2 * Copyright (C) 2011-2012 Red Hat UK.
4 * This file is released under the GPL.
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
25 #define DM_MSG_PREFIX "thin"
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
35 static unsigned no_space_timeout_secs
= NO_SPACE_TIMEOUT_SECS
;
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle
,
38 "A percentage of time allocated for copy on write");
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
48 * Device id is restricted to 24 bits.
50 #define MAX_DEV_ID ((1 << 24) - 1)
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
66 * Let's say we write to a shared block in what was the origin. The
69 * i) plug io further to this physical block. (see bio_prison code).
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
88 * Steps (ii) and (iii) occur in parallel.
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
98 * - The snap mapping still points to the old block. As it would after
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
110 /*----------------------------------------------------------------*/
120 static void build_key(struct dm_thin_device
*td
, enum lock_space ls
,
121 dm_block_t b
, dm_block_t e
, struct dm_cell_key
*key
)
123 key
->virtual = (ls
== VIRTUAL
);
124 key
->dev
= dm_thin_dev_id(td
);
125 key
->block_begin
= b
;
129 static void build_data_key(struct dm_thin_device
*td
, dm_block_t b
,
130 struct dm_cell_key
*key
)
132 build_key(td
, PHYSICAL
, b
, b
+ 1llu, key
);
135 static void build_virtual_key(struct dm_thin_device
*td
, dm_block_t b
,
136 struct dm_cell_key
*key
)
138 build_key(td
, VIRTUAL
, b
, b
+ 1llu, key
);
141 /*----------------------------------------------------------------*/
143 #define THROTTLE_THRESHOLD (1 * HZ)
146 struct rw_semaphore lock
;
147 unsigned long threshold
;
148 bool throttle_applied
;
151 static void throttle_init(struct throttle
*t
)
153 init_rwsem(&t
->lock
);
154 t
->throttle_applied
= false;
157 static void throttle_work_start(struct throttle
*t
)
159 t
->threshold
= jiffies
+ THROTTLE_THRESHOLD
;
162 static void throttle_work_update(struct throttle
*t
)
164 if (!t
->throttle_applied
&& jiffies
> t
->threshold
) {
165 down_write(&t
->lock
);
166 t
->throttle_applied
= true;
170 static void throttle_work_complete(struct throttle
*t
)
172 if (t
->throttle_applied
) {
173 t
->throttle_applied
= false;
178 static void throttle_lock(struct throttle
*t
)
183 static void throttle_unlock(struct throttle
*t
)
188 /*----------------------------------------------------------------*/
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
195 struct dm_thin_new_mapping
;
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
201 PM_WRITE
, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE
, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY
, /* metadata may not be changed */
204 PM_FAIL
, /* all I/O fails */
207 struct pool_features
{
210 bool zero_new_blocks
:1;
211 bool discard_enabled
:1;
212 bool discard_passdown
:1;
213 bool error_if_no_space
:1;
217 typedef void (*process_bio_fn
)(struct thin_c
*tc
, struct bio
*bio
);
218 typedef void (*process_cell_fn
)(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
);
219 typedef void (*process_mapping_fn
)(struct dm_thin_new_mapping
*m
);
221 #define CELL_SORT_ARRAY_SIZE 8192
224 struct list_head list
;
225 struct dm_target
*ti
; /* Only set if a pool target is bound */
227 struct mapped_device
*pool_md
;
228 struct block_device
*md_dev
;
229 struct dm_pool_metadata
*pmd
;
231 dm_block_t low_water_blocks
;
232 uint32_t sectors_per_block
;
233 int sectors_per_block_shift
;
235 struct pool_features pf
;
236 bool low_water_triggered
:1; /* A dm event has been sent */
238 bool out_of_data_space
:1;
240 struct dm_bio_prison
*prison
;
241 struct dm_kcopyd_client
*copier
;
243 struct workqueue_struct
*wq
;
244 struct throttle throttle
;
245 struct work_struct worker
;
246 struct delayed_work waker
;
247 struct delayed_work no_space_timeout
;
249 unsigned long last_commit_jiffies
;
253 struct bio_list deferred_flush_bios
;
254 struct list_head prepared_mappings
;
255 struct list_head prepared_discards
;
256 struct list_head active_thins
;
258 struct dm_deferred_set
*shared_read_ds
;
259 struct dm_deferred_set
*all_io_ds
;
261 struct dm_thin_new_mapping
*next_mapping
;
262 mempool_t
*mapping_pool
;
264 process_bio_fn process_bio
;
265 process_bio_fn process_discard
;
267 process_cell_fn process_cell
;
268 process_cell_fn process_discard_cell
;
270 process_mapping_fn process_prepared_mapping
;
271 process_mapping_fn process_prepared_discard
;
273 struct dm_bio_prison_cell
**cell_sort_array
;
276 static enum pool_mode
get_pool_mode(struct pool
*pool
);
277 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
);
280 * Target context for a pool.
283 struct dm_target
*ti
;
285 struct dm_dev
*data_dev
;
286 struct dm_dev
*metadata_dev
;
287 struct dm_target_callbacks callbacks
;
289 dm_block_t low_water_blocks
;
290 struct pool_features requested_pf
; /* Features requested during table load */
291 struct pool_features adjusted_pf
; /* Features used after adjusting for constituent devices */
295 * Target context for a thin.
298 struct list_head list
;
299 struct dm_dev
*pool_dev
;
300 struct dm_dev
*origin_dev
;
301 sector_t origin_size
;
305 struct dm_thin_device
*td
;
306 struct mapped_device
*thin_md
;
310 struct list_head deferred_cells
;
311 struct bio_list deferred_bio_list
;
312 struct bio_list retry_on_resume_list
;
313 struct rb_root sort_bio_list
; /* sorted list of deferred bios */
316 * Ensures the thin is not destroyed until the worker has finished
317 * iterating the active_thins list.
320 struct completion can_destroy
;
323 /*----------------------------------------------------------------*/
325 static bool block_size_is_power_of_two(struct pool
*pool
)
327 return pool
->sectors_per_block_shift
>= 0;
330 static sector_t
block_to_sectors(struct pool
*pool
, dm_block_t b
)
332 return block_size_is_power_of_two(pool
) ?
333 (b
<< pool
->sectors_per_block_shift
) :
334 (b
* pool
->sectors_per_block
);
337 /*----------------------------------------------------------------*/
341 struct blk_plug plug
;
342 struct bio
*parent_bio
;
346 static void begin_discard(struct discard_op
*op
, struct thin_c
*tc
, struct bio
*parent
)
351 blk_start_plug(&op
->plug
);
352 op
->parent_bio
= parent
;
356 static int issue_discard(struct discard_op
*op
, dm_block_t data_b
, dm_block_t data_e
)
358 struct thin_c
*tc
= op
->tc
;
359 sector_t s
= block_to_sectors(tc
->pool
, data_b
);
360 sector_t len
= block_to_sectors(tc
->pool
, data_e
- data_b
);
362 return __blkdev_issue_discard(tc
->pool_dev
->bdev
, s
, len
,
363 GFP_NOWAIT
, REQ_WRITE
| REQ_DISCARD
, &op
->bio
);
366 static void end_discard(struct discard_op
*op
, int r
)
370 * Even if one of the calls to issue_discard failed, we
371 * need to wait for the chain to complete.
373 bio_chain(op
->bio
, op
->parent_bio
);
374 submit_bio(REQ_WRITE
| REQ_DISCARD
, op
->bio
);
377 blk_finish_plug(&op
->plug
);
380 * Even if r is set, there could be sub discards in flight that we
383 if (r
&& !op
->parent_bio
->bi_error
)
384 op
->parent_bio
->bi_error
= r
;
385 bio_endio(op
->parent_bio
);
388 /*----------------------------------------------------------------*/
391 * wake_worker() is used when new work is queued and when pool_resume is
392 * ready to continue deferred IO processing.
394 static void wake_worker(struct pool
*pool
)
396 queue_work(pool
->wq
, &pool
->worker
);
399 /*----------------------------------------------------------------*/
401 static int bio_detain(struct pool
*pool
, struct dm_cell_key
*key
, struct bio
*bio
,
402 struct dm_bio_prison_cell
**cell_result
)
405 struct dm_bio_prison_cell
*cell_prealloc
;
408 * Allocate a cell from the prison's mempool.
409 * This might block but it can't fail.
411 cell_prealloc
= dm_bio_prison_alloc_cell(pool
->prison
, GFP_NOIO
);
413 r
= dm_bio_detain(pool
->prison
, key
, bio
, cell_prealloc
, cell_result
);
416 * We reused an old cell; we can get rid of
419 dm_bio_prison_free_cell(pool
->prison
, cell_prealloc
);
424 static void cell_release(struct pool
*pool
,
425 struct dm_bio_prison_cell
*cell
,
426 struct bio_list
*bios
)
428 dm_cell_release(pool
->prison
, cell
, bios
);
429 dm_bio_prison_free_cell(pool
->prison
, cell
);
432 static void cell_visit_release(struct pool
*pool
,
433 void (*fn
)(void *, struct dm_bio_prison_cell
*),
435 struct dm_bio_prison_cell
*cell
)
437 dm_cell_visit_release(pool
->prison
, fn
, context
, cell
);
438 dm_bio_prison_free_cell(pool
->prison
, cell
);
441 static void cell_release_no_holder(struct pool
*pool
,
442 struct dm_bio_prison_cell
*cell
,
443 struct bio_list
*bios
)
445 dm_cell_release_no_holder(pool
->prison
, cell
, bios
);
446 dm_bio_prison_free_cell(pool
->prison
, cell
);
449 static void cell_error_with_code(struct pool
*pool
,
450 struct dm_bio_prison_cell
*cell
, int error_code
)
452 dm_cell_error(pool
->prison
, cell
, error_code
);
453 dm_bio_prison_free_cell(pool
->prison
, cell
);
456 static int get_pool_io_error_code(struct pool
*pool
)
458 return pool
->out_of_data_space
? -ENOSPC
: -EIO
;
461 static void cell_error(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
463 int error
= get_pool_io_error_code(pool
);
465 cell_error_with_code(pool
, cell
, error
);
468 static void cell_success(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
470 cell_error_with_code(pool
, cell
, 0);
473 static void cell_requeue(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
475 cell_error_with_code(pool
, cell
, DM_ENDIO_REQUEUE
);
478 /*----------------------------------------------------------------*/
481 * A global list of pools that uses a struct mapped_device as a key.
483 static struct dm_thin_pool_table
{
485 struct list_head pools
;
486 } dm_thin_pool_table
;
488 static void pool_table_init(void)
490 mutex_init(&dm_thin_pool_table
.mutex
);
491 INIT_LIST_HEAD(&dm_thin_pool_table
.pools
);
494 static void __pool_table_insert(struct pool
*pool
)
496 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
497 list_add(&pool
->list
, &dm_thin_pool_table
.pools
);
500 static void __pool_table_remove(struct pool
*pool
)
502 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
503 list_del(&pool
->list
);
506 static struct pool
*__pool_table_lookup(struct mapped_device
*md
)
508 struct pool
*pool
= NULL
, *tmp
;
510 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
512 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
513 if (tmp
->pool_md
== md
) {
522 static struct pool
*__pool_table_lookup_metadata_dev(struct block_device
*md_dev
)
524 struct pool
*pool
= NULL
, *tmp
;
526 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
528 list_for_each_entry(tmp
, &dm_thin_pool_table
.pools
, list
) {
529 if (tmp
->md_dev
== md_dev
) {
538 /*----------------------------------------------------------------*/
540 struct dm_thin_endio_hook
{
542 struct dm_deferred_entry
*shared_read_entry
;
543 struct dm_deferred_entry
*all_io_entry
;
544 struct dm_thin_new_mapping
*overwrite_mapping
;
545 struct rb_node rb_node
;
546 struct dm_bio_prison_cell
*cell
;
549 static void __merge_bio_list(struct bio_list
*bios
, struct bio_list
*master
)
551 bio_list_merge(bios
, master
);
552 bio_list_init(master
);
555 static void error_bio_list(struct bio_list
*bios
, int error
)
559 while ((bio
= bio_list_pop(bios
))) {
560 bio
->bi_error
= error
;
565 static void error_thin_bio_list(struct thin_c
*tc
, struct bio_list
*master
, int error
)
567 struct bio_list bios
;
570 bio_list_init(&bios
);
572 spin_lock_irqsave(&tc
->lock
, flags
);
573 __merge_bio_list(&bios
, master
);
574 spin_unlock_irqrestore(&tc
->lock
, flags
);
576 error_bio_list(&bios
, error
);
579 static void requeue_deferred_cells(struct thin_c
*tc
)
581 struct pool
*pool
= tc
->pool
;
583 struct list_head cells
;
584 struct dm_bio_prison_cell
*cell
, *tmp
;
586 INIT_LIST_HEAD(&cells
);
588 spin_lock_irqsave(&tc
->lock
, flags
);
589 list_splice_init(&tc
->deferred_cells
, &cells
);
590 spin_unlock_irqrestore(&tc
->lock
, flags
);
592 list_for_each_entry_safe(cell
, tmp
, &cells
, user_list
)
593 cell_requeue(pool
, cell
);
596 static void requeue_io(struct thin_c
*tc
)
598 struct bio_list bios
;
601 bio_list_init(&bios
);
603 spin_lock_irqsave(&tc
->lock
, flags
);
604 __merge_bio_list(&bios
, &tc
->deferred_bio_list
);
605 __merge_bio_list(&bios
, &tc
->retry_on_resume_list
);
606 spin_unlock_irqrestore(&tc
->lock
, flags
);
608 error_bio_list(&bios
, DM_ENDIO_REQUEUE
);
609 requeue_deferred_cells(tc
);
612 static void error_retry_list_with_code(struct pool
*pool
, int error
)
617 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
)
618 error_thin_bio_list(tc
, &tc
->retry_on_resume_list
, error
);
622 static void error_retry_list(struct pool
*pool
)
624 int error
= get_pool_io_error_code(pool
);
626 error_retry_list_with_code(pool
, error
);
630 * This section of code contains the logic for processing a thin device's IO.
631 * Much of the code depends on pool object resources (lists, workqueues, etc)
632 * but most is exclusively called from the thin target rather than the thin-pool
636 static dm_block_t
get_bio_block(struct thin_c
*tc
, struct bio
*bio
)
638 struct pool
*pool
= tc
->pool
;
639 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
641 if (block_size_is_power_of_two(pool
))
642 block_nr
>>= pool
->sectors_per_block_shift
;
644 (void) sector_div(block_nr
, pool
->sectors_per_block
);
650 * Returns the _complete_ blocks that this bio covers.
652 static void get_bio_block_range(struct thin_c
*tc
, struct bio
*bio
,
653 dm_block_t
*begin
, dm_block_t
*end
)
655 struct pool
*pool
= tc
->pool
;
656 sector_t b
= bio
->bi_iter
.bi_sector
;
657 sector_t e
= b
+ (bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
);
659 b
+= pool
->sectors_per_block
- 1ull; /* so we round up */
661 if (block_size_is_power_of_two(pool
)) {
662 b
>>= pool
->sectors_per_block_shift
;
663 e
>>= pool
->sectors_per_block_shift
;
665 (void) sector_div(b
, pool
->sectors_per_block
);
666 (void) sector_div(e
, pool
->sectors_per_block
);
670 /* Can happen if the bio is within a single block. */
677 static void remap(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
)
679 struct pool
*pool
= tc
->pool
;
680 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
682 bio
->bi_bdev
= tc
->pool_dev
->bdev
;
683 if (block_size_is_power_of_two(pool
))
684 bio
->bi_iter
.bi_sector
=
685 (block
<< pool
->sectors_per_block_shift
) |
686 (bi_sector
& (pool
->sectors_per_block
- 1));
688 bio
->bi_iter
.bi_sector
= (block
* pool
->sectors_per_block
) +
689 sector_div(bi_sector
, pool
->sectors_per_block
);
692 static void remap_to_origin(struct thin_c
*tc
, struct bio
*bio
)
694 bio
->bi_bdev
= tc
->origin_dev
->bdev
;
697 static int bio_triggers_commit(struct thin_c
*tc
, struct bio
*bio
)
699 return (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) &&
700 dm_thin_changed_this_transaction(tc
->td
);
703 static void inc_all_io_entry(struct pool
*pool
, struct bio
*bio
)
705 struct dm_thin_endio_hook
*h
;
707 if (bio
->bi_rw
& REQ_DISCARD
)
710 h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
711 h
->all_io_entry
= dm_deferred_entry_inc(pool
->all_io_ds
);
714 static void issue(struct thin_c
*tc
, struct bio
*bio
)
716 struct pool
*pool
= tc
->pool
;
719 if (!bio_triggers_commit(tc
, bio
)) {
720 generic_make_request(bio
);
725 * Complete bio with an error if earlier I/O caused changes to
726 * the metadata that can't be committed e.g, due to I/O errors
727 * on the metadata device.
729 if (dm_thin_aborted_changes(tc
->td
)) {
735 * Batch together any bios that trigger commits and then issue a
736 * single commit for them in process_deferred_bios().
738 spin_lock_irqsave(&pool
->lock
, flags
);
739 bio_list_add(&pool
->deferred_flush_bios
, bio
);
740 spin_unlock_irqrestore(&pool
->lock
, flags
);
743 static void remap_to_origin_and_issue(struct thin_c
*tc
, struct bio
*bio
)
745 remap_to_origin(tc
, bio
);
749 static void remap_and_issue(struct thin_c
*tc
, struct bio
*bio
,
752 remap(tc
, bio
, block
);
756 /*----------------------------------------------------------------*/
759 * Bio endio functions.
761 struct dm_thin_new_mapping
{
762 struct list_head list
;
768 * Track quiescing, copying and zeroing preparation actions. When this
769 * counter hits zero the block is prepared and can be inserted into the
772 atomic_t prepare_actions
;
776 dm_block_t virt_begin
, virt_end
;
777 dm_block_t data_block
;
778 struct dm_bio_prison_cell
*cell
;
781 * If the bio covers the whole area of a block then we can avoid
782 * zeroing or copying. Instead this bio is hooked. The bio will
783 * still be in the cell, so care has to be taken to avoid issuing
787 bio_end_io_t
*saved_bi_end_io
;
790 static void __complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
792 struct pool
*pool
= m
->tc
->pool
;
794 if (atomic_dec_and_test(&m
->prepare_actions
)) {
795 list_add_tail(&m
->list
, &pool
->prepared_mappings
);
800 static void complete_mapping_preparation(struct dm_thin_new_mapping
*m
)
803 struct pool
*pool
= m
->tc
->pool
;
805 spin_lock_irqsave(&pool
->lock
, flags
);
806 __complete_mapping_preparation(m
);
807 spin_unlock_irqrestore(&pool
->lock
, flags
);
810 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
812 struct dm_thin_new_mapping
*m
= context
;
814 m
->err
= read_err
|| write_err
? -EIO
: 0;
815 complete_mapping_preparation(m
);
818 static void overwrite_endio(struct bio
*bio
)
820 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
821 struct dm_thin_new_mapping
*m
= h
->overwrite_mapping
;
823 bio
->bi_end_io
= m
->saved_bi_end_io
;
825 m
->err
= bio
->bi_error
;
826 complete_mapping_preparation(m
);
829 /*----------------------------------------------------------------*/
836 * Prepared mapping jobs.
840 * This sends the bios in the cell, except the original holder, back
841 * to the deferred_bios list.
843 static void cell_defer_no_holder(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
845 struct pool
*pool
= tc
->pool
;
848 spin_lock_irqsave(&tc
->lock
, flags
);
849 cell_release_no_holder(pool
, cell
, &tc
->deferred_bio_list
);
850 spin_unlock_irqrestore(&tc
->lock
, flags
);
855 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
);
859 struct bio_list defer_bios
;
860 struct bio_list issue_bios
;
863 static void __inc_remap_and_issue_cell(void *context
,
864 struct dm_bio_prison_cell
*cell
)
866 struct remap_info
*info
= context
;
869 while ((bio
= bio_list_pop(&cell
->bios
))) {
870 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
))
871 bio_list_add(&info
->defer_bios
, bio
);
873 inc_all_io_entry(info
->tc
->pool
, bio
);
876 * We can't issue the bios with the bio prison lock
877 * held, so we add them to a list to issue on
878 * return from this function.
880 bio_list_add(&info
->issue_bios
, bio
);
885 static void inc_remap_and_issue_cell(struct thin_c
*tc
,
886 struct dm_bio_prison_cell
*cell
,
890 struct remap_info info
;
893 bio_list_init(&info
.defer_bios
);
894 bio_list_init(&info
.issue_bios
);
897 * We have to be careful to inc any bios we're about to issue
898 * before the cell is released, and avoid a race with new bios
899 * being added to the cell.
901 cell_visit_release(tc
->pool
, __inc_remap_and_issue_cell
,
904 while ((bio
= bio_list_pop(&info
.defer_bios
)))
905 thin_defer_bio(tc
, bio
);
907 while ((bio
= bio_list_pop(&info
.issue_bios
)))
908 remap_and_issue(info
.tc
, bio
, block
);
911 static void process_prepared_mapping_fail(struct dm_thin_new_mapping
*m
)
913 cell_error(m
->tc
->pool
, m
->cell
);
915 mempool_free(m
, m
->tc
->pool
->mapping_pool
);
918 static void process_prepared_mapping(struct dm_thin_new_mapping
*m
)
920 struct thin_c
*tc
= m
->tc
;
921 struct pool
*pool
= tc
->pool
;
922 struct bio
*bio
= m
->bio
;
926 cell_error(pool
, m
->cell
);
931 * Commit the prepared block into the mapping btree.
932 * Any I/O for this block arriving after this point will get
933 * remapped to it directly.
935 r
= dm_thin_insert_block(tc
->td
, m
->virt_begin
, m
->data_block
);
937 metadata_operation_failed(pool
, "dm_thin_insert_block", r
);
938 cell_error(pool
, m
->cell
);
943 * Release any bios held while the block was being provisioned.
944 * If we are processing a write bio that completely covers the block,
945 * we already processed it so can ignore it now when processing
946 * the bios in the cell.
949 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
952 inc_all_io_entry(tc
->pool
, m
->cell
->holder
);
953 remap_and_issue(tc
, m
->cell
->holder
, m
->data_block
);
954 inc_remap_and_issue_cell(tc
, m
->cell
, m
->data_block
);
959 mempool_free(m
, pool
->mapping_pool
);
962 /*----------------------------------------------------------------*/
964 static void free_discard_mapping(struct dm_thin_new_mapping
*m
)
966 struct thin_c
*tc
= m
->tc
;
968 cell_defer_no_holder(tc
, m
->cell
);
969 mempool_free(m
, tc
->pool
->mapping_pool
);
972 static void process_prepared_discard_fail(struct dm_thin_new_mapping
*m
)
974 bio_io_error(m
->bio
);
975 free_discard_mapping(m
);
978 static void process_prepared_discard_success(struct dm_thin_new_mapping
*m
)
981 free_discard_mapping(m
);
984 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping
*m
)
987 struct thin_c
*tc
= m
->tc
;
989 r
= dm_thin_remove_range(tc
->td
, m
->cell
->key
.block_begin
, m
->cell
->key
.block_end
);
991 metadata_operation_failed(tc
->pool
, "dm_thin_remove_range", r
);
992 bio_io_error(m
->bio
);
996 cell_defer_no_holder(tc
, m
->cell
);
997 mempool_free(m
, tc
->pool
->mapping_pool
);
1000 /*----------------------------------------------------------------*/
1002 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping
*m
)
1005 * We've already unmapped this range of blocks, but before we
1006 * passdown we have to check that these blocks are now unused.
1010 struct thin_c
*tc
= m
->tc
;
1011 struct pool
*pool
= tc
->pool
;
1012 dm_block_t b
= m
->data_block
, e
, end
= m
->data_block
+ m
->virt_end
- m
->virt_begin
;
1013 struct discard_op op
;
1015 begin_discard(&op
, tc
, m
->bio
);
1017 /* find start of unmapped run */
1018 for (; b
< end
; b
++) {
1019 r
= dm_pool_block_is_used(pool
->pmd
, b
, &used
);
1030 /* find end of run */
1031 for (e
= b
+ 1; e
!= end
; e
++) {
1032 r
= dm_pool_block_is_used(pool
->pmd
, e
, &used
);
1040 r
= issue_discard(&op
, b
, e
);
1047 end_discard(&op
, r
);
1050 static void process_prepared_discard_passdown(struct dm_thin_new_mapping
*m
)
1053 struct thin_c
*tc
= m
->tc
;
1054 struct pool
*pool
= tc
->pool
;
1056 r
= dm_thin_remove_range(tc
->td
, m
->virt_begin
, m
->virt_end
);
1058 metadata_operation_failed(pool
, "dm_thin_remove_range", r
);
1059 bio_io_error(m
->bio
);
1061 } else if (m
->maybe_shared
) {
1062 passdown_double_checking_shared_status(m
);
1065 struct discard_op op
;
1066 begin_discard(&op
, tc
, m
->bio
);
1067 r
= issue_discard(&op
, m
->data_block
,
1068 m
->data_block
+ (m
->virt_end
- m
->virt_begin
));
1069 end_discard(&op
, r
);
1072 cell_defer_no_holder(tc
, m
->cell
);
1073 mempool_free(m
, pool
->mapping_pool
);
1076 static void process_prepared(struct pool
*pool
, struct list_head
*head
,
1077 process_mapping_fn
*fn
)
1079 unsigned long flags
;
1080 struct list_head maps
;
1081 struct dm_thin_new_mapping
*m
, *tmp
;
1083 INIT_LIST_HEAD(&maps
);
1084 spin_lock_irqsave(&pool
->lock
, flags
);
1085 list_splice_init(head
, &maps
);
1086 spin_unlock_irqrestore(&pool
->lock
, flags
);
1088 list_for_each_entry_safe(m
, tmp
, &maps
, list
)
1093 * Deferred bio jobs.
1095 static int io_overlaps_block(struct pool
*pool
, struct bio
*bio
)
1097 return bio
->bi_iter
.bi_size
==
1098 (pool
->sectors_per_block
<< SECTOR_SHIFT
);
1101 static int io_overwrites_block(struct pool
*pool
, struct bio
*bio
)
1103 return (bio_data_dir(bio
) == WRITE
) &&
1104 io_overlaps_block(pool
, bio
);
1107 static void save_and_set_endio(struct bio
*bio
, bio_end_io_t
**save
,
1110 *save
= bio
->bi_end_io
;
1111 bio
->bi_end_io
= fn
;
1114 static int ensure_next_mapping(struct pool
*pool
)
1116 if (pool
->next_mapping
)
1119 pool
->next_mapping
= mempool_alloc(pool
->mapping_pool
, GFP_ATOMIC
);
1121 return pool
->next_mapping
? 0 : -ENOMEM
;
1124 static struct dm_thin_new_mapping
*get_next_mapping(struct pool
*pool
)
1126 struct dm_thin_new_mapping
*m
= pool
->next_mapping
;
1128 BUG_ON(!pool
->next_mapping
);
1130 memset(m
, 0, sizeof(struct dm_thin_new_mapping
));
1131 INIT_LIST_HEAD(&m
->list
);
1134 pool
->next_mapping
= NULL
;
1139 static void ll_zero(struct thin_c
*tc
, struct dm_thin_new_mapping
*m
,
1140 sector_t begin
, sector_t end
)
1143 struct dm_io_region to
;
1145 to
.bdev
= tc
->pool_dev
->bdev
;
1147 to
.count
= end
- begin
;
1149 r
= dm_kcopyd_zero(tc
->pool
->copier
, 1, &to
, 0, copy_complete
, m
);
1151 DMERR_LIMIT("dm_kcopyd_zero() failed");
1152 copy_complete(1, 1, m
);
1156 static void remap_and_issue_overwrite(struct thin_c
*tc
, struct bio
*bio
,
1157 dm_block_t data_begin
,
1158 struct dm_thin_new_mapping
*m
)
1160 struct pool
*pool
= tc
->pool
;
1161 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1163 h
->overwrite_mapping
= m
;
1165 save_and_set_endio(bio
, &m
->saved_bi_end_io
, overwrite_endio
);
1166 inc_all_io_entry(pool
, bio
);
1167 remap_and_issue(tc
, bio
, data_begin
);
1171 * A partial copy also needs to zero the uncopied region.
1173 static void schedule_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1174 struct dm_dev
*origin
, dm_block_t data_origin
,
1175 dm_block_t data_dest
,
1176 struct dm_bio_prison_cell
*cell
, struct bio
*bio
,
1180 struct pool
*pool
= tc
->pool
;
1181 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1184 m
->virt_begin
= virt_block
;
1185 m
->virt_end
= virt_block
+ 1u;
1186 m
->data_block
= data_dest
;
1190 * quiesce action + copy action + an extra reference held for the
1191 * duration of this function (we may need to inc later for a
1194 atomic_set(&m
->prepare_actions
, 3);
1196 if (!dm_deferred_set_add_work(pool
->shared_read_ds
, &m
->list
))
1197 complete_mapping_preparation(m
); /* already quiesced */
1200 * IO to pool_dev remaps to the pool target's data_dev.
1202 * If the whole block of data is being overwritten, we can issue the
1203 * bio immediately. Otherwise we use kcopyd to clone the data first.
1205 if (io_overwrites_block(pool
, bio
))
1206 remap_and_issue_overwrite(tc
, bio
, data_dest
, m
);
1208 struct dm_io_region from
, to
;
1210 from
.bdev
= origin
->bdev
;
1211 from
.sector
= data_origin
* pool
->sectors_per_block
;
1214 to
.bdev
= tc
->pool_dev
->bdev
;
1215 to
.sector
= data_dest
* pool
->sectors_per_block
;
1218 r
= dm_kcopyd_copy(pool
->copier
, &from
, 1, &to
,
1219 0, copy_complete
, m
);
1221 DMERR_LIMIT("dm_kcopyd_copy() failed");
1222 copy_complete(1, 1, m
);
1225 * We allow the zero to be issued, to simplify the
1226 * error path. Otherwise we'd need to start
1227 * worrying about decrementing the prepare_actions
1233 * Do we need to zero a tail region?
1235 if (len
< pool
->sectors_per_block
&& pool
->pf
.zero_new_blocks
) {
1236 atomic_inc(&m
->prepare_actions
);
1238 data_dest
* pool
->sectors_per_block
+ len
,
1239 (data_dest
+ 1) * pool
->sectors_per_block
);
1243 complete_mapping_preparation(m
); /* drop our ref */
1246 static void schedule_internal_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1247 dm_block_t data_origin
, dm_block_t data_dest
,
1248 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1250 schedule_copy(tc
, virt_block
, tc
->pool_dev
,
1251 data_origin
, data_dest
, cell
, bio
,
1252 tc
->pool
->sectors_per_block
);
1255 static void schedule_zero(struct thin_c
*tc
, dm_block_t virt_block
,
1256 dm_block_t data_block
, struct dm_bio_prison_cell
*cell
,
1259 struct pool
*pool
= tc
->pool
;
1260 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1262 atomic_set(&m
->prepare_actions
, 1); /* no need to quiesce */
1264 m
->virt_begin
= virt_block
;
1265 m
->virt_end
= virt_block
+ 1u;
1266 m
->data_block
= data_block
;
1270 * If the whole block of data is being overwritten or we are not
1271 * zeroing pre-existing data, we can issue the bio immediately.
1272 * Otherwise we use kcopyd to zero the data first.
1274 if (pool
->pf
.zero_new_blocks
) {
1275 if (io_overwrites_block(pool
, bio
))
1276 remap_and_issue_overwrite(tc
, bio
, data_block
, m
);
1278 ll_zero(tc
, m
, data_block
* pool
->sectors_per_block
,
1279 (data_block
+ 1) * pool
->sectors_per_block
);
1281 process_prepared_mapping(m
);
1284 static void schedule_external_copy(struct thin_c
*tc
, dm_block_t virt_block
,
1285 dm_block_t data_dest
,
1286 struct dm_bio_prison_cell
*cell
, struct bio
*bio
)
1288 struct pool
*pool
= tc
->pool
;
1289 sector_t virt_block_begin
= virt_block
* pool
->sectors_per_block
;
1290 sector_t virt_block_end
= (virt_block
+ 1) * pool
->sectors_per_block
;
1292 if (virt_block_end
<= tc
->origin_size
)
1293 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1294 virt_block
, data_dest
, cell
, bio
,
1295 pool
->sectors_per_block
);
1297 else if (virt_block_begin
< tc
->origin_size
)
1298 schedule_copy(tc
, virt_block
, tc
->origin_dev
,
1299 virt_block
, data_dest
, cell
, bio
,
1300 tc
->origin_size
- virt_block_begin
);
1303 schedule_zero(tc
, virt_block
, data_dest
, cell
, bio
);
1306 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
);
1308 static void check_for_space(struct pool
*pool
)
1313 if (get_pool_mode(pool
) != PM_OUT_OF_DATA_SPACE
)
1316 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free
);
1321 set_pool_mode(pool
, PM_WRITE
);
1325 * A non-zero return indicates read_only or fail_io mode.
1326 * Many callers don't care about the return value.
1328 static int commit(struct pool
*pool
)
1332 if (get_pool_mode(pool
) >= PM_READ_ONLY
)
1335 r
= dm_pool_commit_metadata(pool
->pmd
);
1337 metadata_operation_failed(pool
, "dm_pool_commit_metadata", r
);
1339 check_for_space(pool
);
1344 static void check_low_water_mark(struct pool
*pool
, dm_block_t free_blocks
)
1346 unsigned long flags
;
1348 if (free_blocks
<= pool
->low_water_blocks
&& !pool
->low_water_triggered
) {
1349 DMWARN("%s: reached low water mark for data device: sending event.",
1350 dm_device_name(pool
->pool_md
));
1351 spin_lock_irqsave(&pool
->lock
, flags
);
1352 pool
->low_water_triggered
= true;
1353 spin_unlock_irqrestore(&pool
->lock
, flags
);
1354 dm_table_event(pool
->ti
->table
);
1358 static int alloc_data_block(struct thin_c
*tc
, dm_block_t
*result
)
1361 dm_block_t free_blocks
;
1362 struct pool
*pool
= tc
->pool
;
1364 if (WARN_ON(get_pool_mode(pool
) != PM_WRITE
))
1367 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1369 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1373 check_low_water_mark(pool
, free_blocks
);
1377 * Try to commit to see if that will free up some
1384 r
= dm_pool_get_free_block_count(pool
->pmd
, &free_blocks
);
1386 metadata_operation_failed(pool
, "dm_pool_get_free_block_count", r
);
1391 set_pool_mode(pool
, PM_OUT_OF_DATA_SPACE
);
1396 r
= dm_pool_alloc_data_block(pool
->pmd
, result
);
1398 metadata_operation_failed(pool
, "dm_pool_alloc_data_block", r
);
1406 * If we have run out of space, queue bios until the device is
1407 * resumed, presumably after having been reloaded with more space.
1409 static void retry_on_resume(struct bio
*bio
)
1411 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1412 struct thin_c
*tc
= h
->tc
;
1413 unsigned long flags
;
1415 spin_lock_irqsave(&tc
->lock
, flags
);
1416 bio_list_add(&tc
->retry_on_resume_list
, bio
);
1417 spin_unlock_irqrestore(&tc
->lock
, flags
);
1420 static int should_error_unserviceable_bio(struct pool
*pool
)
1422 enum pool_mode m
= get_pool_mode(pool
);
1426 /* Shouldn't get here */
1427 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1430 case PM_OUT_OF_DATA_SPACE
:
1431 return pool
->pf
.error_if_no_space
? -ENOSPC
: 0;
1437 /* Shouldn't get here */
1438 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1443 static void handle_unserviceable_bio(struct pool
*pool
, struct bio
*bio
)
1445 int error
= should_error_unserviceable_bio(pool
);
1448 bio
->bi_error
= error
;
1451 retry_on_resume(bio
);
1454 static void retry_bios_on_resume(struct pool
*pool
, struct dm_bio_prison_cell
*cell
)
1457 struct bio_list bios
;
1460 error
= should_error_unserviceable_bio(pool
);
1462 cell_error_with_code(pool
, cell
, error
);
1466 bio_list_init(&bios
);
1467 cell_release(pool
, cell
, &bios
);
1469 while ((bio
= bio_list_pop(&bios
)))
1470 retry_on_resume(bio
);
1473 static void process_discard_cell_no_passdown(struct thin_c
*tc
,
1474 struct dm_bio_prison_cell
*virt_cell
)
1476 struct pool
*pool
= tc
->pool
;
1477 struct dm_thin_new_mapping
*m
= get_next_mapping(pool
);
1480 * We don't need to lock the data blocks, since there's no
1481 * passdown. We only lock data blocks for allocation and breaking sharing.
1484 m
->virt_begin
= virt_cell
->key
.block_begin
;
1485 m
->virt_end
= virt_cell
->key
.block_end
;
1486 m
->cell
= virt_cell
;
1487 m
->bio
= virt_cell
->holder
;
1489 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1490 pool
->process_prepared_discard(m
);
1493 static void break_up_discard_bio(struct thin_c
*tc
, dm_block_t begin
, dm_block_t end
,
1496 struct pool
*pool
= tc
->pool
;
1500 struct dm_cell_key data_key
;
1501 struct dm_bio_prison_cell
*data_cell
;
1502 struct dm_thin_new_mapping
*m
;
1503 dm_block_t virt_begin
, virt_end
, data_begin
;
1505 while (begin
!= end
) {
1506 r
= ensure_next_mapping(pool
);
1508 /* we did our best */
1511 r
= dm_thin_find_mapped_range(tc
->td
, begin
, end
, &virt_begin
, &virt_end
,
1512 &data_begin
, &maybe_shared
);
1515 * Silently fail, letting any mappings we've
1520 build_key(tc
->td
, PHYSICAL
, data_begin
, data_begin
+ (virt_end
- virt_begin
), &data_key
);
1521 if (bio_detain(tc
->pool
, &data_key
, NULL
, &data_cell
)) {
1522 /* contention, we'll give up with this range */
1528 * IO may still be going to the destination block. We must
1529 * quiesce before we can do the removal.
1531 m
= get_next_mapping(pool
);
1533 m
->maybe_shared
= maybe_shared
;
1534 m
->virt_begin
= virt_begin
;
1535 m
->virt_end
= virt_end
;
1536 m
->data_block
= data_begin
;
1537 m
->cell
= data_cell
;
1541 * The parent bio must not complete before sub discard bios are
1542 * chained to it (see end_discard's bio_chain)!
1544 * This per-mapping bi_remaining increment is paired with
1545 * the implicit decrement that occurs via bio_endio() in
1548 bio_inc_remaining(bio
);
1549 if (!dm_deferred_set_add_work(pool
->all_io_ds
, &m
->list
))
1550 pool
->process_prepared_discard(m
);
1556 static void process_discard_cell_passdown(struct thin_c
*tc
, struct dm_bio_prison_cell
*virt_cell
)
1558 struct bio
*bio
= virt_cell
->holder
;
1559 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1562 * The virt_cell will only get freed once the origin bio completes.
1563 * This means it will remain locked while all the individual
1564 * passdown bios are in flight.
1566 h
->cell
= virt_cell
;
1567 break_up_discard_bio(tc
, virt_cell
->key
.block_begin
, virt_cell
->key
.block_end
, bio
);
1570 * We complete the bio now, knowing that the bi_remaining field
1571 * will prevent completion until the sub range discards have
1577 static void process_discard_bio(struct thin_c
*tc
, struct bio
*bio
)
1579 dm_block_t begin
, end
;
1580 struct dm_cell_key virt_key
;
1581 struct dm_bio_prison_cell
*virt_cell
;
1583 get_bio_block_range(tc
, bio
, &begin
, &end
);
1586 * The discard covers less than a block.
1592 build_key(tc
->td
, VIRTUAL
, begin
, end
, &virt_key
);
1593 if (bio_detain(tc
->pool
, &virt_key
, bio
, &virt_cell
))
1595 * Potential starvation issue: We're relying on the
1596 * fs/application being well behaved, and not trying to
1597 * send IO to a region at the same time as discarding it.
1598 * If they do this persistently then it's possible this
1599 * cell will never be granted.
1603 tc
->pool
->process_discard_cell(tc
, virt_cell
);
1606 static void break_sharing(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1607 struct dm_cell_key
*key
,
1608 struct dm_thin_lookup_result
*lookup_result
,
1609 struct dm_bio_prison_cell
*cell
)
1612 dm_block_t data_block
;
1613 struct pool
*pool
= tc
->pool
;
1615 r
= alloc_data_block(tc
, &data_block
);
1618 schedule_internal_copy(tc
, block
, lookup_result
->block
,
1619 data_block
, cell
, bio
);
1623 retry_bios_on_resume(pool
, cell
);
1627 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1629 cell_error(pool
, cell
);
1634 static void __remap_and_issue_shared_cell(void *context
,
1635 struct dm_bio_prison_cell
*cell
)
1637 struct remap_info
*info
= context
;
1640 while ((bio
= bio_list_pop(&cell
->bios
))) {
1641 if ((bio_data_dir(bio
) == WRITE
) ||
1642 (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)))
1643 bio_list_add(&info
->defer_bios
, bio
);
1645 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));;
1647 h
->shared_read_entry
= dm_deferred_entry_inc(info
->tc
->pool
->shared_read_ds
);
1648 inc_all_io_entry(info
->tc
->pool
, bio
);
1649 bio_list_add(&info
->issue_bios
, bio
);
1654 static void remap_and_issue_shared_cell(struct thin_c
*tc
,
1655 struct dm_bio_prison_cell
*cell
,
1659 struct remap_info info
;
1662 bio_list_init(&info
.defer_bios
);
1663 bio_list_init(&info
.issue_bios
);
1665 cell_visit_release(tc
->pool
, __remap_and_issue_shared_cell
,
1668 while ((bio
= bio_list_pop(&info
.defer_bios
)))
1669 thin_defer_bio(tc
, bio
);
1671 while ((bio
= bio_list_pop(&info
.issue_bios
)))
1672 remap_and_issue(tc
, bio
, block
);
1675 static void process_shared_bio(struct thin_c
*tc
, struct bio
*bio
,
1677 struct dm_thin_lookup_result
*lookup_result
,
1678 struct dm_bio_prison_cell
*virt_cell
)
1680 struct dm_bio_prison_cell
*data_cell
;
1681 struct pool
*pool
= tc
->pool
;
1682 struct dm_cell_key key
;
1685 * If cell is already occupied, then sharing is already in the process
1686 * of being broken so we have nothing further to do here.
1688 build_data_key(tc
->td
, lookup_result
->block
, &key
);
1689 if (bio_detain(pool
, &key
, bio
, &data_cell
)) {
1690 cell_defer_no_holder(tc
, virt_cell
);
1694 if (bio_data_dir(bio
) == WRITE
&& bio
->bi_iter
.bi_size
) {
1695 break_sharing(tc
, bio
, block
, &key
, lookup_result
, data_cell
);
1696 cell_defer_no_holder(tc
, virt_cell
);
1698 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1700 h
->shared_read_entry
= dm_deferred_entry_inc(pool
->shared_read_ds
);
1701 inc_all_io_entry(pool
, bio
);
1702 remap_and_issue(tc
, bio
, lookup_result
->block
);
1704 remap_and_issue_shared_cell(tc
, data_cell
, lookup_result
->block
);
1705 remap_and_issue_shared_cell(tc
, virt_cell
, lookup_result
->block
);
1709 static void provision_block(struct thin_c
*tc
, struct bio
*bio
, dm_block_t block
,
1710 struct dm_bio_prison_cell
*cell
)
1713 dm_block_t data_block
;
1714 struct pool
*pool
= tc
->pool
;
1717 * Remap empty bios (flushes) immediately, without provisioning.
1719 if (!bio
->bi_iter
.bi_size
) {
1720 inc_all_io_entry(pool
, bio
);
1721 cell_defer_no_holder(tc
, cell
);
1723 remap_and_issue(tc
, bio
, 0);
1728 * Fill read bios with zeroes and complete them immediately.
1730 if (bio_data_dir(bio
) == READ
) {
1732 cell_defer_no_holder(tc
, cell
);
1737 r
= alloc_data_block(tc
, &data_block
);
1741 schedule_external_copy(tc
, block
, data_block
, cell
, bio
);
1743 schedule_zero(tc
, block
, data_block
, cell
, bio
);
1747 retry_bios_on_resume(pool
, cell
);
1751 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1753 cell_error(pool
, cell
);
1758 static void process_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1761 struct pool
*pool
= tc
->pool
;
1762 struct bio
*bio
= cell
->holder
;
1763 dm_block_t block
= get_bio_block(tc
, bio
);
1764 struct dm_thin_lookup_result lookup_result
;
1766 if (tc
->requeue_mode
) {
1767 cell_requeue(pool
, cell
);
1771 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1774 if (lookup_result
.shared
)
1775 process_shared_bio(tc
, bio
, block
, &lookup_result
, cell
);
1777 inc_all_io_entry(pool
, bio
);
1778 remap_and_issue(tc
, bio
, lookup_result
.block
);
1779 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1784 if (bio_data_dir(bio
) == READ
&& tc
->origin_dev
) {
1785 inc_all_io_entry(pool
, bio
);
1786 cell_defer_no_holder(tc
, cell
);
1788 if (bio_end_sector(bio
) <= tc
->origin_size
)
1789 remap_to_origin_and_issue(tc
, bio
);
1791 else if (bio
->bi_iter
.bi_sector
< tc
->origin_size
) {
1793 bio
->bi_iter
.bi_size
= (tc
->origin_size
- bio
->bi_iter
.bi_sector
) << SECTOR_SHIFT
;
1794 remap_to_origin_and_issue(tc
, bio
);
1801 provision_block(tc
, bio
, block
, cell
);
1805 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1807 cell_defer_no_holder(tc
, cell
);
1813 static void process_bio(struct thin_c
*tc
, struct bio
*bio
)
1815 struct pool
*pool
= tc
->pool
;
1816 dm_block_t block
= get_bio_block(tc
, bio
);
1817 struct dm_bio_prison_cell
*cell
;
1818 struct dm_cell_key key
;
1821 * If cell is already occupied, then the block is already
1822 * being provisioned so we have nothing further to do here.
1824 build_virtual_key(tc
->td
, block
, &key
);
1825 if (bio_detain(pool
, &key
, bio
, &cell
))
1828 process_cell(tc
, cell
);
1831 static void __process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
,
1832 struct dm_bio_prison_cell
*cell
)
1835 int rw
= bio_data_dir(bio
);
1836 dm_block_t block
= get_bio_block(tc
, bio
);
1837 struct dm_thin_lookup_result lookup_result
;
1839 r
= dm_thin_find_block(tc
->td
, block
, 1, &lookup_result
);
1842 if (lookup_result
.shared
&& (rw
== WRITE
) && bio
->bi_iter
.bi_size
) {
1843 handle_unserviceable_bio(tc
->pool
, bio
);
1845 cell_defer_no_holder(tc
, cell
);
1847 inc_all_io_entry(tc
->pool
, bio
);
1848 remap_and_issue(tc
, bio
, lookup_result
.block
);
1850 inc_remap_and_issue_cell(tc
, cell
, lookup_result
.block
);
1856 cell_defer_no_holder(tc
, cell
);
1858 handle_unserviceable_bio(tc
->pool
, bio
);
1862 if (tc
->origin_dev
) {
1863 inc_all_io_entry(tc
->pool
, bio
);
1864 remap_to_origin_and_issue(tc
, bio
);
1873 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1876 cell_defer_no_holder(tc
, cell
);
1882 static void process_bio_read_only(struct thin_c
*tc
, struct bio
*bio
)
1884 __process_bio_read_only(tc
, bio
, NULL
);
1887 static void process_cell_read_only(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1889 __process_bio_read_only(tc
, cell
->holder
, cell
);
1892 static void process_bio_success(struct thin_c
*tc
, struct bio
*bio
)
1897 static void process_bio_fail(struct thin_c
*tc
, struct bio
*bio
)
1902 static void process_cell_success(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1904 cell_success(tc
->pool
, cell
);
1907 static void process_cell_fail(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
1909 cell_error(tc
->pool
, cell
);
1913 * FIXME: should we also commit due to size of transaction, measured in
1916 static int need_commit_due_to_time(struct pool
*pool
)
1918 return !time_in_range(jiffies
, pool
->last_commit_jiffies
,
1919 pool
->last_commit_jiffies
+ COMMIT_PERIOD
);
1922 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
1923 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
1925 static void __thin_bio_rb_add(struct thin_c
*tc
, struct bio
*bio
)
1927 struct rb_node
**rbp
, *parent
;
1928 struct dm_thin_endio_hook
*pbd
;
1929 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
1931 rbp
= &tc
->sort_bio_list
.rb_node
;
1935 pbd
= thin_pbd(parent
);
1937 if (bi_sector
< thin_bio(pbd
)->bi_iter
.bi_sector
)
1938 rbp
= &(*rbp
)->rb_left
;
1940 rbp
= &(*rbp
)->rb_right
;
1943 pbd
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
1944 rb_link_node(&pbd
->rb_node
, parent
, rbp
);
1945 rb_insert_color(&pbd
->rb_node
, &tc
->sort_bio_list
);
1948 static void __extract_sorted_bios(struct thin_c
*tc
)
1950 struct rb_node
*node
;
1951 struct dm_thin_endio_hook
*pbd
;
1954 for (node
= rb_first(&tc
->sort_bio_list
); node
; node
= rb_next(node
)) {
1955 pbd
= thin_pbd(node
);
1956 bio
= thin_bio(pbd
);
1958 bio_list_add(&tc
->deferred_bio_list
, bio
);
1959 rb_erase(&pbd
->rb_node
, &tc
->sort_bio_list
);
1962 WARN_ON(!RB_EMPTY_ROOT(&tc
->sort_bio_list
));
1965 static void __sort_thin_deferred_bios(struct thin_c
*tc
)
1968 struct bio_list bios
;
1970 bio_list_init(&bios
);
1971 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
1972 bio_list_init(&tc
->deferred_bio_list
);
1974 /* Sort deferred_bio_list using rb-tree */
1975 while ((bio
= bio_list_pop(&bios
)))
1976 __thin_bio_rb_add(tc
, bio
);
1979 * Transfer the sorted bios in sort_bio_list back to
1980 * deferred_bio_list to allow lockless submission of
1983 __extract_sorted_bios(tc
);
1986 static void process_thin_deferred_bios(struct thin_c
*tc
)
1988 struct pool
*pool
= tc
->pool
;
1989 unsigned long flags
;
1991 struct bio_list bios
;
1992 struct blk_plug plug
;
1995 if (tc
->requeue_mode
) {
1996 error_thin_bio_list(tc
, &tc
->deferred_bio_list
, DM_ENDIO_REQUEUE
);
2000 bio_list_init(&bios
);
2002 spin_lock_irqsave(&tc
->lock
, flags
);
2004 if (bio_list_empty(&tc
->deferred_bio_list
)) {
2005 spin_unlock_irqrestore(&tc
->lock
, flags
);
2009 __sort_thin_deferred_bios(tc
);
2011 bio_list_merge(&bios
, &tc
->deferred_bio_list
);
2012 bio_list_init(&tc
->deferred_bio_list
);
2014 spin_unlock_irqrestore(&tc
->lock
, flags
);
2016 blk_start_plug(&plug
);
2017 while ((bio
= bio_list_pop(&bios
))) {
2019 * If we've got no free new_mapping structs, and processing
2020 * this bio might require one, we pause until there are some
2021 * prepared mappings to process.
2023 if (ensure_next_mapping(pool
)) {
2024 spin_lock_irqsave(&tc
->lock
, flags
);
2025 bio_list_add(&tc
->deferred_bio_list
, bio
);
2026 bio_list_merge(&tc
->deferred_bio_list
, &bios
);
2027 spin_unlock_irqrestore(&tc
->lock
, flags
);
2031 if (bio
->bi_rw
& REQ_DISCARD
)
2032 pool
->process_discard(tc
, bio
);
2034 pool
->process_bio(tc
, bio
);
2036 if ((count
++ & 127) == 0) {
2037 throttle_work_update(&pool
->throttle
);
2038 dm_pool_issue_prefetches(pool
->pmd
);
2041 blk_finish_plug(&plug
);
2044 static int cmp_cells(const void *lhs
, const void *rhs
)
2046 struct dm_bio_prison_cell
*lhs_cell
= *((struct dm_bio_prison_cell
**) lhs
);
2047 struct dm_bio_prison_cell
*rhs_cell
= *((struct dm_bio_prison_cell
**) rhs
);
2049 BUG_ON(!lhs_cell
->holder
);
2050 BUG_ON(!rhs_cell
->holder
);
2052 if (lhs_cell
->holder
->bi_iter
.bi_sector
< rhs_cell
->holder
->bi_iter
.bi_sector
)
2055 if (lhs_cell
->holder
->bi_iter
.bi_sector
> rhs_cell
->holder
->bi_iter
.bi_sector
)
2061 static unsigned sort_cells(struct pool
*pool
, struct list_head
*cells
)
2064 struct dm_bio_prison_cell
*cell
, *tmp
;
2066 list_for_each_entry_safe(cell
, tmp
, cells
, user_list
) {
2067 if (count
>= CELL_SORT_ARRAY_SIZE
)
2070 pool
->cell_sort_array
[count
++] = cell
;
2071 list_del(&cell
->user_list
);
2074 sort(pool
->cell_sort_array
, count
, sizeof(cell
), cmp_cells
, NULL
);
2079 static void process_thin_deferred_cells(struct thin_c
*tc
)
2081 struct pool
*pool
= tc
->pool
;
2082 unsigned long flags
;
2083 struct list_head cells
;
2084 struct dm_bio_prison_cell
*cell
;
2085 unsigned i
, j
, count
;
2087 INIT_LIST_HEAD(&cells
);
2089 spin_lock_irqsave(&tc
->lock
, flags
);
2090 list_splice_init(&tc
->deferred_cells
, &cells
);
2091 spin_unlock_irqrestore(&tc
->lock
, flags
);
2093 if (list_empty(&cells
))
2097 count
= sort_cells(tc
->pool
, &cells
);
2099 for (i
= 0; i
< count
; i
++) {
2100 cell
= pool
->cell_sort_array
[i
];
2101 BUG_ON(!cell
->holder
);
2104 * If we've got no free new_mapping structs, and processing
2105 * this bio might require one, we pause until there are some
2106 * prepared mappings to process.
2108 if (ensure_next_mapping(pool
)) {
2109 for (j
= i
; j
< count
; j
++)
2110 list_add(&pool
->cell_sort_array
[j
]->user_list
, &cells
);
2112 spin_lock_irqsave(&tc
->lock
, flags
);
2113 list_splice(&cells
, &tc
->deferred_cells
);
2114 spin_unlock_irqrestore(&tc
->lock
, flags
);
2118 if (cell
->holder
->bi_rw
& REQ_DISCARD
)
2119 pool
->process_discard_cell(tc
, cell
);
2121 pool
->process_cell(tc
, cell
);
2123 } while (!list_empty(&cells
));
2126 static void thin_get(struct thin_c
*tc
);
2127 static void thin_put(struct thin_c
*tc
);
2130 * We can't hold rcu_read_lock() around code that can block. So we
2131 * find a thin with the rcu lock held; bump a refcount; then drop
2134 static struct thin_c
*get_first_thin(struct pool
*pool
)
2136 struct thin_c
*tc
= NULL
;
2139 if (!list_empty(&pool
->active_thins
)) {
2140 tc
= list_entry_rcu(pool
->active_thins
.next
, struct thin_c
, list
);
2148 static struct thin_c
*get_next_thin(struct pool
*pool
, struct thin_c
*tc
)
2150 struct thin_c
*old_tc
= tc
;
2153 list_for_each_entry_continue_rcu(tc
, &pool
->active_thins
, list
) {
2165 static void process_deferred_bios(struct pool
*pool
)
2167 unsigned long flags
;
2169 struct bio_list bios
;
2172 tc
= get_first_thin(pool
);
2174 process_thin_deferred_cells(tc
);
2175 process_thin_deferred_bios(tc
);
2176 tc
= get_next_thin(pool
, tc
);
2180 * If there are any deferred flush bios, we must commit
2181 * the metadata before issuing them.
2183 bio_list_init(&bios
);
2184 spin_lock_irqsave(&pool
->lock
, flags
);
2185 bio_list_merge(&bios
, &pool
->deferred_flush_bios
);
2186 bio_list_init(&pool
->deferred_flush_bios
);
2187 spin_unlock_irqrestore(&pool
->lock
, flags
);
2189 if (bio_list_empty(&bios
) &&
2190 !(dm_pool_changed_this_transaction(pool
->pmd
) && need_commit_due_to_time(pool
)))
2194 while ((bio
= bio_list_pop(&bios
)))
2198 pool
->last_commit_jiffies
= jiffies
;
2200 while ((bio
= bio_list_pop(&bios
)))
2201 generic_make_request(bio
);
2204 static void do_worker(struct work_struct
*ws
)
2206 struct pool
*pool
= container_of(ws
, struct pool
, worker
);
2208 throttle_work_start(&pool
->throttle
);
2209 dm_pool_issue_prefetches(pool
->pmd
);
2210 throttle_work_update(&pool
->throttle
);
2211 process_prepared(pool
, &pool
->prepared_mappings
, &pool
->process_prepared_mapping
);
2212 throttle_work_update(&pool
->throttle
);
2213 process_prepared(pool
, &pool
->prepared_discards
, &pool
->process_prepared_discard
);
2214 throttle_work_update(&pool
->throttle
);
2215 process_deferred_bios(pool
);
2216 throttle_work_complete(&pool
->throttle
);
2220 * We want to commit periodically so that not too much
2221 * unwritten data builds up.
2223 static void do_waker(struct work_struct
*ws
)
2225 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
, waker
);
2227 queue_delayed_work(pool
->wq
, &pool
->waker
, COMMIT_PERIOD
);
2230 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
);
2233 * We're holding onto IO to allow userland time to react. After the
2234 * timeout either the pool will have been resized (and thus back in
2235 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2237 static void do_no_space_timeout(struct work_struct
*ws
)
2239 struct pool
*pool
= container_of(to_delayed_work(ws
), struct pool
,
2242 if (get_pool_mode(pool
) == PM_OUT_OF_DATA_SPACE
&& !pool
->pf
.error_if_no_space
) {
2243 pool
->pf
.error_if_no_space
= true;
2244 notify_of_pool_mode_change_to_oods(pool
);
2245 error_retry_list_with_code(pool
, -ENOSPC
);
2249 /*----------------------------------------------------------------*/
2252 struct work_struct worker
;
2253 struct completion complete
;
2256 static struct pool_work
*to_pool_work(struct work_struct
*ws
)
2258 return container_of(ws
, struct pool_work
, worker
);
2261 static void pool_work_complete(struct pool_work
*pw
)
2263 complete(&pw
->complete
);
2266 static void pool_work_wait(struct pool_work
*pw
, struct pool
*pool
,
2267 void (*fn
)(struct work_struct
*))
2269 INIT_WORK_ONSTACK(&pw
->worker
, fn
);
2270 init_completion(&pw
->complete
);
2271 queue_work(pool
->wq
, &pw
->worker
);
2272 wait_for_completion(&pw
->complete
);
2275 /*----------------------------------------------------------------*/
2277 struct noflush_work
{
2278 struct pool_work pw
;
2282 static struct noflush_work
*to_noflush(struct work_struct
*ws
)
2284 return container_of(to_pool_work(ws
), struct noflush_work
, pw
);
2287 static void do_noflush_start(struct work_struct
*ws
)
2289 struct noflush_work
*w
= to_noflush(ws
);
2290 w
->tc
->requeue_mode
= true;
2292 pool_work_complete(&w
->pw
);
2295 static void do_noflush_stop(struct work_struct
*ws
)
2297 struct noflush_work
*w
= to_noflush(ws
);
2298 w
->tc
->requeue_mode
= false;
2299 pool_work_complete(&w
->pw
);
2302 static void noflush_work(struct thin_c
*tc
, void (*fn
)(struct work_struct
*))
2304 struct noflush_work w
;
2307 pool_work_wait(&w
.pw
, tc
->pool
, fn
);
2310 /*----------------------------------------------------------------*/
2312 static enum pool_mode
get_pool_mode(struct pool
*pool
)
2314 return pool
->pf
.mode
;
2317 static void notify_of_pool_mode_change(struct pool
*pool
, const char *new_mode
)
2319 dm_table_event(pool
->ti
->table
);
2320 DMINFO("%s: switching pool to %s mode",
2321 dm_device_name(pool
->pool_md
), new_mode
);
2324 static void notify_of_pool_mode_change_to_oods(struct pool
*pool
)
2326 if (!pool
->pf
.error_if_no_space
)
2327 notify_of_pool_mode_change(pool
, "out-of-data-space (queue IO)");
2329 notify_of_pool_mode_change(pool
, "out-of-data-space (error IO)");
2332 static bool passdown_enabled(struct pool_c
*pt
)
2334 return pt
->adjusted_pf
.discard_passdown
;
2337 static void set_discard_callbacks(struct pool
*pool
)
2339 struct pool_c
*pt
= pool
->ti
->private;
2341 if (passdown_enabled(pt
)) {
2342 pool
->process_discard_cell
= process_discard_cell_passdown
;
2343 pool
->process_prepared_discard
= process_prepared_discard_passdown
;
2345 pool
->process_discard_cell
= process_discard_cell_no_passdown
;
2346 pool
->process_prepared_discard
= process_prepared_discard_no_passdown
;
2350 static void set_pool_mode(struct pool
*pool
, enum pool_mode new_mode
)
2352 struct pool_c
*pt
= pool
->ti
->private;
2353 bool needs_check
= dm_pool_metadata_needs_check(pool
->pmd
);
2354 enum pool_mode old_mode
= get_pool_mode(pool
);
2355 unsigned long no_space_timeout
= ACCESS_ONCE(no_space_timeout_secs
) * HZ
;
2358 * Never allow the pool to transition to PM_WRITE mode if user
2359 * intervention is required to verify metadata and data consistency.
2361 if (new_mode
== PM_WRITE
&& needs_check
) {
2362 DMERR("%s: unable to switch pool to write mode until repaired.",
2363 dm_device_name(pool
->pool_md
));
2364 if (old_mode
!= new_mode
)
2365 new_mode
= old_mode
;
2367 new_mode
= PM_READ_ONLY
;
2370 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2371 * not going to recover without a thin_repair. So we never let the
2372 * pool move out of the old mode.
2374 if (old_mode
== PM_FAIL
)
2375 new_mode
= old_mode
;
2379 if (old_mode
!= new_mode
)
2380 notify_of_pool_mode_change(pool
, "failure");
2381 dm_pool_metadata_read_only(pool
->pmd
);
2382 pool
->process_bio
= process_bio_fail
;
2383 pool
->process_discard
= process_bio_fail
;
2384 pool
->process_cell
= process_cell_fail
;
2385 pool
->process_discard_cell
= process_cell_fail
;
2386 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2387 pool
->process_prepared_discard
= process_prepared_discard_fail
;
2389 error_retry_list(pool
);
2393 if (old_mode
!= new_mode
)
2394 notify_of_pool_mode_change(pool
, "read-only");
2395 dm_pool_metadata_read_only(pool
->pmd
);
2396 pool
->process_bio
= process_bio_read_only
;
2397 pool
->process_discard
= process_bio_success
;
2398 pool
->process_cell
= process_cell_read_only
;
2399 pool
->process_discard_cell
= process_cell_success
;
2400 pool
->process_prepared_mapping
= process_prepared_mapping_fail
;
2401 pool
->process_prepared_discard
= process_prepared_discard_success
;
2403 error_retry_list(pool
);
2406 case PM_OUT_OF_DATA_SPACE
:
2408 * Ideally we'd never hit this state; the low water mark
2409 * would trigger userland to extend the pool before we
2410 * completely run out of data space. However, many small
2411 * IOs to unprovisioned space can consume data space at an
2412 * alarming rate. Adjust your low water mark if you're
2413 * frequently seeing this mode.
2415 if (old_mode
!= new_mode
)
2416 notify_of_pool_mode_change_to_oods(pool
);
2417 pool
->out_of_data_space
= true;
2418 pool
->process_bio
= process_bio_read_only
;
2419 pool
->process_discard
= process_discard_bio
;
2420 pool
->process_cell
= process_cell_read_only
;
2421 pool
->process_prepared_mapping
= process_prepared_mapping
;
2422 set_discard_callbacks(pool
);
2424 if (!pool
->pf
.error_if_no_space
&& no_space_timeout
)
2425 queue_delayed_work(pool
->wq
, &pool
->no_space_timeout
, no_space_timeout
);
2429 if (old_mode
!= new_mode
)
2430 notify_of_pool_mode_change(pool
, "write");
2431 pool
->out_of_data_space
= false;
2432 pool
->pf
.error_if_no_space
= pt
->requested_pf
.error_if_no_space
;
2433 dm_pool_metadata_read_write(pool
->pmd
);
2434 pool
->process_bio
= process_bio
;
2435 pool
->process_discard
= process_discard_bio
;
2436 pool
->process_cell
= process_cell
;
2437 pool
->process_prepared_mapping
= process_prepared_mapping
;
2438 set_discard_callbacks(pool
);
2442 pool
->pf
.mode
= new_mode
;
2444 * The pool mode may have changed, sync it so bind_control_target()
2445 * doesn't cause an unexpected mode transition on resume.
2447 pt
->adjusted_pf
.mode
= new_mode
;
2450 static void abort_transaction(struct pool
*pool
)
2452 const char *dev_name
= dm_device_name(pool
->pool_md
);
2454 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
2455 if (dm_pool_abort_metadata(pool
->pmd
)) {
2456 DMERR("%s: failed to abort metadata transaction", dev_name
);
2457 set_pool_mode(pool
, PM_FAIL
);
2460 if (dm_pool_metadata_set_needs_check(pool
->pmd
)) {
2461 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
2462 set_pool_mode(pool
, PM_FAIL
);
2466 static void metadata_operation_failed(struct pool
*pool
, const char *op
, int r
)
2468 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2469 dm_device_name(pool
->pool_md
), op
, r
);
2471 abort_transaction(pool
);
2472 set_pool_mode(pool
, PM_READ_ONLY
);
2475 /*----------------------------------------------------------------*/
2478 * Mapping functions.
2482 * Called only while mapping a thin bio to hand it over to the workqueue.
2484 static void thin_defer_bio(struct thin_c
*tc
, struct bio
*bio
)
2486 unsigned long flags
;
2487 struct pool
*pool
= tc
->pool
;
2489 spin_lock_irqsave(&tc
->lock
, flags
);
2490 bio_list_add(&tc
->deferred_bio_list
, bio
);
2491 spin_unlock_irqrestore(&tc
->lock
, flags
);
2496 static void thin_defer_bio_with_throttle(struct thin_c
*tc
, struct bio
*bio
)
2498 struct pool
*pool
= tc
->pool
;
2500 throttle_lock(&pool
->throttle
);
2501 thin_defer_bio(tc
, bio
);
2502 throttle_unlock(&pool
->throttle
);
2505 static void thin_defer_cell(struct thin_c
*tc
, struct dm_bio_prison_cell
*cell
)
2507 unsigned long flags
;
2508 struct pool
*pool
= tc
->pool
;
2510 throttle_lock(&pool
->throttle
);
2511 spin_lock_irqsave(&tc
->lock
, flags
);
2512 list_add_tail(&cell
->user_list
, &tc
->deferred_cells
);
2513 spin_unlock_irqrestore(&tc
->lock
, flags
);
2514 throttle_unlock(&pool
->throttle
);
2519 static void thin_hook_bio(struct thin_c
*tc
, struct bio
*bio
)
2521 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
2524 h
->shared_read_entry
= NULL
;
2525 h
->all_io_entry
= NULL
;
2526 h
->overwrite_mapping
= NULL
;
2531 * Non-blocking function called from the thin target's map function.
2533 static int thin_bio_map(struct dm_target
*ti
, struct bio
*bio
)
2536 struct thin_c
*tc
= ti
->private;
2537 dm_block_t block
= get_bio_block(tc
, bio
);
2538 struct dm_thin_device
*td
= tc
->td
;
2539 struct dm_thin_lookup_result result
;
2540 struct dm_bio_prison_cell
*virt_cell
, *data_cell
;
2541 struct dm_cell_key key
;
2543 thin_hook_bio(tc
, bio
);
2545 if (tc
->requeue_mode
) {
2546 bio
->bi_error
= DM_ENDIO_REQUEUE
;
2548 return DM_MAPIO_SUBMITTED
;
2551 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
2553 return DM_MAPIO_SUBMITTED
;
2556 if (bio
->bi_rw
& (REQ_DISCARD
| REQ_FLUSH
| REQ_FUA
)) {
2557 thin_defer_bio_with_throttle(tc
, bio
);
2558 return DM_MAPIO_SUBMITTED
;
2562 * We must hold the virtual cell before doing the lookup, otherwise
2563 * there's a race with discard.
2565 build_virtual_key(tc
->td
, block
, &key
);
2566 if (bio_detain(tc
->pool
, &key
, bio
, &virt_cell
))
2567 return DM_MAPIO_SUBMITTED
;
2569 r
= dm_thin_find_block(td
, block
, 0, &result
);
2572 * Note that we defer readahead too.
2576 if (unlikely(result
.shared
)) {
2578 * We have a race condition here between the
2579 * result.shared value returned by the lookup and
2580 * snapshot creation, which may cause new
2583 * To avoid this always quiesce the origin before
2584 * taking the snap. You want to do this anyway to
2585 * ensure a consistent application view
2588 * More distant ancestors are irrelevant. The
2589 * shared flag will be set in their case.
2591 thin_defer_cell(tc
, virt_cell
);
2592 return DM_MAPIO_SUBMITTED
;
2595 build_data_key(tc
->td
, result
.block
, &key
);
2596 if (bio_detain(tc
->pool
, &key
, bio
, &data_cell
)) {
2597 cell_defer_no_holder(tc
, virt_cell
);
2598 return DM_MAPIO_SUBMITTED
;
2601 inc_all_io_entry(tc
->pool
, bio
);
2602 cell_defer_no_holder(tc
, data_cell
);
2603 cell_defer_no_holder(tc
, virt_cell
);
2605 remap(tc
, bio
, result
.block
);
2606 return DM_MAPIO_REMAPPED
;
2610 thin_defer_cell(tc
, virt_cell
);
2611 return DM_MAPIO_SUBMITTED
;
2615 * Must always call bio_io_error on failure.
2616 * dm_thin_find_block can fail with -EINVAL if the
2617 * pool is switched to fail-io mode.
2620 cell_defer_no_holder(tc
, virt_cell
);
2621 return DM_MAPIO_SUBMITTED
;
2625 static int pool_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2627 struct pool_c
*pt
= container_of(cb
, struct pool_c
, callbacks
);
2628 struct request_queue
*q
;
2630 if (get_pool_mode(pt
->pool
) == PM_OUT_OF_DATA_SPACE
)
2633 q
= bdev_get_queue(pt
->data_dev
->bdev
);
2634 return bdi_congested(&q
->backing_dev_info
, bdi_bits
);
2637 static void requeue_bios(struct pool
*pool
)
2639 unsigned long flags
;
2643 list_for_each_entry_rcu(tc
, &pool
->active_thins
, list
) {
2644 spin_lock_irqsave(&tc
->lock
, flags
);
2645 bio_list_merge(&tc
->deferred_bio_list
, &tc
->retry_on_resume_list
);
2646 bio_list_init(&tc
->retry_on_resume_list
);
2647 spin_unlock_irqrestore(&tc
->lock
, flags
);
2652 /*----------------------------------------------------------------
2653 * Binding of control targets to a pool object
2654 *--------------------------------------------------------------*/
2655 static bool data_dev_supports_discard(struct pool_c
*pt
)
2657 struct request_queue
*q
= bdev_get_queue(pt
->data_dev
->bdev
);
2659 return q
&& blk_queue_discard(q
);
2662 static bool is_factor(sector_t block_size
, uint32_t n
)
2664 return !sector_div(block_size
, n
);
2668 * If discard_passdown was enabled verify that the data device
2669 * supports discards. Disable discard_passdown if not.
2671 static void disable_passdown_if_not_supported(struct pool_c
*pt
)
2673 struct pool
*pool
= pt
->pool
;
2674 struct block_device
*data_bdev
= pt
->data_dev
->bdev
;
2675 struct queue_limits
*data_limits
= &bdev_get_queue(data_bdev
)->limits
;
2676 const char *reason
= NULL
;
2677 char buf
[BDEVNAME_SIZE
];
2679 if (!pt
->adjusted_pf
.discard_passdown
)
2682 if (!data_dev_supports_discard(pt
))
2683 reason
= "discard unsupported";
2685 else if (data_limits
->max_discard_sectors
< pool
->sectors_per_block
)
2686 reason
= "max discard sectors smaller than a block";
2689 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev
, buf
), reason
);
2690 pt
->adjusted_pf
.discard_passdown
= false;
2694 static int bind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2696 struct pool_c
*pt
= ti
->private;
2699 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2701 enum pool_mode old_mode
= get_pool_mode(pool
);
2702 enum pool_mode new_mode
= pt
->adjusted_pf
.mode
;
2705 * Don't change the pool's mode until set_pool_mode() below.
2706 * Otherwise the pool's process_* function pointers may
2707 * not match the desired pool mode.
2709 pt
->adjusted_pf
.mode
= old_mode
;
2712 pool
->pf
= pt
->adjusted_pf
;
2713 pool
->low_water_blocks
= pt
->low_water_blocks
;
2715 set_pool_mode(pool
, new_mode
);
2720 static void unbind_control_target(struct pool
*pool
, struct dm_target
*ti
)
2726 /*----------------------------------------------------------------
2728 *--------------------------------------------------------------*/
2729 /* Initialize pool features. */
2730 static void pool_features_init(struct pool_features
*pf
)
2732 pf
->mode
= PM_WRITE
;
2733 pf
->zero_new_blocks
= true;
2734 pf
->discard_enabled
= true;
2735 pf
->discard_passdown
= true;
2736 pf
->error_if_no_space
= false;
2739 static void __pool_destroy(struct pool
*pool
)
2741 __pool_table_remove(pool
);
2743 vfree(pool
->cell_sort_array
);
2744 if (dm_pool_metadata_close(pool
->pmd
) < 0)
2745 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2747 dm_bio_prison_destroy(pool
->prison
);
2748 dm_kcopyd_client_destroy(pool
->copier
);
2751 destroy_workqueue(pool
->wq
);
2753 if (pool
->next_mapping
)
2754 mempool_free(pool
->next_mapping
, pool
->mapping_pool
);
2755 mempool_destroy(pool
->mapping_pool
);
2756 dm_deferred_set_destroy(pool
->shared_read_ds
);
2757 dm_deferred_set_destroy(pool
->all_io_ds
);
2761 static struct kmem_cache
*_new_mapping_cache
;
2763 static struct pool
*pool_create(struct mapped_device
*pool_md
,
2764 struct block_device
*metadata_dev
,
2765 unsigned long block_size
,
2766 int read_only
, char **error
)
2771 struct dm_pool_metadata
*pmd
;
2772 bool format_device
= read_only
? false : true;
2774 pmd
= dm_pool_metadata_open(metadata_dev
, block_size
, format_device
);
2776 *error
= "Error creating metadata object";
2777 return (struct pool
*)pmd
;
2780 pool
= kmalloc(sizeof(*pool
), GFP_KERNEL
);
2782 *error
= "Error allocating memory for pool";
2783 err_p
= ERR_PTR(-ENOMEM
);
2788 pool
->sectors_per_block
= block_size
;
2789 if (block_size
& (block_size
- 1))
2790 pool
->sectors_per_block_shift
= -1;
2792 pool
->sectors_per_block_shift
= __ffs(block_size
);
2793 pool
->low_water_blocks
= 0;
2794 pool_features_init(&pool
->pf
);
2795 pool
->prison
= dm_bio_prison_create();
2796 if (!pool
->prison
) {
2797 *error
= "Error creating pool's bio prison";
2798 err_p
= ERR_PTR(-ENOMEM
);
2802 pool
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2803 if (IS_ERR(pool
->copier
)) {
2804 r
= PTR_ERR(pool
->copier
);
2805 *error
= "Error creating pool's kcopyd client";
2807 goto bad_kcopyd_client
;
2811 * Create singlethreaded workqueue that will service all devices
2812 * that use this metadata.
2814 pool
->wq
= alloc_ordered_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
);
2816 *error
= "Error creating pool's workqueue";
2817 err_p
= ERR_PTR(-ENOMEM
);
2821 throttle_init(&pool
->throttle
);
2822 INIT_WORK(&pool
->worker
, do_worker
);
2823 INIT_DELAYED_WORK(&pool
->waker
, do_waker
);
2824 INIT_DELAYED_WORK(&pool
->no_space_timeout
, do_no_space_timeout
);
2825 spin_lock_init(&pool
->lock
);
2826 bio_list_init(&pool
->deferred_flush_bios
);
2827 INIT_LIST_HEAD(&pool
->prepared_mappings
);
2828 INIT_LIST_HEAD(&pool
->prepared_discards
);
2829 INIT_LIST_HEAD(&pool
->active_thins
);
2830 pool
->low_water_triggered
= false;
2831 pool
->suspended
= true;
2832 pool
->out_of_data_space
= false;
2834 pool
->shared_read_ds
= dm_deferred_set_create();
2835 if (!pool
->shared_read_ds
) {
2836 *error
= "Error creating pool's shared read deferred set";
2837 err_p
= ERR_PTR(-ENOMEM
);
2838 goto bad_shared_read_ds
;
2841 pool
->all_io_ds
= dm_deferred_set_create();
2842 if (!pool
->all_io_ds
) {
2843 *error
= "Error creating pool's all io deferred set";
2844 err_p
= ERR_PTR(-ENOMEM
);
2848 pool
->next_mapping
= NULL
;
2849 pool
->mapping_pool
= mempool_create_slab_pool(MAPPING_POOL_SIZE
,
2850 _new_mapping_cache
);
2851 if (!pool
->mapping_pool
) {
2852 *error
= "Error creating pool's mapping mempool";
2853 err_p
= ERR_PTR(-ENOMEM
);
2854 goto bad_mapping_pool
;
2857 pool
->cell_sort_array
= vmalloc(sizeof(*pool
->cell_sort_array
) * CELL_SORT_ARRAY_SIZE
);
2858 if (!pool
->cell_sort_array
) {
2859 *error
= "Error allocating cell sort array";
2860 err_p
= ERR_PTR(-ENOMEM
);
2861 goto bad_sort_array
;
2864 pool
->ref_count
= 1;
2865 pool
->last_commit_jiffies
= jiffies
;
2866 pool
->pool_md
= pool_md
;
2867 pool
->md_dev
= metadata_dev
;
2868 __pool_table_insert(pool
);
2873 mempool_destroy(pool
->mapping_pool
);
2875 dm_deferred_set_destroy(pool
->all_io_ds
);
2877 dm_deferred_set_destroy(pool
->shared_read_ds
);
2879 destroy_workqueue(pool
->wq
);
2881 dm_kcopyd_client_destroy(pool
->copier
);
2883 dm_bio_prison_destroy(pool
->prison
);
2887 if (dm_pool_metadata_close(pmd
))
2888 DMWARN("%s: dm_pool_metadata_close() failed.", __func__
);
2893 static void __pool_inc(struct pool
*pool
)
2895 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2899 static void __pool_dec(struct pool
*pool
)
2901 BUG_ON(!mutex_is_locked(&dm_thin_pool_table
.mutex
));
2902 BUG_ON(!pool
->ref_count
);
2903 if (!--pool
->ref_count
)
2904 __pool_destroy(pool
);
2907 static struct pool
*__pool_find(struct mapped_device
*pool_md
,
2908 struct block_device
*metadata_dev
,
2909 unsigned long block_size
, int read_only
,
2910 char **error
, int *created
)
2912 struct pool
*pool
= __pool_table_lookup_metadata_dev(metadata_dev
);
2915 if (pool
->pool_md
!= pool_md
) {
2916 *error
= "metadata device already in use by a pool";
2917 return ERR_PTR(-EBUSY
);
2922 pool
= __pool_table_lookup(pool_md
);
2924 if (pool
->md_dev
!= metadata_dev
) {
2925 *error
= "different pool cannot replace a pool";
2926 return ERR_PTR(-EINVAL
);
2931 pool
= pool_create(pool_md
, metadata_dev
, block_size
, read_only
, error
);
2939 /*----------------------------------------------------------------
2940 * Pool target methods
2941 *--------------------------------------------------------------*/
2942 static void pool_dtr(struct dm_target
*ti
)
2944 struct pool_c
*pt
= ti
->private;
2946 mutex_lock(&dm_thin_pool_table
.mutex
);
2948 unbind_control_target(pt
->pool
, ti
);
2949 __pool_dec(pt
->pool
);
2950 dm_put_device(ti
, pt
->metadata_dev
);
2951 dm_put_device(ti
, pt
->data_dev
);
2954 mutex_unlock(&dm_thin_pool_table
.mutex
);
2957 static int parse_pool_features(struct dm_arg_set
*as
, struct pool_features
*pf
,
2958 struct dm_target
*ti
)
2962 const char *arg_name
;
2964 static struct dm_arg _args
[] = {
2965 {0, 4, "Invalid number of pool feature arguments"},
2969 * No feature arguments supplied.
2974 r
= dm_read_arg_group(_args
, as
, &argc
, &ti
->error
);
2978 while (argc
&& !r
) {
2979 arg_name
= dm_shift_arg(as
);
2982 if (!strcasecmp(arg_name
, "skip_block_zeroing"))
2983 pf
->zero_new_blocks
= false;
2985 else if (!strcasecmp(arg_name
, "ignore_discard"))
2986 pf
->discard_enabled
= false;
2988 else if (!strcasecmp(arg_name
, "no_discard_passdown"))
2989 pf
->discard_passdown
= false;
2991 else if (!strcasecmp(arg_name
, "read_only"))
2992 pf
->mode
= PM_READ_ONLY
;
2994 else if (!strcasecmp(arg_name
, "error_if_no_space"))
2995 pf
->error_if_no_space
= true;
2998 ti
->error
= "Unrecognised pool feature requested";
3007 static void metadata_low_callback(void *context
)
3009 struct pool
*pool
= context
;
3011 DMWARN("%s: reached low water mark for metadata device: sending event.",
3012 dm_device_name(pool
->pool_md
));
3014 dm_table_event(pool
->ti
->table
);
3017 static sector_t
get_dev_size(struct block_device
*bdev
)
3019 return i_size_read(bdev
->bd_inode
) >> SECTOR_SHIFT
;
3022 static void warn_if_metadata_device_too_big(struct block_device
*bdev
)
3024 sector_t metadata_dev_size
= get_dev_size(bdev
);
3025 char buffer
[BDEVNAME_SIZE
];
3027 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS_WARNING
)
3028 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3029 bdevname(bdev
, buffer
), THIN_METADATA_MAX_SECTORS
);
3032 static sector_t
get_metadata_dev_size(struct block_device
*bdev
)
3034 sector_t metadata_dev_size
= get_dev_size(bdev
);
3036 if (metadata_dev_size
> THIN_METADATA_MAX_SECTORS
)
3037 metadata_dev_size
= THIN_METADATA_MAX_SECTORS
;
3039 return metadata_dev_size
;
3042 static dm_block_t
get_metadata_dev_size_in_blocks(struct block_device
*bdev
)
3044 sector_t metadata_dev_size
= get_metadata_dev_size(bdev
);
3046 sector_div(metadata_dev_size
, THIN_METADATA_BLOCK_SIZE
);
3048 return metadata_dev_size
;
3052 * When a metadata threshold is crossed a dm event is triggered, and
3053 * userland should respond by growing the metadata device. We could let
3054 * userland set the threshold, like we do with the data threshold, but I'm
3055 * not sure they know enough to do this well.
3057 static dm_block_t
calc_metadata_threshold(struct pool_c
*pt
)
3060 * 4M is ample for all ops with the possible exception of thin
3061 * device deletion which is harmless if it fails (just retry the
3062 * delete after you've grown the device).
3064 dm_block_t quarter
= get_metadata_dev_size_in_blocks(pt
->metadata_dev
->bdev
) / 4;
3065 return min((dm_block_t
)1024ULL /* 4M */, quarter
);
3069 * thin-pool <metadata dev> <data dev>
3070 * <data block size (sectors)>
3071 * <low water mark (blocks)>
3072 * [<#feature args> [<arg>]*]
3074 * Optional feature arguments are:
3075 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3076 * ignore_discard: disable discard
3077 * no_discard_passdown: don't pass discards down to the data device
3078 * read_only: Don't allow any changes to be made to the pool metadata.
3079 * error_if_no_space: error IOs, instead of queueing, if no space.
3081 static int pool_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3083 int r
, pool_created
= 0;
3086 struct pool_features pf
;
3087 struct dm_arg_set as
;
3088 struct dm_dev
*data_dev
;
3089 unsigned long block_size
;
3090 dm_block_t low_water_blocks
;
3091 struct dm_dev
*metadata_dev
;
3092 fmode_t metadata_mode
;
3095 * FIXME Remove validation from scope of lock.
3097 mutex_lock(&dm_thin_pool_table
.mutex
);
3100 ti
->error
= "Invalid argument count";
3109 * Set default pool features.
3111 pool_features_init(&pf
);
3113 dm_consume_args(&as
, 4);
3114 r
= parse_pool_features(&as
, &pf
, ti
);
3118 metadata_mode
= FMODE_READ
| ((pf
.mode
== PM_READ_ONLY
) ? 0 : FMODE_WRITE
);
3119 r
= dm_get_device(ti
, argv
[0], metadata_mode
, &metadata_dev
);
3121 ti
->error
= "Error opening metadata block device";
3124 warn_if_metadata_device_too_big(metadata_dev
->bdev
);
3126 r
= dm_get_device(ti
, argv
[1], FMODE_READ
| FMODE_WRITE
, &data_dev
);
3128 ti
->error
= "Error getting data device";
3132 if (kstrtoul(argv
[2], 10, &block_size
) || !block_size
||
3133 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
3134 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
3135 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
3136 ti
->error
= "Invalid block size";
3141 if (kstrtoull(argv
[3], 10, (unsigned long long *)&low_water_blocks
)) {
3142 ti
->error
= "Invalid low water mark";
3147 pt
= kzalloc(sizeof(*pt
), GFP_KERNEL
);
3153 pool
= __pool_find(dm_table_get_md(ti
->table
), metadata_dev
->bdev
,
3154 block_size
, pf
.mode
== PM_READ_ONLY
, &ti
->error
, &pool_created
);
3161 * 'pool_created' reflects whether this is the first table load.
3162 * Top level discard support is not allowed to be changed after
3163 * initial load. This would require a pool reload to trigger thin
3166 if (!pool_created
&& pf
.discard_enabled
!= pool
->pf
.discard_enabled
) {
3167 ti
->error
= "Discard support cannot be disabled once enabled";
3169 goto out_flags_changed
;
3174 pt
->metadata_dev
= metadata_dev
;
3175 pt
->data_dev
= data_dev
;
3176 pt
->low_water_blocks
= low_water_blocks
;
3177 pt
->adjusted_pf
= pt
->requested_pf
= pf
;
3178 ti
->num_flush_bios
= 1;
3181 * Only need to enable discards if the pool should pass
3182 * them down to the data device. The thin device's discard
3183 * processing will cause mappings to be removed from the btree.
3185 ti
->discard_zeroes_data_unsupported
= true;
3186 if (pf
.discard_enabled
&& pf
.discard_passdown
) {
3187 ti
->num_discard_bios
= 1;
3190 * Setting 'discards_supported' circumvents the normal
3191 * stacking of discard limits (this keeps the pool and
3192 * thin devices' discard limits consistent).
3194 ti
->discards_supported
= true;
3198 r
= dm_pool_register_metadata_threshold(pt
->pool
->pmd
,
3199 calc_metadata_threshold(pt
),
3200 metadata_low_callback
,
3203 goto out_flags_changed
;
3205 pt
->callbacks
.congested_fn
= pool_is_congested
;
3206 dm_table_add_target_callbacks(ti
->table
, &pt
->callbacks
);
3208 mutex_unlock(&dm_thin_pool_table
.mutex
);
3217 dm_put_device(ti
, data_dev
);
3219 dm_put_device(ti
, metadata_dev
);
3221 mutex_unlock(&dm_thin_pool_table
.mutex
);
3226 static int pool_map(struct dm_target
*ti
, struct bio
*bio
)
3229 struct pool_c
*pt
= ti
->private;
3230 struct pool
*pool
= pt
->pool
;
3231 unsigned long flags
;
3234 * As this is a singleton target, ti->begin is always zero.
3236 spin_lock_irqsave(&pool
->lock
, flags
);
3237 bio
->bi_bdev
= pt
->data_dev
->bdev
;
3238 r
= DM_MAPIO_REMAPPED
;
3239 spin_unlock_irqrestore(&pool
->lock
, flags
);
3244 static int maybe_resize_data_dev(struct dm_target
*ti
, bool *need_commit
)
3247 struct pool_c
*pt
= ti
->private;
3248 struct pool
*pool
= pt
->pool
;
3249 sector_t data_size
= ti
->len
;
3250 dm_block_t sb_data_size
;
3252 *need_commit
= false;
3254 (void) sector_div(data_size
, pool
->sectors_per_block
);
3256 r
= dm_pool_get_data_dev_size(pool
->pmd
, &sb_data_size
);
3258 DMERR("%s: failed to retrieve data device size",
3259 dm_device_name(pool
->pool_md
));
3263 if (data_size
< sb_data_size
) {
3264 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3265 dm_device_name(pool
->pool_md
),
3266 (unsigned long long)data_size
, sb_data_size
);
3269 } else if (data_size
> sb_data_size
) {
3270 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3271 DMERR("%s: unable to grow the data device until repaired.",
3272 dm_device_name(pool
->pool_md
));
3277 DMINFO("%s: growing the data device from %llu to %llu blocks",
3278 dm_device_name(pool
->pool_md
),
3279 sb_data_size
, (unsigned long long)data_size
);
3280 r
= dm_pool_resize_data_dev(pool
->pmd
, data_size
);
3282 metadata_operation_failed(pool
, "dm_pool_resize_data_dev", r
);
3286 *need_commit
= true;
3292 static int maybe_resize_metadata_dev(struct dm_target
*ti
, bool *need_commit
)
3295 struct pool_c
*pt
= ti
->private;
3296 struct pool
*pool
= pt
->pool
;
3297 dm_block_t metadata_dev_size
, sb_metadata_dev_size
;
3299 *need_commit
= false;
3301 metadata_dev_size
= get_metadata_dev_size_in_blocks(pool
->md_dev
);
3303 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &sb_metadata_dev_size
);
3305 DMERR("%s: failed to retrieve metadata device size",
3306 dm_device_name(pool
->pool_md
));
3310 if (metadata_dev_size
< sb_metadata_dev_size
) {
3311 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3312 dm_device_name(pool
->pool_md
),
3313 metadata_dev_size
, sb_metadata_dev_size
);
3316 } else if (metadata_dev_size
> sb_metadata_dev_size
) {
3317 if (dm_pool_metadata_needs_check(pool
->pmd
)) {
3318 DMERR("%s: unable to grow the metadata device until repaired.",
3319 dm_device_name(pool
->pool_md
));
3323 warn_if_metadata_device_too_big(pool
->md_dev
);
3324 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3325 dm_device_name(pool
->pool_md
),
3326 sb_metadata_dev_size
, metadata_dev_size
);
3327 r
= dm_pool_resize_metadata_dev(pool
->pmd
, metadata_dev_size
);
3329 metadata_operation_failed(pool
, "dm_pool_resize_metadata_dev", r
);
3333 *need_commit
= true;
3340 * Retrieves the number of blocks of the data device from
3341 * the superblock and compares it to the actual device size,
3342 * thus resizing the data device in case it has grown.
3344 * This both copes with opening preallocated data devices in the ctr
3345 * being followed by a resume
3347 * calling the resume method individually after userspace has
3348 * grown the data device in reaction to a table event.
3350 static int pool_preresume(struct dm_target
*ti
)
3353 bool need_commit1
, need_commit2
;
3354 struct pool_c
*pt
= ti
->private;
3355 struct pool
*pool
= pt
->pool
;
3358 * Take control of the pool object.
3360 r
= bind_control_target(pool
, ti
);
3364 r
= maybe_resize_data_dev(ti
, &need_commit1
);
3368 r
= maybe_resize_metadata_dev(ti
, &need_commit2
);
3372 if (need_commit1
|| need_commit2
)
3373 (void) commit(pool
);
3378 static void pool_suspend_active_thins(struct pool
*pool
)
3382 /* Suspend all active thin devices */
3383 tc
= get_first_thin(pool
);
3385 dm_internal_suspend_noflush(tc
->thin_md
);
3386 tc
= get_next_thin(pool
, tc
);
3390 static void pool_resume_active_thins(struct pool
*pool
)
3394 /* Resume all active thin devices */
3395 tc
= get_first_thin(pool
);
3397 dm_internal_resume(tc
->thin_md
);
3398 tc
= get_next_thin(pool
, tc
);
3402 static void pool_resume(struct dm_target
*ti
)
3404 struct pool_c
*pt
= ti
->private;
3405 struct pool
*pool
= pt
->pool
;
3406 unsigned long flags
;
3409 * Must requeue active_thins' bios and then resume
3410 * active_thins _before_ clearing 'suspend' flag.
3413 pool_resume_active_thins(pool
);
3415 spin_lock_irqsave(&pool
->lock
, flags
);
3416 pool
->low_water_triggered
= false;
3417 pool
->suspended
= false;
3418 spin_unlock_irqrestore(&pool
->lock
, flags
);
3420 do_waker(&pool
->waker
.work
);
3423 static void pool_presuspend(struct dm_target
*ti
)
3425 struct pool_c
*pt
= ti
->private;
3426 struct pool
*pool
= pt
->pool
;
3427 unsigned long flags
;
3429 spin_lock_irqsave(&pool
->lock
, flags
);
3430 pool
->suspended
= true;
3431 spin_unlock_irqrestore(&pool
->lock
, flags
);
3433 pool_suspend_active_thins(pool
);
3436 static void pool_presuspend_undo(struct dm_target
*ti
)
3438 struct pool_c
*pt
= ti
->private;
3439 struct pool
*pool
= pt
->pool
;
3440 unsigned long flags
;
3442 pool_resume_active_thins(pool
);
3444 spin_lock_irqsave(&pool
->lock
, flags
);
3445 pool
->suspended
= false;
3446 spin_unlock_irqrestore(&pool
->lock
, flags
);
3449 static void pool_postsuspend(struct dm_target
*ti
)
3451 struct pool_c
*pt
= ti
->private;
3452 struct pool
*pool
= pt
->pool
;
3454 cancel_delayed_work_sync(&pool
->waker
);
3455 cancel_delayed_work_sync(&pool
->no_space_timeout
);
3456 flush_workqueue(pool
->wq
);
3457 (void) commit(pool
);
3460 static int check_arg_count(unsigned argc
, unsigned args_required
)
3462 if (argc
!= args_required
) {
3463 DMWARN("Message received with %u arguments instead of %u.",
3464 argc
, args_required
);
3471 static int read_dev_id(char *arg
, dm_thin_id
*dev_id
, int warning
)
3473 if (!kstrtoull(arg
, 10, (unsigned long long *)dev_id
) &&
3474 *dev_id
<= MAX_DEV_ID
)
3478 DMWARN("Message received with invalid device id: %s", arg
);
3483 static int process_create_thin_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3488 r
= check_arg_count(argc
, 2);
3492 r
= read_dev_id(argv
[1], &dev_id
, 1);
3496 r
= dm_pool_create_thin(pool
->pmd
, dev_id
);
3498 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3506 static int process_create_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3509 dm_thin_id origin_dev_id
;
3512 r
= check_arg_count(argc
, 3);
3516 r
= read_dev_id(argv
[1], &dev_id
, 1);
3520 r
= read_dev_id(argv
[2], &origin_dev_id
, 1);
3524 r
= dm_pool_create_snap(pool
->pmd
, dev_id
, origin_dev_id
);
3526 DMWARN("Creation of new snapshot %s of device %s failed.",
3534 static int process_delete_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3539 r
= check_arg_count(argc
, 2);
3543 r
= read_dev_id(argv
[1], &dev_id
, 1);
3547 r
= dm_pool_delete_thin_device(pool
->pmd
, dev_id
);
3549 DMWARN("Deletion of thin device %s failed.", argv
[1]);
3554 static int process_set_transaction_id_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3556 dm_thin_id old_id
, new_id
;
3559 r
= check_arg_count(argc
, 3);
3563 if (kstrtoull(argv
[1], 10, (unsigned long long *)&old_id
)) {
3564 DMWARN("set_transaction_id message: Unrecognised id %s.", argv
[1]);
3568 if (kstrtoull(argv
[2], 10, (unsigned long long *)&new_id
)) {
3569 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv
[2]);
3573 r
= dm_pool_set_metadata_transaction_id(pool
->pmd
, old_id
, new_id
);
3575 DMWARN("Failed to change transaction id from %s to %s.",
3583 static int process_reserve_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3587 r
= check_arg_count(argc
, 1);
3591 (void) commit(pool
);
3593 r
= dm_pool_reserve_metadata_snap(pool
->pmd
);
3595 DMWARN("reserve_metadata_snap message failed.");
3600 static int process_release_metadata_snap_mesg(unsigned argc
, char **argv
, struct pool
*pool
)
3604 r
= check_arg_count(argc
, 1);
3608 r
= dm_pool_release_metadata_snap(pool
->pmd
);
3610 DMWARN("release_metadata_snap message failed.");
3616 * Messages supported:
3617 * create_thin <dev_id>
3618 * create_snap <dev_id> <origin_id>
3620 * set_transaction_id <current_trans_id> <new_trans_id>
3621 * reserve_metadata_snap
3622 * release_metadata_snap
3624 static int pool_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3627 struct pool_c
*pt
= ti
->private;
3628 struct pool
*pool
= pt
->pool
;
3630 if (get_pool_mode(pool
) >= PM_READ_ONLY
) {
3631 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3632 dm_device_name(pool
->pool_md
));
3636 if (!strcasecmp(argv
[0], "create_thin"))
3637 r
= process_create_thin_mesg(argc
, argv
, pool
);
3639 else if (!strcasecmp(argv
[0], "create_snap"))
3640 r
= process_create_snap_mesg(argc
, argv
, pool
);
3642 else if (!strcasecmp(argv
[0], "delete"))
3643 r
= process_delete_mesg(argc
, argv
, pool
);
3645 else if (!strcasecmp(argv
[0], "set_transaction_id"))
3646 r
= process_set_transaction_id_mesg(argc
, argv
, pool
);
3648 else if (!strcasecmp(argv
[0], "reserve_metadata_snap"))
3649 r
= process_reserve_metadata_snap_mesg(argc
, argv
, pool
);
3651 else if (!strcasecmp(argv
[0], "release_metadata_snap"))
3652 r
= process_release_metadata_snap_mesg(argc
, argv
, pool
);
3655 DMWARN("Unrecognised thin pool target message received: %s", argv
[0]);
3658 (void) commit(pool
);
3663 static void emit_flags(struct pool_features
*pf
, char *result
,
3664 unsigned sz
, unsigned maxlen
)
3666 unsigned count
= !pf
->zero_new_blocks
+ !pf
->discard_enabled
+
3667 !pf
->discard_passdown
+ (pf
->mode
== PM_READ_ONLY
) +
3668 pf
->error_if_no_space
;
3669 DMEMIT("%u ", count
);
3671 if (!pf
->zero_new_blocks
)
3672 DMEMIT("skip_block_zeroing ");
3674 if (!pf
->discard_enabled
)
3675 DMEMIT("ignore_discard ");
3677 if (!pf
->discard_passdown
)
3678 DMEMIT("no_discard_passdown ");
3680 if (pf
->mode
== PM_READ_ONLY
)
3681 DMEMIT("read_only ");
3683 if (pf
->error_if_no_space
)
3684 DMEMIT("error_if_no_space ");
3689 * <transaction id> <used metadata sectors>/<total metadata sectors>
3690 * <used data sectors>/<total data sectors> <held metadata root>
3691 * <pool mode> <discard config> <no space config> <needs_check>
3693 static void pool_status(struct dm_target
*ti
, status_type_t type
,
3694 unsigned status_flags
, char *result
, unsigned maxlen
)
3698 uint64_t transaction_id
;
3699 dm_block_t nr_free_blocks_data
;
3700 dm_block_t nr_free_blocks_metadata
;
3701 dm_block_t nr_blocks_data
;
3702 dm_block_t nr_blocks_metadata
;
3703 dm_block_t held_root
;
3704 char buf
[BDEVNAME_SIZE
];
3705 char buf2
[BDEVNAME_SIZE
];
3706 struct pool_c
*pt
= ti
->private;
3707 struct pool
*pool
= pt
->pool
;
3710 case STATUSTYPE_INFO
:
3711 if (get_pool_mode(pool
) == PM_FAIL
) {
3716 /* Commit to ensure statistics aren't out-of-date */
3717 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3718 (void) commit(pool
);
3720 r
= dm_pool_get_metadata_transaction_id(pool
->pmd
, &transaction_id
);
3722 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3723 dm_device_name(pool
->pool_md
), r
);
3727 r
= dm_pool_get_free_metadata_block_count(pool
->pmd
, &nr_free_blocks_metadata
);
3729 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3730 dm_device_name(pool
->pool_md
), r
);
3734 r
= dm_pool_get_metadata_dev_size(pool
->pmd
, &nr_blocks_metadata
);
3736 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3737 dm_device_name(pool
->pool_md
), r
);
3741 r
= dm_pool_get_free_block_count(pool
->pmd
, &nr_free_blocks_data
);
3743 DMERR("%s: dm_pool_get_free_block_count returned %d",
3744 dm_device_name(pool
->pool_md
), r
);
3748 r
= dm_pool_get_data_dev_size(pool
->pmd
, &nr_blocks_data
);
3750 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3751 dm_device_name(pool
->pool_md
), r
);
3755 r
= dm_pool_get_metadata_snap(pool
->pmd
, &held_root
);
3757 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3758 dm_device_name(pool
->pool_md
), r
);
3762 DMEMIT("%llu %llu/%llu %llu/%llu ",
3763 (unsigned long long)transaction_id
,
3764 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3765 (unsigned long long)nr_blocks_metadata
,
3766 (unsigned long long)(nr_blocks_data
- nr_free_blocks_data
),
3767 (unsigned long long)nr_blocks_data
);
3770 DMEMIT("%llu ", held_root
);
3774 if (pool
->pf
.mode
== PM_OUT_OF_DATA_SPACE
)
3775 DMEMIT("out_of_data_space ");
3776 else if (pool
->pf
.mode
== PM_READ_ONLY
)
3781 if (!pool
->pf
.discard_enabled
)
3782 DMEMIT("ignore_discard ");
3783 else if (pool
->pf
.discard_passdown
)
3784 DMEMIT("discard_passdown ");
3786 DMEMIT("no_discard_passdown ");
3788 if (pool
->pf
.error_if_no_space
)
3789 DMEMIT("error_if_no_space ");
3791 DMEMIT("queue_if_no_space ");
3793 if (dm_pool_metadata_needs_check(pool
->pmd
))
3794 DMEMIT("needs_check ");
3800 case STATUSTYPE_TABLE
:
3801 DMEMIT("%s %s %lu %llu ",
3802 format_dev_t(buf
, pt
->metadata_dev
->bdev
->bd_dev
),
3803 format_dev_t(buf2
, pt
->data_dev
->bdev
->bd_dev
),
3804 (unsigned long)pool
->sectors_per_block
,
3805 (unsigned long long)pt
->low_water_blocks
);
3806 emit_flags(&pt
->requested_pf
, result
, sz
, maxlen
);
3815 static int pool_iterate_devices(struct dm_target
*ti
,
3816 iterate_devices_callout_fn fn
, void *data
)
3818 struct pool_c
*pt
= ti
->private;
3820 return fn(ti
, pt
->data_dev
, 0, ti
->len
, data
);
3823 static void pool_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3825 struct pool_c
*pt
= ti
->private;
3826 struct pool
*pool
= pt
->pool
;
3827 sector_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3830 * If max_sectors is smaller than pool->sectors_per_block adjust it
3831 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3832 * This is especially beneficial when the pool's data device is a RAID
3833 * device that has a full stripe width that matches pool->sectors_per_block
3834 * -- because even though partial RAID stripe-sized IOs will be issued to a
3835 * single RAID stripe; when aggregated they will end on a full RAID stripe
3836 * boundary.. which avoids additional partial RAID stripe writes cascading
3838 if (limits
->max_sectors
< pool
->sectors_per_block
) {
3839 while (!is_factor(pool
->sectors_per_block
, limits
->max_sectors
)) {
3840 if ((limits
->max_sectors
& (limits
->max_sectors
- 1)) == 0)
3841 limits
->max_sectors
--;
3842 limits
->max_sectors
= rounddown_pow_of_two(limits
->max_sectors
);
3847 * If the system-determined stacked limits are compatible with the
3848 * pool's blocksize (io_opt is a factor) do not override them.
3850 if (io_opt_sectors
< pool
->sectors_per_block
||
3851 !is_factor(io_opt_sectors
, pool
->sectors_per_block
)) {
3852 if (is_factor(pool
->sectors_per_block
, limits
->max_sectors
))
3853 blk_limits_io_min(limits
, limits
->max_sectors
<< SECTOR_SHIFT
);
3855 blk_limits_io_min(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3856 blk_limits_io_opt(limits
, pool
->sectors_per_block
<< SECTOR_SHIFT
);
3860 * pt->adjusted_pf is a staging area for the actual features to use.
3861 * They get transferred to the live pool in bind_control_target()
3862 * called from pool_preresume().
3864 if (!pt
->adjusted_pf
.discard_enabled
) {
3866 * Must explicitly disallow stacking discard limits otherwise the
3867 * block layer will stack them if pool's data device has support.
3868 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3869 * user to see that, so make sure to set all discard limits to 0.
3871 limits
->discard_granularity
= 0;
3875 disable_passdown_if_not_supported(pt
);
3878 * The pool uses the same discard limits as the underlying data
3879 * device. DM core has already set this up.
3883 static struct target_type pool_target
= {
3884 .name
= "thin-pool",
3885 .features
= DM_TARGET_SINGLETON
| DM_TARGET_ALWAYS_WRITEABLE
|
3886 DM_TARGET_IMMUTABLE
,
3887 .version
= {1, 19, 0},
3888 .module
= THIS_MODULE
,
3892 .presuspend
= pool_presuspend
,
3893 .presuspend_undo
= pool_presuspend_undo
,
3894 .postsuspend
= pool_postsuspend
,
3895 .preresume
= pool_preresume
,
3896 .resume
= pool_resume
,
3897 .message
= pool_message
,
3898 .status
= pool_status
,
3899 .iterate_devices
= pool_iterate_devices
,
3900 .io_hints
= pool_io_hints
,
3903 /*----------------------------------------------------------------
3904 * Thin target methods
3905 *--------------------------------------------------------------*/
3906 static void thin_get(struct thin_c
*tc
)
3908 atomic_inc(&tc
->refcount
);
3911 static void thin_put(struct thin_c
*tc
)
3913 if (atomic_dec_and_test(&tc
->refcount
))
3914 complete(&tc
->can_destroy
);
3917 static void thin_dtr(struct dm_target
*ti
)
3919 struct thin_c
*tc
= ti
->private;
3920 unsigned long flags
;
3922 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
3923 list_del_rcu(&tc
->list
);
3924 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
3928 wait_for_completion(&tc
->can_destroy
);
3930 mutex_lock(&dm_thin_pool_table
.mutex
);
3932 __pool_dec(tc
->pool
);
3933 dm_pool_close_thin_device(tc
->td
);
3934 dm_put_device(ti
, tc
->pool_dev
);
3936 dm_put_device(ti
, tc
->origin_dev
);
3939 mutex_unlock(&dm_thin_pool_table
.mutex
);
3943 * Thin target parameters:
3945 * <pool_dev> <dev_id> [origin_dev]
3947 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
3948 * dev_id: the internal device identifier
3949 * origin_dev: a device external to the pool that should act as the origin
3951 * If the pool device has discards disabled, they get disabled for the thin
3954 static int thin_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
3958 struct dm_dev
*pool_dev
, *origin_dev
;
3959 struct mapped_device
*pool_md
;
3960 unsigned long flags
;
3962 mutex_lock(&dm_thin_pool_table
.mutex
);
3964 if (argc
!= 2 && argc
!= 3) {
3965 ti
->error
= "Invalid argument count";
3970 tc
= ti
->private = kzalloc(sizeof(*tc
), GFP_KERNEL
);
3972 ti
->error
= "Out of memory";
3976 tc
->thin_md
= dm_table_get_md(ti
->table
);
3977 spin_lock_init(&tc
->lock
);
3978 INIT_LIST_HEAD(&tc
->deferred_cells
);
3979 bio_list_init(&tc
->deferred_bio_list
);
3980 bio_list_init(&tc
->retry_on_resume_list
);
3981 tc
->sort_bio_list
= RB_ROOT
;
3984 r
= dm_get_device(ti
, argv
[2], FMODE_READ
, &origin_dev
);
3986 ti
->error
= "Error opening origin device";
3987 goto bad_origin_dev
;
3989 tc
->origin_dev
= origin_dev
;
3992 r
= dm_get_device(ti
, argv
[0], dm_table_get_mode(ti
->table
), &pool_dev
);
3994 ti
->error
= "Error opening pool device";
3997 tc
->pool_dev
= pool_dev
;
3999 if (read_dev_id(argv
[1], (unsigned long long *)&tc
->dev_id
, 0)) {
4000 ti
->error
= "Invalid device id";
4005 pool_md
= dm_get_md(tc
->pool_dev
->bdev
->bd_dev
);
4007 ti
->error
= "Couldn't get pool mapped device";
4012 tc
->pool
= __pool_table_lookup(pool_md
);
4014 ti
->error
= "Couldn't find pool object";
4016 goto bad_pool_lookup
;
4018 __pool_inc(tc
->pool
);
4020 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4021 ti
->error
= "Couldn't open thin device, Pool is in fail mode";
4026 r
= dm_pool_open_thin_device(tc
->pool
->pmd
, tc
->dev_id
, &tc
->td
);
4028 ti
->error
= "Couldn't open thin internal device";
4032 r
= dm_set_target_max_io_len(ti
, tc
->pool
->sectors_per_block
);
4036 ti
->num_flush_bios
= 1;
4037 ti
->flush_supported
= true;
4038 ti
->per_io_data_size
= sizeof(struct dm_thin_endio_hook
);
4040 /* In case the pool supports discards, pass them on. */
4041 ti
->discard_zeroes_data_unsupported
= true;
4042 if (tc
->pool
->pf
.discard_enabled
) {
4043 ti
->discards_supported
= true;
4044 ti
->num_discard_bios
= 1;
4045 ti
->split_discard_bios
= false;
4048 mutex_unlock(&dm_thin_pool_table
.mutex
);
4050 spin_lock_irqsave(&tc
->pool
->lock
, flags
);
4051 if (tc
->pool
->suspended
) {
4052 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4053 mutex_lock(&dm_thin_pool_table
.mutex
); /* reacquire for __pool_dec */
4054 ti
->error
= "Unable to activate thin device while pool is suspended";
4058 atomic_set(&tc
->refcount
, 1);
4059 init_completion(&tc
->can_destroy
);
4060 list_add_tail_rcu(&tc
->list
, &tc
->pool
->active_thins
);
4061 spin_unlock_irqrestore(&tc
->pool
->lock
, flags
);
4063 * This synchronize_rcu() call is needed here otherwise we risk a
4064 * wake_worker() call finding no bios to process (because the newly
4065 * added tc isn't yet visible). So this reduces latency since we
4066 * aren't then dependent on the periodic commit to wake_worker().
4075 dm_pool_close_thin_device(tc
->td
);
4077 __pool_dec(tc
->pool
);
4081 dm_put_device(ti
, tc
->pool_dev
);
4084 dm_put_device(ti
, tc
->origin_dev
);
4088 mutex_unlock(&dm_thin_pool_table
.mutex
);
4093 static int thin_map(struct dm_target
*ti
, struct bio
*bio
)
4095 bio
->bi_iter
.bi_sector
= dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
4097 return thin_bio_map(ti
, bio
);
4100 static int thin_endio(struct dm_target
*ti
, struct bio
*bio
, int err
)
4102 unsigned long flags
;
4103 struct dm_thin_endio_hook
*h
= dm_per_bio_data(bio
, sizeof(struct dm_thin_endio_hook
));
4104 struct list_head work
;
4105 struct dm_thin_new_mapping
*m
, *tmp
;
4106 struct pool
*pool
= h
->tc
->pool
;
4108 if (h
->shared_read_entry
) {
4109 INIT_LIST_HEAD(&work
);
4110 dm_deferred_entry_dec(h
->shared_read_entry
, &work
);
4112 spin_lock_irqsave(&pool
->lock
, flags
);
4113 list_for_each_entry_safe(m
, tmp
, &work
, list
) {
4115 __complete_mapping_preparation(m
);
4117 spin_unlock_irqrestore(&pool
->lock
, flags
);
4120 if (h
->all_io_entry
) {
4121 INIT_LIST_HEAD(&work
);
4122 dm_deferred_entry_dec(h
->all_io_entry
, &work
);
4123 if (!list_empty(&work
)) {
4124 spin_lock_irqsave(&pool
->lock
, flags
);
4125 list_for_each_entry_safe(m
, tmp
, &work
, list
)
4126 list_add_tail(&m
->list
, &pool
->prepared_discards
);
4127 spin_unlock_irqrestore(&pool
->lock
, flags
);
4133 cell_defer_no_holder(h
->tc
, h
->cell
);
4138 static void thin_presuspend(struct dm_target
*ti
)
4140 struct thin_c
*tc
= ti
->private;
4142 if (dm_noflush_suspending(ti
))
4143 noflush_work(tc
, do_noflush_start
);
4146 static void thin_postsuspend(struct dm_target
*ti
)
4148 struct thin_c
*tc
= ti
->private;
4151 * The dm_noflush_suspending flag has been cleared by now, so
4152 * unfortunately we must always run this.
4154 noflush_work(tc
, do_noflush_stop
);
4157 static int thin_preresume(struct dm_target
*ti
)
4159 struct thin_c
*tc
= ti
->private;
4162 tc
->origin_size
= get_dev_size(tc
->origin_dev
->bdev
);
4168 * <nr mapped sectors> <highest mapped sector>
4170 static void thin_status(struct dm_target
*ti
, status_type_t type
,
4171 unsigned status_flags
, char *result
, unsigned maxlen
)
4175 dm_block_t mapped
, highest
;
4176 char buf
[BDEVNAME_SIZE
];
4177 struct thin_c
*tc
= ti
->private;
4179 if (get_pool_mode(tc
->pool
) == PM_FAIL
) {
4188 case STATUSTYPE_INFO
:
4189 r
= dm_thin_get_mapped_count(tc
->td
, &mapped
);
4191 DMERR("dm_thin_get_mapped_count returned %d", r
);
4195 r
= dm_thin_get_highest_mapped_block(tc
->td
, &highest
);
4197 DMERR("dm_thin_get_highest_mapped_block returned %d", r
);
4201 DMEMIT("%llu ", mapped
* tc
->pool
->sectors_per_block
);
4203 DMEMIT("%llu", ((highest
+ 1) *
4204 tc
->pool
->sectors_per_block
) - 1);
4209 case STATUSTYPE_TABLE
:
4211 format_dev_t(buf
, tc
->pool_dev
->bdev
->bd_dev
),
4212 (unsigned long) tc
->dev_id
);
4214 DMEMIT(" %s", format_dev_t(buf
, tc
->origin_dev
->bdev
->bd_dev
));
4225 static int thin_iterate_devices(struct dm_target
*ti
,
4226 iterate_devices_callout_fn fn
, void *data
)
4229 struct thin_c
*tc
= ti
->private;
4230 struct pool
*pool
= tc
->pool
;
4233 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4234 * we follow a more convoluted path through to the pool's target.
4237 return 0; /* nothing is bound */
4239 blocks
= pool
->ti
->len
;
4240 (void) sector_div(blocks
, pool
->sectors_per_block
);
4242 return fn(ti
, tc
->pool_dev
, 0, pool
->sectors_per_block
* blocks
, data
);
4247 static void thin_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
4249 struct thin_c
*tc
= ti
->private;
4250 struct pool
*pool
= tc
->pool
;
4252 if (!pool
->pf
.discard_enabled
)
4255 limits
->discard_granularity
= pool
->sectors_per_block
<< SECTOR_SHIFT
;
4256 limits
->max_discard_sectors
= 2048 * 1024 * 16; /* 16G */
4259 static struct target_type thin_target
= {
4261 .version
= {1, 19, 0},
4262 .module
= THIS_MODULE
,
4266 .end_io
= thin_endio
,
4267 .preresume
= thin_preresume
,
4268 .presuspend
= thin_presuspend
,
4269 .postsuspend
= thin_postsuspend
,
4270 .status
= thin_status
,
4271 .iterate_devices
= thin_iterate_devices
,
4272 .io_hints
= thin_io_hints
,
4275 /*----------------------------------------------------------------*/
4277 static int __init
dm_thin_init(void)
4283 r
= dm_register_target(&thin_target
);
4287 r
= dm_register_target(&pool_target
);
4289 goto bad_pool_target
;
4293 _new_mapping_cache
= KMEM_CACHE(dm_thin_new_mapping
, 0);
4294 if (!_new_mapping_cache
)
4295 goto bad_new_mapping_cache
;
4299 bad_new_mapping_cache
:
4300 dm_unregister_target(&pool_target
);
4302 dm_unregister_target(&thin_target
);
4307 static void dm_thin_exit(void)
4309 dm_unregister_target(&thin_target
);
4310 dm_unregister_target(&pool_target
);
4312 kmem_cache_destroy(_new_mapping_cache
);
4315 module_init(dm_thin_init
);
4316 module_exit(dm_thin_exit
);
4318 module_param_named(no_space_timeout
, no_space_timeout_secs
, uint
, S_IRUGO
| S_IWUSR
);
4319 MODULE_PARM_DESC(no_space_timeout
, "Out of data space queue IO timeout in seconds");
4321 MODULE_DESCRIPTION(DM_NAME
" thin provisioning target");
4322 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4323 MODULE_LICENSE("GPL");