powerpc/kprobes: Remove kretprobe_trampoline_holder.
[linux/fpc-iii.git] / drivers / bcma / sprom.c
blob206edd3ba668de63dcbe3b928c9dc7a16b0025cd
1 /*
2 * Broadcom specific AMBA
3 * SPROM reading
5 * Copyright 2011, 2012, Hauke Mehrtens <hauke@hauke-m.de>
7 * Licensed under the GNU/GPL. See COPYING for details.
8 */
10 #include "bcma_private.h"
12 #include <linux/bcma/bcma.h>
13 #include <linux/bcma/bcma_regs.h>
14 #include <linux/pci.h>
15 #include <linux/io.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/slab.h>
19 static int(*get_fallback_sprom)(struct bcma_bus *dev, struct ssb_sprom *out);
21 /**
22 * bcma_arch_register_fallback_sprom - Registers a method providing a
23 * fallback SPROM if no SPROM is found.
25 * @sprom_callback: The callback function.
27 * With this function the architecture implementation may register a
28 * callback handler which fills the SPROM data structure. The fallback is
29 * used for PCI based BCMA devices, where no valid SPROM can be found
30 * in the shadow registers and to provide the SPROM for SoCs where BCMA is
31 * to controll the system bus.
33 * This function is useful for weird architectures that have a half-assed
34 * BCMA device hardwired to their PCI bus.
36 * This function is available for architecture code, only. So it is not
37 * exported.
39 int bcma_arch_register_fallback_sprom(int (*sprom_callback)(struct bcma_bus *bus,
40 struct ssb_sprom *out))
42 if (get_fallback_sprom)
43 return -EEXIST;
44 get_fallback_sprom = sprom_callback;
46 return 0;
49 static int bcma_fill_sprom_with_fallback(struct bcma_bus *bus,
50 struct ssb_sprom *out)
52 int err;
54 if (!get_fallback_sprom) {
55 err = -ENOENT;
56 goto fail;
59 err = get_fallback_sprom(bus, out);
60 if (err)
61 goto fail;
63 bcma_debug(bus, "Using SPROM revision %d provided by platform.\n",
64 bus->sprom.revision);
65 return 0;
66 fail:
67 bcma_warn(bus, "Using fallback SPROM failed (err %d)\n", err);
68 return err;
71 /**************************************************
72 * R/W ops.
73 **************************************************/
75 static void bcma_sprom_read(struct bcma_bus *bus, u16 offset, u16 *sprom,
76 size_t words)
78 int i;
79 for (i = 0; i < words; i++)
80 sprom[i] = bcma_read16(bus->drv_cc.core, offset + (i * 2));
83 /**************************************************
84 * Validation.
85 **************************************************/
87 static inline u8 bcma_crc8(u8 crc, u8 data)
89 /* Polynomial: x^8 + x^7 + x^6 + x^4 + x^2 + 1 */
90 static const u8 t[] = {
91 0x00, 0xF7, 0xB9, 0x4E, 0x25, 0xD2, 0x9C, 0x6B,
92 0x4A, 0xBD, 0xF3, 0x04, 0x6F, 0x98, 0xD6, 0x21,
93 0x94, 0x63, 0x2D, 0xDA, 0xB1, 0x46, 0x08, 0xFF,
94 0xDE, 0x29, 0x67, 0x90, 0xFB, 0x0C, 0x42, 0xB5,
95 0x7F, 0x88, 0xC6, 0x31, 0x5A, 0xAD, 0xE3, 0x14,
96 0x35, 0xC2, 0x8C, 0x7B, 0x10, 0xE7, 0xA9, 0x5E,
97 0xEB, 0x1C, 0x52, 0xA5, 0xCE, 0x39, 0x77, 0x80,
98 0xA1, 0x56, 0x18, 0xEF, 0x84, 0x73, 0x3D, 0xCA,
99 0xFE, 0x09, 0x47, 0xB0, 0xDB, 0x2C, 0x62, 0x95,
100 0xB4, 0x43, 0x0D, 0xFA, 0x91, 0x66, 0x28, 0xDF,
101 0x6A, 0x9D, 0xD3, 0x24, 0x4F, 0xB8, 0xF6, 0x01,
102 0x20, 0xD7, 0x99, 0x6E, 0x05, 0xF2, 0xBC, 0x4B,
103 0x81, 0x76, 0x38, 0xCF, 0xA4, 0x53, 0x1D, 0xEA,
104 0xCB, 0x3C, 0x72, 0x85, 0xEE, 0x19, 0x57, 0xA0,
105 0x15, 0xE2, 0xAC, 0x5B, 0x30, 0xC7, 0x89, 0x7E,
106 0x5F, 0xA8, 0xE6, 0x11, 0x7A, 0x8D, 0xC3, 0x34,
107 0xAB, 0x5C, 0x12, 0xE5, 0x8E, 0x79, 0x37, 0xC0,
108 0xE1, 0x16, 0x58, 0xAF, 0xC4, 0x33, 0x7D, 0x8A,
109 0x3F, 0xC8, 0x86, 0x71, 0x1A, 0xED, 0xA3, 0x54,
110 0x75, 0x82, 0xCC, 0x3B, 0x50, 0xA7, 0xE9, 0x1E,
111 0xD4, 0x23, 0x6D, 0x9A, 0xF1, 0x06, 0x48, 0xBF,
112 0x9E, 0x69, 0x27, 0xD0, 0xBB, 0x4C, 0x02, 0xF5,
113 0x40, 0xB7, 0xF9, 0x0E, 0x65, 0x92, 0xDC, 0x2B,
114 0x0A, 0xFD, 0xB3, 0x44, 0x2F, 0xD8, 0x96, 0x61,
115 0x55, 0xA2, 0xEC, 0x1B, 0x70, 0x87, 0xC9, 0x3E,
116 0x1F, 0xE8, 0xA6, 0x51, 0x3A, 0xCD, 0x83, 0x74,
117 0xC1, 0x36, 0x78, 0x8F, 0xE4, 0x13, 0x5D, 0xAA,
118 0x8B, 0x7C, 0x32, 0xC5, 0xAE, 0x59, 0x17, 0xE0,
119 0x2A, 0xDD, 0x93, 0x64, 0x0F, 0xF8, 0xB6, 0x41,
120 0x60, 0x97, 0xD9, 0x2E, 0x45, 0xB2, 0xFC, 0x0B,
121 0xBE, 0x49, 0x07, 0xF0, 0x9B, 0x6C, 0x22, 0xD5,
122 0xF4, 0x03, 0x4D, 0xBA, 0xD1, 0x26, 0x68, 0x9F,
124 return t[crc ^ data];
127 static u8 bcma_sprom_crc(const u16 *sprom, size_t words)
129 int word;
130 u8 crc = 0xFF;
132 for (word = 0; word < words - 1; word++) {
133 crc = bcma_crc8(crc, sprom[word] & 0x00FF);
134 crc = bcma_crc8(crc, (sprom[word] & 0xFF00) >> 8);
136 crc = bcma_crc8(crc, sprom[words - 1] & 0x00FF);
137 crc ^= 0xFF;
139 return crc;
142 static int bcma_sprom_check_crc(const u16 *sprom, size_t words)
144 u8 crc;
145 u8 expected_crc;
146 u16 tmp;
148 crc = bcma_sprom_crc(sprom, words);
149 tmp = sprom[words - 1] & SSB_SPROM_REVISION_CRC;
150 expected_crc = tmp >> SSB_SPROM_REVISION_CRC_SHIFT;
151 if (crc != expected_crc)
152 return -EPROTO;
154 return 0;
157 static int bcma_sprom_valid(struct bcma_bus *bus, const u16 *sprom,
158 size_t words)
160 u16 revision;
161 int err;
163 err = bcma_sprom_check_crc(sprom, words);
164 if (err)
165 return err;
167 revision = sprom[words - 1] & SSB_SPROM_REVISION_REV;
168 if (revision != 8 && revision != 9 && revision != 10) {
169 pr_err("Unsupported SPROM revision: %d\n", revision);
170 return -ENOENT;
173 bus->sprom.revision = revision;
174 bcma_debug(bus, "Found SPROM revision %d\n", revision);
176 return 0;
179 /**************************************************
180 * SPROM extraction.
181 **************************************************/
183 #define SPOFF(offset) ((offset) / sizeof(u16))
185 #define SPEX(_field, _offset, _mask, _shift) \
186 bus->sprom._field = ((sprom[SPOFF(_offset)] & (_mask)) >> (_shift))
188 #define SPEX32(_field, _offset, _mask, _shift) \
189 bus->sprom._field = ((((u32)sprom[SPOFF((_offset)+2)] << 16 | \
190 sprom[SPOFF(_offset)]) & (_mask)) >> (_shift))
192 #define SPEX_ARRAY8(_field, _offset, _mask, _shift) \
193 do { \
194 SPEX(_field[0], _offset + 0, _mask, _shift); \
195 SPEX(_field[1], _offset + 2, _mask, _shift); \
196 SPEX(_field[2], _offset + 4, _mask, _shift); \
197 SPEX(_field[3], _offset + 6, _mask, _shift); \
198 SPEX(_field[4], _offset + 8, _mask, _shift); \
199 SPEX(_field[5], _offset + 10, _mask, _shift); \
200 SPEX(_field[6], _offset + 12, _mask, _shift); \
201 SPEX(_field[7], _offset + 14, _mask, _shift); \
202 } while (0)
204 static s8 sprom_extract_antgain(const u16 *in, u16 offset, u16 mask, u16 shift)
206 u16 v;
207 u8 gain;
209 v = in[SPOFF(offset)];
210 gain = (v & mask) >> shift;
211 if (gain == 0xFF) {
212 gain = 8; /* If unset use 2dBm */
213 } else {
214 /* Q5.2 Fractional part is stored in 0xC0 */
215 gain = ((gain & 0xC0) >> 6) | ((gain & 0x3F) << 2);
218 return (s8)gain;
221 static void bcma_sprom_extract_r8(struct bcma_bus *bus, const u16 *sprom)
223 u16 v, o;
224 int i;
225 u16 pwr_info_offset[] = {
226 SSB_SROM8_PWR_INFO_CORE0, SSB_SROM8_PWR_INFO_CORE1,
227 SSB_SROM8_PWR_INFO_CORE2, SSB_SROM8_PWR_INFO_CORE3
229 BUILD_BUG_ON(ARRAY_SIZE(pwr_info_offset) !=
230 ARRAY_SIZE(bus->sprom.core_pwr_info));
232 for (i = 0; i < 3; i++) {
233 v = sprom[SPOFF(SSB_SPROM8_IL0MAC) + i];
234 *(((__be16 *)bus->sprom.il0mac) + i) = cpu_to_be16(v);
237 SPEX(board_rev, SSB_SPROM8_BOARDREV, ~0, 0);
238 SPEX(board_type, SSB_SPROM1_SPID, ~0, 0);
240 SPEX(txpid2g[0], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G0,
241 SSB_SPROM4_TXPID2G0_SHIFT);
242 SPEX(txpid2g[1], SSB_SPROM4_TXPID2G01, SSB_SPROM4_TXPID2G1,
243 SSB_SPROM4_TXPID2G1_SHIFT);
244 SPEX(txpid2g[2], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G2,
245 SSB_SPROM4_TXPID2G2_SHIFT);
246 SPEX(txpid2g[3], SSB_SPROM4_TXPID2G23, SSB_SPROM4_TXPID2G3,
247 SSB_SPROM4_TXPID2G3_SHIFT);
249 SPEX(txpid5gl[0], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL0,
250 SSB_SPROM4_TXPID5GL0_SHIFT);
251 SPEX(txpid5gl[1], SSB_SPROM4_TXPID5GL01, SSB_SPROM4_TXPID5GL1,
252 SSB_SPROM4_TXPID5GL1_SHIFT);
253 SPEX(txpid5gl[2], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL2,
254 SSB_SPROM4_TXPID5GL2_SHIFT);
255 SPEX(txpid5gl[3], SSB_SPROM4_TXPID5GL23, SSB_SPROM4_TXPID5GL3,
256 SSB_SPROM4_TXPID5GL3_SHIFT);
258 SPEX(txpid5g[0], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G0,
259 SSB_SPROM4_TXPID5G0_SHIFT);
260 SPEX(txpid5g[1], SSB_SPROM4_TXPID5G01, SSB_SPROM4_TXPID5G1,
261 SSB_SPROM4_TXPID5G1_SHIFT);
262 SPEX(txpid5g[2], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G2,
263 SSB_SPROM4_TXPID5G2_SHIFT);
264 SPEX(txpid5g[3], SSB_SPROM4_TXPID5G23, SSB_SPROM4_TXPID5G3,
265 SSB_SPROM4_TXPID5G3_SHIFT);
267 SPEX(txpid5gh[0], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH0,
268 SSB_SPROM4_TXPID5GH0_SHIFT);
269 SPEX(txpid5gh[1], SSB_SPROM4_TXPID5GH01, SSB_SPROM4_TXPID5GH1,
270 SSB_SPROM4_TXPID5GH1_SHIFT);
271 SPEX(txpid5gh[2], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH2,
272 SSB_SPROM4_TXPID5GH2_SHIFT);
273 SPEX(txpid5gh[3], SSB_SPROM4_TXPID5GH23, SSB_SPROM4_TXPID5GH3,
274 SSB_SPROM4_TXPID5GH3_SHIFT);
276 SPEX(boardflags_lo, SSB_SPROM8_BFLLO, ~0, 0);
277 SPEX(boardflags_hi, SSB_SPROM8_BFLHI, ~0, 0);
278 SPEX(boardflags2_lo, SSB_SPROM8_BFL2LO, ~0, 0);
279 SPEX(boardflags2_hi, SSB_SPROM8_BFL2HI, ~0, 0);
281 SPEX(alpha2[0], SSB_SPROM8_CCODE, 0xff00, 8);
282 SPEX(alpha2[1], SSB_SPROM8_CCODE, 0x00ff, 0);
284 /* Extract cores power info info */
285 for (i = 0; i < ARRAY_SIZE(pwr_info_offset); i++) {
286 o = pwr_info_offset[i];
287 SPEX(core_pwr_info[i].itssi_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
288 SSB_SPROM8_2G_ITSSI, SSB_SPROM8_2G_ITSSI_SHIFT);
289 SPEX(core_pwr_info[i].maxpwr_2g, o + SSB_SROM8_2G_MAXP_ITSSI,
290 SSB_SPROM8_2G_MAXP, 0);
292 SPEX(core_pwr_info[i].pa_2g[0], o + SSB_SROM8_2G_PA_0, ~0, 0);
293 SPEX(core_pwr_info[i].pa_2g[1], o + SSB_SROM8_2G_PA_1, ~0, 0);
294 SPEX(core_pwr_info[i].pa_2g[2], o + SSB_SROM8_2G_PA_2, ~0, 0);
296 SPEX(core_pwr_info[i].itssi_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
297 SSB_SPROM8_5G_ITSSI, SSB_SPROM8_5G_ITSSI_SHIFT);
298 SPEX(core_pwr_info[i].maxpwr_5g, o + SSB_SROM8_5G_MAXP_ITSSI,
299 SSB_SPROM8_5G_MAXP, 0);
300 SPEX(core_pwr_info[i].maxpwr_5gh, o + SSB_SPROM8_5GHL_MAXP,
301 SSB_SPROM8_5GH_MAXP, 0);
302 SPEX(core_pwr_info[i].maxpwr_5gl, o + SSB_SPROM8_5GHL_MAXP,
303 SSB_SPROM8_5GL_MAXP, SSB_SPROM8_5GL_MAXP_SHIFT);
305 SPEX(core_pwr_info[i].pa_5gl[0], o + SSB_SROM8_5GL_PA_0, ~0, 0);
306 SPEX(core_pwr_info[i].pa_5gl[1], o + SSB_SROM8_5GL_PA_1, ~0, 0);
307 SPEX(core_pwr_info[i].pa_5gl[2], o + SSB_SROM8_5GL_PA_2, ~0, 0);
308 SPEX(core_pwr_info[i].pa_5g[0], o + SSB_SROM8_5G_PA_0, ~0, 0);
309 SPEX(core_pwr_info[i].pa_5g[1], o + SSB_SROM8_5G_PA_1, ~0, 0);
310 SPEX(core_pwr_info[i].pa_5g[2], o + SSB_SROM8_5G_PA_2, ~0, 0);
311 SPEX(core_pwr_info[i].pa_5gh[0], o + SSB_SROM8_5GH_PA_0, ~0, 0);
312 SPEX(core_pwr_info[i].pa_5gh[1], o + SSB_SROM8_5GH_PA_1, ~0, 0);
313 SPEX(core_pwr_info[i].pa_5gh[2], o + SSB_SROM8_5GH_PA_2, ~0, 0);
316 SPEX(fem.ghz2.tssipos, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TSSIPOS,
317 SSB_SROM8_FEM_TSSIPOS_SHIFT);
318 SPEX(fem.ghz2.extpa_gain, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_EXTPA_GAIN,
319 SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
320 SPEX(fem.ghz2.pdet_range, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_PDET_RANGE,
321 SSB_SROM8_FEM_PDET_RANGE_SHIFT);
322 SPEX(fem.ghz2.tr_iso, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_TR_ISO,
323 SSB_SROM8_FEM_TR_ISO_SHIFT);
324 SPEX(fem.ghz2.antswlut, SSB_SPROM8_FEM2G, SSB_SROM8_FEM_ANTSWLUT,
325 SSB_SROM8_FEM_ANTSWLUT_SHIFT);
327 SPEX(fem.ghz5.tssipos, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TSSIPOS,
328 SSB_SROM8_FEM_TSSIPOS_SHIFT);
329 SPEX(fem.ghz5.extpa_gain, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_EXTPA_GAIN,
330 SSB_SROM8_FEM_EXTPA_GAIN_SHIFT);
331 SPEX(fem.ghz5.pdet_range, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_PDET_RANGE,
332 SSB_SROM8_FEM_PDET_RANGE_SHIFT);
333 SPEX(fem.ghz5.tr_iso, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_TR_ISO,
334 SSB_SROM8_FEM_TR_ISO_SHIFT);
335 SPEX(fem.ghz5.antswlut, SSB_SPROM8_FEM5G, SSB_SROM8_FEM_ANTSWLUT,
336 SSB_SROM8_FEM_ANTSWLUT_SHIFT);
338 SPEX(ant_available_a, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_A,
339 SSB_SPROM8_ANTAVAIL_A_SHIFT);
340 SPEX(ant_available_bg, SSB_SPROM8_ANTAVAIL, SSB_SPROM8_ANTAVAIL_BG,
341 SSB_SPROM8_ANTAVAIL_BG_SHIFT);
342 SPEX(maxpwr_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_MAXP_BG_MASK, 0);
343 SPEX(itssi_bg, SSB_SPROM8_MAXP_BG, SSB_SPROM8_ITSSI_BG,
344 SSB_SPROM8_ITSSI_BG_SHIFT);
345 SPEX(maxpwr_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_MAXP_A_MASK, 0);
346 SPEX(itssi_a, SSB_SPROM8_MAXP_A, SSB_SPROM8_ITSSI_A,
347 SSB_SPROM8_ITSSI_A_SHIFT);
348 SPEX(maxpwr_ah, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AH_MASK, 0);
349 SPEX(maxpwr_al, SSB_SPROM8_MAXP_AHL, SSB_SPROM8_MAXP_AL_MASK,
350 SSB_SPROM8_MAXP_AL_SHIFT);
351 SPEX(gpio0, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P0, 0);
352 SPEX(gpio1, SSB_SPROM8_GPIOA, SSB_SPROM8_GPIOA_P1,
353 SSB_SPROM8_GPIOA_P1_SHIFT);
354 SPEX(gpio2, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P2, 0);
355 SPEX(gpio3, SSB_SPROM8_GPIOB, SSB_SPROM8_GPIOB_P3,
356 SSB_SPROM8_GPIOB_P3_SHIFT);
357 SPEX(tri2g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI2G, 0);
358 SPEX(tri5g, SSB_SPROM8_TRI25G, SSB_SPROM8_TRI5G,
359 SSB_SPROM8_TRI5G_SHIFT);
360 SPEX(tri5gl, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GL, 0);
361 SPEX(tri5gh, SSB_SPROM8_TRI5GHL, SSB_SPROM8_TRI5GH,
362 SSB_SPROM8_TRI5GH_SHIFT);
363 SPEX(rxpo2g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO2G,
364 SSB_SPROM8_RXPO2G_SHIFT);
365 SPEX(rxpo5g, SSB_SPROM8_RXPO, SSB_SPROM8_RXPO5G,
366 SSB_SPROM8_RXPO5G_SHIFT);
367 SPEX(rssismf2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMF2G, 0);
368 SPEX(rssismc2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISMC2G,
369 SSB_SPROM8_RSSISMC2G_SHIFT);
370 SPEX(rssisav2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_RSSISAV2G,
371 SSB_SPROM8_RSSISAV2G_SHIFT);
372 SPEX(bxa2g, SSB_SPROM8_RSSIPARM2G, SSB_SPROM8_BXA2G,
373 SSB_SPROM8_BXA2G_SHIFT);
374 SPEX(rssismf5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMF5G, 0);
375 SPEX(rssismc5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISMC5G,
376 SSB_SPROM8_RSSISMC5G_SHIFT);
377 SPEX(rssisav5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_RSSISAV5G,
378 SSB_SPROM8_RSSISAV5G_SHIFT);
379 SPEX(bxa5g, SSB_SPROM8_RSSIPARM5G, SSB_SPROM8_BXA5G,
380 SSB_SPROM8_BXA5G_SHIFT);
382 SPEX(pa0b0, SSB_SPROM8_PA0B0, ~0, 0);
383 SPEX(pa0b1, SSB_SPROM8_PA0B1, ~0, 0);
384 SPEX(pa0b2, SSB_SPROM8_PA0B2, ~0, 0);
385 SPEX(pa1b0, SSB_SPROM8_PA1B0, ~0, 0);
386 SPEX(pa1b1, SSB_SPROM8_PA1B1, ~0, 0);
387 SPEX(pa1b2, SSB_SPROM8_PA1B2, ~0, 0);
388 SPEX(pa1lob0, SSB_SPROM8_PA1LOB0, ~0, 0);
389 SPEX(pa1lob1, SSB_SPROM8_PA1LOB1, ~0, 0);
390 SPEX(pa1lob2, SSB_SPROM8_PA1LOB2, ~0, 0);
391 SPEX(pa1hib0, SSB_SPROM8_PA1HIB0, ~0, 0);
392 SPEX(pa1hib1, SSB_SPROM8_PA1HIB1, ~0, 0);
393 SPEX(pa1hib2, SSB_SPROM8_PA1HIB2, ~0, 0);
394 SPEX(cck2gpo, SSB_SPROM8_CCK2GPO, ~0, 0);
395 SPEX32(ofdm2gpo, SSB_SPROM8_OFDM2GPO, ~0, 0);
396 SPEX32(ofdm5glpo, SSB_SPROM8_OFDM5GLPO, ~0, 0);
397 SPEX32(ofdm5gpo, SSB_SPROM8_OFDM5GPO, ~0, 0);
398 SPEX32(ofdm5ghpo, SSB_SPROM8_OFDM5GHPO, ~0, 0);
400 /* Extract the antenna gain values. */
401 bus->sprom.antenna_gain.a0 = sprom_extract_antgain(sprom,
402 SSB_SPROM8_AGAIN01,
403 SSB_SPROM8_AGAIN0,
404 SSB_SPROM8_AGAIN0_SHIFT);
405 bus->sprom.antenna_gain.a1 = sprom_extract_antgain(sprom,
406 SSB_SPROM8_AGAIN01,
407 SSB_SPROM8_AGAIN1,
408 SSB_SPROM8_AGAIN1_SHIFT);
409 bus->sprom.antenna_gain.a2 = sprom_extract_antgain(sprom,
410 SSB_SPROM8_AGAIN23,
411 SSB_SPROM8_AGAIN2,
412 SSB_SPROM8_AGAIN2_SHIFT);
413 bus->sprom.antenna_gain.a3 = sprom_extract_antgain(sprom,
414 SSB_SPROM8_AGAIN23,
415 SSB_SPROM8_AGAIN3,
416 SSB_SPROM8_AGAIN3_SHIFT);
418 SPEX(leddc_on_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_ON,
419 SSB_SPROM8_LEDDC_ON_SHIFT);
420 SPEX(leddc_off_time, SSB_SPROM8_LEDDC, SSB_SPROM8_LEDDC_OFF,
421 SSB_SPROM8_LEDDC_OFF_SHIFT);
423 SPEX(txchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_TXCHAIN,
424 SSB_SPROM8_TXRXC_TXCHAIN_SHIFT);
425 SPEX(rxchain, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_RXCHAIN,
426 SSB_SPROM8_TXRXC_RXCHAIN_SHIFT);
427 SPEX(antswitch, SSB_SPROM8_TXRXC, SSB_SPROM8_TXRXC_SWITCH,
428 SSB_SPROM8_TXRXC_SWITCH_SHIFT);
430 SPEX(opo, SSB_SPROM8_OFDM2GPO, 0x00ff, 0);
432 SPEX_ARRAY8(mcs2gpo, SSB_SPROM8_2G_MCSPO, ~0, 0);
433 SPEX_ARRAY8(mcs5gpo, SSB_SPROM8_5G_MCSPO, ~0, 0);
434 SPEX_ARRAY8(mcs5glpo, SSB_SPROM8_5GL_MCSPO, ~0, 0);
435 SPEX_ARRAY8(mcs5ghpo, SSB_SPROM8_5GH_MCSPO, ~0, 0);
437 SPEX(rawtempsense, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_RAWTEMP,
438 SSB_SPROM8_RAWTS_RAWTEMP_SHIFT);
439 SPEX(measpower, SSB_SPROM8_RAWTS, SSB_SPROM8_RAWTS_MEASPOWER,
440 SSB_SPROM8_RAWTS_MEASPOWER_SHIFT);
441 SPEX(tempsense_slope, SSB_SPROM8_OPT_CORRX,
442 SSB_SPROM8_OPT_CORRX_TEMP_SLOPE,
443 SSB_SPROM8_OPT_CORRX_TEMP_SLOPE_SHIFT);
444 SPEX(tempcorrx, SSB_SPROM8_OPT_CORRX, SSB_SPROM8_OPT_CORRX_TEMPCORRX,
445 SSB_SPROM8_OPT_CORRX_TEMPCORRX_SHIFT);
446 SPEX(tempsense_option, SSB_SPROM8_OPT_CORRX,
447 SSB_SPROM8_OPT_CORRX_TEMP_OPTION,
448 SSB_SPROM8_OPT_CORRX_TEMP_OPTION_SHIFT);
449 SPEX(freqoffset_corr, SSB_SPROM8_HWIQ_IQSWP,
450 SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR,
451 SSB_SPROM8_HWIQ_IQSWP_FREQ_CORR_SHIFT);
452 SPEX(iqcal_swp_dis, SSB_SPROM8_HWIQ_IQSWP,
453 SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP,
454 SSB_SPROM8_HWIQ_IQSWP_IQCAL_SWP_SHIFT);
455 SPEX(hw_iqcal_en, SSB_SPROM8_HWIQ_IQSWP, SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL,
456 SSB_SPROM8_HWIQ_IQSWP_HW_IQCAL_SHIFT);
458 SPEX(bw40po, SSB_SPROM8_BW40PO, ~0, 0);
459 SPEX(cddpo, SSB_SPROM8_CDDPO, ~0, 0);
460 SPEX(stbcpo, SSB_SPROM8_STBCPO, ~0, 0);
461 SPEX(bwduppo, SSB_SPROM8_BWDUPPO, ~0, 0);
463 SPEX(tempthresh, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_TRESH,
464 SSB_SPROM8_THERMAL_TRESH_SHIFT);
465 SPEX(tempoffset, SSB_SPROM8_THERMAL, SSB_SPROM8_THERMAL_OFFSET,
466 SSB_SPROM8_THERMAL_OFFSET_SHIFT);
467 SPEX(phycal_tempdelta, SSB_SPROM8_TEMPDELTA,
468 SSB_SPROM8_TEMPDELTA_PHYCAL,
469 SSB_SPROM8_TEMPDELTA_PHYCAL_SHIFT);
470 SPEX(temps_period, SSB_SPROM8_TEMPDELTA, SSB_SPROM8_TEMPDELTA_PERIOD,
471 SSB_SPROM8_TEMPDELTA_PERIOD_SHIFT);
472 SPEX(temps_hysteresis, SSB_SPROM8_TEMPDELTA,
473 SSB_SPROM8_TEMPDELTA_HYSTERESIS,
474 SSB_SPROM8_TEMPDELTA_HYSTERESIS_SHIFT);
478 * Indicates the presence of external SPROM.
480 static bool bcma_sprom_ext_available(struct bcma_bus *bus)
482 u32 chip_status;
483 u32 srom_control;
484 u32 present_mask;
486 if (bus->drv_cc.core->id.rev >= 31) {
487 if (!(bus->drv_cc.capabilities & BCMA_CC_CAP_SPROM))
488 return false;
490 srom_control = bcma_read32(bus->drv_cc.core,
491 BCMA_CC_SROM_CONTROL);
492 return srom_control & BCMA_CC_SROM_CONTROL_PRESENT;
495 /* older chipcommon revisions use chip status register */
496 chip_status = bcma_read32(bus->drv_cc.core, BCMA_CC_CHIPSTAT);
497 switch (bus->chipinfo.id) {
498 case BCMA_CHIP_ID_BCM4313:
499 present_mask = BCMA_CC_CHIPST_4313_SPROM_PRESENT;
500 break;
502 case BCMA_CHIP_ID_BCM4331:
503 present_mask = BCMA_CC_CHIPST_4331_SPROM_PRESENT;
504 break;
506 default:
507 return true;
510 return chip_status & present_mask;
514 * Indicates that on-chip OTP memory is present and enabled.
516 static bool bcma_sprom_onchip_available(struct bcma_bus *bus)
518 u32 chip_status;
519 u32 otpsize = 0;
520 bool present;
522 chip_status = bcma_read32(bus->drv_cc.core, BCMA_CC_CHIPSTAT);
523 switch (bus->chipinfo.id) {
524 case BCMA_CHIP_ID_BCM4313:
525 present = chip_status & BCMA_CC_CHIPST_4313_OTP_PRESENT;
526 break;
528 case BCMA_CHIP_ID_BCM4331:
529 present = chip_status & BCMA_CC_CHIPST_4331_OTP_PRESENT;
530 break;
531 case BCMA_CHIP_ID_BCM43142:
532 case BCMA_CHIP_ID_BCM43224:
533 case BCMA_CHIP_ID_BCM43225:
534 /* for these chips OTP is always available */
535 present = true;
536 break;
537 case BCMA_CHIP_ID_BCM43131:
538 case BCMA_CHIP_ID_BCM43217:
539 case BCMA_CHIP_ID_BCM43227:
540 case BCMA_CHIP_ID_BCM43228:
541 case BCMA_CHIP_ID_BCM43428:
542 present = chip_status & BCMA_CC_CHIPST_43228_OTP_PRESENT;
543 break;
544 default:
545 present = false;
546 break;
549 if (present) {
550 otpsize = bus->drv_cc.capabilities & BCMA_CC_CAP_OTPS;
551 otpsize >>= BCMA_CC_CAP_OTPS_SHIFT;
554 return otpsize != 0;
558 * Verify OTP is filled and determine the byte
559 * offset where SPROM data is located.
561 * On error, returns 0; byte offset otherwise.
563 static int bcma_sprom_onchip_offset(struct bcma_bus *bus)
565 struct bcma_device *cc = bus->drv_cc.core;
566 u32 offset;
568 /* verify OTP status */
569 if ((bcma_read32(cc, BCMA_CC_OTPS) & BCMA_CC_OTPS_GU_PROG_HW) == 0)
570 return 0;
572 /* obtain bit offset from otplayout register */
573 offset = (bcma_read32(cc, BCMA_CC_OTPL) & BCMA_CC_OTPL_GURGN_OFFSET);
574 return BCMA_CC_SPROM + (offset >> 3);
577 int bcma_sprom_get(struct bcma_bus *bus)
579 u16 offset = BCMA_CC_SPROM;
580 u16 *sprom;
581 size_t sprom_sizes[] = { SSB_SPROMSIZE_WORDS_R4,
582 SSB_SPROMSIZE_WORDS_R10,
583 SSB_SPROMSIZE_WORDS_R11, };
584 int i, err = 0;
586 if (!bus->drv_cc.core)
587 return -EOPNOTSUPP;
589 if (!bcma_sprom_ext_available(bus)) {
590 bool sprom_onchip;
593 * External SPROM takes precedence so check
594 * on-chip OTP only when no external SPROM
595 * is present.
597 sprom_onchip = bcma_sprom_onchip_available(bus);
598 if (sprom_onchip) {
599 /* determine offset */
600 offset = bcma_sprom_onchip_offset(bus);
602 if (!offset || !sprom_onchip) {
604 * Maybe there is no SPROM on the device?
605 * Now we ask the arch code if there is some sprom
606 * available for this device in some other storage.
608 err = bcma_fill_sprom_with_fallback(bus, &bus->sprom);
609 return err;
613 if (bus->chipinfo.id == BCMA_CHIP_ID_BCM4331 ||
614 bus->chipinfo.id == BCMA_CHIP_ID_BCM43431)
615 bcma_chipco_bcm4331_ext_pa_lines_ctl(&bus->drv_cc, false);
617 bcma_debug(bus, "SPROM offset 0x%x\n", offset);
618 for (i = 0; i < ARRAY_SIZE(sprom_sizes); i++) {
619 size_t words = sprom_sizes[i];
621 sprom = kcalloc(words, sizeof(u16), GFP_KERNEL);
622 if (!sprom)
623 return -ENOMEM;
625 bcma_sprom_read(bus, offset, sprom, words);
626 err = bcma_sprom_valid(bus, sprom, words);
627 if (!err)
628 break;
630 kfree(sprom);
633 if (bus->chipinfo.id == BCMA_CHIP_ID_BCM4331 ||
634 bus->chipinfo.id == BCMA_CHIP_ID_BCM43431)
635 bcma_chipco_bcm4331_ext_pa_lines_ctl(&bus->drv_cc, true);
637 if (err) {
638 bcma_warn(bus, "Invalid SPROM read from the PCIe card, trying to use fallback SPROM\n");
639 err = bcma_fill_sprom_with_fallback(bus, &bus->sprom);
640 } else {
641 bcma_sprom_extract_r8(bus, sprom);
642 kfree(sprom);
645 return err;