drm/radeon: add a PX quirk for another K53TK variant
[linux/fpc-iii.git] / mm / gup.c
blobc63a0341ae38238820a0a972782331b468704a42
1 #include <linux/kernel.h>
2 #include <linux/errno.h>
3 #include <linux/err.h>
4 #include <linux/spinlock.h>
6 #include <linux/mm.h>
7 #include <linux/memremap.h>
8 #include <linux/pagemap.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/swapops.h>
13 #include <linux/sched.h>
14 #include <linux/rwsem.h>
15 #include <linux/hugetlb.h>
17 #include <asm/mmu_context.h>
18 #include <asm/pgtable.h>
19 #include <asm/tlbflush.h>
21 #include "internal.h"
23 static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
39 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
67 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
73 static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
76 struct mm_struct *mm = vma->vm_mm;
77 struct dev_pagemap *pgmap = NULL;
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
82 retry:
83 if (unlikely(pmd_bad(*pmd)))
84 return no_page_table(vma, flags);
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
97 if (pte_none(pte))
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
104 goto retry;
106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
107 goto no_page;
108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
113 page = vm_normal_page(vma, address, pte);
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
155 if (flags & FOLL_GET) {
156 get_page(page);
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
173 mark_page_accessed(page);
175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
197 mlock_vma_page(page);
198 unlock_page(page);
201 out:
202 pte_unmap_unlock(ptep, ptl);
203 return page;
204 no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
207 return NULL;
208 return no_page_table(vma, flags);
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
224 struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
235 *page_mask = 0;
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
240 return page;
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
256 if (unlikely(pud_bad(*pud)))
257 return no_page_table(vma, flags);
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return no_page_table(vma, flags);
262 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
263 page = follow_huge_pmd(mm, address, pmd, flags);
264 if (page)
265 return page;
266 return no_page_table(vma, flags);
268 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
269 return no_page_table(vma, flags);
270 if (pmd_devmap(*pmd)) {
271 ptl = pmd_lock(mm, pmd);
272 page = follow_devmap_pmd(vma, address, pmd, flags);
273 spin_unlock(ptl);
274 if (page)
275 return page;
277 if (likely(!pmd_trans_huge(*pmd)))
278 return follow_page_pte(vma, address, pmd, flags);
280 ptl = pmd_lock(mm, pmd);
281 if (unlikely(!pmd_trans_huge(*pmd))) {
282 spin_unlock(ptl);
283 return follow_page_pte(vma, address, pmd, flags);
285 if (flags & FOLL_SPLIT) {
286 int ret;
287 page = pmd_page(*pmd);
288 if (is_huge_zero_page(page)) {
289 spin_unlock(ptl);
290 ret = 0;
291 split_huge_pmd(vma, pmd, address);
292 if (pmd_trans_unstable(pmd))
293 ret = -EBUSY;
294 } else {
295 get_page(page);
296 spin_unlock(ptl);
297 lock_page(page);
298 ret = split_huge_page(page);
299 unlock_page(page);
300 put_page(page);
301 if (pmd_none(*pmd))
302 return no_page_table(vma, flags);
305 return ret ? ERR_PTR(ret) :
306 follow_page_pte(vma, address, pmd, flags);
309 page = follow_trans_huge_pmd(vma, address, pmd, flags);
310 spin_unlock(ptl);
311 *page_mask = HPAGE_PMD_NR - 1;
312 return page;
315 static int get_gate_page(struct mm_struct *mm, unsigned long address,
316 unsigned int gup_flags, struct vm_area_struct **vma,
317 struct page **page)
319 pgd_t *pgd;
320 pud_t *pud;
321 pmd_t *pmd;
322 pte_t *pte;
323 int ret = -EFAULT;
325 /* user gate pages are read-only */
326 if (gup_flags & FOLL_WRITE)
327 return -EFAULT;
328 if (address > TASK_SIZE)
329 pgd = pgd_offset_k(address);
330 else
331 pgd = pgd_offset_gate(mm, address);
332 BUG_ON(pgd_none(*pgd));
333 pud = pud_offset(pgd, address);
334 BUG_ON(pud_none(*pud));
335 pmd = pmd_offset(pud, address);
336 if (pmd_none(*pmd))
337 return -EFAULT;
338 VM_BUG_ON(pmd_trans_huge(*pmd));
339 pte = pte_offset_map(pmd, address);
340 if (pte_none(*pte))
341 goto unmap;
342 *vma = get_gate_vma(mm);
343 if (!page)
344 goto out;
345 *page = vm_normal_page(*vma, address, *pte);
346 if (!*page) {
347 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
348 goto unmap;
349 *page = pte_page(*pte);
351 get_page(*page);
352 out:
353 ret = 0;
354 unmap:
355 pte_unmap(pte);
356 return ret;
360 * mmap_sem must be held on entry. If @nonblocking != NULL and
361 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
362 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
364 static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
365 unsigned long address, unsigned int *flags, int *nonblocking)
367 unsigned int fault_flags = 0;
368 int ret;
370 /* mlock all present pages, but do not fault in new pages */
371 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
372 return -ENOENT;
373 if (*flags & FOLL_WRITE)
374 fault_flags |= FAULT_FLAG_WRITE;
375 if (*flags & FOLL_REMOTE)
376 fault_flags |= FAULT_FLAG_REMOTE;
377 if (nonblocking)
378 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
379 if (*flags & FOLL_NOWAIT)
380 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
381 if (*flags & FOLL_TRIED) {
382 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
383 fault_flags |= FAULT_FLAG_TRIED;
386 ret = handle_mm_fault(vma, address, fault_flags);
387 if (ret & VM_FAULT_ERROR) {
388 if (ret & VM_FAULT_OOM)
389 return -ENOMEM;
390 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
391 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
392 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
393 return -EFAULT;
394 BUG();
397 if (tsk) {
398 if (ret & VM_FAULT_MAJOR)
399 tsk->maj_flt++;
400 else
401 tsk->min_flt++;
404 if (ret & VM_FAULT_RETRY) {
405 if (nonblocking)
406 *nonblocking = 0;
407 return -EBUSY;
411 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
412 * necessary, even if maybe_mkwrite decided not to set pte_write. We
413 * can thus safely do subsequent page lookups as if they were reads.
414 * But only do so when looping for pte_write is futile: in some cases
415 * userspace may also be wanting to write to the gotten user page,
416 * which a read fault here might prevent (a readonly page might get
417 * reCOWed by userspace write).
419 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
420 *flags |= FOLL_COW;
421 return 0;
424 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
426 vm_flags_t vm_flags = vma->vm_flags;
427 int write = (gup_flags & FOLL_WRITE);
428 int foreign = (gup_flags & FOLL_REMOTE);
430 if (vm_flags & (VM_IO | VM_PFNMAP))
431 return -EFAULT;
433 if (write) {
434 if (!(vm_flags & VM_WRITE)) {
435 if (!(gup_flags & FOLL_FORCE))
436 return -EFAULT;
438 * We used to let the write,force case do COW in a
439 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
440 * set a breakpoint in a read-only mapping of an
441 * executable, without corrupting the file (yet only
442 * when that file had been opened for writing!).
443 * Anon pages in shared mappings are surprising: now
444 * just reject it.
446 if (!is_cow_mapping(vm_flags))
447 return -EFAULT;
449 } else if (!(vm_flags & VM_READ)) {
450 if (!(gup_flags & FOLL_FORCE))
451 return -EFAULT;
453 * Is there actually any vma we can reach here which does not
454 * have VM_MAYREAD set?
456 if (!(vm_flags & VM_MAYREAD))
457 return -EFAULT;
460 * gups are always data accesses, not instruction
461 * fetches, so execute=false here
463 if (!arch_vma_access_permitted(vma, write, false, foreign))
464 return -EFAULT;
465 return 0;
469 * __get_user_pages() - pin user pages in memory
470 * @tsk: task_struct of target task
471 * @mm: mm_struct of target mm
472 * @start: starting user address
473 * @nr_pages: number of pages from start to pin
474 * @gup_flags: flags modifying pin behaviour
475 * @pages: array that receives pointers to the pages pinned.
476 * Should be at least nr_pages long. Or NULL, if caller
477 * only intends to ensure the pages are faulted in.
478 * @vmas: array of pointers to vmas corresponding to each page.
479 * Or NULL if the caller does not require them.
480 * @nonblocking: whether waiting for disk IO or mmap_sem contention
482 * Returns number of pages pinned. This may be fewer than the number
483 * requested. If nr_pages is 0 or negative, returns 0. If no pages
484 * were pinned, returns -errno. Each page returned must be released
485 * with a put_page() call when it is finished with. vmas will only
486 * remain valid while mmap_sem is held.
488 * Must be called with mmap_sem held. It may be released. See below.
490 * __get_user_pages walks a process's page tables and takes a reference to
491 * each struct page that each user address corresponds to at a given
492 * instant. That is, it takes the page that would be accessed if a user
493 * thread accesses the given user virtual address at that instant.
495 * This does not guarantee that the page exists in the user mappings when
496 * __get_user_pages returns, and there may even be a completely different
497 * page there in some cases (eg. if mmapped pagecache has been invalidated
498 * and subsequently re faulted). However it does guarantee that the page
499 * won't be freed completely. And mostly callers simply care that the page
500 * contains data that was valid *at some point in time*. Typically, an IO
501 * or similar operation cannot guarantee anything stronger anyway because
502 * locks can't be held over the syscall boundary.
504 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
505 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
506 * appropriate) must be called after the page is finished with, and
507 * before put_page is called.
509 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
510 * or mmap_sem contention, and if waiting is needed to pin all pages,
511 * *@nonblocking will be set to 0. Further, if @gup_flags does not
512 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
513 * this case.
515 * A caller using such a combination of @nonblocking and @gup_flags
516 * must therefore hold the mmap_sem for reading only, and recognize
517 * when it's been released. Otherwise, it must be held for either
518 * reading or writing and will not be released.
520 * In most cases, get_user_pages or get_user_pages_fast should be used
521 * instead of __get_user_pages. __get_user_pages should be used only if
522 * you need some special @gup_flags.
524 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
525 unsigned long start, unsigned long nr_pages,
526 unsigned int gup_flags, struct page **pages,
527 struct vm_area_struct **vmas, int *nonblocking)
529 long i = 0;
530 unsigned int page_mask;
531 struct vm_area_struct *vma = NULL;
533 if (!nr_pages)
534 return 0;
536 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
539 * If FOLL_FORCE is set then do not force a full fault as the hinting
540 * fault information is unrelated to the reference behaviour of a task
541 * using the address space
543 if (!(gup_flags & FOLL_FORCE))
544 gup_flags |= FOLL_NUMA;
546 do {
547 struct page *page;
548 unsigned int foll_flags = gup_flags;
549 unsigned int page_increm;
551 /* first iteration or cross vma bound */
552 if (!vma || start >= vma->vm_end) {
553 vma = find_extend_vma(mm, start);
554 if (!vma && in_gate_area(mm, start)) {
555 int ret;
556 ret = get_gate_page(mm, start & PAGE_MASK,
557 gup_flags, &vma,
558 pages ? &pages[i] : NULL);
559 if (ret)
560 return i ? : ret;
561 page_mask = 0;
562 goto next_page;
565 if (!vma || check_vma_flags(vma, gup_flags))
566 return i ? : -EFAULT;
567 if (is_vm_hugetlb_page(vma)) {
568 i = follow_hugetlb_page(mm, vma, pages, vmas,
569 &start, &nr_pages, i,
570 gup_flags);
571 continue;
574 retry:
576 * If we have a pending SIGKILL, don't keep faulting pages and
577 * potentially allocating memory.
579 if (unlikely(fatal_signal_pending(current)))
580 return i ? i : -ERESTARTSYS;
581 cond_resched();
582 page = follow_page_mask(vma, start, foll_flags, &page_mask);
583 if (!page) {
584 int ret;
585 ret = faultin_page(tsk, vma, start, &foll_flags,
586 nonblocking);
587 switch (ret) {
588 case 0:
589 goto retry;
590 case -EFAULT:
591 case -ENOMEM:
592 case -EHWPOISON:
593 return i ? i : ret;
594 case -EBUSY:
595 return i;
596 case -ENOENT:
597 goto next_page;
599 BUG();
600 } else if (PTR_ERR(page) == -EEXIST) {
602 * Proper page table entry exists, but no corresponding
603 * struct page.
605 goto next_page;
606 } else if (IS_ERR(page)) {
607 return i ? i : PTR_ERR(page);
609 if (pages) {
610 pages[i] = page;
611 flush_anon_page(vma, page, start);
612 flush_dcache_page(page);
613 page_mask = 0;
615 next_page:
616 if (vmas) {
617 vmas[i] = vma;
618 page_mask = 0;
620 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
621 if (page_increm > nr_pages)
622 page_increm = nr_pages;
623 i += page_increm;
624 start += page_increm * PAGE_SIZE;
625 nr_pages -= page_increm;
626 } while (nr_pages);
627 return i;
630 bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
632 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
633 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
634 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
636 if (!(vm_flags & vma->vm_flags))
637 return false;
640 * The architecture might have a hardware protection
641 * mechanism other than read/write that can deny access.
643 * gup always represents data access, not instruction
644 * fetches, so execute=false here:
646 if (!arch_vma_access_permitted(vma, write, false, foreign))
647 return false;
649 return true;
653 * fixup_user_fault() - manually resolve a user page fault
654 * @tsk: the task_struct to use for page fault accounting, or
655 * NULL if faults are not to be recorded.
656 * @mm: mm_struct of target mm
657 * @address: user address
658 * @fault_flags:flags to pass down to handle_mm_fault()
659 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
660 * does not allow retry
662 * This is meant to be called in the specific scenario where for locking reasons
663 * we try to access user memory in atomic context (within a pagefault_disable()
664 * section), this returns -EFAULT, and we want to resolve the user fault before
665 * trying again.
667 * Typically this is meant to be used by the futex code.
669 * The main difference with get_user_pages() is that this function will
670 * unconditionally call handle_mm_fault() which will in turn perform all the
671 * necessary SW fixup of the dirty and young bits in the PTE, while
672 * get_user_pages() only guarantees to update these in the struct page.
674 * This is important for some architectures where those bits also gate the
675 * access permission to the page because they are maintained in software. On
676 * such architectures, gup() will not be enough to make a subsequent access
677 * succeed.
679 * This function will not return with an unlocked mmap_sem. So it has not the
680 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
682 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
683 unsigned long address, unsigned int fault_flags,
684 bool *unlocked)
686 struct vm_area_struct *vma;
687 int ret, major = 0;
689 if (unlocked)
690 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
692 retry:
693 vma = find_extend_vma(mm, address);
694 if (!vma || address < vma->vm_start)
695 return -EFAULT;
697 if (!vma_permits_fault(vma, fault_flags))
698 return -EFAULT;
700 ret = handle_mm_fault(vma, address, fault_flags);
701 major |= ret & VM_FAULT_MAJOR;
702 if (ret & VM_FAULT_ERROR) {
703 if (ret & VM_FAULT_OOM)
704 return -ENOMEM;
705 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
706 return -EHWPOISON;
707 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
708 return -EFAULT;
709 BUG();
712 if (ret & VM_FAULT_RETRY) {
713 down_read(&mm->mmap_sem);
714 if (!(fault_flags & FAULT_FLAG_TRIED)) {
715 *unlocked = true;
716 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
717 fault_flags |= FAULT_FLAG_TRIED;
718 goto retry;
722 if (tsk) {
723 if (major)
724 tsk->maj_flt++;
725 else
726 tsk->min_flt++;
728 return 0;
730 EXPORT_SYMBOL_GPL(fixup_user_fault);
732 static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
733 struct mm_struct *mm,
734 unsigned long start,
735 unsigned long nr_pages,
736 struct page **pages,
737 struct vm_area_struct **vmas,
738 int *locked, bool notify_drop,
739 unsigned int flags)
741 long ret, pages_done;
742 bool lock_dropped;
744 if (locked) {
745 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
746 BUG_ON(vmas);
747 /* check caller initialized locked */
748 BUG_ON(*locked != 1);
751 if (pages)
752 flags |= FOLL_GET;
754 pages_done = 0;
755 lock_dropped = false;
756 for (;;) {
757 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
758 vmas, locked);
759 if (!locked)
760 /* VM_FAULT_RETRY couldn't trigger, bypass */
761 return ret;
763 /* VM_FAULT_RETRY cannot return errors */
764 if (!*locked) {
765 BUG_ON(ret < 0);
766 BUG_ON(ret >= nr_pages);
769 if (!pages)
770 /* If it's a prefault don't insist harder */
771 return ret;
773 if (ret > 0) {
774 nr_pages -= ret;
775 pages_done += ret;
776 if (!nr_pages)
777 break;
779 if (*locked) {
780 /* VM_FAULT_RETRY didn't trigger */
781 if (!pages_done)
782 pages_done = ret;
783 break;
785 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
786 pages += ret;
787 start += ret << PAGE_SHIFT;
790 * Repeat on the address that fired VM_FAULT_RETRY
791 * without FAULT_FLAG_ALLOW_RETRY but with
792 * FAULT_FLAG_TRIED.
794 *locked = 1;
795 lock_dropped = true;
796 down_read(&mm->mmap_sem);
797 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
798 pages, NULL, NULL);
799 if (ret != 1) {
800 BUG_ON(ret > 1);
801 if (!pages_done)
802 pages_done = ret;
803 break;
805 nr_pages--;
806 pages_done++;
807 if (!nr_pages)
808 break;
809 pages++;
810 start += PAGE_SIZE;
812 if (notify_drop && lock_dropped && *locked) {
814 * We must let the caller know we temporarily dropped the lock
815 * and so the critical section protected by it was lost.
817 up_read(&mm->mmap_sem);
818 *locked = 0;
820 return pages_done;
824 * We can leverage the VM_FAULT_RETRY functionality in the page fault
825 * paths better by using either get_user_pages_locked() or
826 * get_user_pages_unlocked().
828 * get_user_pages_locked() is suitable to replace the form:
830 * down_read(&mm->mmap_sem);
831 * do_something()
832 * get_user_pages(tsk, mm, ..., pages, NULL);
833 * up_read(&mm->mmap_sem);
835 * to:
837 * int locked = 1;
838 * down_read(&mm->mmap_sem);
839 * do_something()
840 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
841 * if (locked)
842 * up_read(&mm->mmap_sem);
844 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
845 unsigned int gup_flags, struct page **pages,
846 int *locked)
848 return __get_user_pages_locked(current, current->mm, start, nr_pages,
849 pages, NULL, locked, true,
850 gup_flags | FOLL_TOUCH);
852 EXPORT_SYMBOL(get_user_pages_locked);
855 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
856 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
858 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
859 * caller if required (just like with __get_user_pages). "FOLL_GET",
860 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
861 * according to the parameters "pages", "write", "force"
862 * respectively.
864 __always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
865 unsigned long start, unsigned long nr_pages,
866 struct page **pages, unsigned int gup_flags)
868 long ret;
869 int locked = 1;
871 down_read(&mm->mmap_sem);
872 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
873 &locked, false, gup_flags);
874 if (locked)
875 up_read(&mm->mmap_sem);
876 return ret;
878 EXPORT_SYMBOL(__get_user_pages_unlocked);
881 * get_user_pages_unlocked() is suitable to replace the form:
883 * down_read(&mm->mmap_sem);
884 * get_user_pages(tsk, mm, ..., pages, NULL);
885 * up_read(&mm->mmap_sem);
887 * with:
889 * get_user_pages_unlocked(tsk, mm, ..., pages);
891 * It is functionally equivalent to get_user_pages_fast so
892 * get_user_pages_fast should be used instead, if the two parameters
893 * "tsk" and "mm" are respectively equal to current and current->mm,
894 * or if "force" shall be set to 1 (get_user_pages_fast misses the
895 * "force" parameter).
897 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
898 struct page **pages, unsigned int gup_flags)
900 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
901 pages, gup_flags | FOLL_TOUCH);
903 EXPORT_SYMBOL(get_user_pages_unlocked);
906 * get_user_pages_remote() - pin user pages in memory
907 * @tsk: the task_struct to use for page fault accounting, or
908 * NULL if faults are not to be recorded.
909 * @mm: mm_struct of target mm
910 * @start: starting user address
911 * @nr_pages: number of pages from start to pin
912 * @gup_flags: flags modifying lookup behaviour
913 * @pages: array that receives pointers to the pages pinned.
914 * Should be at least nr_pages long. Or NULL, if caller
915 * only intends to ensure the pages are faulted in.
916 * @vmas: array of pointers to vmas corresponding to each page.
917 * Or NULL if the caller does not require them.
919 * Returns number of pages pinned. This may be fewer than the number
920 * requested. If nr_pages is 0 or negative, returns 0. If no pages
921 * were pinned, returns -errno. Each page returned must be released
922 * with a put_page() call when it is finished with. vmas will only
923 * remain valid while mmap_sem is held.
925 * Must be called with mmap_sem held for read or write.
927 * get_user_pages walks a process's page tables and takes a reference to
928 * each struct page that each user address corresponds to at a given
929 * instant. That is, it takes the page that would be accessed if a user
930 * thread accesses the given user virtual address at that instant.
932 * This does not guarantee that the page exists in the user mappings when
933 * get_user_pages returns, and there may even be a completely different
934 * page there in some cases (eg. if mmapped pagecache has been invalidated
935 * and subsequently re faulted). However it does guarantee that the page
936 * won't be freed completely. And mostly callers simply care that the page
937 * contains data that was valid *at some point in time*. Typically, an IO
938 * or similar operation cannot guarantee anything stronger anyway because
939 * locks can't be held over the syscall boundary.
941 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
942 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
943 * be called after the page is finished with, and before put_page is called.
945 * get_user_pages is typically used for fewer-copy IO operations, to get a
946 * handle on the memory by some means other than accesses via the user virtual
947 * addresses. The pages may be submitted for DMA to devices or accessed via
948 * their kernel linear mapping (via the kmap APIs). Care should be taken to
949 * use the correct cache flushing APIs.
951 * See also get_user_pages_fast, for performance critical applications.
953 * get_user_pages should be phased out in favor of
954 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
955 * should use get_user_pages because it cannot pass
956 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
958 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
959 unsigned long start, unsigned long nr_pages,
960 unsigned int gup_flags, struct page **pages,
961 struct vm_area_struct **vmas)
963 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
964 NULL, false,
965 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
967 EXPORT_SYMBOL(get_user_pages_remote);
970 * This is the same as get_user_pages_remote(), just with a
971 * less-flexible calling convention where we assume that the task
972 * and mm being operated on are the current task's. We also
973 * obviously don't pass FOLL_REMOTE in here.
975 long get_user_pages(unsigned long start, unsigned long nr_pages,
976 unsigned int gup_flags, struct page **pages,
977 struct vm_area_struct **vmas)
979 return __get_user_pages_locked(current, current->mm, start, nr_pages,
980 pages, vmas, NULL, false,
981 gup_flags | FOLL_TOUCH);
983 EXPORT_SYMBOL(get_user_pages);
986 * populate_vma_page_range() - populate a range of pages in the vma.
987 * @vma: target vma
988 * @start: start address
989 * @end: end address
990 * @nonblocking:
992 * This takes care of mlocking the pages too if VM_LOCKED is set.
994 * return 0 on success, negative error code on error.
996 * vma->vm_mm->mmap_sem must be held.
998 * If @nonblocking is NULL, it may be held for read or write and will
999 * be unperturbed.
1001 * If @nonblocking is non-NULL, it must held for read only and may be
1002 * released. If it's released, *@nonblocking will be set to 0.
1004 long populate_vma_page_range(struct vm_area_struct *vma,
1005 unsigned long start, unsigned long end, int *nonblocking)
1007 struct mm_struct *mm = vma->vm_mm;
1008 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1009 int gup_flags;
1011 VM_BUG_ON(start & ~PAGE_MASK);
1012 VM_BUG_ON(end & ~PAGE_MASK);
1013 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1014 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1015 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1017 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1018 if (vma->vm_flags & VM_LOCKONFAULT)
1019 gup_flags &= ~FOLL_POPULATE;
1021 * We want to touch writable mappings with a write fault in order
1022 * to break COW, except for shared mappings because these don't COW
1023 * and we would not want to dirty them for nothing.
1025 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1026 gup_flags |= FOLL_WRITE;
1029 * We want mlock to succeed for regions that have any permissions
1030 * other than PROT_NONE.
1032 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1033 gup_flags |= FOLL_FORCE;
1036 * We made sure addr is within a VMA, so the following will
1037 * not result in a stack expansion that recurses back here.
1039 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1040 NULL, NULL, nonblocking);
1044 * __mm_populate - populate and/or mlock pages within a range of address space.
1046 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1047 * flags. VMAs must be already marked with the desired vm_flags, and
1048 * mmap_sem must not be held.
1050 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1052 struct mm_struct *mm = current->mm;
1053 unsigned long end, nstart, nend;
1054 struct vm_area_struct *vma = NULL;
1055 int locked = 0;
1056 long ret = 0;
1058 VM_BUG_ON(start & ~PAGE_MASK);
1059 VM_BUG_ON(len != PAGE_ALIGN(len));
1060 end = start + len;
1062 for (nstart = start; nstart < end; nstart = nend) {
1064 * We want to fault in pages for [nstart; end) address range.
1065 * Find first corresponding VMA.
1067 if (!locked) {
1068 locked = 1;
1069 down_read(&mm->mmap_sem);
1070 vma = find_vma(mm, nstart);
1071 } else if (nstart >= vma->vm_end)
1072 vma = vma->vm_next;
1073 if (!vma || vma->vm_start >= end)
1074 break;
1076 * Set [nstart; nend) to intersection of desired address
1077 * range with the first VMA. Also, skip undesirable VMA types.
1079 nend = min(end, vma->vm_end);
1080 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1081 continue;
1082 if (nstart < vma->vm_start)
1083 nstart = vma->vm_start;
1085 * Now fault in a range of pages. populate_vma_page_range()
1086 * double checks the vma flags, so that it won't mlock pages
1087 * if the vma was already munlocked.
1089 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1090 if (ret < 0) {
1091 if (ignore_errors) {
1092 ret = 0;
1093 continue; /* continue at next VMA */
1095 break;
1097 nend = nstart + ret * PAGE_SIZE;
1098 ret = 0;
1100 if (locked)
1101 up_read(&mm->mmap_sem);
1102 return ret; /* 0 or negative error code */
1106 * get_dump_page() - pin user page in memory while writing it to core dump
1107 * @addr: user address
1109 * Returns struct page pointer of user page pinned for dump,
1110 * to be freed afterwards by put_page().
1112 * Returns NULL on any kind of failure - a hole must then be inserted into
1113 * the corefile, to preserve alignment with its headers; and also returns
1114 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1115 * allowing a hole to be left in the corefile to save diskspace.
1117 * Called without mmap_sem, but after all other threads have been killed.
1119 #ifdef CONFIG_ELF_CORE
1120 struct page *get_dump_page(unsigned long addr)
1122 struct vm_area_struct *vma;
1123 struct page *page;
1125 if (__get_user_pages(current, current->mm, addr, 1,
1126 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1127 NULL) < 1)
1128 return NULL;
1129 flush_cache_page(vma, addr, page_to_pfn(page));
1130 return page;
1132 #endif /* CONFIG_ELF_CORE */
1135 * Generic RCU Fast GUP
1137 * get_user_pages_fast attempts to pin user pages by walking the page
1138 * tables directly and avoids taking locks. Thus the walker needs to be
1139 * protected from page table pages being freed from under it, and should
1140 * block any THP splits.
1142 * One way to achieve this is to have the walker disable interrupts, and
1143 * rely on IPIs from the TLB flushing code blocking before the page table
1144 * pages are freed. This is unsuitable for architectures that do not need
1145 * to broadcast an IPI when invalidating TLBs.
1147 * Another way to achieve this is to batch up page table containing pages
1148 * belonging to more than one mm_user, then rcu_sched a callback to free those
1149 * pages. Disabling interrupts will allow the fast_gup walker to both block
1150 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1151 * (which is a relatively rare event). The code below adopts this strategy.
1153 * Before activating this code, please be aware that the following assumptions
1154 * are currently made:
1156 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1157 * pages containing page tables.
1159 * *) ptes can be read atomically by the architecture.
1161 * *) access_ok is sufficient to validate userspace address ranges.
1163 * The last two assumptions can be relaxed by the addition of helper functions.
1165 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1167 #ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1169 #ifdef __HAVE_ARCH_PTE_SPECIAL
1170 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1171 int write, struct page **pages, int *nr)
1173 pte_t *ptep, *ptem;
1174 int ret = 0;
1176 ptem = ptep = pte_offset_map(&pmd, addr);
1177 do {
1179 * In the line below we are assuming that the pte can be read
1180 * atomically. If this is not the case for your architecture,
1181 * please wrap this in a helper function!
1183 * for an example see gup_get_pte in arch/x86/mm/gup.c
1185 pte_t pte = READ_ONCE(*ptep);
1186 struct page *head, *page;
1189 * Similar to the PMD case below, NUMA hinting must take slow
1190 * path using the pte_protnone check.
1192 if (!pte_present(pte) || pte_special(pte) ||
1193 pte_protnone(pte) || (write && !pte_write(pte)))
1194 goto pte_unmap;
1196 if (!arch_pte_access_permitted(pte, write))
1197 goto pte_unmap;
1199 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1200 page = pte_page(pte);
1201 head = compound_head(page);
1203 if (!page_cache_get_speculative(head))
1204 goto pte_unmap;
1206 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1207 put_page(head);
1208 goto pte_unmap;
1211 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1212 pages[*nr] = page;
1213 (*nr)++;
1215 } while (ptep++, addr += PAGE_SIZE, addr != end);
1217 ret = 1;
1219 pte_unmap:
1220 pte_unmap(ptem);
1221 return ret;
1223 #else
1226 * If we can't determine whether or not a pte is special, then fail immediately
1227 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1228 * to be special.
1230 * For a futex to be placed on a THP tail page, get_futex_key requires a
1231 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1232 * useful to have gup_huge_pmd even if we can't operate on ptes.
1234 static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1235 int write, struct page **pages, int *nr)
1237 return 0;
1239 #endif /* __HAVE_ARCH_PTE_SPECIAL */
1241 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1242 unsigned long end, int write, struct page **pages, int *nr)
1244 struct page *head, *page;
1245 int refs;
1247 if (write && !pmd_write(orig))
1248 return 0;
1250 refs = 0;
1251 head = pmd_page(orig);
1252 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1253 do {
1254 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1255 pages[*nr] = page;
1256 (*nr)++;
1257 page++;
1258 refs++;
1259 } while (addr += PAGE_SIZE, addr != end);
1261 if (!page_cache_add_speculative(head, refs)) {
1262 *nr -= refs;
1263 return 0;
1266 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1267 *nr -= refs;
1268 while (refs--)
1269 put_page(head);
1270 return 0;
1273 return 1;
1276 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1277 unsigned long end, int write, struct page **pages, int *nr)
1279 struct page *head, *page;
1280 int refs;
1282 if (write && !pud_write(orig))
1283 return 0;
1285 refs = 0;
1286 head = pud_page(orig);
1287 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1288 do {
1289 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1290 pages[*nr] = page;
1291 (*nr)++;
1292 page++;
1293 refs++;
1294 } while (addr += PAGE_SIZE, addr != end);
1296 if (!page_cache_add_speculative(head, refs)) {
1297 *nr -= refs;
1298 return 0;
1301 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1302 *nr -= refs;
1303 while (refs--)
1304 put_page(head);
1305 return 0;
1308 return 1;
1311 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1312 unsigned long end, int write,
1313 struct page **pages, int *nr)
1315 int refs;
1316 struct page *head, *page;
1318 if (write && !pgd_write(orig))
1319 return 0;
1321 refs = 0;
1322 head = pgd_page(orig);
1323 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1324 do {
1325 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1326 pages[*nr] = page;
1327 (*nr)++;
1328 page++;
1329 refs++;
1330 } while (addr += PAGE_SIZE, addr != end);
1332 if (!page_cache_add_speculative(head, refs)) {
1333 *nr -= refs;
1334 return 0;
1337 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1338 *nr -= refs;
1339 while (refs--)
1340 put_page(head);
1341 return 0;
1344 return 1;
1347 static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1348 int write, struct page **pages, int *nr)
1350 unsigned long next;
1351 pmd_t *pmdp;
1353 pmdp = pmd_offset(&pud, addr);
1354 do {
1355 pmd_t pmd = READ_ONCE(*pmdp);
1357 next = pmd_addr_end(addr, end);
1358 if (pmd_none(pmd))
1359 return 0;
1361 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1363 * NUMA hinting faults need to be handled in the GUP
1364 * slowpath for accounting purposes and so that they
1365 * can be serialised against THP migration.
1367 if (pmd_protnone(pmd))
1368 return 0;
1370 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1371 pages, nr))
1372 return 0;
1374 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1376 * architecture have different format for hugetlbfs
1377 * pmd format and THP pmd format
1379 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1380 PMD_SHIFT, next, write, pages, nr))
1381 return 0;
1382 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1383 return 0;
1384 } while (pmdp++, addr = next, addr != end);
1386 return 1;
1389 static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1390 int write, struct page **pages, int *nr)
1392 unsigned long next;
1393 pud_t *pudp;
1395 pudp = pud_offset(&pgd, addr);
1396 do {
1397 pud_t pud = READ_ONCE(*pudp);
1399 next = pud_addr_end(addr, end);
1400 if (pud_none(pud))
1401 return 0;
1402 if (unlikely(pud_huge(pud))) {
1403 if (!gup_huge_pud(pud, pudp, addr, next, write,
1404 pages, nr))
1405 return 0;
1406 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1407 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1408 PUD_SHIFT, next, write, pages, nr))
1409 return 0;
1410 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1411 return 0;
1412 } while (pudp++, addr = next, addr != end);
1414 return 1;
1418 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1419 * the regular GUP. It will only return non-negative values.
1421 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1422 struct page **pages)
1424 struct mm_struct *mm = current->mm;
1425 unsigned long addr, len, end;
1426 unsigned long next, flags;
1427 pgd_t *pgdp;
1428 int nr = 0;
1430 start &= PAGE_MASK;
1431 addr = start;
1432 len = (unsigned long) nr_pages << PAGE_SHIFT;
1433 end = start + len;
1435 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1436 start, len)))
1437 return 0;
1440 * Disable interrupts. We use the nested form as we can already have
1441 * interrupts disabled by get_futex_key.
1443 * With interrupts disabled, we block page table pages from being
1444 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1445 * for more details.
1447 * We do not adopt an rcu_read_lock(.) here as we also want to
1448 * block IPIs that come from THPs splitting.
1451 local_irq_save(flags);
1452 pgdp = pgd_offset(mm, addr);
1453 do {
1454 pgd_t pgd = READ_ONCE(*pgdp);
1456 next = pgd_addr_end(addr, end);
1457 if (pgd_none(pgd))
1458 break;
1459 if (unlikely(pgd_huge(pgd))) {
1460 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1461 pages, &nr))
1462 break;
1463 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1464 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1465 PGDIR_SHIFT, next, write, pages, &nr))
1466 break;
1467 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
1468 break;
1469 } while (pgdp++, addr = next, addr != end);
1470 local_irq_restore(flags);
1472 return nr;
1476 * get_user_pages_fast() - pin user pages in memory
1477 * @start: starting user address
1478 * @nr_pages: number of pages from start to pin
1479 * @write: whether pages will be written to
1480 * @pages: array that receives pointers to the pages pinned.
1481 * Should be at least nr_pages long.
1483 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1484 * If not successful, it will fall back to taking the lock and
1485 * calling get_user_pages().
1487 * Returns number of pages pinned. This may be fewer than the number
1488 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1489 * were pinned, returns -errno.
1491 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1492 struct page **pages)
1494 int nr, ret;
1496 start &= PAGE_MASK;
1497 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1498 ret = nr;
1500 if (nr < nr_pages) {
1501 /* Try to get the remaining pages with get_user_pages */
1502 start += nr << PAGE_SHIFT;
1503 pages += nr;
1505 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1506 write ? FOLL_WRITE : 0);
1508 /* Have to be a bit careful with return values */
1509 if (nr > 0) {
1510 if (ret < 0)
1511 ret = nr;
1512 else
1513 ret += nr;
1517 return ret;
1520 #endif /* CONFIG_HAVE_GENERIC_RCU_GUP */