
293 break;
294 case -EAGAIN:
295 cache_fresh_unlocked(h, detail);
296 break;
301 if (rv == -EAGAIN) {
302 if (!cache_defer_req(rqstp, h)) {
304 * Request was not deferred; handle it as best
305 * we can ourselves:
307 rv = cache_is_valid(h);
308 if (rv == -EAGAIN)
309 rv = -ETIMEDOUT;
312 if (rv)
313 cache_put(h, detail);
314 return rv;
316 EXPORT_SYMBOL_GPL(cache_check);
319 * caches need to be periodically cleaned.
320 * For this we maintain a list of cache_detail and
321 * a current pointer into that list and into the table
322 * for that entry.
324 * Each time cache_clean is called it finds the next non-empty entry
325 * in the current table and walks the list in that entry
326 * looking for entries that can be removed.
328 * An entry gets removed if:
329 * - The expiry is before current time
330 * - The last_refresh time is before the flush_time for that cache
332 * later we might drop old entries with non-NEVER expiry if that table
333 * is getting 'full' for some definition of 'full'
335 * The question of "how often to scan a table" is an interesting one
336 * and is answered in part by the use of the "nextcheck" field in the
337 * cache_detail.
338 * When a scan of a table begins, the nextcheck field is set to a time
339 * that is well into the future.
340 * While scanning, if an expiry time is found that is earlier than the
341 * current nextcheck time, nextcheck is set to that expiry time.
342 * If the flush_time is ever set to a time earlier than the nextcheck
343 * time, the nextcheck time is then set to that flush_time.
345 * A table is then only scanned if the current time is at least
346 * the nextcheck time.
350 static LIST_HEAD(cache_list);
351 static DEFINE_SPINLOCK(cache_list_lock);
352 static struct cache_detail *current_detail;
353 static int current_index;
355 static void do_cache_clean(struct work_struct *work);
356 static struct delayed_work cache_cleaner;
358 void sunrpc_init_cache_detail(struct cache_detail *cd)
360 spin_lock_init(&cd->hash_lock);
361 INIT_LIST_HEAD(&cd->queue);
362 spin_lock(&cache_list_lock);
363 cd->nextcheck = 0;
364 cd->entries = 0;
365 atomic_set(&cd->readers, 0);
366 cd->last_close = 0;
367 cd->last_warn = -1;
368 list_add(&cd->others, &cache_list);
369 spin_unlock(&cache_list_lock);
371 /* start the cleaning process */
372 queue_delayed_work(system_power_efficient_wq, &cache_cleaner, 0);
374 EXPORT_SYMBOL_GPL(sunrpc_init_cache_detail);
376 void sunrpc_destroy_cache_detail(struct cache_detail *cd)
378 cache_purge(cd);
379 spin_lock(&cache_list_lock);
380 spin_lock(&cd->hash_lock);
381 if (current_detail == cd)
382 current_detail = NULL;
383 list_del_init(&cd->others);
384 spin_unlock(&cd->hash_lock);
385 spin_unlock(&cache_list_lock);
386 if (list_empty(&cache_list)) {
387 /* module must be being unloaded so its safe to kill the worker */
388 cancel_delayed_work_sync(&cache_cleaner);
391 EXPORT_SYMBOL_GPL(sunrpc_destroy_cache_detail);
393 /* clean cache tries to find something to clean
394 * and cleans it.
395 * It returns 1 if it cleaned something,
396 * 0 if it didn't find anything this time
397 * -1 if it fell off the end of the list.
399 static int cache_clean(void)
401 int rv = 0;
402 struct list_head *next;
404 spin_lock(&cache_list_lock);
406 /* find a suitable table if we don't already have one */
407 while (current_detail == NULL ||
408 current_index >= current_detail->hash_size) {
409 if (current_detail)
410 next = current_detail->others.next;
411 else
412 next = cache_list.next;
413 if (next == &cache_list) {
414 current_detail = NULL;
415 spin_unlock(&cache_list_lock);
416 return -1;
418 current_detail = list_entry(next, struct cache_detail, others);
419 if (current_detail->nextcheck > seconds_since_boot())
420 current_index = current_detail->hash_size;
421 else {
422 current_index = 0;
423 current_detail->nextcheck = seconds_since_boot()+30*60;
427 /* find a non-empty bucket in the table */
428 while (current_detail &&
429 current_index < current_detail->hash_size &&
430 hlist_empty(&current_detail->hash_table[current_index]))
431 current_index++;
433 /* find a cleanable entry in the bucket and clean it, or set to next bucket */
435 if (current_detail && current_index < current_detail->hash_size) {
436 struct cache_head *ch = NULL;
437 struct cache_detail *d;
438 struct hlist_head *head;
439 struct hlist_node *tmp;
441 spin_lock(&current_detail->hash_lock);
443 /* Ok, now to clean this strand */
445 head = &current_detail->hash_table[current_index];
446 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
447 if (current_detail->nextcheck > ch->expiry_time)
448 current_detail->nextcheck = ch->expiry_time+1;
449 if (!cache_is_expired(current_detail, ch))
450 continue;
452 hlist_del_init_rcu(&ch->cache_list);
453 current_detail->entries--;
454 rv = 1;
455 break;
458 spin_unlock(&current_detail->hash_lock);
459 d = current_detail;
460 if (!ch)
461 current_index ++;
462 spin_unlock(&cache_list_lock);
463 if (ch) {
464 set_bit(CACHE_CLEANED, &ch->flags);
465 cache_fresh_unlocked(ch, d);
466 cache_put(ch, d);
468 } else
469 spin_unlock(&cache_list_lock);
471 return rv;
475 * We want to regularly clean the cache, so we need to schedule some work ...
477 static void do_cache_clean(struct work_struct *work)
479 int delay = 5;
480 if (cache_clean() == -1)
481 delay = round_jiffies_relative(30*HZ);
483 if (list_empty(&cache_list))
484 delay = 0;
486 if (delay)
487 queue_delayed_work(system_power_efficient_wq,
488 &cache_cleaner, delay);
493 * Clean all caches promptly. This just calls cache_clean
494 * repeatedly until we are sure that every cache has had a chance to
495 * be fully cleaned
497 void cache_flush(void)
499 while (cache_clean() != -1)
500 cond_resched();
501 while (cache_clean() != -1)
502 cond_resched();
504 EXPORT_SYMBOL_GPL(cache_flush);
506 void cache_purge(struct cache_detail *detail)
508 struct cache_head *ch = NULL;
509 struct hlist_head *head = NULL;
510 struct hlist_node *tmp = NULL;
511 int i = 0;
513 spin_lock(&detail->hash_lock);
514 if (!detail->entries) {
515 spin_unlock(&detail->hash_lock);
516 return;
519 dprintk("RPC: %d entries in %s cache\n", detail->entries, detail->name);
520 for (i = 0; i < detail->hash_size; i++) {
521 head = &detail->hash_table[i];
522 hlist_for_each_entry_safe(ch, tmp, head, cache_list) {
523 hlist_del_init_rcu(&ch->cache_list);
524 detail->entries--;
526 set_bit(CACHE_CLEANED, &ch->flags);
527 spin_unlock(&detail->hash_lock);
528 cache_fresh_unlocked(ch, detail);
529 cache_put(ch, detail);
530 spin_lock(&detail->hash_lock);
533 spin_unlock(&detail->hash_lock);
535 EXPORT_SYMBOL_GPL(cache_purge);
539 * Deferral and Revisiting of Requests.
541 * If a cache lookup finds a pending entry, we
542 * need to defer the request and revisit it later.
543 * All deferred requests are stored in a hash table,
544 * indexed by "struct cache_head *".
545 * As it may be wasteful to store a whole request
546 * structure, we allow the request to provide a
547 * deferred form, which must contain a
548 * 'struct cache_deferred_req'
549 * This cache_deferred_req contains a method to allow
550 * it to be revisited when cache info is available
553 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
554 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
556 #define DFR_MAX 300 /* ??? */
558 static DEFINE_SPINLOCK(cache_defer_lock);
559 static LIST_HEAD(cache_defer_list);
560 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
561 static int cache_defer_cnt;
563 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
565 hlist_del_init(&dreq->hash);
566 if (!list_empty(&dreq->recent)) {
567 list_del_init(&dreq->recent);
568 cache_defer_cnt--;
572 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
574 int hash = DFR_HASH(item);
576 INIT_LIST_HEAD(&dreq->recent);
577 hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
580 static void setup_deferral(struct cache_deferred_req *dreq,
581 struct cache_head *item,
582 int count_me)
585 dreq->item = item;
587 spin_lock(&cache_defer_lock);
589 __hash_deferred_req(dreq, item);
591 if (count_me) {
592 cache_defer_cnt++;
593 list_add(&dreq->recent, &cache_defer_list);
596 spin_unlock(&cache_defer_lock);
600 struct thread_deferred_req {
601 struct cache_deferred_req handle;
602 struct completion completion;
605 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
607 struct thread_deferred_req *dr =
608 container_of(dreq, struct thread_deferred_req, handle);
609 complete(&dr->completion);
612 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
614 struct thread_deferred_req sleeper;
615 struct cache_deferred_req *dreq = &sleeper.handle;
617 sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
618 dreq->revisit = cache_restart_thread;
620 setup_deferral(dreq, item, 0);
622 if (!test_bit(CACHE_PENDING, &item->flags) ||
623 wait_for_completion_interruptible_timeout(
624 &sleeper.completion, req->thread_wait) <= 0) {
625 /* The completion wasn't completed, so we need
626 * to clean up
628 spin_lock(&cache_defer_lock);
629 if (!hlist_unhashed(&sleeper.handle.hash)) {
630 __unhash_deferred_req(&sleeper.handle);
631 spin_unlock(&cache_defer_lock);
632 } else {
633 /* cache_revisit_request already removed
634 * this from the hash table, but hasn't
635 * called ->revisit yet. It will very soon
636 * and we need to wait for it.
638 spin_unlock(&cache_defer_lock);
639 wait_for_completion(&sleeper.completion);
644 static void cache_limit_defers(void)
646 /* Make sure we haven't exceed the limit of allowed deferred
647 * requests.
649 struct cache_deferred_req *discard = NULL;
651 if (cache_defer_cnt <= DFR_MAX)
652 return;
654 spin_lock(&cache_defer_lock);
656 /* Consider removing either the first or the last */
657 if (cache_defer_cnt > DFR_MAX) {
658 if (prandom_u32() & 1)
659 discard = list_entry(cache_defer_list.next,
660 struct cache_deferred_req, recent);
661 else
662 discard = list_entry(cache_defer_list.prev,
663 struct cache_deferred_req, recent);
664 __unhash_deferred_req(discard);
666 spin_unlock(&cache_defer_lock);
667 if (discard)
668 discard->revisit(discard, 1);
671 /* Return true if and only if a deferred request is queued. */
672 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
674 struct cache_deferred_req *dreq;
676 if (req->thread_wait) {
677 cache_wait_req(req, item);
678 if (!test_bit(CACHE_PENDING, &item->flags))
679 return false;
681 dreq = req->defer(req);
682 if (dreq == NULL)
683 return false;
684 setup_deferral(dreq, item, 1);
685 if (!test_bit(CACHE_PENDING, &item->flags))
686 /* Bit could have been cleared before we managed to
687 * set up the deferral, so need to revisit just in case
689 cache_revisit_request(item);
691 cache_limit_defers();
692 return true;
695 static void cache_revisit_request(struct cache_head *item)
697 struct cache_deferred_req *dreq;
698 struct list_head pending;
699 struct hlist_node *tmp;
700 int hash = DFR_HASH(item);
702 INIT_LIST_HEAD(&pending);
703 spin_lock(&cache_defer_lock);
705 hlist_for_each_entry_safe(dreq, tmp, &cache_defer_hash[hash], hash)
706 if (dreq->item == item) {
707 __unhash_deferred_req(dreq);
708 list_add(&dreq->recent, &pending);
711 spin_unlock(&cache_defer_lock);
713 while (!list_empty(&pending)) {
714 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
715 list_del_init(&dreq->recent);
716 dreq->revisit(dreq, 0);
720 void cache_clean_deferred(void *owner)
722 struct cache_deferred_req *dreq, *tmp;
723 struct list_head pending;
726 INIT_LIST_HEAD(&pending);
727 spin_lock(&cache_defer_lock);
729 list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
730 if (dreq->owner == owner) {
731 __unhash_deferred_req(dreq);
732 list_add(&dreq->recent, &pending);
735 spin_unlock(&cache_defer_lock);
737 while (!list_empty(&pending)) {
738 dreq = list_entry(pending.next, struct cache_deferred_req, recent);
739 list_del_init(&dreq->recent);
740 dreq->revisit(dreq, 1);
745 * communicate with user-space
747 * We have a magic /proc file - /proc/net/rpc/<cachename>/channel.
748 * On read, you get a full request, or block.
749 * On write, an update request is processed.
750 * Poll works if anything to read, and always allows write.
752 * Implemented by linked list of requests. Each open file has
753 * a ->private that also exists in this list. New requests are added
754 * to the end and may wakeup and preceding readers.
755 * New readers are added to the head. If, on read, an item is found with
756 * CACHE_UPCALLING clear, we free it from the list.
760 static DEFINE_SPINLOCK(queue_lock);
761 static DEFINE_MUTEX(queue_io_mutex);
763 struct cache_queue {
764 struct list_head list;
765 int reader; /* if 0, then request */
767 struct cache_request {
768 struct cache_queue q;
769 struct cache_head *item;
770 char * buf;
771 int len;
772 int readers;
774 struct cache_reader {
775 struct cache_queue q;
776 int offset; /* if non-0, we have a refcnt on next request */
779 static int cache_request(struct cache_detail *detail,
780 struct cache_request *crq)
782 char *bp = crq->buf;
783 int len = PAGE_SIZE;
785 detail->cache_request(detail, crq->item, &bp, &len);
786 if (len < 0)
787 return -EAGAIN;
788 return PAGE_SIZE - len;
791 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
792 loff_t *ppos, struct cache_detail *cd)
794 struct cache_reader *rp = filp->private_data;
795 struct cache_request *rq;
796 struct inode *inode = file_inode(filp);
797 int err;
799 if (count == 0)
800 return 0;
802 inode_lock(inode); /* protect against multiple concurrent
803 * readers on this file */
804 again:
805 spin_lock(&queue_lock);
806 /* need to find next request */
807 while (rp->q.list.next != &cd->queue &&
808 list_entry(rp->q.list.next, struct cache_queue, list)
809 ->reader) {
810 struct list_head *next = rp->q.list.next;
811 list_move(&rp->q.list, next);
813 if (rp->q.list.next == &cd->queue) {
814 spin_unlock(&queue_lock);
815 inode_unlock(inode);
816 WARN_ON_ONCE(rp->offset);
817 return 0;
819 rq = container_of(rp->q.list.next, struct cache_request, q.list);
820 WARN_ON_ONCE(rq->q.reader);
821 if (rp->offset == 0)
822 rq->readers++;
823 spin_unlock(&queue_lock);
825 if (rq->len == 0) {
826 err = cache_request(cd, rq);
827 if (err < 0)
828 goto out;
829 rq->len = err;
832 if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
833 err = -EAGAIN;
834 spin_lock(&queue_lock);
835 list_move(&rp->q.list, &rq->q.list);
836 spin_unlock(&queue_lock);
837 } else {
838 if (rp->offset + count > rq->len)
839 count = rq->len - rp->offset;
840 err = -EFAULT;
841 if (copy_to_user(buf, rq->buf + rp->offset, count))
842 goto out;
843 rp->offset += count;
844 if (rp->offset >= rq->len) {
845 rp->offset = 0;
846 spin_lock(&queue_lock);
847 list_move(&rp->q.list, &rq->q.list);
848 spin_unlock(&queue_lock);
850 err = 0;
852 out:
853 if (rp->offset == 0) {
854 /* need to release rq */
855 spin_lock(&queue_lock);
856 rq->readers--;
857 if (rq->readers == 0 &&
858 !test_bit(CACHE_PENDING, &rq->item->flags)) {
859 list_del(&rq->q.list);
860 spin_unlock(&queue_lock);
861 cache_put(rq->item, cd);
862 kfree(rq->buf);
863 kfree(rq);
864 } else
865 spin_unlock(&queue_lock);
867 if (err == -EAGAIN)
868 goto again;
869 inode_unlock(inode);
870 return err ? err : count;
873 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
874 size_t count, struct cache_detail *cd)
876 ssize_t ret;
878 if (count == 0)
879 return -EINVAL;
880 if (copy_from_user(kaddr, buf, count))
881 return -EFAULT;
882 kaddr[count] = '\0';
883 ret = cd->cache_parse(cd, kaddr, count);
884 if (!ret)
885 ret = count;
886 return ret;
889 static ssize_t cache_slow_downcall(const char __user *buf,
890 size_t count, struct cache_detail *cd)
892 static char write_buf[8192]; /* protected by queue_io_mutex */
893 ssize_t ret = -EINVAL;
895 if (count >= sizeof(write_buf))
896 goto out;
897 mutex_lock(&queue_io_mutex);
898 ret = cache_do_downcall(write_buf, buf, count, cd);
899 mutex_unlock(&queue_io_mutex);
900 out:
901 return ret;
904 static ssize_t cache_downcall(struct address_space *mapping,
905 const char __user *buf,
906 size_t count, struct cache_detail *cd)
908 struct page *page;
909 char *kaddr;
910 ssize_t ret = -ENOMEM;
912 if (count >= PAGE_SIZE)
913 goto out_slow;
915 page = find_or_create_page(mapping, 0, GFP_KERNEL);
916 if (!page)
917 goto out_slow;
919 kaddr = kmap(page);
920 ret = cache_do_downcall(kaddr, buf, count, cd);
921 kunmap(page);
922 unlock_page(page);
923 put_page(page);
924 return ret;
925 out_slow:
926 return cache_slow_downcall(buf, count, cd);
929 static ssize_t cache_write(struct file *filp, const char __user *buf,
930 size_t count, loff_t *ppos,
931 struct cache_detail *cd)
933 struct address_space *mapping = filp->f_mapping;
934 struct inode *inode = file_inode(filp);
935 ssize_t ret = -EINVAL;
937 if (!cd->cache_parse)
938 goto out;
940 inode_lock(inode);
941 ret = cache_downcall(mapping, buf, count, cd);
942 inode_unlock(inode);
943 out:
944 return ret;
947 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
949 static __poll_t cache_poll(struct file *filp, poll_table *wait,
950 struct cache_detail *cd)
952 __poll_t mask;
953 struct cache_reader *rp = filp->private_data;
954 struct cache_queue *cq;
956 poll_wait(filp, &queue_wait, wait);
958 /* alway allow write */
959 mask = EPOLLOUT | EPOLLWRNORM;
961 if (!rp)
962 return mask;
964 spin_lock(&queue_lock);
966 for (cq= &rp->q; &cq->list != &cd->queue;
967 cq = list_entry(cq->list.next, struct cache_queue, list))
968 if (!cq->reader) {
969 mask |= EPOLLIN | EPOLLRDNORM;
970 break;
972 spin_unlock(&queue_lock);
973 return mask;
976 static int cache_ioctl(struct inode *ino, struct file *filp,
977 unsigned int cmd, unsigned long arg,
978 struct cache_detail *cd)
980 int len = 0;
981 struct cache_reader *rp = filp->private_data;
982 struct cache_queue *cq;
984 if (cmd != FIONREAD || !rp)
985 return -EINVAL;
987 spin_lock(&queue_lock);
989 /* only find the length remaining in current request,
990 * or the length of the next request
992 for (cq= &rp->q; &cq->list != &cd->queue;
993 cq = list_entry(cq->list.next, struct cache_queue, list))
994 if (!cq->reader) {
995 struct cache_request *cr =
996 container_of(cq, struct cache_request, q);
997 len = cr->len - rp->offset;
998 break;
1000 spin_unlock(&queue_lock);
1002 return put_user(len, (int __user *)arg);
1005 static int cache_open(struct inode *inode, struct file *filp,
1006 struct cache_detail *cd)
1008 struct cache_reader *rp = NULL;
1010 if (!cd || !try_module_get(cd->owner))
1011 return -EACCES;
1012 nonseekable_open(inode, filp);
1013 if (filp->f_mode & FMODE_READ) {
1014 rp = kmalloc(sizeof(*rp), GFP_KERNEL);
1015 if (!rp) {
1016 module_put(cd->owner);
1017 return -ENOMEM;
1019 rp->offset = 0;
1020 rp->q.reader = 1;
1021 atomic_inc(&cd->readers);
1022 spin_lock(&queue_lock);
1023 list_add(&rp->q.list, &cd->queue);
1024 spin_unlock(&queue_lock);
1026 filp->private_data = rp;
1027 return 0;
1030 static int cache_release(struct inode *inode, struct file *filp,
1031 struct cache_detail *cd)
1033 struct cache_reader *rp = filp->private_data;
1035 if (rp) {
1036 spin_lock(&queue_lock);
1037 if (rp->offset) {
1038 struct cache_queue *cq;
1039 for (cq= &rp->q; &cq->list != &cd->queue;
1040 cq = list_entry(cq->list.next, struct cache_queue, list))
1041 if (!cq->reader) {
1042 container_of(cq, struct cache_request, q)
1043 ->readers--;
1044 break;
1046 rp->offset = 0;
1048 list_del(&rp->q.list);
1049 spin_unlock(&queue_lock);
1051 filp->private_data = NULL;
1052 kfree(rp);
1054 cd->last_close = seconds_since_boot();
1055 atomic_dec(&cd->readers);
1057 module_put(cd->owner);
1058 return 0;
1063 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1065 struct cache_queue *cq, *tmp;
1066 struct cache_request *cr;
1067 struct list_head dequeued;
1069 INIT_LIST_HEAD(&dequeued);
1070 spin_lock(&queue_lock);
1071 list_for_each_entry_safe(cq, tmp, &detail->queue, list)
1072 if (!cq->reader) {
1073 cr = container_of(cq, struct cache_request, q);
1074 if (cr->item != ch)
1075 continue;
1076 if (test_bit(CACHE_PENDING, &ch->flags))
1077 /* Lost a race and it is pending again */
1078 break;
1079 if (cr->readers != 0)
1080 continue;
1081 list_move(&cr->q.list, &dequeued);
1083 spin_unlock(&queue_lock);
1084 while (!list_empty(&dequeued)) {
1085 cr = list_entry(dequeued.next, struct cache_request, q.list);
1086 list_del(&cr->q.list);
1087 cache_put(cr->item, detail);
1088 kfree(cr->buf);
1089 kfree(cr);
1094 * Support routines for text-based upcalls.
1095 * Fields are separated by spaces.
1096 * Fields are either mangled to quote space tab newline slosh with slosh
1097 * or a hexified with a leading \x
1098 * Record is terminated with newline.
1102 void qword_add(char **bpp, int *lp, char *str)
1104 char *bp = *bpp;
1105 int len = *lp;
1106 int ret;
1108 if (len < 0) return;
1110 ret = string_escape_str(str, bp, len, ESCAPE_OCTAL, "\\ \n\t");
1111 if (ret >= len) {
1112 bp += len;
1113 len = -1;
1114 } else {
1115 bp += ret;
1116 len -= ret;
1117 *bp++ = ' ';
1118 len--;
1120 *bpp = bp;
1121 *lp = len;
1123 EXPORT_SYMBOL_GPL(qword_add);
1125 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1127 char *bp = *bpp;
1128 int len = *lp;
1130 if (len < 0) return;
1132 if (len > 2) {
1133 *bp++ = '\\';
1134 *bp++ = 'x';
1135 len -= 2;
1136 while (blen && len >= 2) {
1137 bp = hex_byte_pack(bp, *buf++);
1138 len -= 2;
1139 blen--;
1142 if (blen || len<1) len = -1;
1143 else {
1144 *bp++ = ' ';
1145 len--;
1147 *bpp = bp;
1148 *lp = len;
1150 EXPORT_SYMBOL_GPL(qword_addhex);
1152 static void warn_no_listener(struct cache_detail *detail)
1154 if (detail->last_warn != detail->last_close) {
1155 detail->last_warn = detail->last_close;
1156 if (detail->warn_no_listener)
1157 detail->warn_no_listener(detail, detail->last_close != 0);
1161 static bool cache_listeners_exist(struct cache_detail *detail)
1163 if (atomic_read(&detail->readers))
1164 return true;
1165 if (detail->last_close == 0)
1166 /* This cache was never opened */
1167 return false;
1168 if (detail->last_close < seconds_since_boot() - 30)
1170 * We allow for the possibility that someone might
1171 * restart a userspace daemon without restarting the
1172 * server; but after 30 seconds, we give up.
1174 return false;
1175 return true;
1179 * register an upcall request to user-space and queue it up for read() by the
1180 * upcall daemon.
1182 * Each request is at most one page long.
1184 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h)
1187 char *buf;
1188 struct cache_request *crq;
1189 int ret = 0;
1191 if (!detail->cache_request)
1192 return -EINVAL;
1194 if (!cache_listeners_exist(detail)) {
1195 warn_no_listener(detail);
1196 return -EINVAL;
1198 if (test_bit(CACHE_CLEANED, &h->flags))
1199 /* Too late to make an upcall */
1200 return -EAGAIN;
1202 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1203 if (!buf)
1204 return -EAGAIN;
1206 crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1207 if (!crq) {
1208 kfree(buf);
1209 return -EAGAIN;
1212 crq->q.reader = 0;
1213 crq->buf = buf;
1214 crq->len = 0;
1215 crq->readers = 0;
1216 spin_lock(&queue_lock);
1217 if (test_bit(CACHE_PENDING, &h->flags)) {
1218 crq->item = cache_get(h);
1219 list_add_tail(&crq->q.list, &detail->queue);
1220 } else
1221 /* Lost a race, no longer PENDING, so don't enqueue */
1222 ret = -EAGAIN;
1223 spin_unlock(&queue_lock);
1224 wake_up(&queue_wait);
1225 if (ret == -EAGAIN) {
1226 kfree(buf);
1227 kfree(crq);
1229 return ret;
1231 EXPORT_SYMBOL_GPL(sunrpc_cache_pipe_upcall);
1234 * parse a message from user-space and pass it
1235 * to an appropriate cache
1236 * Messages are, like requests, separated into fields by
1237 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1239 * Message is
1240 * reply cachename expiry key ... content....
1242 * key and content are both parsed by cache
1245 int qword_get(char **bpp, char *dest, int bufsize)
1247 /* return bytes copied, or -1 on error */
1248 char *bp = *bpp;
1249 int len = 0;
1251 while (*bp == ' ') bp++;
1253 if (bp[0] == '\\' && bp[1] == 'x') {
1254 /* HEX STRING */
1255 bp += 2;
1256 while (len < bufsize - 1) {
1257 int h, l;
1259 h = hex_to_bin(bp[0]);
1260 if (h < 0)
1261 break;
1263 l = hex_to_bin(bp[1]);
1264 if (l < 0)
1265 break;
1267 *dest++ = (h << 4) | l;
1268 bp += 2;
1269 len++;
1271 } else {
1272 /* text with \nnn octal quoting */
1273 while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1274 if (*bp == '\\' &&
1275 isodigit(bp[1]) && (bp[1] <= '3') &&
1276 isodigit(bp[2]) &&
1277 isodigit(bp[3])) {
1278 int byte = (*++bp -'0');
1279 bp++;
1280 byte = (byte << 3) | (*bp++ - '0');
1281 byte = (byte << 3) | (*bp++ - '0');
1282 *dest++ = byte;
1283 len++;
1284 } else {
1285 *dest++ = *bp++;
1286 len++;
1291 if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1292 return -1;
1293 while (*bp == ' ') bp++;
1294 *bpp = bp;
1295 *dest = '\0';
1296 return len;
1298 EXPORT_SYMBOL_GPL(qword_get);
1302 * support /proc/net/rpc/$CACHENAME/content
1303 * as a seqfile.
1304 * We call ->cache_show passing NULL for the item to
1305 * get a header, then pass each real item in the cache
1308 static void *__cache_seq_start(struct seq_file *m, loff_t *pos)
1310 loff_t n = *pos;
1311 unsigned int hash, entry;
1312 struct cache_head *ch;
1313 struct cache_detail *cd = m->private;
1315 if (!n--)
1316 return SEQ_START_TOKEN;
1317 hash = n >> 32;
1318 entry = n & ((1LL<<32) - 1);
1320 hlist_for_each_entry_rcu(ch, &cd->hash_table[hash], cache_list)
1321 if (!entry--)
1322 return ch;
1323 n &= ~((1LL<<32) - 1);
1324 do {
1325 hash++;
1326 n += 1LL<<32;
1327 } while(hash < cd->hash_size &&
1328 hlist_empty(&cd->hash_table[hash]));
1329 if (hash >= cd->hash_size)
1330 return NULL;
1331 *pos = n+1;
1332 return hlist_entry_safe(rcu_dereference_raw(
1333 hlist_first_rcu(&cd->hash_table[hash])),
1334 struct cache_head, cache_list);
1337 static void *cache_seq_next(struct seq_file *m, void *p, loff_t *pos)
1339 struct cache_head *ch = p;
1340 int hash = (*pos >> 32);
1341 struct cache_detail *cd = m->private;
1343 if (p == SEQ_START_TOKEN)
1344 hash = 0;
1345 else if (ch->cache_list.next == NULL) {
1346 hash++;
1347 *pos += 1LL<<32;
1348 } else {
1349 ++*pos;
1350 return hlist_entry_safe(rcu_dereference_raw(
1351 hlist_next_rcu(&ch->cache_list)),
1352 struct cache_head, cache_list);
1354 *pos &= ~((1LL<<32) - 1);
1355 while (hash < cd->hash_size &&
1356 hlist_empty(&cd->hash_table[hash])) {
1357 hash++;
1358 *pos += 1LL<<32;
1360 if (hash >= cd->hash_size)
1361 return NULL;
1362 ++*pos;
1363 return hlist_entry_safe(rcu_dereference_raw(
1364 hlist_first_rcu(&cd->hash_table[hash])),
1365 struct cache_head, cache_list);
1367 EXPORT_SYMBOL_GPL(cache_seq_next);
1369 void *cache_seq_start_rcu(struct seq_file *m, loff_t *pos)
1370 __acquires(RCU)
1372 rcu_read_lock();
1373 return __cache_seq_start(m, pos);
1375 EXPORT_SYMBOL_GPL(cache_seq_start_rcu);
1377 void *cache_seq_next_rcu(struct seq_file *file, void *p, loff_t *pos)
1379 return cache_seq_next(file, p, pos);
1381 EXPORT_SYMBOL_GPL(cache_seq_next_rcu);
1383 void cache_seq_stop_rcu(struct seq_file *m, void *p)
1384 __releases(RCU)
1386 rcu_read_unlock();
1388 EXPORT_SYMBOL_GPL(cache_seq_stop_rcu);
1390 static int c_show(struct seq_file *m, void *p)
1392 struct cache_head *cp = p;
1393 struct cache_detail *cd = m->private;
1395 if (p == SEQ_START_TOKEN)
1396 return cd->cache_show(m, cd, NULL);
1398 ifdebug(CACHE)
1399 seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1400 convert_to_wallclock(cp->expiry_time),
1401 kref_read(&cp->ref), cp->flags);
1402 cache_get(cp);
1403 if (cache_check(cd, cp, NULL))
1404 /* cache_check does a cache_put on failure */
1405 seq_printf(m, "# ");
1406 else {
1407 if (cache_is_expired(cd, cp))
1408 seq_printf(m, "# ");
1409 cache_put(cp, cd);
1412 return cd->cache_show(m, cd, cp);
1415 static const struct seq_operations cache_content_op = {
1416 .start = cache_seq_start_rcu,
1417 .next = cache_seq_next_rcu,
1418 .stop = cache_seq_stop_rcu,
1419 .show = c_show,
1422 static int content_open(struct inode *inode, struct file *file,
1423 struct cache_detail *cd)
1425 struct seq_file *seq;
1426 int err;
1428 if (!cd || !try_module_get(cd->owner))
1429 return -EACCES;
1431 err = seq_open(file, &cache_content_op);
1432 if (err) {
1433 module_put(cd->owner);
1434 return err;
1437 seq = file->private_data;
1438 seq->private = cd;
1439 return 0;
1442 static int content_release(struct inode *inode, struct file *file,
1443 struct cache_detail *cd)
1445 int ret = seq_release(inode, file);
1446 module_put(cd->owner);
1447 return ret;
1450 static int open_flush(struct inode *inode, struct file *file,
1451 struct cache_detail *cd)
1453 if (!cd || !try_module_get(cd->owner))
1454 return -EACCES;
1455 return nonseekable_open(inode, file);
1458 static int release_flush(struct inode *inode, struct file *file,
1459 struct cache_detail *cd)
1461 module_put(cd->owner);
1462 return 0;
1465 static ssize_t read_flush(struct file *file, char __user *buf,
1466 size_t count, loff_t *ppos,
1467 struct cache_detail *cd)
1469 char tbuf[22];
1470 size_t len;
1472 len = snprintf(tbuf, sizeof(tbuf), "%lu\n",
1473 convert_to_wallclock(cd->flush_time));
1474 return simple_read_from_buffer(buf, count, ppos, tbuf, len);
1477 static ssize_t write_flush(struct file *file, const char __user *buf,
1478 size_t count, loff_t *ppos,
1479 struct cache_detail *cd)
1481 char tbuf[20];
1482 char *ep;
1483 time_t now;
1485 if (*ppos || count > sizeof(tbuf)-1)
1486 return -EINVAL;
1487 if (copy_from_user(tbuf, buf, count))
1488 return -EFAULT;
1489 tbuf[count] = 0;
1490 simple_strtoul(tbuf, &ep, 0);
1491 if (*ep && *ep != '\n')
1492 return -EINVAL;
1493 /* Note that while we check that 'buf' holds a valid number,
1494 * we always ignore the value and just flush everything.
1495 * Making use of the number leads to races.
1498 now = seconds_since_boot();
1499 /* Always flush everything, so behave like cache_purge()
1500 * Do this by advancing flush_time to the current time,
1501 * or by one second if it has already reached the current time.
1502 * Newly added cache entries will always have ->last_refresh greater
1503 * that ->flush_time, so they don't get flushed prematurely.
1506 if (cd->flush_time >= now)
1507 now = cd->flush_time + 1;
1509 cd->flush_time = now;
1510 cd->nextcheck = now;
1511 cache_flush();
1513 *ppos += count;
1514 return count;
1517 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1518 size_t count, loff_t *ppos)
1520 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1522 return cache_read(filp, buf, count, ppos, cd);
1525 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1526 size_t count, loff_t *ppos)
1528 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1530 return cache_write(filp, buf, count, ppos, cd);
1533 static __poll_t cache_poll_procfs(struct file *filp, poll_table *wait)
1535 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1537 return cache_poll(filp, wait, cd);
1540 static long cache_ioctl_procfs(struct file *filp,
1541 unsigned int cmd, unsigned long arg)
1543 struct inode *inode = file_inode(filp);
1544 struct cache_detail *cd = PDE_DATA(inode);
1546 return cache_ioctl(inode, filp, cmd, arg, cd);
1549 static int cache_open_procfs(struct inode *inode, struct file *filp)
1551 struct cache_detail *cd = PDE_DATA(inode);
1553 return cache_open(inode, filp, cd);
1556 static int cache_release_procfs(struct inode *inode, struct file *filp)
1558 struct cache_detail *cd = PDE_DATA(inode);
1560 return cache_release(inode, filp, cd);
1563 static const struct file_operations cache_file_operations_procfs = {
1564 .owner = THIS_MODULE,
1565 .llseek = no_llseek,
1566 .read = cache_read_procfs,
1567 .write = cache_write_procfs,
1568 .poll = cache_poll_procfs,
1569 .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1570 .open = cache_open_procfs,
1571 .release = cache_release_procfs,
1574 static int content_open_procfs(struct inode *inode, struct file *filp)
1576 struct cache_detail *cd = PDE_DATA(inode);
1578 return content_open(inode, filp, cd);
1581 static int content_release_procfs(struct inode *inode, struct file *filp)
1583 struct cache_detail *cd = PDE_DATA(inode);
1585 return content_release(inode, filp, cd);
1588 static const struct file_operations content_file_operations_procfs = {
1589 .open = content_open_procfs,
1590 .read = seq_read,
1591 .llseek = seq_lseek,
1592 .release = content_release_procfs,
1595 static int open_flush_procfs(struct inode *inode, struct file *filp)
1597 struct cache_detail *cd = PDE_DATA(inode);
1599 return open_flush(inode, filp, cd);
1602 static int release_flush_procfs(struct inode *inode, struct file *filp)
1604 struct cache_detail *cd = PDE_DATA(inode);
1606 return release_flush(inode, filp, cd);
1609 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1610 size_t count, loff_t *ppos)
1612 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1614 return read_flush(filp, buf, count, ppos, cd);
1617 static ssize_t write_flush_procfs(struct file *filp,
1618 const char __user *buf,
1619 size_t count, loff_t *ppos)
1621 struct cache_detail *cd = PDE_DATA(file_inode(filp));
1623 return write_flush(filp, buf, count, ppos, cd);
1626 static const struct file_operations cache_flush_operations_procfs = {
1627 .open = open_flush_procfs,
1628 .read = read_flush_procfs,
1629 .write = write_flush_procfs,
1630 .release = release_flush_procfs,
1631 .llseek = no_llseek,
1634 static void remove_cache_proc_entries(struct cache_detail *cd)
1636 if (cd->procfs) {
1637 proc_remove(cd->procfs);
1638 cd->procfs = NULL;
1642 #ifdef CONFIG_PROC_FS
1643 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1645 struct proc_dir_entry *p;
1646 struct sunrpc_net *sn;
1648 sn = net_generic(net, sunrpc_net_id);
1649 cd->procfs = proc_mkdir(cd->name, sn->proc_net_rpc);
1650 if (cd->procfs == NULL)
1651 goto out_nomem;
1653 p = proc_create_data("flush", S_IFREG | 0600,
1654 cd->procfs, &cache_flush_operations_procfs, cd);
1655 if (p == NULL)
1656 goto out_nomem;
1658 if (cd->cache_request || cd->cache_parse) {
1659 p = proc_create_data("channel", S_IFREG | 0600, cd->procfs,
1660 &cache_file_operations_procfs, cd);
1661 if (p == NULL)
1662 goto out_nomem;
1664 if (cd->cache_show) {
1665 p = proc_create_data("content", S_IFREG | 0400, cd->procfs,
1666 &content_file_operations_procfs, cd);
1667 if (p == NULL)
1668 goto out_nomem;
1670 return 0;
1671 out_nomem:
1672 remove_cache_proc_entries(cd);
1673 return -ENOMEM;
1675 #else /* CONFIG_PROC_FS */
1676 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1678 return 0;
1680 #endif
1682 void __init cache_initialize(void)
1684 INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1687 int cache_register_net(struct cache_detail *cd, struct net *net)
1689 int ret;
1691 sunrpc_init_cache_detail(cd);
1692 ret = create_cache_proc_entries(cd, net);
1693 if (ret)
1694 sunrpc_destroy_cache_detail(cd);
1695 return ret;
1697 EXPORT_SYMBOL_GPL(cache_register_net);
1699 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1701 remove_cache_proc_entries(cd);
1702 sunrpc_destroy_cache_detail(cd);
1704 EXPORT_SYMBOL_GPL(cache_unregister_net);
1706 struct cache_detail *cache_create_net(const struct cache_detail *tmpl, struct net *net)
1708 struct cache_detail *cd;
1709 int i;
1711 cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1712 if (cd == NULL)
1713 return ERR_PTR(-ENOMEM);
1715 cd->hash_table = kcalloc(cd->hash_size, sizeof(struct hlist_head),
1716 GFP_KERNEL);
1717 if (cd->hash_table == NULL) {
1718 kfree(cd);
1719 return ERR_PTR(-ENOMEM);
1722 for (i = 0; i < cd->hash_size; i++)
1723 INIT_HLIST_HEAD(&cd->hash_table[i]);
1724 cd->net = net;
1725 return cd;
1727 EXPORT_SYMBOL_GPL(cache_create_net);
1729 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1731 kfree(cd->hash_table);
1732 kfree(cd);
1734 EXPORT_SYMBOL_GPL(cache_destroy_net);
1736 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1737 size_t count, loff_t *ppos)
1739 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1741 return cache_read(filp, buf, count, ppos, cd);
1744 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1745 size_t count, loff_t *ppos)
1747 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1749 return cache_write(filp, buf, count, ppos, cd);
1752 static __poll_t cache_poll_pipefs(struct file *filp, poll_table *wait)
1754 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1756 return cache_poll(filp, wait, cd);
1759 static long cache_ioctl_pipefs(struct file *filp,
1760 unsigned int cmd, unsigned long arg)
1762 struct inode *inode = file_inode(filp);
1763 struct cache_detail *cd = RPC_I(inode)->private;
1765 return cache_ioctl(inode, filp, cmd, arg, cd);
1768 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1770 struct cache_detail *cd = RPC_I(inode)->private;
1772 return cache_open(inode, filp, cd);
1775 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1777 struct cache_detail *cd = RPC_I(inode)->private;
1779 return cache_release(inode, filp, cd);
1782 const struct file_operations cache_file_operations_pipefs = {
1783 .owner = THIS_MODULE,
1784 .llseek = no_llseek,
1785 .read = cache_read_pipefs,
1786 .write = cache_write_pipefs,
1787 .poll = cache_poll_pipefs,
1788 .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1789 .open = cache_open_pipefs,
1790 .release = cache_release_pipefs,
1793 static int content_open_pipefs(struct inode *inode, struct file *filp)
1795 struct cache_detail *cd = RPC_I(inode)->private;
1797 return content_open(inode, filp, cd);
1800 static int content_release_pipefs(struct inode *inode, struct file *filp)
1802 struct cache_detail *cd = RPC_I(inode)->private;
1804 return content_release(inode, filp, cd);
1807 const struct file_operations content_file_operations_pipefs = {
1808 .open = content_open_pipefs,
1809 .read = seq_read,
1810 .llseek = seq_lseek,
1811 .release = content_release_pipefs,
1814 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1816 struct cache_detail *cd = RPC_I(inode)->private;
1818 return open_flush(inode, filp, cd);
1821 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1823 struct cache_detail *cd = RPC_I(inode)->private;
1825 return release_flush(inode, filp, cd);
1828 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1829 size_t count, loff_t *ppos)
1831 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1833 return read_flush(filp, buf, count, ppos, cd);
1836 static ssize_t write_flush_pipefs(struct file *filp,
1837 const char __user *buf,
1838 size_t count, loff_t *ppos)
1840 struct cache_detail *cd = RPC_I(file_inode(filp))->private;
1842 return write_flush(filp, buf, count, ppos, cd);
1845 const struct file_operations cache_flush_operations_pipefs = {
1846 .open = open_flush_pipefs,
1847 .read = read_flush_pipefs,
1848 .write = write_flush_pipefs,
1849 .release = release_flush_pipefs,
1850 .llseek = no_llseek,
1853 int sunrpc_cache_register_pipefs(struct dentry *parent,
1854 const char *name, umode_t umode,
1855 struct cache_detail *cd)
1857 struct dentry *dir = rpc_create_cache_dir(parent, name, umode, cd);
1858 if (IS_ERR(dir))
1859 return PTR_ERR(dir);
1860 cd->pipefs = dir;
1861 return 0;
1863 EXPORT_SYMBOL_GPL(sunrpc_cache_register_pipefs);
1865 void sunrpc_cache_unregister_pipefs(struct cache_detail *cd)
1867 if (cd->pipefs) {
1868 rpc_remove_cache_dir(cd->pipefs);
1869 cd->pipefs = NULL;
1872 EXPORT_SYMBOL_GPL(sunrpc_cache_unregister_pipefs);
1874 void sunrpc_cache_unhash(struct cache_detail *cd, struct cache_head *h)
1876 spin_lock(&cd->hash_lock);
1877 if (!hlist_unhashed(&h->cache_list)){
1878 hlist_del_init_rcu(&h->cache_list);
1879 cd->entries--;
1880 spin_unlock(&cd->hash_lock);
1881 cache_put(h, cd);
1882 } else
1883 spin_unlock(&cd->hash_lock);
1885 EXPORT_SYMBOL_GPL(sunrpc_cache_unhash);