2 * Interface for controlling IO bandwidth on a request queue
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/bio.h>
11 #include <linux/blktrace_api.h>
12 #include <linux/blk-cgroup.h>
15 /* Max dispatch from a group in 1 round */
16 static int throtl_grp_quantum
= 8;
18 /* Total max dispatch from all groups in one round */
19 static int throtl_quantum
= 32;
21 /* Throttling is performed over 100ms slice and after that slice is renewed */
22 static unsigned long throtl_slice
= HZ
/10; /* 100 ms */
24 static struct blkcg_policy blkcg_policy_throtl
;
26 /* A workqueue to queue throttle related work */
27 static struct workqueue_struct
*kthrotld_workqueue
;
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
53 struct list_head node
; /* service_queue->queued[] */
54 struct bio_list bios
; /* queued bios */
55 struct throtl_grp
*tg
; /* tg this qnode belongs to */
58 struct throtl_service_queue
{
59 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
65 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
66 unsigned int nr_queued
[2]; /* number of queued bios */
69 * RB tree of active children throtl_grp's, which are sorted by
72 struct rb_root pending_tree
; /* RB tree of active tgs */
73 struct rb_node
*first_pending
; /* first node in the tree */
74 unsigned int nr_pending
; /* # queued in the tree */
75 unsigned long first_pending_disptime
; /* disptime of the first tg */
76 struct timer_list pending_timer
; /* fires on first_pending_disptime */
80 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
81 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
84 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
87 /* must be the first member */
88 struct blkg_policy_data pd
;
90 /* active throtl group service_queue member */
91 struct rb_node rb_node
;
93 /* throtl_data this group belongs to */
94 struct throtl_data
*td
;
96 /* this group's service queue */
97 struct throtl_service_queue service_queue
;
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
107 struct throtl_qnode qnode_on_self
[2];
108 struct throtl_qnode qnode_on_parent
[2];
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
115 unsigned long disptime
;
119 /* are there any throtl rules between this group and td? */
122 /* bytes per second rate limits */
126 unsigned int iops
[2];
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp
[2];
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp
[2];
133 /* When did we start a new slice */
134 unsigned long slice_start
[2];
135 unsigned long slice_end
[2];
140 /* service tree for active throtl groups */
141 struct throtl_service_queue service_queue
;
143 struct request_queue
*queue
;
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued
[2];
149 * number of total undestroyed groups
151 unsigned int nr_undestroyed_grps
;
153 /* Work for dispatching throttled bios */
154 struct work_struct dispatch_work
;
157 static void throtl_pending_timer_fn(unsigned long arg
);
159 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
161 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
164 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
166 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
169 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
171 return pd_to_blkg(&tg
->pd
);
175 * sq_to_tg - return the throl_grp the specified service queue belongs to
176 * @sq: the throtl_service_queue of interest
178 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
179 * embedded in throtl_data, %NULL is returned.
181 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
183 if (sq
&& sq
->parent_sq
)
184 return container_of(sq
, struct throtl_grp
, service_queue
);
190 * sq_to_td - return throtl_data the specified service queue belongs to
191 * @sq: the throtl_service_queue of interest
193 * A service_queue can be embeded in either a throtl_grp or throtl_data.
194 * Determine the associated throtl_data accordingly and return it.
196 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
198 struct throtl_grp
*tg
= sq_to_tg(sq
);
203 return container_of(sq
, struct throtl_data
, service_queue
);
207 * throtl_log - log debug message via blktrace
208 * @sq: the service_queue being reported
209 * @fmt: printf format string
212 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
213 * throtl_grp; otherwise, just "throtl".
215 * TODO: this should be made a function and name formatting should happen
216 * after testing whether blktrace is enabled.
218 #define throtl_log(sq, fmt, args...) do { \
219 struct throtl_grp *__tg = sq_to_tg((sq)); \
220 struct throtl_data *__td = sq_to_td((sq)); \
226 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
227 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
229 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
233 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
235 INIT_LIST_HEAD(&qn
->node
);
236 bio_list_init(&qn
->bios
);
241 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
242 * @bio: bio being added
243 * @qn: qnode to add bio to
244 * @queued: the service_queue->queued[] list @qn belongs to
246 * Add @bio to @qn and put @qn on @queued if it's not already on.
247 * @qn->tg's reference count is bumped when @qn is activated. See the
248 * comment on top of throtl_qnode definition for details.
250 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
251 struct list_head
*queued
)
253 bio_list_add(&qn
->bios
, bio
);
254 if (list_empty(&qn
->node
)) {
255 list_add_tail(&qn
->node
, queued
);
256 blkg_get(tg_to_blkg(qn
->tg
));
261 * throtl_peek_queued - peek the first bio on a qnode list
262 * @queued: the qnode list to peek
264 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
266 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
269 if (list_empty(queued
))
272 bio
= bio_list_peek(&qn
->bios
);
278 * throtl_pop_queued - pop the first bio form a qnode list
279 * @queued: the qnode list to pop a bio from
280 * @tg_to_put: optional out argument for throtl_grp to put
282 * Pop the first bio from the qnode list @queued. After popping, the first
283 * qnode is removed from @queued if empty or moved to the end of @queued so
284 * that the popping order is round-robin.
286 * When the first qnode is removed, its associated throtl_grp should be put
287 * too. If @tg_to_put is NULL, this function automatically puts it;
288 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
289 * responsible for putting it.
291 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
292 struct throtl_grp
**tg_to_put
)
294 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
297 if (list_empty(queued
))
300 bio
= bio_list_pop(&qn
->bios
);
303 if (bio_list_empty(&qn
->bios
)) {
304 list_del_init(&qn
->node
);
308 blkg_put(tg_to_blkg(qn
->tg
));
310 list_move_tail(&qn
->node
, queued
);
316 /* init a service_queue, assumes the caller zeroed it */
317 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
319 INIT_LIST_HEAD(&sq
->queued
[0]);
320 INIT_LIST_HEAD(&sq
->queued
[1]);
321 sq
->pending_tree
= RB_ROOT
;
322 setup_timer(&sq
->pending_timer
, throtl_pending_timer_fn
,
326 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
328 struct throtl_grp
*tg
;
331 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
335 throtl_service_queue_init(&tg
->service_queue
);
337 for (rw
= READ
; rw
<= WRITE
; rw
++) {
338 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
339 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
342 RB_CLEAR_NODE(&tg
->rb_node
);
346 tg
->iops
[WRITE
] = -1;
351 static void throtl_pd_init(struct blkg_policy_data
*pd
)
353 struct throtl_grp
*tg
= pd_to_tg(pd
);
354 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
355 struct throtl_data
*td
= blkg
->q
->td
;
356 struct throtl_service_queue
*sq
= &tg
->service_queue
;
359 * If on the default hierarchy, we switch to properly hierarchical
360 * behavior where limits on a given throtl_grp are applied to the
361 * whole subtree rather than just the group itself. e.g. If 16M
362 * read_bps limit is set on the root group, the whole system can't
363 * exceed 16M for the device.
365 * If not on the default hierarchy, the broken flat hierarchy
366 * behavior is retained where all throtl_grps are treated as if
367 * they're all separate root groups right below throtl_data.
368 * Limits of a group don't interact with limits of other groups
369 * regardless of the position of the group in the hierarchy.
371 sq
->parent_sq
= &td
->service_queue
;
372 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
373 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
378 * Set has_rules[] if @tg or any of its parents have limits configured.
379 * This doesn't require walking up to the top of the hierarchy as the
380 * parent's has_rules[] is guaranteed to be correct.
382 static void tg_update_has_rules(struct throtl_grp
*tg
)
384 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
387 for (rw
= READ
; rw
<= WRITE
; rw
++)
388 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
389 (tg
->bps
[rw
] != -1 || tg
->iops
[rw
] != -1);
392 static void throtl_pd_online(struct blkg_policy_data
*pd
)
395 * We don't want new groups to escape the limits of its ancestors.
396 * Update has_rules[] after a new group is brought online.
398 tg_update_has_rules(pd_to_tg(pd
));
401 static void throtl_pd_free(struct blkg_policy_data
*pd
)
403 struct throtl_grp
*tg
= pd_to_tg(pd
);
405 del_timer_sync(&tg
->service_queue
.pending_timer
);
409 static struct throtl_grp
*
410 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
412 /* Service tree is empty */
413 if (!parent_sq
->nr_pending
)
416 if (!parent_sq
->first_pending
)
417 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
419 if (parent_sq
->first_pending
)
420 return rb_entry_tg(parent_sq
->first_pending
);
425 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
431 static void throtl_rb_erase(struct rb_node
*n
,
432 struct throtl_service_queue
*parent_sq
)
434 if (parent_sq
->first_pending
== n
)
435 parent_sq
->first_pending
= NULL
;
436 rb_erase_init(n
, &parent_sq
->pending_tree
);
437 --parent_sq
->nr_pending
;
440 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
442 struct throtl_grp
*tg
;
444 tg
= throtl_rb_first(parent_sq
);
448 parent_sq
->first_pending_disptime
= tg
->disptime
;
451 static void tg_service_queue_add(struct throtl_grp
*tg
)
453 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
454 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
455 struct rb_node
*parent
= NULL
;
456 struct throtl_grp
*__tg
;
457 unsigned long key
= tg
->disptime
;
460 while (*node
!= NULL
) {
462 __tg
= rb_entry_tg(parent
);
464 if (time_before(key
, __tg
->disptime
))
465 node
= &parent
->rb_left
;
467 node
= &parent
->rb_right
;
473 parent_sq
->first_pending
= &tg
->rb_node
;
475 rb_link_node(&tg
->rb_node
, parent
, node
);
476 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
479 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
481 tg_service_queue_add(tg
);
482 tg
->flags
|= THROTL_TG_PENDING
;
483 tg
->service_queue
.parent_sq
->nr_pending
++;
486 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
488 if (!(tg
->flags
& THROTL_TG_PENDING
))
489 __throtl_enqueue_tg(tg
);
492 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
494 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
495 tg
->flags
&= ~THROTL_TG_PENDING
;
498 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
500 if (tg
->flags
& THROTL_TG_PENDING
)
501 __throtl_dequeue_tg(tg
);
504 /* Call with queue lock held */
505 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
506 unsigned long expires
)
508 unsigned long max_expire
= jiffies
+ 8 * throtl_slice
;
511 * Since we are adjusting the throttle limit dynamically, the sleep
512 * time calculated according to previous limit might be invalid. It's
513 * possible the cgroup sleep time is very long and no other cgroups
514 * have IO running so notify the limit changes. Make sure the cgroup
515 * doesn't sleep too long to avoid the missed notification.
517 if (time_after(expires
, max_expire
))
518 expires
= max_expire
;
519 mod_timer(&sq
->pending_timer
, expires
);
520 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
521 expires
- jiffies
, jiffies
);
525 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
526 * @sq: the service_queue to schedule dispatch for
527 * @force: force scheduling
529 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
530 * dispatch time of the first pending child. Returns %true if either timer
531 * is armed or there's no pending child left. %false if the current
532 * dispatch window is still open and the caller should continue
535 * If @force is %true, the dispatch timer is always scheduled and this
536 * function is guaranteed to return %true. This is to be used when the
537 * caller can't dispatch itself and needs to invoke pending_timer
538 * unconditionally. Note that forced scheduling is likely to induce short
539 * delay before dispatch starts even if @sq->first_pending_disptime is not
540 * in the future and thus shouldn't be used in hot paths.
542 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
545 /* any pending children left? */
549 update_min_dispatch_time(sq
);
551 /* is the next dispatch time in the future? */
552 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
553 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
557 /* tell the caller to continue dispatching */
561 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
562 bool rw
, unsigned long start
)
564 tg
->bytes_disp
[rw
] = 0;
568 * Previous slice has expired. We must have trimmed it after last
569 * bio dispatch. That means since start of last slice, we never used
570 * that bandwidth. Do try to make use of that bandwidth while giving
573 if (time_after_eq(start
, tg
->slice_start
[rw
]))
574 tg
->slice_start
[rw
] = start
;
576 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
577 throtl_log(&tg
->service_queue
,
578 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
579 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
580 tg
->slice_end
[rw
], jiffies
);
583 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
585 tg
->bytes_disp
[rw
] = 0;
587 tg
->slice_start
[rw
] = jiffies
;
588 tg
->slice_end
[rw
] = jiffies
+ throtl_slice
;
589 throtl_log(&tg
->service_queue
,
590 "[%c] new slice start=%lu end=%lu jiffies=%lu",
591 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
592 tg
->slice_end
[rw
], jiffies
);
595 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
596 unsigned long jiffy_end
)
598 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
601 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
602 unsigned long jiffy_end
)
604 tg
->slice_end
[rw
] = roundup(jiffy_end
, throtl_slice
);
605 throtl_log(&tg
->service_queue
,
606 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
607 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
608 tg
->slice_end
[rw
], jiffies
);
611 /* Determine if previously allocated or extended slice is complete or not */
612 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
614 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
620 /* Trim the used slices and adjust slice start accordingly */
621 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
623 unsigned long nr_slices
, time_elapsed
, io_trim
;
626 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
629 * If bps are unlimited (-1), then time slice don't get
630 * renewed. Don't try to trim the slice if slice is used. A new
631 * slice will start when appropriate.
633 if (throtl_slice_used(tg
, rw
))
637 * A bio has been dispatched. Also adjust slice_end. It might happen
638 * that initially cgroup limit was very low resulting in high
639 * slice_end, but later limit was bumped up and bio was dispached
640 * sooner, then we need to reduce slice_end. A high bogus slice_end
641 * is bad because it does not allow new slice to start.
644 throtl_set_slice_end(tg
, rw
, jiffies
+ throtl_slice
);
646 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
648 nr_slices
= time_elapsed
/ throtl_slice
;
652 tmp
= tg
->bps
[rw
] * throtl_slice
* nr_slices
;
656 io_trim
= (tg
->iops
[rw
] * throtl_slice
* nr_slices
)/HZ
;
658 if (!bytes_trim
&& !io_trim
)
661 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
662 tg
->bytes_disp
[rw
] -= bytes_trim
;
664 tg
->bytes_disp
[rw
] = 0;
666 if (tg
->io_disp
[rw
] >= io_trim
)
667 tg
->io_disp
[rw
] -= io_trim
;
671 tg
->slice_start
[rw
] += nr_slices
* throtl_slice
;
673 throtl_log(&tg
->service_queue
,
674 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
675 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
676 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
679 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
682 bool rw
= bio_data_dir(bio
);
683 unsigned int io_allowed
;
684 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
687 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
689 /* Slice has just started. Consider one slice interval */
691 jiffy_elapsed_rnd
= throtl_slice
;
693 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
696 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
697 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
698 * will allow dispatch after 1 second and after that slice should
702 tmp
= (u64
)tg
->iops
[rw
] * jiffy_elapsed_rnd
;
706 io_allowed
= UINT_MAX
;
710 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
716 /* Calc approx time to dispatch */
717 jiffy_wait
= ((tg
->io_disp
[rw
] + 1) * HZ
)/tg
->iops
[rw
] + 1;
719 if (jiffy_wait
> jiffy_elapsed
)
720 jiffy_wait
= jiffy_wait
- jiffy_elapsed
;
729 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
732 bool rw
= bio_data_dir(bio
);
733 u64 bytes_allowed
, extra_bytes
, tmp
;
734 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
736 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
738 /* Slice has just started. Consider one slice interval */
740 jiffy_elapsed_rnd
= throtl_slice
;
742 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, throtl_slice
);
744 tmp
= tg
->bps
[rw
] * jiffy_elapsed_rnd
;
748 if (tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
<= bytes_allowed
) {
754 /* Calc approx time to dispatch */
755 extra_bytes
= tg
->bytes_disp
[rw
] + bio
->bi_iter
.bi_size
- bytes_allowed
;
756 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg
->bps
[rw
]);
762 * This wait time is without taking into consideration the rounding
763 * up we did. Add that time also.
765 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
772 * Returns whether one can dispatch a bio or not. Also returns approx number
773 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
775 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
778 bool rw
= bio_data_dir(bio
);
779 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
782 * Currently whole state machine of group depends on first bio
783 * queued in the group bio list. So one should not be calling
784 * this function with a different bio if there are other bios
787 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
788 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
790 /* If tg->bps = -1, then BW is unlimited */
791 if (tg
->bps
[rw
] == -1 && tg
->iops
[rw
] == -1) {
798 * If previous slice expired, start a new one otherwise renew/extend
799 * existing slice to make sure it is at least throtl_slice interval
802 if (throtl_slice_used(tg
, rw
))
803 throtl_start_new_slice(tg
, rw
);
805 if (time_before(tg
->slice_end
[rw
], jiffies
+ throtl_slice
))
806 throtl_extend_slice(tg
, rw
, jiffies
+ throtl_slice
);
809 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
810 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
816 max_wait
= max(bps_wait
, iops_wait
);
821 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
822 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
827 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
829 bool rw
= bio_data_dir(bio
);
831 /* Charge the bio to the group */
832 tg
->bytes_disp
[rw
] += bio
->bi_iter
.bi_size
;
836 * REQ_THROTTLED is used to prevent the same bio to be throttled
837 * more than once as a throttled bio will go through blk-throtl the
838 * second time when it eventually gets issued. Set it when a bio
839 * is being charged to a tg.
841 if (!(bio
->bi_rw
& REQ_THROTTLED
))
842 bio
->bi_rw
|= REQ_THROTTLED
;
846 * throtl_add_bio_tg - add a bio to the specified throtl_grp
849 * @tg: the target throtl_grp
851 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
852 * tg->qnode_on_self[] is used.
854 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
855 struct throtl_grp
*tg
)
857 struct throtl_service_queue
*sq
= &tg
->service_queue
;
858 bool rw
= bio_data_dir(bio
);
861 qn
= &tg
->qnode_on_self
[rw
];
864 * If @tg doesn't currently have any bios queued in the same
865 * direction, queueing @bio can change when @tg should be
866 * dispatched. Mark that @tg was empty. This is automatically
867 * cleaered on the next tg_update_disptime().
869 if (!sq
->nr_queued
[rw
])
870 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
872 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
875 throtl_enqueue_tg(tg
);
878 static void tg_update_disptime(struct throtl_grp
*tg
)
880 struct throtl_service_queue
*sq
= &tg
->service_queue
;
881 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
884 if ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
885 tg_may_dispatch(tg
, bio
, &read_wait
);
887 if ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
888 tg_may_dispatch(tg
, bio
, &write_wait
);
890 min_wait
= min(read_wait
, write_wait
);
891 disptime
= jiffies
+ min_wait
;
893 /* Update dispatch time */
894 throtl_dequeue_tg(tg
);
895 tg
->disptime
= disptime
;
896 throtl_enqueue_tg(tg
);
898 /* see throtl_add_bio_tg() */
899 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
902 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
903 struct throtl_grp
*parent_tg
, bool rw
)
905 if (throtl_slice_used(parent_tg
, rw
)) {
906 throtl_start_new_slice_with_credit(parent_tg
, rw
,
907 child_tg
->slice_start
[rw
]);
912 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
914 struct throtl_service_queue
*sq
= &tg
->service_queue
;
915 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
916 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
917 struct throtl_grp
*tg_to_put
= NULL
;
921 * @bio is being transferred from @tg to @parent_sq. Popping a bio
922 * from @tg may put its reference and @parent_sq might end up
923 * getting released prematurely. Remember the tg to put and put it
924 * after @bio is transferred to @parent_sq.
926 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
929 throtl_charge_bio(tg
, bio
);
932 * If our parent is another tg, we just need to transfer @bio to
933 * the parent using throtl_add_bio_tg(). If our parent is
934 * @td->service_queue, @bio is ready to be issued. Put it on its
935 * bio_lists[] and decrease total number queued. The caller is
936 * responsible for issuing these bios.
939 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
940 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
942 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
943 &parent_sq
->queued
[rw
]);
944 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
945 tg
->td
->nr_queued
[rw
]--;
948 throtl_trim_slice(tg
, rw
);
951 blkg_put(tg_to_blkg(tg_to_put
));
954 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
956 struct throtl_service_queue
*sq
= &tg
->service_queue
;
957 unsigned int nr_reads
= 0, nr_writes
= 0;
958 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
959 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
962 /* Try to dispatch 75% READS and 25% WRITES */
964 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
965 tg_may_dispatch(tg
, bio
, NULL
)) {
967 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
970 if (nr_reads
>= max_nr_reads
)
974 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
975 tg_may_dispatch(tg
, bio
, NULL
)) {
977 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
980 if (nr_writes
>= max_nr_writes
)
984 return nr_reads
+ nr_writes
;
987 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
989 unsigned int nr_disp
= 0;
992 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
993 struct throtl_service_queue
*sq
= &tg
->service_queue
;
998 if (time_before(jiffies
, tg
->disptime
))
1001 throtl_dequeue_tg(tg
);
1003 nr_disp
+= throtl_dispatch_tg(tg
);
1005 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1006 tg_update_disptime(tg
);
1008 if (nr_disp
>= throtl_quantum
)
1016 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1017 * @arg: the throtl_service_queue being serviced
1019 * This timer is armed when a child throtl_grp with active bio's become
1020 * pending and queued on the service_queue's pending_tree and expires when
1021 * the first child throtl_grp should be dispatched. This function
1022 * dispatches bio's from the children throtl_grps to the parent
1025 * If the parent's parent is another throtl_grp, dispatching is propagated
1026 * by either arming its pending_timer or repeating dispatch directly. If
1027 * the top-level service_tree is reached, throtl_data->dispatch_work is
1028 * kicked so that the ready bio's are issued.
1030 static void throtl_pending_timer_fn(unsigned long arg
)
1032 struct throtl_service_queue
*sq
= (void *)arg
;
1033 struct throtl_grp
*tg
= sq_to_tg(sq
);
1034 struct throtl_data
*td
= sq_to_td(sq
);
1035 struct request_queue
*q
= td
->queue
;
1036 struct throtl_service_queue
*parent_sq
;
1040 spin_lock_irq(q
->queue_lock
);
1042 parent_sq
= sq
->parent_sq
;
1046 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1047 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1048 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1050 ret
= throtl_select_dispatch(sq
);
1052 throtl_log(sq
, "bios disp=%u", ret
);
1056 if (throtl_schedule_next_dispatch(sq
, false))
1059 /* this dispatch windows is still open, relax and repeat */
1060 spin_unlock_irq(q
->queue_lock
);
1062 spin_lock_irq(q
->queue_lock
);
1069 /* @parent_sq is another throl_grp, propagate dispatch */
1070 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1071 tg_update_disptime(tg
);
1072 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1073 /* window is already open, repeat dispatching */
1080 /* reached the top-level, queue issueing */
1081 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1084 spin_unlock_irq(q
->queue_lock
);
1088 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1089 * @work: work item being executed
1091 * This function is queued for execution when bio's reach the bio_lists[]
1092 * of throtl_data->service_queue. Those bio's are ready and issued by this
1095 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1097 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1099 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1100 struct request_queue
*q
= td
->queue
;
1101 struct bio_list bio_list_on_stack
;
1103 struct blk_plug plug
;
1106 bio_list_init(&bio_list_on_stack
);
1108 spin_lock_irq(q
->queue_lock
);
1109 for (rw
= READ
; rw
<= WRITE
; rw
++)
1110 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1111 bio_list_add(&bio_list_on_stack
, bio
);
1112 spin_unlock_irq(q
->queue_lock
);
1114 if (!bio_list_empty(&bio_list_on_stack
)) {
1115 blk_start_plug(&plug
);
1116 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1117 generic_make_request(bio
);
1118 blk_finish_plug(&plug
);
1122 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1125 struct throtl_grp
*tg
= pd_to_tg(pd
);
1126 u64 v
= *(u64
*)((void *)tg
+ off
);
1130 return __blkg_prfill_u64(sf
, pd
, v
);
1133 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1136 struct throtl_grp
*tg
= pd_to_tg(pd
);
1137 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1141 return __blkg_prfill_u64(sf
, pd
, v
);
1144 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1146 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1147 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1151 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1153 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1154 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1158 static void tg_conf_updated(struct throtl_grp
*tg
)
1160 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1161 struct cgroup_subsys_state
*pos_css
;
1162 struct blkcg_gq
*blkg
;
1164 throtl_log(&tg
->service_queue
,
1165 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1166 tg
->bps
[READ
], tg
->bps
[WRITE
],
1167 tg
->iops
[READ
], tg
->iops
[WRITE
]);
1170 * Update has_rules[] flags for the updated tg's subtree. A tg is
1171 * considered to have rules if either the tg itself or any of its
1172 * ancestors has rules. This identifies groups without any
1173 * restrictions in the whole hierarchy and allows them to bypass
1176 blkg_for_each_descendant_pre(blkg
, pos_css
, tg_to_blkg(tg
))
1177 tg_update_has_rules(blkg_to_tg(blkg
));
1180 * We're already holding queue_lock and know @tg is valid. Let's
1181 * apply the new config directly.
1183 * Restart the slices for both READ and WRITES. It might happen
1184 * that a group's limit are dropped suddenly and we don't want to
1185 * account recently dispatched IO with new low rate.
1187 throtl_start_new_slice(tg
, 0);
1188 throtl_start_new_slice(tg
, 1);
1190 if (tg
->flags
& THROTL_TG_PENDING
) {
1191 tg_update_disptime(tg
);
1192 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1196 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1197 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1199 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1200 struct blkg_conf_ctx ctx
;
1201 struct throtl_grp
*tg
;
1205 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1210 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1215 tg
= blkg_to_tg(ctx
.blkg
);
1218 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1220 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1222 tg_conf_updated(tg
);
1225 blkg_conf_finish(&ctx
);
1226 return ret
?: nbytes
;
1229 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1230 char *buf
, size_t nbytes
, loff_t off
)
1232 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1235 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1236 char *buf
, size_t nbytes
, loff_t off
)
1238 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1241 static struct cftype throtl_legacy_files
[] = {
1243 .name
= "throttle.read_bps_device",
1244 .private = offsetof(struct throtl_grp
, bps
[READ
]),
1245 .seq_show
= tg_print_conf_u64
,
1246 .write
= tg_set_conf_u64
,
1249 .name
= "throttle.write_bps_device",
1250 .private = offsetof(struct throtl_grp
, bps
[WRITE
]),
1251 .seq_show
= tg_print_conf_u64
,
1252 .write
= tg_set_conf_u64
,
1255 .name
= "throttle.read_iops_device",
1256 .private = offsetof(struct throtl_grp
, iops
[READ
]),
1257 .seq_show
= tg_print_conf_uint
,
1258 .write
= tg_set_conf_uint
,
1261 .name
= "throttle.write_iops_device",
1262 .private = offsetof(struct throtl_grp
, iops
[WRITE
]),
1263 .seq_show
= tg_print_conf_uint
,
1264 .write
= tg_set_conf_uint
,
1267 .name
= "throttle.io_service_bytes",
1268 .private = (unsigned long)&blkcg_policy_throtl
,
1269 .seq_show
= blkg_print_stat_bytes
,
1272 .name
= "throttle.io_serviced",
1273 .private = (unsigned long)&blkcg_policy_throtl
,
1274 .seq_show
= blkg_print_stat_ios
,
1279 static u64
tg_prfill_max(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1282 struct throtl_grp
*tg
= pd_to_tg(pd
);
1283 const char *dname
= blkg_dev_name(pd
->blkg
);
1284 char bufs
[4][21] = { "max", "max", "max", "max" };
1288 if (tg
->bps
[READ
] == -1 && tg
->bps
[WRITE
] == -1 &&
1289 tg
->iops
[READ
] == -1 && tg
->iops
[WRITE
] == -1)
1292 if (tg
->bps
[READ
] != -1)
1293 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu", tg
->bps
[READ
]);
1294 if (tg
->bps
[WRITE
] != -1)
1295 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu", tg
->bps
[WRITE
]);
1296 if (tg
->iops
[READ
] != -1)
1297 snprintf(bufs
[2], sizeof(bufs
[2]), "%u", tg
->iops
[READ
]);
1298 if (tg
->iops
[WRITE
] != -1)
1299 snprintf(bufs
[3], sizeof(bufs
[3]), "%u", tg
->iops
[WRITE
]);
1301 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1302 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3]);
1306 static int tg_print_max(struct seq_file
*sf
, void *v
)
1308 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_max
,
1309 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1313 static ssize_t
tg_set_max(struct kernfs_open_file
*of
,
1314 char *buf
, size_t nbytes
, loff_t off
)
1316 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1317 struct blkg_conf_ctx ctx
;
1318 struct throtl_grp
*tg
;
1322 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1326 tg
= blkg_to_tg(ctx
.blkg
);
1328 v
[0] = tg
->bps
[READ
];
1329 v
[1] = tg
->bps
[WRITE
];
1330 v
[2] = tg
->iops
[READ
];
1331 v
[3] = tg
->iops
[WRITE
];
1334 char tok
[27]; /* wiops=18446744073709551616 */
1339 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1348 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1356 if (!strcmp(tok
, "rbps"))
1358 else if (!strcmp(tok
, "wbps"))
1360 else if (!strcmp(tok
, "riops"))
1361 v
[2] = min_t(u64
, val
, UINT_MAX
);
1362 else if (!strcmp(tok
, "wiops"))
1363 v
[3] = min_t(u64
, val
, UINT_MAX
);
1368 tg
->bps
[READ
] = v
[0];
1369 tg
->bps
[WRITE
] = v
[1];
1370 tg
->iops
[READ
] = v
[2];
1371 tg
->iops
[WRITE
] = v
[3];
1373 tg_conf_updated(tg
);
1376 blkg_conf_finish(&ctx
);
1377 return ret
?: nbytes
;
1380 static struct cftype throtl_files
[] = {
1383 .flags
= CFTYPE_NOT_ON_ROOT
,
1384 .seq_show
= tg_print_max
,
1385 .write
= tg_set_max
,
1390 static void throtl_shutdown_wq(struct request_queue
*q
)
1392 struct throtl_data
*td
= q
->td
;
1394 cancel_work_sync(&td
->dispatch_work
);
1397 static struct blkcg_policy blkcg_policy_throtl
= {
1398 .dfl_cftypes
= throtl_files
,
1399 .legacy_cftypes
= throtl_legacy_files
,
1401 .pd_alloc_fn
= throtl_pd_alloc
,
1402 .pd_init_fn
= throtl_pd_init
,
1403 .pd_online_fn
= throtl_pd_online
,
1404 .pd_free_fn
= throtl_pd_free
,
1407 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
1410 struct throtl_qnode
*qn
= NULL
;
1411 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
1412 struct throtl_service_queue
*sq
;
1413 bool rw
= bio_data_dir(bio
);
1414 bool throttled
= false;
1416 WARN_ON_ONCE(!rcu_read_lock_held());
1418 /* see throtl_charge_bio() */
1419 if ((bio
->bi_rw
& REQ_THROTTLED
) || !tg
->has_rules
[rw
])
1422 spin_lock_irq(q
->queue_lock
);
1424 if (unlikely(blk_queue_bypass(q
)))
1427 sq
= &tg
->service_queue
;
1430 /* throtl is FIFO - if bios are already queued, should queue */
1431 if (sq
->nr_queued
[rw
])
1434 /* if above limits, break to queue */
1435 if (!tg_may_dispatch(tg
, bio
, NULL
))
1438 /* within limits, let's charge and dispatch directly */
1439 throtl_charge_bio(tg
, bio
);
1442 * We need to trim slice even when bios are not being queued
1443 * otherwise it might happen that a bio is not queued for
1444 * a long time and slice keeps on extending and trim is not
1445 * called for a long time. Now if limits are reduced suddenly
1446 * we take into account all the IO dispatched so far at new
1447 * low rate and * newly queued IO gets a really long dispatch
1450 * So keep on trimming slice even if bio is not queued.
1452 throtl_trim_slice(tg
, rw
);
1455 * @bio passed through this layer without being throttled.
1456 * Climb up the ladder. If we''re already at the top, it
1457 * can be executed directly.
1459 qn
= &tg
->qnode_on_parent
[rw
];
1466 /* out-of-limit, queue to @tg */
1467 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1468 rw
== READ
? 'R' : 'W',
1469 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
, tg
->bps
[rw
],
1470 tg
->io_disp
[rw
], tg
->iops
[rw
],
1471 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1473 bio_associate_current(bio
);
1474 tg
->td
->nr_queued
[rw
]++;
1475 throtl_add_bio_tg(bio
, qn
, tg
);
1479 * Update @tg's dispatch time and force schedule dispatch if @tg
1480 * was empty before @bio. The forced scheduling isn't likely to
1481 * cause undue delay as @bio is likely to be dispatched directly if
1482 * its @tg's disptime is not in the future.
1484 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1485 tg_update_disptime(tg
);
1486 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
1490 spin_unlock_irq(q
->queue_lock
);
1493 * As multiple blk-throtls may stack in the same issue path, we
1494 * don't want bios to leave with the flag set. Clear the flag if
1498 bio
->bi_rw
&= ~REQ_THROTTLED
;
1503 * Dispatch all bios from all children tg's queued on @parent_sq. On
1504 * return, @parent_sq is guaranteed to not have any active children tg's
1505 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1507 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
1509 struct throtl_grp
*tg
;
1511 while ((tg
= throtl_rb_first(parent_sq
))) {
1512 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1515 throtl_dequeue_tg(tg
);
1517 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
1518 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1519 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
1520 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1525 * blk_throtl_drain - drain throttled bios
1526 * @q: request_queue to drain throttled bios for
1528 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1530 void blk_throtl_drain(struct request_queue
*q
)
1531 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
1533 struct throtl_data
*td
= q
->td
;
1534 struct blkcg_gq
*blkg
;
1535 struct cgroup_subsys_state
*pos_css
;
1539 queue_lockdep_assert_held(q
);
1543 * Drain each tg while doing post-order walk on the blkg tree, so
1544 * that all bios are propagated to td->service_queue. It'd be
1545 * better to walk service_queue tree directly but blkg walk is
1548 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
1549 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
1551 /* finally, transfer bios from top-level tg's into the td */
1552 tg_drain_bios(&td
->service_queue
);
1555 spin_unlock_irq(q
->queue_lock
);
1557 /* all bios now should be in td->service_queue, issue them */
1558 for (rw
= READ
; rw
<= WRITE
; rw
++)
1559 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
1561 generic_make_request(bio
);
1563 spin_lock_irq(q
->queue_lock
);
1566 int blk_throtl_init(struct request_queue
*q
)
1568 struct throtl_data
*td
;
1571 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
1575 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
1576 throtl_service_queue_init(&td
->service_queue
);
1581 /* activate policy */
1582 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
1588 void blk_throtl_exit(struct request_queue
*q
)
1591 throtl_shutdown_wq(q
);
1592 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
1596 static int __init
throtl_init(void)
1598 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
1599 if (!kthrotld_workqueue
)
1600 panic("Failed to create kthrotld\n");
1602 return blkcg_policy_register(&blkcg_policy_throtl
);
1605 module_init(throtl_init
);