2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
26 #include <trace/events/block.h>
28 #include <linux/blk-mq.h>
31 #include "blk-mq-tag.h"
33 static DEFINE_MUTEX(all_q_mutex
);
34 static LIST_HEAD(all_q_list
);
36 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
46 if (hctx
->ctx_map
.map
[i
].word
)
52 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
53 struct blk_mq_ctx
*ctx
)
55 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
65 struct blk_mq_ctx
*ctx
)
67 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
69 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
70 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
78 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
81 void blk_mq_freeze_queue_start(struct request_queue
*q
)
85 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
86 if (freeze_depth
== 1) {
87 percpu_ref_kill(&q
->q_usage_counter
);
88 blk_mq_run_hw_queues(q
, false);
91 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
93 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
95 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->q_usage_counter
));
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
102 void blk_freeze_queue(struct request_queue
*q
)
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
111 blk_mq_freeze_queue_start(q
);
112 blk_mq_freeze_queue_wait(q
);
115 void blk_mq_freeze_queue(struct request_queue
*q
)
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
123 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
125 void blk_mq_unfreeze_queue(struct request_queue
*q
)
129 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
130 WARN_ON_ONCE(freeze_depth
< 0);
132 percpu_ref_reinit(&q
->q_usage_counter
);
133 wake_up_all(&q
->mq_freeze_wq
);
136 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
138 void blk_mq_wake_waiters(struct request_queue
*q
)
140 struct blk_mq_hw_ctx
*hctx
;
143 queue_for_each_hw_ctx(q
, hctx
, i
)
144 if (blk_mq_hw_queue_mapped(hctx
))
145 blk_mq_tag_wakeup_all(hctx
->tags
, true);
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
152 wake_up_all(&q
->mq_freeze_wq
);
155 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
157 return blk_mq_has_free_tags(hctx
->tags
);
159 EXPORT_SYMBOL(blk_mq_can_queue
);
161 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
162 struct request
*rq
, unsigned int rw_flags
)
164 if (blk_queue_io_stat(q
))
165 rw_flags
|= REQ_IO_STAT
;
167 INIT_LIST_HEAD(&rq
->queuelist
);
168 /* csd/requeue_work/fifo_time is initialized before use */
171 rq
->cmd_flags
|= rw_flags
;
172 /* do not touch atomic flags, it needs atomic ops against the timer */
174 INIT_HLIST_NODE(&rq
->hash
);
175 RB_CLEAR_NODE(&rq
->rb_node
);
178 rq
->start_time
= jiffies
;
179 #ifdef CONFIG_BLK_CGROUP
181 set_start_time_ns(rq
);
182 rq
->io_start_time_ns
= 0;
184 rq
->nr_phys_segments
= 0;
185 #if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq
->nr_integrity_segments
= 0;
189 /* tag was already set */
199 INIT_LIST_HEAD(&rq
->timeout_list
);
203 rq
->end_io_data
= NULL
;
206 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
209 static struct request
*
210 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
215 tag
= blk_mq_get_tag(data
);
216 if (tag
!= BLK_MQ_TAG_FAIL
) {
217 rq
= data
->hctx
->tags
->rqs
[tag
];
219 if (blk_mq_tag_busy(data
->hctx
)) {
220 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
221 atomic_inc(&data
->hctx
->nr_active
);
225 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
232 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
235 struct blk_mq_ctx
*ctx
;
236 struct blk_mq_hw_ctx
*hctx
;
238 struct blk_mq_alloc_data alloc_data
;
241 ret
= blk_queue_enter(q
, gfp
);
245 ctx
= blk_mq_get_ctx(q
);
246 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
247 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_DIRECT_RECLAIM
,
248 reserved
, ctx
, hctx
);
250 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
251 if (!rq
&& (gfp
& __GFP_DIRECT_RECLAIM
)) {
252 __blk_mq_run_hw_queue(hctx
);
255 ctx
= blk_mq_get_ctx(q
);
256 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
257 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
259 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
260 ctx
= alloc_data
.ctx
;
265 return ERR_PTR(-EWOULDBLOCK
);
269 EXPORT_SYMBOL(blk_mq_alloc_request
);
271 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
272 struct blk_mq_ctx
*ctx
, struct request
*rq
)
274 const int tag
= rq
->tag
;
275 struct request_queue
*q
= rq
->q
;
277 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
278 atomic_dec(&hctx
->nr_active
);
281 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
282 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
286 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
288 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
290 ctx
->rq_completed
[rq_is_sync(rq
)]++;
291 __blk_mq_free_request(hctx
, ctx
, rq
);
294 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
296 void blk_mq_free_request(struct request
*rq
)
298 struct blk_mq_hw_ctx
*hctx
;
299 struct request_queue
*q
= rq
->q
;
301 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
302 blk_mq_free_hctx_request(hctx
, rq
);
304 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
306 inline void __blk_mq_end_request(struct request
*rq
, int error
)
308 blk_account_io_done(rq
);
311 rq
->end_io(rq
, error
);
313 if (unlikely(blk_bidi_rq(rq
)))
314 blk_mq_free_request(rq
->next_rq
);
315 blk_mq_free_request(rq
);
318 EXPORT_SYMBOL(__blk_mq_end_request
);
320 void blk_mq_end_request(struct request
*rq
, int error
)
322 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
324 __blk_mq_end_request(rq
, error
);
326 EXPORT_SYMBOL(blk_mq_end_request
);
328 static void __blk_mq_complete_request_remote(void *data
)
330 struct request
*rq
= data
;
332 rq
->q
->softirq_done_fn(rq
);
335 static void blk_mq_ipi_complete_request(struct request
*rq
)
337 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
341 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
342 rq
->q
->softirq_done_fn(rq
);
347 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
348 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
350 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
351 rq
->csd
.func
= __blk_mq_complete_request_remote
;
354 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
356 rq
->q
->softirq_done_fn(rq
);
361 static void __blk_mq_complete_request(struct request
*rq
)
363 struct request_queue
*q
= rq
->q
;
365 if (!q
->softirq_done_fn
)
366 blk_mq_end_request(rq
, rq
->errors
);
368 blk_mq_ipi_complete_request(rq
);
372 * blk_mq_complete_request - end I/O on a request
373 * @rq: the request being processed
376 * Ends all I/O on a request. It does not handle partial completions.
377 * The actual completion happens out-of-order, through a IPI handler.
379 void blk_mq_complete_request(struct request
*rq
, int error
)
381 struct request_queue
*q
= rq
->q
;
383 if (unlikely(blk_should_fake_timeout(q
)))
385 if (!blk_mark_rq_complete(rq
)) {
387 __blk_mq_complete_request(rq
);
390 EXPORT_SYMBOL(blk_mq_complete_request
);
392 int blk_mq_request_started(struct request
*rq
)
394 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
396 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
398 void blk_mq_start_request(struct request
*rq
)
400 struct request_queue
*q
= rq
->q
;
402 trace_block_rq_issue(q
, rq
);
404 rq
->resid_len
= blk_rq_bytes(rq
);
405 if (unlikely(blk_bidi_rq(rq
)))
406 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
411 * Ensure that ->deadline is visible before set the started
412 * flag and clear the completed flag.
414 smp_mb__before_atomic();
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
422 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
423 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
424 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
425 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
427 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
433 rq
->nr_phys_segments
++;
436 EXPORT_SYMBOL(blk_mq_start_request
);
438 static void __blk_mq_requeue_request(struct request
*rq
)
440 struct request_queue
*q
= rq
->q
;
442 trace_block_rq_requeue(q
, rq
);
444 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
445 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
446 rq
->nr_phys_segments
--;
450 void blk_mq_requeue_request(struct request
*rq
)
452 __blk_mq_requeue_request(rq
);
454 BUG_ON(blk_queued_rq(rq
));
455 blk_mq_add_to_requeue_list(rq
, true);
457 EXPORT_SYMBOL(blk_mq_requeue_request
);
459 static void blk_mq_requeue_work(struct work_struct
*work
)
461 struct request_queue
*q
=
462 container_of(work
, struct request_queue
, requeue_work
);
464 struct request
*rq
, *next
;
467 spin_lock_irqsave(&q
->requeue_lock
, flags
);
468 list_splice_init(&q
->requeue_list
, &rq_list
);
469 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
471 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
472 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
475 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
476 list_del_init(&rq
->queuelist
);
477 blk_mq_insert_request(rq
, true, false, false);
480 while (!list_empty(&rq_list
)) {
481 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
482 list_del_init(&rq
->queuelist
);
483 blk_mq_insert_request(rq
, false, false, false);
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
490 blk_mq_start_hw_queues(q
);
493 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
495 struct request_queue
*q
= rq
->q
;
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
502 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
504 spin_lock_irqsave(&q
->requeue_lock
, flags
);
506 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
507 list_add(&rq
->queuelist
, &q
->requeue_list
);
509 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
511 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
513 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
515 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
517 cancel_work_sync(&q
->requeue_work
);
519 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
521 void blk_mq_kick_requeue_list(struct request_queue
*q
)
523 kblockd_schedule_work(&q
->requeue_work
);
525 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
527 void blk_mq_abort_requeue_list(struct request_queue
*q
)
532 spin_lock_irqsave(&q
->requeue_lock
, flags
);
533 list_splice_init(&q
->requeue_list
, &rq_list
);
534 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
536 while (!list_empty(&rq_list
)) {
539 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
540 list_del_init(&rq
->queuelist
);
542 blk_mq_end_request(rq
, rq
->errors
);
545 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
547 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
549 return tags
->rqs
[tag
];
551 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
553 struct blk_mq_timeout_data
{
555 unsigned int next_set
;
558 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
560 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
561 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
564 * We know that complete is set at this point. If STARTED isn't set
565 * anymore, then the request isn't active and the "timeout" should
566 * just be ignored. This can happen due to the bitflag ordering.
567 * Timeout first checks if STARTED is set, and if it is, assumes
568 * the request is active. But if we race with completion, then
569 * we both flags will get cleared. So check here again, and ignore
570 * a timeout event with a request that isn't active.
572 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
576 ret
= ops
->timeout(req
, reserved
);
580 __blk_mq_complete_request(req
);
582 case BLK_EH_RESET_TIMER
:
584 blk_clear_rq_complete(req
);
586 case BLK_EH_NOT_HANDLED
:
589 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
594 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
595 struct request
*rq
, void *priv
, bool reserved
)
597 struct blk_mq_timeout_data
*data
= priv
;
599 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
601 * If a request wasn't started before the queue was
602 * marked dying, kill it here or it'll go unnoticed.
604 if (unlikely(blk_queue_dying(rq
->q
))) {
606 blk_mq_end_request(rq
, rq
->errors
);
610 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
613 if (time_after_eq(jiffies
, rq
->deadline
)) {
614 if (!blk_mark_rq_complete(rq
))
615 blk_mq_rq_timed_out(rq
, reserved
);
616 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
617 data
->next
= rq
->deadline
;
622 static void blk_mq_rq_timer(unsigned long priv
)
624 struct request_queue
*q
= (struct request_queue
*)priv
;
625 struct blk_mq_timeout_data data
= {
631 /* A deadlock might occur if a request is stuck requiring a
632 * timeout at the same time a queue freeze is waiting
633 * completion, since the timeout code would not be able to
634 * acquire the queue reference here.
636 * That's why we don't use blk_queue_enter here; instead, we use
637 * percpu_ref_tryget directly, because we need to be able to
638 * obtain a reference even in the short window between the queue
639 * starting to freeze, by dropping the first reference in
640 * blk_mq_freeze_queue_start, and the moment the last request is
641 * consumed, marked by the instant q_usage_counter reaches
644 if (!percpu_ref_tryget(&q
->q_usage_counter
))
647 blk_mq_queue_tag_busy_iter(q
, blk_mq_check_expired
, &data
);
650 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
651 mod_timer(&q
->timeout
, data
.next
);
653 struct blk_mq_hw_ctx
*hctx
;
655 queue_for_each_hw_ctx(q
, hctx
, i
) {
656 /* the hctx may be unmapped, so check it here */
657 if (blk_mq_hw_queue_mapped(hctx
))
658 blk_mq_tag_idle(hctx
);
665 * Reverse check our software queue for entries that we could potentially
666 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
667 * too much time checking for merges.
669 static bool blk_mq_attempt_merge(struct request_queue
*q
,
670 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
675 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
681 if (!blk_rq_merge_ok(rq
, bio
))
684 el_ret
= blk_try_merge(rq
, bio
);
685 if (el_ret
== ELEVATOR_BACK_MERGE
) {
686 if (bio_attempt_back_merge(q
, rq
, bio
)) {
691 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
692 if (bio_attempt_front_merge(q
, rq
, bio
)) {
704 * Process software queues that have been marked busy, splicing them
705 * to the for-dispatch
707 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
709 struct blk_mq_ctx
*ctx
;
712 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
713 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
714 unsigned int off
, bit
;
720 off
= i
* hctx
->ctx_map
.bits_per_word
;
722 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
723 if (bit
>= bm
->depth
)
726 ctx
= hctx
->ctxs
[bit
+ off
];
727 clear_bit(bit
, &bm
->word
);
728 spin_lock(&ctx
->lock
);
729 list_splice_tail_init(&ctx
->rq_list
, list
);
730 spin_unlock(&ctx
->lock
);
738 * Run this hardware queue, pulling any software queues mapped to it in.
739 * Note that this function currently has various problems around ordering
740 * of IO. In particular, we'd like FIFO behaviour on handling existing
741 * items on the hctx->dispatch list. Ignore that for now.
743 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
745 struct request_queue
*q
= hctx
->queue
;
748 LIST_HEAD(driver_list
);
749 struct list_head
*dptr
;
752 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
754 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
760 * Touch any software queue that has pending entries.
762 flush_busy_ctxs(hctx
, &rq_list
);
765 * If we have previous entries on our dispatch list, grab them
766 * and stuff them at the front for more fair dispatch.
768 if (!list_empty_careful(&hctx
->dispatch
)) {
769 spin_lock(&hctx
->lock
);
770 if (!list_empty(&hctx
->dispatch
))
771 list_splice_init(&hctx
->dispatch
, &rq_list
);
772 spin_unlock(&hctx
->lock
);
776 * Start off with dptr being NULL, so we start the first request
777 * immediately, even if we have more pending.
782 * Now process all the entries, sending them to the driver.
785 while (!list_empty(&rq_list
)) {
786 struct blk_mq_queue_data bd
;
789 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
790 list_del_init(&rq
->queuelist
);
794 bd
.last
= list_empty(&rq_list
);
796 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
798 case BLK_MQ_RQ_QUEUE_OK
:
801 case BLK_MQ_RQ_QUEUE_BUSY
:
802 list_add(&rq
->queuelist
, &rq_list
);
803 __blk_mq_requeue_request(rq
);
806 pr_err("blk-mq: bad return on queue: %d\n", ret
);
807 case BLK_MQ_RQ_QUEUE_ERROR
:
809 blk_mq_end_request(rq
, rq
->errors
);
813 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
817 * We've done the first request. If we have more than 1
818 * left in the list, set dptr to defer issue.
820 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
825 hctx
->dispatched
[0]++;
826 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
827 hctx
->dispatched
[ilog2(queued
) + 1]++;
830 * Any items that need requeuing? Stuff them into hctx->dispatch,
831 * that is where we will continue on next queue run.
833 if (!list_empty(&rq_list
)) {
834 spin_lock(&hctx
->lock
);
835 list_splice(&rq_list
, &hctx
->dispatch
);
836 spin_unlock(&hctx
->lock
);
838 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
839 * it's possible the queue is stopped and restarted again
840 * before this. Queue restart will dispatch requests. And since
841 * requests in rq_list aren't added into hctx->dispatch yet,
842 * the requests in rq_list might get lost.
844 * blk_mq_run_hw_queue() already checks the STOPPED bit
846 blk_mq_run_hw_queue(hctx
, true);
851 * It'd be great if the workqueue API had a way to pass
852 * in a mask and had some smarts for more clever placement.
853 * For now we just round-robin here, switching for every
854 * BLK_MQ_CPU_WORK_BATCH queued items.
856 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
858 if (hctx
->queue
->nr_hw_queues
== 1)
859 return WORK_CPU_UNBOUND
;
861 if (--hctx
->next_cpu_batch
<= 0) {
864 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
865 if (next_cpu
>= nr_cpu_ids
)
866 next_cpu
= cpumask_first(hctx
->cpumask
);
868 hctx
->next_cpu
= next_cpu
;
869 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
872 return hctx
->next_cpu
;
875 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
877 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
878 !blk_mq_hw_queue_mapped(hctx
)))
883 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
884 __blk_mq_run_hw_queue(hctx
);
892 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
896 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
898 struct blk_mq_hw_ctx
*hctx
;
901 queue_for_each_hw_ctx(q
, hctx
, i
) {
902 if ((!blk_mq_hctx_has_pending(hctx
) &&
903 list_empty_careful(&hctx
->dispatch
)) ||
904 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
907 blk_mq_run_hw_queue(hctx
, async
);
910 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
912 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
914 cancel_delayed_work(&hctx
->run_work
);
915 cancel_delayed_work(&hctx
->delay_work
);
916 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
918 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
920 void blk_mq_stop_hw_queues(struct request_queue
*q
)
922 struct blk_mq_hw_ctx
*hctx
;
925 queue_for_each_hw_ctx(q
, hctx
, i
)
926 blk_mq_stop_hw_queue(hctx
);
928 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
930 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
932 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
934 blk_mq_run_hw_queue(hctx
, false);
936 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
938 void blk_mq_start_hw_queues(struct request_queue
*q
)
940 struct blk_mq_hw_ctx
*hctx
;
943 queue_for_each_hw_ctx(q
, hctx
, i
)
944 blk_mq_start_hw_queue(hctx
);
946 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
948 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
950 struct blk_mq_hw_ctx
*hctx
;
953 queue_for_each_hw_ctx(q
, hctx
, i
) {
954 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
957 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
958 blk_mq_run_hw_queue(hctx
, async
);
961 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
963 static void blk_mq_run_work_fn(struct work_struct
*work
)
965 struct blk_mq_hw_ctx
*hctx
;
967 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
969 __blk_mq_run_hw_queue(hctx
);
972 static void blk_mq_delay_work_fn(struct work_struct
*work
)
974 struct blk_mq_hw_ctx
*hctx
;
976 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
978 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
979 __blk_mq_run_hw_queue(hctx
);
982 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
984 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
987 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
988 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
990 EXPORT_SYMBOL(blk_mq_delay_queue
);
992 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx
*hctx
,
993 struct blk_mq_ctx
*ctx
,
997 trace_block_rq_insert(hctx
->queue
, rq
);
1000 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1002 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1006 struct request
*rq
, bool at_head
)
1008 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1010 __blk_mq_insert_req_list(hctx
, ctx
, rq
, at_head
);
1011 blk_mq_hctx_mark_pending(hctx
, ctx
);
1014 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1017 struct request_queue
*q
= rq
->q
;
1018 struct blk_mq_hw_ctx
*hctx
;
1019 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1021 current_ctx
= blk_mq_get_ctx(q
);
1022 if (!cpu_online(ctx
->cpu
))
1023 rq
->mq_ctx
= ctx
= current_ctx
;
1025 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1027 spin_lock(&ctx
->lock
);
1028 __blk_mq_insert_request(hctx
, rq
, at_head
);
1029 spin_unlock(&ctx
->lock
);
1032 blk_mq_run_hw_queue(hctx
, async
);
1034 blk_mq_put_ctx(current_ctx
);
1037 static void blk_mq_insert_requests(struct request_queue
*q
,
1038 struct blk_mq_ctx
*ctx
,
1039 struct list_head
*list
,
1044 struct blk_mq_hw_ctx
*hctx
;
1045 struct blk_mq_ctx
*current_ctx
;
1047 trace_block_unplug(q
, depth
, !from_schedule
);
1049 current_ctx
= blk_mq_get_ctx(q
);
1051 if (!cpu_online(ctx
->cpu
))
1053 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1056 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1059 spin_lock(&ctx
->lock
);
1060 while (!list_empty(list
)) {
1063 rq
= list_first_entry(list
, struct request
, queuelist
);
1064 list_del_init(&rq
->queuelist
);
1066 __blk_mq_insert_req_list(hctx
, ctx
, rq
, false);
1068 blk_mq_hctx_mark_pending(hctx
, ctx
);
1069 spin_unlock(&ctx
->lock
);
1071 blk_mq_run_hw_queue(hctx
, from_schedule
);
1072 blk_mq_put_ctx(current_ctx
);
1075 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1077 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1078 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1080 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1081 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1082 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1085 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1087 struct blk_mq_ctx
*this_ctx
;
1088 struct request_queue
*this_q
;
1091 LIST_HEAD(ctx_list
);
1094 list_splice_init(&plug
->mq_list
, &list
);
1096 list_sort(NULL
, &list
, plug_ctx_cmp
);
1102 while (!list_empty(&list
)) {
1103 rq
= list_entry_rq(list
.next
);
1104 list_del_init(&rq
->queuelist
);
1106 if (rq
->mq_ctx
!= this_ctx
) {
1108 blk_mq_insert_requests(this_q
, this_ctx
,
1113 this_ctx
= rq
->mq_ctx
;
1119 list_add_tail(&rq
->queuelist
, &ctx_list
);
1123 * If 'this_ctx' is set, we know we have entries to complete
1124 * on 'ctx_list'. Do those.
1127 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1132 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1134 init_request_from_bio(rq
, bio
);
1136 if (blk_do_io_stat(rq
))
1137 blk_account_io_start(rq
, 1);
1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1142 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1143 !blk_queue_nomerges(hctx
->queue
);
1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1147 struct blk_mq_ctx
*ctx
,
1148 struct request
*rq
, struct bio
*bio
)
1150 if (!hctx_allow_merges(hctx
) || !bio_mergeable(bio
)) {
1151 blk_mq_bio_to_request(rq
, bio
);
1152 spin_lock(&ctx
->lock
);
1154 __blk_mq_insert_request(hctx
, rq
, false);
1155 spin_unlock(&ctx
->lock
);
1158 struct request_queue
*q
= hctx
->queue
;
1160 spin_lock(&ctx
->lock
);
1161 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1162 blk_mq_bio_to_request(rq
, bio
);
1166 spin_unlock(&ctx
->lock
);
1167 __blk_mq_free_request(hctx
, ctx
, rq
);
1172 struct blk_map_ctx
{
1173 struct blk_mq_hw_ctx
*hctx
;
1174 struct blk_mq_ctx
*ctx
;
1177 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1179 struct blk_map_ctx
*data
)
1181 struct blk_mq_hw_ctx
*hctx
;
1182 struct blk_mq_ctx
*ctx
;
1184 int rw
= bio_data_dir(bio
);
1185 struct blk_mq_alloc_data alloc_data
;
1187 blk_queue_enter_live(q
);
1188 ctx
= blk_mq_get_ctx(q
);
1189 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1191 if (rw_is_sync(bio
->bi_rw
))
1194 trace_block_getrq(q
, bio
, rw
);
1195 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1197 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1198 if (unlikely(!rq
)) {
1199 __blk_mq_run_hw_queue(hctx
);
1200 blk_mq_put_ctx(ctx
);
1201 trace_block_sleeprq(q
, bio
, rw
);
1203 ctx
= blk_mq_get_ctx(q
);
1204 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1205 blk_mq_set_alloc_data(&alloc_data
, q
,
1206 __GFP_RECLAIM
|__GFP_HIGH
, false, ctx
, hctx
);
1207 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1208 ctx
= alloc_data
.ctx
;
1209 hctx
= alloc_data
.hctx
;
1218 static int blk_mq_direct_issue_request(struct request
*rq
, blk_qc_t
*cookie
)
1221 struct request_queue
*q
= rq
->q
;
1222 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
,
1224 struct blk_mq_queue_data bd
= {
1229 blk_qc_t new_cookie
= blk_tag_to_qc_t(rq
->tag
, hctx
->queue_num
);
1232 * For OK queue, we are done. For error, kill it. Any other
1233 * error (busy), just add it to our list as we previously
1236 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1237 if (ret
== BLK_MQ_RQ_QUEUE_OK
) {
1238 *cookie
= new_cookie
;
1242 __blk_mq_requeue_request(rq
);
1244 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1245 *cookie
= BLK_QC_T_NONE
;
1247 blk_mq_end_request(rq
, rq
->errors
);
1255 * Multiple hardware queue variant. This will not use per-process plugs,
1256 * but will attempt to bypass the hctx queueing if we can go straight to
1257 * hardware for SYNC IO.
1259 static blk_qc_t
blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1261 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1262 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1263 struct blk_map_ctx data
;
1265 unsigned int request_count
= 0;
1266 struct blk_plug
*plug
;
1267 struct request
*same_queue_rq
= NULL
;
1270 blk_queue_bounce(q
, &bio
);
1272 blk_queue_split(q
, &bio
, q
->bio_split
);
1274 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1276 return BLK_QC_T_NONE
;
1279 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1280 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1281 return BLK_QC_T_NONE
;
1283 rq
= blk_mq_map_request(q
, bio
, &data
);
1285 return BLK_QC_T_NONE
;
1287 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1289 if (unlikely(is_flush_fua
)) {
1290 blk_mq_bio_to_request(rq
, bio
);
1291 blk_insert_flush(rq
);
1295 plug
= current
->plug
;
1297 * If the driver supports defer issued based on 'last', then
1298 * queue it up like normal since we can potentially save some
1301 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1302 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1303 struct request
*old_rq
= NULL
;
1305 blk_mq_bio_to_request(rq
, bio
);
1308 * We do limited pluging. If the bio can be merged, do that.
1309 * Otherwise the existing request in the plug list will be
1310 * issued. So the plug list will have one request at most
1314 * The plug list might get flushed before this. If that
1315 * happens, same_queue_rq is invalid and plug list is
1318 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1319 old_rq
= same_queue_rq
;
1320 list_del_init(&old_rq
->queuelist
);
1322 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1323 } else /* is_sync */
1325 blk_mq_put_ctx(data
.ctx
);
1328 if (test_bit(BLK_MQ_S_STOPPED
, &data
.hctx
->state
) ||
1329 blk_mq_direct_issue_request(old_rq
, &cookie
) != 0)
1330 blk_mq_insert_request(old_rq
, false, true, true);
1334 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1336 * For a SYNC request, send it to the hardware immediately. For
1337 * an ASYNC request, just ensure that we run it later on. The
1338 * latter allows for merging opportunities and more efficient
1342 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1344 blk_mq_put_ctx(data
.ctx
);
1350 * Single hardware queue variant. This will attempt to use any per-process
1351 * plug for merging and IO deferral.
1353 static blk_qc_t
blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1355 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1356 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1357 struct blk_plug
*plug
;
1358 unsigned int request_count
= 0;
1359 struct blk_map_ctx data
;
1363 blk_queue_bounce(q
, &bio
);
1365 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1367 return BLK_QC_T_NONE
;
1370 blk_queue_split(q
, &bio
, q
->bio_split
);
1372 if (!is_flush_fua
&& !blk_queue_nomerges(q
)) {
1373 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1374 return BLK_QC_T_NONE
;
1376 request_count
= blk_plug_queued_count(q
);
1378 rq
= blk_mq_map_request(q
, bio
, &data
);
1380 return BLK_QC_T_NONE
;
1382 cookie
= blk_tag_to_qc_t(rq
->tag
, data
.hctx
->queue_num
);
1384 if (unlikely(is_flush_fua
)) {
1385 blk_mq_bio_to_request(rq
, bio
);
1386 blk_insert_flush(rq
);
1391 * A task plug currently exists. Since this is completely lockless,
1392 * utilize that to temporarily store requests until the task is
1393 * either done or scheduled away.
1395 plug
= current
->plug
;
1397 blk_mq_bio_to_request(rq
, bio
);
1399 trace_block_plug(q
);
1401 blk_mq_put_ctx(data
.ctx
);
1403 if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1404 blk_flush_plug_list(plug
, false);
1405 trace_block_plug(q
);
1408 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1412 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1414 * For a SYNC request, send it to the hardware immediately. For
1415 * an ASYNC request, just ensure that we run it later on. The
1416 * latter allows for merging opportunities and more efficient
1420 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1423 blk_mq_put_ctx(data
.ctx
);
1428 * Default mapping to a software queue, since we use one per CPU.
1430 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1432 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1434 EXPORT_SYMBOL(blk_mq_map_queue
);
1436 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1437 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1441 if (tags
->rqs
&& set
->ops
->exit_request
) {
1444 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1447 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1449 tags
->rqs
[i
] = NULL
;
1453 while (!list_empty(&tags
->page_list
)) {
1454 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1455 list_del_init(&page
->lru
);
1457 * Remove kmemleak object previously allocated in
1458 * blk_mq_init_rq_map().
1460 kmemleak_free(page_address(page
));
1461 __free_pages(page
, page
->private);
1466 blk_mq_free_tags(tags
);
1469 static size_t order_to_size(unsigned int order
)
1471 return (size_t)PAGE_SIZE
<< order
;
1474 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1475 unsigned int hctx_idx
)
1477 struct blk_mq_tags
*tags
;
1478 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1479 size_t rq_size
, left
;
1481 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1483 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1487 INIT_LIST_HEAD(&tags
->page_list
);
1489 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1490 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
,
1493 blk_mq_free_tags(tags
);
1498 * rq_size is the size of the request plus driver payload, rounded
1499 * to the cacheline size
1501 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1503 left
= rq_size
* set
->queue_depth
;
1505 for (i
= 0; i
< set
->queue_depth
; ) {
1506 int this_order
= max_order
;
1511 while (this_order
&& left
< order_to_size(this_order
- 1))
1515 page
= alloc_pages_node(set
->numa_node
,
1516 GFP_NOIO
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1522 if (order_to_size(this_order
) < rq_size
)
1529 page
->private = this_order
;
1530 list_add_tail(&page
->lru
, &tags
->page_list
);
1532 p
= page_address(page
);
1534 * Allow kmemleak to scan these pages as they contain pointers
1535 * to additional allocations like via ops->init_request().
1537 kmemleak_alloc(p
, order_to_size(this_order
), 1, GFP_NOIO
);
1538 entries_per_page
= order_to_size(this_order
) / rq_size
;
1539 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1540 left
-= to_do
* rq_size
;
1541 for (j
= 0; j
< to_do
; j
++) {
1543 if (set
->ops
->init_request
) {
1544 if (set
->ops
->init_request(set
->driver_data
,
1545 tags
->rqs
[i
], hctx_idx
, i
,
1547 tags
->rqs
[i
] = NULL
;
1559 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1563 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1568 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1570 unsigned int bpw
= 8, total
, num_maps
, i
;
1572 bitmap
->bits_per_word
= bpw
;
1574 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1575 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1581 for (i
= 0; i
< num_maps
; i
++) {
1582 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1583 total
-= bitmap
->map
[i
].depth
;
1589 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1591 struct request_queue
*q
= hctx
->queue
;
1592 struct blk_mq_ctx
*ctx
;
1596 * Move ctx entries to new CPU, if this one is going away.
1598 ctx
= __blk_mq_get_ctx(q
, cpu
);
1600 spin_lock(&ctx
->lock
);
1601 if (!list_empty(&ctx
->rq_list
)) {
1602 list_splice_init(&ctx
->rq_list
, &tmp
);
1603 blk_mq_hctx_clear_pending(hctx
, ctx
);
1605 spin_unlock(&ctx
->lock
);
1607 if (list_empty(&tmp
))
1610 ctx
= blk_mq_get_ctx(q
);
1611 spin_lock(&ctx
->lock
);
1613 while (!list_empty(&tmp
)) {
1616 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1618 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1621 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1622 blk_mq_hctx_mark_pending(hctx
, ctx
);
1624 spin_unlock(&ctx
->lock
);
1626 blk_mq_run_hw_queue(hctx
, true);
1627 blk_mq_put_ctx(ctx
);
1631 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1634 struct blk_mq_hw_ctx
*hctx
= data
;
1636 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1637 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1640 * In case of CPU online, tags may be reallocated
1641 * in blk_mq_map_swqueue() after mapping is updated.
1647 /* hctx->ctxs will be freed in queue's release handler */
1648 static void blk_mq_exit_hctx(struct request_queue
*q
,
1649 struct blk_mq_tag_set
*set
,
1650 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1652 unsigned flush_start_tag
= set
->queue_depth
;
1654 if (blk_mq_hw_queue_mapped(hctx
))
1655 blk_mq_tag_idle(hctx
);
1657 if (set
->ops
->exit_request
)
1658 set
->ops
->exit_request(set
->driver_data
,
1659 hctx
->fq
->flush_rq
, hctx_idx
,
1660 flush_start_tag
+ hctx_idx
);
1662 if (set
->ops
->exit_hctx
)
1663 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1665 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1666 blk_free_flush_queue(hctx
->fq
);
1667 blk_mq_free_bitmap(&hctx
->ctx_map
);
1670 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1671 struct blk_mq_tag_set
*set
, int nr_queue
)
1673 struct blk_mq_hw_ctx
*hctx
;
1676 queue_for_each_hw_ctx(q
, hctx
, i
) {
1679 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1683 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1684 struct blk_mq_tag_set
*set
)
1686 struct blk_mq_hw_ctx
*hctx
;
1689 queue_for_each_hw_ctx(q
, hctx
, i
)
1690 free_cpumask_var(hctx
->cpumask
);
1693 static int blk_mq_init_hctx(struct request_queue
*q
,
1694 struct blk_mq_tag_set
*set
,
1695 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1698 unsigned flush_start_tag
= set
->queue_depth
;
1700 node
= hctx
->numa_node
;
1701 if (node
== NUMA_NO_NODE
)
1702 node
= hctx
->numa_node
= set
->numa_node
;
1704 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1705 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1706 spin_lock_init(&hctx
->lock
);
1707 INIT_LIST_HEAD(&hctx
->dispatch
);
1709 hctx
->queue_num
= hctx_idx
;
1710 hctx
->flags
= set
->flags
& ~BLK_MQ_F_TAG_SHARED
;
1712 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1713 blk_mq_hctx_notify
, hctx
);
1714 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1716 hctx
->tags
= set
->tags
[hctx_idx
];
1719 * Allocate space for all possible cpus to avoid allocation at
1722 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1725 goto unregister_cpu_notifier
;
1727 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1732 if (set
->ops
->init_hctx
&&
1733 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1736 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1740 if (set
->ops
->init_request
&&
1741 set
->ops
->init_request(set
->driver_data
,
1742 hctx
->fq
->flush_rq
, hctx_idx
,
1743 flush_start_tag
+ hctx_idx
, node
))
1751 if (set
->ops
->exit_hctx
)
1752 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1754 blk_mq_free_bitmap(&hctx
->ctx_map
);
1757 unregister_cpu_notifier
:
1758 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1763 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1764 struct blk_mq_tag_set
*set
)
1766 struct blk_mq_hw_ctx
*hctx
;
1770 * Initialize hardware queues
1772 queue_for_each_hw_ctx(q
, hctx
, i
) {
1773 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1777 if (i
== q
->nr_hw_queues
)
1783 blk_mq_exit_hw_queues(q
, set
, i
);
1788 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1789 unsigned int nr_hw_queues
)
1793 for_each_possible_cpu(i
) {
1794 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1795 struct blk_mq_hw_ctx
*hctx
;
1797 memset(__ctx
, 0, sizeof(*__ctx
));
1799 spin_lock_init(&__ctx
->lock
);
1800 INIT_LIST_HEAD(&__ctx
->rq_list
);
1803 /* If the cpu isn't online, the cpu is mapped to first hctx */
1807 hctx
= q
->mq_ops
->map_queue(q
, i
);
1810 * Set local node, IFF we have more than one hw queue. If
1811 * not, we remain on the home node of the device
1813 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1814 hctx
->numa_node
= cpu_to_node(i
);
1818 static void blk_mq_map_swqueue(struct request_queue
*q
,
1819 const struct cpumask
*online_mask
)
1822 struct blk_mq_hw_ctx
*hctx
;
1823 struct blk_mq_ctx
*ctx
;
1824 struct blk_mq_tag_set
*set
= q
->tag_set
;
1827 * Avoid others reading imcomplete hctx->cpumask through sysfs
1829 mutex_lock(&q
->sysfs_lock
);
1831 queue_for_each_hw_ctx(q
, hctx
, i
) {
1832 cpumask_clear(hctx
->cpumask
);
1837 * Map software to hardware queues
1839 queue_for_each_ctx(q
, ctx
, i
) {
1840 /* If the cpu isn't online, the cpu is mapped to first hctx */
1841 if (!cpumask_test_cpu(i
, online_mask
))
1844 hctx
= q
->mq_ops
->map_queue(q
, i
);
1845 cpumask_set_cpu(i
, hctx
->cpumask
);
1846 ctx
->index_hw
= hctx
->nr_ctx
;
1847 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1850 mutex_unlock(&q
->sysfs_lock
);
1852 queue_for_each_hw_ctx(q
, hctx
, i
) {
1853 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1856 * If no software queues are mapped to this hardware queue,
1857 * disable it and free the request entries.
1859 if (!hctx
->nr_ctx
) {
1861 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1862 set
->tags
[i
] = NULL
;
1868 /* unmapped hw queue can be remapped after CPU topo changed */
1870 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1871 hctx
->tags
= set
->tags
[i
];
1872 WARN_ON(!hctx
->tags
);
1875 * Set the map size to the number of mapped software queues.
1876 * This is more accurate and more efficient than looping
1877 * over all possibly mapped software queues.
1879 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1882 * Initialize batch roundrobin counts
1884 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1885 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1888 queue_for_each_ctx(q
, ctx
, i
) {
1889 if (!cpumask_test_cpu(i
, online_mask
))
1892 hctx
= q
->mq_ops
->map_queue(q
, i
);
1893 cpumask_set_cpu(i
, hctx
->tags
->cpumask
);
1897 static void queue_set_hctx_shared(struct request_queue
*q
, bool shared
)
1899 struct blk_mq_hw_ctx
*hctx
;
1902 queue_for_each_hw_ctx(q
, hctx
, i
) {
1904 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1906 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1910 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
, bool shared
)
1912 struct request_queue
*q
;
1914 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1915 blk_mq_freeze_queue(q
);
1916 queue_set_hctx_shared(q
, shared
);
1917 blk_mq_unfreeze_queue(q
);
1921 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1923 struct blk_mq_tag_set
*set
= q
->tag_set
;
1925 mutex_lock(&set
->tag_list_lock
);
1926 list_del_init(&q
->tag_set_list
);
1927 if (list_is_singular(&set
->tag_list
)) {
1928 /* just transitioned to unshared */
1929 set
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1930 /* update existing queue */
1931 blk_mq_update_tag_set_depth(set
, false);
1933 mutex_unlock(&set
->tag_list_lock
);
1936 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1937 struct request_queue
*q
)
1941 mutex_lock(&set
->tag_list_lock
);
1943 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1944 if (!list_empty(&set
->tag_list
) && !(set
->flags
& BLK_MQ_F_TAG_SHARED
)) {
1945 set
->flags
|= BLK_MQ_F_TAG_SHARED
;
1946 /* update existing queue */
1947 blk_mq_update_tag_set_depth(set
, true);
1949 if (set
->flags
& BLK_MQ_F_TAG_SHARED
)
1950 queue_set_hctx_shared(q
, true);
1951 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1953 mutex_unlock(&set
->tag_list_lock
);
1957 * It is the actual release handler for mq, but we do it from
1958 * request queue's release handler for avoiding use-after-free
1959 * and headache because q->mq_kobj shouldn't have been introduced,
1960 * but we can't group ctx/kctx kobj without it.
1962 void blk_mq_release(struct request_queue
*q
)
1964 struct blk_mq_hw_ctx
*hctx
;
1967 /* hctx kobj stays in hctx */
1968 queue_for_each_hw_ctx(q
, hctx
, i
) {
1978 kfree(q
->queue_hw_ctx
);
1980 /* ctx kobj stays in queue_ctx */
1981 free_percpu(q
->queue_ctx
);
1984 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1986 struct request_queue
*uninit_q
, *q
;
1988 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1990 return ERR_PTR(-ENOMEM
);
1992 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1994 blk_cleanup_queue(uninit_q
);
1998 EXPORT_SYMBOL(blk_mq_init_queue
);
2000 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
2001 struct request_queue
*q
)
2003 struct blk_mq_hw_ctx
**hctxs
;
2004 struct blk_mq_ctx __percpu
*ctx
;
2008 ctx
= alloc_percpu(struct blk_mq_ctx
);
2010 return ERR_PTR(-ENOMEM
);
2012 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
2018 map
= blk_mq_make_queue_map(set
);
2022 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2023 int node
= blk_mq_hw_queue_to_node(map
, i
);
2025 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
2030 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
2034 atomic_set(&hctxs
[i
]->nr_active
, 0);
2035 hctxs
[i
]->numa_node
= node
;
2036 hctxs
[i
]->queue_num
= i
;
2039 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
2040 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
2042 q
->nr_queues
= nr_cpu_ids
;
2043 q
->nr_hw_queues
= set
->nr_hw_queues
;
2047 q
->queue_hw_ctx
= hctxs
;
2049 q
->mq_ops
= set
->ops
;
2050 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2052 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2053 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2055 q
->sg_reserved_size
= INT_MAX
;
2057 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2058 INIT_LIST_HEAD(&q
->requeue_list
);
2059 spin_lock_init(&q
->requeue_lock
);
2061 if (q
->nr_hw_queues
> 1)
2062 blk_queue_make_request(q
, blk_mq_make_request
);
2064 blk_queue_make_request(q
, blk_sq_make_request
);
2067 * Do this after blk_queue_make_request() overrides it...
2069 q
->nr_requests
= set
->queue_depth
;
2071 if (set
->ops
->complete
)
2072 blk_queue_softirq_done(q
, set
->ops
->complete
);
2074 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2076 if (blk_mq_init_hw_queues(q
, set
))
2080 mutex_lock(&all_q_mutex
);
2082 list_add_tail(&q
->all_q_node
, &all_q_list
);
2083 blk_mq_add_queue_tag_set(set
, q
);
2084 blk_mq_map_swqueue(q
, cpu_online_mask
);
2086 mutex_unlock(&all_q_mutex
);
2093 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2096 free_cpumask_var(hctxs
[i
]->cpumask
);
2103 return ERR_PTR(-ENOMEM
);
2105 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2107 void blk_mq_free_queue(struct request_queue
*q
)
2109 struct blk_mq_tag_set
*set
= q
->tag_set
;
2111 mutex_lock(&all_q_mutex
);
2112 list_del_init(&q
->all_q_node
);
2113 mutex_unlock(&all_q_mutex
);
2115 blk_mq_del_queue_tag_set(q
);
2117 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2118 blk_mq_free_hw_queues(q
, set
);
2121 /* Basically redo blk_mq_init_queue with queue frozen */
2122 static void blk_mq_queue_reinit(struct request_queue
*q
,
2123 const struct cpumask
*online_mask
)
2125 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2127 blk_mq_sysfs_unregister(q
);
2129 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
, online_mask
);
2132 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2133 * we should change hctx numa_node according to new topology (this
2134 * involves free and re-allocate memory, worthy doing?)
2137 blk_mq_map_swqueue(q
, online_mask
);
2139 blk_mq_sysfs_register(q
);
2142 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2143 unsigned long action
, void *hcpu
)
2145 struct request_queue
*q
;
2146 int cpu
= (unsigned long)hcpu
;
2148 * New online cpumask which is going to be set in this hotplug event.
2149 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2150 * one-by-one and dynamically allocating this could result in a failure.
2152 static struct cpumask online_new
;
2155 * Before hotadded cpu starts handling requests, new mappings must
2156 * be established. Otherwise, these requests in hw queue might
2157 * never be dispatched.
2159 * For example, there is a single hw queue (hctx) and two CPU queues
2160 * (ctx0 for CPU0, and ctx1 for CPU1).
2162 * Now CPU1 is just onlined and a request is inserted into
2163 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2166 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2167 * set in pending bitmap and tries to retrieve requests in
2168 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2169 * so the request in ctx1->rq_list is ignored.
2171 switch (action
& ~CPU_TASKS_FROZEN
) {
2173 case CPU_UP_CANCELED
:
2174 cpumask_copy(&online_new
, cpu_online_mask
);
2176 case CPU_UP_PREPARE
:
2177 cpumask_copy(&online_new
, cpu_online_mask
);
2178 cpumask_set_cpu(cpu
, &online_new
);
2184 mutex_lock(&all_q_mutex
);
2187 * We need to freeze and reinit all existing queues. Freezing
2188 * involves synchronous wait for an RCU grace period and doing it
2189 * one by one may take a long time. Start freezing all queues in
2190 * one swoop and then wait for the completions so that freezing can
2191 * take place in parallel.
2193 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2194 blk_mq_freeze_queue_start(q
);
2195 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2196 blk_mq_freeze_queue_wait(q
);
2199 * timeout handler can't touch hw queue during the
2202 del_timer_sync(&q
->timeout
);
2205 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2206 blk_mq_queue_reinit(q
, &online_new
);
2208 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2209 blk_mq_unfreeze_queue(q
);
2211 mutex_unlock(&all_q_mutex
);
2215 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2219 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2220 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2229 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2235 * Allocate the request maps associated with this tag_set. Note that this
2236 * may reduce the depth asked for, if memory is tight. set->queue_depth
2237 * will be updated to reflect the allocated depth.
2239 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2244 depth
= set
->queue_depth
;
2246 err
= __blk_mq_alloc_rq_maps(set
);
2250 set
->queue_depth
>>= 1;
2251 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2255 } while (set
->queue_depth
);
2257 if (!set
->queue_depth
|| err
) {
2258 pr_err("blk-mq: failed to allocate request map\n");
2262 if (depth
!= set
->queue_depth
)
2263 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2264 depth
, set
->queue_depth
);
2269 struct cpumask
*blk_mq_tags_cpumask(struct blk_mq_tags
*tags
)
2271 return tags
->cpumask
;
2273 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask
);
2276 * Alloc a tag set to be associated with one or more request queues.
2277 * May fail with EINVAL for various error conditions. May adjust the
2278 * requested depth down, if if it too large. In that case, the set
2279 * value will be stored in set->queue_depth.
2281 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2283 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2285 if (!set
->nr_hw_queues
)
2287 if (!set
->queue_depth
)
2289 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2292 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2295 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2296 pr_info("blk-mq: reduced tag depth to %u\n",
2298 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2302 * If a crashdump is active, then we are potentially in a very
2303 * memory constrained environment. Limit us to 1 queue and
2304 * 64 tags to prevent using too much memory.
2306 if (is_kdump_kernel()) {
2307 set
->nr_hw_queues
= 1;
2308 set
->queue_depth
= min(64U, set
->queue_depth
);
2311 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2312 sizeof(struct blk_mq_tags
*),
2313 GFP_KERNEL
, set
->numa_node
);
2317 if (blk_mq_alloc_rq_maps(set
))
2320 mutex_init(&set
->tag_list_lock
);
2321 INIT_LIST_HEAD(&set
->tag_list
);
2329 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2331 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2335 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2337 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2343 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2345 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2347 struct blk_mq_tag_set
*set
= q
->tag_set
;
2348 struct blk_mq_hw_ctx
*hctx
;
2351 if (!set
|| nr
> set
->queue_depth
)
2355 queue_for_each_hw_ctx(q
, hctx
, i
) {
2356 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2362 q
->nr_requests
= nr
;
2367 void blk_mq_disable_hotplug(void)
2369 mutex_lock(&all_q_mutex
);
2372 void blk_mq_enable_hotplug(void)
2374 mutex_unlock(&all_q_mutex
);
2377 static int __init
blk_mq_init(void)
2381 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2385 subsys_initcall(blk_mq_init
);