2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
71 static void lower_barrier(struct r1conf
*conf
);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
75 struct pool_info
*pi
= data
;
76 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size
, gfp_flags
);
82 static void r1bio_pool_free(void *r1_bio
, void *data
)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
97 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
99 struct pool_info
*pi
= data
;
100 struct r1bio
*r1_bio
;
105 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
110 * Allocate bios : 1 for reading, n-1 for writing
112 for (j
= pi
->raid_disks
; j
-- ; ) {
113 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
116 r1_bio
->bios
[j
] = bio
;
119 * Allocate RESYNC_PAGES data pages and attach them to
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
124 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
125 need_pages
= pi
->raid_disks
;
128 for (j
= 0; j
< need_pages
; j
++) {
129 bio
= r1_bio
->bios
[j
];
130 bio
->bi_vcnt
= RESYNC_PAGES
;
132 if (bio_alloc_pages(bio
, gfp_flags
))
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
137 for (i
=0; i
<RESYNC_PAGES
; i
++)
138 for (j
=1; j
<pi
->raid_disks
; j
++)
139 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
140 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
143 r1_bio
->master_bio
= NULL
;
151 bio_for_each_segment_all(bv
, r1_bio
->bios
[j
], i
)
152 __free_page(bv
->bv_page
);
156 while (++j
< pi
->raid_disks
)
157 bio_put(r1_bio
->bios
[j
]);
158 r1bio_pool_free(r1_bio
, data
);
162 static void r1buf_pool_free(void *__r1_bio
, void *data
)
164 struct pool_info
*pi
= data
;
166 struct r1bio
*r1bio
= __r1_bio
;
168 for (i
= 0; i
< RESYNC_PAGES
; i
++)
169 for (j
= pi
->raid_disks
; j
-- ;) {
171 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
172 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
173 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
175 for (i
=0 ; i
< pi
->raid_disks
; i
++)
176 bio_put(r1bio
->bios
[i
]);
178 r1bio_pool_free(r1bio
, data
);
181 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
185 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
186 struct bio
**bio
= r1_bio
->bios
+ i
;
187 if (!BIO_SPECIAL(*bio
))
193 static void free_r1bio(struct r1bio
*r1_bio
)
195 struct r1conf
*conf
= r1_bio
->mddev
->private;
197 put_all_bios(conf
, r1_bio
);
198 mempool_free(r1_bio
, conf
->r1bio_pool
);
201 static void put_buf(struct r1bio
*r1_bio
)
203 struct r1conf
*conf
= r1_bio
->mddev
->private;
206 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
207 struct bio
*bio
= r1_bio
->bios
[i
];
209 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
212 mempool_free(r1_bio
, conf
->r1buf_pool
);
217 static void reschedule_retry(struct r1bio
*r1_bio
)
220 struct mddev
*mddev
= r1_bio
->mddev
;
221 struct r1conf
*conf
= mddev
->private;
223 spin_lock_irqsave(&conf
->device_lock
, flags
);
224 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
226 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
228 wake_up(&conf
->wait_barrier
);
229 md_wakeup_thread(mddev
->thread
);
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
237 static void call_bio_endio(struct r1bio
*r1_bio
)
239 struct bio
*bio
= r1_bio
->master_bio
;
241 struct r1conf
*conf
= r1_bio
->mddev
->private;
242 sector_t start_next_window
= r1_bio
->start_next_window
;
243 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
245 if (bio
->bi_phys_segments
) {
247 spin_lock_irqsave(&conf
->device_lock
, flags
);
248 bio
->bi_phys_segments
--;
249 done
= (bio
->bi_phys_segments
== 0);
250 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
255 wake_up(&conf
->wait_barrier
);
259 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
260 bio
->bi_error
= -EIO
;
265 * Wake up any possible resync thread that waits for the device
268 allow_barrier(conf
, start_next_window
, bi_sector
);
272 static void raid_end_bio_io(struct r1bio
*r1_bio
)
274 struct bio
*bio
= r1_bio
->master_bio
;
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
280 (unsigned long long) bio
->bi_iter
.bi_sector
,
281 (unsigned long long) bio_end_sector(bio
) - 1);
283 call_bio_endio(r1_bio
);
289 * Update disk head position estimator based on IRQ completion info.
291 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
293 struct r1conf
*conf
= r1_bio
->mddev
->private;
295 conf
->mirrors
[disk
].head_position
=
296 r1_bio
->sector
+ (r1_bio
->sectors
);
300 * Find the disk number which triggered given bio
302 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
305 struct r1conf
*conf
= r1_bio
->mddev
->private;
306 int raid_disks
= conf
->raid_disks
;
308 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
309 if (r1_bio
->bios
[mirror
] == bio
)
312 BUG_ON(mirror
== raid_disks
* 2);
313 update_head_pos(mirror
, r1_bio
);
318 static void raid1_end_read_request(struct bio
*bio
)
320 int uptodate
= !bio
->bi_error
;
321 struct r1bio
*r1_bio
= bio
->bi_private
;
323 struct r1conf
*conf
= r1_bio
->mddev
->private;
325 mirror
= r1_bio
->read_disk
;
327 * this branch is our 'one mirror IO has finished' event handler:
329 update_head_pos(mirror
, r1_bio
);
332 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
334 /* If all other devices have failed, we want to return
335 * the error upwards rather than fail the last device.
336 * Here we redefine "uptodate" to mean "Don't want to retry"
339 spin_lock_irqsave(&conf
->device_lock
, flags
);
340 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
341 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
342 test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
)))
344 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
348 raid_end_bio_io(r1_bio
);
349 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
, conf
->mddev
);
354 char b
[BDEVNAME_SIZE
];
356 KERN_ERR
"md/raid1:%s: %s: "
357 "rescheduling sector %llu\n",
359 bdevname(conf
->mirrors
[mirror
].rdev
->bdev
,
361 (unsigned long long)r1_bio
->sector
);
362 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
363 reschedule_retry(r1_bio
);
364 /* don't drop the reference on read_disk yet */
368 static void close_write(struct r1bio
*r1_bio
)
370 /* it really is the end of this request */
371 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
372 /* free extra copy of the data pages */
373 int i
= r1_bio
->behind_page_count
;
375 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
376 kfree(r1_bio
->behind_bvecs
);
377 r1_bio
->behind_bvecs
= NULL
;
379 /* clear the bitmap if all writes complete successfully */
380 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
382 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
383 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
384 md_write_end(r1_bio
->mddev
);
387 static void r1_bio_write_done(struct r1bio
*r1_bio
)
389 if (!atomic_dec_and_test(&r1_bio
->remaining
))
392 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
393 reschedule_retry(r1_bio
);
396 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
397 reschedule_retry(r1_bio
);
399 raid_end_bio_io(r1_bio
);
403 static void raid1_end_write_request(struct bio
*bio
)
405 struct r1bio
*r1_bio
= bio
->bi_private
;
406 int mirror
, behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
407 struct r1conf
*conf
= r1_bio
->mddev
->private;
408 struct bio
*to_put
= NULL
;
410 mirror
= find_bio_disk(r1_bio
, bio
);
413 * 'one mirror IO has finished' event handler:
416 set_bit(WriteErrorSeen
,
417 &conf
->mirrors
[mirror
].rdev
->flags
);
418 if (!test_and_set_bit(WantReplacement
,
419 &conf
->mirrors
[mirror
].rdev
->flags
))
420 set_bit(MD_RECOVERY_NEEDED
, &
421 conf
->mddev
->recovery
);
423 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
426 * Set R1BIO_Uptodate in our master bio, so that we
427 * will return a good error code for to the higher
428 * levels even if IO on some other mirrored buffer
431 * The 'master' represents the composite IO operation
432 * to user-side. So if something waits for IO, then it
433 * will wait for the 'master' bio.
438 r1_bio
->bios
[mirror
] = NULL
;
441 * Do not set R1BIO_Uptodate if the current device is
442 * rebuilding or Faulty. This is because we cannot use
443 * such device for properly reading the data back (we could
444 * potentially use it, if the current write would have felt
445 * before rdev->recovery_offset, but for simplicity we don't
448 if (test_bit(In_sync
, &conf
->mirrors
[mirror
].rdev
->flags
) &&
449 !test_bit(Faulty
, &conf
->mirrors
[mirror
].rdev
->flags
))
450 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
452 /* Maybe we can clear some bad blocks. */
453 if (is_badblock(conf
->mirrors
[mirror
].rdev
,
454 r1_bio
->sector
, r1_bio
->sectors
,
455 &first_bad
, &bad_sectors
)) {
456 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
457 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
462 if (test_bit(WriteMostly
, &conf
->mirrors
[mirror
].rdev
->flags
))
463 atomic_dec(&r1_bio
->behind_remaining
);
466 * In behind mode, we ACK the master bio once the I/O
467 * has safely reached all non-writemostly
468 * disks. Setting the Returned bit ensures that this
469 * gets done only once -- we don't ever want to return
470 * -EIO here, instead we'll wait
472 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
473 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
474 /* Maybe we can return now */
475 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
476 struct bio
*mbio
= r1_bio
->master_bio
;
477 pr_debug("raid1: behind end write sectors"
479 (unsigned long long) mbio
->bi_iter
.bi_sector
,
480 (unsigned long long) bio_end_sector(mbio
) - 1);
481 call_bio_endio(r1_bio
);
485 if (r1_bio
->bios
[mirror
] == NULL
)
486 rdev_dec_pending(conf
->mirrors
[mirror
].rdev
,
490 * Let's see if all mirrored write operations have finished
493 r1_bio_write_done(r1_bio
);
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
511 * The rdev for the device selected will have nr_pending incremented.
513 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
515 const sector_t this_sector
= r1_bio
->sector
;
517 int best_good_sectors
;
518 int best_disk
, best_dist_disk
, best_pending_disk
;
522 unsigned int min_pending
;
523 struct md_rdev
*rdev
;
525 int choose_next_idle
;
529 * Check if we can balance. We can balance on the whole
530 * device if no resync is going on, or below the resync window.
531 * We take the first readable disk when above the resync window.
534 sectors
= r1_bio
->sectors
;
537 best_dist
= MaxSector
;
538 best_pending_disk
= -1;
539 min_pending
= UINT_MAX
;
540 best_good_sectors
= 0;
542 choose_next_idle
= 0;
544 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
545 (mddev_is_clustered(conf
->mddev
) &&
546 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
547 this_sector
+ sectors
)))
552 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
556 unsigned int pending
;
559 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
560 if (r1_bio
->bios
[disk
] == IO_BLOCKED
562 || test_bit(Faulty
, &rdev
->flags
))
564 if (!test_bit(In_sync
, &rdev
->flags
) &&
565 rdev
->recovery_offset
< this_sector
+ sectors
)
567 if (test_bit(WriteMostly
, &rdev
->flags
)) {
568 /* Don't balance among write-mostly, just
569 * use the first as a last resort */
570 if (best_dist_disk
< 0) {
571 if (is_badblock(rdev
, this_sector
, sectors
,
572 &first_bad
, &bad_sectors
)) {
573 if (first_bad
<= this_sector
)
574 /* Cannot use this */
576 best_good_sectors
= first_bad
- this_sector
;
578 best_good_sectors
= sectors
;
579 best_dist_disk
= disk
;
580 best_pending_disk
= disk
;
584 /* This is a reasonable device to use. It might
587 if (is_badblock(rdev
, this_sector
, sectors
,
588 &first_bad
, &bad_sectors
)) {
589 if (best_dist
< MaxSector
)
590 /* already have a better device */
592 if (first_bad
<= this_sector
) {
593 /* cannot read here. If this is the 'primary'
594 * device, then we must not read beyond
595 * bad_sectors from another device..
597 bad_sectors
-= (this_sector
- first_bad
);
598 if (choose_first
&& sectors
> bad_sectors
)
599 sectors
= bad_sectors
;
600 if (best_good_sectors
> sectors
)
601 best_good_sectors
= sectors
;
604 sector_t good_sectors
= first_bad
- this_sector
;
605 if (good_sectors
> best_good_sectors
) {
606 best_good_sectors
= good_sectors
;
614 best_good_sectors
= sectors
;
616 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
617 has_nonrot_disk
|= nonrot
;
618 pending
= atomic_read(&rdev
->nr_pending
);
619 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
624 /* Don't change to another disk for sequential reads */
625 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
627 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
628 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
632 * If buffered sequential IO size exceeds optimal
633 * iosize, check if there is idle disk. If yes, choose
634 * the idle disk. read_balance could already choose an
635 * idle disk before noticing it's a sequential IO in
636 * this disk. This doesn't matter because this disk
637 * will idle, next time it will be utilized after the
638 * first disk has IO size exceeds optimal iosize. In
639 * this way, iosize of the first disk will be optimal
640 * iosize at least. iosize of the second disk might be
641 * small, but not a big deal since when the second disk
642 * starts IO, the first disk is likely still busy.
644 if (nonrot
&& opt_iosize
> 0 &&
645 mirror
->seq_start
!= MaxSector
&&
646 mirror
->next_seq_sect
> opt_iosize
&&
647 mirror
->next_seq_sect
- opt_iosize
>=
649 choose_next_idle
= 1;
654 /* If device is idle, use it */
660 if (choose_next_idle
)
663 if (min_pending
> pending
) {
664 min_pending
= pending
;
665 best_pending_disk
= disk
;
668 if (dist
< best_dist
) {
670 best_dist_disk
= disk
;
675 * If all disks are rotational, choose the closest disk. If any disk is
676 * non-rotational, choose the disk with less pending request even the
677 * disk is rotational, which might/might not be optimal for raids with
678 * mixed ratation/non-rotational disks depending on workload.
680 if (best_disk
== -1) {
682 best_disk
= best_pending_disk
;
684 best_disk
= best_dist_disk
;
687 if (best_disk
>= 0) {
688 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
691 atomic_inc(&rdev
->nr_pending
);
692 if (test_bit(Faulty
, &rdev
->flags
)) {
693 /* cannot risk returning a device that failed
694 * before we inc'ed nr_pending
696 rdev_dec_pending(rdev
, conf
->mddev
);
699 sectors
= best_good_sectors
;
701 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
702 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
704 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
707 *max_sectors
= sectors
;
712 static int raid1_congested(struct mddev
*mddev
, int bits
)
714 struct r1conf
*conf
= mddev
->private;
717 if ((bits
& (1 << WB_async_congested
)) &&
718 conf
->pending_count
>= max_queued_requests
)
722 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
723 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
724 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
725 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
729 /* Note the '|| 1' - when read_balance prefers
730 * non-congested targets, it can be removed
732 if ((bits
& (1 << WB_async_congested
)) || 1)
733 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
735 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
742 static void flush_pending_writes(struct r1conf
*conf
)
744 /* Any writes that have been queued but are awaiting
745 * bitmap updates get flushed here.
747 spin_lock_irq(&conf
->device_lock
);
749 if (conf
->pending_bio_list
.head
) {
751 bio
= bio_list_get(&conf
->pending_bio_list
);
752 conf
->pending_count
= 0;
753 spin_unlock_irq(&conf
->device_lock
);
754 /* flush any pending bitmap writes to
755 * disk before proceeding w/ I/O */
756 bitmap_unplug(conf
->mddev
->bitmap
);
757 wake_up(&conf
->wait_barrier
);
759 while (bio
) { /* submit pending writes */
760 struct bio
*next
= bio
->bi_next
;
762 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
763 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
767 generic_make_request(bio
);
771 spin_unlock_irq(&conf
->device_lock
);
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down. This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
788 * So: regular IO calls 'wait_barrier'. When that returns there
789 * is no backgroup IO happening, It must arrange to call
790 * allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier. Once that returns
792 * there is no normal IO happeing. It must arrange to call
793 * lower_barrier when the particular background IO completes.
795 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
797 spin_lock_irq(&conf
->resync_lock
);
799 /* Wait until no block IO is waiting */
800 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
803 /* block any new IO from starting */
805 conf
->next_resync
= sector_nr
;
807 /* For these conditions we must wait:
808 * A: while the array is in frozen state
809 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 * the max count which allowed.
811 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 * next resync will reach to the window which normal bios are
814 * D: while there are any active requests in the current window.
816 wait_event_lock_irq(conf
->wait_barrier
,
817 !conf
->array_frozen
&&
818 conf
->barrier
< RESYNC_DEPTH
&&
819 conf
->current_window_requests
== 0 &&
820 (conf
->start_next_window
>=
821 conf
->next_resync
+ RESYNC_SECTORS
),
825 spin_unlock_irq(&conf
->resync_lock
);
828 static void lower_barrier(struct r1conf
*conf
)
831 BUG_ON(conf
->barrier
<= 0);
832 spin_lock_irqsave(&conf
->resync_lock
, flags
);
835 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
836 wake_up(&conf
->wait_barrier
);
839 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
843 if (conf
->array_frozen
|| !bio
)
845 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
846 if ((conf
->mddev
->curr_resync_completed
847 >= bio_end_sector(bio
)) ||
848 (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
849 <= bio
->bi_iter
.bi_sector
))
858 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
862 spin_lock_irq(&conf
->resync_lock
);
863 if (need_to_wait_for_sync(conf
, bio
)) {
865 /* Wait for the barrier to drop.
866 * However if there are already pending
867 * requests (preventing the barrier from
868 * rising completely), and the
869 * per-process bio queue isn't empty,
870 * then don't wait, as we need to empty
871 * that queue to allow conf->start_next_window
874 wait_event_lock_irq(conf
->wait_barrier
,
875 !conf
->array_frozen
&&
877 ((conf
->start_next_window
<
878 conf
->next_resync
+ RESYNC_SECTORS
) &&
880 !bio_list_empty(current
->bio_list
))),
885 if (bio
&& bio_data_dir(bio
) == WRITE
) {
886 if (bio
->bi_iter
.bi_sector
>= conf
->next_resync
) {
887 if (conf
->start_next_window
== MaxSector
)
888 conf
->start_next_window
=
890 NEXT_NORMALIO_DISTANCE
;
892 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
893 <= bio
->bi_iter
.bi_sector
)
894 conf
->next_window_requests
++;
896 conf
->current_window_requests
++;
897 sector
= conf
->start_next_window
;
902 spin_unlock_irq(&conf
->resync_lock
);
906 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
911 spin_lock_irqsave(&conf
->resync_lock
, flags
);
913 if (start_next_window
) {
914 if (start_next_window
== conf
->start_next_window
) {
915 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
917 conf
->next_window_requests
--;
919 conf
->current_window_requests
--;
921 conf
->current_window_requests
--;
923 if (!conf
->current_window_requests
) {
924 if (conf
->next_window_requests
) {
925 conf
->current_window_requests
=
926 conf
->next_window_requests
;
927 conf
->next_window_requests
= 0;
928 conf
->start_next_window
+=
929 NEXT_NORMALIO_DISTANCE
;
931 conf
->start_next_window
= MaxSector
;
934 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
935 wake_up(&conf
->wait_barrier
);
938 static void freeze_array(struct r1conf
*conf
, int extra
)
940 /* stop syncio and normal IO and wait for everything to
942 * We wait until nr_pending match nr_queued+extra
943 * This is called in the context of one normal IO request
944 * that has failed. Thus any sync request that might be pending
945 * will be blocked by nr_pending, and we need to wait for
946 * pending IO requests to complete or be queued for re-try.
947 * Thus the number queued (nr_queued) plus this request (extra)
948 * must match the number of pending IOs (nr_pending) before
951 spin_lock_irq(&conf
->resync_lock
);
952 conf
->array_frozen
= 1;
953 wait_event_lock_irq_cmd(conf
->wait_barrier
,
954 conf
->nr_pending
== conf
->nr_queued
+extra
,
956 flush_pending_writes(conf
));
957 spin_unlock_irq(&conf
->resync_lock
);
959 static void unfreeze_array(struct r1conf
*conf
)
961 /* reverse the effect of the freeze */
962 spin_lock_irq(&conf
->resync_lock
);
963 conf
->array_frozen
= 0;
964 wake_up(&conf
->wait_barrier
);
965 spin_unlock_irq(&conf
->resync_lock
);
968 /* duplicate the data pages for behind I/O
970 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
973 struct bio_vec
*bvec
;
974 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
976 if (unlikely(!bvecs
))
979 bio_for_each_segment_all(bvec
, bio
, i
) {
981 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
982 if (unlikely(!bvecs
[i
].bv_page
))
984 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
985 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
986 kunmap(bvecs
[i
].bv_page
);
987 kunmap(bvec
->bv_page
);
989 r1_bio
->behind_bvecs
= bvecs
;
990 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
991 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
995 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
996 if (bvecs
[i
].bv_page
)
997 put_page(bvecs
[i
].bv_page
);
999 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000 bio
->bi_iter
.bi_size
);
1003 struct raid1_plug_cb
{
1004 struct blk_plug_cb cb
;
1005 struct bio_list pending
;
1009 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1011 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1013 struct mddev
*mddev
= plug
->cb
.data
;
1014 struct r1conf
*conf
= mddev
->private;
1017 if (from_schedule
|| current
->bio_list
) {
1018 spin_lock_irq(&conf
->device_lock
);
1019 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1020 conf
->pending_count
+= plug
->pending_cnt
;
1021 spin_unlock_irq(&conf
->device_lock
);
1022 wake_up(&conf
->wait_barrier
);
1023 md_wakeup_thread(mddev
->thread
);
1028 /* we aren't scheduling, so we can do the write-out directly. */
1029 bio
= bio_list_get(&plug
->pending
);
1030 bitmap_unplug(mddev
->bitmap
);
1031 wake_up(&conf
->wait_barrier
);
1033 while (bio
) { /* submit pending writes */
1034 struct bio
*next
= bio
->bi_next
;
1035 bio
->bi_next
= NULL
;
1036 if (unlikely((bio
->bi_rw
& REQ_DISCARD
) &&
1037 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1038 /* Just ignore it */
1041 generic_make_request(bio
);
1047 static void raid1_make_request(struct mddev
*mddev
, struct bio
* bio
)
1049 struct r1conf
*conf
= mddev
->private;
1050 struct raid1_info
*mirror
;
1051 struct r1bio
*r1_bio
;
1052 struct bio
*read_bio
;
1054 struct bitmap
*bitmap
;
1055 unsigned long flags
;
1056 const int rw
= bio_data_dir(bio
);
1057 const unsigned long do_sync
= (bio
->bi_rw
& REQ_SYNC
);
1058 const unsigned long do_flush_fua
= (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
));
1059 const unsigned long do_discard
= (bio
->bi_rw
1060 & (REQ_DISCARD
| REQ_SECURE
));
1061 const unsigned long do_same
= (bio
->bi_rw
& REQ_WRITE_SAME
);
1062 struct md_rdev
*blocked_rdev
;
1063 struct blk_plug_cb
*cb
;
1064 struct raid1_plug_cb
*plug
= NULL
;
1066 int sectors_handled
;
1068 sector_t start_next_window
;
1071 * Register the new request and wait if the reconstruction
1072 * thread has put up a bar for new requests.
1073 * Continue immediately if no resync is active currently.
1076 md_write_start(mddev
, bio
); /* wait on superblock update early */
1078 if (bio_data_dir(bio
) == WRITE
&&
1079 ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1080 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1081 (mddev_is_clustered(mddev
) &&
1082 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1083 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))) {
1084 /* As the suspend_* range is controlled by
1085 * userspace, we want an interruptible
1090 flush_signals(current
);
1091 prepare_to_wait(&conf
->wait_barrier
,
1092 &w
, TASK_INTERRUPTIBLE
);
1093 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1094 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
||
1095 (mddev_is_clustered(mddev
) &&
1096 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1097 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))
1101 finish_wait(&conf
->wait_barrier
, &w
);
1104 start_next_window
= wait_barrier(conf
, bio
);
1106 bitmap
= mddev
->bitmap
;
1109 * make_request() can abort the operation when READA is being
1110 * used and no empty request is available.
1113 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1115 r1_bio
->master_bio
= bio
;
1116 r1_bio
->sectors
= bio_sectors(bio
);
1118 r1_bio
->mddev
= mddev
;
1119 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1121 /* We might need to issue multiple reads to different
1122 * devices if there are bad blocks around, so we keep
1123 * track of the number of reads in bio->bi_phys_segments.
1124 * If this is 0, there is only one r1_bio and no locking
1125 * will be needed when requests complete. If it is
1126 * non-zero, then it is the number of not-completed requests.
1128 bio
->bi_phys_segments
= 0;
1129 bio_clear_flag(bio
, BIO_SEG_VALID
);
1133 * read balancing logic:
1138 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1141 /* couldn't find anywhere to read from */
1142 raid_end_bio_io(r1_bio
);
1145 mirror
= conf
->mirrors
+ rdisk
;
1147 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1149 /* Reading from a write-mostly device must
1150 * take care not to over-take any writes
1153 wait_event(bitmap
->behind_wait
,
1154 atomic_read(&bitmap
->behind_writes
) == 0);
1156 r1_bio
->read_disk
= rdisk
;
1157 r1_bio
->start_next_window
= 0;
1159 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1160 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1163 r1_bio
->bios
[rdisk
] = read_bio
;
1165 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1166 mirror
->rdev
->data_offset
;
1167 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1168 read_bio
->bi_end_io
= raid1_end_read_request
;
1169 read_bio
->bi_rw
= READ
| do_sync
;
1170 read_bio
->bi_private
= r1_bio
;
1172 if (max_sectors
< r1_bio
->sectors
) {
1173 /* could not read all from this device, so we will
1174 * need another r1_bio.
1177 sectors_handled
= (r1_bio
->sector
+ max_sectors
1178 - bio
->bi_iter
.bi_sector
);
1179 r1_bio
->sectors
= max_sectors
;
1180 spin_lock_irq(&conf
->device_lock
);
1181 if (bio
->bi_phys_segments
== 0)
1182 bio
->bi_phys_segments
= 2;
1184 bio
->bi_phys_segments
++;
1185 spin_unlock_irq(&conf
->device_lock
);
1186 /* Cannot call generic_make_request directly
1187 * as that will be queued in __make_request
1188 * and subsequent mempool_alloc might block waiting
1189 * for it. So hand bio over to raid1d.
1191 reschedule_retry(r1_bio
);
1193 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1195 r1_bio
->master_bio
= bio
;
1196 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1198 r1_bio
->mddev
= mddev
;
1199 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1203 generic_make_request(read_bio
);
1210 if (conf
->pending_count
>= max_queued_requests
) {
1211 md_wakeup_thread(mddev
->thread
);
1212 wait_event(conf
->wait_barrier
,
1213 conf
->pending_count
< max_queued_requests
);
1215 /* first select target devices under rcu_lock and
1216 * inc refcount on their rdev. Record them by setting
1218 * If there are known/acknowledged bad blocks on any device on
1219 * which we have seen a write error, we want to avoid writing those
1221 * This potentially requires several writes to write around
1222 * the bad blocks. Each set of writes gets it's own r1bio
1223 * with a set of bios attached.
1226 disks
= conf
->raid_disks
* 2;
1228 r1_bio
->start_next_window
= start_next_window
;
1229 blocked_rdev
= NULL
;
1231 max_sectors
= r1_bio
->sectors
;
1232 for (i
= 0; i
< disks
; i
++) {
1233 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1234 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1235 atomic_inc(&rdev
->nr_pending
);
1236 blocked_rdev
= rdev
;
1239 r1_bio
->bios
[i
] = NULL
;
1240 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1241 if (i
< conf
->raid_disks
)
1242 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1246 atomic_inc(&rdev
->nr_pending
);
1247 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1252 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1254 &first_bad
, &bad_sectors
);
1256 /* mustn't write here until the bad block is
1258 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1259 blocked_rdev
= rdev
;
1262 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1263 /* Cannot write here at all */
1264 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1265 if (bad_sectors
< max_sectors
)
1266 /* mustn't write more than bad_sectors
1267 * to other devices yet
1269 max_sectors
= bad_sectors
;
1270 rdev_dec_pending(rdev
, mddev
);
1271 /* We don't set R1BIO_Degraded as that
1272 * only applies if the disk is
1273 * missing, so it might be re-added,
1274 * and we want to know to recover this
1276 * In this case the device is here,
1277 * and the fact that this chunk is not
1278 * in-sync is recorded in the bad
1284 int good_sectors
= first_bad
- r1_bio
->sector
;
1285 if (good_sectors
< max_sectors
)
1286 max_sectors
= good_sectors
;
1289 r1_bio
->bios
[i
] = bio
;
1293 if (unlikely(blocked_rdev
)) {
1294 /* Wait for this device to become unblocked */
1296 sector_t old
= start_next_window
;
1298 for (j
= 0; j
< i
; j
++)
1299 if (r1_bio
->bios
[j
])
1300 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1302 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1303 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1304 start_next_window
= wait_barrier(conf
, bio
);
1306 * We must make sure the multi r1bios of bio have
1307 * the same value of bi_phys_segments
1309 if (bio
->bi_phys_segments
&& old
&&
1310 old
!= start_next_window
)
1311 /* Wait for the former r1bio(s) to complete */
1312 wait_event(conf
->wait_barrier
,
1313 bio
->bi_phys_segments
== 1);
1317 if (max_sectors
< r1_bio
->sectors
) {
1318 /* We are splitting this write into multiple parts, so
1319 * we need to prepare for allocating another r1_bio.
1321 r1_bio
->sectors
= max_sectors
;
1322 spin_lock_irq(&conf
->device_lock
);
1323 if (bio
->bi_phys_segments
== 0)
1324 bio
->bi_phys_segments
= 2;
1326 bio
->bi_phys_segments
++;
1327 spin_unlock_irq(&conf
->device_lock
);
1329 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1331 atomic_set(&r1_bio
->remaining
, 1);
1332 atomic_set(&r1_bio
->behind_remaining
, 0);
1335 for (i
= 0; i
< disks
; i
++) {
1337 if (!r1_bio
->bios
[i
])
1340 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1341 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1345 * Not if there are too many, or cannot
1346 * allocate memory, or a reader on WriteMostly
1347 * is waiting for behind writes to flush */
1349 (atomic_read(&bitmap
->behind_writes
)
1350 < mddev
->bitmap_info
.max_write_behind
) &&
1351 !waitqueue_active(&bitmap
->behind_wait
))
1352 alloc_behind_pages(mbio
, r1_bio
);
1354 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1356 test_bit(R1BIO_BehindIO
,
1360 if (r1_bio
->behind_bvecs
) {
1361 struct bio_vec
*bvec
;
1365 * We trimmed the bio, so _all is legit
1367 bio_for_each_segment_all(bvec
, mbio
, j
)
1368 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1369 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1370 atomic_inc(&r1_bio
->behind_remaining
);
1373 r1_bio
->bios
[i
] = mbio
;
1375 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1376 conf
->mirrors
[i
].rdev
->data_offset
);
1377 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1378 mbio
->bi_end_io
= raid1_end_write_request
;
1380 WRITE
| do_flush_fua
| do_sync
| do_discard
| do_same
;
1381 mbio
->bi_private
= r1_bio
;
1383 atomic_inc(&r1_bio
->remaining
);
1385 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1387 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1390 spin_lock_irqsave(&conf
->device_lock
, flags
);
1392 bio_list_add(&plug
->pending
, mbio
);
1393 plug
->pending_cnt
++;
1395 bio_list_add(&conf
->pending_bio_list
, mbio
);
1396 conf
->pending_count
++;
1398 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1400 md_wakeup_thread(mddev
->thread
);
1402 /* Mustn't call r1_bio_write_done before this next test,
1403 * as it could result in the bio being freed.
1405 if (sectors_handled
< bio_sectors(bio
)) {
1406 r1_bio_write_done(r1_bio
);
1407 /* We need another r1_bio. It has already been counted
1408 * in bio->bi_phys_segments
1410 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1411 r1_bio
->master_bio
= bio
;
1412 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1414 r1_bio
->mddev
= mddev
;
1415 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1419 r1_bio_write_done(r1_bio
);
1421 /* In case raid1d snuck in to freeze_array */
1422 wake_up(&conf
->wait_barrier
);
1425 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1427 struct r1conf
*conf
= mddev
->private;
1430 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1431 conf
->raid_disks
- mddev
->degraded
);
1433 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1434 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1435 seq_printf(seq
, "%s",
1436 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1439 seq_printf(seq
, "]");
1442 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1444 char b
[BDEVNAME_SIZE
];
1445 struct r1conf
*conf
= mddev
->private;
1446 unsigned long flags
;
1449 * If it is not operational, then we have already marked it as dead
1450 * else if it is the last working disks, ignore the error, let the
1451 * next level up know.
1452 * else mark the drive as failed
1454 if (test_bit(In_sync
, &rdev
->flags
)
1455 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1457 * Don't fail the drive, act as though we were just a
1458 * normal single drive.
1459 * However don't try a recovery from this drive as
1460 * it is very likely to fail.
1462 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1465 set_bit(Blocked
, &rdev
->flags
);
1466 spin_lock_irqsave(&conf
->device_lock
, flags
);
1467 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1469 set_bit(Faulty
, &rdev
->flags
);
1471 set_bit(Faulty
, &rdev
->flags
);
1472 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1474 * if recovery is running, make sure it aborts.
1476 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1477 set_mask_bits(&mddev
->flags
, 0,
1478 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
1480 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481 "md/raid1:%s: Operation continuing on %d devices.\n",
1482 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1483 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1486 static void print_conf(struct r1conf
*conf
)
1490 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1492 printk(KERN_DEBUG
"(!conf)\n");
1495 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1499 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1500 char b
[BDEVNAME_SIZE
];
1501 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1503 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1504 i
, !test_bit(In_sync
, &rdev
->flags
),
1505 !test_bit(Faulty
, &rdev
->flags
),
1506 bdevname(rdev
->bdev
,b
));
1511 static void close_sync(struct r1conf
*conf
)
1513 wait_barrier(conf
, NULL
);
1514 allow_barrier(conf
, 0, 0);
1516 mempool_destroy(conf
->r1buf_pool
);
1517 conf
->r1buf_pool
= NULL
;
1519 spin_lock_irq(&conf
->resync_lock
);
1520 conf
->next_resync
= MaxSector
- 2 * NEXT_NORMALIO_DISTANCE
;
1521 conf
->start_next_window
= MaxSector
;
1522 conf
->current_window_requests
+=
1523 conf
->next_window_requests
;
1524 conf
->next_window_requests
= 0;
1525 spin_unlock_irq(&conf
->resync_lock
);
1528 static int raid1_spare_active(struct mddev
*mddev
)
1531 struct r1conf
*conf
= mddev
->private;
1533 unsigned long flags
;
1536 * Find all failed disks within the RAID1 configuration
1537 * and mark them readable.
1538 * Called under mddev lock, so rcu protection not needed.
1539 * device_lock used to avoid races with raid1_end_read_request
1540 * which expects 'In_sync' flags and ->degraded to be consistent.
1542 spin_lock_irqsave(&conf
->device_lock
, flags
);
1543 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1544 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1545 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1547 && !test_bit(Candidate
, &repl
->flags
)
1548 && repl
->recovery_offset
== MaxSector
1549 && !test_bit(Faulty
, &repl
->flags
)
1550 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1551 /* replacement has just become active */
1553 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1556 /* Replaced device not technically
1557 * faulty, but we need to be sure
1558 * it gets removed and never re-added
1560 set_bit(Faulty
, &rdev
->flags
);
1561 sysfs_notify_dirent_safe(
1566 && rdev
->recovery_offset
== MaxSector
1567 && !test_bit(Faulty
, &rdev
->flags
)
1568 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1570 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1573 mddev
->degraded
-= count
;
1574 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1580 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1582 struct r1conf
*conf
= mddev
->private;
1585 struct raid1_info
*p
;
1587 int last
= conf
->raid_disks
- 1;
1589 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1592 if (md_integrity_add_rdev(rdev
, mddev
))
1595 if (rdev
->raid_disk
>= 0)
1596 first
= last
= rdev
->raid_disk
;
1599 * find the disk ... but prefer rdev->saved_raid_disk
1602 if (rdev
->saved_raid_disk
>= 0 &&
1603 rdev
->saved_raid_disk
>= first
&&
1604 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1605 first
= last
= rdev
->saved_raid_disk
;
1607 for (mirror
= first
; mirror
<= last
; mirror
++) {
1608 p
= conf
->mirrors
+mirror
;
1612 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1613 rdev
->data_offset
<< 9);
1615 p
->head_position
= 0;
1616 rdev
->raid_disk
= mirror
;
1618 /* As all devices are equivalent, we don't need a full recovery
1619 * if this was recently any drive of the array
1621 if (rdev
->saved_raid_disk
< 0)
1623 rcu_assign_pointer(p
->rdev
, rdev
);
1626 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1627 p
[conf
->raid_disks
].rdev
== NULL
) {
1628 /* Add this device as a replacement */
1629 clear_bit(In_sync
, &rdev
->flags
);
1630 set_bit(Replacement
, &rdev
->flags
);
1631 rdev
->raid_disk
= mirror
;
1634 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1638 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1639 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1644 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1646 struct r1conf
*conf
= mddev
->private;
1648 int number
= rdev
->raid_disk
;
1649 struct raid1_info
*p
= conf
->mirrors
+ number
;
1651 if (rdev
!= p
->rdev
)
1652 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1655 if (rdev
== p
->rdev
) {
1656 if (test_bit(In_sync
, &rdev
->flags
) ||
1657 atomic_read(&rdev
->nr_pending
)) {
1661 /* Only remove non-faulty devices if recovery
1664 if (!test_bit(Faulty
, &rdev
->flags
) &&
1665 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1666 mddev
->degraded
< conf
->raid_disks
) {
1672 if (atomic_read(&rdev
->nr_pending
)) {
1673 /* lost the race, try later */
1677 } else if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1678 /* We just removed a device that is being replaced.
1679 * Move down the replacement. We drain all IO before
1680 * doing this to avoid confusion.
1682 struct md_rdev
*repl
=
1683 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1684 freeze_array(conf
, 0);
1685 clear_bit(Replacement
, &repl
->flags
);
1687 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1688 unfreeze_array(conf
);
1689 clear_bit(WantReplacement
, &rdev
->flags
);
1691 clear_bit(WantReplacement
, &rdev
->flags
);
1692 err
= md_integrity_register(mddev
);
1700 static void end_sync_read(struct bio
*bio
)
1702 struct r1bio
*r1_bio
= bio
->bi_private
;
1704 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1707 * we have read a block, now it needs to be re-written,
1708 * or re-read if the read failed.
1709 * We don't do much here, just schedule handling by raid1d
1712 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1714 if (atomic_dec_and_test(&r1_bio
->remaining
))
1715 reschedule_retry(r1_bio
);
1718 static void end_sync_write(struct bio
*bio
)
1720 int uptodate
= !bio
->bi_error
;
1721 struct r1bio
*r1_bio
= bio
->bi_private
;
1722 struct mddev
*mddev
= r1_bio
->mddev
;
1723 struct r1conf
*conf
= mddev
->private;
1728 mirror
= find_bio_disk(r1_bio
, bio
);
1731 sector_t sync_blocks
= 0;
1732 sector_t s
= r1_bio
->sector
;
1733 long sectors_to_go
= r1_bio
->sectors
;
1734 /* make sure these bits doesn't get cleared. */
1736 bitmap_end_sync(mddev
->bitmap
, s
,
1739 sectors_to_go
-= sync_blocks
;
1740 } while (sectors_to_go
> 0);
1741 set_bit(WriteErrorSeen
,
1742 &conf
->mirrors
[mirror
].rdev
->flags
);
1743 if (!test_and_set_bit(WantReplacement
,
1744 &conf
->mirrors
[mirror
].rdev
->flags
))
1745 set_bit(MD_RECOVERY_NEEDED
, &
1747 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1748 } else if (is_badblock(conf
->mirrors
[mirror
].rdev
,
1751 &first_bad
, &bad_sectors
) &&
1752 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1755 &first_bad
, &bad_sectors
)
1757 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1759 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1760 int s
= r1_bio
->sectors
;
1761 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1762 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1763 reschedule_retry(r1_bio
);
1766 md_done_sync(mddev
, s
, uptodate
);
1771 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1772 int sectors
, struct page
*page
, int rw
)
1774 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, false))
1778 set_bit(WriteErrorSeen
, &rdev
->flags
);
1779 if (!test_and_set_bit(WantReplacement
,
1781 set_bit(MD_RECOVERY_NEEDED
, &
1782 rdev
->mddev
->recovery
);
1784 /* need to record an error - either for the block or the device */
1785 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1786 md_error(rdev
->mddev
, rdev
);
1790 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1792 /* Try some synchronous reads of other devices to get
1793 * good data, much like with normal read errors. Only
1794 * read into the pages we already have so we don't
1795 * need to re-issue the read request.
1796 * We don't need to freeze the array, because being in an
1797 * active sync request, there is no normal IO, and
1798 * no overlapping syncs.
1799 * We don't need to check is_badblock() again as we
1800 * made sure that anything with a bad block in range
1801 * will have bi_end_io clear.
1803 struct mddev
*mddev
= r1_bio
->mddev
;
1804 struct r1conf
*conf
= mddev
->private;
1805 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1806 sector_t sect
= r1_bio
->sector
;
1807 int sectors
= r1_bio
->sectors
;
1812 int d
= r1_bio
->read_disk
;
1814 struct md_rdev
*rdev
;
1817 if (s
> (PAGE_SIZE
>>9))
1820 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1821 /* No rcu protection needed here devices
1822 * can only be removed when no resync is
1823 * active, and resync is currently active
1825 rdev
= conf
->mirrors
[d
].rdev
;
1826 if (sync_page_io(rdev
, sect
, s
<<9,
1827 bio
->bi_io_vec
[idx
].bv_page
,
1834 if (d
== conf
->raid_disks
* 2)
1836 } while (!success
&& d
!= r1_bio
->read_disk
);
1839 char b
[BDEVNAME_SIZE
];
1841 /* Cannot read from anywhere, this block is lost.
1842 * Record a bad block on each device. If that doesn't
1843 * work just disable and interrupt the recovery.
1844 * Don't fail devices as that won't really help.
1846 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1847 " for block %llu\n",
1849 bdevname(bio
->bi_bdev
, b
),
1850 (unsigned long long)r1_bio
->sector
);
1851 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1852 rdev
= conf
->mirrors
[d
].rdev
;
1853 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1855 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1859 conf
->recovery_disabled
=
1860 mddev
->recovery_disabled
;
1861 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1862 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1874 /* write it back and re-read */
1875 while (d
!= r1_bio
->read_disk
) {
1877 d
= conf
->raid_disks
* 2;
1879 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1881 rdev
= conf
->mirrors
[d
].rdev
;
1882 if (r1_sync_page_io(rdev
, sect
, s
,
1883 bio
->bi_io_vec
[idx
].bv_page
,
1885 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1886 rdev_dec_pending(rdev
, mddev
);
1890 while (d
!= r1_bio
->read_disk
) {
1892 d
= conf
->raid_disks
* 2;
1894 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1896 rdev
= conf
->mirrors
[d
].rdev
;
1897 if (r1_sync_page_io(rdev
, sect
, s
,
1898 bio
->bi_io_vec
[idx
].bv_page
,
1900 atomic_add(s
, &rdev
->corrected_errors
);
1906 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1911 static void process_checks(struct r1bio
*r1_bio
)
1913 /* We have read all readable devices. If we haven't
1914 * got the block, then there is no hope left.
1915 * If we have, then we want to do a comparison
1916 * and skip the write if everything is the same.
1917 * If any blocks failed to read, then we need to
1918 * attempt an over-write
1920 struct mddev
*mddev
= r1_bio
->mddev
;
1921 struct r1conf
*conf
= mddev
->private;
1926 /* Fix variable parts of all bios */
1927 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1928 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1932 struct bio
*b
= r1_bio
->bios
[i
];
1933 if (b
->bi_end_io
!= end_sync_read
)
1935 /* fixup the bio for reuse, but preserve errno */
1936 error
= b
->bi_error
;
1938 b
->bi_error
= error
;
1940 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1941 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1942 conf
->mirrors
[i
].rdev
->data_offset
;
1943 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1944 b
->bi_end_io
= end_sync_read
;
1945 b
->bi_private
= r1_bio
;
1947 size
= b
->bi_iter
.bi_size
;
1948 for (j
= 0; j
< vcnt
; j
++) {
1950 bi
= &b
->bi_io_vec
[j
];
1952 if (size
> PAGE_SIZE
)
1953 bi
->bv_len
= PAGE_SIZE
;
1959 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1960 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1961 !r1_bio
->bios
[primary
]->bi_error
) {
1962 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1963 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1966 r1_bio
->read_disk
= primary
;
1967 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1969 struct bio
*pbio
= r1_bio
->bios
[primary
];
1970 struct bio
*sbio
= r1_bio
->bios
[i
];
1971 int error
= sbio
->bi_error
;
1973 if (sbio
->bi_end_io
!= end_sync_read
)
1975 /* Now we can 'fixup' the error value */
1979 for (j
= vcnt
; j
-- ; ) {
1981 p
= pbio
->bi_io_vec
[j
].bv_page
;
1982 s
= sbio
->bi_io_vec
[j
].bv_page
;
1983 if (memcmp(page_address(p
),
1985 sbio
->bi_io_vec
[j
].bv_len
))
1991 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
1992 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1994 /* No need to write to this device. */
1995 sbio
->bi_end_io
= NULL
;
1996 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2000 bio_copy_data(sbio
, pbio
);
2004 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2006 struct r1conf
*conf
= mddev
->private;
2008 int disks
= conf
->raid_disks
* 2;
2009 struct bio
*bio
, *wbio
;
2011 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2013 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2014 /* ouch - failed to read all of that. */
2015 if (!fix_sync_read_error(r1_bio
))
2018 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2019 process_checks(r1_bio
);
2024 atomic_set(&r1_bio
->remaining
, 1);
2025 for (i
= 0; i
< disks
; i
++) {
2026 wbio
= r1_bio
->bios
[i
];
2027 if (wbio
->bi_end_io
== NULL
||
2028 (wbio
->bi_end_io
== end_sync_read
&&
2029 (i
== r1_bio
->read_disk
||
2030 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2033 wbio
->bi_rw
= WRITE
;
2034 wbio
->bi_end_io
= end_sync_write
;
2035 atomic_inc(&r1_bio
->remaining
);
2036 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2038 generic_make_request(wbio
);
2041 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2042 /* if we're here, all write(s) have completed, so clean up */
2043 int s
= r1_bio
->sectors
;
2044 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2045 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2046 reschedule_retry(r1_bio
);
2049 md_done_sync(mddev
, s
, 1);
2055 * This is a kernel thread which:
2057 * 1. Retries failed read operations on working mirrors.
2058 * 2. Updates the raid superblock when problems encounter.
2059 * 3. Performs writes following reads for array synchronising.
2062 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2063 sector_t sect
, int sectors
)
2065 struct mddev
*mddev
= conf
->mddev
;
2071 struct md_rdev
*rdev
;
2073 if (s
> (PAGE_SIZE
>>9))
2077 /* Note: no rcu protection needed here
2078 * as this is synchronous in the raid1d thread
2079 * which is the thread that might remove
2080 * a device. If raid1d ever becomes multi-threaded....
2085 rdev
= conf
->mirrors
[d
].rdev
;
2087 (test_bit(In_sync
, &rdev
->flags
) ||
2088 (!test_bit(Faulty
, &rdev
->flags
) &&
2089 rdev
->recovery_offset
>= sect
+ s
)) &&
2090 is_badblock(rdev
, sect
, s
,
2091 &first_bad
, &bad_sectors
) == 0 &&
2092 sync_page_io(rdev
, sect
, s
<<9,
2093 conf
->tmppage
, READ
, false))
2097 if (d
== conf
->raid_disks
* 2)
2100 } while (!success
&& d
!= read_disk
);
2103 /* Cannot read from anywhere - mark it bad */
2104 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2105 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2106 md_error(mddev
, rdev
);
2109 /* write it back and re-read */
2111 while (d
!= read_disk
) {
2113 d
= conf
->raid_disks
* 2;
2115 rdev
= conf
->mirrors
[d
].rdev
;
2117 !test_bit(Faulty
, &rdev
->flags
))
2118 r1_sync_page_io(rdev
, sect
, s
,
2119 conf
->tmppage
, WRITE
);
2122 while (d
!= read_disk
) {
2123 char b
[BDEVNAME_SIZE
];
2125 d
= conf
->raid_disks
* 2;
2127 rdev
= conf
->mirrors
[d
].rdev
;
2129 !test_bit(Faulty
, &rdev
->flags
)) {
2130 if (r1_sync_page_io(rdev
, sect
, s
,
2131 conf
->tmppage
, READ
)) {
2132 atomic_add(s
, &rdev
->corrected_errors
);
2134 "md/raid1:%s: read error corrected "
2135 "(%d sectors at %llu on %s)\n",
2137 (unsigned long long)(sect
+
2139 bdevname(rdev
->bdev
, b
));
2148 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2150 struct mddev
*mddev
= r1_bio
->mddev
;
2151 struct r1conf
*conf
= mddev
->private;
2152 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2154 /* bio has the data to be written to device 'i' where
2155 * we just recently had a write error.
2156 * We repeatedly clone the bio and trim down to one block,
2157 * then try the write. Where the write fails we record
2159 * It is conceivable that the bio doesn't exactly align with
2160 * blocks. We must handle this somehow.
2162 * We currently own a reference on the rdev.
2168 int sect_to_write
= r1_bio
->sectors
;
2171 if (rdev
->badblocks
.shift
< 0)
2174 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2175 bdev_logical_block_size(rdev
->bdev
) >> 9);
2176 sector
= r1_bio
->sector
;
2177 sectors
= ((sector
+ block_sectors
)
2178 & ~(sector_t
)(block_sectors
- 1))
2181 while (sect_to_write
) {
2183 if (sectors
> sect_to_write
)
2184 sectors
= sect_to_write
;
2185 /* Write at 'sector' for 'sectors'*/
2187 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2188 unsigned vcnt
= r1_bio
->behind_page_count
;
2189 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2191 while (!vec
->bv_page
) {
2196 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2197 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2199 wbio
->bi_vcnt
= vcnt
;
2201 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2204 wbio
->bi_rw
= WRITE
;
2205 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2206 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2208 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2209 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2210 wbio
->bi_bdev
= rdev
->bdev
;
2211 if (submit_bio_wait(WRITE
, wbio
) < 0)
2213 ok
= rdev_set_badblocks(rdev
, sector
,
2218 sect_to_write
-= sectors
;
2220 sectors
= block_sectors
;
2225 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2228 int s
= r1_bio
->sectors
;
2229 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2230 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2231 struct bio
*bio
= r1_bio
->bios
[m
];
2232 if (bio
->bi_end_io
== NULL
)
2234 if (!bio
->bi_error
&&
2235 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2236 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2238 if (bio
->bi_error
&&
2239 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2240 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2241 md_error(conf
->mddev
, rdev
);
2245 md_done_sync(conf
->mddev
, s
, 1);
2248 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2252 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2253 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2254 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2255 rdev_clear_badblocks(rdev
,
2257 r1_bio
->sectors
, 0);
2258 rdev_dec_pending(rdev
, conf
->mddev
);
2259 } else if (r1_bio
->bios
[m
] != NULL
) {
2260 /* This drive got a write error. We need to
2261 * narrow down and record precise write
2265 if (!narrow_write_error(r1_bio
, m
)) {
2266 md_error(conf
->mddev
,
2267 conf
->mirrors
[m
].rdev
);
2268 /* an I/O failed, we can't clear the bitmap */
2269 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2271 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2275 spin_lock_irq(&conf
->device_lock
);
2276 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2278 spin_unlock_irq(&conf
->device_lock
);
2279 md_wakeup_thread(conf
->mddev
->thread
);
2281 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2282 close_write(r1_bio
);
2283 raid_end_bio_io(r1_bio
);
2287 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2291 struct mddev
*mddev
= conf
->mddev
;
2293 char b
[BDEVNAME_SIZE
];
2294 struct md_rdev
*rdev
;
2296 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2297 /* we got a read error. Maybe the drive is bad. Maybe just
2298 * the block and we can fix it.
2299 * We freeze all other IO, and try reading the block from
2300 * other devices. When we find one, we re-write
2301 * and check it that fixes the read error.
2302 * This is all done synchronously while the array is
2305 if (mddev
->ro
== 0) {
2306 freeze_array(conf
, 1);
2307 fix_read_error(conf
, r1_bio
->read_disk
,
2308 r1_bio
->sector
, r1_bio
->sectors
);
2309 unfreeze_array(conf
);
2311 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2312 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2314 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2315 bdevname(bio
->bi_bdev
, b
);
2317 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2319 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2320 " read error for block %llu\n",
2321 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2322 raid_end_bio_io(r1_bio
);
2324 const unsigned long do_sync
2325 = r1_bio
->master_bio
->bi_rw
& REQ_SYNC
;
2327 r1_bio
->bios
[r1_bio
->read_disk
] =
2328 mddev
->ro
? IO_BLOCKED
: NULL
;
2331 r1_bio
->read_disk
= disk
;
2332 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2333 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2335 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2336 rdev
= conf
->mirrors
[disk
].rdev
;
2337 printk_ratelimited(KERN_ERR
2338 "md/raid1:%s: redirecting sector %llu"
2339 " to other mirror: %s\n",
2341 (unsigned long long)r1_bio
->sector
,
2342 bdevname(rdev
->bdev
, b
));
2343 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2344 bio
->bi_bdev
= rdev
->bdev
;
2345 bio
->bi_end_io
= raid1_end_read_request
;
2346 bio
->bi_rw
= READ
| do_sync
;
2347 bio
->bi_private
= r1_bio
;
2348 if (max_sectors
< r1_bio
->sectors
) {
2349 /* Drat - have to split this up more */
2350 struct bio
*mbio
= r1_bio
->master_bio
;
2351 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2352 - mbio
->bi_iter
.bi_sector
);
2353 r1_bio
->sectors
= max_sectors
;
2354 spin_lock_irq(&conf
->device_lock
);
2355 if (mbio
->bi_phys_segments
== 0)
2356 mbio
->bi_phys_segments
= 2;
2358 mbio
->bi_phys_segments
++;
2359 spin_unlock_irq(&conf
->device_lock
);
2360 generic_make_request(bio
);
2363 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2365 r1_bio
->master_bio
= mbio
;
2366 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2368 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2369 r1_bio
->mddev
= mddev
;
2370 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2375 generic_make_request(bio
);
2379 static void raid1d(struct md_thread
*thread
)
2381 struct mddev
*mddev
= thread
->mddev
;
2382 struct r1bio
*r1_bio
;
2383 unsigned long flags
;
2384 struct r1conf
*conf
= mddev
->private;
2385 struct list_head
*head
= &conf
->retry_list
;
2386 struct blk_plug plug
;
2388 md_check_recovery(mddev
);
2390 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2391 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2393 spin_lock_irqsave(&conf
->device_lock
, flags
);
2394 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2395 while (!list_empty(&conf
->bio_end_io_list
)) {
2396 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2400 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2401 while (!list_empty(&tmp
)) {
2402 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2404 list_del(&r1_bio
->retry_list
);
2405 if (mddev
->degraded
)
2406 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2407 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2408 close_write(r1_bio
);
2409 raid_end_bio_io(r1_bio
);
2413 blk_start_plug(&plug
);
2416 flush_pending_writes(conf
);
2418 spin_lock_irqsave(&conf
->device_lock
, flags
);
2419 if (list_empty(head
)) {
2420 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2423 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2424 list_del(head
->prev
);
2426 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2428 mddev
= r1_bio
->mddev
;
2429 conf
= mddev
->private;
2430 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2431 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2432 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2433 handle_sync_write_finished(conf
, r1_bio
);
2435 sync_request_write(mddev
, r1_bio
);
2436 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2437 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2438 handle_write_finished(conf
, r1_bio
);
2439 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2440 handle_read_error(conf
, r1_bio
);
2442 /* just a partial read to be scheduled from separate
2445 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2448 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2449 md_check_recovery(mddev
);
2451 blk_finish_plug(&plug
);
2454 static int init_resync(struct r1conf
*conf
)
2458 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2459 BUG_ON(conf
->r1buf_pool
);
2460 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2462 if (!conf
->r1buf_pool
)
2464 conf
->next_resync
= 0;
2469 * perform a "sync" on one "block"
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2478 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2481 struct r1conf
*conf
= mddev
->private;
2482 struct r1bio
*r1_bio
;
2484 sector_t max_sector
, nr_sectors
;
2488 int write_targets
= 0, read_targets
= 0;
2489 sector_t sync_blocks
;
2490 int still_degraded
= 0;
2491 int good_sectors
= RESYNC_SECTORS
;
2492 int min_bad
= 0; /* number of sectors that are bad in all devices */
2494 if (!conf
->r1buf_pool
)
2495 if (init_resync(conf
))
2498 max_sector
= mddev
->dev_sectors
;
2499 if (sector_nr
>= max_sector
) {
2500 /* If we aborted, we need to abort the
2501 * sync on the 'current' bitmap chunk (there will
2502 * only be one in raid1 resync.
2503 * We can find the current addess in mddev->curr_resync
2505 if (mddev
->curr_resync
< max_sector
) /* aborted */
2506 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2508 else /* completed sync */
2511 bitmap_close_sync(mddev
->bitmap
);
2514 if (mddev_is_clustered(mddev
)) {
2515 conf
->cluster_sync_low
= 0;
2516 conf
->cluster_sync_high
= 0;
2521 if (mddev
->bitmap
== NULL
&&
2522 mddev
->recovery_cp
== MaxSector
&&
2523 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2524 conf
->fullsync
== 0) {
2526 return max_sector
- sector_nr
;
2528 /* before building a request, check if we can skip these blocks..
2529 * This call the bitmap_start_sync doesn't actually record anything
2531 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2532 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2533 /* We can skip this block, and probably several more */
2538 /* we are incrementing sector_nr below. To be safe, we check against
2539 * sector_nr + two times RESYNC_SECTORS
2542 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2543 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2544 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2546 raise_barrier(conf
, sector_nr
);
2550 * If we get a correctably read error during resync or recovery,
2551 * we might want to read from a different device. So we
2552 * flag all drives that could conceivably be read from for READ,
2553 * and any others (which will be non-In_sync devices) for WRITE.
2554 * If a read fails, we try reading from something else for which READ
2558 r1_bio
->mddev
= mddev
;
2559 r1_bio
->sector
= sector_nr
;
2561 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2563 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2564 struct md_rdev
*rdev
;
2565 bio
= r1_bio
->bios
[i
];
2568 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2570 test_bit(Faulty
, &rdev
->flags
)) {
2571 if (i
< conf
->raid_disks
)
2573 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2575 bio
->bi_end_io
= end_sync_write
;
2578 /* may need to read from here */
2579 sector_t first_bad
= MaxSector
;
2582 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2583 &first_bad
, &bad_sectors
)) {
2584 if (first_bad
> sector_nr
)
2585 good_sectors
= first_bad
- sector_nr
;
2587 bad_sectors
-= (sector_nr
- first_bad
);
2589 min_bad
> bad_sectors
)
2590 min_bad
= bad_sectors
;
2593 if (sector_nr
< first_bad
) {
2594 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2602 bio
->bi_end_io
= end_sync_read
;
2604 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2605 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2606 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2608 * The device is suitable for reading (InSync),
2609 * but has bad block(s) here. Let's try to correct them,
2610 * if we are doing resync or repair. Otherwise, leave
2611 * this device alone for this sync request.
2614 bio
->bi_end_io
= end_sync_write
;
2618 if (bio
->bi_end_io
) {
2619 atomic_inc(&rdev
->nr_pending
);
2620 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2621 bio
->bi_bdev
= rdev
->bdev
;
2622 bio
->bi_private
= r1_bio
;
2628 r1_bio
->read_disk
= disk
;
2630 if (read_targets
== 0 && min_bad
> 0) {
2631 /* These sectors are bad on all InSync devices, so we
2632 * need to mark them bad on all write targets
2635 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2636 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2637 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2638 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2642 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2647 /* Cannot record the badblocks, so need to
2649 * If there are multiple read targets, could just
2650 * fail the really bad ones ???
2652 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2653 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2659 if (min_bad
> 0 && min_bad
< good_sectors
) {
2660 /* only resync enough to reach the next bad->good
2662 good_sectors
= min_bad
;
2665 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2666 /* extra read targets are also write targets */
2667 write_targets
+= read_targets
-1;
2669 if (write_targets
== 0 || read_targets
== 0) {
2670 /* There is nowhere to write, so all non-sync
2671 * drives must be failed - so we are finished
2675 max_sector
= sector_nr
+ min_bad
;
2676 rv
= max_sector
- sector_nr
;
2682 if (max_sector
> mddev
->resync_max
)
2683 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2684 if (max_sector
> sector_nr
+ good_sectors
)
2685 max_sector
= sector_nr
+ good_sectors
;
2690 int len
= PAGE_SIZE
;
2691 if (sector_nr
+ (len
>>9) > max_sector
)
2692 len
= (max_sector
- sector_nr
) << 9;
2695 if (sync_blocks
== 0) {
2696 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2697 &sync_blocks
, still_degraded
) &&
2699 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2701 if ((len
>> 9) > sync_blocks
)
2702 len
= sync_blocks
<<9;
2705 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2706 bio
= r1_bio
->bios
[i
];
2707 if (bio
->bi_end_io
) {
2708 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2709 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2711 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2714 bio
= r1_bio
->bios
[i
];
2715 if (bio
->bi_end_io
==NULL
)
2717 /* remove last page from this bio */
2719 bio
->bi_iter
.bi_size
-= len
;
2720 bio_clear_flag(bio
, BIO_SEG_VALID
);
2726 nr_sectors
+= len
>>9;
2727 sector_nr
+= len
>>9;
2728 sync_blocks
-= (len
>>9);
2729 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2731 r1_bio
->sectors
= nr_sectors
;
2733 if (mddev_is_clustered(mddev
) &&
2734 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2735 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2736 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2737 /* Send resync message */
2738 md_cluster_ops
->resync_info_update(mddev
,
2739 conf
->cluster_sync_low
,
2740 conf
->cluster_sync_high
);
2743 /* For a user-requested sync, we read all readable devices and do a
2746 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2747 atomic_set(&r1_bio
->remaining
, read_targets
);
2748 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2749 bio
= r1_bio
->bios
[i
];
2750 if (bio
->bi_end_io
== end_sync_read
) {
2752 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2753 generic_make_request(bio
);
2757 atomic_set(&r1_bio
->remaining
, 1);
2758 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2759 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2760 generic_make_request(bio
);
2766 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2771 return mddev
->dev_sectors
;
2774 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2776 struct r1conf
*conf
;
2778 struct raid1_info
*disk
;
2779 struct md_rdev
*rdev
;
2782 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2786 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2787 * mddev
->raid_disks
* 2,
2792 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2796 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2797 if (!conf
->poolinfo
)
2799 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2800 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2803 if (!conf
->r1bio_pool
)
2806 conf
->poolinfo
->mddev
= mddev
;
2809 spin_lock_init(&conf
->device_lock
);
2810 rdev_for_each(rdev
, mddev
) {
2811 struct request_queue
*q
;
2812 int disk_idx
= rdev
->raid_disk
;
2813 if (disk_idx
>= mddev
->raid_disks
2816 if (test_bit(Replacement
, &rdev
->flags
))
2817 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2819 disk
= conf
->mirrors
+ disk_idx
;
2824 q
= bdev_get_queue(rdev
->bdev
);
2826 disk
->head_position
= 0;
2827 disk
->seq_start
= MaxSector
;
2829 conf
->raid_disks
= mddev
->raid_disks
;
2830 conf
->mddev
= mddev
;
2831 INIT_LIST_HEAD(&conf
->retry_list
);
2832 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2834 spin_lock_init(&conf
->resync_lock
);
2835 init_waitqueue_head(&conf
->wait_barrier
);
2837 bio_list_init(&conf
->pending_bio_list
);
2838 conf
->pending_count
= 0;
2839 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2841 conf
->start_next_window
= MaxSector
;
2842 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2845 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2847 disk
= conf
->mirrors
+ i
;
2849 if (i
< conf
->raid_disks
&&
2850 disk
[conf
->raid_disks
].rdev
) {
2851 /* This slot has a replacement. */
2853 /* No original, just make the replacement
2854 * a recovering spare
2857 disk
[conf
->raid_disks
].rdev
;
2858 disk
[conf
->raid_disks
].rdev
= NULL
;
2859 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2860 /* Original is not in_sync - bad */
2865 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2866 disk
->head_position
= 0;
2868 (disk
->rdev
->saved_raid_disk
< 0))
2874 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2875 if (!conf
->thread
) {
2877 "md/raid1:%s: couldn't allocate thread\n",
2886 mempool_destroy(conf
->r1bio_pool
);
2887 kfree(conf
->mirrors
);
2888 safe_put_page(conf
->tmppage
);
2889 kfree(conf
->poolinfo
);
2892 return ERR_PTR(err
);
2895 static void raid1_free(struct mddev
*mddev
, void *priv
);
2896 static int raid1_run(struct mddev
*mddev
)
2898 struct r1conf
*conf
;
2900 struct md_rdev
*rdev
;
2902 bool discard_supported
= false;
2904 if (mddev
->level
!= 1) {
2905 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2906 mdname(mddev
), mddev
->level
);
2909 if (mddev
->reshape_position
!= MaxSector
) {
2910 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2915 * copy the already verified devices into our private RAID1
2916 * bookkeeping area. [whatever we allocate in run(),
2917 * should be freed in raid1_free()]
2919 if (mddev
->private == NULL
)
2920 conf
= setup_conf(mddev
);
2922 conf
= mddev
->private;
2925 return PTR_ERR(conf
);
2928 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2930 rdev_for_each(rdev
, mddev
) {
2931 if (!mddev
->gendisk
)
2933 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2934 rdev
->data_offset
<< 9);
2935 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2936 discard_supported
= true;
2939 mddev
->degraded
= 0;
2940 for (i
=0; i
< conf
->raid_disks
; i
++)
2941 if (conf
->mirrors
[i
].rdev
== NULL
||
2942 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2943 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2946 if (conf
->raid_disks
- mddev
->degraded
== 1)
2947 mddev
->recovery_cp
= MaxSector
;
2949 if (mddev
->recovery_cp
!= MaxSector
)
2950 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2951 " -- starting background reconstruction\n",
2954 "md/raid1:%s: active with %d out of %d mirrors\n",
2955 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2959 * Ok, everything is just fine now
2961 mddev
->thread
= conf
->thread
;
2962 conf
->thread
= NULL
;
2963 mddev
->private = conf
;
2965 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2968 if (discard_supported
)
2969 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2972 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2976 ret
= md_integrity_register(mddev
);
2978 md_unregister_thread(&mddev
->thread
);
2979 raid1_free(mddev
, conf
);
2984 static void raid1_free(struct mddev
*mddev
, void *priv
)
2986 struct r1conf
*conf
= priv
;
2988 mempool_destroy(conf
->r1bio_pool
);
2989 kfree(conf
->mirrors
);
2990 safe_put_page(conf
->tmppage
);
2991 kfree(conf
->poolinfo
);
2995 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2997 /* no resync is happening, and there is enough space
2998 * on all devices, so we can resize.
2999 * We need to make sure resync covers any new space.
3000 * If the array is shrinking we should possibly wait until
3001 * any io in the removed space completes, but it hardly seems
3004 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3005 if (mddev
->external_size
&&
3006 mddev
->array_sectors
> newsize
)
3008 if (mddev
->bitmap
) {
3009 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3013 md_set_array_sectors(mddev
, newsize
);
3014 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3015 revalidate_disk(mddev
->gendisk
);
3016 if (sectors
> mddev
->dev_sectors
&&
3017 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3018 mddev
->recovery_cp
= mddev
->dev_sectors
;
3019 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3021 mddev
->dev_sectors
= sectors
;
3022 mddev
->resync_max_sectors
= sectors
;
3026 static int raid1_reshape(struct mddev
*mddev
)
3029 * 1/ resize the r1bio_pool
3030 * 2/ resize conf->mirrors
3032 * We allocate a new r1bio_pool if we can.
3033 * Then raise a device barrier and wait until all IO stops.
3034 * Then resize conf->mirrors and swap in the new r1bio pool.
3036 * At the same time, we "pack" the devices so that all the missing
3037 * devices have the higher raid_disk numbers.
3039 mempool_t
*newpool
, *oldpool
;
3040 struct pool_info
*newpoolinfo
;
3041 struct raid1_info
*newmirrors
;
3042 struct r1conf
*conf
= mddev
->private;
3043 int cnt
, raid_disks
;
3044 unsigned long flags
;
3047 /* Cannot change chunk_size, layout, or level */
3048 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3049 mddev
->layout
!= mddev
->new_layout
||
3050 mddev
->level
!= mddev
->new_level
) {
3051 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3052 mddev
->new_layout
= mddev
->layout
;
3053 mddev
->new_level
= mddev
->level
;
3057 if (!mddev_is_clustered(mddev
)) {
3058 err
= md_allow_write(mddev
);
3063 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3065 if (raid_disks
< conf
->raid_disks
) {
3067 for (d
= 0; d
< conf
->raid_disks
; d
++)
3068 if (conf
->mirrors
[d
].rdev
)
3070 if (cnt
> raid_disks
)
3074 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3077 newpoolinfo
->mddev
= mddev
;
3078 newpoolinfo
->raid_disks
= raid_disks
* 2;
3080 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3081 r1bio_pool_free
, newpoolinfo
);
3086 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3090 mempool_destroy(newpool
);
3094 freeze_array(conf
, 0);
3096 /* ok, everything is stopped */
3097 oldpool
= conf
->r1bio_pool
;
3098 conf
->r1bio_pool
= newpool
;
3100 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3101 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3102 if (rdev
&& rdev
->raid_disk
!= d2
) {
3103 sysfs_unlink_rdev(mddev
, rdev
);
3104 rdev
->raid_disk
= d2
;
3105 sysfs_unlink_rdev(mddev
, rdev
);
3106 if (sysfs_link_rdev(mddev
, rdev
))
3108 "md/raid1:%s: cannot register rd%d\n",
3109 mdname(mddev
), rdev
->raid_disk
);
3112 newmirrors
[d2
++].rdev
= rdev
;
3114 kfree(conf
->mirrors
);
3115 conf
->mirrors
= newmirrors
;
3116 kfree(conf
->poolinfo
);
3117 conf
->poolinfo
= newpoolinfo
;
3119 spin_lock_irqsave(&conf
->device_lock
, flags
);
3120 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3121 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3122 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3123 mddev
->delta_disks
= 0;
3125 unfreeze_array(conf
);
3127 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3128 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3129 md_wakeup_thread(mddev
->thread
);
3131 mempool_destroy(oldpool
);
3135 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3137 struct r1conf
*conf
= mddev
->private;
3140 case 2: /* wake for suspend */
3141 wake_up(&conf
->wait_barrier
);
3144 freeze_array(conf
, 0);
3147 unfreeze_array(conf
);
3152 static void *raid1_takeover(struct mddev
*mddev
)
3154 /* raid1 can take over:
3155 * raid5 with 2 devices, any layout or chunk size
3157 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3158 struct r1conf
*conf
;
3159 mddev
->new_level
= 1;
3160 mddev
->new_layout
= 0;
3161 mddev
->new_chunk_sectors
= 0;
3162 conf
= setup_conf(mddev
);
3164 /* Array must appear to be quiesced */
3165 conf
->array_frozen
= 1;
3168 return ERR_PTR(-EINVAL
);
3171 static struct md_personality raid1_personality
=
3175 .owner
= THIS_MODULE
,
3176 .make_request
= raid1_make_request
,
3179 .status
= raid1_status
,
3180 .error_handler
= raid1_error
,
3181 .hot_add_disk
= raid1_add_disk
,
3182 .hot_remove_disk
= raid1_remove_disk
,
3183 .spare_active
= raid1_spare_active
,
3184 .sync_request
= raid1_sync_request
,
3185 .resize
= raid1_resize
,
3187 .check_reshape
= raid1_reshape
,
3188 .quiesce
= raid1_quiesce
,
3189 .takeover
= raid1_takeover
,
3190 .congested
= raid1_congested
,
3193 static int __init
raid_init(void)
3195 return register_md_personality(&raid1_personality
);
3198 static void raid_exit(void)
3200 unregister_md_personality(&raid1_personality
);
3203 module_init(raid_init
);
3204 module_exit(raid_exit
);
3205 MODULE_LICENSE("GPL");
3206 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208 MODULE_ALIAS("md-raid1");
3209 MODULE_ALIAS("md-level-1");
3211 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);