2 * background writeback - scan btree for dirty data and write it to the backing
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
12 #include "writeback.h"
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <trace/events/bcache.h>
20 static void __update_writeback_rate(struct cached_dev
*dc
)
22 struct cache_set
*c
= dc
->disk
.c
;
23 uint64_t cache_sectors
= c
->nbuckets
* c
->sb
.bucket_size
;
24 uint64_t cache_dirty_target
=
25 div_u64(cache_sectors
* dc
->writeback_percent
, 100);
27 int64_t target
= div64_u64(cache_dirty_target
* bdev_sectors(dc
->bdev
),
28 c
->cached_dev_sectors
);
32 int64_t dirty
= bcache_dev_sectors_dirty(&dc
->disk
);
33 int64_t derivative
= dirty
- dc
->disk
.sectors_dirty_last
;
34 int64_t proportional
= dirty
- target
;
37 dc
->disk
.sectors_dirty_last
= dirty
;
39 /* Scale to sectors per second */
41 proportional
*= dc
->writeback_rate_update_seconds
;
42 proportional
= div_s64(proportional
, dc
->writeback_rate_p_term_inverse
);
44 derivative
= div_s64(derivative
, dc
->writeback_rate_update_seconds
);
46 derivative
= ewma_add(dc
->disk
.sectors_dirty_derivative
, derivative
,
47 (dc
->writeback_rate_d_term
/
48 dc
->writeback_rate_update_seconds
) ?: 1, 0);
50 derivative
*= dc
->writeback_rate_d_term
;
51 derivative
= div_s64(derivative
, dc
->writeback_rate_p_term_inverse
);
53 change
= proportional
+ derivative
;
55 /* Don't increase writeback rate if the device isn't keeping up */
57 time_after64(local_clock(),
58 dc
->writeback_rate
.next
+ NSEC_PER_MSEC
))
61 dc
->writeback_rate
.rate
=
62 clamp_t(int64_t, (int64_t) dc
->writeback_rate
.rate
+ change
,
65 dc
->writeback_rate_proportional
= proportional
;
66 dc
->writeback_rate_derivative
= derivative
;
67 dc
->writeback_rate_change
= change
;
68 dc
->writeback_rate_target
= target
;
71 static void update_writeback_rate(struct work_struct
*work
)
73 struct cached_dev
*dc
= container_of(to_delayed_work(work
),
75 writeback_rate_update
);
77 down_read(&dc
->writeback_lock
);
79 if (atomic_read(&dc
->has_dirty
) &&
80 dc
->writeback_percent
)
81 __update_writeback_rate(dc
);
83 up_read(&dc
->writeback_lock
);
85 schedule_delayed_work(&dc
->writeback_rate_update
,
86 dc
->writeback_rate_update_seconds
* HZ
);
89 static unsigned writeback_delay(struct cached_dev
*dc
, unsigned sectors
)
91 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
92 !dc
->writeback_percent
)
95 return bch_next_delay(&dc
->writeback_rate
, sectors
);
100 struct cached_dev
*dc
;
104 static void dirty_init(struct keybuf_key
*w
)
106 struct dirty_io
*io
= w
->private;
107 struct bio
*bio
= &io
->bio
;
110 if (!io
->dc
->writeback_percent
)
111 bio_set_prio(bio
, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE
, 0));
113 bio
->bi_iter
.bi_size
= KEY_SIZE(&w
->key
) << 9;
114 bio
->bi_max_vecs
= DIV_ROUND_UP(KEY_SIZE(&w
->key
), PAGE_SECTORS
);
116 bio
->bi_io_vec
= bio
->bi_inline_vecs
;
117 bch_bio_map(bio
, NULL
);
120 static void dirty_io_destructor(struct closure
*cl
)
122 struct dirty_io
*io
= container_of(cl
, struct dirty_io
, cl
);
126 static void write_dirty_finish(struct closure
*cl
)
128 struct dirty_io
*io
= container_of(cl
, struct dirty_io
, cl
);
129 struct keybuf_key
*w
= io
->bio
.bi_private
;
130 struct cached_dev
*dc
= io
->dc
;
134 bio_for_each_segment_all(bv
, &io
->bio
, i
)
135 __free_page(bv
->bv_page
);
137 /* This is kind of a dumb way of signalling errors. */
138 if (KEY_DIRTY(&w
->key
)) {
143 bch_keylist_init(&keys
);
145 bkey_copy(keys
.top
, &w
->key
);
146 SET_KEY_DIRTY(keys
.top
, false);
147 bch_keylist_push(&keys
);
149 for (i
= 0; i
< KEY_PTRS(&w
->key
); i
++)
150 atomic_inc(&PTR_BUCKET(dc
->disk
.c
, &w
->key
, i
)->pin
);
152 ret
= bch_btree_insert(dc
->disk
.c
, &keys
, NULL
, &w
->key
);
155 trace_bcache_writeback_collision(&w
->key
);
158 ? &dc
->disk
.c
->writeback_keys_failed
159 : &dc
->disk
.c
->writeback_keys_done
);
162 bch_keybuf_del(&dc
->writeback_keys
, w
);
165 closure_return_with_destructor(cl
, dirty_io_destructor
);
168 static void dirty_endio(struct bio
*bio
)
170 struct keybuf_key
*w
= bio
->bi_private
;
171 struct dirty_io
*io
= w
->private;
174 SET_KEY_DIRTY(&w
->key
, false);
176 closure_put(&io
->cl
);
179 static void write_dirty(struct closure
*cl
)
181 struct dirty_io
*io
= container_of(cl
, struct dirty_io
, cl
);
182 struct keybuf_key
*w
= io
->bio
.bi_private
;
185 io
->bio
.bi_rw
= WRITE
;
186 io
->bio
.bi_iter
.bi_sector
= KEY_START(&w
->key
);
187 io
->bio
.bi_bdev
= io
->dc
->bdev
;
188 io
->bio
.bi_end_io
= dirty_endio
;
190 closure_bio_submit(&io
->bio
, cl
);
192 continue_at(cl
, write_dirty_finish
, system_wq
);
195 static void read_dirty_endio(struct bio
*bio
)
197 struct keybuf_key
*w
= bio
->bi_private
;
198 struct dirty_io
*io
= w
->private;
200 bch_count_io_errors(PTR_CACHE(io
->dc
->disk
.c
, &w
->key
, 0),
201 bio
->bi_error
, "reading dirty data from cache");
206 static void read_dirty_submit(struct closure
*cl
)
208 struct dirty_io
*io
= container_of(cl
, struct dirty_io
, cl
);
210 closure_bio_submit(&io
->bio
, cl
);
212 continue_at(cl
, write_dirty
, system_wq
);
215 static void read_dirty(struct cached_dev
*dc
)
218 struct keybuf_key
*w
;
222 closure_init_stack(&cl
);
225 * XXX: if we error, background writeback just spins. Should use some
229 while (!kthread_should_stop()) {
231 w
= bch_keybuf_next(&dc
->writeback_keys
);
235 BUG_ON(ptr_stale(dc
->disk
.c
, &w
->key
, 0));
237 if (KEY_START(&w
->key
) != dc
->last_read
||
238 jiffies_to_msecs(delay
) > 50)
239 while (!kthread_should_stop() && delay
)
240 delay
= schedule_timeout_interruptible(delay
);
242 dc
->last_read
= KEY_OFFSET(&w
->key
);
244 io
= kzalloc(sizeof(struct dirty_io
) + sizeof(struct bio_vec
)
245 * DIV_ROUND_UP(KEY_SIZE(&w
->key
), PAGE_SECTORS
),
254 io
->bio
.bi_iter
.bi_sector
= PTR_OFFSET(&w
->key
, 0);
255 io
->bio
.bi_bdev
= PTR_CACHE(dc
->disk
.c
,
257 io
->bio
.bi_rw
= READ
;
258 io
->bio
.bi_end_io
= read_dirty_endio
;
260 if (bio_alloc_pages(&io
->bio
, GFP_KERNEL
))
263 trace_bcache_writeback(&w
->key
);
265 down(&dc
->in_flight
);
266 closure_call(&io
->cl
, read_dirty_submit
, NULL
, &cl
);
268 delay
= writeback_delay(dc
, KEY_SIZE(&w
->key
));
275 bch_keybuf_del(&dc
->writeback_keys
, w
);
279 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
280 * freed) before refilling again
285 /* Scan for dirty data */
287 void bcache_dev_sectors_dirty_add(struct cache_set
*c
, unsigned inode
,
288 uint64_t offset
, int nr_sectors
)
290 struct bcache_device
*d
= c
->devices
[inode
];
291 unsigned stripe_offset
, stripe
, sectors_dirty
;
296 stripe
= offset_to_stripe(d
, offset
);
297 stripe_offset
= offset
& (d
->stripe_size
- 1);
300 int s
= min_t(unsigned, abs(nr_sectors
),
301 d
->stripe_size
- stripe_offset
);
306 if (stripe
>= d
->nr_stripes
)
309 sectors_dirty
= atomic_add_return(s
,
310 d
->stripe_sectors_dirty
+ stripe
);
311 if (sectors_dirty
== d
->stripe_size
)
312 set_bit(stripe
, d
->full_dirty_stripes
);
314 clear_bit(stripe
, d
->full_dirty_stripes
);
322 static bool dirty_pred(struct keybuf
*buf
, struct bkey
*k
)
324 struct cached_dev
*dc
= container_of(buf
, struct cached_dev
, writeback_keys
);
326 BUG_ON(KEY_INODE(k
) != dc
->disk
.id
);
331 static void refill_full_stripes(struct cached_dev
*dc
)
333 struct keybuf
*buf
= &dc
->writeback_keys
;
334 unsigned start_stripe
, stripe
, next_stripe
;
335 bool wrapped
= false;
337 stripe
= offset_to_stripe(&dc
->disk
, KEY_OFFSET(&buf
->last_scanned
));
339 if (stripe
>= dc
->disk
.nr_stripes
)
342 start_stripe
= stripe
;
345 stripe
= find_next_bit(dc
->disk
.full_dirty_stripes
,
346 dc
->disk
.nr_stripes
, stripe
);
348 if (stripe
== dc
->disk
.nr_stripes
)
351 next_stripe
= find_next_zero_bit(dc
->disk
.full_dirty_stripes
,
352 dc
->disk
.nr_stripes
, stripe
);
354 buf
->last_scanned
= KEY(dc
->disk
.id
,
355 stripe
* dc
->disk
.stripe_size
, 0);
357 bch_refill_keybuf(dc
->disk
.c
, buf
,
359 next_stripe
* dc
->disk
.stripe_size
, 0),
362 if (array_freelist_empty(&buf
->freelist
))
365 stripe
= next_stripe
;
367 if (wrapped
&& stripe
> start_stripe
)
370 if (stripe
== dc
->disk
.nr_stripes
) {
378 * Returns true if we scanned the entire disk
380 static bool refill_dirty(struct cached_dev
*dc
)
382 struct keybuf
*buf
= &dc
->writeback_keys
;
383 struct bkey start
= KEY(dc
->disk
.id
, 0, 0);
384 struct bkey end
= KEY(dc
->disk
.id
, MAX_KEY_OFFSET
, 0);
385 struct bkey start_pos
;
388 * make sure keybuf pos is inside the range for this disk - at bringup
389 * we might not be attached yet so this disk's inode nr isn't
392 if (bkey_cmp(&buf
->last_scanned
, &start
) < 0 ||
393 bkey_cmp(&buf
->last_scanned
, &end
) > 0)
394 buf
->last_scanned
= start
;
396 if (dc
->partial_stripes_expensive
) {
397 refill_full_stripes(dc
);
398 if (array_freelist_empty(&buf
->freelist
))
402 start_pos
= buf
->last_scanned
;
403 bch_refill_keybuf(dc
->disk
.c
, buf
, &end
, dirty_pred
);
405 if (bkey_cmp(&buf
->last_scanned
, &end
) < 0)
409 * If we get to the end start scanning again from the beginning, and
410 * only scan up to where we initially started scanning from:
412 buf
->last_scanned
= start
;
413 bch_refill_keybuf(dc
->disk
.c
, buf
, &start_pos
, dirty_pred
);
415 return bkey_cmp(&buf
->last_scanned
, &start_pos
) >= 0;
418 static int bch_writeback_thread(void *arg
)
420 struct cached_dev
*dc
= arg
;
421 bool searched_full_index
;
423 while (!kthread_should_stop()) {
424 down_write(&dc
->writeback_lock
);
425 if (!atomic_read(&dc
->has_dirty
) ||
426 (!test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) &&
427 !dc
->writeback_running
)) {
428 up_write(&dc
->writeback_lock
);
429 set_current_state(TASK_INTERRUPTIBLE
);
431 if (kthread_should_stop())
438 searched_full_index
= refill_dirty(dc
);
440 if (searched_full_index
&&
441 RB_EMPTY_ROOT(&dc
->writeback_keys
.keys
)) {
442 atomic_set(&dc
->has_dirty
, 0);
444 SET_BDEV_STATE(&dc
->sb
, BDEV_STATE_CLEAN
);
445 bch_write_bdev_super(dc
, NULL
);
448 up_write(&dc
->writeback_lock
);
450 bch_ratelimit_reset(&dc
->writeback_rate
);
453 if (searched_full_index
) {
454 unsigned delay
= dc
->writeback_delay
* HZ
;
457 !kthread_should_stop() &&
458 !test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
))
459 delay
= schedule_timeout_interruptible(delay
);
468 struct sectors_dirty_init
{
473 static int sectors_dirty_init_fn(struct btree_op
*_op
, struct btree
*b
,
476 struct sectors_dirty_init
*op
= container_of(_op
,
477 struct sectors_dirty_init
, op
);
478 if (KEY_INODE(k
) > op
->inode
)
482 bcache_dev_sectors_dirty_add(b
->c
, KEY_INODE(k
),
483 KEY_START(k
), KEY_SIZE(k
));
488 void bch_sectors_dirty_init(struct cached_dev
*dc
)
490 struct sectors_dirty_init op
;
492 bch_btree_op_init(&op
.op
, -1);
493 op
.inode
= dc
->disk
.id
;
495 bch_btree_map_keys(&op
.op
, dc
->disk
.c
, &KEY(op
.inode
, 0, 0),
496 sectors_dirty_init_fn
, 0);
498 dc
->disk
.sectors_dirty_last
= bcache_dev_sectors_dirty(&dc
->disk
);
501 void bch_cached_dev_writeback_init(struct cached_dev
*dc
)
503 sema_init(&dc
->in_flight
, 64);
504 init_rwsem(&dc
->writeback_lock
);
505 bch_keybuf_init(&dc
->writeback_keys
);
507 dc
->writeback_metadata
= true;
508 dc
->writeback_running
= true;
509 dc
->writeback_percent
= 10;
510 dc
->writeback_delay
= 30;
511 dc
->writeback_rate
.rate
= 1024;
513 dc
->writeback_rate_update_seconds
= 5;
514 dc
->writeback_rate_d_term
= 30;
515 dc
->writeback_rate_p_term_inverse
= 6000;
517 INIT_DELAYED_WORK(&dc
->writeback_rate_update
, update_writeback_rate
);
520 int bch_cached_dev_writeback_start(struct cached_dev
*dc
)
522 dc
->writeback_thread
= kthread_create(bch_writeback_thread
, dc
,
524 if (IS_ERR(dc
->writeback_thread
))
525 return PTR_ERR(dc
->writeback_thread
);
527 schedule_delayed_work(&dc
->writeback_rate_update
,
528 dc
->writeback_rate_update_seconds
* HZ
);
530 bch_writeback_queue(dc
);