powerpc/kprobes: Remove kretprobe_trampoline_holder.
[linux/fpc-iii.git] / drivers / mtd / tests / nandbiterrs.c
blob09a4ccac53a2e74dd29aae1c9e8d41baad505609
1 /*
2 * Copyright © 2012 NetCommWireless
3 * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au>
5 * Test for multi-bit error recovery on a NAND page This mostly tests the
6 * ECC controller / driver.
8 * There are two test modes:
10 * 0 - artificially inserting bit errors until the ECC fails
11 * This is the default method and fairly quick. It should
12 * be independent of the quality of the FLASH.
14 * 1 - re-writing the same pattern repeatedly until the ECC fails.
15 * This method relies on the physics of NAND FLASH to eventually
16 * generate '0' bits if '1' has been written sufficient times.
17 * Depending on the NAND, the first bit errors will appear after
18 * 1000 or more writes and then will usually snowball, reaching the
19 * limits of the ECC quickly.
21 * The test stops after 10000 cycles, should your FLASH be
22 * exceptionally good and not generate bit errors before that. Try
23 * a different page in that case.
25 * Please note that neither of these tests will significantly 'use up' any
26 * FLASH endurance. Only a maximum of two erase operations will be performed.
29 * This program is free software; you can redistribute it and/or modify it
30 * under the terms of the GNU General Public License version 2 as published by
31 * the Free Software Foundation.
33 * This program is distributed in the hope that it will be useful, but WITHOUT
34 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
35 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
36 * more details.
38 * You should have received a copy of the GNU General Public License along with
39 * this program; see the file COPYING. If not, write to the Free Software
40 * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
43 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45 #include <linux/init.h>
46 #include <linux/module.h>
47 #include <linux/moduleparam.h>
48 #include <linux/mtd/mtd.h>
49 #include <linux/err.h>
50 #include <linux/mtd/nand.h>
51 #include <linux/slab.h>
52 #include "mtd_test.h"
54 static int dev;
55 module_param(dev, int, S_IRUGO);
56 MODULE_PARM_DESC(dev, "MTD device number to use");
58 static unsigned page_offset;
59 module_param(page_offset, uint, S_IRUGO);
60 MODULE_PARM_DESC(page_offset, "Page number relative to dev start");
62 static unsigned seed;
63 module_param(seed, uint, S_IRUGO);
64 MODULE_PARM_DESC(seed, "Random seed");
66 static int mode;
67 module_param(mode, int, S_IRUGO);
68 MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test");
70 static unsigned max_overwrite = 10000;
72 static loff_t offset; /* Offset of the page we're using. */
73 static unsigned eraseblock; /* Eraseblock number for our page. */
75 /* We assume that the ECC can correct up to a certain number
76 * of biterrors per subpage. */
77 static unsigned subsize; /* Size of subpages */
78 static unsigned subcount; /* Number of subpages per page */
80 static struct mtd_info *mtd; /* MTD device */
82 static uint8_t *wbuffer; /* One page write / compare buffer */
83 static uint8_t *rbuffer; /* One page read buffer */
85 /* 'random' bytes from known offsets */
86 static uint8_t hash(unsigned offset)
88 unsigned v = offset;
89 unsigned char c;
90 v ^= 0x7f7edfd3;
91 v = v ^ (v >> 3);
92 v = v ^ (v >> 5);
93 v = v ^ (v >> 13);
94 c = v & 0xFF;
95 /* Reverse bits of result. */
96 c = (c & 0x0F) << 4 | (c & 0xF0) >> 4;
97 c = (c & 0x33) << 2 | (c & 0xCC) >> 2;
98 c = (c & 0x55) << 1 | (c & 0xAA) >> 1;
99 return c;
102 /* Writes wbuffer to page */
103 static int write_page(int log)
105 if (log)
106 pr_info("write_page\n");
108 return mtdtest_write(mtd, offset, mtd->writesize, wbuffer);
111 /* Re-writes the data area while leaving the OOB alone. */
112 static int rewrite_page(int log)
114 int err = 0;
115 struct mtd_oob_ops ops;
117 if (log)
118 pr_info("rewrite page\n");
120 ops.mode = MTD_OPS_RAW; /* No ECC */
121 ops.len = mtd->writesize;
122 ops.retlen = 0;
123 ops.ooblen = 0;
124 ops.oobretlen = 0;
125 ops.ooboffs = 0;
126 ops.datbuf = wbuffer;
127 ops.oobbuf = NULL;
129 err = mtd_write_oob(mtd, offset, &ops);
130 if (err || ops.retlen != mtd->writesize) {
131 pr_err("error: write_oob failed (%d)\n", err);
132 if (!err)
133 err = -EIO;
136 return err;
139 /* Reads page into rbuffer. Returns number of corrected bit errors (>=0)
140 * or error (<0) */
141 static int read_page(int log)
143 int err = 0;
144 size_t read;
145 struct mtd_ecc_stats oldstats;
147 if (log)
148 pr_info("read_page\n");
150 /* Saving last mtd stats */
151 memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats));
153 err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer);
154 if (err == -EUCLEAN)
155 err = mtd->ecc_stats.corrected - oldstats.corrected;
157 if (err < 0 || read != mtd->writesize) {
158 pr_err("error: read failed at %#llx\n", (long long)offset);
159 if (err >= 0)
160 err = -EIO;
163 return err;
166 /* Verifies rbuffer against random sequence */
167 static int verify_page(int log)
169 unsigned i, errs = 0;
171 if (log)
172 pr_info("verify_page\n");
174 for (i = 0; i < mtd->writesize; i++) {
175 if (rbuffer[i] != hash(i+seed)) {
176 pr_err("Error: page offset %u, expected %02x, got %02x\n",
177 i, hash(i+seed), rbuffer[i]);
178 errs++;
182 if (errs)
183 return -EIO;
184 else
185 return 0;
188 #define CBIT(v, n) ((v) & (1 << (n)))
189 #define BCLR(v, n) ((v) = (v) & ~(1 << (n)))
191 /* Finds the first '1' bit in wbuffer starting at offset 'byte'
192 * and sets it to '0'. */
193 static int insert_biterror(unsigned byte)
195 int bit;
197 while (byte < mtd->writesize) {
198 for (bit = 7; bit >= 0; bit--) {
199 if (CBIT(wbuffer[byte], bit)) {
200 BCLR(wbuffer[byte], bit);
201 pr_info("Inserted biterror @ %u/%u\n", byte, bit);
202 return 0;
205 byte++;
207 pr_err("biterror: Failed to find a '1' bit\n");
208 return -EIO;
211 /* Writes 'random' data to page and then introduces deliberate bit
212 * errors into the page, while verifying each step. */
213 static int incremental_errors_test(void)
215 int err = 0;
216 unsigned i;
217 unsigned errs_per_subpage = 0;
219 pr_info("incremental biterrors test\n");
221 for (i = 0; i < mtd->writesize; i++)
222 wbuffer[i] = hash(i+seed);
224 err = write_page(1);
225 if (err)
226 goto exit;
228 while (1) {
230 err = rewrite_page(1);
231 if (err)
232 goto exit;
234 err = read_page(1);
235 if (err > 0)
236 pr_info("Read reported %d corrected bit errors\n", err);
237 if (err < 0) {
238 pr_err("After %d biterrors per subpage, read reported error %d\n",
239 errs_per_subpage, err);
240 err = 0;
241 goto exit;
244 err = verify_page(1);
245 if (err) {
246 pr_err("ECC failure, read data is incorrect despite read success\n");
247 goto exit;
250 pr_info("Successfully corrected %d bit errors per subpage\n",
251 errs_per_subpage);
253 for (i = 0; i < subcount; i++) {
254 err = insert_biterror(i * subsize);
255 if (err < 0)
256 goto exit;
258 errs_per_subpage++;
261 exit:
262 return err;
266 /* Writes 'random' data to page and then re-writes that same data repeatedly.
267 This eventually develops bit errors (bits written as '1' will slowly become
268 '0'), which are corrected as far as the ECC is capable of. */
269 static int overwrite_test(void)
271 int err = 0;
272 unsigned i;
273 unsigned max_corrected = 0;
274 unsigned opno = 0;
275 /* We don't expect more than this many correctable bit errors per
276 * page. */
277 #define MAXBITS 512
278 static unsigned bitstats[MAXBITS]; /* bit error histogram. */
280 memset(bitstats, 0, sizeof(bitstats));
282 pr_info("overwrite biterrors test\n");
284 for (i = 0; i < mtd->writesize; i++)
285 wbuffer[i] = hash(i+seed);
287 err = write_page(1);
288 if (err)
289 goto exit;
291 while (opno < max_overwrite) {
293 err = rewrite_page(0);
294 if (err)
295 break;
297 err = read_page(0);
298 if (err >= 0) {
299 if (err >= MAXBITS) {
300 pr_info("Implausible number of bit errors corrected\n");
301 err = -EIO;
302 break;
304 bitstats[err]++;
305 if (err > max_corrected) {
306 max_corrected = err;
307 pr_info("Read reported %d corrected bit errors\n",
308 err);
310 } else { /* err < 0 */
311 pr_info("Read reported error %d\n", err);
312 err = 0;
313 break;
316 err = verify_page(0);
317 if (err) {
318 bitstats[max_corrected] = opno;
319 pr_info("ECC failure, read data is incorrect despite read success\n");
320 break;
323 err = mtdtest_relax();
324 if (err)
325 break;
327 opno++;
330 /* At this point bitstats[0] contains the number of ops with no bit
331 * errors, bitstats[1] the number of ops with 1 bit error, etc. */
332 pr_info("Bit error histogram (%d operations total):\n", opno);
333 for (i = 0; i < max_corrected; i++)
334 pr_info("Page reads with %3d corrected bit errors: %d\n",
335 i, bitstats[i]);
337 exit:
338 return err;
341 static int __init mtd_nandbiterrs_init(void)
343 int err = 0;
345 printk("\n");
346 printk(KERN_INFO "==================================================\n");
347 pr_info("MTD device: %d\n", dev);
349 mtd = get_mtd_device(NULL, dev);
350 if (IS_ERR(mtd)) {
351 err = PTR_ERR(mtd);
352 pr_err("error: cannot get MTD device\n");
353 goto exit_mtddev;
356 if (!mtd_type_is_nand(mtd)) {
357 pr_info("this test requires NAND flash\n");
358 err = -ENODEV;
359 goto exit_nand;
362 pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n",
363 (unsigned long long)mtd->size, mtd->erasesize,
364 mtd->writesize, mtd->oobsize);
366 subsize = mtd->writesize >> mtd->subpage_sft;
367 subcount = mtd->writesize / subsize;
369 pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize);
371 offset = (loff_t)page_offset * mtd->writesize;
372 eraseblock = mtd_div_by_eb(offset, mtd);
374 pr_info("Using page=%u, offset=%llu, eraseblock=%u\n",
375 page_offset, offset, eraseblock);
377 wbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
378 if (!wbuffer) {
379 err = -ENOMEM;
380 goto exit_wbuffer;
383 rbuffer = kmalloc(mtd->writesize, GFP_KERNEL);
384 if (!rbuffer) {
385 err = -ENOMEM;
386 goto exit_rbuffer;
389 err = mtdtest_erase_eraseblock(mtd, eraseblock);
390 if (err)
391 goto exit_error;
393 if (mode == 0)
394 err = incremental_errors_test();
395 else
396 err = overwrite_test();
398 if (err)
399 goto exit_error;
401 /* We leave the block un-erased in case of test failure. */
402 err = mtdtest_erase_eraseblock(mtd, eraseblock);
403 if (err)
404 goto exit_error;
406 err = -EIO;
407 pr_info("finished successfully.\n");
408 printk(KERN_INFO "==================================================\n");
410 exit_error:
411 kfree(rbuffer);
412 exit_rbuffer:
413 kfree(wbuffer);
414 exit_wbuffer:
415 /* Nothing */
416 exit_nand:
417 put_mtd_device(mtd);
418 exit_mtddev:
419 return err;
422 static void __exit mtd_nandbiterrs_exit(void)
424 return;
427 module_init(mtd_nandbiterrs_init);
428 module_exit(mtd_nandbiterrs_exit);
430 MODULE_DESCRIPTION("NAND bit error recovery test");
431 MODULE_AUTHOR("Iwo Mergler");
432 MODULE_LICENSE("GPL");