i2c: dev: prevent adapter retries and timeout being set as minus value
[linux/fpc-iii.git] / crypto / mcryptd.c
blobf620fe09d20ad7284b0d2ba2bed61bd36738bd1a
1 /*
2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/slab.h>
28 #include <linux/hardirq.h>
30 #define MCRYPTD_MAX_CPU_QLEN 100
31 #define MCRYPTD_BATCH 9
33 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
34 unsigned int tail);
36 struct mcryptd_flush_list {
37 struct list_head list;
38 struct mutex lock;
41 static struct mcryptd_flush_list __percpu *mcryptd_flist;
43 struct hashd_instance_ctx {
44 struct crypto_shash_spawn spawn;
45 struct mcryptd_queue *queue;
48 static void mcryptd_queue_worker(struct work_struct *work);
50 void mcryptd_arm_flusher(struct mcryptd_alg_cstate *cstate, unsigned long delay)
52 struct mcryptd_flush_list *flist;
54 if (!cstate->flusher_engaged) {
55 /* put the flusher on the flush list */
56 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
57 mutex_lock(&flist->lock);
58 list_add_tail(&cstate->flush_list, &flist->list);
59 cstate->flusher_engaged = true;
60 cstate->next_flush = jiffies + delay;
61 queue_delayed_work_on(smp_processor_id(), kcrypto_wq,
62 &cstate->flush, delay);
63 mutex_unlock(&flist->lock);
66 EXPORT_SYMBOL(mcryptd_arm_flusher);
68 static int mcryptd_init_queue(struct mcryptd_queue *queue,
69 unsigned int max_cpu_qlen)
71 int cpu;
72 struct mcryptd_cpu_queue *cpu_queue;
74 queue->cpu_queue = alloc_percpu(struct mcryptd_cpu_queue);
75 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue, queue->cpu_queue);
76 if (!queue->cpu_queue)
77 return -ENOMEM;
78 for_each_possible_cpu(cpu) {
79 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
80 pr_debug("cpu_queue #%d %p\n", cpu, queue->cpu_queue);
81 crypto_init_queue(&cpu_queue->queue, max_cpu_qlen);
82 INIT_WORK(&cpu_queue->work, mcryptd_queue_worker);
83 spin_lock_init(&cpu_queue->q_lock);
85 return 0;
88 static void mcryptd_fini_queue(struct mcryptd_queue *queue)
90 int cpu;
91 struct mcryptd_cpu_queue *cpu_queue;
93 for_each_possible_cpu(cpu) {
94 cpu_queue = per_cpu_ptr(queue->cpu_queue, cpu);
95 BUG_ON(cpu_queue->queue.qlen);
97 free_percpu(queue->cpu_queue);
100 static int mcryptd_enqueue_request(struct mcryptd_queue *queue,
101 struct crypto_async_request *request,
102 struct mcryptd_hash_request_ctx *rctx)
104 int cpu, err;
105 struct mcryptd_cpu_queue *cpu_queue;
107 cpu_queue = raw_cpu_ptr(queue->cpu_queue);
108 spin_lock(&cpu_queue->q_lock);
109 cpu = smp_processor_id();
110 rctx->tag.cpu = smp_processor_id();
112 err = crypto_enqueue_request(&cpu_queue->queue, request);
113 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
114 cpu, cpu_queue, request);
115 spin_unlock(&cpu_queue->q_lock);
116 queue_work_on(cpu, kcrypto_wq, &cpu_queue->work);
118 return err;
122 * Try to opportunisticlly flush the partially completed jobs if
123 * crypto daemon is the only task running.
125 static void mcryptd_opportunistic_flush(void)
127 struct mcryptd_flush_list *flist;
128 struct mcryptd_alg_cstate *cstate;
130 flist = per_cpu_ptr(mcryptd_flist, smp_processor_id());
131 while (single_task_running()) {
132 mutex_lock(&flist->lock);
133 if (list_empty(&flist->list)) {
134 mutex_unlock(&flist->lock);
135 return;
137 cstate = list_entry(flist->list.next,
138 struct mcryptd_alg_cstate, flush_list);
139 if (!cstate->flusher_engaged) {
140 mutex_unlock(&flist->lock);
141 return;
143 list_del(&cstate->flush_list);
144 cstate->flusher_engaged = false;
145 mutex_unlock(&flist->lock);
146 cstate->alg_state->flusher(cstate);
151 * Called in workqueue context, do one real cryption work (via
152 * req->complete) and reschedule itself if there are more work to
153 * do.
155 static void mcryptd_queue_worker(struct work_struct *work)
157 struct mcryptd_cpu_queue *cpu_queue;
158 struct crypto_async_request *req, *backlog;
159 int i;
162 * Need to loop through more than once for multi-buffer to
163 * be effective.
166 cpu_queue = container_of(work, struct mcryptd_cpu_queue, work);
167 i = 0;
168 while (i < MCRYPTD_BATCH || single_task_running()) {
170 spin_lock_bh(&cpu_queue->q_lock);
171 backlog = crypto_get_backlog(&cpu_queue->queue);
172 req = crypto_dequeue_request(&cpu_queue->queue);
173 spin_unlock_bh(&cpu_queue->q_lock);
175 if (!req) {
176 mcryptd_opportunistic_flush();
177 return;
180 if (backlog)
181 backlog->complete(backlog, -EINPROGRESS);
182 req->complete(req, 0);
183 if (!cpu_queue->queue.qlen)
184 return;
185 ++i;
187 if (cpu_queue->queue.qlen)
188 queue_work_on(smp_processor_id(), kcrypto_wq, &cpu_queue->work);
191 void mcryptd_flusher(struct work_struct *__work)
193 struct mcryptd_alg_cstate *alg_cpu_state;
194 struct mcryptd_alg_state *alg_state;
195 struct mcryptd_flush_list *flist;
196 int cpu;
198 cpu = smp_processor_id();
199 alg_cpu_state = container_of(to_delayed_work(__work),
200 struct mcryptd_alg_cstate, flush);
201 alg_state = alg_cpu_state->alg_state;
202 if (alg_cpu_state->cpu != cpu)
203 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
204 cpu, alg_cpu_state->cpu);
206 if (alg_cpu_state->flusher_engaged) {
207 flist = per_cpu_ptr(mcryptd_flist, cpu);
208 mutex_lock(&flist->lock);
209 list_del(&alg_cpu_state->flush_list);
210 alg_cpu_state->flusher_engaged = false;
211 mutex_unlock(&flist->lock);
212 alg_state->flusher(alg_cpu_state);
215 EXPORT_SYMBOL_GPL(mcryptd_flusher);
217 static inline struct mcryptd_queue *mcryptd_get_queue(struct crypto_tfm *tfm)
219 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
220 struct mcryptd_instance_ctx *ictx = crypto_instance_ctx(inst);
222 return ictx->queue;
225 static void *mcryptd_alloc_instance(struct crypto_alg *alg, unsigned int head,
226 unsigned int tail)
228 char *p;
229 struct crypto_instance *inst;
230 int err;
232 p = kzalloc(head + sizeof(*inst) + tail, GFP_KERNEL);
233 if (!p)
234 return ERR_PTR(-ENOMEM);
236 inst = (void *)(p + head);
238 err = -ENAMETOOLONG;
239 if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
240 "mcryptd(%s)", alg->cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
241 goto out_free_inst;
243 memcpy(inst->alg.cra_name, alg->cra_name, CRYPTO_MAX_ALG_NAME);
245 inst->alg.cra_priority = alg->cra_priority + 50;
246 inst->alg.cra_blocksize = alg->cra_blocksize;
247 inst->alg.cra_alignmask = alg->cra_alignmask;
249 out:
250 return p;
252 out_free_inst:
253 kfree(p);
254 p = ERR_PTR(err);
255 goto out;
258 static inline bool mcryptd_check_internal(struct rtattr **tb, u32 *type,
259 u32 *mask)
261 struct crypto_attr_type *algt;
263 algt = crypto_get_attr_type(tb);
264 if (IS_ERR(algt))
265 return false;
267 *type |= algt->type & CRYPTO_ALG_INTERNAL;
268 *mask |= algt->mask & CRYPTO_ALG_INTERNAL;
270 if (*type & *mask & CRYPTO_ALG_INTERNAL)
271 return true;
272 else
273 return false;
276 static int mcryptd_hash_init_tfm(struct crypto_tfm *tfm)
278 struct crypto_instance *inst = crypto_tfm_alg_instance(tfm);
279 struct hashd_instance_ctx *ictx = crypto_instance_ctx(inst);
280 struct crypto_shash_spawn *spawn = &ictx->spawn;
281 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
282 struct crypto_shash *hash;
284 hash = crypto_spawn_shash(spawn);
285 if (IS_ERR(hash))
286 return PTR_ERR(hash);
288 ctx->child = hash;
289 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
290 sizeof(struct mcryptd_hash_request_ctx) +
291 crypto_shash_descsize(hash));
292 return 0;
295 static void mcryptd_hash_exit_tfm(struct crypto_tfm *tfm)
297 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(tfm);
299 crypto_free_shash(ctx->child);
302 static int mcryptd_hash_setkey(struct crypto_ahash *parent,
303 const u8 *key, unsigned int keylen)
305 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(parent);
306 struct crypto_shash *child = ctx->child;
307 int err;
309 crypto_shash_clear_flags(child, CRYPTO_TFM_REQ_MASK);
310 crypto_shash_set_flags(child, crypto_ahash_get_flags(parent) &
311 CRYPTO_TFM_REQ_MASK);
312 err = crypto_shash_setkey(child, key, keylen);
313 crypto_ahash_set_flags(parent, crypto_shash_get_flags(child) &
314 CRYPTO_TFM_RES_MASK);
315 return err;
318 static int mcryptd_hash_enqueue(struct ahash_request *req,
319 crypto_completion_t complete)
321 int ret;
323 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
324 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
325 struct mcryptd_queue *queue =
326 mcryptd_get_queue(crypto_ahash_tfm(tfm));
328 rctx->complete = req->base.complete;
329 req->base.complete = complete;
331 ret = mcryptd_enqueue_request(queue, &req->base, rctx);
333 return ret;
336 static void mcryptd_hash_init(struct crypto_async_request *req_async, int err)
338 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
339 struct crypto_shash *child = ctx->child;
340 struct ahash_request *req = ahash_request_cast(req_async);
341 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
342 struct shash_desc *desc = &rctx->desc;
344 if (unlikely(err == -EINPROGRESS))
345 goto out;
347 desc->tfm = child;
348 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
350 err = crypto_shash_init(desc);
352 req->base.complete = rctx->complete;
354 out:
355 local_bh_disable();
356 rctx->complete(&req->base, err);
357 local_bh_enable();
360 static int mcryptd_hash_init_enqueue(struct ahash_request *req)
362 return mcryptd_hash_enqueue(req, mcryptd_hash_init);
365 static void mcryptd_hash_update(struct crypto_async_request *req_async, int err)
367 struct ahash_request *req = ahash_request_cast(req_async);
368 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
370 if (unlikely(err == -EINPROGRESS))
371 goto out;
373 err = shash_ahash_mcryptd_update(req, &rctx->desc);
374 if (err) {
375 req->base.complete = rctx->complete;
376 goto out;
379 return;
380 out:
381 local_bh_disable();
382 rctx->complete(&req->base, err);
383 local_bh_enable();
386 static int mcryptd_hash_update_enqueue(struct ahash_request *req)
388 return mcryptd_hash_enqueue(req, mcryptd_hash_update);
391 static void mcryptd_hash_final(struct crypto_async_request *req_async, int err)
393 struct ahash_request *req = ahash_request_cast(req_async);
394 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
396 if (unlikely(err == -EINPROGRESS))
397 goto out;
399 err = shash_ahash_mcryptd_final(req, &rctx->desc);
400 if (err) {
401 req->base.complete = rctx->complete;
402 goto out;
405 return;
406 out:
407 local_bh_disable();
408 rctx->complete(&req->base, err);
409 local_bh_enable();
412 static int mcryptd_hash_final_enqueue(struct ahash_request *req)
414 return mcryptd_hash_enqueue(req, mcryptd_hash_final);
417 static void mcryptd_hash_finup(struct crypto_async_request *req_async, int err)
419 struct ahash_request *req = ahash_request_cast(req_async);
420 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
422 if (unlikely(err == -EINPROGRESS))
423 goto out;
425 err = shash_ahash_mcryptd_finup(req, &rctx->desc);
427 if (err) {
428 req->base.complete = rctx->complete;
429 goto out;
432 return;
433 out:
434 local_bh_disable();
435 rctx->complete(&req->base, err);
436 local_bh_enable();
439 static int mcryptd_hash_finup_enqueue(struct ahash_request *req)
441 return mcryptd_hash_enqueue(req, mcryptd_hash_finup);
444 static void mcryptd_hash_digest(struct crypto_async_request *req_async, int err)
446 struct mcryptd_hash_ctx *ctx = crypto_tfm_ctx(req_async->tfm);
447 struct crypto_shash *child = ctx->child;
448 struct ahash_request *req = ahash_request_cast(req_async);
449 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
450 struct shash_desc *desc = &rctx->desc;
452 if (unlikely(err == -EINPROGRESS))
453 goto out;
455 desc->tfm = child;
456 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; /* check this again */
458 err = shash_ahash_mcryptd_digest(req, desc);
460 if (err) {
461 req->base.complete = rctx->complete;
462 goto out;
465 return;
466 out:
467 local_bh_disable();
468 rctx->complete(&req->base, err);
469 local_bh_enable();
472 static int mcryptd_hash_digest_enqueue(struct ahash_request *req)
474 return mcryptd_hash_enqueue(req, mcryptd_hash_digest);
477 static int mcryptd_hash_export(struct ahash_request *req, void *out)
479 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
481 return crypto_shash_export(&rctx->desc, out);
484 static int mcryptd_hash_import(struct ahash_request *req, const void *in)
486 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
488 return crypto_shash_import(&rctx->desc, in);
491 static int mcryptd_create_hash(struct crypto_template *tmpl, struct rtattr **tb,
492 struct mcryptd_queue *queue)
494 struct hashd_instance_ctx *ctx;
495 struct ahash_instance *inst;
496 struct shash_alg *salg;
497 struct crypto_alg *alg;
498 u32 type = 0;
499 u32 mask = 0;
500 int err;
502 if (!mcryptd_check_internal(tb, &type, &mask))
503 return -EINVAL;
505 salg = shash_attr_alg(tb[1], type, mask);
506 if (IS_ERR(salg))
507 return PTR_ERR(salg);
509 alg = &salg->base;
510 pr_debug("crypto: mcryptd hash alg: %s\n", alg->cra_name);
511 inst = mcryptd_alloc_instance(alg, ahash_instance_headroom(),
512 sizeof(*ctx));
513 err = PTR_ERR(inst);
514 if (IS_ERR(inst))
515 goto out_put_alg;
517 ctx = ahash_instance_ctx(inst);
518 ctx->queue = queue;
520 err = crypto_init_shash_spawn(&ctx->spawn, salg,
521 ahash_crypto_instance(inst));
522 if (err)
523 goto out_free_inst;
525 type = CRYPTO_ALG_ASYNC;
526 if (alg->cra_flags & CRYPTO_ALG_INTERNAL)
527 type |= CRYPTO_ALG_INTERNAL;
528 inst->alg.halg.base.cra_flags = type;
530 inst->alg.halg.digestsize = salg->digestsize;
531 inst->alg.halg.statesize = salg->statesize;
532 inst->alg.halg.base.cra_ctxsize = sizeof(struct mcryptd_hash_ctx);
534 inst->alg.halg.base.cra_init = mcryptd_hash_init_tfm;
535 inst->alg.halg.base.cra_exit = mcryptd_hash_exit_tfm;
537 inst->alg.init = mcryptd_hash_init_enqueue;
538 inst->alg.update = mcryptd_hash_update_enqueue;
539 inst->alg.final = mcryptd_hash_final_enqueue;
540 inst->alg.finup = mcryptd_hash_finup_enqueue;
541 inst->alg.export = mcryptd_hash_export;
542 inst->alg.import = mcryptd_hash_import;
543 inst->alg.setkey = mcryptd_hash_setkey;
544 inst->alg.digest = mcryptd_hash_digest_enqueue;
546 err = ahash_register_instance(tmpl, inst);
547 if (err) {
548 crypto_drop_shash(&ctx->spawn);
549 out_free_inst:
550 kfree(inst);
553 out_put_alg:
554 crypto_mod_put(alg);
555 return err;
558 static struct mcryptd_queue mqueue;
560 static int mcryptd_create(struct crypto_template *tmpl, struct rtattr **tb)
562 struct crypto_attr_type *algt;
564 algt = crypto_get_attr_type(tb);
565 if (IS_ERR(algt))
566 return PTR_ERR(algt);
568 switch (algt->type & algt->mask & CRYPTO_ALG_TYPE_MASK) {
569 case CRYPTO_ALG_TYPE_DIGEST:
570 return mcryptd_create_hash(tmpl, tb, &mqueue);
571 break;
574 return -EINVAL;
577 static void mcryptd_free(struct crypto_instance *inst)
579 struct mcryptd_instance_ctx *ctx = crypto_instance_ctx(inst);
580 struct hashd_instance_ctx *hctx = crypto_instance_ctx(inst);
582 switch (inst->alg.cra_flags & CRYPTO_ALG_TYPE_MASK) {
583 case CRYPTO_ALG_TYPE_AHASH:
584 crypto_drop_shash(&hctx->spawn);
585 kfree(ahash_instance(inst));
586 return;
587 default:
588 crypto_drop_spawn(&ctx->spawn);
589 kfree(inst);
593 static struct crypto_template mcryptd_tmpl = {
594 .name = "mcryptd",
595 .create = mcryptd_create,
596 .free = mcryptd_free,
597 .module = THIS_MODULE,
600 struct mcryptd_ahash *mcryptd_alloc_ahash(const char *alg_name,
601 u32 type, u32 mask)
603 char mcryptd_alg_name[CRYPTO_MAX_ALG_NAME];
604 struct crypto_ahash *tfm;
606 if (snprintf(mcryptd_alg_name, CRYPTO_MAX_ALG_NAME,
607 "mcryptd(%s)", alg_name) >= CRYPTO_MAX_ALG_NAME)
608 return ERR_PTR(-EINVAL);
609 tfm = crypto_alloc_ahash(mcryptd_alg_name, type, mask);
610 if (IS_ERR(tfm))
611 return ERR_CAST(tfm);
612 if (tfm->base.__crt_alg->cra_module != THIS_MODULE) {
613 crypto_free_ahash(tfm);
614 return ERR_PTR(-EINVAL);
617 return __mcryptd_ahash_cast(tfm);
619 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash);
621 int shash_ahash_mcryptd_digest(struct ahash_request *req,
622 struct shash_desc *desc)
624 int err;
626 err = crypto_shash_init(desc) ?:
627 shash_ahash_mcryptd_finup(req, desc);
629 return err;
631 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_digest);
633 int shash_ahash_mcryptd_update(struct ahash_request *req,
634 struct shash_desc *desc)
636 struct crypto_shash *tfm = desc->tfm;
637 struct shash_alg *shash = crypto_shash_alg(tfm);
639 /* alignment is to be done by multi-buffer crypto algorithm if needed */
641 return shash->update(desc, NULL, 0);
643 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_update);
645 int shash_ahash_mcryptd_finup(struct ahash_request *req,
646 struct shash_desc *desc)
648 struct crypto_shash *tfm = desc->tfm;
649 struct shash_alg *shash = crypto_shash_alg(tfm);
651 /* alignment is to be done by multi-buffer crypto algorithm if needed */
653 return shash->finup(desc, NULL, 0, req->result);
655 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_finup);
657 int shash_ahash_mcryptd_final(struct ahash_request *req,
658 struct shash_desc *desc)
660 struct crypto_shash *tfm = desc->tfm;
661 struct shash_alg *shash = crypto_shash_alg(tfm);
663 /* alignment is to be done by multi-buffer crypto algorithm if needed */
665 return shash->final(desc, req->result);
667 EXPORT_SYMBOL_GPL(shash_ahash_mcryptd_final);
669 struct crypto_shash *mcryptd_ahash_child(struct mcryptd_ahash *tfm)
671 struct mcryptd_hash_ctx *ctx = crypto_ahash_ctx(&tfm->base);
673 return ctx->child;
675 EXPORT_SYMBOL_GPL(mcryptd_ahash_child);
677 struct shash_desc *mcryptd_shash_desc(struct ahash_request *req)
679 struct mcryptd_hash_request_ctx *rctx = ahash_request_ctx(req);
680 return &rctx->desc;
682 EXPORT_SYMBOL_GPL(mcryptd_shash_desc);
684 void mcryptd_free_ahash(struct mcryptd_ahash *tfm)
686 crypto_free_ahash(&tfm->base);
688 EXPORT_SYMBOL_GPL(mcryptd_free_ahash);
691 static int __init mcryptd_init(void)
693 int err, cpu;
694 struct mcryptd_flush_list *flist;
696 mcryptd_flist = alloc_percpu(struct mcryptd_flush_list);
697 for_each_possible_cpu(cpu) {
698 flist = per_cpu_ptr(mcryptd_flist, cpu);
699 INIT_LIST_HEAD(&flist->list);
700 mutex_init(&flist->lock);
703 err = mcryptd_init_queue(&mqueue, MCRYPTD_MAX_CPU_QLEN);
704 if (err) {
705 free_percpu(mcryptd_flist);
706 return err;
709 err = crypto_register_template(&mcryptd_tmpl);
710 if (err) {
711 mcryptd_fini_queue(&mqueue);
712 free_percpu(mcryptd_flist);
715 return err;
718 static void __exit mcryptd_exit(void)
720 mcryptd_fini_queue(&mqueue);
721 crypto_unregister_template(&mcryptd_tmpl);
722 free_percpu(mcryptd_flist);
725 subsys_initcall(mcryptd_init);
726 module_exit(mcryptd_exit);
728 MODULE_LICENSE("GPL");
729 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
730 MODULE_ALIAS_CRYPTO("mcryptd");