2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/jbd2.h>
50 #include <asm/uaccess.h>
53 #ifdef CONFIG_JBD2_DEBUG
54 ushort jbd2_journal_enable_debug __read_mostly
;
55 EXPORT_SYMBOL(jbd2_journal_enable_debug
);
57 module_param_named(jbd2_debug
, jbd2_journal_enable_debug
, ushort
, 0644);
58 MODULE_PARM_DESC(jbd2_debug
, "Debugging level for jbd2");
61 EXPORT_SYMBOL(jbd2_journal_extend
);
62 EXPORT_SYMBOL(jbd2_journal_stop
);
63 EXPORT_SYMBOL(jbd2_journal_lock_updates
);
64 EXPORT_SYMBOL(jbd2_journal_unlock_updates
);
65 EXPORT_SYMBOL(jbd2_journal_get_write_access
);
66 EXPORT_SYMBOL(jbd2_journal_get_create_access
);
67 EXPORT_SYMBOL(jbd2_journal_get_undo_access
);
68 EXPORT_SYMBOL(jbd2_journal_set_triggers
);
69 EXPORT_SYMBOL(jbd2_journal_dirty_metadata
);
70 EXPORT_SYMBOL(jbd2_journal_forget
);
72 EXPORT_SYMBOL(journal_sync_buffer
);
74 EXPORT_SYMBOL(jbd2_journal_flush
);
75 EXPORT_SYMBOL(jbd2_journal_revoke
);
77 EXPORT_SYMBOL(jbd2_journal_init_dev
);
78 EXPORT_SYMBOL(jbd2_journal_init_inode
);
79 EXPORT_SYMBOL(jbd2_journal_check_used_features
);
80 EXPORT_SYMBOL(jbd2_journal_check_available_features
);
81 EXPORT_SYMBOL(jbd2_journal_set_features
);
82 EXPORT_SYMBOL(jbd2_journal_load
);
83 EXPORT_SYMBOL(jbd2_journal_destroy
);
84 EXPORT_SYMBOL(jbd2_journal_abort
);
85 EXPORT_SYMBOL(jbd2_journal_errno
);
86 EXPORT_SYMBOL(jbd2_journal_ack_err
);
87 EXPORT_SYMBOL(jbd2_journal_clear_err
);
88 EXPORT_SYMBOL(jbd2_log_wait_commit
);
89 EXPORT_SYMBOL(jbd2_log_start_commit
);
90 EXPORT_SYMBOL(jbd2_journal_start_commit
);
91 EXPORT_SYMBOL(jbd2_journal_force_commit_nested
);
92 EXPORT_SYMBOL(jbd2_journal_wipe
);
93 EXPORT_SYMBOL(jbd2_journal_blocks_per_page
);
94 EXPORT_SYMBOL(jbd2_journal_invalidatepage
);
95 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers
);
96 EXPORT_SYMBOL(jbd2_journal_force_commit
);
97 EXPORT_SYMBOL(jbd2_journal_inode_add_write
);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_wait
);
99 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode
);
100 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode
);
101 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate
);
102 EXPORT_SYMBOL(jbd2_inode_cache
);
104 static void __journal_abort_soft (journal_t
*journal
, int errno
);
105 static int jbd2_journal_create_slab(size_t slab_size
);
107 #ifdef CONFIG_JBD2_DEBUG
108 void __jbd2_debug(int level
, const char *file
, const char *func
,
109 unsigned int line
, const char *fmt
, ...)
111 struct va_format vaf
;
114 if (level
> jbd2_journal_enable_debug
)
119 printk(KERN_DEBUG
"%s: (%s, %u): %pV\n", file
, func
, line
, &vaf
);
122 EXPORT_SYMBOL(__jbd2_debug
);
125 /* Checksumming functions */
126 static int jbd2_verify_csum_type(journal_t
*j
, journal_superblock_t
*sb
)
128 if (!jbd2_journal_has_csum_v2or3_feature(j
))
131 return sb
->s_checksum_type
== JBD2_CRC32C_CHKSUM
;
134 static __be32
jbd2_superblock_csum(journal_t
*j
, journal_superblock_t
*sb
)
139 old_csum
= sb
->s_checksum
;
141 csum
= jbd2_chksum(j
, ~0, (char *)sb
, sizeof(journal_superblock_t
));
142 sb
->s_checksum
= old_csum
;
144 return cpu_to_be32(csum
);
147 static int jbd2_superblock_csum_verify(journal_t
*j
, journal_superblock_t
*sb
)
149 if (!jbd2_journal_has_csum_v2or3(j
))
152 return sb
->s_checksum
== jbd2_superblock_csum(j
, sb
);
155 static void jbd2_superblock_csum_set(journal_t
*j
, journal_superblock_t
*sb
)
157 if (!jbd2_journal_has_csum_v2or3(j
))
160 sb
->s_checksum
= jbd2_superblock_csum(j
, sb
);
164 * Helper function used to manage commit timeouts
167 static void commit_timeout(unsigned long __data
)
169 struct task_struct
* p
= (struct task_struct
*) __data
;
175 * kjournald2: The main thread function used to manage a logging device
178 * This kernel thread is responsible for two things:
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
190 static int kjournald2(void *arg
)
192 journal_t
*journal
= arg
;
193 transaction_t
*transaction
;
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
199 setup_timer(&journal
->j_commit_timer
, commit_timeout
,
200 (unsigned long)current
);
204 /* Record that the journal thread is running */
205 journal
->j_task
= current
;
206 wake_up(&journal
->j_wait_done_commit
);
209 * And now, wait forever for commit wakeup events.
211 write_lock(&journal
->j_state_lock
);
214 if (journal
->j_flags
& JBD2_UNMOUNT
)
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal
->j_commit_sequence
, journal
->j_commit_request
);
220 if (journal
->j_commit_sequence
!= journal
->j_commit_request
) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal
->j_state_lock
);
223 del_timer_sync(&journal
->j_commit_timer
);
224 jbd2_journal_commit_transaction(journal
);
225 write_lock(&journal
->j_state_lock
);
229 wake_up(&journal
->j_wait_done_commit
);
230 if (freezing(current
)) {
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal
->j_state_lock
);
239 write_lock(&journal
->j_state_lock
);
242 * We assume on resume that commits are already there,
246 int should_sleep
= 1;
248 prepare_to_wait(&journal
->j_wait_commit
, &wait
,
250 if (journal
->j_commit_sequence
!= journal
->j_commit_request
)
252 transaction
= journal
->j_running_transaction
;
253 if (transaction
&& time_after_eq(jiffies
,
254 transaction
->t_expires
))
256 if (journal
->j_flags
& JBD2_UNMOUNT
)
259 write_unlock(&journal
->j_state_lock
);
261 write_lock(&journal
->j_state_lock
);
263 finish_wait(&journal
->j_wait_commit
, &wait
);
266 jbd_debug(1, "kjournald2 wakes\n");
269 * Were we woken up by a commit wakeup event?
271 transaction
= journal
->j_running_transaction
;
272 if (transaction
&& time_after_eq(jiffies
, transaction
->t_expires
)) {
273 journal
->j_commit_request
= transaction
->t_tid
;
274 jbd_debug(1, "woke because of timeout\n");
279 write_unlock(&journal
->j_state_lock
);
280 del_timer_sync(&journal
->j_commit_timer
);
281 journal
->j_task
= NULL
;
282 wake_up(&journal
->j_wait_done_commit
);
283 jbd_debug(1, "Journal thread exiting.\n");
287 static int jbd2_journal_start_thread(journal_t
*journal
)
289 struct task_struct
*t
;
291 t
= kthread_run(kjournald2
, journal
, "jbd2/%s",
296 wait_event(journal
->j_wait_done_commit
, journal
->j_task
!= NULL
);
300 static void journal_kill_thread(journal_t
*journal
)
302 write_lock(&journal
->j_state_lock
);
303 journal
->j_flags
|= JBD2_UNMOUNT
;
305 while (journal
->j_task
) {
306 write_unlock(&journal
->j_state_lock
);
307 wake_up(&journal
->j_wait_commit
);
308 wait_event(journal
->j_wait_done_commit
, journal
->j_task
== NULL
);
309 write_lock(&journal
->j_state_lock
);
311 write_unlock(&journal
->j_state_lock
);
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
337 * The function returns a pointer to the buffer_head to be used for IO.
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
349 int jbd2_journal_write_metadata_buffer(transaction_t
*transaction
,
350 struct journal_head
*jh_in
,
351 struct buffer_head
**bh_out
,
354 int need_copy_out
= 0;
355 int done_copy_out
= 0;
358 struct buffer_head
*new_bh
;
359 struct page
*new_page
;
360 unsigned int new_offset
;
361 struct buffer_head
*bh_in
= jh2bh(jh_in
);
362 journal_t
*journal
= transaction
->t_journal
;
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
373 J_ASSERT_BH(bh_in
, buffer_jbddirty(bh_in
));
375 new_bh
= alloc_buffer_head(GFP_NOFS
|__GFP_NOFAIL
);
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh
->b_count
, 1);
380 jbd_lock_bh_state(bh_in
);
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
386 if (jh_in
->b_frozen_data
) {
388 new_page
= virt_to_page(jh_in
->b_frozen_data
);
389 new_offset
= offset_in_page(jh_in
->b_frozen_data
);
391 new_page
= jh2bh(jh_in
)->b_page
;
392 new_offset
= offset_in_page(jh2bh(jh_in
)->b_data
);
395 mapped_data
= kmap_atomic(new_page
);
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
403 jbd2_buffer_frozen_trigger(jh_in
, mapped_data
+ new_offset
,
409 if (*((__be32
*)(mapped_data
+ new_offset
)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER
)) {
414 kunmap_atomic(mapped_data
);
417 * Do we need to do a data copy?
419 if (need_copy_out
&& !done_copy_out
) {
422 jbd_unlock_bh_state(bh_in
);
423 tmp
= jbd2_alloc(bh_in
->b_size
, GFP_NOFS
);
428 jbd_lock_bh_state(bh_in
);
429 if (jh_in
->b_frozen_data
) {
430 jbd2_free(tmp
, bh_in
->b_size
);
434 jh_in
->b_frozen_data
= tmp
;
435 mapped_data
= kmap_atomic(new_page
);
436 memcpy(tmp
, mapped_data
+ new_offset
, bh_in
->b_size
);
437 kunmap_atomic(mapped_data
);
439 new_page
= virt_to_page(tmp
);
440 new_offset
= offset_in_page(tmp
);
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
448 jh_in
->b_frozen_triggers
= jh_in
->b_triggers
;
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
456 mapped_data
= kmap_atomic(new_page
);
457 *((unsigned int *)(mapped_data
+ new_offset
)) = 0;
458 kunmap_atomic(mapped_data
);
461 set_bh_page(new_bh
, new_page
, new_offset
);
462 new_bh
->b_size
= bh_in
->b_size
;
463 new_bh
->b_bdev
= journal
->j_dev
;
464 new_bh
->b_blocknr
= blocknr
;
465 new_bh
->b_private
= bh_in
;
466 set_buffer_mapped(new_bh
);
467 set_buffer_dirty(new_bh
);
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
476 JBUFFER_TRACE(jh_in
, "file as BJ_Shadow");
477 spin_lock(&journal
->j_list_lock
);
478 __jbd2_journal_file_buffer(jh_in
, transaction
, BJ_Shadow
);
479 spin_unlock(&journal
->j_list_lock
);
480 set_buffer_shadow(bh_in
);
481 jbd_unlock_bh_state(bh_in
);
483 return do_escape
| (done_copy_out
<< 1);
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
495 int __jbd2_log_start_commit(journal_t
*journal
, tid_t target
)
497 /* Return if the txn has already requested to be committed */
498 if (journal
->j_commit_request
== target
)
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
506 if (journal
->j_running_transaction
&&
507 journal
->j_running_transaction
->t_tid
== target
) {
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
513 journal
->j_commit_request
= target
;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal
->j_commit_request
,
516 journal
->j_commit_sequence
);
517 journal
->j_running_transaction
->t_requested
= jiffies
;
518 wake_up(&journal
->j_wait_commit
);
520 } else if (!tid_geq(journal
->j_commit_request
, target
))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal
->j_commit_request
,
526 journal
->j_commit_sequence
,
527 target
, journal
->j_running_transaction
?
528 journal
->j_running_transaction
->t_tid
: 0);
532 int jbd2_log_start_commit(journal_t
*journal
, tid_t tid
)
536 write_lock(&journal
->j_state_lock
);
537 ret
= __jbd2_log_start_commit(journal
, tid
);
538 write_unlock(&journal
->j_state_lock
);
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
549 static int __jbd2_journal_force_commit(journal_t
*journal
)
551 transaction_t
*transaction
= NULL
;
553 int need_to_start
= 0, ret
= 0;
555 read_lock(&journal
->j_state_lock
);
556 if (journal
->j_running_transaction
&& !current
->journal_info
) {
557 transaction
= journal
->j_running_transaction
;
558 if (!tid_geq(journal
->j_commit_request
, transaction
->t_tid
))
560 } else if (journal
->j_committing_transaction
)
561 transaction
= journal
->j_committing_transaction
;
564 /* Nothing to commit */
565 read_unlock(&journal
->j_state_lock
);
568 tid
= transaction
->t_tid
;
569 read_unlock(&journal
->j_state_lock
);
571 jbd2_log_start_commit(journal
, tid
);
572 ret
= jbd2_log_wait_commit(journal
, tid
);
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
584 * @journal: journal to force
585 * Returns true if progress was made.
587 int jbd2_journal_force_commit_nested(journal_t
*journal
)
591 ret
= __jbd2_journal_force_commit(journal
);
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
602 int jbd2_journal_force_commit(journal_t
*journal
)
606 J_ASSERT(!current
->journal_info
);
607 ret
= __jbd2_journal_force_commit(journal
);
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
618 int jbd2_journal_start_commit(journal_t
*journal
, tid_t
*ptid
)
622 write_lock(&journal
->j_state_lock
);
623 if (journal
->j_running_transaction
) {
624 tid_t tid
= journal
->j_running_transaction
->t_tid
;
626 __jbd2_log_start_commit(journal
, tid
);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
632 } else if (journal
->j_committing_transaction
) {
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
638 *ptid
= journal
->j_committing_transaction
->t_tid
;
641 write_unlock(&journal
->j_state_lock
);
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
651 int jbd2_trans_will_send_data_barrier(journal_t
*journal
, tid_t tid
)
654 transaction_t
*commit_trans
;
656 if (!(journal
->j_flags
& JBD2_BARRIER
))
658 read_lock(&journal
->j_state_lock
);
659 /* Transaction already committed? */
660 if (tid_geq(journal
->j_commit_sequence
, tid
))
662 commit_trans
= journal
->j_committing_transaction
;
663 if (!commit_trans
|| commit_trans
->t_tid
!= tid
) {
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
671 if (journal
->j_fs_dev
!= journal
->j_dev
) {
672 if (!commit_trans
->t_need_data_flush
||
673 commit_trans
->t_state
>= T_COMMIT_DFLUSH
)
676 if (commit_trans
->t_state
>= T_COMMIT_JFLUSH
)
681 read_unlock(&journal
->j_state_lock
);
684 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier
);
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
690 int jbd2_log_wait_commit(journal_t
*journal
, tid_t tid
)
694 read_lock(&journal
->j_state_lock
);
695 #ifdef CONFIG_JBD2_DEBUG
696 if (!tid_geq(journal
->j_commit_request
, tid
)) {
698 "%s: error: j_commit_request=%d, tid=%d\n",
699 __func__
, journal
->j_commit_request
, tid
);
702 while (tid_gt(tid
, journal
->j_commit_sequence
)) {
703 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
704 tid
, journal
->j_commit_sequence
);
705 read_unlock(&journal
->j_state_lock
);
706 wake_up(&journal
->j_wait_commit
);
707 wait_event(journal
->j_wait_done_commit
,
708 !tid_gt(tid
, journal
->j_commit_sequence
));
709 read_lock(&journal
->j_state_lock
);
711 read_unlock(&journal
->j_state_lock
);
713 if (unlikely(is_journal_aborted(journal
)))
719 * When this function returns the transaction corresponding to tid
720 * will be completed. If the transaction has currently running, start
721 * committing that transaction before waiting for it to complete. If
722 * the transaction id is stale, it is by definition already completed,
723 * so just return SUCCESS.
725 int jbd2_complete_transaction(journal_t
*journal
, tid_t tid
)
727 int need_to_wait
= 1;
729 read_lock(&journal
->j_state_lock
);
730 if (journal
->j_running_transaction
&&
731 journal
->j_running_transaction
->t_tid
== tid
) {
732 if (journal
->j_commit_request
!= tid
) {
733 /* transaction not yet started, so request it */
734 read_unlock(&journal
->j_state_lock
);
735 jbd2_log_start_commit(journal
, tid
);
738 } else if (!(journal
->j_committing_transaction
&&
739 journal
->j_committing_transaction
->t_tid
== tid
))
741 read_unlock(&journal
->j_state_lock
);
745 return jbd2_log_wait_commit(journal
, tid
);
747 EXPORT_SYMBOL(jbd2_complete_transaction
);
750 * Log buffer allocation routines:
753 int jbd2_journal_next_log_block(journal_t
*journal
, unsigned long long *retp
)
755 unsigned long blocknr
;
757 write_lock(&journal
->j_state_lock
);
758 J_ASSERT(journal
->j_free
> 1);
760 blocknr
= journal
->j_head
;
763 if (journal
->j_head
== journal
->j_last
)
764 journal
->j_head
= journal
->j_first
;
765 write_unlock(&journal
->j_state_lock
);
766 return jbd2_journal_bmap(journal
, blocknr
, retp
);
770 * Conversion of logical to physical block numbers for the journal
772 * On external journals the journal blocks are identity-mapped, so
773 * this is a no-op. If needed, we can use j_blk_offset - everything is
776 int jbd2_journal_bmap(journal_t
*journal
, unsigned long blocknr
,
777 unsigned long long *retp
)
780 unsigned long long ret
;
782 if (journal
->j_inode
) {
783 ret
= bmap(journal
->j_inode
, blocknr
);
787 printk(KERN_ALERT
"%s: journal block not found "
788 "at offset %lu on %s\n",
789 __func__
, blocknr
, journal
->j_devname
);
791 __journal_abort_soft(journal
, err
);
794 *retp
= blocknr
; /* +journal->j_blk_offset */
800 * We play buffer_head aliasing tricks to write data/metadata blocks to
801 * the journal without copying their contents, but for journal
802 * descriptor blocks we do need to generate bona fide buffers.
804 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
805 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
806 * But we don't bother doing that, so there will be coherency problems with
807 * mmaps of blockdevs which hold live JBD-controlled filesystems.
810 jbd2_journal_get_descriptor_buffer(transaction_t
*transaction
, int type
)
812 journal_t
*journal
= transaction
->t_journal
;
813 struct buffer_head
*bh
;
814 unsigned long long blocknr
;
815 journal_header_t
*header
;
818 err
= jbd2_journal_next_log_block(journal
, &blocknr
);
823 bh
= __getblk(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
827 memset(bh
->b_data
, 0, journal
->j_blocksize
);
828 header
= (journal_header_t
*)bh
->b_data
;
829 header
->h_magic
= cpu_to_be32(JBD2_MAGIC_NUMBER
);
830 header
->h_blocktype
= cpu_to_be32(type
);
831 header
->h_sequence
= cpu_to_be32(transaction
->t_tid
);
832 set_buffer_uptodate(bh
);
834 BUFFER_TRACE(bh
, "return this buffer");
838 void jbd2_descriptor_block_csum_set(journal_t
*j
, struct buffer_head
*bh
)
840 struct jbd2_journal_block_tail
*tail
;
843 if (!jbd2_journal_has_csum_v2or3(j
))
846 tail
= (struct jbd2_journal_block_tail
*)(bh
->b_data
+ j
->j_blocksize
-
847 sizeof(struct jbd2_journal_block_tail
));
848 tail
->t_checksum
= 0;
849 csum
= jbd2_chksum(j
, j
->j_csum_seed
, bh
->b_data
, j
->j_blocksize
);
850 tail
->t_checksum
= cpu_to_be32(csum
);
854 * Return tid of the oldest transaction in the journal and block in the journal
855 * where the transaction starts.
857 * If the journal is now empty, return which will be the next transaction ID
858 * we will write and where will that transaction start.
860 * The return value is 0 if journal tail cannot be pushed any further, 1 if
863 int jbd2_journal_get_log_tail(journal_t
*journal
, tid_t
*tid
,
864 unsigned long *block
)
866 transaction_t
*transaction
;
869 read_lock(&journal
->j_state_lock
);
870 spin_lock(&journal
->j_list_lock
);
871 transaction
= journal
->j_checkpoint_transactions
;
873 *tid
= transaction
->t_tid
;
874 *block
= transaction
->t_log_start
;
875 } else if ((transaction
= journal
->j_committing_transaction
) != NULL
) {
876 *tid
= transaction
->t_tid
;
877 *block
= transaction
->t_log_start
;
878 } else if ((transaction
= journal
->j_running_transaction
) != NULL
) {
879 *tid
= transaction
->t_tid
;
880 *block
= journal
->j_head
;
882 *tid
= journal
->j_transaction_sequence
;
883 *block
= journal
->j_head
;
885 ret
= tid_gt(*tid
, journal
->j_tail_sequence
);
886 spin_unlock(&journal
->j_list_lock
);
887 read_unlock(&journal
->j_state_lock
);
893 * Update information in journal structure and in on disk journal superblock
894 * about log tail. This function does not check whether information passed in
895 * really pushes log tail further. It's responsibility of the caller to make
896 * sure provided log tail information is valid (e.g. by holding
897 * j_checkpoint_mutex all the time between computing log tail and calling this
898 * function as is the case with jbd2_cleanup_journal_tail()).
900 * Requires j_checkpoint_mutex
902 int __jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
907 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
910 * We cannot afford for write to remain in drive's caches since as
911 * soon as we update j_tail, next transaction can start reusing journal
912 * space and if we lose sb update during power failure we'd replay
913 * old transaction with possibly newly overwritten data.
915 ret
= jbd2_journal_update_sb_log_tail(journal
, tid
, block
, WRITE_FUA
);
919 write_lock(&journal
->j_state_lock
);
920 freed
= block
- journal
->j_tail
;
921 if (block
< journal
->j_tail
)
922 freed
+= journal
->j_last
- journal
->j_first
;
924 trace_jbd2_update_log_tail(journal
, tid
, block
, freed
);
926 "Cleaning journal tail from %d to %d (offset %lu), "
928 journal
->j_tail_sequence
, tid
, block
, freed
);
930 journal
->j_free
+= freed
;
931 journal
->j_tail_sequence
= tid
;
932 journal
->j_tail
= block
;
933 write_unlock(&journal
->j_state_lock
);
940 * This is a variaon of __jbd2_update_log_tail which checks for validity of
941 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
942 * with other threads updating log tail.
944 void jbd2_update_log_tail(journal_t
*journal
, tid_t tid
, unsigned long block
)
946 mutex_lock(&journal
->j_checkpoint_mutex
);
947 if (tid_gt(tid
, journal
->j_tail_sequence
))
948 __jbd2_update_log_tail(journal
, tid
, block
);
949 mutex_unlock(&journal
->j_checkpoint_mutex
);
952 struct jbd2_stats_proc_session
{
954 struct transaction_stats_s
*stats
;
959 static void *jbd2_seq_info_start(struct seq_file
*seq
, loff_t
*pos
)
961 return *pos
? NULL
: SEQ_START_TOKEN
;
964 static void *jbd2_seq_info_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
969 static int jbd2_seq_info_show(struct seq_file
*seq
, void *v
)
971 struct jbd2_stats_proc_session
*s
= seq
->private;
973 if (v
!= SEQ_START_TOKEN
)
975 seq_printf(seq
, "%lu transactions (%lu requested), "
976 "each up to %u blocks\n",
977 s
->stats
->ts_tid
, s
->stats
->ts_requested
,
978 s
->journal
->j_max_transaction_buffers
);
979 if (s
->stats
->ts_tid
== 0)
981 seq_printf(seq
, "average: \n %ums waiting for transaction\n",
982 jiffies_to_msecs(s
->stats
->run
.rs_wait
/ s
->stats
->ts_tid
));
983 seq_printf(seq
, " %ums request delay\n",
984 (s
->stats
->ts_requested
== 0) ? 0 :
985 jiffies_to_msecs(s
->stats
->run
.rs_request_delay
/
986 s
->stats
->ts_requested
));
987 seq_printf(seq
, " %ums running transaction\n",
988 jiffies_to_msecs(s
->stats
->run
.rs_running
/ s
->stats
->ts_tid
));
989 seq_printf(seq
, " %ums transaction was being locked\n",
990 jiffies_to_msecs(s
->stats
->run
.rs_locked
/ s
->stats
->ts_tid
));
991 seq_printf(seq
, " %ums flushing data (in ordered mode)\n",
992 jiffies_to_msecs(s
->stats
->run
.rs_flushing
/ s
->stats
->ts_tid
));
993 seq_printf(seq
, " %ums logging transaction\n",
994 jiffies_to_msecs(s
->stats
->run
.rs_logging
/ s
->stats
->ts_tid
));
995 seq_printf(seq
, " %lluus average transaction commit time\n",
996 div_u64(s
->journal
->j_average_commit_time
, 1000));
997 seq_printf(seq
, " %lu handles per transaction\n",
998 s
->stats
->run
.rs_handle_count
/ s
->stats
->ts_tid
);
999 seq_printf(seq
, " %lu blocks per transaction\n",
1000 s
->stats
->run
.rs_blocks
/ s
->stats
->ts_tid
);
1001 seq_printf(seq
, " %lu logged blocks per transaction\n",
1002 s
->stats
->run
.rs_blocks_logged
/ s
->stats
->ts_tid
);
1006 static void jbd2_seq_info_stop(struct seq_file
*seq
, void *v
)
1010 static const struct seq_operations jbd2_seq_info_ops
= {
1011 .start
= jbd2_seq_info_start
,
1012 .next
= jbd2_seq_info_next
,
1013 .stop
= jbd2_seq_info_stop
,
1014 .show
= jbd2_seq_info_show
,
1017 static int jbd2_seq_info_open(struct inode
*inode
, struct file
*file
)
1019 journal_t
*journal
= PDE_DATA(inode
);
1020 struct jbd2_stats_proc_session
*s
;
1023 s
= kmalloc(sizeof(*s
), GFP_KERNEL
);
1026 size
= sizeof(struct transaction_stats_s
);
1027 s
->stats
= kmalloc(size
, GFP_KERNEL
);
1028 if (s
->stats
== NULL
) {
1032 spin_lock(&journal
->j_history_lock
);
1033 memcpy(s
->stats
, &journal
->j_stats
, size
);
1034 s
->journal
= journal
;
1035 spin_unlock(&journal
->j_history_lock
);
1037 rc
= seq_open(file
, &jbd2_seq_info_ops
);
1039 struct seq_file
*m
= file
->private_data
;
1049 static int jbd2_seq_info_release(struct inode
*inode
, struct file
*file
)
1051 struct seq_file
*seq
= file
->private_data
;
1052 struct jbd2_stats_proc_session
*s
= seq
->private;
1055 return seq_release(inode
, file
);
1058 static const struct file_operations jbd2_seq_info_fops
= {
1059 .owner
= THIS_MODULE
,
1060 .open
= jbd2_seq_info_open
,
1062 .llseek
= seq_lseek
,
1063 .release
= jbd2_seq_info_release
,
1066 static struct proc_dir_entry
*proc_jbd2_stats
;
1068 static void jbd2_stats_proc_init(journal_t
*journal
)
1070 journal
->j_proc_entry
= proc_mkdir(journal
->j_devname
, proc_jbd2_stats
);
1071 if (journal
->j_proc_entry
) {
1072 proc_create_data("info", S_IRUGO
, journal
->j_proc_entry
,
1073 &jbd2_seq_info_fops
, journal
);
1077 static void jbd2_stats_proc_exit(journal_t
*journal
)
1079 remove_proc_entry("info", journal
->j_proc_entry
);
1080 remove_proc_entry(journal
->j_devname
, proc_jbd2_stats
);
1084 * Management for journal control blocks: functions to create and
1085 * destroy journal_t structures, and to initialise and read existing
1086 * journal blocks from disk. */
1088 /* First: create and setup a journal_t object in memory. We initialise
1089 * very few fields yet: that has to wait until we have created the
1090 * journal structures from from scratch, or loaded them from disk. */
1092 static journal_t
* journal_init_common (void)
1097 journal
= kzalloc(sizeof(*journal
), GFP_KERNEL
);
1101 init_waitqueue_head(&journal
->j_wait_transaction_locked
);
1102 init_waitqueue_head(&journal
->j_wait_done_commit
);
1103 init_waitqueue_head(&journal
->j_wait_commit
);
1104 init_waitqueue_head(&journal
->j_wait_updates
);
1105 init_waitqueue_head(&journal
->j_wait_reserved
);
1106 mutex_init(&journal
->j_barrier
);
1107 mutex_init(&journal
->j_checkpoint_mutex
);
1108 spin_lock_init(&journal
->j_revoke_lock
);
1109 spin_lock_init(&journal
->j_list_lock
);
1110 rwlock_init(&journal
->j_state_lock
);
1112 journal
->j_commit_interval
= (HZ
* JBD2_DEFAULT_MAX_COMMIT_AGE
);
1113 journal
->j_min_batch_time
= 0;
1114 journal
->j_max_batch_time
= 15000; /* 15ms */
1115 atomic_set(&journal
->j_reserved_credits
, 0);
1117 /* The journal is marked for error until we succeed with recovery! */
1118 journal
->j_flags
= JBD2_ABORT
;
1120 /* Set up a default-sized revoke table for the new mount. */
1121 err
= jbd2_journal_init_revoke(journal
, JOURNAL_REVOKE_DEFAULT_HASH
);
1127 spin_lock_init(&journal
->j_history_lock
);
1132 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1134 * Create a journal structure assigned some fixed set of disk blocks to
1135 * the journal. We don't actually touch those disk blocks yet, but we
1136 * need to set up all of the mapping information to tell the journaling
1137 * system where the journal blocks are.
1142 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1143 * @bdev: Block device on which to create the journal
1144 * @fs_dev: Device which hold journalled filesystem for this journal.
1145 * @start: Block nr Start of journal.
1146 * @len: Length of the journal in blocks.
1147 * @blocksize: blocksize of journalling device
1149 * Returns: a newly created journal_t *
1151 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1152 * range of blocks on an arbitrary block device.
1155 journal_t
* jbd2_journal_init_dev(struct block_device
*bdev
,
1156 struct block_device
*fs_dev
,
1157 unsigned long long start
, int len
, int blocksize
)
1159 journal_t
*journal
= journal_init_common();
1160 struct buffer_head
*bh
;
1166 /* journal descriptor can store up to n blocks -bzzz */
1167 journal
->j_blocksize
= blocksize
;
1168 journal
->j_dev
= bdev
;
1169 journal
->j_fs_dev
= fs_dev
;
1170 journal
->j_blk_offset
= start
;
1171 journal
->j_maxlen
= len
;
1172 bdevname(journal
->j_dev
, journal
->j_devname
);
1173 strreplace(journal
->j_devname
, '/', '!');
1174 jbd2_stats_proc_init(journal
);
1175 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1176 journal
->j_wbufsize
= n
;
1177 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1178 if (!journal
->j_wbuf
) {
1179 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1184 bh
= __getblk(journal
->j_dev
, start
, journal
->j_blocksize
);
1187 "%s: Cannot get buffer for journal superblock\n",
1191 journal
->j_sb_buffer
= bh
;
1192 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1196 kfree(journal
->j_wbuf
);
1197 jbd2_stats_proc_exit(journal
);
1203 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1204 * @inode: An inode to create the journal in
1206 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1207 * the journal. The inode must exist already, must support bmap() and
1208 * must have all data blocks preallocated.
1210 journal_t
* jbd2_journal_init_inode (struct inode
*inode
)
1212 struct buffer_head
*bh
;
1213 journal_t
*journal
= journal_init_common();
1217 unsigned long long blocknr
;
1222 journal
->j_dev
= journal
->j_fs_dev
= inode
->i_sb
->s_bdev
;
1223 journal
->j_inode
= inode
;
1224 bdevname(journal
->j_dev
, journal
->j_devname
);
1225 p
= strreplace(journal
->j_devname
, '/', '!');
1226 sprintf(p
, "-%lu", journal
->j_inode
->i_ino
);
1228 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1229 journal
, inode
->i_sb
->s_id
, inode
->i_ino
,
1230 (long long) inode
->i_size
,
1231 inode
->i_sb
->s_blocksize_bits
, inode
->i_sb
->s_blocksize
);
1233 journal
->j_maxlen
= inode
->i_size
>> inode
->i_sb
->s_blocksize_bits
;
1234 journal
->j_blocksize
= inode
->i_sb
->s_blocksize
;
1235 jbd2_stats_proc_init(journal
);
1237 /* journal descriptor can store up to n blocks -bzzz */
1238 n
= journal
->j_blocksize
/ sizeof(journal_block_tag_t
);
1239 journal
->j_wbufsize
= n
;
1240 journal
->j_wbuf
= kmalloc(n
* sizeof(struct buffer_head
*), GFP_KERNEL
);
1241 if (!journal
->j_wbuf
) {
1242 printk(KERN_ERR
"%s: Can't allocate bhs for commit thread\n",
1247 err
= jbd2_journal_bmap(journal
, 0, &blocknr
);
1248 /* If that failed, give up */
1250 printk(KERN_ERR
"%s: Cannot locate journal superblock\n",
1255 bh
= getblk_unmovable(journal
->j_dev
, blocknr
, journal
->j_blocksize
);
1258 "%s: Cannot get buffer for journal superblock\n",
1262 journal
->j_sb_buffer
= bh
;
1263 journal
->j_superblock
= (journal_superblock_t
*)bh
->b_data
;
1267 kfree(journal
->j_wbuf
);
1268 jbd2_stats_proc_exit(journal
);
1274 * If the journal init or create aborts, we need to mark the journal
1275 * superblock as being NULL to prevent the journal destroy from writing
1276 * back a bogus superblock.
1278 static void journal_fail_superblock (journal_t
*journal
)
1280 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1282 journal
->j_sb_buffer
= NULL
;
1286 * Given a journal_t structure, initialise the various fields for
1287 * startup of a new journaling session. We use this both when creating
1288 * a journal, and after recovering an old journal to reset it for
1292 static int journal_reset(journal_t
*journal
)
1294 journal_superblock_t
*sb
= journal
->j_superblock
;
1295 unsigned long long first
, last
;
1297 first
= be32_to_cpu(sb
->s_first
);
1298 last
= be32_to_cpu(sb
->s_maxlen
);
1299 if (first
+ JBD2_MIN_JOURNAL_BLOCKS
> last
+ 1) {
1300 printk(KERN_ERR
"JBD2: Journal too short (blocks %llu-%llu).\n",
1302 journal_fail_superblock(journal
);
1306 journal
->j_first
= first
;
1307 journal
->j_last
= last
;
1309 journal
->j_head
= first
;
1310 journal
->j_tail
= first
;
1311 journal
->j_free
= last
- first
;
1313 journal
->j_tail_sequence
= journal
->j_transaction_sequence
;
1314 journal
->j_commit_sequence
= journal
->j_transaction_sequence
- 1;
1315 journal
->j_commit_request
= journal
->j_commit_sequence
;
1317 journal
->j_max_transaction_buffers
= journal
->j_maxlen
/ 4;
1320 * As a special case, if the on-disk copy is already marked as needing
1321 * no recovery (s_start == 0), then we can safely defer the superblock
1322 * update until the next commit by setting JBD2_FLUSHED. This avoids
1323 * attempting a write to a potential-readonly device.
1325 if (sb
->s_start
== 0) {
1326 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1327 "(start %ld, seq %d, errno %d)\n",
1328 journal
->j_tail
, journal
->j_tail_sequence
,
1330 journal
->j_flags
|= JBD2_FLUSHED
;
1332 /* Lock here to make assertions happy... */
1333 mutex_lock(&journal
->j_checkpoint_mutex
);
1335 * Update log tail information. We use WRITE_FUA since new
1336 * transaction will start reusing journal space and so we
1337 * must make sure information about current log tail is on
1340 jbd2_journal_update_sb_log_tail(journal
,
1341 journal
->j_tail_sequence
,
1344 mutex_unlock(&journal
->j_checkpoint_mutex
);
1346 return jbd2_journal_start_thread(journal
);
1349 static int jbd2_write_superblock(journal_t
*journal
, int write_op
)
1351 struct buffer_head
*bh
= journal
->j_sb_buffer
;
1352 journal_superblock_t
*sb
= journal
->j_superblock
;
1355 trace_jbd2_write_superblock(journal
, write_op
);
1356 if (!(journal
->j_flags
& JBD2_BARRIER
))
1357 write_op
&= ~(REQ_FUA
| REQ_FLUSH
);
1359 if (buffer_write_io_error(bh
)) {
1361 * Oh, dear. A previous attempt to write the journal
1362 * superblock failed. This could happen because the
1363 * USB device was yanked out. Or it could happen to
1364 * be a transient write error and maybe the block will
1365 * be remapped. Nothing we can do but to retry the
1366 * write and hope for the best.
1368 printk(KERN_ERR
"JBD2: previous I/O error detected "
1369 "for journal superblock update for %s.\n",
1370 journal
->j_devname
);
1371 clear_buffer_write_io_error(bh
);
1372 set_buffer_uptodate(bh
);
1374 jbd2_superblock_csum_set(journal
, sb
);
1376 bh
->b_end_io
= end_buffer_write_sync
;
1377 ret
= submit_bh(write_op
, bh
);
1379 if (buffer_write_io_error(bh
)) {
1380 clear_buffer_write_io_error(bh
);
1381 set_buffer_uptodate(bh
);
1385 printk(KERN_ERR
"JBD2: Error %d detected when updating "
1386 "journal superblock for %s.\n", ret
,
1387 journal
->j_devname
);
1388 jbd2_journal_abort(journal
, ret
);
1395 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1396 * @journal: The journal to update.
1397 * @tail_tid: TID of the new transaction at the tail of the log
1398 * @tail_block: The first block of the transaction at the tail of the log
1399 * @write_op: With which operation should we write the journal sb
1401 * Update a journal's superblock information about log tail and write it to
1402 * disk, waiting for the IO to complete.
1404 int jbd2_journal_update_sb_log_tail(journal_t
*journal
, tid_t tail_tid
,
1405 unsigned long tail_block
, int write_op
)
1407 journal_superblock_t
*sb
= journal
->j_superblock
;
1410 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1411 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1412 tail_block
, tail_tid
);
1414 sb
->s_sequence
= cpu_to_be32(tail_tid
);
1415 sb
->s_start
= cpu_to_be32(tail_block
);
1417 ret
= jbd2_write_superblock(journal
, write_op
);
1421 /* Log is no longer empty */
1422 write_lock(&journal
->j_state_lock
);
1423 WARN_ON(!sb
->s_sequence
);
1424 journal
->j_flags
&= ~JBD2_FLUSHED
;
1425 write_unlock(&journal
->j_state_lock
);
1432 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1433 * @journal: The journal to update.
1434 * @write_op: With which operation should we write the journal sb
1436 * Update a journal's dynamic superblock fields to show that journal is empty.
1437 * Write updated superblock to disk waiting for IO to complete.
1439 static void jbd2_mark_journal_empty(journal_t
*journal
, int write_op
)
1441 journal_superblock_t
*sb
= journal
->j_superblock
;
1443 BUG_ON(!mutex_is_locked(&journal
->j_checkpoint_mutex
));
1444 read_lock(&journal
->j_state_lock
);
1445 /* Is it already empty? */
1446 if (sb
->s_start
== 0) {
1447 read_unlock(&journal
->j_state_lock
);
1450 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1451 journal
->j_tail_sequence
);
1453 sb
->s_sequence
= cpu_to_be32(journal
->j_tail_sequence
);
1454 sb
->s_start
= cpu_to_be32(0);
1455 read_unlock(&journal
->j_state_lock
);
1457 jbd2_write_superblock(journal
, write_op
);
1459 /* Log is no longer empty */
1460 write_lock(&journal
->j_state_lock
);
1461 journal
->j_flags
|= JBD2_FLUSHED
;
1462 write_unlock(&journal
->j_state_lock
);
1467 * jbd2_journal_update_sb_errno() - Update error in the journal.
1468 * @journal: The journal to update.
1470 * Update a journal's errno. Write updated superblock to disk waiting for IO
1473 void jbd2_journal_update_sb_errno(journal_t
*journal
)
1475 journal_superblock_t
*sb
= journal
->j_superblock
;
1477 read_lock(&journal
->j_state_lock
);
1478 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1480 sb
->s_errno
= cpu_to_be32(journal
->j_errno
);
1481 read_unlock(&journal
->j_state_lock
);
1483 jbd2_write_superblock(journal
, WRITE_FUA
);
1485 EXPORT_SYMBOL(jbd2_journal_update_sb_errno
);
1488 * Read the superblock for a given journal, performing initial
1489 * validation of the format.
1491 static int journal_get_superblock(journal_t
*journal
)
1493 struct buffer_head
*bh
;
1494 journal_superblock_t
*sb
;
1497 bh
= journal
->j_sb_buffer
;
1499 J_ASSERT(bh
!= NULL
);
1500 if (!buffer_uptodate(bh
)) {
1501 ll_rw_block(READ
, 1, &bh
);
1503 if (!buffer_uptodate(bh
)) {
1505 "JBD2: IO error reading journal superblock\n");
1510 if (buffer_verified(bh
))
1513 sb
= journal
->j_superblock
;
1517 if (sb
->s_header
.h_magic
!= cpu_to_be32(JBD2_MAGIC_NUMBER
) ||
1518 sb
->s_blocksize
!= cpu_to_be32(journal
->j_blocksize
)) {
1519 printk(KERN_WARNING
"JBD2: no valid journal superblock found\n");
1523 switch(be32_to_cpu(sb
->s_header
.h_blocktype
)) {
1524 case JBD2_SUPERBLOCK_V1
:
1525 journal
->j_format_version
= 1;
1527 case JBD2_SUPERBLOCK_V2
:
1528 journal
->j_format_version
= 2;
1531 printk(KERN_WARNING
"JBD2: unrecognised superblock format ID\n");
1535 if (be32_to_cpu(sb
->s_maxlen
) < journal
->j_maxlen
)
1536 journal
->j_maxlen
= be32_to_cpu(sb
->s_maxlen
);
1537 else if (be32_to_cpu(sb
->s_maxlen
) > journal
->j_maxlen
) {
1538 printk(KERN_WARNING
"JBD2: journal file too short\n");
1542 if (be32_to_cpu(sb
->s_first
) == 0 ||
1543 be32_to_cpu(sb
->s_first
) >= journal
->j_maxlen
) {
1545 "JBD2: Invalid start block of journal: %u\n",
1546 be32_to_cpu(sb
->s_first
));
1550 if (jbd2_has_feature_csum2(journal
) &&
1551 jbd2_has_feature_csum3(journal
)) {
1552 /* Can't have checksum v2 and v3 at the same time! */
1553 printk(KERN_ERR
"JBD2: Can't enable checksumming v2 and v3 "
1554 "at the same time!\n");
1558 if (jbd2_journal_has_csum_v2or3_feature(journal
) &&
1559 jbd2_has_feature_checksum(journal
)) {
1560 /* Can't have checksum v1 and v2 on at the same time! */
1561 printk(KERN_ERR
"JBD2: Can't enable checksumming v1 and v2/3 "
1562 "at the same time!\n");
1566 if (!jbd2_verify_csum_type(journal
, sb
)) {
1567 printk(KERN_ERR
"JBD2: Unknown checksum type\n");
1571 /* Load the checksum driver */
1572 if (jbd2_journal_has_csum_v2or3_feature(journal
)) {
1573 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c", 0, 0);
1574 if (IS_ERR(journal
->j_chksum_driver
)) {
1575 printk(KERN_ERR
"JBD2: Cannot load crc32c driver.\n");
1576 err
= PTR_ERR(journal
->j_chksum_driver
);
1577 journal
->j_chksum_driver
= NULL
;
1582 /* Check superblock checksum */
1583 if (!jbd2_superblock_csum_verify(journal
, sb
)) {
1584 printk(KERN_ERR
"JBD2: journal checksum error\n");
1589 /* Precompute checksum seed for all metadata */
1590 if (jbd2_journal_has_csum_v2or3(journal
))
1591 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0, sb
->s_uuid
,
1592 sizeof(sb
->s_uuid
));
1594 set_buffer_verified(bh
);
1599 journal_fail_superblock(journal
);
1604 * Load the on-disk journal superblock and read the key fields into the
1608 static int load_superblock(journal_t
*journal
)
1611 journal_superblock_t
*sb
;
1613 err
= journal_get_superblock(journal
);
1617 sb
= journal
->j_superblock
;
1619 journal
->j_tail_sequence
= be32_to_cpu(sb
->s_sequence
);
1620 journal
->j_tail
= be32_to_cpu(sb
->s_start
);
1621 journal
->j_first
= be32_to_cpu(sb
->s_first
);
1622 journal
->j_last
= be32_to_cpu(sb
->s_maxlen
);
1623 journal
->j_errno
= be32_to_cpu(sb
->s_errno
);
1630 * int jbd2_journal_load() - Read journal from disk.
1631 * @journal: Journal to act on.
1633 * Given a journal_t structure which tells us which disk blocks contain
1634 * a journal, read the journal from disk to initialise the in-memory
1637 int jbd2_journal_load(journal_t
*journal
)
1640 journal_superblock_t
*sb
;
1642 err
= load_superblock(journal
);
1646 sb
= journal
->j_superblock
;
1647 /* If this is a V2 superblock, then we have to check the
1648 * features flags on it. */
1650 if (journal
->j_format_version
>= 2) {
1651 if ((sb
->s_feature_ro_compat
&
1652 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES
)) ||
1653 (sb
->s_feature_incompat
&
1654 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES
))) {
1656 "JBD2: Unrecognised features on journal\n");
1662 * Create a slab for this blocksize
1664 err
= jbd2_journal_create_slab(be32_to_cpu(sb
->s_blocksize
));
1668 /* Let the recovery code check whether it needs to recover any
1669 * data from the journal. */
1670 if (jbd2_journal_recover(journal
))
1671 goto recovery_error
;
1673 if (journal
->j_failed_commit
) {
1674 printk(KERN_ERR
"JBD2: journal transaction %u on %s "
1675 "is corrupt.\n", journal
->j_failed_commit
,
1676 journal
->j_devname
);
1677 return -EFSCORRUPTED
;
1680 /* OK, we've finished with the dynamic journal bits:
1681 * reinitialise the dynamic contents of the superblock in memory
1682 * and reset them on disk. */
1683 if (journal_reset(journal
))
1684 goto recovery_error
;
1686 journal
->j_flags
&= ~JBD2_ABORT
;
1687 journal
->j_flags
|= JBD2_LOADED
;
1691 printk(KERN_WARNING
"JBD2: recovery failed\n");
1696 * void jbd2_journal_destroy() - Release a journal_t structure.
1697 * @journal: Journal to act on.
1699 * Release a journal_t structure once it is no longer in use by the
1701 * Return <0 if we couldn't clean up the journal.
1703 int jbd2_journal_destroy(journal_t
*journal
)
1707 /* Wait for the commit thread to wake up and die. */
1708 journal_kill_thread(journal
);
1710 /* Force a final log commit */
1711 if (journal
->j_running_transaction
)
1712 jbd2_journal_commit_transaction(journal
);
1714 /* Force any old transactions to disk */
1716 /* Totally anal locking here... */
1717 spin_lock(&journal
->j_list_lock
);
1718 while (journal
->j_checkpoint_transactions
!= NULL
) {
1719 spin_unlock(&journal
->j_list_lock
);
1720 mutex_lock(&journal
->j_checkpoint_mutex
);
1721 err
= jbd2_log_do_checkpoint(journal
);
1722 mutex_unlock(&journal
->j_checkpoint_mutex
);
1724 * If checkpointing failed, just free the buffers to avoid
1728 jbd2_journal_destroy_checkpoint(journal
);
1729 spin_lock(&journal
->j_list_lock
);
1732 spin_lock(&journal
->j_list_lock
);
1735 J_ASSERT(journal
->j_running_transaction
== NULL
);
1736 J_ASSERT(journal
->j_committing_transaction
== NULL
);
1737 J_ASSERT(journal
->j_checkpoint_transactions
== NULL
);
1738 spin_unlock(&journal
->j_list_lock
);
1740 if (journal
->j_sb_buffer
) {
1741 if (!is_journal_aborted(journal
)) {
1742 mutex_lock(&journal
->j_checkpoint_mutex
);
1744 write_lock(&journal
->j_state_lock
);
1745 journal
->j_tail_sequence
=
1746 ++journal
->j_transaction_sequence
;
1747 write_unlock(&journal
->j_state_lock
);
1749 jbd2_mark_journal_empty(journal
, WRITE_FLUSH_FUA
);
1750 mutex_unlock(&journal
->j_checkpoint_mutex
);
1753 brelse(journal
->j_sb_buffer
);
1756 if (journal
->j_proc_entry
)
1757 jbd2_stats_proc_exit(journal
);
1758 iput(journal
->j_inode
);
1759 if (journal
->j_revoke
)
1760 jbd2_journal_destroy_revoke(journal
);
1761 if (journal
->j_chksum_driver
)
1762 crypto_free_shash(journal
->j_chksum_driver
);
1763 kfree(journal
->j_wbuf
);
1771 *int jbd2_journal_check_used_features () - Check if features specified are used.
1772 * @journal: Journal to check.
1773 * @compat: bitmask of compatible features
1774 * @ro: bitmask of features that force read-only mount
1775 * @incompat: bitmask of incompatible features
1777 * Check whether the journal uses all of a given set of
1778 * features. Return true (non-zero) if it does.
1781 int jbd2_journal_check_used_features (journal_t
*journal
, unsigned long compat
,
1782 unsigned long ro
, unsigned long incompat
)
1784 journal_superblock_t
*sb
;
1786 if (!compat
&& !ro
&& !incompat
)
1788 /* Load journal superblock if it is not loaded yet. */
1789 if (journal
->j_format_version
== 0 &&
1790 journal_get_superblock(journal
) != 0)
1792 if (journal
->j_format_version
== 1)
1795 sb
= journal
->j_superblock
;
1797 if (((be32_to_cpu(sb
->s_feature_compat
) & compat
) == compat
) &&
1798 ((be32_to_cpu(sb
->s_feature_ro_compat
) & ro
) == ro
) &&
1799 ((be32_to_cpu(sb
->s_feature_incompat
) & incompat
) == incompat
))
1806 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1807 * @journal: Journal to check.
1808 * @compat: bitmask of compatible features
1809 * @ro: bitmask of features that force read-only mount
1810 * @incompat: bitmask of incompatible features
1812 * Check whether the journaling code supports the use of
1813 * all of a given set of features on this journal. Return true
1814 * (non-zero) if it can. */
1816 int jbd2_journal_check_available_features (journal_t
*journal
, unsigned long compat
,
1817 unsigned long ro
, unsigned long incompat
)
1819 if (!compat
&& !ro
&& !incompat
)
1822 /* We can support any known requested features iff the
1823 * superblock is in version 2. Otherwise we fail to support any
1824 * extended sb features. */
1826 if (journal
->j_format_version
!= 2)
1829 if ((compat
& JBD2_KNOWN_COMPAT_FEATURES
) == compat
&&
1830 (ro
& JBD2_KNOWN_ROCOMPAT_FEATURES
) == ro
&&
1831 (incompat
& JBD2_KNOWN_INCOMPAT_FEATURES
) == incompat
)
1838 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1839 * @journal: Journal to act on.
1840 * @compat: bitmask of compatible features
1841 * @ro: bitmask of features that force read-only mount
1842 * @incompat: bitmask of incompatible features
1844 * Mark a given journal feature as present on the
1845 * superblock. Returns true if the requested features could be set.
1849 int jbd2_journal_set_features (journal_t
*journal
, unsigned long compat
,
1850 unsigned long ro
, unsigned long incompat
)
1852 #define INCOMPAT_FEATURE_ON(f) \
1853 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1854 #define COMPAT_FEATURE_ON(f) \
1855 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1856 journal_superblock_t
*sb
;
1858 if (jbd2_journal_check_used_features(journal
, compat
, ro
, incompat
))
1861 if (!jbd2_journal_check_available_features(journal
, compat
, ro
, incompat
))
1864 /* If enabling v2 checksums, turn on v3 instead */
1865 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V2
) {
1866 incompat
&= ~JBD2_FEATURE_INCOMPAT_CSUM_V2
;
1867 incompat
|= JBD2_FEATURE_INCOMPAT_CSUM_V3
;
1870 /* Asking for checksumming v3 and v1? Only give them v3. */
1871 if (incompat
& JBD2_FEATURE_INCOMPAT_CSUM_V3
&&
1872 compat
& JBD2_FEATURE_COMPAT_CHECKSUM
)
1873 compat
&= ~JBD2_FEATURE_COMPAT_CHECKSUM
;
1875 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1876 compat
, ro
, incompat
);
1878 sb
= journal
->j_superblock
;
1880 /* If enabling v3 checksums, update superblock */
1881 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3
)) {
1882 sb
->s_checksum_type
= JBD2_CRC32C_CHKSUM
;
1883 sb
->s_feature_compat
&=
1884 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM
);
1886 /* Load the checksum driver */
1887 if (journal
->j_chksum_driver
== NULL
) {
1888 journal
->j_chksum_driver
= crypto_alloc_shash("crc32c",
1890 if (IS_ERR(journal
->j_chksum_driver
)) {
1891 printk(KERN_ERR
"JBD2: Cannot load crc32c "
1893 journal
->j_chksum_driver
= NULL
;
1897 /* Precompute checksum seed for all metadata */
1898 journal
->j_csum_seed
= jbd2_chksum(journal
, ~0,
1900 sizeof(sb
->s_uuid
));
1904 /* If enabling v1 checksums, downgrade superblock */
1905 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM
))
1906 sb
->s_feature_incompat
&=
1907 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2
|
1908 JBD2_FEATURE_INCOMPAT_CSUM_V3
);
1910 sb
->s_feature_compat
|= cpu_to_be32(compat
);
1911 sb
->s_feature_ro_compat
|= cpu_to_be32(ro
);
1912 sb
->s_feature_incompat
|= cpu_to_be32(incompat
);
1915 #undef COMPAT_FEATURE_ON
1916 #undef INCOMPAT_FEATURE_ON
1920 * jbd2_journal_clear_features () - Clear a given journal feature in the
1922 * @journal: Journal to act on.
1923 * @compat: bitmask of compatible features
1924 * @ro: bitmask of features that force read-only mount
1925 * @incompat: bitmask of incompatible features
1927 * Clear a given journal feature as present on the
1930 void jbd2_journal_clear_features(journal_t
*journal
, unsigned long compat
,
1931 unsigned long ro
, unsigned long incompat
)
1933 journal_superblock_t
*sb
;
1935 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1936 compat
, ro
, incompat
);
1938 sb
= journal
->j_superblock
;
1940 sb
->s_feature_compat
&= ~cpu_to_be32(compat
);
1941 sb
->s_feature_ro_compat
&= ~cpu_to_be32(ro
);
1942 sb
->s_feature_incompat
&= ~cpu_to_be32(incompat
);
1944 EXPORT_SYMBOL(jbd2_journal_clear_features
);
1947 * int jbd2_journal_flush () - Flush journal
1948 * @journal: Journal to act on.
1950 * Flush all data for a given journal to disk and empty the journal.
1951 * Filesystems can use this when remounting readonly to ensure that
1952 * recovery does not need to happen on remount.
1955 int jbd2_journal_flush(journal_t
*journal
)
1958 transaction_t
*transaction
= NULL
;
1960 write_lock(&journal
->j_state_lock
);
1962 /* Force everything buffered to the log... */
1963 if (journal
->j_running_transaction
) {
1964 transaction
= journal
->j_running_transaction
;
1965 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
1966 } else if (journal
->j_committing_transaction
)
1967 transaction
= journal
->j_committing_transaction
;
1969 /* Wait for the log commit to complete... */
1971 tid_t tid
= transaction
->t_tid
;
1973 write_unlock(&journal
->j_state_lock
);
1974 jbd2_log_wait_commit(journal
, tid
);
1976 write_unlock(&journal
->j_state_lock
);
1979 /* ...and flush everything in the log out to disk. */
1980 spin_lock(&journal
->j_list_lock
);
1981 while (!err
&& journal
->j_checkpoint_transactions
!= NULL
) {
1982 spin_unlock(&journal
->j_list_lock
);
1983 mutex_lock(&journal
->j_checkpoint_mutex
);
1984 err
= jbd2_log_do_checkpoint(journal
);
1985 mutex_unlock(&journal
->j_checkpoint_mutex
);
1986 spin_lock(&journal
->j_list_lock
);
1988 spin_unlock(&journal
->j_list_lock
);
1990 if (is_journal_aborted(journal
))
1993 mutex_lock(&journal
->j_checkpoint_mutex
);
1995 err
= jbd2_cleanup_journal_tail(journal
);
1997 mutex_unlock(&journal
->j_checkpoint_mutex
);
2003 /* Finally, mark the journal as really needing no recovery.
2004 * This sets s_start==0 in the underlying superblock, which is
2005 * the magic code for a fully-recovered superblock. Any future
2006 * commits of data to the journal will restore the current
2008 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
2009 mutex_unlock(&journal
->j_checkpoint_mutex
);
2010 write_lock(&journal
->j_state_lock
);
2011 J_ASSERT(!journal
->j_running_transaction
);
2012 J_ASSERT(!journal
->j_committing_transaction
);
2013 J_ASSERT(!journal
->j_checkpoint_transactions
);
2014 J_ASSERT(journal
->j_head
== journal
->j_tail
);
2015 J_ASSERT(journal
->j_tail_sequence
== journal
->j_transaction_sequence
);
2016 write_unlock(&journal
->j_state_lock
);
2022 * int jbd2_journal_wipe() - Wipe journal contents
2023 * @journal: Journal to act on.
2024 * @write: flag (see below)
2026 * Wipe out all of the contents of a journal, safely. This will produce
2027 * a warning if the journal contains any valid recovery information.
2028 * Must be called between journal_init_*() and jbd2_journal_load().
2030 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2031 * we merely suppress recovery.
2034 int jbd2_journal_wipe(journal_t
*journal
, int write
)
2038 J_ASSERT (!(journal
->j_flags
& JBD2_LOADED
));
2040 err
= load_superblock(journal
);
2044 if (!journal
->j_tail
)
2047 printk(KERN_WARNING
"JBD2: %s recovery information on journal\n",
2048 write
? "Clearing" : "Ignoring");
2050 err
= jbd2_journal_skip_recovery(journal
);
2052 /* Lock to make assertions happy... */
2053 mutex_lock(&journal
->j_checkpoint_mutex
);
2054 jbd2_mark_journal_empty(journal
, WRITE_FUA
);
2055 mutex_unlock(&journal
->j_checkpoint_mutex
);
2063 * Journal abort has very specific semantics, which we describe
2064 * for journal abort.
2066 * Two internal functions, which provide abort to the jbd layer
2071 * Quick version for internal journal use (doesn't lock the journal).
2072 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2073 * and don't attempt to make any other journal updates.
2075 void __jbd2_journal_abort_hard(journal_t
*journal
)
2077 transaction_t
*transaction
;
2079 if (journal
->j_flags
& JBD2_ABORT
)
2082 printk(KERN_ERR
"Aborting journal on device %s.\n",
2083 journal
->j_devname
);
2085 write_lock(&journal
->j_state_lock
);
2086 journal
->j_flags
|= JBD2_ABORT
;
2087 transaction
= journal
->j_running_transaction
;
2089 __jbd2_log_start_commit(journal
, transaction
->t_tid
);
2090 write_unlock(&journal
->j_state_lock
);
2093 /* Soft abort: record the abort error status in the journal superblock,
2094 * but don't do any other IO. */
2095 static void __journal_abort_soft (journal_t
*journal
, int errno
)
2097 if (journal
->j_flags
& JBD2_ABORT
)
2100 if (!journal
->j_errno
)
2101 journal
->j_errno
= errno
;
2103 __jbd2_journal_abort_hard(journal
);
2106 jbd2_journal_update_sb_errno(journal
);
2107 write_lock(&journal
->j_state_lock
);
2108 journal
->j_flags
|= JBD2_REC_ERR
;
2109 write_unlock(&journal
->j_state_lock
);
2114 * void jbd2_journal_abort () - Shutdown the journal immediately.
2115 * @journal: the journal to shutdown.
2116 * @errno: an error number to record in the journal indicating
2117 * the reason for the shutdown.
2119 * Perform a complete, immediate shutdown of the ENTIRE
2120 * journal (not of a single transaction). This operation cannot be
2121 * undone without closing and reopening the journal.
2123 * The jbd2_journal_abort function is intended to support higher level error
2124 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2127 * Journal abort has very specific semantics. Any existing dirty,
2128 * unjournaled buffers in the main filesystem will still be written to
2129 * disk by bdflush, but the journaling mechanism will be suspended
2130 * immediately and no further transaction commits will be honoured.
2132 * Any dirty, journaled buffers will be written back to disk without
2133 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2134 * filesystem, but we _do_ attempt to leave as much data as possible
2135 * behind for fsck to use for cleanup.
2137 * Any attempt to get a new transaction handle on a journal which is in
2138 * ABORT state will just result in an -EROFS error return. A
2139 * jbd2_journal_stop on an existing handle will return -EIO if we have
2140 * entered abort state during the update.
2142 * Recursive transactions are not disturbed by journal abort until the
2143 * final jbd2_journal_stop, which will receive the -EIO error.
2145 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2146 * which will be recorded (if possible) in the journal superblock. This
2147 * allows a client to record failure conditions in the middle of a
2148 * transaction without having to complete the transaction to record the
2149 * failure to disk. ext3_error, for example, now uses this
2152 * Errors which originate from within the journaling layer will NOT
2153 * supply an errno; a null errno implies that absolutely no further
2154 * writes are done to the journal (unless there are any already in
2159 void jbd2_journal_abort(journal_t
*journal
, int errno
)
2161 __journal_abort_soft(journal
, errno
);
2165 * int jbd2_journal_errno () - returns the journal's error state.
2166 * @journal: journal to examine.
2168 * This is the errno number set with jbd2_journal_abort(), the last
2169 * time the journal was mounted - if the journal was stopped
2170 * without calling abort this will be 0.
2172 * If the journal has been aborted on this mount time -EROFS will
2175 int jbd2_journal_errno(journal_t
*journal
)
2179 read_lock(&journal
->j_state_lock
);
2180 if (journal
->j_flags
& JBD2_ABORT
)
2183 err
= journal
->j_errno
;
2184 read_unlock(&journal
->j_state_lock
);
2189 * int jbd2_journal_clear_err () - clears the journal's error state
2190 * @journal: journal to act on.
2192 * An error must be cleared or acked to take a FS out of readonly
2195 int jbd2_journal_clear_err(journal_t
*journal
)
2199 write_lock(&journal
->j_state_lock
);
2200 if (journal
->j_flags
& JBD2_ABORT
)
2203 journal
->j_errno
= 0;
2204 write_unlock(&journal
->j_state_lock
);
2209 * void jbd2_journal_ack_err() - Ack journal err.
2210 * @journal: journal to act on.
2212 * An error must be cleared or acked to take a FS out of readonly
2215 void jbd2_journal_ack_err(journal_t
*journal
)
2217 write_lock(&journal
->j_state_lock
);
2218 if (journal
->j_errno
)
2219 journal
->j_flags
|= JBD2_ACK_ERR
;
2220 write_unlock(&journal
->j_state_lock
);
2223 int jbd2_journal_blocks_per_page(struct inode
*inode
)
2225 return 1 << (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
2229 * helper functions to deal with 32 or 64bit block numbers.
2231 size_t journal_tag_bytes(journal_t
*journal
)
2235 if (jbd2_has_feature_csum3(journal
))
2236 return sizeof(journal_block_tag3_t
);
2238 sz
= sizeof(journal_block_tag_t
);
2240 if (jbd2_has_feature_csum2(journal
))
2241 sz
+= sizeof(__u16
);
2243 if (jbd2_has_feature_64bit(journal
))
2246 return sz
- sizeof(__u32
);
2250 * JBD memory management
2252 * These functions are used to allocate block-sized chunks of memory
2253 * used for making copies of buffer_head data. Very often it will be
2254 * page-sized chunks of data, but sometimes it will be in
2255 * sub-page-size chunks. (For example, 16k pages on Power systems
2256 * with a 4k block file system.) For blocks smaller than a page, we
2257 * use a SLAB allocator. There are slab caches for each block size,
2258 * which are allocated at mount time, if necessary, and we only free
2259 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2260 * this reason we don't need to a mutex to protect access to
2261 * jbd2_slab[] allocating or releasing memory; only in
2262 * jbd2_journal_create_slab().
2264 #define JBD2_MAX_SLABS 8
2265 static struct kmem_cache
*jbd2_slab
[JBD2_MAX_SLABS
];
2267 static const char *jbd2_slab_names
[JBD2_MAX_SLABS
] = {
2268 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2269 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2273 static void jbd2_journal_destroy_slabs(void)
2277 for (i
= 0; i
< JBD2_MAX_SLABS
; i
++) {
2279 kmem_cache_destroy(jbd2_slab
[i
]);
2280 jbd2_slab
[i
] = NULL
;
2284 static int jbd2_journal_create_slab(size_t size
)
2286 static DEFINE_MUTEX(jbd2_slab_create_mutex
);
2287 int i
= order_base_2(size
) - 10;
2290 if (size
== PAGE_SIZE
)
2293 if (i
>= JBD2_MAX_SLABS
)
2296 if (unlikely(i
< 0))
2298 mutex_lock(&jbd2_slab_create_mutex
);
2300 mutex_unlock(&jbd2_slab_create_mutex
);
2301 return 0; /* Already created */
2304 slab_size
= 1 << (i
+10);
2305 jbd2_slab
[i
] = kmem_cache_create(jbd2_slab_names
[i
], slab_size
,
2306 slab_size
, 0, NULL
);
2307 mutex_unlock(&jbd2_slab_create_mutex
);
2308 if (!jbd2_slab
[i
]) {
2309 printk(KERN_EMERG
"JBD2: no memory for jbd2_slab cache\n");
2315 static struct kmem_cache
*get_slab(size_t size
)
2317 int i
= order_base_2(size
) - 10;
2319 BUG_ON(i
>= JBD2_MAX_SLABS
);
2320 if (unlikely(i
< 0))
2322 BUG_ON(jbd2_slab
[i
] == NULL
);
2323 return jbd2_slab
[i
];
2326 void *jbd2_alloc(size_t size
, gfp_t flags
)
2330 BUG_ON(size
& (size
-1)); /* Must be a power of 2 */
2332 flags
|= __GFP_REPEAT
;
2333 if (size
== PAGE_SIZE
)
2334 ptr
= (void *)__get_free_pages(flags
, 0);
2335 else if (size
> PAGE_SIZE
) {
2336 int order
= get_order(size
);
2339 ptr
= (void *)__get_free_pages(flags
, order
);
2341 ptr
= vmalloc(size
);
2343 ptr
= kmem_cache_alloc(get_slab(size
), flags
);
2345 /* Check alignment; SLUB has gotten this wrong in the past,
2346 * and this can lead to user data corruption! */
2347 BUG_ON(((unsigned long) ptr
) & (size
-1));
2352 void jbd2_free(void *ptr
, size_t size
)
2354 if (size
== PAGE_SIZE
) {
2355 free_pages((unsigned long)ptr
, 0);
2358 if (size
> PAGE_SIZE
) {
2359 int order
= get_order(size
);
2362 free_pages((unsigned long)ptr
, order
);
2367 kmem_cache_free(get_slab(size
), ptr
);
2371 * Journal_head storage management
2373 static struct kmem_cache
*jbd2_journal_head_cache
;
2374 #ifdef CONFIG_JBD2_DEBUG
2375 static atomic_t nr_journal_heads
= ATOMIC_INIT(0);
2378 static int jbd2_journal_init_journal_head_cache(void)
2382 J_ASSERT(jbd2_journal_head_cache
== NULL
);
2383 jbd2_journal_head_cache
= kmem_cache_create("jbd2_journal_head",
2384 sizeof(struct journal_head
),
2386 SLAB_TEMPORARY
| SLAB_DESTROY_BY_RCU
,
2389 if (!jbd2_journal_head_cache
) {
2391 printk(KERN_EMERG
"JBD2: no memory for journal_head cache\n");
2396 static void jbd2_journal_destroy_journal_head_cache(void)
2398 if (jbd2_journal_head_cache
) {
2399 kmem_cache_destroy(jbd2_journal_head_cache
);
2400 jbd2_journal_head_cache
= NULL
;
2405 * journal_head splicing and dicing
2407 static struct journal_head
*journal_alloc_journal_head(void)
2409 struct journal_head
*ret
;
2411 #ifdef CONFIG_JBD2_DEBUG
2412 atomic_inc(&nr_journal_heads
);
2414 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
, GFP_NOFS
);
2416 jbd_debug(1, "out of memory for journal_head\n");
2417 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__
);
2418 ret
= kmem_cache_zalloc(jbd2_journal_head_cache
,
2419 GFP_NOFS
| __GFP_NOFAIL
);
2424 static void journal_free_journal_head(struct journal_head
*jh
)
2426 #ifdef CONFIG_JBD2_DEBUG
2427 atomic_dec(&nr_journal_heads
);
2428 memset(jh
, JBD2_POISON_FREE
, sizeof(*jh
));
2430 kmem_cache_free(jbd2_journal_head_cache
, jh
);
2434 * A journal_head is attached to a buffer_head whenever JBD has an
2435 * interest in the buffer.
2437 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2438 * is set. This bit is tested in core kernel code where we need to take
2439 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2442 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2444 * When a buffer has its BH_JBD bit set it is immune from being released by
2445 * core kernel code, mainly via ->b_count.
2447 * A journal_head is detached from its buffer_head when the journal_head's
2448 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2449 * transaction (b_cp_transaction) hold their references to b_jcount.
2451 * Various places in the kernel want to attach a journal_head to a buffer_head
2452 * _before_ attaching the journal_head to a transaction. To protect the
2453 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2454 * journal_head's b_jcount refcount by one. The caller must call
2455 * jbd2_journal_put_journal_head() to undo this.
2457 * So the typical usage would be:
2459 * (Attach a journal_head if needed. Increments b_jcount)
2460 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2462 * (Get another reference for transaction)
2463 * jbd2_journal_grab_journal_head(bh);
2464 * jh->b_transaction = xxx;
2465 * (Put original reference)
2466 * jbd2_journal_put_journal_head(jh);
2470 * Give a buffer_head a journal_head.
2474 struct journal_head
*jbd2_journal_add_journal_head(struct buffer_head
*bh
)
2476 struct journal_head
*jh
;
2477 struct journal_head
*new_jh
= NULL
;
2480 if (!buffer_jbd(bh
))
2481 new_jh
= journal_alloc_journal_head();
2483 jbd_lock_bh_journal_head(bh
);
2484 if (buffer_jbd(bh
)) {
2488 (atomic_read(&bh
->b_count
) > 0) ||
2489 (bh
->b_page
&& bh
->b_page
->mapping
));
2492 jbd_unlock_bh_journal_head(bh
);
2497 new_jh
= NULL
; /* We consumed it */
2502 BUFFER_TRACE(bh
, "added journal_head");
2505 jbd_unlock_bh_journal_head(bh
);
2507 journal_free_journal_head(new_jh
);
2508 return bh
->b_private
;
2512 * Grab a ref against this buffer_head's journal_head. If it ended up not
2513 * having a journal_head, return NULL
2515 struct journal_head
*jbd2_journal_grab_journal_head(struct buffer_head
*bh
)
2517 struct journal_head
*jh
= NULL
;
2519 jbd_lock_bh_journal_head(bh
);
2520 if (buffer_jbd(bh
)) {
2524 jbd_unlock_bh_journal_head(bh
);
2528 static void __journal_remove_journal_head(struct buffer_head
*bh
)
2530 struct journal_head
*jh
= bh2jh(bh
);
2532 J_ASSERT_JH(jh
, jh
->b_jcount
>= 0);
2533 J_ASSERT_JH(jh
, jh
->b_transaction
== NULL
);
2534 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
2535 J_ASSERT_JH(jh
, jh
->b_cp_transaction
== NULL
);
2536 J_ASSERT_JH(jh
, jh
->b_jlist
== BJ_None
);
2537 J_ASSERT_BH(bh
, buffer_jbd(bh
));
2538 J_ASSERT_BH(bh
, jh2bh(jh
) == bh
);
2539 BUFFER_TRACE(bh
, "remove journal_head");
2540 if (jh
->b_frozen_data
) {
2541 printk(KERN_WARNING
"%s: freeing b_frozen_data\n", __func__
);
2542 jbd2_free(jh
->b_frozen_data
, bh
->b_size
);
2544 if (jh
->b_committed_data
) {
2545 printk(KERN_WARNING
"%s: freeing b_committed_data\n", __func__
);
2546 jbd2_free(jh
->b_committed_data
, bh
->b_size
);
2548 bh
->b_private
= NULL
;
2549 jh
->b_bh
= NULL
; /* debug, really */
2550 clear_buffer_jbd(bh
);
2551 journal_free_journal_head(jh
);
2555 * Drop a reference on the passed journal_head. If it fell to zero then
2556 * release the journal_head from the buffer_head.
2558 void jbd2_journal_put_journal_head(struct journal_head
*jh
)
2560 struct buffer_head
*bh
= jh2bh(jh
);
2562 jbd_lock_bh_journal_head(bh
);
2563 J_ASSERT_JH(jh
, jh
->b_jcount
> 0);
2565 if (!jh
->b_jcount
) {
2566 __journal_remove_journal_head(bh
);
2567 jbd_unlock_bh_journal_head(bh
);
2570 jbd_unlock_bh_journal_head(bh
);
2574 * Initialize jbd inode head
2576 void jbd2_journal_init_jbd_inode(struct jbd2_inode
*jinode
, struct inode
*inode
)
2578 jinode
->i_transaction
= NULL
;
2579 jinode
->i_next_transaction
= NULL
;
2580 jinode
->i_vfs_inode
= inode
;
2581 jinode
->i_flags
= 0;
2582 INIT_LIST_HEAD(&jinode
->i_list
);
2586 * Function to be called before we start removing inode from memory (i.e.,
2587 * clear_inode() is a fine place to be called from). It removes inode from
2588 * transaction's lists.
2590 void jbd2_journal_release_jbd_inode(journal_t
*journal
,
2591 struct jbd2_inode
*jinode
)
2596 spin_lock(&journal
->j_list_lock
);
2597 /* Is commit writing out inode - we have to wait */
2598 if (jinode
->i_flags
& JI_COMMIT_RUNNING
) {
2599 wait_queue_head_t
*wq
;
2600 DEFINE_WAIT_BIT(wait
, &jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2601 wq
= bit_waitqueue(&jinode
->i_flags
, __JI_COMMIT_RUNNING
);
2602 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2603 spin_unlock(&journal
->j_list_lock
);
2605 finish_wait(wq
, &wait
.wait
);
2609 if (jinode
->i_transaction
) {
2610 list_del(&jinode
->i_list
);
2611 jinode
->i_transaction
= NULL
;
2613 spin_unlock(&journal
->j_list_lock
);
2617 #ifdef CONFIG_PROC_FS
2619 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2621 static void __init
jbd2_create_jbd_stats_proc_entry(void)
2623 proc_jbd2_stats
= proc_mkdir(JBD2_STATS_PROC_NAME
, NULL
);
2626 static void __exit
jbd2_remove_jbd_stats_proc_entry(void)
2628 if (proc_jbd2_stats
)
2629 remove_proc_entry(JBD2_STATS_PROC_NAME
, NULL
);
2634 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2635 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2639 struct kmem_cache
*jbd2_handle_cache
, *jbd2_inode_cache
;
2641 static int __init
jbd2_journal_init_handle_cache(void)
2643 jbd2_handle_cache
= KMEM_CACHE(jbd2_journal_handle
, SLAB_TEMPORARY
);
2644 if (jbd2_handle_cache
== NULL
) {
2645 printk(KERN_EMERG
"JBD2: failed to create handle cache\n");
2648 jbd2_inode_cache
= KMEM_CACHE(jbd2_inode
, 0);
2649 if (jbd2_inode_cache
== NULL
) {
2650 printk(KERN_EMERG
"JBD2: failed to create inode cache\n");
2651 kmem_cache_destroy(jbd2_handle_cache
);
2657 static void jbd2_journal_destroy_handle_cache(void)
2659 if (jbd2_handle_cache
)
2660 kmem_cache_destroy(jbd2_handle_cache
);
2661 if (jbd2_inode_cache
)
2662 kmem_cache_destroy(jbd2_inode_cache
);
2667 * Module startup and shutdown
2670 static int __init
journal_init_caches(void)
2674 ret
= jbd2_journal_init_revoke_caches();
2676 ret
= jbd2_journal_init_journal_head_cache();
2678 ret
= jbd2_journal_init_handle_cache();
2680 ret
= jbd2_journal_init_transaction_cache();
2684 static void jbd2_journal_destroy_caches(void)
2686 jbd2_journal_destroy_revoke_caches();
2687 jbd2_journal_destroy_journal_head_cache();
2688 jbd2_journal_destroy_handle_cache();
2689 jbd2_journal_destroy_transaction_cache();
2690 jbd2_journal_destroy_slabs();
2693 static int __init
journal_init(void)
2697 BUILD_BUG_ON(sizeof(struct journal_superblock_s
) != 1024);
2699 ret
= journal_init_caches();
2701 jbd2_create_jbd_stats_proc_entry();
2703 jbd2_journal_destroy_caches();
2708 static void __exit
journal_exit(void)
2710 #ifdef CONFIG_JBD2_DEBUG
2711 int n
= atomic_read(&nr_journal_heads
);
2713 printk(KERN_ERR
"JBD2: leaked %d journal_heads!\n", n
);
2715 jbd2_remove_jbd_stats_proc_entry();
2716 jbd2_journal_destroy_caches();
2719 MODULE_LICENSE("GPL");
2720 module_init(journal_init
);
2721 module_exit(journal_exit
);