HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / block / blk-core.c
blobdc4119a1e122994000ff881767d85f95574589c0
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/block.h>
40 #include "blk.h"
41 #include "blk-mq.h"
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
49 DEFINE_IDA(blk_queue_ida);
52 * For the allocated request tables
54 struct kmem_cache *request_cachep = NULL;
57 * For queue allocation
59 struct kmem_cache *blk_requestq_cachep;
62 * Controlling structure to kblockd
64 static struct workqueue_struct *kblockd_workqueue;
66 static void blk_clear_congested(struct request_list *rl, int sync)
68 #ifdef CONFIG_CGROUP_WRITEBACK
69 clear_wb_congested(rl->blkg->wb_congested, sync);
70 #else
72 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
73 * flip its congestion state for events on other blkcgs.
75 if (rl == &rl->q->root_rl)
76 clear_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
77 #endif
80 static void blk_set_congested(struct request_list *rl, int sync)
82 #ifdef CONFIG_CGROUP_WRITEBACK
83 set_wb_congested(rl->blkg->wb_congested, sync);
84 #else
85 /* see blk_clear_congested() */
86 if (rl == &rl->q->root_rl)
87 set_wb_congested(rl->q->backing_dev_info.wb.congested, sync);
88 #endif
91 void blk_queue_congestion_threshold(struct request_queue *q)
93 int nr;
95 nr = q->nr_requests - (q->nr_requests / 8) + 1;
96 if (nr > q->nr_requests)
97 nr = q->nr_requests;
98 q->nr_congestion_on = nr;
100 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
101 if (nr < 1)
102 nr = 1;
103 q->nr_congestion_off = nr;
107 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
108 * @bdev: device
110 * Locates the passed device's request queue and returns the address of its
111 * backing_dev_info. This function can only be called if @bdev is opened
112 * and the return value is never NULL.
114 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
116 struct request_queue *q = bdev_get_queue(bdev);
118 return &q->backing_dev_info;
120 EXPORT_SYMBOL(blk_get_backing_dev_info);
122 void blk_rq_init(struct request_queue *q, struct request *rq)
124 memset(rq, 0, sizeof(*rq));
126 INIT_LIST_HEAD(&rq->queuelist);
127 INIT_LIST_HEAD(&rq->timeout_list);
128 rq->cpu = -1;
129 rq->q = q;
130 rq->__sector = (sector_t) -1;
131 INIT_HLIST_NODE(&rq->hash);
132 RB_CLEAR_NODE(&rq->rb_node);
133 rq->cmd = rq->__cmd;
134 rq->cmd_len = BLK_MAX_CDB;
135 rq->tag = -1;
136 rq->start_time = jiffies;
137 set_start_time_ns(rq);
138 rq->part = NULL;
140 EXPORT_SYMBOL(blk_rq_init);
142 static void req_bio_endio(struct request *rq, struct bio *bio,
143 unsigned int nbytes, int error)
145 if (error)
146 bio->bi_error = error;
148 if (unlikely(rq->cmd_flags & REQ_QUIET))
149 bio_set_flag(bio, BIO_QUIET);
151 bio_advance(bio, nbytes);
153 /* don't actually finish bio if it's part of flush sequence */
154 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
155 bio_endio(bio);
158 void blk_dump_rq_flags(struct request *rq, char *msg)
160 int bit;
162 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
163 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
164 (unsigned long long) rq->cmd_flags);
166 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
167 (unsigned long long)blk_rq_pos(rq),
168 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
169 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
170 rq->bio, rq->biotail, blk_rq_bytes(rq));
172 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
173 printk(KERN_INFO " cdb: ");
174 for (bit = 0; bit < BLK_MAX_CDB; bit++)
175 printk("%02x ", rq->cmd[bit]);
176 printk("\n");
179 EXPORT_SYMBOL(blk_dump_rq_flags);
181 static void blk_delay_work(struct work_struct *work)
183 struct request_queue *q;
185 q = container_of(work, struct request_queue, delay_work.work);
186 spin_lock_irq(q->queue_lock);
187 __blk_run_queue(q);
188 spin_unlock_irq(q->queue_lock);
192 * blk_delay_queue - restart queueing after defined interval
193 * @q: The &struct request_queue in question
194 * @msecs: Delay in msecs
196 * Description:
197 * Sometimes queueing needs to be postponed for a little while, to allow
198 * resources to come back. This function will make sure that queueing is
199 * restarted around the specified time. Queue lock must be held.
201 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
203 if (likely(!blk_queue_dead(q)))
204 queue_delayed_work(kblockd_workqueue, &q->delay_work,
205 msecs_to_jiffies(msecs));
207 EXPORT_SYMBOL(blk_delay_queue);
210 * blk_start_queue_async - asynchronously restart a previously stopped queue
211 * @q: The &struct request_queue in question
213 * Description:
214 * blk_start_queue_async() will clear the stop flag on the queue, and
215 * ensure that the request_fn for the queue is run from an async
216 * context.
218 void blk_start_queue_async(struct request_queue *q)
220 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
221 blk_run_queue_async(q);
223 EXPORT_SYMBOL(blk_start_queue_async);
226 * blk_start_queue - restart a previously stopped queue
227 * @q: The &struct request_queue in question
229 * Description:
230 * blk_start_queue() will clear the stop flag on the queue, and call
231 * the request_fn for the queue if it was in a stopped state when
232 * entered. Also see blk_stop_queue(). Queue lock must be held.
234 void blk_start_queue(struct request_queue *q)
236 WARN_ON(!in_interrupt() && !irqs_disabled());
238 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
239 __blk_run_queue(q);
241 EXPORT_SYMBOL(blk_start_queue);
244 * blk_stop_queue - stop a queue
245 * @q: The &struct request_queue in question
247 * Description:
248 * The Linux block layer assumes that a block driver will consume all
249 * entries on the request queue when the request_fn strategy is called.
250 * Often this will not happen, because of hardware limitations (queue
251 * depth settings). If a device driver gets a 'queue full' response,
252 * or if it simply chooses not to queue more I/O at one point, it can
253 * call this function to prevent the request_fn from being called until
254 * the driver has signalled it's ready to go again. This happens by calling
255 * blk_start_queue() to restart queue operations. Queue lock must be held.
257 void blk_stop_queue(struct request_queue *q)
259 cancel_delayed_work(&q->delay_work);
260 queue_flag_set(QUEUE_FLAG_STOPPED, q);
262 EXPORT_SYMBOL(blk_stop_queue);
265 * blk_sync_queue - cancel any pending callbacks on a queue
266 * @q: the queue
268 * Description:
269 * The block layer may perform asynchronous callback activity
270 * on a queue, such as calling the unplug function after a timeout.
271 * A block device may call blk_sync_queue to ensure that any
272 * such activity is cancelled, thus allowing it to release resources
273 * that the callbacks might use. The caller must already have made sure
274 * that its ->make_request_fn will not re-add plugging prior to calling
275 * this function.
277 * This function does not cancel any asynchronous activity arising
278 * out of elevator or throttling code. That would require elevator_exit()
279 * and blkcg_exit_queue() to be called with queue lock initialized.
282 void blk_sync_queue(struct request_queue *q)
284 del_timer_sync(&q->timeout);
286 if (q->mq_ops) {
287 struct blk_mq_hw_ctx *hctx;
288 int i;
290 queue_for_each_hw_ctx(q, hctx, i) {
291 cancel_delayed_work_sync(&hctx->run_work);
292 cancel_delayed_work_sync(&hctx->delay_work);
294 } else {
295 cancel_delayed_work_sync(&q->delay_work);
298 EXPORT_SYMBOL(blk_sync_queue);
301 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
302 * @q: The queue to run
304 * Description:
305 * Invoke request handling on a queue if there are any pending requests.
306 * May be used to restart request handling after a request has completed.
307 * This variant runs the queue whether or not the queue has been
308 * stopped. Must be called with the queue lock held and interrupts
309 * disabled. See also @blk_run_queue.
311 inline void __blk_run_queue_uncond(struct request_queue *q)
313 if (unlikely(blk_queue_dead(q)))
314 return;
317 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
318 * the queue lock internally. As a result multiple threads may be
319 * running such a request function concurrently. Keep track of the
320 * number of active request_fn invocations such that blk_drain_queue()
321 * can wait until all these request_fn calls have finished.
323 q->request_fn_active++;
324 q->request_fn(q);
325 q->request_fn_active--;
327 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
330 * __blk_run_queue - run a single device queue
331 * @q: The queue to run
333 * Description:
334 * See @blk_run_queue. This variant must be called with the queue lock
335 * held and interrupts disabled.
337 void __blk_run_queue(struct request_queue *q)
339 if (unlikely(blk_queue_stopped(q)))
340 return;
342 __blk_run_queue_uncond(q);
344 EXPORT_SYMBOL(__blk_run_queue);
347 * blk_run_queue_async - run a single device queue in workqueue context
348 * @q: The queue to run
350 * Description:
351 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
352 * of us. The caller must hold the queue lock.
354 void blk_run_queue_async(struct request_queue *q)
356 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
357 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
359 EXPORT_SYMBOL(blk_run_queue_async);
362 * blk_run_queue - run a single device queue
363 * @q: The queue to run
365 * Description:
366 * Invoke request handling on this queue, if it has pending work to do.
367 * May be used to restart queueing when a request has completed.
369 void blk_run_queue(struct request_queue *q)
371 unsigned long flags;
373 spin_lock_irqsave(q->queue_lock, flags);
374 __blk_run_queue(q);
375 spin_unlock_irqrestore(q->queue_lock, flags);
377 EXPORT_SYMBOL(blk_run_queue);
379 void blk_put_queue(struct request_queue *q)
381 kobject_put(&q->kobj);
383 EXPORT_SYMBOL(blk_put_queue);
386 * __blk_drain_queue - drain requests from request_queue
387 * @q: queue to drain
388 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
390 * Drain requests from @q. If @drain_all is set, all requests are drained.
391 * If not, only ELVPRIV requests are drained. The caller is responsible
392 * for ensuring that no new requests which need to be drained are queued.
394 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
395 __releases(q->queue_lock)
396 __acquires(q->queue_lock)
398 int i;
400 lockdep_assert_held(q->queue_lock);
402 while (true) {
403 bool drain = false;
406 * The caller might be trying to drain @q before its
407 * elevator is initialized.
409 if (q->elevator)
410 elv_drain_elevator(q);
412 blkcg_drain_queue(q);
415 * This function might be called on a queue which failed
416 * driver init after queue creation or is not yet fully
417 * active yet. Some drivers (e.g. fd and loop) get unhappy
418 * in such cases. Kick queue iff dispatch queue has
419 * something on it and @q has request_fn set.
421 if (!list_empty(&q->queue_head) && q->request_fn)
422 __blk_run_queue(q);
424 drain |= q->nr_rqs_elvpriv;
425 drain |= q->request_fn_active;
428 * Unfortunately, requests are queued at and tracked from
429 * multiple places and there's no single counter which can
430 * be drained. Check all the queues and counters.
432 if (drain_all) {
433 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
434 drain |= !list_empty(&q->queue_head);
435 for (i = 0; i < 2; i++) {
436 drain |= q->nr_rqs[i];
437 drain |= q->in_flight[i];
438 if (fq)
439 drain |= !list_empty(&fq->flush_queue[i]);
443 if (!drain)
444 break;
446 spin_unlock_irq(q->queue_lock);
448 msleep(10);
450 spin_lock_irq(q->queue_lock);
454 * With queue marked dead, any woken up waiter will fail the
455 * allocation path, so the wakeup chaining is lost and we're
456 * left with hung waiters. We need to wake up those waiters.
458 if (q->request_fn) {
459 struct request_list *rl;
461 blk_queue_for_each_rl(rl, q)
462 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
463 wake_up_all(&rl->wait[i]);
468 * blk_queue_bypass_start - enter queue bypass mode
469 * @q: queue of interest
471 * In bypass mode, only the dispatch FIFO queue of @q is used. This
472 * function makes @q enter bypass mode and drains all requests which were
473 * throttled or issued before. On return, it's guaranteed that no request
474 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
475 * inside queue or RCU read lock.
477 void blk_queue_bypass_start(struct request_queue *q)
479 spin_lock_irq(q->queue_lock);
480 q->bypass_depth++;
481 queue_flag_set(QUEUE_FLAG_BYPASS, q);
482 spin_unlock_irq(q->queue_lock);
485 * Queues start drained. Skip actual draining till init is
486 * complete. This avoids lenghty delays during queue init which
487 * can happen many times during boot.
489 if (blk_queue_init_done(q)) {
490 spin_lock_irq(q->queue_lock);
491 __blk_drain_queue(q, false);
492 spin_unlock_irq(q->queue_lock);
494 /* ensure blk_queue_bypass() is %true inside RCU read lock */
495 synchronize_rcu();
498 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
501 * blk_queue_bypass_end - leave queue bypass mode
502 * @q: queue of interest
504 * Leave bypass mode and restore the normal queueing behavior.
506 void blk_queue_bypass_end(struct request_queue *q)
508 spin_lock_irq(q->queue_lock);
509 if (!--q->bypass_depth)
510 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
511 WARN_ON_ONCE(q->bypass_depth < 0);
512 spin_unlock_irq(q->queue_lock);
514 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
516 void blk_set_queue_dying(struct request_queue *q)
518 spin_lock_irq(q->queue_lock);
519 queue_flag_set(QUEUE_FLAG_DYING, q);
520 spin_unlock_irq(q->queue_lock);
522 if (q->mq_ops)
523 blk_mq_wake_waiters(q);
524 else {
525 struct request_list *rl;
527 blk_queue_for_each_rl(rl, q) {
528 if (rl->rq_pool) {
529 wake_up_all(&rl->wait[BLK_RW_SYNC]);
530 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
535 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
538 * blk_cleanup_queue - shutdown a request queue
539 * @q: request queue to shutdown
541 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
542 * put it. All future requests will be failed immediately with -ENODEV.
544 void blk_cleanup_queue(struct request_queue *q)
546 spinlock_t *lock = q->queue_lock;
548 /* mark @q DYING, no new request or merges will be allowed afterwards */
549 mutex_lock(&q->sysfs_lock);
550 blk_set_queue_dying(q);
551 spin_lock_irq(lock);
554 * A dying queue is permanently in bypass mode till released. Note
555 * that, unlike blk_queue_bypass_start(), we aren't performing
556 * synchronize_rcu() after entering bypass mode to avoid the delay
557 * as some drivers create and destroy a lot of queues while
558 * probing. This is still safe because blk_release_queue() will be
559 * called only after the queue refcnt drops to zero and nothing,
560 * RCU or not, would be traversing the queue by then.
562 q->bypass_depth++;
563 queue_flag_set(QUEUE_FLAG_BYPASS, q);
565 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
566 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
567 queue_flag_set(QUEUE_FLAG_DYING, q);
568 spin_unlock_irq(lock);
569 mutex_unlock(&q->sysfs_lock);
572 * Drain all requests queued before DYING marking. Set DEAD flag to
573 * prevent that q->request_fn() gets invoked after draining finished.
575 blk_freeze_queue(q);
576 spin_lock_irq(lock);
577 if (!q->mq_ops)
578 __blk_drain_queue(q, true);
579 queue_flag_set(QUEUE_FLAG_DEAD, q);
580 spin_unlock_irq(lock);
582 /* for synchronous bio-based driver finish in-flight integrity i/o */
583 blk_flush_integrity();
585 /* @q won't process any more request, flush async actions */
586 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
587 blk_sync_queue(q);
589 if (q->mq_ops)
590 blk_mq_free_queue(q);
591 percpu_ref_exit(&q->q_usage_counter);
593 spin_lock_irq(lock);
594 if (q->queue_lock != &q->__queue_lock)
595 q->queue_lock = &q->__queue_lock;
596 spin_unlock_irq(lock);
598 bdi_unregister(&q->backing_dev_info);
600 /* @q is and will stay empty, shutdown and put */
601 blk_put_queue(q);
603 EXPORT_SYMBOL(blk_cleanup_queue);
605 /* Allocate memory local to the request queue */
606 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
608 int nid = (int)(long)data;
609 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
612 static void free_request_struct(void *element, void *unused)
614 kmem_cache_free(request_cachep, element);
617 int blk_init_rl(struct request_list *rl, struct request_queue *q,
618 gfp_t gfp_mask)
620 if (unlikely(rl->rq_pool))
621 return 0;
623 rl->q = q;
624 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
625 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
626 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
627 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
629 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
630 free_request_struct,
631 (void *)(long)q->node, gfp_mask,
632 q->node);
633 if (!rl->rq_pool)
634 return -ENOMEM;
636 return 0;
639 void blk_exit_rl(struct request_list *rl)
641 if (rl->rq_pool)
642 mempool_destroy(rl->rq_pool);
645 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
647 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
649 EXPORT_SYMBOL(blk_alloc_queue);
651 int blk_queue_enter(struct request_queue *q, gfp_t gfp)
653 while (true) {
654 if (percpu_ref_tryget_live(&q->q_usage_counter))
655 return 0;
657 if (!gfpflags_allow_blocking(gfp))
658 return -EBUSY;
660 wait_event(q->mq_freeze_wq,
661 !atomic_read(&q->mq_freeze_depth) ||
662 blk_queue_dying(q));
663 if (blk_queue_dying(q))
664 return -ENODEV;
668 void blk_queue_exit(struct request_queue *q)
670 percpu_ref_put(&q->q_usage_counter);
673 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
675 struct request_queue *q =
676 container_of(ref, struct request_queue, q_usage_counter);
678 wake_up_all(&q->mq_freeze_wq);
681 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
683 struct request_queue *q;
684 int err;
686 q = kmem_cache_alloc_node(blk_requestq_cachep,
687 gfp_mask | __GFP_ZERO, node_id);
688 if (!q)
689 return NULL;
691 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
692 if (q->id < 0)
693 goto fail_q;
695 q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
696 if (!q->bio_split)
697 goto fail_id;
699 q->backing_dev_info.ra_pages =
700 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
701 q->backing_dev_info.capabilities = BDI_CAP_CGROUP_WRITEBACK;
702 q->backing_dev_info.name = "block";
703 q->node = node_id;
705 err = bdi_init(&q->backing_dev_info);
706 if (err)
707 goto fail_split;
709 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
710 laptop_mode_timer_fn, (unsigned long) q);
711 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
712 INIT_LIST_HEAD(&q->queue_head);
713 INIT_LIST_HEAD(&q->timeout_list);
714 INIT_LIST_HEAD(&q->icq_list);
715 #ifdef CONFIG_BLK_CGROUP
716 INIT_LIST_HEAD(&q->blkg_list);
717 #endif
718 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
720 kobject_init(&q->kobj, &blk_queue_ktype);
722 #ifdef CONFIG_BLK_DEV_IO_TRACE
723 mutex_init(&q->blk_trace_mutex);
724 #endif
725 mutex_init(&q->sysfs_lock);
726 spin_lock_init(&q->__queue_lock);
729 * By default initialize queue_lock to internal lock and driver can
730 * override it later if need be.
732 q->queue_lock = &q->__queue_lock;
735 * A queue starts its life with bypass turned on to avoid
736 * unnecessary bypass on/off overhead and nasty surprises during
737 * init. The initial bypass will be finished when the queue is
738 * registered by blk_register_queue().
740 q->bypass_depth = 1;
741 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
743 init_waitqueue_head(&q->mq_freeze_wq);
746 * Init percpu_ref in atomic mode so that it's faster to shutdown.
747 * See blk_register_queue() for details.
749 if (percpu_ref_init(&q->q_usage_counter,
750 blk_queue_usage_counter_release,
751 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
752 goto fail_bdi;
754 if (blkcg_init_queue(q))
755 goto fail_ref;
757 return q;
759 fail_ref:
760 percpu_ref_exit(&q->q_usage_counter);
761 fail_bdi:
762 bdi_destroy(&q->backing_dev_info);
763 fail_split:
764 bioset_free(q->bio_split);
765 fail_id:
766 ida_simple_remove(&blk_queue_ida, q->id);
767 fail_q:
768 kmem_cache_free(blk_requestq_cachep, q);
769 return NULL;
771 EXPORT_SYMBOL(blk_alloc_queue_node);
774 * blk_init_queue - prepare a request queue for use with a block device
775 * @rfn: The function to be called to process requests that have been
776 * placed on the queue.
777 * @lock: Request queue spin lock
779 * Description:
780 * If a block device wishes to use the standard request handling procedures,
781 * which sorts requests and coalesces adjacent requests, then it must
782 * call blk_init_queue(). The function @rfn will be called when there
783 * are requests on the queue that need to be processed. If the device
784 * supports plugging, then @rfn may not be called immediately when requests
785 * are available on the queue, but may be called at some time later instead.
786 * Plugged queues are generally unplugged when a buffer belonging to one
787 * of the requests on the queue is needed, or due to memory pressure.
789 * @rfn is not required, or even expected, to remove all requests off the
790 * queue, but only as many as it can handle at a time. If it does leave
791 * requests on the queue, it is responsible for arranging that the requests
792 * get dealt with eventually.
794 * The queue spin lock must be held while manipulating the requests on the
795 * request queue; this lock will be taken also from interrupt context, so irq
796 * disabling is needed for it.
798 * Function returns a pointer to the initialized request queue, or %NULL if
799 * it didn't succeed.
801 * Note:
802 * blk_init_queue() must be paired with a blk_cleanup_queue() call
803 * when the block device is deactivated (such as at module unload).
806 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
808 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
810 EXPORT_SYMBOL(blk_init_queue);
812 struct request_queue *
813 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
815 struct request_queue *uninit_q, *q;
817 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
818 if (!uninit_q)
819 return NULL;
821 q = blk_init_allocated_queue(uninit_q, rfn, lock);
822 if (!q)
823 blk_cleanup_queue(uninit_q);
825 return q;
827 EXPORT_SYMBOL(blk_init_queue_node);
829 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
831 struct request_queue *
832 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
833 spinlock_t *lock)
835 if (!q)
836 return NULL;
838 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
839 if (!q->fq)
840 return NULL;
842 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
843 goto fail;
845 q->request_fn = rfn;
846 q->prep_rq_fn = NULL;
847 q->unprep_rq_fn = NULL;
848 q->queue_flags |= QUEUE_FLAG_DEFAULT;
850 /* Override internal queue lock with supplied lock pointer */
851 if (lock)
852 q->queue_lock = lock;
855 * This also sets hw/phys segments, boundary and size
857 blk_queue_make_request(q, blk_queue_bio);
859 q->sg_reserved_size = INT_MAX;
861 /* Protect q->elevator from elevator_change */
862 mutex_lock(&q->sysfs_lock);
864 /* init elevator */
865 if (elevator_init(q, NULL)) {
866 mutex_unlock(&q->sysfs_lock);
867 goto fail;
870 mutex_unlock(&q->sysfs_lock);
872 return q;
874 fail:
875 blk_free_flush_queue(q->fq);
876 q->fq = NULL;
877 return NULL;
879 EXPORT_SYMBOL(blk_init_allocated_queue);
881 bool blk_get_queue(struct request_queue *q)
883 if (likely(!blk_queue_dying(q))) {
884 __blk_get_queue(q);
885 return true;
888 return false;
890 EXPORT_SYMBOL(blk_get_queue);
892 static inline void blk_free_request(struct request_list *rl, struct request *rq)
894 if (rq->cmd_flags & REQ_ELVPRIV) {
895 elv_put_request(rl->q, rq);
896 if (rq->elv.icq)
897 put_io_context(rq->elv.icq->ioc);
900 mempool_free(rq, rl->rq_pool);
904 * ioc_batching returns true if the ioc is a valid batching request and
905 * should be given priority access to a request.
907 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
909 if (!ioc)
910 return 0;
913 * Make sure the process is able to allocate at least 1 request
914 * even if the batch times out, otherwise we could theoretically
915 * lose wakeups.
917 return ioc->nr_batch_requests == q->nr_batching ||
918 (ioc->nr_batch_requests > 0
919 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
923 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
924 * will cause the process to be a "batcher" on all queues in the system. This
925 * is the behaviour we want though - once it gets a wakeup it should be given
926 * a nice run.
928 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
930 if (!ioc || ioc_batching(q, ioc))
931 return;
933 ioc->nr_batch_requests = q->nr_batching;
934 ioc->last_waited = jiffies;
937 static void __freed_request(struct request_list *rl, int sync)
939 struct request_queue *q = rl->q;
941 if (rl->count[sync] < queue_congestion_off_threshold(q))
942 blk_clear_congested(rl, sync);
944 if (rl->count[sync] + 1 <= q->nr_requests) {
945 if (waitqueue_active(&rl->wait[sync]))
946 wake_up(&rl->wait[sync]);
948 blk_clear_rl_full(rl, sync);
953 * A request has just been released. Account for it, update the full and
954 * congestion status, wake up any waiters. Called under q->queue_lock.
956 static void freed_request(struct request_list *rl, unsigned int flags)
958 struct request_queue *q = rl->q;
959 int sync = rw_is_sync(flags);
961 q->nr_rqs[sync]--;
962 rl->count[sync]--;
963 if (flags & REQ_ELVPRIV)
964 q->nr_rqs_elvpriv--;
966 __freed_request(rl, sync);
968 if (unlikely(rl->starved[sync ^ 1]))
969 __freed_request(rl, sync ^ 1);
972 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
974 struct request_list *rl;
975 int on_thresh, off_thresh;
977 spin_lock_irq(q->queue_lock);
978 q->nr_requests = nr;
979 blk_queue_congestion_threshold(q);
980 on_thresh = queue_congestion_on_threshold(q);
981 off_thresh = queue_congestion_off_threshold(q);
983 blk_queue_for_each_rl(rl, q) {
984 if (rl->count[BLK_RW_SYNC] >= on_thresh)
985 blk_set_congested(rl, BLK_RW_SYNC);
986 else if (rl->count[BLK_RW_SYNC] < off_thresh)
987 blk_clear_congested(rl, BLK_RW_SYNC);
989 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
990 blk_set_congested(rl, BLK_RW_ASYNC);
991 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
992 blk_clear_congested(rl, BLK_RW_ASYNC);
994 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
995 blk_set_rl_full(rl, BLK_RW_SYNC);
996 } else {
997 blk_clear_rl_full(rl, BLK_RW_SYNC);
998 wake_up(&rl->wait[BLK_RW_SYNC]);
1001 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1002 blk_set_rl_full(rl, BLK_RW_ASYNC);
1003 } else {
1004 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1005 wake_up(&rl->wait[BLK_RW_ASYNC]);
1009 spin_unlock_irq(q->queue_lock);
1010 return 0;
1014 * Determine if elevator data should be initialized when allocating the
1015 * request associated with @bio.
1017 static bool blk_rq_should_init_elevator(struct bio *bio)
1019 if (!bio)
1020 return true;
1023 * Flush requests do not use the elevator so skip initialization.
1024 * This allows a request to share the flush and elevator data.
1026 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
1027 return false;
1029 return true;
1033 * rq_ioc - determine io_context for request allocation
1034 * @bio: request being allocated is for this bio (can be %NULL)
1036 * Determine io_context to use for request allocation for @bio. May return
1037 * %NULL if %current->io_context doesn't exist.
1039 static struct io_context *rq_ioc(struct bio *bio)
1041 #ifdef CONFIG_BLK_CGROUP
1042 if (bio && bio->bi_ioc)
1043 return bio->bi_ioc;
1044 #endif
1045 return current->io_context;
1049 * __get_request - get a free request
1050 * @rl: request list to allocate from
1051 * @rw_flags: RW and SYNC flags
1052 * @bio: bio to allocate request for (can be %NULL)
1053 * @gfp_mask: allocation mask
1055 * Get a free request from @q. This function may fail under memory
1056 * pressure or if @q is dead.
1058 * Must be called with @q->queue_lock held and,
1059 * Returns ERR_PTR on failure, with @q->queue_lock held.
1060 * Returns request pointer on success, with @q->queue_lock *not held*.
1062 static struct request *__get_request(struct request_list *rl, int rw_flags,
1063 struct bio *bio, gfp_t gfp_mask)
1065 struct request_queue *q = rl->q;
1066 struct request *rq;
1067 struct elevator_type *et = q->elevator->type;
1068 struct io_context *ioc = rq_ioc(bio);
1069 struct io_cq *icq = NULL;
1070 const bool is_sync = rw_is_sync(rw_flags) != 0;
1071 int may_queue;
1073 if (unlikely(blk_queue_dying(q)))
1074 return ERR_PTR(-ENODEV);
1076 may_queue = elv_may_queue(q, rw_flags);
1077 if (may_queue == ELV_MQUEUE_NO)
1078 goto rq_starved;
1080 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1081 if (rl->count[is_sync]+1 >= q->nr_requests) {
1083 * The queue will fill after this allocation, so set
1084 * it as full, and mark this process as "batching".
1085 * This process will be allowed to complete a batch of
1086 * requests, others will be blocked.
1088 if (!blk_rl_full(rl, is_sync)) {
1089 ioc_set_batching(q, ioc);
1090 blk_set_rl_full(rl, is_sync);
1091 } else {
1092 if (may_queue != ELV_MQUEUE_MUST
1093 && !ioc_batching(q, ioc)) {
1095 * The queue is full and the allocating
1096 * process is not a "batcher", and not
1097 * exempted by the IO scheduler
1099 return ERR_PTR(-ENOMEM);
1103 blk_set_congested(rl, is_sync);
1107 * Only allow batching queuers to allocate up to 50% over the defined
1108 * limit of requests, otherwise we could have thousands of requests
1109 * allocated with any setting of ->nr_requests
1111 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1112 return ERR_PTR(-ENOMEM);
1114 q->nr_rqs[is_sync]++;
1115 rl->count[is_sync]++;
1116 rl->starved[is_sync] = 0;
1119 * Decide whether the new request will be managed by elevator. If
1120 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
1121 * prevent the current elevator from being destroyed until the new
1122 * request is freed. This guarantees icq's won't be destroyed and
1123 * makes creating new ones safe.
1125 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1126 * it will be created after releasing queue_lock.
1128 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1129 rw_flags |= REQ_ELVPRIV;
1130 q->nr_rqs_elvpriv++;
1131 if (et->icq_cache && ioc)
1132 icq = ioc_lookup_icq(ioc, q);
1135 if (blk_queue_io_stat(q))
1136 rw_flags |= REQ_IO_STAT;
1137 spin_unlock_irq(q->queue_lock);
1139 /* allocate and init request */
1140 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1141 if (!rq)
1142 goto fail_alloc;
1144 blk_rq_init(q, rq);
1145 blk_rq_set_rl(rq, rl);
1146 rq->cmd_flags = rw_flags | REQ_ALLOCED;
1148 /* init elvpriv */
1149 if (rw_flags & REQ_ELVPRIV) {
1150 if (unlikely(et->icq_cache && !icq)) {
1151 if (ioc)
1152 icq = ioc_create_icq(ioc, q, gfp_mask);
1153 if (!icq)
1154 goto fail_elvpriv;
1157 rq->elv.icq = icq;
1158 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1159 goto fail_elvpriv;
1161 /* @rq->elv.icq holds io_context until @rq is freed */
1162 if (icq)
1163 get_io_context(icq->ioc);
1165 out:
1167 * ioc may be NULL here, and ioc_batching will be false. That's
1168 * OK, if the queue is under the request limit then requests need
1169 * not count toward the nr_batch_requests limit. There will always
1170 * be some limit enforced by BLK_BATCH_TIME.
1172 if (ioc_batching(q, ioc))
1173 ioc->nr_batch_requests--;
1175 trace_block_getrq(q, bio, rw_flags & 1);
1176 return rq;
1178 fail_elvpriv:
1180 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1181 * and may fail indefinitely under memory pressure and thus
1182 * shouldn't stall IO. Treat this request as !elvpriv. This will
1183 * disturb iosched and blkcg but weird is bettern than dead.
1185 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1186 __func__, dev_name(q->backing_dev_info.dev));
1188 rq->cmd_flags &= ~REQ_ELVPRIV;
1189 rq->elv.icq = NULL;
1191 spin_lock_irq(q->queue_lock);
1192 q->nr_rqs_elvpriv--;
1193 spin_unlock_irq(q->queue_lock);
1194 goto out;
1196 fail_alloc:
1198 * Allocation failed presumably due to memory. Undo anything we
1199 * might have messed up.
1201 * Allocating task should really be put onto the front of the wait
1202 * queue, but this is pretty rare.
1204 spin_lock_irq(q->queue_lock);
1205 freed_request(rl, rw_flags);
1208 * in the very unlikely event that allocation failed and no
1209 * requests for this direction was pending, mark us starved so that
1210 * freeing of a request in the other direction will notice
1211 * us. another possible fix would be to split the rq mempool into
1212 * READ and WRITE
1214 rq_starved:
1215 if (unlikely(rl->count[is_sync] == 0))
1216 rl->starved[is_sync] = 1;
1217 return ERR_PTR(-ENOMEM);
1221 * get_request - get a free request
1222 * @q: request_queue to allocate request from
1223 * @rw_flags: RW and SYNC flags
1224 * @bio: bio to allocate request for (can be %NULL)
1225 * @gfp_mask: allocation mask
1227 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1228 * this function keeps retrying under memory pressure and fails iff @q is dead.
1230 * Must be called with @q->queue_lock held and,
1231 * Returns ERR_PTR on failure, with @q->queue_lock held.
1232 * Returns request pointer on success, with @q->queue_lock *not held*.
1234 static struct request *get_request(struct request_queue *q, int rw_flags,
1235 struct bio *bio, gfp_t gfp_mask)
1237 const bool is_sync = rw_is_sync(rw_flags) != 0;
1238 DEFINE_WAIT(wait);
1239 struct request_list *rl;
1240 struct request *rq;
1242 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1243 retry:
1244 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1245 if (!IS_ERR(rq))
1246 return rq;
1248 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1249 blk_put_rl(rl);
1250 return rq;
1253 /* wait on @rl and retry */
1254 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1255 TASK_UNINTERRUPTIBLE);
1257 trace_block_sleeprq(q, bio, rw_flags & 1);
1259 spin_unlock_irq(q->queue_lock);
1260 io_schedule();
1263 * After sleeping, we become a "batching" process and will be able
1264 * to allocate at least one request, and up to a big batch of them
1265 * for a small period time. See ioc_batching, ioc_set_batching
1267 ioc_set_batching(q, current->io_context);
1269 spin_lock_irq(q->queue_lock);
1270 finish_wait(&rl->wait[is_sync], &wait);
1272 goto retry;
1275 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1276 gfp_t gfp_mask)
1278 struct request *rq;
1280 BUG_ON(rw != READ && rw != WRITE);
1282 /* create ioc upfront */
1283 create_io_context(gfp_mask, q->node);
1285 spin_lock_irq(q->queue_lock);
1286 rq = get_request(q, rw, NULL, gfp_mask);
1287 if (IS_ERR(rq))
1288 spin_unlock_irq(q->queue_lock);
1289 /* q->queue_lock is unlocked at this point */
1291 return rq;
1294 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1296 if (q->mq_ops)
1297 return blk_mq_alloc_request(q, rw, gfp_mask, false);
1298 else
1299 return blk_old_get_request(q, rw, gfp_mask);
1301 EXPORT_SYMBOL(blk_get_request);
1304 * blk_make_request - given a bio, allocate a corresponding struct request.
1305 * @q: target request queue
1306 * @bio: The bio describing the memory mappings that will be submitted for IO.
1307 * It may be a chained-bio properly constructed by block/bio layer.
1308 * @gfp_mask: gfp flags to be used for memory allocation
1310 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1311 * type commands. Where the struct request needs to be farther initialized by
1312 * the caller. It is passed a &struct bio, which describes the memory info of
1313 * the I/O transfer.
1315 * The caller of blk_make_request must make sure that bi_io_vec
1316 * are set to describe the memory buffers. That bio_data_dir() will return
1317 * the needed direction of the request. (And all bio's in the passed bio-chain
1318 * are properly set accordingly)
1320 * If called under none-sleepable conditions, mapped bio buffers must not
1321 * need bouncing, by calling the appropriate masked or flagged allocator,
1322 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1323 * BUG.
1325 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1326 * given to how you allocate bios. In particular, you cannot use
1327 * __GFP_DIRECT_RECLAIM for anything but the first bio in the chain. Otherwise
1328 * you risk waiting for IO completion of a bio that hasn't been submitted yet,
1329 * thus resulting in a deadlock. Alternatively bios should be allocated using
1330 * bio_kmalloc() instead of bio_alloc(), as that avoids the mempool deadlock.
1331 * If possible a big IO should be split into smaller parts when allocation
1332 * fails. Partial allocation should not be an error, or you risk a live-lock.
1334 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1335 gfp_t gfp_mask)
1337 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1339 if (IS_ERR(rq))
1340 return rq;
1342 blk_rq_set_block_pc(rq);
1344 for_each_bio(bio) {
1345 struct bio *bounce_bio = bio;
1346 int ret;
1348 blk_queue_bounce(q, &bounce_bio);
1349 ret = blk_rq_append_bio(q, rq, bounce_bio);
1350 if (unlikely(ret)) {
1351 blk_put_request(rq);
1352 return ERR_PTR(ret);
1356 return rq;
1358 EXPORT_SYMBOL(blk_make_request);
1361 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1362 * @rq: request to be initialized
1365 void blk_rq_set_block_pc(struct request *rq)
1367 rq->cmd_type = REQ_TYPE_BLOCK_PC;
1368 rq->__data_len = 0;
1369 rq->__sector = (sector_t) -1;
1370 rq->bio = rq->biotail = NULL;
1371 memset(rq->__cmd, 0, sizeof(rq->__cmd));
1373 EXPORT_SYMBOL(blk_rq_set_block_pc);
1376 * blk_requeue_request - put a request back on queue
1377 * @q: request queue where request should be inserted
1378 * @rq: request to be inserted
1380 * Description:
1381 * Drivers often keep queueing requests until the hardware cannot accept
1382 * more, when that condition happens we need to put the request back
1383 * on the queue. Must be called with queue lock held.
1385 void blk_requeue_request(struct request_queue *q, struct request *rq)
1387 blk_delete_timer(rq);
1388 blk_clear_rq_complete(rq);
1389 trace_block_rq_requeue(q, rq);
1391 if (rq->cmd_flags & REQ_QUEUED)
1392 blk_queue_end_tag(q, rq);
1394 BUG_ON(blk_queued_rq(rq));
1396 elv_requeue_request(q, rq);
1398 EXPORT_SYMBOL(blk_requeue_request);
1400 static void add_acct_request(struct request_queue *q, struct request *rq,
1401 int where)
1403 blk_account_io_start(rq, true);
1404 __elv_add_request(q, rq, where);
1407 static void part_round_stats_single(int cpu, struct hd_struct *part,
1408 unsigned long now)
1410 int inflight;
1412 if (now == part->stamp)
1413 return;
1415 inflight = part_in_flight(part);
1416 if (inflight) {
1417 __part_stat_add(cpu, part, time_in_queue,
1418 inflight * (now - part->stamp));
1419 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1421 part->stamp = now;
1425 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1426 * @cpu: cpu number for stats access
1427 * @part: target partition
1429 * The average IO queue length and utilisation statistics are maintained
1430 * by observing the current state of the queue length and the amount of
1431 * time it has been in this state for.
1433 * Normally, that accounting is done on IO completion, but that can result
1434 * in more than a second's worth of IO being accounted for within any one
1435 * second, leading to >100% utilisation. To deal with that, we call this
1436 * function to do a round-off before returning the results when reading
1437 * /proc/diskstats. This accounts immediately for all queue usage up to
1438 * the current jiffies and restarts the counters again.
1440 void part_round_stats(int cpu, struct hd_struct *part)
1442 unsigned long now = jiffies;
1444 if (part->partno)
1445 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1446 part_round_stats_single(cpu, part, now);
1448 EXPORT_SYMBOL_GPL(part_round_stats);
1450 #ifdef CONFIG_PM
1451 static void blk_pm_put_request(struct request *rq)
1453 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1454 pm_runtime_mark_last_busy(rq->q->dev);
1456 #else
1457 static inline void blk_pm_put_request(struct request *rq) {}
1458 #endif
1461 * queue lock must be held
1463 void __blk_put_request(struct request_queue *q, struct request *req)
1465 if (unlikely(!q))
1466 return;
1468 if (q->mq_ops) {
1469 blk_mq_free_request(req);
1470 return;
1473 blk_pm_put_request(req);
1475 elv_completed_request(q, req);
1477 /* this is a bio leak */
1478 WARN_ON(req->bio != NULL);
1481 * Request may not have originated from ll_rw_blk. if not,
1482 * it didn't come out of our reserved rq pools
1484 if (req->cmd_flags & REQ_ALLOCED) {
1485 unsigned int flags = req->cmd_flags;
1486 struct request_list *rl = blk_rq_rl(req);
1488 BUG_ON(!list_empty(&req->queuelist));
1489 BUG_ON(ELV_ON_HASH(req));
1491 blk_free_request(rl, req);
1492 freed_request(rl, flags);
1493 blk_put_rl(rl);
1496 EXPORT_SYMBOL_GPL(__blk_put_request);
1498 void blk_put_request(struct request *req)
1500 struct request_queue *q = req->q;
1502 if (q->mq_ops)
1503 blk_mq_free_request(req);
1504 else {
1505 unsigned long flags;
1507 spin_lock_irqsave(q->queue_lock, flags);
1508 __blk_put_request(q, req);
1509 spin_unlock_irqrestore(q->queue_lock, flags);
1512 EXPORT_SYMBOL(blk_put_request);
1515 * blk_add_request_payload - add a payload to a request
1516 * @rq: request to update
1517 * @page: page backing the payload
1518 * @len: length of the payload.
1520 * This allows to later add a payload to an already submitted request by
1521 * a block driver. The driver needs to take care of freeing the payload
1522 * itself.
1524 * Note that this is a quite horrible hack and nothing but handling of
1525 * discard requests should ever use it.
1527 void blk_add_request_payload(struct request *rq, struct page *page,
1528 unsigned int len)
1530 struct bio *bio = rq->bio;
1532 bio->bi_io_vec->bv_page = page;
1533 bio->bi_io_vec->bv_offset = 0;
1534 bio->bi_io_vec->bv_len = len;
1536 bio->bi_iter.bi_size = len;
1537 bio->bi_vcnt = 1;
1538 bio->bi_phys_segments = 1;
1540 rq->__data_len = rq->resid_len = len;
1541 rq->nr_phys_segments = 1;
1543 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1545 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1546 struct bio *bio)
1548 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1550 if (!ll_back_merge_fn(q, req, bio))
1551 return false;
1553 trace_block_bio_backmerge(q, req, bio);
1555 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1556 blk_rq_set_mixed_merge(req);
1558 req->biotail->bi_next = bio;
1559 req->biotail = bio;
1560 req->__data_len += bio->bi_iter.bi_size;
1561 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1563 blk_account_io_start(req, false);
1564 return true;
1567 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1568 struct bio *bio)
1570 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1572 if (!ll_front_merge_fn(q, req, bio))
1573 return false;
1575 trace_block_bio_frontmerge(q, req, bio);
1577 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1578 blk_rq_set_mixed_merge(req);
1580 bio->bi_next = req->bio;
1581 req->bio = bio;
1583 req->__sector = bio->bi_iter.bi_sector;
1584 req->__data_len += bio->bi_iter.bi_size;
1585 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1587 blk_account_io_start(req, false);
1588 return true;
1592 * blk_attempt_plug_merge - try to merge with %current's plugged list
1593 * @q: request_queue new bio is being queued at
1594 * @bio: new bio being queued
1595 * @request_count: out parameter for number of traversed plugged requests
1596 * @same_queue_rq: pointer to &struct request that gets filled in when
1597 * another request associated with @q is found on the plug list
1598 * (optional, may be %NULL)
1600 * Determine whether @bio being queued on @q can be merged with a request
1601 * on %current's plugged list. Returns %true if merge was successful,
1602 * otherwise %false.
1604 * Plugging coalesces IOs from the same issuer for the same purpose without
1605 * going through @q->queue_lock. As such it's more of an issuing mechanism
1606 * than scheduling, and the request, while may have elvpriv data, is not
1607 * added on the elevator at this point. In addition, we don't have
1608 * reliable access to the elevator outside queue lock. Only check basic
1609 * merging parameters without querying the elevator.
1611 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1613 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1614 unsigned int *request_count,
1615 struct request **same_queue_rq)
1617 struct blk_plug *plug;
1618 struct request *rq;
1619 bool ret = false;
1620 struct list_head *plug_list;
1622 plug = current->plug;
1623 if (!plug)
1624 goto out;
1625 *request_count = 0;
1627 if (q->mq_ops)
1628 plug_list = &plug->mq_list;
1629 else
1630 plug_list = &plug->list;
1632 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1633 int el_ret;
1635 if (rq->q == q) {
1636 (*request_count)++;
1638 * Only blk-mq multiple hardware queues case checks the
1639 * rq in the same queue, there should be only one such
1640 * rq in a queue
1642 if (same_queue_rq)
1643 *same_queue_rq = rq;
1646 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1647 continue;
1649 el_ret = blk_try_merge(rq, bio);
1650 if (el_ret == ELEVATOR_BACK_MERGE) {
1651 ret = bio_attempt_back_merge(q, rq, bio);
1652 if (ret)
1653 break;
1654 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1655 ret = bio_attempt_front_merge(q, rq, bio);
1656 if (ret)
1657 break;
1660 out:
1661 return ret;
1664 unsigned int blk_plug_queued_count(struct request_queue *q)
1666 struct blk_plug *plug;
1667 struct request *rq;
1668 struct list_head *plug_list;
1669 unsigned int ret = 0;
1671 plug = current->plug;
1672 if (!plug)
1673 goto out;
1675 if (q->mq_ops)
1676 plug_list = &plug->mq_list;
1677 else
1678 plug_list = &plug->list;
1680 list_for_each_entry(rq, plug_list, queuelist) {
1681 if (rq->q == q)
1682 ret++;
1684 out:
1685 return ret;
1688 void init_request_from_bio(struct request *req, struct bio *bio)
1690 req->cmd_type = REQ_TYPE_FS;
1692 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1693 if (bio->bi_rw & REQ_RAHEAD)
1694 req->cmd_flags |= REQ_FAILFAST_MASK;
1696 req->errors = 0;
1697 req->__sector = bio->bi_iter.bi_sector;
1698 req->ioprio = bio_prio(bio);
1699 blk_rq_bio_prep(req->q, req, bio);
1702 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1704 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1705 struct blk_plug *plug;
1706 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1707 struct request *req;
1708 unsigned int request_count = 0;
1711 * low level driver can indicate that it wants pages above a
1712 * certain limit bounced to low memory (ie for highmem, or even
1713 * ISA dma in theory)
1715 blk_queue_bounce(q, &bio);
1717 blk_queue_split(q, &bio, q->bio_split);
1719 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1720 bio->bi_error = -EIO;
1721 bio_endio(bio);
1722 return BLK_QC_T_NONE;
1725 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1726 spin_lock_irq(q->queue_lock);
1727 where = ELEVATOR_INSERT_FLUSH;
1728 goto get_rq;
1732 * Check if we can merge with the plugged list before grabbing
1733 * any locks.
1735 if (!blk_queue_nomerges(q)) {
1736 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1737 return BLK_QC_T_NONE;
1738 } else
1739 request_count = blk_plug_queued_count(q);
1741 spin_lock_irq(q->queue_lock);
1743 el_ret = elv_merge(q, &req, bio);
1744 if (el_ret == ELEVATOR_BACK_MERGE) {
1745 if (bio_attempt_back_merge(q, req, bio)) {
1746 elv_bio_merged(q, req, bio);
1747 if (!attempt_back_merge(q, req))
1748 elv_merged_request(q, req, el_ret);
1749 goto out_unlock;
1751 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1752 if (bio_attempt_front_merge(q, req, bio)) {
1753 elv_bio_merged(q, req, bio);
1754 if (!attempt_front_merge(q, req))
1755 elv_merged_request(q, req, el_ret);
1756 goto out_unlock;
1760 get_rq:
1762 * This sync check and mask will be re-done in init_request_from_bio(),
1763 * but we need to set it earlier to expose the sync flag to the
1764 * rq allocator and io schedulers.
1766 rw_flags = bio_data_dir(bio);
1767 if (sync)
1768 rw_flags |= REQ_SYNC;
1771 * Grab a free request. This is might sleep but can not fail.
1772 * Returns with the queue unlocked.
1774 req = get_request(q, rw_flags, bio, GFP_NOIO);
1775 if (IS_ERR(req)) {
1776 bio->bi_error = PTR_ERR(req);
1777 bio_endio(bio);
1778 goto out_unlock;
1782 * After dropping the lock and possibly sleeping here, our request
1783 * may now be mergeable after it had proven unmergeable (above).
1784 * We don't worry about that case for efficiency. It won't happen
1785 * often, and the elevators are able to handle it.
1787 init_request_from_bio(req, bio);
1789 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1790 req->cpu = raw_smp_processor_id();
1792 plug = current->plug;
1793 if (plug) {
1795 * If this is the first request added after a plug, fire
1796 * of a plug trace.
1798 if (!request_count)
1799 trace_block_plug(q);
1800 else {
1801 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1802 blk_flush_plug_list(plug, false);
1803 trace_block_plug(q);
1806 list_add_tail(&req->queuelist, &plug->list);
1807 blk_account_io_start(req, true);
1808 } else {
1809 spin_lock_irq(q->queue_lock);
1810 add_acct_request(q, req, where);
1811 __blk_run_queue(q);
1812 out_unlock:
1813 spin_unlock_irq(q->queue_lock);
1816 return BLK_QC_T_NONE;
1820 * If bio->bi_dev is a partition, remap the location
1822 static inline void blk_partition_remap(struct bio *bio)
1824 struct block_device *bdev = bio->bi_bdev;
1826 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1827 struct hd_struct *p = bdev->bd_part;
1829 bio->bi_iter.bi_sector += p->start_sect;
1830 bio->bi_bdev = bdev->bd_contains;
1832 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1833 bdev->bd_dev,
1834 bio->bi_iter.bi_sector - p->start_sect);
1838 static void handle_bad_sector(struct bio *bio)
1840 char b[BDEVNAME_SIZE];
1842 printk(KERN_INFO "attempt to access beyond end of device\n");
1843 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1844 bdevname(bio->bi_bdev, b),
1845 bio->bi_rw,
1846 (unsigned long long)bio_end_sector(bio),
1847 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1850 #ifdef CONFIG_FAIL_MAKE_REQUEST
1852 static DECLARE_FAULT_ATTR(fail_make_request);
1854 static int __init setup_fail_make_request(char *str)
1856 return setup_fault_attr(&fail_make_request, str);
1858 __setup("fail_make_request=", setup_fail_make_request);
1860 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1862 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1865 static int __init fail_make_request_debugfs(void)
1867 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1868 NULL, &fail_make_request);
1870 return PTR_ERR_OR_ZERO(dir);
1873 late_initcall(fail_make_request_debugfs);
1875 #else /* CONFIG_FAIL_MAKE_REQUEST */
1877 static inline bool should_fail_request(struct hd_struct *part,
1878 unsigned int bytes)
1880 return false;
1883 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1886 * Check whether this bio extends beyond the end of the device.
1888 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1890 sector_t maxsector;
1892 if (!nr_sectors)
1893 return 0;
1895 /* Test device or partition size, when known. */
1896 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1897 if (maxsector) {
1898 sector_t sector = bio->bi_iter.bi_sector;
1900 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1902 * This may well happen - the kernel calls bread()
1903 * without checking the size of the device, e.g., when
1904 * mounting a device.
1906 handle_bad_sector(bio);
1907 return 1;
1911 return 0;
1914 static noinline_for_stack bool
1915 generic_make_request_checks(struct bio *bio)
1917 struct request_queue *q;
1918 int nr_sectors = bio_sectors(bio);
1919 int err = -EIO;
1920 char b[BDEVNAME_SIZE];
1921 struct hd_struct *part;
1923 might_sleep();
1925 if (bio_check_eod(bio, nr_sectors))
1926 goto end_io;
1928 q = bdev_get_queue(bio->bi_bdev);
1929 if (unlikely(!q)) {
1930 printk(KERN_ERR
1931 "generic_make_request: Trying to access "
1932 "nonexistent block-device %s (%Lu)\n",
1933 bdevname(bio->bi_bdev, b),
1934 (long long) bio->bi_iter.bi_sector);
1935 goto end_io;
1938 part = bio->bi_bdev->bd_part;
1939 if (should_fail_request(part, bio->bi_iter.bi_size) ||
1940 should_fail_request(&part_to_disk(part)->part0,
1941 bio->bi_iter.bi_size))
1942 goto end_io;
1945 * If this device has partitions, remap block n
1946 * of partition p to block n+start(p) of the disk.
1948 blk_partition_remap(bio);
1950 if (bio_check_eod(bio, nr_sectors))
1951 goto end_io;
1954 * Filter flush bio's early so that make_request based
1955 * drivers without flush support don't have to worry
1956 * about them.
1958 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1959 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1960 if (!nr_sectors) {
1961 err = 0;
1962 goto end_io;
1966 if ((bio->bi_rw & REQ_DISCARD) &&
1967 (!blk_queue_discard(q) ||
1968 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1969 err = -EOPNOTSUPP;
1970 goto end_io;
1973 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1974 err = -EOPNOTSUPP;
1975 goto end_io;
1979 * Various block parts want %current->io_context and lazy ioc
1980 * allocation ends up trading a lot of pain for a small amount of
1981 * memory. Just allocate it upfront. This may fail and block
1982 * layer knows how to live with it.
1984 create_io_context(GFP_ATOMIC, q->node);
1986 if (!blkcg_bio_issue_check(q, bio))
1987 return false;
1989 trace_block_bio_queue(q, bio);
1990 return true;
1992 end_io:
1993 bio->bi_error = err;
1994 bio_endio(bio);
1995 return false;
1999 * generic_make_request - hand a buffer to its device driver for I/O
2000 * @bio: The bio describing the location in memory and on the device.
2002 * generic_make_request() is used to make I/O requests of block
2003 * devices. It is passed a &struct bio, which describes the I/O that needs
2004 * to be done.
2006 * generic_make_request() does not return any status. The
2007 * success/failure status of the request, along with notification of
2008 * completion, is delivered asynchronously through the bio->bi_end_io
2009 * function described (one day) else where.
2011 * The caller of generic_make_request must make sure that bi_io_vec
2012 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2013 * set to describe the device address, and the
2014 * bi_end_io and optionally bi_private are set to describe how
2015 * completion notification should be signaled.
2017 * generic_make_request and the drivers it calls may use bi_next if this
2018 * bio happens to be merged with someone else, and may resubmit the bio to
2019 * a lower device by calling into generic_make_request recursively, which
2020 * means the bio should NOT be touched after the call to ->make_request_fn.
2022 blk_qc_t generic_make_request(struct bio *bio)
2025 * bio_list_on_stack[0] contains bios submitted by the current
2026 * make_request_fn.
2027 * bio_list_on_stack[1] contains bios that were submitted before
2028 * the current make_request_fn, but that haven't been processed
2029 * yet.
2031 struct bio_list bio_list_on_stack[2];
2032 blk_qc_t ret = BLK_QC_T_NONE;
2034 if (!generic_make_request_checks(bio))
2035 goto out;
2038 * We only want one ->make_request_fn to be active at a time, else
2039 * stack usage with stacked devices could be a problem. So use
2040 * current->bio_list to keep a list of requests submited by a
2041 * make_request_fn function. current->bio_list is also used as a
2042 * flag to say if generic_make_request is currently active in this
2043 * task or not. If it is NULL, then no make_request is active. If
2044 * it is non-NULL, then a make_request is active, and new requests
2045 * should be added at the tail
2047 if (current->bio_list) {
2048 bio_list_add(&current->bio_list[0], bio);
2049 goto out;
2052 /* following loop may be a bit non-obvious, and so deserves some
2053 * explanation.
2054 * Before entering the loop, bio->bi_next is NULL (as all callers
2055 * ensure that) so we have a list with a single bio.
2056 * We pretend that we have just taken it off a longer list, so
2057 * we assign bio_list to a pointer to the bio_list_on_stack,
2058 * thus initialising the bio_list of new bios to be
2059 * added. ->make_request() may indeed add some more bios
2060 * through a recursive call to generic_make_request. If it
2061 * did, we find a non-NULL value in bio_list and re-enter the loop
2062 * from the top. In this case we really did just take the bio
2063 * of the top of the list (no pretending) and so remove it from
2064 * bio_list, and call into ->make_request() again.
2066 BUG_ON(bio->bi_next);
2067 bio_list_init(&bio_list_on_stack[0]);
2068 current->bio_list = bio_list_on_stack;
2069 do {
2070 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2072 if (likely(blk_queue_enter(q, __GFP_DIRECT_RECLAIM) == 0)) {
2073 struct bio_list lower, same;
2075 /* Create a fresh bio_list for all subordinate requests */
2076 bio_list_on_stack[1] = bio_list_on_stack[0];
2077 bio_list_init(&bio_list_on_stack[0]);
2079 ret = q->make_request_fn(q, bio);
2081 blk_queue_exit(q);
2082 /* sort new bios into those for a lower level
2083 * and those for the same level
2085 bio_list_init(&lower);
2086 bio_list_init(&same);
2087 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2088 if (q == bdev_get_queue(bio->bi_bdev))
2089 bio_list_add(&same, bio);
2090 else
2091 bio_list_add(&lower, bio);
2092 /* now assemble so we handle the lowest level first */
2093 bio_list_merge(&bio_list_on_stack[0], &lower);
2094 bio_list_merge(&bio_list_on_stack[0], &same);
2095 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2096 } else {
2097 bio_io_error(bio);
2099 bio = bio_list_pop(&bio_list_on_stack[0]);
2100 } while (bio);
2101 current->bio_list = NULL; /* deactivate */
2103 out:
2104 return ret;
2106 EXPORT_SYMBOL(generic_make_request);
2109 * submit_bio - submit a bio to the block device layer for I/O
2110 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
2111 * @bio: The &struct bio which describes the I/O
2113 * submit_bio() is very similar in purpose to generic_make_request(), and
2114 * uses that function to do most of the work. Both are fairly rough
2115 * interfaces; @bio must be presetup and ready for I/O.
2118 blk_qc_t submit_bio(int rw, struct bio *bio)
2120 bio->bi_rw |= rw;
2123 * If it's a regular read/write or a barrier with data attached,
2124 * go through the normal accounting stuff before submission.
2126 if (bio_has_data(bio)) {
2127 unsigned int count;
2129 if (unlikely(rw & REQ_WRITE_SAME))
2130 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2131 else
2132 count = bio_sectors(bio);
2134 if (rw & WRITE) {
2135 count_vm_events(PGPGOUT, count);
2136 } else {
2137 task_io_account_read(bio->bi_iter.bi_size);
2138 count_vm_events(PGPGIN, count);
2141 if (unlikely(block_dump)) {
2142 char b[BDEVNAME_SIZE];
2143 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2144 current->comm, task_pid_nr(current),
2145 (rw & WRITE) ? "WRITE" : "READ",
2146 (unsigned long long)bio->bi_iter.bi_sector,
2147 bdevname(bio->bi_bdev, b),
2148 count);
2152 return generic_make_request(bio);
2154 EXPORT_SYMBOL(submit_bio);
2157 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2158 * for new the queue limits
2159 * @q: the queue
2160 * @rq: the request being checked
2162 * Description:
2163 * @rq may have been made based on weaker limitations of upper-level queues
2164 * in request stacking drivers, and it may violate the limitation of @q.
2165 * Since the block layer and the underlying device driver trust @rq
2166 * after it is inserted to @q, it should be checked against @q before
2167 * the insertion using this generic function.
2169 * Request stacking drivers like request-based dm may change the queue
2170 * limits when retrying requests on other queues. Those requests need
2171 * to be checked against the new queue limits again during dispatch.
2173 static int blk_cloned_rq_check_limits(struct request_queue *q,
2174 struct request *rq)
2176 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2177 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2178 return -EIO;
2182 * queue's settings related to segment counting like q->bounce_pfn
2183 * may differ from that of other stacking queues.
2184 * Recalculate it to check the request correctly on this queue's
2185 * limitation.
2187 blk_recalc_rq_segments(rq);
2188 if (rq->nr_phys_segments > queue_max_segments(q)) {
2189 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2190 return -EIO;
2193 return 0;
2197 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2198 * @q: the queue to submit the request
2199 * @rq: the request being queued
2201 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2203 unsigned long flags;
2204 int where = ELEVATOR_INSERT_BACK;
2206 if (blk_cloned_rq_check_limits(q, rq))
2207 return -EIO;
2209 if (rq->rq_disk &&
2210 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2211 return -EIO;
2213 if (q->mq_ops) {
2214 if (blk_queue_io_stat(q))
2215 blk_account_io_start(rq, true);
2216 blk_mq_insert_request(rq, false, true, false);
2217 return 0;
2220 spin_lock_irqsave(q->queue_lock, flags);
2221 if (unlikely(blk_queue_dying(q))) {
2222 spin_unlock_irqrestore(q->queue_lock, flags);
2223 return -ENODEV;
2227 * Submitting request must be dequeued before calling this function
2228 * because it will be linked to another request_queue
2230 BUG_ON(blk_queued_rq(rq));
2232 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2233 where = ELEVATOR_INSERT_FLUSH;
2235 add_acct_request(q, rq, where);
2236 if (where == ELEVATOR_INSERT_FLUSH)
2237 __blk_run_queue(q);
2238 spin_unlock_irqrestore(q->queue_lock, flags);
2240 return 0;
2242 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2245 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2246 * @rq: request to examine
2248 * Description:
2249 * A request could be merge of IOs which require different failure
2250 * handling. This function determines the number of bytes which
2251 * can be failed from the beginning of the request without
2252 * crossing into area which need to be retried further.
2254 * Return:
2255 * The number of bytes to fail.
2257 * Context:
2258 * queue_lock must be held.
2260 unsigned int blk_rq_err_bytes(const struct request *rq)
2262 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2263 unsigned int bytes = 0;
2264 struct bio *bio;
2266 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2267 return blk_rq_bytes(rq);
2270 * Currently the only 'mixing' which can happen is between
2271 * different fastfail types. We can safely fail portions
2272 * which have all the failfast bits that the first one has -
2273 * the ones which are at least as eager to fail as the first
2274 * one.
2276 for (bio = rq->bio; bio; bio = bio->bi_next) {
2277 if ((bio->bi_rw & ff) != ff)
2278 break;
2279 bytes += bio->bi_iter.bi_size;
2282 /* this could lead to infinite loop */
2283 BUG_ON(blk_rq_bytes(rq) && !bytes);
2284 return bytes;
2286 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2288 void blk_account_io_completion(struct request *req, unsigned int bytes)
2290 if (blk_do_io_stat(req)) {
2291 const int rw = rq_data_dir(req);
2292 struct hd_struct *part;
2293 int cpu;
2295 cpu = part_stat_lock();
2296 part = req->part;
2297 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2298 part_stat_unlock();
2302 void blk_account_io_done(struct request *req)
2305 * Account IO completion. flush_rq isn't accounted as a
2306 * normal IO on queueing nor completion. Accounting the
2307 * containing request is enough.
2309 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2310 unsigned long duration = jiffies - req->start_time;
2311 const int rw = rq_data_dir(req);
2312 struct hd_struct *part;
2313 int cpu;
2315 cpu = part_stat_lock();
2316 part = req->part;
2318 part_stat_inc(cpu, part, ios[rw]);
2319 part_stat_add(cpu, part, ticks[rw], duration);
2320 part_round_stats(cpu, part);
2321 part_dec_in_flight(part, rw);
2323 hd_struct_put(part);
2324 part_stat_unlock();
2328 #ifdef CONFIG_PM
2330 * Don't process normal requests when queue is suspended
2331 * or in the process of suspending/resuming
2333 static struct request *blk_pm_peek_request(struct request_queue *q,
2334 struct request *rq)
2336 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2337 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2338 return NULL;
2339 else
2340 return rq;
2342 #else
2343 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2344 struct request *rq)
2346 return rq;
2348 #endif
2350 void blk_account_io_start(struct request *rq, bool new_io)
2352 struct hd_struct *part;
2353 int rw = rq_data_dir(rq);
2354 int cpu;
2356 if (!blk_do_io_stat(rq))
2357 return;
2359 cpu = part_stat_lock();
2361 if (!new_io) {
2362 part = rq->part;
2363 part_stat_inc(cpu, part, merges[rw]);
2364 } else {
2365 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2366 if (!hd_struct_try_get(part)) {
2368 * The partition is already being removed,
2369 * the request will be accounted on the disk only
2371 * We take a reference on disk->part0 although that
2372 * partition will never be deleted, so we can treat
2373 * it as any other partition.
2375 part = &rq->rq_disk->part0;
2376 hd_struct_get(part);
2378 part_round_stats(cpu, part);
2379 part_inc_in_flight(part, rw);
2380 rq->part = part;
2383 part_stat_unlock();
2387 * blk_peek_request - peek at the top of a request queue
2388 * @q: request queue to peek at
2390 * Description:
2391 * Return the request at the top of @q. The returned request
2392 * should be started using blk_start_request() before LLD starts
2393 * processing it.
2395 * Return:
2396 * Pointer to the request at the top of @q if available. Null
2397 * otherwise.
2399 * Context:
2400 * queue_lock must be held.
2402 struct request *blk_peek_request(struct request_queue *q)
2404 struct request *rq;
2405 int ret;
2407 while ((rq = __elv_next_request(q)) != NULL) {
2409 rq = blk_pm_peek_request(q, rq);
2410 if (!rq)
2411 break;
2413 if (!(rq->cmd_flags & REQ_STARTED)) {
2415 * This is the first time the device driver
2416 * sees this request (possibly after
2417 * requeueing). Notify IO scheduler.
2419 if (rq->cmd_flags & REQ_SORTED)
2420 elv_activate_rq(q, rq);
2423 * just mark as started even if we don't start
2424 * it, a request that has been delayed should
2425 * not be passed by new incoming requests
2427 rq->cmd_flags |= REQ_STARTED;
2428 trace_block_rq_issue(q, rq);
2431 if (!q->boundary_rq || q->boundary_rq == rq) {
2432 q->end_sector = rq_end_sector(rq);
2433 q->boundary_rq = NULL;
2436 if (rq->cmd_flags & REQ_DONTPREP)
2437 break;
2439 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2441 * make sure space for the drain appears we
2442 * know we can do this because max_hw_segments
2443 * has been adjusted to be one fewer than the
2444 * device can handle
2446 rq->nr_phys_segments++;
2449 if (!q->prep_rq_fn)
2450 break;
2452 ret = q->prep_rq_fn(q, rq);
2453 if (ret == BLKPREP_OK) {
2454 break;
2455 } else if (ret == BLKPREP_DEFER) {
2457 * the request may have been (partially) prepped.
2458 * we need to keep this request in the front to
2459 * avoid resource deadlock. REQ_STARTED will
2460 * prevent other fs requests from passing this one.
2462 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2463 !(rq->cmd_flags & REQ_DONTPREP)) {
2465 * remove the space for the drain we added
2466 * so that we don't add it again
2468 --rq->nr_phys_segments;
2471 rq = NULL;
2472 break;
2473 } else if (ret == BLKPREP_KILL) {
2474 rq->cmd_flags |= REQ_QUIET;
2476 * Mark this request as started so we don't trigger
2477 * any debug logic in the end I/O path.
2479 blk_start_request(rq);
2480 __blk_end_request_all(rq, -EIO);
2481 } else {
2482 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2483 break;
2487 return rq;
2489 EXPORT_SYMBOL(blk_peek_request);
2491 void blk_dequeue_request(struct request *rq)
2493 struct request_queue *q = rq->q;
2495 BUG_ON(list_empty(&rq->queuelist));
2496 BUG_ON(ELV_ON_HASH(rq));
2498 list_del_init(&rq->queuelist);
2501 * the time frame between a request being removed from the lists
2502 * and to it is freed is accounted as io that is in progress at
2503 * the driver side.
2505 if (blk_account_rq(rq)) {
2506 q->in_flight[rq_is_sync(rq)]++;
2507 set_io_start_time_ns(rq);
2512 * blk_start_request - start request processing on the driver
2513 * @req: request to dequeue
2515 * Description:
2516 * Dequeue @req and start timeout timer on it. This hands off the
2517 * request to the driver.
2519 * Block internal functions which don't want to start timer should
2520 * call blk_dequeue_request().
2522 * Context:
2523 * queue_lock must be held.
2525 void blk_start_request(struct request *req)
2527 blk_dequeue_request(req);
2530 * We are now handing the request to the hardware, initialize
2531 * resid_len to full count and add the timeout handler.
2533 req->resid_len = blk_rq_bytes(req);
2534 if (unlikely(blk_bidi_rq(req)))
2535 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2537 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2538 blk_add_timer(req);
2540 EXPORT_SYMBOL(blk_start_request);
2543 * blk_fetch_request - fetch a request from a request queue
2544 * @q: request queue to fetch a request from
2546 * Description:
2547 * Return the request at the top of @q. The request is started on
2548 * return and LLD can start processing it immediately.
2550 * Return:
2551 * Pointer to the request at the top of @q if available. Null
2552 * otherwise.
2554 * Context:
2555 * queue_lock must be held.
2557 struct request *blk_fetch_request(struct request_queue *q)
2559 struct request *rq;
2561 rq = blk_peek_request(q);
2562 if (rq)
2563 blk_start_request(rq);
2564 return rq;
2566 EXPORT_SYMBOL(blk_fetch_request);
2569 * blk_update_request - Special helper function for request stacking drivers
2570 * @req: the request being processed
2571 * @error: %0 for success, < %0 for error
2572 * @nr_bytes: number of bytes to complete @req
2574 * Description:
2575 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2576 * the request structure even if @req doesn't have leftover.
2577 * If @req has leftover, sets it up for the next range of segments.
2579 * This special helper function is only for request stacking drivers
2580 * (e.g. request-based dm) so that they can handle partial completion.
2581 * Actual device drivers should use blk_end_request instead.
2583 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2584 * %false return from this function.
2586 * Return:
2587 * %false - this request doesn't have any more data
2588 * %true - this request has more data
2590 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2592 int total_bytes;
2594 trace_block_rq_complete(req->q, req, nr_bytes);
2596 if (!req->bio)
2597 return false;
2600 * For fs requests, rq is just carrier of independent bio's
2601 * and each partial completion should be handled separately.
2602 * Reset per-request error on each partial completion.
2604 * TODO: tj: This is too subtle. It would be better to let
2605 * low level drivers do what they see fit.
2607 if (req->cmd_type == REQ_TYPE_FS)
2608 req->errors = 0;
2610 if (error && req->cmd_type == REQ_TYPE_FS &&
2611 !(req->cmd_flags & REQ_QUIET)) {
2612 char *error_type;
2614 switch (error) {
2615 case -ENOLINK:
2616 error_type = "recoverable transport";
2617 break;
2618 case -EREMOTEIO:
2619 error_type = "critical target";
2620 break;
2621 case -EBADE:
2622 error_type = "critical nexus";
2623 break;
2624 case -ETIMEDOUT:
2625 error_type = "timeout";
2626 break;
2627 case -ENOSPC:
2628 error_type = "critical space allocation";
2629 break;
2630 case -ENODATA:
2631 error_type = "critical medium";
2632 break;
2633 case -EIO:
2634 default:
2635 error_type = "I/O";
2636 break;
2638 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2639 __func__, error_type, req->rq_disk ?
2640 req->rq_disk->disk_name : "?",
2641 (unsigned long long)blk_rq_pos(req));
2645 blk_account_io_completion(req, nr_bytes);
2647 total_bytes = 0;
2648 while (req->bio) {
2649 struct bio *bio = req->bio;
2650 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2652 if (bio_bytes == bio->bi_iter.bi_size)
2653 req->bio = bio->bi_next;
2655 req_bio_endio(req, bio, bio_bytes, error);
2657 total_bytes += bio_bytes;
2658 nr_bytes -= bio_bytes;
2660 if (!nr_bytes)
2661 break;
2665 * completely done
2667 if (!req->bio) {
2669 * Reset counters so that the request stacking driver
2670 * can find how many bytes remain in the request
2671 * later.
2673 req->__data_len = 0;
2674 return false;
2677 req->__data_len -= total_bytes;
2679 /* update sector only for requests with clear definition of sector */
2680 if (req->cmd_type == REQ_TYPE_FS)
2681 req->__sector += total_bytes >> 9;
2683 /* mixed attributes always follow the first bio */
2684 if (req->cmd_flags & REQ_MIXED_MERGE) {
2685 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2686 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2690 * If total number of sectors is less than the first segment
2691 * size, something has gone terribly wrong.
2693 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2694 blk_dump_rq_flags(req, "request botched");
2695 req->__data_len = blk_rq_cur_bytes(req);
2698 /* recalculate the number of segments */
2699 blk_recalc_rq_segments(req);
2701 return true;
2703 EXPORT_SYMBOL_GPL(blk_update_request);
2705 static bool blk_update_bidi_request(struct request *rq, int error,
2706 unsigned int nr_bytes,
2707 unsigned int bidi_bytes)
2709 if (blk_update_request(rq, error, nr_bytes))
2710 return true;
2712 /* Bidi request must be completed as a whole */
2713 if (unlikely(blk_bidi_rq(rq)) &&
2714 blk_update_request(rq->next_rq, error, bidi_bytes))
2715 return true;
2717 if (blk_queue_add_random(rq->q))
2718 add_disk_randomness(rq->rq_disk);
2720 return false;
2724 * blk_unprep_request - unprepare a request
2725 * @req: the request
2727 * This function makes a request ready for complete resubmission (or
2728 * completion). It happens only after all error handling is complete,
2729 * so represents the appropriate moment to deallocate any resources
2730 * that were allocated to the request in the prep_rq_fn. The queue
2731 * lock is held when calling this.
2733 void blk_unprep_request(struct request *req)
2735 struct request_queue *q = req->q;
2737 req->cmd_flags &= ~REQ_DONTPREP;
2738 if (q->unprep_rq_fn)
2739 q->unprep_rq_fn(q, req);
2741 EXPORT_SYMBOL_GPL(blk_unprep_request);
2744 * queue lock must be held
2746 void blk_finish_request(struct request *req, int error)
2748 if (req->cmd_flags & REQ_QUEUED)
2749 blk_queue_end_tag(req->q, req);
2751 BUG_ON(blk_queued_rq(req));
2753 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2754 laptop_io_completion(&req->q->backing_dev_info);
2756 blk_delete_timer(req);
2758 if (req->cmd_flags & REQ_DONTPREP)
2759 blk_unprep_request(req);
2761 blk_account_io_done(req);
2763 if (req->end_io)
2764 req->end_io(req, error);
2765 else {
2766 if (blk_bidi_rq(req))
2767 __blk_put_request(req->next_rq->q, req->next_rq);
2769 __blk_put_request(req->q, req);
2772 EXPORT_SYMBOL(blk_finish_request);
2775 * blk_end_bidi_request - Complete a bidi request
2776 * @rq: the request to complete
2777 * @error: %0 for success, < %0 for error
2778 * @nr_bytes: number of bytes to complete @rq
2779 * @bidi_bytes: number of bytes to complete @rq->next_rq
2781 * Description:
2782 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2783 * Drivers that supports bidi can safely call this member for any
2784 * type of request, bidi or uni. In the later case @bidi_bytes is
2785 * just ignored.
2787 * Return:
2788 * %false - we are done with this request
2789 * %true - still buffers pending for this request
2791 static bool blk_end_bidi_request(struct request *rq, int error,
2792 unsigned int nr_bytes, unsigned int bidi_bytes)
2794 struct request_queue *q = rq->q;
2795 unsigned long flags;
2797 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2798 return true;
2800 spin_lock_irqsave(q->queue_lock, flags);
2801 blk_finish_request(rq, error);
2802 spin_unlock_irqrestore(q->queue_lock, flags);
2804 return false;
2808 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2809 * @rq: the request to complete
2810 * @error: %0 for success, < %0 for error
2811 * @nr_bytes: number of bytes to complete @rq
2812 * @bidi_bytes: number of bytes to complete @rq->next_rq
2814 * Description:
2815 * Identical to blk_end_bidi_request() except that queue lock is
2816 * assumed to be locked on entry and remains so on return.
2818 * Return:
2819 * %false - we are done with this request
2820 * %true - still buffers pending for this request
2822 bool __blk_end_bidi_request(struct request *rq, int error,
2823 unsigned int nr_bytes, unsigned int bidi_bytes)
2825 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2826 return true;
2828 blk_finish_request(rq, error);
2830 return false;
2834 * blk_end_request - Helper function for drivers to complete the request.
2835 * @rq: the request being processed
2836 * @error: %0 for success, < %0 for error
2837 * @nr_bytes: number of bytes to complete
2839 * Description:
2840 * Ends I/O on a number of bytes attached to @rq.
2841 * If @rq has leftover, sets it up for the next range of segments.
2843 * Return:
2844 * %false - we are done with this request
2845 * %true - still buffers pending for this request
2847 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2849 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2851 EXPORT_SYMBOL(blk_end_request);
2854 * blk_end_request_all - Helper function for drives to finish the request.
2855 * @rq: the request to finish
2856 * @error: %0 for success, < %0 for error
2858 * Description:
2859 * Completely finish @rq.
2861 void blk_end_request_all(struct request *rq, int error)
2863 bool pending;
2864 unsigned int bidi_bytes = 0;
2866 if (unlikely(blk_bidi_rq(rq)))
2867 bidi_bytes = blk_rq_bytes(rq->next_rq);
2869 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2870 BUG_ON(pending);
2872 EXPORT_SYMBOL(blk_end_request_all);
2875 * blk_end_request_cur - Helper function to finish the current request chunk.
2876 * @rq: the request to finish the current chunk for
2877 * @error: %0 for success, < %0 for error
2879 * Description:
2880 * Complete the current consecutively mapped chunk from @rq.
2882 * Return:
2883 * %false - we are done with this request
2884 * %true - still buffers pending for this request
2886 bool blk_end_request_cur(struct request *rq, int error)
2888 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2890 EXPORT_SYMBOL(blk_end_request_cur);
2893 * blk_end_request_err - Finish a request till the next failure boundary.
2894 * @rq: the request to finish till the next failure boundary for
2895 * @error: must be negative errno
2897 * Description:
2898 * Complete @rq till the next failure boundary.
2900 * Return:
2901 * %false - we are done with this request
2902 * %true - still buffers pending for this request
2904 bool blk_end_request_err(struct request *rq, int error)
2906 WARN_ON(error >= 0);
2907 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2909 EXPORT_SYMBOL_GPL(blk_end_request_err);
2912 * __blk_end_request - Helper function for drivers to complete the request.
2913 * @rq: the request being processed
2914 * @error: %0 for success, < %0 for error
2915 * @nr_bytes: number of bytes to complete
2917 * Description:
2918 * Must be called with queue lock held unlike blk_end_request().
2920 * Return:
2921 * %false - we are done with this request
2922 * %true - still buffers pending for this request
2924 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2926 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2928 EXPORT_SYMBOL(__blk_end_request);
2931 * __blk_end_request_all - Helper function for drives to finish the request.
2932 * @rq: the request to finish
2933 * @error: %0 for success, < %0 for error
2935 * Description:
2936 * Completely finish @rq. Must be called with queue lock held.
2938 void __blk_end_request_all(struct request *rq, int error)
2940 bool pending;
2941 unsigned int bidi_bytes = 0;
2943 if (unlikely(blk_bidi_rq(rq)))
2944 bidi_bytes = blk_rq_bytes(rq->next_rq);
2946 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2947 BUG_ON(pending);
2949 EXPORT_SYMBOL(__blk_end_request_all);
2952 * __blk_end_request_cur - Helper function to finish the current request chunk.
2953 * @rq: the request to finish the current chunk for
2954 * @error: %0 for success, < %0 for error
2956 * Description:
2957 * Complete the current consecutively mapped chunk from @rq. Must
2958 * be called with queue lock held.
2960 * Return:
2961 * %false - we are done with this request
2962 * %true - still buffers pending for this request
2964 bool __blk_end_request_cur(struct request *rq, int error)
2966 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2968 EXPORT_SYMBOL(__blk_end_request_cur);
2971 * __blk_end_request_err - Finish a request till the next failure boundary.
2972 * @rq: the request to finish till the next failure boundary for
2973 * @error: must be negative errno
2975 * Description:
2976 * Complete @rq till the next failure boundary. Must be called
2977 * with queue lock held.
2979 * Return:
2980 * %false - we are done with this request
2981 * %true - still buffers pending for this request
2983 bool __blk_end_request_err(struct request *rq, int error)
2985 WARN_ON(error >= 0);
2986 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2988 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2990 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2991 struct bio *bio)
2993 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2994 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2996 if (bio_has_data(bio))
2997 rq->nr_phys_segments = bio_phys_segments(q, bio);
2999 rq->__data_len = bio->bi_iter.bi_size;
3000 rq->bio = rq->biotail = bio;
3002 if (bio->bi_bdev)
3003 rq->rq_disk = bio->bi_bdev->bd_disk;
3006 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3008 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3009 * @rq: the request to be flushed
3011 * Description:
3012 * Flush all pages in @rq.
3014 void rq_flush_dcache_pages(struct request *rq)
3016 struct req_iterator iter;
3017 struct bio_vec bvec;
3019 rq_for_each_segment(bvec, rq, iter)
3020 flush_dcache_page(bvec.bv_page);
3022 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3023 #endif
3026 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3027 * @q : the queue of the device being checked
3029 * Description:
3030 * Check if underlying low-level drivers of a device are busy.
3031 * If the drivers want to export their busy state, they must set own
3032 * exporting function using blk_queue_lld_busy() first.
3034 * Basically, this function is used only by request stacking drivers
3035 * to stop dispatching requests to underlying devices when underlying
3036 * devices are busy. This behavior helps more I/O merging on the queue
3037 * of the request stacking driver and prevents I/O throughput regression
3038 * on burst I/O load.
3040 * Return:
3041 * 0 - Not busy (The request stacking driver should dispatch request)
3042 * 1 - Busy (The request stacking driver should stop dispatching request)
3044 int blk_lld_busy(struct request_queue *q)
3046 if (q->lld_busy_fn)
3047 return q->lld_busy_fn(q);
3049 return 0;
3051 EXPORT_SYMBOL_GPL(blk_lld_busy);
3054 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3055 * @rq: the clone request to be cleaned up
3057 * Description:
3058 * Free all bios in @rq for a cloned request.
3060 void blk_rq_unprep_clone(struct request *rq)
3062 struct bio *bio;
3064 while ((bio = rq->bio) != NULL) {
3065 rq->bio = bio->bi_next;
3067 bio_put(bio);
3070 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3073 * Copy attributes of the original request to the clone request.
3074 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3076 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3078 dst->cpu = src->cpu;
3079 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
3080 dst->cmd_type = src->cmd_type;
3081 dst->__sector = blk_rq_pos(src);
3082 dst->__data_len = blk_rq_bytes(src);
3083 dst->nr_phys_segments = src->nr_phys_segments;
3084 dst->ioprio = src->ioprio;
3085 dst->extra_len = src->extra_len;
3089 * blk_rq_prep_clone - Helper function to setup clone request
3090 * @rq: the request to be setup
3091 * @rq_src: original request to be cloned
3092 * @bs: bio_set that bios for clone are allocated from
3093 * @gfp_mask: memory allocation mask for bio
3094 * @bio_ctr: setup function to be called for each clone bio.
3095 * Returns %0 for success, non %0 for failure.
3096 * @data: private data to be passed to @bio_ctr
3098 * Description:
3099 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3100 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3101 * are not copied, and copying such parts is the caller's responsibility.
3102 * Also, pages which the original bios are pointing to are not copied
3103 * and the cloned bios just point same pages.
3104 * So cloned bios must be completed before original bios, which means
3105 * the caller must complete @rq before @rq_src.
3107 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3108 struct bio_set *bs, gfp_t gfp_mask,
3109 int (*bio_ctr)(struct bio *, struct bio *, void *),
3110 void *data)
3112 struct bio *bio, *bio_src;
3114 if (!bs)
3115 bs = fs_bio_set;
3117 __rq_for_each_bio(bio_src, rq_src) {
3118 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3119 if (!bio)
3120 goto free_and_out;
3122 if (bio_ctr && bio_ctr(bio, bio_src, data))
3123 goto free_and_out;
3125 if (rq->bio) {
3126 rq->biotail->bi_next = bio;
3127 rq->biotail = bio;
3128 } else
3129 rq->bio = rq->biotail = bio;
3132 __blk_rq_prep_clone(rq, rq_src);
3134 return 0;
3136 free_and_out:
3137 if (bio)
3138 bio_put(bio);
3139 blk_rq_unprep_clone(rq);
3141 return -ENOMEM;
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3145 int kblockd_schedule_work(struct work_struct *work)
3147 return queue_work(kblockd_workqueue, work);
3149 EXPORT_SYMBOL(kblockd_schedule_work);
3151 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3152 unsigned long delay)
3154 return queue_delayed_work(kblockd_workqueue, dwork, delay);
3156 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3158 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3159 unsigned long delay)
3161 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3163 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3166 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3167 * @plug: The &struct blk_plug that needs to be initialized
3169 * Description:
3170 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3171 * pending I/O should the task end up blocking between blk_start_plug() and
3172 * blk_finish_plug(). This is important from a performance perspective, but
3173 * also ensures that we don't deadlock. For instance, if the task is blocking
3174 * for a memory allocation, memory reclaim could end up wanting to free a
3175 * page belonging to that request that is currently residing in our private
3176 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3177 * this kind of deadlock.
3179 void blk_start_plug(struct blk_plug *plug)
3181 struct task_struct *tsk = current;
3184 * If this is a nested plug, don't actually assign it.
3186 if (tsk->plug)
3187 return;
3189 INIT_LIST_HEAD(&plug->list);
3190 INIT_LIST_HEAD(&plug->mq_list);
3191 INIT_LIST_HEAD(&plug->cb_list);
3193 * Store ordering should not be needed here, since a potential
3194 * preempt will imply a full memory barrier
3196 tsk->plug = plug;
3198 EXPORT_SYMBOL(blk_start_plug);
3200 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3202 struct request *rqa = container_of(a, struct request, queuelist);
3203 struct request *rqb = container_of(b, struct request, queuelist);
3205 return !(rqa->q < rqb->q ||
3206 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3210 * If 'from_schedule' is true, then postpone the dispatch of requests
3211 * until a safe kblockd context. We due this to avoid accidental big
3212 * additional stack usage in driver dispatch, in places where the originally
3213 * plugger did not intend it.
3215 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3216 bool from_schedule)
3217 __releases(q->queue_lock)
3219 trace_block_unplug(q, depth, !from_schedule);
3221 if (from_schedule)
3222 blk_run_queue_async(q);
3223 else
3224 __blk_run_queue(q);
3225 spin_unlock(q->queue_lock);
3228 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3230 LIST_HEAD(callbacks);
3232 while (!list_empty(&plug->cb_list)) {
3233 list_splice_init(&plug->cb_list, &callbacks);
3235 while (!list_empty(&callbacks)) {
3236 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3237 struct blk_plug_cb,
3238 list);
3239 list_del(&cb->list);
3240 cb->callback(cb, from_schedule);
3245 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3246 int size)
3248 struct blk_plug *plug = current->plug;
3249 struct blk_plug_cb *cb;
3251 if (!plug)
3252 return NULL;
3254 list_for_each_entry(cb, &plug->cb_list, list)
3255 if (cb->callback == unplug && cb->data == data)
3256 return cb;
3258 /* Not currently on the callback list */
3259 BUG_ON(size < sizeof(*cb));
3260 cb = kzalloc(size, GFP_ATOMIC);
3261 if (cb) {
3262 cb->data = data;
3263 cb->callback = unplug;
3264 list_add(&cb->list, &plug->cb_list);
3266 return cb;
3268 EXPORT_SYMBOL(blk_check_plugged);
3270 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3272 struct request_queue *q;
3273 unsigned long flags;
3274 struct request *rq;
3275 LIST_HEAD(list);
3276 unsigned int depth;
3278 flush_plug_callbacks(plug, from_schedule);
3280 if (!list_empty(&plug->mq_list))
3281 blk_mq_flush_plug_list(plug, from_schedule);
3283 if (list_empty(&plug->list))
3284 return;
3286 list_splice_init(&plug->list, &list);
3288 list_sort(NULL, &list, plug_rq_cmp);
3290 q = NULL;
3291 depth = 0;
3294 * Save and disable interrupts here, to avoid doing it for every
3295 * queue lock we have to take.
3297 local_irq_save(flags);
3298 while (!list_empty(&list)) {
3299 rq = list_entry_rq(list.next);
3300 list_del_init(&rq->queuelist);
3301 BUG_ON(!rq->q);
3302 if (rq->q != q) {
3304 * This drops the queue lock
3306 if (q)
3307 queue_unplugged(q, depth, from_schedule);
3308 q = rq->q;
3309 depth = 0;
3310 spin_lock(q->queue_lock);
3314 * Short-circuit if @q is dead
3316 if (unlikely(blk_queue_dying(q))) {
3317 __blk_end_request_all(rq, -ENODEV);
3318 continue;
3322 * rq is already accounted, so use raw insert
3324 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3325 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3326 else
3327 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3329 depth++;
3333 * This drops the queue lock
3335 if (q)
3336 queue_unplugged(q, depth, from_schedule);
3338 local_irq_restore(flags);
3341 void blk_finish_plug(struct blk_plug *plug)
3343 if (plug != current->plug)
3344 return;
3345 blk_flush_plug_list(plug, false);
3347 current->plug = NULL;
3349 EXPORT_SYMBOL(blk_finish_plug);
3351 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
3353 struct blk_plug *plug;
3354 long state;
3356 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
3357 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3358 return false;
3360 plug = current->plug;
3361 if (plug)
3362 blk_flush_plug_list(plug, false);
3364 state = current->state;
3365 while (!need_resched()) {
3366 unsigned int queue_num = blk_qc_t_to_queue_num(cookie);
3367 struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[queue_num];
3368 int ret;
3370 hctx->poll_invoked++;
3372 ret = q->mq_ops->poll(hctx, blk_qc_t_to_tag(cookie));
3373 if (ret > 0) {
3374 hctx->poll_success++;
3375 set_current_state(TASK_RUNNING);
3376 return true;
3379 if (signal_pending_state(state, current))
3380 set_current_state(TASK_RUNNING);
3382 if (current->state == TASK_RUNNING)
3383 return true;
3384 if (ret < 0)
3385 break;
3386 cpu_relax();
3389 return false;
3392 #ifdef CONFIG_PM
3394 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3395 * @q: the queue of the device
3396 * @dev: the device the queue belongs to
3398 * Description:
3399 * Initialize runtime-PM-related fields for @q and start auto suspend for
3400 * @dev. Drivers that want to take advantage of request-based runtime PM
3401 * should call this function after @dev has been initialized, and its
3402 * request queue @q has been allocated, and runtime PM for it can not happen
3403 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3404 * cases, driver should call this function before any I/O has taken place.
3406 * This function takes care of setting up using auto suspend for the device,
3407 * the autosuspend delay is set to -1 to make runtime suspend impossible
3408 * until an updated value is either set by user or by driver. Drivers do
3409 * not need to touch other autosuspend settings.
3411 * The block layer runtime PM is request based, so only works for drivers
3412 * that use request as their IO unit instead of those directly use bio's.
3414 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3416 q->dev = dev;
3417 q->rpm_status = RPM_ACTIVE;
3418 pm_runtime_set_autosuspend_delay(q->dev, -1);
3419 pm_runtime_use_autosuspend(q->dev);
3421 EXPORT_SYMBOL(blk_pm_runtime_init);
3424 * blk_pre_runtime_suspend - Pre runtime suspend check
3425 * @q: the queue of the device
3427 * Description:
3428 * This function will check if runtime suspend is allowed for the device
3429 * by examining if there are any requests pending in the queue. If there
3430 * are requests pending, the device can not be runtime suspended; otherwise,
3431 * the queue's status will be updated to SUSPENDING and the driver can
3432 * proceed to suspend the device.
3434 * For the not allowed case, we mark last busy for the device so that
3435 * runtime PM core will try to autosuspend it some time later.
3437 * This function should be called near the start of the device's
3438 * runtime_suspend callback.
3440 * Return:
3441 * 0 - OK to runtime suspend the device
3442 * -EBUSY - Device should not be runtime suspended
3444 int blk_pre_runtime_suspend(struct request_queue *q)
3446 int ret = 0;
3448 if (!q->dev)
3449 return ret;
3451 spin_lock_irq(q->queue_lock);
3452 if (q->nr_pending) {
3453 ret = -EBUSY;
3454 pm_runtime_mark_last_busy(q->dev);
3455 } else {
3456 q->rpm_status = RPM_SUSPENDING;
3458 spin_unlock_irq(q->queue_lock);
3459 return ret;
3461 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3464 * blk_post_runtime_suspend - Post runtime suspend processing
3465 * @q: the queue of the device
3466 * @err: return value of the device's runtime_suspend function
3468 * Description:
3469 * Update the queue's runtime status according to the return value of the
3470 * device's runtime suspend function and mark last busy for the device so
3471 * that PM core will try to auto suspend the device at a later time.
3473 * This function should be called near the end of the device's
3474 * runtime_suspend callback.
3476 void blk_post_runtime_suspend(struct request_queue *q, int err)
3478 if (!q->dev)
3479 return;
3481 spin_lock_irq(q->queue_lock);
3482 if (!err) {
3483 q->rpm_status = RPM_SUSPENDED;
3484 } else {
3485 q->rpm_status = RPM_ACTIVE;
3486 pm_runtime_mark_last_busy(q->dev);
3488 spin_unlock_irq(q->queue_lock);
3490 EXPORT_SYMBOL(blk_post_runtime_suspend);
3493 * blk_pre_runtime_resume - Pre runtime resume processing
3494 * @q: the queue of the device
3496 * Description:
3497 * Update the queue's runtime status to RESUMING in preparation for the
3498 * runtime resume of the device.
3500 * This function should be called near the start of the device's
3501 * runtime_resume callback.
3503 void blk_pre_runtime_resume(struct request_queue *q)
3505 if (!q->dev)
3506 return;
3508 spin_lock_irq(q->queue_lock);
3509 q->rpm_status = RPM_RESUMING;
3510 spin_unlock_irq(q->queue_lock);
3512 EXPORT_SYMBOL(blk_pre_runtime_resume);
3515 * blk_post_runtime_resume - Post runtime resume processing
3516 * @q: the queue of the device
3517 * @err: return value of the device's runtime_resume function
3519 * Description:
3520 * Update the queue's runtime status according to the return value of the
3521 * device's runtime_resume function. If it is successfully resumed, process
3522 * the requests that are queued into the device's queue when it is resuming
3523 * and then mark last busy and initiate autosuspend for it.
3525 * This function should be called near the end of the device's
3526 * runtime_resume callback.
3528 void blk_post_runtime_resume(struct request_queue *q, int err)
3530 if (!q->dev)
3531 return;
3533 spin_lock_irq(q->queue_lock);
3534 if (!err) {
3535 q->rpm_status = RPM_ACTIVE;
3536 __blk_run_queue(q);
3537 pm_runtime_mark_last_busy(q->dev);
3538 pm_request_autosuspend(q->dev);
3539 } else {
3540 q->rpm_status = RPM_SUSPENDED;
3542 spin_unlock_irq(q->queue_lock);
3544 EXPORT_SYMBOL(blk_post_runtime_resume);
3545 #endif
3547 int __init blk_dev_init(void)
3549 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3550 FIELD_SIZEOF(struct request, cmd_flags));
3552 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3553 kblockd_workqueue = alloc_workqueue("kblockd",
3554 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3555 if (!kblockd_workqueue)
3556 panic("Failed to create kblockd\n");
3558 request_cachep = kmem_cache_create("blkdev_requests",
3559 sizeof(struct request), 0, SLAB_PANIC, NULL);
3561 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3562 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3564 return 0;