HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
blob8d52afd1f71db1d6aca0e38e5fd4a345e553666e
1 /*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014 LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 * (mailto: MPT-FusionLinux.pdl@avagotech.com)
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
43 * USA.
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/kthread.h>
61 #include <linux/aer.h>
64 #include "mpt3sas_base.h"
66 static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
69 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
71 /* maximum controller queue depth */
72 #define MAX_HBA_QUEUE_DEPTH 30000
73 #define MAX_CHAIN_DEPTH 100000
74 static int max_queue_depth = -1;
75 module_param(max_queue_depth, int, 0);
76 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
78 static int max_sgl_entries = -1;
79 module_param(max_sgl_entries, int, 0);
80 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
82 static int msix_disable = -1;
83 module_param(msix_disable, int, 0);
84 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
86 static int max_msix_vectors = -1;
87 module_param(max_msix_vectors, int, 0);
88 MODULE_PARM_DESC(max_msix_vectors,
89 " max msix vectors");
91 static int mpt3sas_fwfault_debug;
92 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93 " enable detection of firmware fault and halt firmware - (default=0)");
95 static int
96 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
98 /**
99 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
102 static int
103 _scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
105 int ret = param_set_int(val, kp);
106 struct MPT3SAS_ADAPTER *ioc;
108 if (ret)
109 return ret;
111 /* global ioc spinlock to protect controller list on list operations */
112 pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
113 spin_lock(&gioc_lock);
114 list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
115 ioc->fwfault_debug = mpt3sas_fwfault_debug;
116 spin_unlock(&gioc_lock);
117 return 0;
119 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
120 param_get_int, &mpt3sas_fwfault_debug, 0644);
123 * mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
124 * @arg: input argument, used to derive ioc
126 * Return 0 if controller is removed from pci subsystem.
127 * Return -1 for other case.
129 static int mpt3sas_remove_dead_ioc_func(void *arg)
131 struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
132 struct pci_dev *pdev;
134 if ((ioc == NULL))
135 return -1;
137 pdev = ioc->pdev;
138 if ((pdev == NULL))
139 return -1;
140 pci_stop_and_remove_bus_device_locked(pdev);
141 return 0;
145 * _base_fault_reset_work - workq handling ioc fault conditions
146 * @work: input argument, used to derive ioc
147 * Context: sleep.
149 * Return nothing.
151 static void
152 _base_fault_reset_work(struct work_struct *work)
154 struct MPT3SAS_ADAPTER *ioc =
155 container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
156 unsigned long flags;
157 u32 doorbell;
158 int rc;
159 struct task_struct *p;
162 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
163 if (ioc->shost_recovery || ioc->pci_error_recovery)
164 goto rearm_timer;
165 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
167 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
168 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
169 pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
170 ioc->name);
172 /* It may be possible that EEH recovery can resolve some of
173 * pci bus failure issues rather removing the dead ioc function
174 * by considering controller is in a non-operational state. So
175 * here priority is given to the EEH recovery. If it doesn't
176 * not resolve this issue, mpt3sas driver will consider this
177 * controller to non-operational state and remove the dead ioc
178 * function.
180 if (ioc->non_operational_loop++ < 5) {
181 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
182 flags);
183 goto rearm_timer;
187 * Call _scsih_flush_pending_cmds callback so that we flush all
188 * pending commands back to OS. This call is required to aovid
189 * deadlock at block layer. Dead IOC will fail to do diag reset,
190 * and this call is safe since dead ioc will never return any
191 * command back from HW.
193 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
195 * Set remove_host flag early since kernel thread will
196 * take some time to execute.
198 ioc->remove_host = 1;
199 /*Remove the Dead Host */
200 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
201 "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
202 if (IS_ERR(p))
203 pr_err(MPT3SAS_FMT
204 "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
205 ioc->name, __func__);
206 else
207 pr_err(MPT3SAS_FMT
208 "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
209 ioc->name, __func__);
210 return; /* don't rearm timer */
213 ioc->non_operational_loop = 0;
215 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
216 rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
217 FORCE_BIG_HAMMER);
218 pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
219 __func__, (rc == 0) ? "success" : "failed");
220 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
221 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
222 mpt3sas_base_fault_info(ioc, doorbell &
223 MPI2_DOORBELL_DATA_MASK);
224 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
225 MPI2_IOC_STATE_OPERATIONAL)
226 return; /* don't rearm timer */
229 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
230 rearm_timer:
231 if (ioc->fault_reset_work_q)
232 queue_delayed_work(ioc->fault_reset_work_q,
233 &ioc->fault_reset_work,
234 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
235 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
239 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
240 * @ioc: per adapter object
241 * Context: sleep.
243 * Return nothing.
245 void
246 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
248 unsigned long flags;
250 if (ioc->fault_reset_work_q)
251 return;
253 /* initialize fault polling */
255 INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
256 snprintf(ioc->fault_reset_work_q_name,
257 sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
258 ioc->driver_name, ioc->id);
259 ioc->fault_reset_work_q =
260 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
261 if (!ioc->fault_reset_work_q) {
262 pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
263 ioc->name, __func__, __LINE__);
264 return;
266 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
267 if (ioc->fault_reset_work_q)
268 queue_delayed_work(ioc->fault_reset_work_q,
269 &ioc->fault_reset_work,
270 msecs_to_jiffies(FAULT_POLLING_INTERVAL));
271 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
275 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
276 * @ioc: per adapter object
277 * Context: sleep.
279 * Return nothing.
281 void
282 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
284 unsigned long flags;
285 struct workqueue_struct *wq;
287 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
288 wq = ioc->fault_reset_work_q;
289 ioc->fault_reset_work_q = NULL;
290 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
291 if (wq) {
292 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
293 flush_workqueue(wq);
294 destroy_workqueue(wq);
299 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
300 * @ioc: per adapter object
301 * @fault_code: fault code
303 * Return nothing.
305 void
306 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
308 pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
309 ioc->name, fault_code);
313 * mpt3sas_halt_firmware - halt's mpt controller firmware
314 * @ioc: per adapter object
316 * For debugging timeout related issues. Writing 0xCOFFEE00
317 * to the doorbell register will halt controller firmware. With
318 * the purpose to stop both driver and firmware, the enduser can
319 * obtain a ring buffer from controller UART.
321 void
322 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
324 u32 doorbell;
326 if (!ioc->fwfault_debug)
327 return;
329 dump_stack();
331 doorbell = readl(&ioc->chip->Doorbell);
332 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
333 mpt3sas_base_fault_info(ioc , doorbell);
334 else {
335 writel(0xC0FFEE00, &ioc->chip->Doorbell);
336 pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
337 ioc->name);
340 if (ioc->fwfault_debug == 2)
341 for (;;)
343 else
344 panic("panic in %s\n", __func__);
348 * _base_sas_ioc_info - verbose translation of the ioc status
349 * @ioc: per adapter object
350 * @mpi_reply: reply mf payload returned from firmware
351 * @request_hdr: request mf
353 * Return nothing.
355 static void
356 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
357 MPI2RequestHeader_t *request_hdr)
359 u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
360 MPI2_IOCSTATUS_MASK;
361 char *desc = NULL;
362 u16 frame_sz;
363 char *func_str = NULL;
365 /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
366 if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
367 request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
368 request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
369 return;
371 if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
372 return;
374 switch (ioc_status) {
376 /****************************************************************************
377 * Common IOCStatus values for all replies
378 ****************************************************************************/
380 case MPI2_IOCSTATUS_INVALID_FUNCTION:
381 desc = "invalid function";
382 break;
383 case MPI2_IOCSTATUS_BUSY:
384 desc = "busy";
385 break;
386 case MPI2_IOCSTATUS_INVALID_SGL:
387 desc = "invalid sgl";
388 break;
389 case MPI2_IOCSTATUS_INTERNAL_ERROR:
390 desc = "internal error";
391 break;
392 case MPI2_IOCSTATUS_INVALID_VPID:
393 desc = "invalid vpid";
394 break;
395 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
396 desc = "insufficient resources";
397 break;
398 case MPI2_IOCSTATUS_INVALID_FIELD:
399 desc = "invalid field";
400 break;
401 case MPI2_IOCSTATUS_INVALID_STATE:
402 desc = "invalid state";
403 break;
404 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
405 desc = "op state not supported";
406 break;
408 /****************************************************************************
409 * Config IOCStatus values
410 ****************************************************************************/
412 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
413 desc = "config invalid action";
414 break;
415 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
416 desc = "config invalid type";
417 break;
418 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
419 desc = "config invalid page";
420 break;
421 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
422 desc = "config invalid data";
423 break;
424 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
425 desc = "config no defaults";
426 break;
427 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
428 desc = "config cant commit";
429 break;
431 /****************************************************************************
432 * SCSI IO Reply
433 ****************************************************************************/
435 case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
436 case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
437 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
438 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
439 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
440 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
441 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
442 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
443 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
444 case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
445 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
446 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
447 break;
449 /****************************************************************************
450 * For use by SCSI Initiator and SCSI Target end-to-end data protection
451 ****************************************************************************/
453 case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
454 desc = "eedp guard error";
455 break;
456 case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
457 desc = "eedp ref tag error";
458 break;
459 case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
460 desc = "eedp app tag error";
461 break;
463 /****************************************************************************
464 * SCSI Target values
465 ****************************************************************************/
467 case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
468 desc = "target invalid io index";
469 break;
470 case MPI2_IOCSTATUS_TARGET_ABORTED:
471 desc = "target aborted";
472 break;
473 case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
474 desc = "target no conn retryable";
475 break;
476 case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
477 desc = "target no connection";
478 break;
479 case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
480 desc = "target xfer count mismatch";
481 break;
482 case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
483 desc = "target data offset error";
484 break;
485 case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
486 desc = "target too much write data";
487 break;
488 case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
489 desc = "target iu too short";
490 break;
491 case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
492 desc = "target ack nak timeout";
493 break;
494 case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
495 desc = "target nak received";
496 break;
498 /****************************************************************************
499 * Serial Attached SCSI values
500 ****************************************************************************/
502 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
503 desc = "smp request failed";
504 break;
505 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
506 desc = "smp data overrun";
507 break;
509 /****************************************************************************
510 * Diagnostic Buffer Post / Diagnostic Release values
511 ****************************************************************************/
513 case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
514 desc = "diagnostic released";
515 break;
516 default:
517 break;
520 if (!desc)
521 return;
523 switch (request_hdr->Function) {
524 case MPI2_FUNCTION_CONFIG:
525 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
526 func_str = "config_page";
527 break;
528 case MPI2_FUNCTION_SCSI_TASK_MGMT:
529 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
530 func_str = "task_mgmt";
531 break;
532 case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
533 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
534 func_str = "sas_iounit_ctl";
535 break;
536 case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
537 frame_sz = sizeof(Mpi2SepRequest_t);
538 func_str = "enclosure";
539 break;
540 case MPI2_FUNCTION_IOC_INIT:
541 frame_sz = sizeof(Mpi2IOCInitRequest_t);
542 func_str = "ioc_init";
543 break;
544 case MPI2_FUNCTION_PORT_ENABLE:
545 frame_sz = sizeof(Mpi2PortEnableRequest_t);
546 func_str = "port_enable";
547 break;
548 case MPI2_FUNCTION_SMP_PASSTHROUGH:
549 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
550 func_str = "smp_passthru";
551 break;
552 default:
553 frame_sz = 32;
554 func_str = "unknown";
555 break;
558 pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
559 ioc->name, desc, ioc_status, request_hdr, func_str);
561 _debug_dump_mf(request_hdr, frame_sz/4);
565 * _base_display_event_data - verbose translation of firmware asyn events
566 * @ioc: per adapter object
567 * @mpi_reply: reply mf payload returned from firmware
569 * Return nothing.
571 static void
572 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
573 Mpi2EventNotificationReply_t *mpi_reply)
575 char *desc = NULL;
576 u16 event;
578 if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
579 return;
581 event = le16_to_cpu(mpi_reply->Event);
583 switch (event) {
584 case MPI2_EVENT_LOG_DATA:
585 desc = "Log Data";
586 break;
587 case MPI2_EVENT_STATE_CHANGE:
588 desc = "Status Change";
589 break;
590 case MPI2_EVENT_HARD_RESET_RECEIVED:
591 desc = "Hard Reset Received";
592 break;
593 case MPI2_EVENT_EVENT_CHANGE:
594 desc = "Event Change";
595 break;
596 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
597 desc = "Device Status Change";
598 break;
599 case MPI2_EVENT_IR_OPERATION_STATUS:
600 if (!ioc->hide_ir_msg)
601 desc = "IR Operation Status";
602 break;
603 case MPI2_EVENT_SAS_DISCOVERY:
605 Mpi2EventDataSasDiscovery_t *event_data =
606 (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
607 pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
608 (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
609 "start" : "stop");
610 if (event_data->DiscoveryStatus)
611 pr_info("discovery_status(0x%08x)",
612 le32_to_cpu(event_data->DiscoveryStatus));
613 pr_info("\n");
614 return;
616 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
617 desc = "SAS Broadcast Primitive";
618 break;
619 case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
620 desc = "SAS Init Device Status Change";
621 break;
622 case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
623 desc = "SAS Init Table Overflow";
624 break;
625 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
626 desc = "SAS Topology Change List";
627 break;
628 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
629 desc = "SAS Enclosure Device Status Change";
630 break;
631 case MPI2_EVENT_IR_VOLUME:
632 if (!ioc->hide_ir_msg)
633 desc = "IR Volume";
634 break;
635 case MPI2_EVENT_IR_PHYSICAL_DISK:
636 if (!ioc->hide_ir_msg)
637 desc = "IR Physical Disk";
638 break;
639 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
640 if (!ioc->hide_ir_msg)
641 desc = "IR Configuration Change List";
642 break;
643 case MPI2_EVENT_LOG_ENTRY_ADDED:
644 if (!ioc->hide_ir_msg)
645 desc = "Log Entry Added";
646 break;
647 case MPI2_EVENT_TEMP_THRESHOLD:
648 desc = "Temperature Threshold";
649 break;
652 if (!desc)
653 return;
655 pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
659 * _base_sas_log_info - verbose translation of firmware log info
660 * @ioc: per adapter object
661 * @log_info: log info
663 * Return nothing.
665 static void
666 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
668 union loginfo_type {
669 u32 loginfo;
670 struct {
671 u32 subcode:16;
672 u32 code:8;
673 u32 originator:4;
674 u32 bus_type:4;
675 } dw;
677 union loginfo_type sas_loginfo;
678 char *originator_str = NULL;
680 sas_loginfo.loginfo = log_info;
681 if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
682 return;
684 /* each nexus loss loginfo */
685 if (log_info == 0x31170000)
686 return;
688 /* eat the loginfos associated with task aborts */
689 if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
690 0x31140000 || log_info == 0x31130000))
691 return;
693 switch (sas_loginfo.dw.originator) {
694 case 0:
695 originator_str = "IOP";
696 break;
697 case 1:
698 originator_str = "PL";
699 break;
700 case 2:
701 if (!ioc->hide_ir_msg)
702 originator_str = "IR";
703 else
704 originator_str = "WarpDrive";
705 break;
708 pr_warn(MPT3SAS_FMT
709 "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
710 ioc->name, log_info,
711 originator_str, sas_loginfo.dw.code,
712 sas_loginfo.dw.subcode);
716 * _base_display_reply_info -
717 * @ioc: per adapter object
718 * @smid: system request message index
719 * @msix_index: MSIX table index supplied by the OS
720 * @reply: reply message frame(lower 32bit addr)
722 * Return nothing.
724 static void
725 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
726 u32 reply)
728 MPI2DefaultReply_t *mpi_reply;
729 u16 ioc_status;
730 u32 loginfo = 0;
732 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
733 if (unlikely(!mpi_reply)) {
734 pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
735 ioc->name, __FILE__, __LINE__, __func__);
736 return;
738 ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
740 if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
741 (ioc->logging_level & MPT_DEBUG_REPLY)) {
742 _base_sas_ioc_info(ioc , mpi_reply,
743 mpt3sas_base_get_msg_frame(ioc, smid));
746 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
747 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
748 _base_sas_log_info(ioc, loginfo);
751 if (ioc_status || loginfo) {
752 ioc_status &= MPI2_IOCSTATUS_MASK;
753 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
758 * mpt3sas_base_done - base internal command completion routine
759 * @ioc: per adapter object
760 * @smid: system request message index
761 * @msix_index: MSIX table index supplied by the OS
762 * @reply: reply message frame(lower 32bit addr)
764 * Return 1 meaning mf should be freed from _base_interrupt
765 * 0 means the mf is freed from this function.
768 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
769 u32 reply)
771 MPI2DefaultReply_t *mpi_reply;
773 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
774 if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
775 return 1;
777 if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
778 return 1;
780 ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
781 if (mpi_reply) {
782 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
783 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
785 ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
787 complete(&ioc->base_cmds.done);
788 return 1;
792 * _base_async_event - main callback handler for firmware asyn events
793 * @ioc: per adapter object
794 * @msix_index: MSIX table index supplied by the OS
795 * @reply: reply message frame(lower 32bit addr)
797 * Return 1 meaning mf should be freed from _base_interrupt
798 * 0 means the mf is freed from this function.
800 static u8
801 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
803 Mpi2EventNotificationReply_t *mpi_reply;
804 Mpi2EventAckRequest_t *ack_request;
805 u16 smid;
807 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
808 if (!mpi_reply)
809 return 1;
810 if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
811 return 1;
813 _base_display_event_data(ioc, mpi_reply);
815 if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
816 goto out;
817 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
818 if (!smid) {
819 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
820 ioc->name, __func__);
821 goto out;
824 ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
825 memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
826 ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
827 ack_request->Event = mpi_reply->Event;
828 ack_request->EventContext = mpi_reply->EventContext;
829 ack_request->VF_ID = 0; /* TODO */
830 ack_request->VP_ID = 0;
831 mpt3sas_base_put_smid_default(ioc, smid);
833 out:
835 /* scsih callback handler */
836 mpt3sas_scsih_event_callback(ioc, msix_index, reply);
838 /* ctl callback handler */
839 mpt3sas_ctl_event_callback(ioc, msix_index, reply);
841 return 1;
845 * _base_get_cb_idx - obtain the callback index
846 * @ioc: per adapter object
847 * @smid: system request message index
849 * Return callback index.
851 static u8
852 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
854 int i;
855 u8 cb_idx;
857 if (smid < ioc->hi_priority_smid) {
858 i = smid - 1;
859 cb_idx = ioc->scsi_lookup[i].cb_idx;
860 } else if (smid < ioc->internal_smid) {
861 i = smid - ioc->hi_priority_smid;
862 cb_idx = ioc->hpr_lookup[i].cb_idx;
863 } else if (smid <= ioc->hba_queue_depth) {
864 i = smid - ioc->internal_smid;
865 cb_idx = ioc->internal_lookup[i].cb_idx;
866 } else
867 cb_idx = 0xFF;
868 return cb_idx;
872 * _base_mask_interrupts - disable interrupts
873 * @ioc: per adapter object
875 * Disabling ResetIRQ, Reply and Doorbell Interrupts
877 * Return nothing.
879 static void
880 _base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
882 u32 him_register;
884 ioc->mask_interrupts = 1;
885 him_register = readl(&ioc->chip->HostInterruptMask);
886 him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
887 writel(him_register, &ioc->chip->HostInterruptMask);
888 readl(&ioc->chip->HostInterruptMask);
892 * _base_unmask_interrupts - enable interrupts
893 * @ioc: per adapter object
895 * Enabling only Reply Interrupts
897 * Return nothing.
899 static void
900 _base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
902 u32 him_register;
904 him_register = readl(&ioc->chip->HostInterruptMask);
905 him_register &= ~MPI2_HIM_RIM;
906 writel(him_register, &ioc->chip->HostInterruptMask);
907 ioc->mask_interrupts = 0;
910 union reply_descriptor {
911 u64 word;
912 struct {
913 u32 low;
914 u32 high;
915 } u;
919 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
920 * @irq: irq number (not used)
921 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
922 * @r: pt_regs pointer (not used)
924 * Return IRQ_HANDLE if processed, else IRQ_NONE.
926 static irqreturn_t
927 _base_interrupt(int irq, void *bus_id)
929 struct adapter_reply_queue *reply_q = bus_id;
930 union reply_descriptor rd;
931 u32 completed_cmds;
932 u8 request_desript_type;
933 u16 smid;
934 u8 cb_idx;
935 u32 reply;
936 u8 msix_index = reply_q->msix_index;
937 struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
938 Mpi2ReplyDescriptorsUnion_t *rpf;
939 u8 rc;
941 if (ioc->mask_interrupts)
942 return IRQ_NONE;
944 if (!atomic_add_unless(&reply_q->busy, 1, 1))
945 return IRQ_NONE;
947 rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
948 request_desript_type = rpf->Default.ReplyFlags
949 & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
950 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
951 atomic_dec(&reply_q->busy);
952 return IRQ_NONE;
955 completed_cmds = 0;
956 cb_idx = 0xFF;
957 do {
958 rd.word = le64_to_cpu(rpf->Words);
959 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
960 goto out;
961 reply = 0;
962 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
963 if (request_desript_type ==
964 MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
965 request_desript_type ==
966 MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
967 cb_idx = _base_get_cb_idx(ioc, smid);
968 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
969 (likely(mpt_callbacks[cb_idx] != NULL))) {
970 rc = mpt_callbacks[cb_idx](ioc, smid,
971 msix_index, 0);
972 if (rc)
973 mpt3sas_base_free_smid(ioc, smid);
975 } else if (request_desript_type ==
976 MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
977 reply = le32_to_cpu(
978 rpf->AddressReply.ReplyFrameAddress);
979 if (reply > ioc->reply_dma_max_address ||
980 reply < ioc->reply_dma_min_address)
981 reply = 0;
982 if (smid) {
983 cb_idx = _base_get_cb_idx(ioc, smid);
984 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
985 (likely(mpt_callbacks[cb_idx] != NULL))) {
986 rc = mpt_callbacks[cb_idx](ioc, smid,
987 msix_index, reply);
988 if (reply)
989 _base_display_reply_info(ioc,
990 smid, msix_index, reply);
991 if (rc)
992 mpt3sas_base_free_smid(ioc,
993 smid);
995 } else {
996 _base_async_event(ioc, msix_index, reply);
999 /* reply free queue handling */
1000 if (reply) {
1001 ioc->reply_free_host_index =
1002 (ioc->reply_free_host_index ==
1003 (ioc->reply_free_queue_depth - 1)) ?
1004 0 : ioc->reply_free_host_index + 1;
1005 ioc->reply_free[ioc->reply_free_host_index] =
1006 cpu_to_le32(reply);
1007 wmb();
1008 writel(ioc->reply_free_host_index,
1009 &ioc->chip->ReplyFreeHostIndex);
1013 rpf->Words = cpu_to_le64(ULLONG_MAX);
1014 reply_q->reply_post_host_index =
1015 (reply_q->reply_post_host_index ==
1016 (ioc->reply_post_queue_depth - 1)) ? 0 :
1017 reply_q->reply_post_host_index + 1;
1018 request_desript_type =
1019 reply_q->reply_post_free[reply_q->reply_post_host_index].
1020 Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1021 completed_cmds++;
1022 if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1023 goto out;
1024 if (!reply_q->reply_post_host_index)
1025 rpf = reply_q->reply_post_free;
1026 else
1027 rpf++;
1028 } while (1);
1030 out:
1032 if (!completed_cmds) {
1033 atomic_dec(&reply_q->busy);
1034 return IRQ_NONE;
1037 wmb();
1038 if (ioc->is_warpdrive) {
1039 writel(reply_q->reply_post_host_index,
1040 ioc->reply_post_host_index[msix_index]);
1041 atomic_dec(&reply_q->busy);
1042 return IRQ_HANDLED;
1045 /* Update Reply Post Host Index.
1046 * For those HBA's which support combined reply queue feature
1047 * 1. Get the correct Supplemental Reply Post Host Index Register.
1048 * i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1049 * Index Register address bank i.e replyPostRegisterIndex[],
1050 * 2. Then update this register with new reply host index value
1051 * in ReplyPostIndex field and the MSIxIndex field with
1052 * msix_index value reduced to a value between 0 and 7,
1053 * using a modulo 8 operation. Since each Supplemental Reply Post
1054 * Host Index Register supports 8 MSI-X vectors.
1056 * For other HBA's just update the Reply Post Host Index register with
1057 * new reply host index value in ReplyPostIndex Field and msix_index
1058 * value in MSIxIndex field.
1060 if (ioc->msix96_vector)
1061 writel(reply_q->reply_post_host_index | ((msix_index & 7) <<
1062 MPI2_RPHI_MSIX_INDEX_SHIFT),
1063 ioc->replyPostRegisterIndex[msix_index/8]);
1064 else
1065 writel(reply_q->reply_post_host_index | (msix_index <<
1066 MPI2_RPHI_MSIX_INDEX_SHIFT),
1067 &ioc->chip->ReplyPostHostIndex);
1068 atomic_dec(&reply_q->busy);
1069 return IRQ_HANDLED;
1073 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1074 * @ioc: per adapter object
1077 static inline int
1078 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1080 return (ioc->facts.IOCCapabilities &
1081 MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1085 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1086 * @ioc: per adapter object
1087 * Context: ISR conext
1089 * Called when a Task Management request has completed. We want
1090 * to flush the other reply queues so all the outstanding IO has been
1091 * completed back to OS before we process the TM completetion.
1093 * Return nothing.
1095 void
1096 mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1098 struct adapter_reply_queue *reply_q;
1100 /* If MSIX capability is turned off
1101 * then multi-queues are not enabled
1103 if (!_base_is_controller_msix_enabled(ioc))
1104 return;
1106 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1107 if (ioc->shost_recovery)
1108 return;
1109 /* TMs are on msix_index == 0 */
1110 if (reply_q->msix_index == 0)
1111 continue;
1112 _base_interrupt(reply_q->vector, (void *)reply_q);
1117 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1118 * @cb_idx: callback index
1120 * Return nothing.
1122 void
1123 mpt3sas_base_release_callback_handler(u8 cb_idx)
1125 mpt_callbacks[cb_idx] = NULL;
1129 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1130 * @cb_func: callback function
1132 * Returns cb_func.
1135 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1137 u8 cb_idx;
1139 for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1140 if (mpt_callbacks[cb_idx] == NULL)
1141 break;
1143 mpt_callbacks[cb_idx] = cb_func;
1144 return cb_idx;
1148 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1150 * Return nothing.
1152 void
1153 mpt3sas_base_initialize_callback_handler(void)
1155 u8 cb_idx;
1157 for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1158 mpt3sas_base_release_callback_handler(cb_idx);
1163 * _base_build_zero_len_sge - build zero length sg entry
1164 * @ioc: per adapter object
1165 * @paddr: virtual address for SGE
1167 * Create a zero length scatter gather entry to insure the IOCs hardware has
1168 * something to use if the target device goes brain dead and tries
1169 * to send data even when none is asked for.
1171 * Return nothing.
1173 static void
1174 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1176 u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1177 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1178 MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1179 MPI2_SGE_FLAGS_SHIFT);
1180 ioc->base_add_sg_single(paddr, flags_length, -1);
1184 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1185 * @paddr: virtual address for SGE
1186 * @flags_length: SGE flags and data transfer length
1187 * @dma_addr: Physical address
1189 * Return nothing.
1191 static void
1192 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1194 Mpi2SGESimple32_t *sgel = paddr;
1196 flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1197 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1198 sgel->FlagsLength = cpu_to_le32(flags_length);
1199 sgel->Address = cpu_to_le32(dma_addr);
1204 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1205 * @paddr: virtual address for SGE
1206 * @flags_length: SGE flags and data transfer length
1207 * @dma_addr: Physical address
1209 * Return nothing.
1211 static void
1212 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1214 Mpi2SGESimple64_t *sgel = paddr;
1216 flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1217 MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1218 sgel->FlagsLength = cpu_to_le32(flags_length);
1219 sgel->Address = cpu_to_le64(dma_addr);
1223 * _base_get_chain_buffer_tracker - obtain chain tracker
1224 * @ioc: per adapter object
1225 * @smid: smid associated to an IO request
1227 * Returns chain tracker(from ioc->free_chain_list)
1229 static struct chain_tracker *
1230 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1232 struct chain_tracker *chain_req;
1233 unsigned long flags;
1235 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1236 if (list_empty(&ioc->free_chain_list)) {
1237 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1238 dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1239 "chain buffers not available\n", ioc->name));
1240 return NULL;
1242 chain_req = list_entry(ioc->free_chain_list.next,
1243 struct chain_tracker, tracker_list);
1244 list_del_init(&chain_req->tracker_list);
1245 list_add_tail(&chain_req->tracker_list,
1246 &ioc->scsi_lookup[smid - 1].chain_list);
1247 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1248 return chain_req;
1253 * _base_build_sg - build generic sg
1254 * @ioc: per adapter object
1255 * @psge: virtual address for SGE
1256 * @data_out_dma: physical address for WRITES
1257 * @data_out_sz: data xfer size for WRITES
1258 * @data_in_dma: physical address for READS
1259 * @data_in_sz: data xfer size for READS
1261 * Return nothing.
1263 static void
1264 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1265 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1266 size_t data_in_sz)
1268 u32 sgl_flags;
1270 if (!data_out_sz && !data_in_sz) {
1271 _base_build_zero_len_sge(ioc, psge);
1272 return;
1275 if (data_out_sz && data_in_sz) {
1276 /* WRITE sgel first */
1277 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1278 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1279 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1280 ioc->base_add_sg_single(psge, sgl_flags |
1281 data_out_sz, data_out_dma);
1283 /* incr sgel */
1284 psge += ioc->sge_size;
1286 /* READ sgel last */
1287 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1288 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1289 MPI2_SGE_FLAGS_END_OF_LIST);
1290 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1291 ioc->base_add_sg_single(psge, sgl_flags |
1292 data_in_sz, data_in_dma);
1293 } else if (data_out_sz) /* WRITE */ {
1294 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1295 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1296 MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1297 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1298 ioc->base_add_sg_single(psge, sgl_flags |
1299 data_out_sz, data_out_dma);
1300 } else if (data_in_sz) /* READ */ {
1301 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1302 MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1303 MPI2_SGE_FLAGS_END_OF_LIST);
1304 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1305 ioc->base_add_sg_single(psge, sgl_flags |
1306 data_in_sz, data_in_dma);
1310 /* IEEE format sgls */
1313 * _base_add_sg_single_ieee - add sg element for IEEE format
1314 * @paddr: virtual address for SGE
1315 * @flags: SGE flags
1316 * @chain_offset: number of 128 byte elements from start of segment
1317 * @length: data transfer length
1318 * @dma_addr: Physical address
1320 * Return nothing.
1322 static void
1323 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1324 dma_addr_t dma_addr)
1326 Mpi25IeeeSgeChain64_t *sgel = paddr;
1328 sgel->Flags = flags;
1329 sgel->NextChainOffset = chain_offset;
1330 sgel->Length = cpu_to_le32(length);
1331 sgel->Address = cpu_to_le64(dma_addr);
1335 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1336 * @ioc: per adapter object
1337 * @paddr: virtual address for SGE
1339 * Create a zero length scatter gather entry to insure the IOCs hardware has
1340 * something to use if the target device goes brain dead and tries
1341 * to send data even when none is asked for.
1343 * Return nothing.
1345 static void
1346 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1348 u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1349 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1350 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1351 _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1355 * _base_build_sg_scmd - main sg creation routine
1356 * @ioc: per adapter object
1357 * @scmd: scsi command
1358 * @smid: system request message index
1359 * Context: none.
1361 * The main routine that builds scatter gather table from a given
1362 * scsi request sent via the .queuecommand main handler.
1364 * Returns 0 success, anything else error
1366 static int
1367 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
1368 struct scsi_cmnd *scmd, u16 smid)
1370 Mpi2SCSIIORequest_t *mpi_request;
1371 dma_addr_t chain_dma;
1372 struct scatterlist *sg_scmd;
1373 void *sg_local, *chain;
1374 u32 chain_offset;
1375 u32 chain_length;
1376 u32 chain_flags;
1377 int sges_left;
1378 u32 sges_in_segment;
1379 u32 sgl_flags;
1380 u32 sgl_flags_last_element;
1381 u32 sgl_flags_end_buffer;
1382 struct chain_tracker *chain_req;
1384 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1386 /* init scatter gather flags */
1387 sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
1388 if (scmd->sc_data_direction == DMA_TO_DEVICE)
1389 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
1390 sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
1391 << MPI2_SGE_FLAGS_SHIFT;
1392 sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
1393 MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
1394 << MPI2_SGE_FLAGS_SHIFT;
1395 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1397 sg_scmd = scsi_sglist(scmd);
1398 sges_left = scsi_dma_map(scmd);
1399 if (sges_left < 0) {
1400 sdev_printk(KERN_ERR, scmd->device,
1401 "pci_map_sg failed: request for %d bytes!\n",
1402 scsi_bufflen(scmd));
1403 return -ENOMEM;
1406 sg_local = &mpi_request->SGL;
1407 sges_in_segment = ioc->max_sges_in_main_message;
1408 if (sges_left <= sges_in_segment)
1409 goto fill_in_last_segment;
1411 mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
1412 (sges_in_segment * ioc->sge_size))/4;
1414 /* fill in main message segment when there is a chain following */
1415 while (sges_in_segment) {
1416 if (sges_in_segment == 1)
1417 ioc->base_add_sg_single(sg_local,
1418 sgl_flags_last_element | sg_dma_len(sg_scmd),
1419 sg_dma_address(sg_scmd));
1420 else
1421 ioc->base_add_sg_single(sg_local, sgl_flags |
1422 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1423 sg_scmd = sg_next(sg_scmd);
1424 sg_local += ioc->sge_size;
1425 sges_left--;
1426 sges_in_segment--;
1429 /* initializing the chain flags and pointers */
1430 chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
1431 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1432 if (!chain_req)
1433 return -1;
1434 chain = chain_req->chain_buffer;
1435 chain_dma = chain_req->chain_buffer_dma;
1436 do {
1437 sges_in_segment = (sges_left <=
1438 ioc->max_sges_in_chain_message) ? sges_left :
1439 ioc->max_sges_in_chain_message;
1440 chain_offset = (sges_left == sges_in_segment) ?
1441 0 : (sges_in_segment * ioc->sge_size)/4;
1442 chain_length = sges_in_segment * ioc->sge_size;
1443 if (chain_offset) {
1444 chain_offset = chain_offset <<
1445 MPI2_SGE_CHAIN_OFFSET_SHIFT;
1446 chain_length += ioc->sge_size;
1448 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
1449 chain_length, chain_dma);
1450 sg_local = chain;
1451 if (!chain_offset)
1452 goto fill_in_last_segment;
1454 /* fill in chain segments */
1455 while (sges_in_segment) {
1456 if (sges_in_segment == 1)
1457 ioc->base_add_sg_single(sg_local,
1458 sgl_flags_last_element |
1459 sg_dma_len(sg_scmd),
1460 sg_dma_address(sg_scmd));
1461 else
1462 ioc->base_add_sg_single(sg_local, sgl_flags |
1463 sg_dma_len(sg_scmd),
1464 sg_dma_address(sg_scmd));
1465 sg_scmd = sg_next(sg_scmd);
1466 sg_local += ioc->sge_size;
1467 sges_left--;
1468 sges_in_segment--;
1471 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1472 if (!chain_req)
1473 return -1;
1474 chain = chain_req->chain_buffer;
1475 chain_dma = chain_req->chain_buffer_dma;
1476 } while (1);
1479 fill_in_last_segment:
1481 /* fill the last segment */
1482 while (sges_left) {
1483 if (sges_left == 1)
1484 ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
1485 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1486 else
1487 ioc->base_add_sg_single(sg_local, sgl_flags |
1488 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1489 sg_scmd = sg_next(sg_scmd);
1490 sg_local += ioc->sge_size;
1491 sges_left--;
1494 return 0;
1498 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1499 * @ioc: per adapter object
1500 * @scmd: scsi command
1501 * @smid: system request message index
1502 * Context: none.
1504 * The main routine that builds scatter gather table from a given
1505 * scsi request sent via the .queuecommand main handler.
1507 * Returns 0 success, anything else error
1509 static int
1510 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1511 struct scsi_cmnd *scmd, u16 smid)
1513 Mpi2SCSIIORequest_t *mpi_request;
1514 dma_addr_t chain_dma;
1515 struct scatterlist *sg_scmd;
1516 void *sg_local, *chain;
1517 u32 chain_offset;
1518 u32 chain_length;
1519 int sges_left;
1520 u32 sges_in_segment;
1521 u8 simple_sgl_flags;
1522 u8 simple_sgl_flags_last;
1523 u8 chain_sgl_flags;
1524 struct chain_tracker *chain_req;
1526 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1528 /* init scatter gather flags */
1529 simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1530 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1531 simple_sgl_flags_last = simple_sgl_flags |
1532 MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1533 chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1534 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1536 sg_scmd = scsi_sglist(scmd);
1537 sges_left = scsi_dma_map(scmd);
1538 if (sges_left < 0) {
1539 sdev_printk(KERN_ERR, scmd->device,
1540 "pci_map_sg failed: request for %d bytes!\n",
1541 scsi_bufflen(scmd));
1542 return -ENOMEM;
1545 sg_local = &mpi_request->SGL;
1546 sges_in_segment = (ioc->request_sz -
1547 offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1548 if (sges_left <= sges_in_segment)
1549 goto fill_in_last_segment;
1551 mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1552 (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1554 /* fill in main message segment when there is a chain following */
1555 while (sges_in_segment > 1) {
1556 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1557 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1558 sg_scmd = sg_next(sg_scmd);
1559 sg_local += ioc->sge_size_ieee;
1560 sges_left--;
1561 sges_in_segment--;
1564 /* initializing the pointers */
1565 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1566 if (!chain_req)
1567 return -1;
1568 chain = chain_req->chain_buffer;
1569 chain_dma = chain_req->chain_buffer_dma;
1570 do {
1571 sges_in_segment = (sges_left <=
1572 ioc->max_sges_in_chain_message) ? sges_left :
1573 ioc->max_sges_in_chain_message;
1574 chain_offset = (sges_left == sges_in_segment) ?
1575 0 : sges_in_segment;
1576 chain_length = sges_in_segment * ioc->sge_size_ieee;
1577 if (chain_offset)
1578 chain_length += ioc->sge_size_ieee;
1579 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1580 chain_offset, chain_length, chain_dma);
1582 sg_local = chain;
1583 if (!chain_offset)
1584 goto fill_in_last_segment;
1586 /* fill in chain segments */
1587 while (sges_in_segment) {
1588 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1589 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1590 sg_scmd = sg_next(sg_scmd);
1591 sg_local += ioc->sge_size_ieee;
1592 sges_left--;
1593 sges_in_segment--;
1596 chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1597 if (!chain_req)
1598 return -1;
1599 chain = chain_req->chain_buffer;
1600 chain_dma = chain_req->chain_buffer_dma;
1601 } while (1);
1604 fill_in_last_segment:
1606 /* fill the last segment */
1607 while (sges_left > 0) {
1608 if (sges_left == 1)
1609 _base_add_sg_single_ieee(sg_local,
1610 simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1611 sg_dma_address(sg_scmd));
1612 else
1613 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1614 sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1615 sg_scmd = sg_next(sg_scmd);
1616 sg_local += ioc->sge_size_ieee;
1617 sges_left--;
1620 return 0;
1624 * _base_build_sg_ieee - build generic sg for IEEE format
1625 * @ioc: per adapter object
1626 * @psge: virtual address for SGE
1627 * @data_out_dma: physical address for WRITES
1628 * @data_out_sz: data xfer size for WRITES
1629 * @data_in_dma: physical address for READS
1630 * @data_in_sz: data xfer size for READS
1632 * Return nothing.
1634 static void
1635 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1636 dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1637 size_t data_in_sz)
1639 u8 sgl_flags;
1641 if (!data_out_sz && !data_in_sz) {
1642 _base_build_zero_len_sge_ieee(ioc, psge);
1643 return;
1646 if (data_out_sz && data_in_sz) {
1647 /* WRITE sgel first */
1648 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1649 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1650 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1651 data_out_dma);
1653 /* incr sgel */
1654 psge += ioc->sge_size_ieee;
1656 /* READ sgel last */
1657 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1658 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1659 data_in_dma);
1660 } else if (data_out_sz) /* WRITE */ {
1661 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1662 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1663 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1664 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1665 data_out_dma);
1666 } else if (data_in_sz) /* READ */ {
1667 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1668 MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1669 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1670 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1671 data_in_dma);
1675 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1678 * _base_config_dma_addressing - set dma addressing
1679 * @ioc: per adapter object
1680 * @pdev: PCI device struct
1682 * Returns 0 for success, non-zero for failure.
1684 static int
1685 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1687 struct sysinfo s;
1688 u64 consistent_dma_mask;
1689 /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
1690 int dma_mask = (ioc->hba_mpi_version_belonged > MPI2_VERSION) ? 63 : 64;
1692 if (ioc->dma_mask)
1693 consistent_dma_mask = DMA_BIT_MASK(dma_mask);
1694 else
1695 consistent_dma_mask = DMA_BIT_MASK(32);
1697 if (sizeof(dma_addr_t) > 4) {
1698 const uint64_t required_mask =
1699 dma_get_required_mask(&pdev->dev);
1700 if ((required_mask > DMA_BIT_MASK(32)) &&
1701 !pci_set_dma_mask(pdev, DMA_BIT_MASK(dma_mask)) &&
1702 !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1703 ioc->base_add_sg_single = &_base_add_sg_single_64;
1704 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1705 ioc->dma_mask = dma_mask;
1706 goto out;
1710 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1711 && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1712 ioc->base_add_sg_single = &_base_add_sg_single_32;
1713 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1714 ioc->dma_mask = 32;
1715 } else
1716 return -ENODEV;
1718 out:
1719 si_meminfo(&s);
1720 pr_info(MPT3SAS_FMT
1721 "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1722 ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1724 return 0;
1727 static int
1728 _base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1729 struct pci_dev *pdev)
1731 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(ioc->dma_mask))) {
1732 if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1733 return -ENODEV;
1735 return 0;
1739 * _base_check_enable_msix - checks MSIX capabable.
1740 * @ioc: per adapter object
1742 * Check to see if card is capable of MSIX, and set number
1743 * of available msix vectors
1745 static int
1746 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1748 int base;
1749 u16 message_control;
1751 /* Check whether controller SAS2008 B0 controller,
1752 * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
1754 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
1755 ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
1756 return -EINVAL;
1759 base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1760 if (!base) {
1761 dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1762 ioc->name));
1763 return -EINVAL;
1766 /* get msix vector count */
1767 /* NUMA_IO not supported for older controllers */
1768 if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
1769 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
1770 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
1771 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
1772 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
1773 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
1774 ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
1775 ioc->msix_vector_count = 1;
1776 else {
1777 pci_read_config_word(ioc->pdev, base + 2, &message_control);
1778 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1780 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1781 "msix is supported, vector_count(%d)\n",
1782 ioc->name, ioc->msix_vector_count));
1783 return 0;
1787 * _base_free_irq - free irq
1788 * @ioc: per adapter object
1790 * Freeing respective reply_queue from the list.
1792 static void
1793 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1795 struct adapter_reply_queue *reply_q, *next;
1797 if (list_empty(&ioc->reply_queue_list))
1798 return;
1800 list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1801 list_del(&reply_q->list);
1802 irq_set_affinity_hint(reply_q->vector, NULL);
1803 free_cpumask_var(reply_q->affinity_hint);
1804 synchronize_irq(reply_q->vector);
1805 free_irq(reply_q->vector, reply_q);
1806 kfree(reply_q);
1811 * _base_request_irq - request irq
1812 * @ioc: per adapter object
1813 * @index: msix index into vector table
1814 * @vector: irq vector
1816 * Inserting respective reply_queue into the list.
1818 static int
1819 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1821 struct adapter_reply_queue *reply_q;
1822 int r;
1824 reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1825 if (!reply_q) {
1826 pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1827 ioc->name, (int)sizeof(struct adapter_reply_queue));
1828 return -ENOMEM;
1830 reply_q->ioc = ioc;
1831 reply_q->msix_index = index;
1832 reply_q->vector = vector;
1834 if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1835 return -ENOMEM;
1836 cpumask_clear(reply_q->affinity_hint);
1838 atomic_set(&reply_q->busy, 0);
1839 if (ioc->msix_enable)
1840 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1841 ioc->driver_name, ioc->id, index);
1842 else
1843 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1844 ioc->driver_name, ioc->id);
1845 r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1846 reply_q);
1847 if (r) {
1848 pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1849 reply_q->name, vector);
1850 kfree(reply_q);
1851 return -EBUSY;
1854 INIT_LIST_HEAD(&reply_q->list);
1855 list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1856 return 0;
1860 * _base_assign_reply_queues - assigning msix index for each cpu
1861 * @ioc: per adapter object
1863 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1865 * It would nice if we could call irq_set_affinity, however it is not
1866 * an exported symbol
1868 static void
1869 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1871 unsigned int cpu, nr_cpus, nr_msix, index = 0;
1872 struct adapter_reply_queue *reply_q;
1874 if (!_base_is_controller_msix_enabled(ioc))
1875 return;
1877 memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1879 nr_cpus = num_online_cpus();
1880 nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1881 ioc->facts.MaxMSIxVectors);
1882 if (!nr_msix)
1883 return;
1885 cpu = cpumask_first(cpu_online_mask);
1887 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1889 unsigned int i, group = nr_cpus / nr_msix;
1891 if (cpu >= nr_cpus)
1892 break;
1894 if (index < nr_cpus % nr_msix)
1895 group++;
1897 for (i = 0 ; i < group ; i++) {
1898 ioc->cpu_msix_table[cpu] = index;
1899 cpumask_or(reply_q->affinity_hint,
1900 reply_q->affinity_hint, get_cpu_mask(cpu));
1901 cpu = cpumask_next(cpu, cpu_online_mask);
1904 if (irq_set_affinity_hint(reply_q->vector,
1905 reply_q->affinity_hint))
1906 dinitprintk(ioc, pr_info(MPT3SAS_FMT
1907 "error setting affinity hint for irq vector %d\n",
1908 ioc->name, reply_q->vector));
1909 index++;
1914 * _base_disable_msix - disables msix
1915 * @ioc: per adapter object
1918 static void
1919 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1921 if (!ioc->msix_enable)
1922 return;
1923 pci_disable_msix(ioc->pdev);
1924 ioc->msix_enable = 0;
1928 * _base_enable_msix - enables msix, failback to io_apic
1929 * @ioc: per adapter object
1932 static int
1933 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1935 struct msix_entry *entries, *a;
1936 int r;
1937 int i;
1938 u8 try_msix = 0;
1940 if (msix_disable == -1 || msix_disable == 0)
1941 try_msix = 1;
1943 if (!try_msix)
1944 goto try_ioapic;
1946 if (_base_check_enable_msix(ioc) != 0)
1947 goto try_ioapic;
1949 ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1950 ioc->msix_vector_count);
1952 printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1953 ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1954 ioc->cpu_count, max_msix_vectors);
1956 if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1957 max_msix_vectors = 8;
1959 if (max_msix_vectors > 0) {
1960 ioc->reply_queue_count = min_t(int, max_msix_vectors,
1961 ioc->reply_queue_count);
1962 ioc->msix_vector_count = ioc->reply_queue_count;
1963 } else if (max_msix_vectors == 0)
1964 goto try_ioapic;
1966 entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1967 GFP_KERNEL);
1968 if (!entries) {
1969 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1970 "kcalloc failed @ at %s:%d/%s() !!!\n",
1971 ioc->name, __FILE__, __LINE__, __func__));
1972 goto try_ioapic;
1975 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1976 a->entry = i;
1978 r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1979 if (r) {
1980 dfailprintk(ioc, pr_info(MPT3SAS_FMT
1981 "pci_enable_msix_exact failed (r=%d) !!!\n",
1982 ioc->name, r));
1983 kfree(entries);
1984 goto try_ioapic;
1987 ioc->msix_enable = 1;
1988 for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1989 r = _base_request_irq(ioc, i, a->vector);
1990 if (r) {
1991 _base_free_irq(ioc);
1992 _base_disable_msix(ioc);
1993 kfree(entries);
1994 goto try_ioapic;
1998 kfree(entries);
1999 return 0;
2001 /* failback to io_apic interrupt routing */
2002 try_ioapic:
2004 ioc->reply_queue_count = 1;
2005 r = _base_request_irq(ioc, 0, ioc->pdev->irq);
2007 return r;
2011 * mpt3sas_base_unmap_resources - free controller resources
2012 * @ioc: per adapter object
2014 void
2015 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
2017 struct pci_dev *pdev = ioc->pdev;
2019 dexitprintk(ioc, printk(MPT3SAS_FMT "%s\n",
2020 ioc->name, __func__));
2022 _base_free_irq(ioc);
2023 _base_disable_msix(ioc);
2025 if (ioc->msix96_vector) {
2026 kfree(ioc->replyPostRegisterIndex);
2027 ioc->replyPostRegisterIndex = NULL;
2030 if (ioc->chip_phys) {
2031 iounmap(ioc->chip);
2032 ioc->chip_phys = 0;
2035 if (pci_is_enabled(pdev)) {
2036 pci_release_selected_regions(ioc->pdev, ioc->bars);
2037 pci_disable_pcie_error_reporting(pdev);
2038 pci_disable_device(pdev);
2043 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
2044 * @ioc: per adapter object
2046 * Returns 0 for success, non-zero for failure.
2049 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
2051 struct pci_dev *pdev = ioc->pdev;
2052 u32 memap_sz;
2053 u32 pio_sz;
2054 int i, r = 0;
2055 u64 pio_chip = 0;
2056 u64 chip_phys = 0;
2057 struct adapter_reply_queue *reply_q;
2059 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
2060 ioc->name, __func__));
2062 ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
2063 if (pci_enable_device_mem(pdev)) {
2064 pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
2065 ioc->name);
2066 ioc->bars = 0;
2067 return -ENODEV;
2071 if (pci_request_selected_regions(pdev, ioc->bars,
2072 ioc->driver_name)) {
2073 pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
2074 ioc->name);
2075 ioc->bars = 0;
2076 r = -ENODEV;
2077 goto out_fail;
2080 /* AER (Advanced Error Reporting) hooks */
2081 pci_enable_pcie_error_reporting(pdev);
2083 pci_set_master(pdev);
2086 if (_base_config_dma_addressing(ioc, pdev) != 0) {
2087 pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
2088 ioc->name, pci_name(pdev));
2089 r = -ENODEV;
2090 goto out_fail;
2093 for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
2094 (!memap_sz || !pio_sz); i++) {
2095 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
2096 if (pio_sz)
2097 continue;
2098 pio_chip = (u64)pci_resource_start(pdev, i);
2099 pio_sz = pci_resource_len(pdev, i);
2100 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
2101 if (memap_sz)
2102 continue;
2103 ioc->chip_phys = pci_resource_start(pdev, i);
2104 chip_phys = (u64)ioc->chip_phys;
2105 memap_sz = pci_resource_len(pdev, i);
2106 ioc->chip = ioremap(ioc->chip_phys, memap_sz);
2110 if (ioc->chip == NULL) {
2111 pr_err(MPT3SAS_FMT "unable to map adapter memory! "
2112 " or resource not found\n", ioc->name);
2113 r = -EINVAL;
2114 goto out_fail;
2117 _base_mask_interrupts(ioc);
2119 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
2120 if (r)
2121 goto out_fail;
2123 if (!ioc->rdpq_array_enable_assigned) {
2124 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
2125 ioc->rdpq_array_enable_assigned = 1;
2128 r = _base_enable_msix(ioc);
2129 if (r)
2130 goto out_fail;
2132 /* Use the Combined reply queue feature only for SAS3 C0 & higher
2133 * revision HBAs and also only when reply queue count is greater than 8
2135 if (ioc->msix96_vector && ioc->reply_queue_count > 8) {
2136 /* Determine the Supplemental Reply Post Host Index Registers
2137 * Addresse. Supplemental Reply Post Host Index Registers
2138 * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
2139 * each register is at offset bytes of
2140 * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
2142 ioc->replyPostRegisterIndex = kcalloc(
2143 MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT,
2144 sizeof(resource_size_t *), GFP_KERNEL);
2145 if (!ioc->replyPostRegisterIndex) {
2146 dfailprintk(ioc, printk(MPT3SAS_FMT
2147 "allocation for reply Post Register Index failed!!!\n",
2148 ioc->name));
2149 r = -ENOMEM;
2150 goto out_fail;
2153 for (i = 0; i < MPT3_SUP_REPLY_POST_HOST_INDEX_REG_COUNT; i++) {
2154 ioc->replyPostRegisterIndex[i] = (resource_size_t *)
2155 ((u8 *)&ioc->chip->Doorbell +
2156 MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
2157 (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
2159 } else
2160 ioc->msix96_vector = 0;
2162 if (ioc->is_warpdrive) {
2163 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
2164 &ioc->chip->ReplyPostHostIndex;
2166 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
2167 ioc->reply_post_host_index[i] =
2168 (resource_size_t __iomem *)
2169 ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
2170 * 4)));
2173 list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
2174 pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
2175 reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
2176 "IO-APIC enabled"), reply_q->vector);
2178 pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
2179 ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
2180 pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
2181 ioc->name, (unsigned long long)pio_chip, pio_sz);
2183 /* Save PCI configuration state for recovery from PCI AER/EEH errors */
2184 pci_save_state(pdev);
2185 return 0;
2187 out_fail:
2188 mpt3sas_base_unmap_resources(ioc);
2189 return r;
2193 * mpt3sas_base_get_msg_frame - obtain request mf pointer
2194 * @ioc: per adapter object
2195 * @smid: system request message index(smid zero is invalid)
2197 * Returns virt pointer to message frame.
2199 void *
2200 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2202 return (void *)(ioc->request + (smid * ioc->request_sz));
2206 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
2207 * @ioc: per adapter object
2208 * @smid: system request message index
2210 * Returns virt pointer to sense buffer.
2212 void *
2213 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2215 return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
2219 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
2220 * @ioc: per adapter object
2221 * @smid: system request message index
2223 * Returns phys pointer to the low 32bit address of the sense buffer.
2225 __le32
2226 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2228 return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
2229 SCSI_SENSE_BUFFERSIZE));
2233 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
2234 * @ioc: per adapter object
2235 * @phys_addr: lower 32 physical addr of the reply
2237 * Converts 32bit lower physical addr into a virt address.
2239 void *
2240 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
2242 if (!phys_addr)
2243 return NULL;
2244 return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
2247 static inline u8
2248 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2250 return ioc->cpu_msix_table[raw_smp_processor_id()];
2254 * mpt3sas_base_get_smid - obtain a free smid from internal queue
2255 * @ioc: per adapter object
2256 * @cb_idx: callback index
2258 * Returns smid (zero is invalid)
2261 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2263 unsigned long flags;
2264 struct request_tracker *request;
2265 u16 smid;
2267 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2268 if (list_empty(&ioc->internal_free_list)) {
2269 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2270 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2271 ioc->name, __func__);
2272 return 0;
2275 request = list_entry(ioc->internal_free_list.next,
2276 struct request_tracker, tracker_list);
2277 request->cb_idx = cb_idx;
2278 smid = request->smid;
2279 list_del(&request->tracker_list);
2280 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2281 return smid;
2285 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
2286 * @ioc: per adapter object
2287 * @cb_idx: callback index
2288 * @scmd: pointer to scsi command object
2290 * Returns smid (zero is invalid)
2293 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2294 struct scsi_cmnd *scmd)
2296 unsigned long flags;
2297 struct scsiio_tracker *request;
2298 u16 smid;
2300 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2301 if (list_empty(&ioc->free_list)) {
2302 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2303 pr_err(MPT3SAS_FMT "%s: smid not available\n",
2304 ioc->name, __func__);
2305 return 0;
2308 request = list_entry(ioc->free_list.next,
2309 struct scsiio_tracker, tracker_list);
2310 request->scmd = scmd;
2311 request->cb_idx = cb_idx;
2312 smid = request->smid;
2313 request->msix_io = _base_get_msix_index(ioc);
2314 list_del(&request->tracker_list);
2315 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2316 return smid;
2320 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2321 * @ioc: per adapter object
2322 * @cb_idx: callback index
2324 * Returns smid (zero is invalid)
2327 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2329 unsigned long flags;
2330 struct request_tracker *request;
2331 u16 smid;
2333 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2334 if (list_empty(&ioc->hpr_free_list)) {
2335 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2336 return 0;
2339 request = list_entry(ioc->hpr_free_list.next,
2340 struct request_tracker, tracker_list);
2341 request->cb_idx = cb_idx;
2342 smid = request->smid;
2343 list_del(&request->tracker_list);
2344 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2345 return smid;
2349 * mpt3sas_base_free_smid - put smid back on free_list
2350 * @ioc: per adapter object
2351 * @smid: system request message index
2353 * Return nothing.
2355 void
2356 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2358 unsigned long flags;
2359 int i;
2360 struct chain_tracker *chain_req, *next;
2362 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2363 if (smid < ioc->hi_priority_smid) {
2364 /* scsiio queue */
2365 i = smid - 1;
2366 if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2367 list_for_each_entry_safe(chain_req, next,
2368 &ioc->scsi_lookup[i].chain_list, tracker_list) {
2369 list_del_init(&chain_req->tracker_list);
2370 list_add(&chain_req->tracker_list,
2371 &ioc->free_chain_list);
2374 ioc->scsi_lookup[i].cb_idx = 0xFF;
2375 ioc->scsi_lookup[i].scmd = NULL;
2376 ioc->scsi_lookup[i].direct_io = 0;
2377 list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2378 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2381 * See _wait_for_commands_to_complete() call with regards
2382 * to this code.
2384 if (ioc->shost_recovery && ioc->pending_io_count) {
2385 if (ioc->pending_io_count == 1)
2386 wake_up(&ioc->reset_wq);
2387 ioc->pending_io_count--;
2389 return;
2390 } else if (smid < ioc->internal_smid) {
2391 /* hi-priority */
2392 i = smid - ioc->hi_priority_smid;
2393 ioc->hpr_lookup[i].cb_idx = 0xFF;
2394 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2395 } else if (smid <= ioc->hba_queue_depth) {
2396 /* internal queue */
2397 i = smid - ioc->internal_smid;
2398 ioc->internal_lookup[i].cb_idx = 0xFF;
2399 list_add(&ioc->internal_lookup[i].tracker_list,
2400 &ioc->internal_free_list);
2402 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2406 * _base_writeq - 64 bit write to MMIO
2407 * @ioc: per adapter object
2408 * @b: data payload
2409 * @addr: address in MMIO space
2410 * @writeq_lock: spin lock
2412 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2413 * care of 32 bit environment where its not quarenteed to send the entire word
2414 * in one transfer.
2416 #if defined(writeq) && defined(CONFIG_64BIT)
2417 static inline void
2418 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2420 writeq(cpu_to_le64(b), addr);
2422 #else
2423 static inline void
2424 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2426 unsigned long flags;
2427 __u64 data_out = cpu_to_le64(b);
2429 spin_lock_irqsave(writeq_lock, flags);
2430 writel((u32)(data_out), addr);
2431 writel((u32)(data_out >> 32), (addr + 4));
2432 spin_unlock_irqrestore(writeq_lock, flags);
2434 #endif
2437 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2438 * @ioc: per adapter object
2439 * @smid: system request message index
2440 * @handle: device handle
2442 * Return nothing.
2444 void
2445 mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2447 Mpi2RequestDescriptorUnion_t descriptor;
2448 u64 *request = (u64 *)&descriptor;
2451 descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2452 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2453 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2454 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2455 descriptor.SCSIIO.LMID = 0;
2456 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2457 &ioc->scsi_lookup_lock);
2461 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2462 * @ioc: per adapter object
2463 * @smid: system request message index
2464 * @handle: device handle
2466 * Return nothing.
2468 void
2469 mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2470 u16 handle)
2472 Mpi2RequestDescriptorUnion_t descriptor;
2473 u64 *request = (u64 *)&descriptor;
2475 descriptor.SCSIIO.RequestFlags =
2476 MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2477 descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2478 descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2479 descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2480 descriptor.SCSIIO.LMID = 0;
2481 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2482 &ioc->scsi_lookup_lock);
2486 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2487 * @ioc: per adapter object
2488 * @smid: system request message index
2489 * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
2490 * Return nothing.
2492 void
2493 mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2494 u16 msix_task)
2496 Mpi2RequestDescriptorUnion_t descriptor;
2497 u64 *request = (u64 *)&descriptor;
2499 descriptor.HighPriority.RequestFlags =
2500 MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2501 descriptor.HighPriority.MSIxIndex = msix_task;
2502 descriptor.HighPriority.SMID = cpu_to_le16(smid);
2503 descriptor.HighPriority.LMID = 0;
2504 descriptor.HighPriority.Reserved1 = 0;
2505 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2506 &ioc->scsi_lookup_lock);
2510 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2511 * @ioc: per adapter object
2512 * @smid: system request message index
2514 * Return nothing.
2516 void
2517 mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2519 Mpi2RequestDescriptorUnion_t descriptor;
2520 u64 *request = (u64 *)&descriptor;
2522 descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2523 descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
2524 descriptor.Default.SMID = cpu_to_le16(smid);
2525 descriptor.Default.LMID = 0;
2526 descriptor.Default.DescriptorTypeDependent = 0;
2527 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2528 &ioc->scsi_lookup_lock);
2532 * _base_display_OEMs_branding - Display branding string
2533 * @ioc: per adapter object
2535 * Return nothing.
2537 static void
2538 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
2540 if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2541 return;
2543 switch (ioc->pdev->subsystem_vendor) {
2544 case PCI_VENDOR_ID_INTEL:
2545 switch (ioc->pdev->device) {
2546 case MPI2_MFGPAGE_DEVID_SAS2008:
2547 switch (ioc->pdev->subsystem_device) {
2548 case MPT2SAS_INTEL_RMS2LL080_SSDID:
2549 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2550 MPT2SAS_INTEL_RMS2LL080_BRANDING);
2551 break;
2552 case MPT2SAS_INTEL_RMS2LL040_SSDID:
2553 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2554 MPT2SAS_INTEL_RMS2LL040_BRANDING);
2555 break;
2556 case MPT2SAS_INTEL_SSD910_SSDID:
2557 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2558 MPT2SAS_INTEL_SSD910_BRANDING);
2559 break;
2560 default:
2561 pr_info(MPT3SAS_FMT
2562 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2563 ioc->name, ioc->pdev->subsystem_device);
2564 break;
2566 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2567 switch (ioc->pdev->subsystem_device) {
2568 case MPT2SAS_INTEL_RS25GB008_SSDID:
2569 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2570 MPT2SAS_INTEL_RS25GB008_BRANDING);
2571 break;
2572 case MPT2SAS_INTEL_RMS25JB080_SSDID:
2573 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2574 MPT2SAS_INTEL_RMS25JB080_BRANDING);
2575 break;
2576 case MPT2SAS_INTEL_RMS25JB040_SSDID:
2577 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2578 MPT2SAS_INTEL_RMS25JB040_BRANDING);
2579 break;
2580 case MPT2SAS_INTEL_RMS25KB080_SSDID:
2581 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2582 MPT2SAS_INTEL_RMS25KB080_BRANDING);
2583 break;
2584 case MPT2SAS_INTEL_RMS25KB040_SSDID:
2585 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2586 MPT2SAS_INTEL_RMS25KB040_BRANDING);
2587 break;
2588 case MPT2SAS_INTEL_RMS25LB040_SSDID:
2589 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2590 MPT2SAS_INTEL_RMS25LB040_BRANDING);
2591 break;
2592 case MPT2SAS_INTEL_RMS25LB080_SSDID:
2593 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2594 MPT2SAS_INTEL_RMS25LB080_BRANDING);
2595 break;
2596 default:
2597 pr_info(MPT3SAS_FMT
2598 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2599 ioc->name, ioc->pdev->subsystem_device);
2600 break;
2602 case MPI25_MFGPAGE_DEVID_SAS3008:
2603 switch (ioc->pdev->subsystem_device) {
2604 case MPT3SAS_INTEL_RMS3JC080_SSDID:
2605 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2606 MPT3SAS_INTEL_RMS3JC080_BRANDING);
2607 break;
2609 case MPT3SAS_INTEL_RS3GC008_SSDID:
2610 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2611 MPT3SAS_INTEL_RS3GC008_BRANDING);
2612 break;
2613 case MPT3SAS_INTEL_RS3FC044_SSDID:
2614 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2615 MPT3SAS_INTEL_RS3FC044_BRANDING);
2616 break;
2617 case MPT3SAS_INTEL_RS3UC080_SSDID:
2618 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2619 MPT3SAS_INTEL_RS3UC080_BRANDING);
2620 break;
2621 default:
2622 pr_info(MPT3SAS_FMT
2623 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2624 ioc->name, ioc->pdev->subsystem_device);
2625 break;
2627 break;
2628 default:
2629 pr_info(MPT3SAS_FMT
2630 "Intel(R) Controller: Subsystem ID: 0x%X\n",
2631 ioc->name, ioc->pdev->subsystem_device);
2632 break;
2634 break;
2635 case PCI_VENDOR_ID_DELL:
2636 switch (ioc->pdev->device) {
2637 case MPI2_MFGPAGE_DEVID_SAS2008:
2638 switch (ioc->pdev->subsystem_device) {
2639 case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
2640 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2641 MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
2642 break;
2643 case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
2644 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2645 MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
2646 break;
2647 case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
2648 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2649 MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
2650 break;
2651 case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
2652 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2653 MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
2654 break;
2655 case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
2656 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2657 MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
2658 break;
2659 case MPT2SAS_DELL_PERC_H200_SSDID:
2660 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2661 MPT2SAS_DELL_PERC_H200_BRANDING);
2662 break;
2663 case MPT2SAS_DELL_6GBPS_SAS_SSDID:
2664 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2665 MPT2SAS_DELL_6GBPS_SAS_BRANDING);
2666 break;
2667 default:
2668 pr_info(MPT3SAS_FMT
2669 "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
2670 ioc->name, ioc->pdev->subsystem_device);
2671 break;
2673 break;
2674 case MPI25_MFGPAGE_DEVID_SAS3008:
2675 switch (ioc->pdev->subsystem_device) {
2676 case MPT3SAS_DELL_12G_HBA_SSDID:
2677 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2678 MPT3SAS_DELL_12G_HBA_BRANDING);
2679 break;
2680 default:
2681 pr_info(MPT3SAS_FMT
2682 "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
2683 ioc->name, ioc->pdev->subsystem_device);
2684 break;
2686 break;
2687 default:
2688 pr_info(MPT3SAS_FMT
2689 "Dell HBA: Subsystem ID: 0x%X\n", ioc->name,
2690 ioc->pdev->subsystem_device);
2691 break;
2693 break;
2694 case PCI_VENDOR_ID_CISCO:
2695 switch (ioc->pdev->device) {
2696 case MPI25_MFGPAGE_DEVID_SAS3008:
2697 switch (ioc->pdev->subsystem_device) {
2698 case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
2699 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2700 MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
2701 break;
2702 case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
2703 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2704 MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
2705 break;
2706 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2707 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2708 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2709 break;
2710 default:
2711 pr_info(MPT3SAS_FMT
2712 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2713 ioc->name, ioc->pdev->subsystem_device);
2714 break;
2716 break;
2717 case MPI25_MFGPAGE_DEVID_SAS3108_1:
2718 switch (ioc->pdev->subsystem_device) {
2719 case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
2720 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2721 MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
2722 break;
2723 case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
2724 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2725 MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING
2727 break;
2728 default:
2729 pr_info(MPT3SAS_FMT
2730 "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
2731 ioc->name, ioc->pdev->subsystem_device);
2732 break;
2734 break;
2735 default:
2736 pr_info(MPT3SAS_FMT
2737 "Cisco SAS HBA: Subsystem ID: 0x%X\n",
2738 ioc->name, ioc->pdev->subsystem_device);
2739 break;
2741 break;
2742 case MPT2SAS_HP_3PAR_SSVID:
2743 switch (ioc->pdev->device) {
2744 case MPI2_MFGPAGE_DEVID_SAS2004:
2745 switch (ioc->pdev->subsystem_device) {
2746 case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
2747 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2748 MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
2749 break;
2750 default:
2751 pr_info(MPT3SAS_FMT
2752 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2753 ioc->name, ioc->pdev->subsystem_device);
2754 break;
2756 case MPI2_MFGPAGE_DEVID_SAS2308_2:
2757 switch (ioc->pdev->subsystem_device) {
2758 case MPT2SAS_HP_2_4_INTERNAL_SSDID:
2759 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2760 MPT2SAS_HP_2_4_INTERNAL_BRANDING);
2761 break;
2762 case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
2763 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2764 MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
2765 break;
2766 case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
2767 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2768 MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
2769 break;
2770 case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
2771 pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2772 MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
2773 break;
2774 default:
2775 pr_info(MPT3SAS_FMT
2776 "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
2777 ioc->name, ioc->pdev->subsystem_device);
2778 break;
2780 default:
2781 pr_info(MPT3SAS_FMT
2782 "HP SAS HBA: Subsystem ID: 0x%X\n",
2783 ioc->name, ioc->pdev->subsystem_device);
2784 break;
2786 default:
2787 break;
2792 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2793 * @ioc: per adapter object
2795 * Return nothing.
2797 static void
2798 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2800 int i = 0;
2801 char desc[16];
2802 u32 iounit_pg1_flags;
2803 u32 bios_version;
2805 bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2806 strncpy(desc, ioc->manu_pg0.ChipName, 16);
2807 pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2808 "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2809 ioc->name, desc,
2810 (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2811 (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2812 (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2813 ioc->facts.FWVersion.Word & 0x000000FF,
2814 ioc->pdev->revision,
2815 (bios_version & 0xFF000000) >> 24,
2816 (bios_version & 0x00FF0000) >> 16,
2817 (bios_version & 0x0000FF00) >> 8,
2818 bios_version & 0x000000FF);
2820 _base_display_OEMs_branding(ioc);
2822 pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2824 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2825 pr_info("Initiator");
2826 i++;
2829 if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2830 pr_info("%sTarget", i ? "," : "");
2831 i++;
2834 i = 0;
2835 pr_info("), ");
2836 pr_info("Capabilities=(");
2838 if (!ioc->hide_ir_msg) {
2839 if (ioc->facts.IOCCapabilities &
2840 MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2841 pr_info("Raid");
2842 i++;
2846 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2847 pr_info("%sTLR", i ? "," : "");
2848 i++;
2851 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2852 pr_info("%sMulticast", i ? "," : "");
2853 i++;
2856 if (ioc->facts.IOCCapabilities &
2857 MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2858 pr_info("%sBIDI Target", i ? "," : "");
2859 i++;
2862 if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2863 pr_info("%sEEDP", i ? "," : "");
2864 i++;
2867 if (ioc->facts.IOCCapabilities &
2868 MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2869 pr_info("%sSnapshot Buffer", i ? "," : "");
2870 i++;
2873 if (ioc->facts.IOCCapabilities &
2874 MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2875 pr_info("%sDiag Trace Buffer", i ? "," : "");
2876 i++;
2879 if (ioc->facts.IOCCapabilities &
2880 MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2881 pr_info("%sDiag Extended Buffer", i ? "," : "");
2882 i++;
2885 if (ioc->facts.IOCCapabilities &
2886 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2887 pr_info("%sTask Set Full", i ? "," : "");
2888 i++;
2891 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2892 if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2893 pr_info("%sNCQ", i ? "," : "");
2894 i++;
2897 pr_info(")\n");
2901 * mpt3sas_base_update_missing_delay - change the missing delay timers
2902 * @ioc: per adapter object
2903 * @device_missing_delay: amount of time till device is reported missing
2904 * @io_missing_delay: interval IO is returned when there is a missing device
2906 * Return nothing.
2908 * Passed on the command line, this function will modify the device missing
2909 * delay, as well as the io missing delay. This should be called at driver
2910 * load time.
2912 void
2913 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2914 u16 device_missing_delay, u8 io_missing_delay)
2916 u16 dmd, dmd_new, dmd_orignal;
2917 u8 io_missing_delay_original;
2918 u16 sz;
2919 Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2920 Mpi2ConfigReply_t mpi_reply;
2921 u8 num_phys = 0;
2922 u16 ioc_status;
2924 mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2925 if (!num_phys)
2926 return;
2928 sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2929 sizeof(Mpi2SasIOUnit1PhyData_t));
2930 sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2931 if (!sas_iounit_pg1) {
2932 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2933 ioc->name, __FILE__, __LINE__, __func__);
2934 goto out;
2936 if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2937 sas_iounit_pg1, sz))) {
2938 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2939 ioc->name, __FILE__, __LINE__, __func__);
2940 goto out;
2942 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2943 MPI2_IOCSTATUS_MASK;
2944 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2945 pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2946 ioc->name, __FILE__, __LINE__, __func__);
2947 goto out;
2950 /* device missing delay */
2951 dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2952 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2953 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2954 else
2955 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2956 dmd_orignal = dmd;
2957 if (device_missing_delay > 0x7F) {
2958 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2959 device_missing_delay;
2960 dmd = dmd / 16;
2961 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2962 } else
2963 dmd = device_missing_delay;
2964 sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2966 /* io missing delay */
2967 io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2968 sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2970 if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2971 sz)) {
2972 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2973 dmd_new = (dmd &
2974 MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2975 else
2976 dmd_new =
2977 dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2978 pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2979 ioc->name, dmd_orignal, dmd_new);
2980 pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2981 ioc->name, io_missing_delay_original,
2982 io_missing_delay);
2983 ioc->device_missing_delay = dmd_new;
2984 ioc->io_missing_delay = io_missing_delay;
2987 out:
2988 kfree(sas_iounit_pg1);
2991 * _base_static_config_pages - static start of day config pages
2992 * @ioc: per adapter object
2994 * Return nothing.
2996 static void
2997 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2999 Mpi2ConfigReply_t mpi_reply;
3000 u32 iounit_pg1_flags;
3002 mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
3003 if (ioc->ir_firmware)
3004 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
3005 &ioc->manu_pg10);
3008 * Ensure correct T10 PI operation if vendor left EEDPTagMode
3009 * flag unset in NVDATA.
3011 mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
3012 if (ioc->manu_pg11.EEDPTagMode == 0) {
3013 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
3014 ioc->name);
3015 ioc->manu_pg11.EEDPTagMode &= ~0x3;
3016 ioc->manu_pg11.EEDPTagMode |= 0x1;
3017 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
3018 &ioc->manu_pg11);
3021 mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
3022 mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
3023 mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
3024 mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
3025 mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3026 mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
3027 _base_display_ioc_capabilities(ioc);
3030 * Enable task_set_full handling in iounit_pg1 when the
3031 * facts capabilities indicate that its supported.
3033 iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
3034 if ((ioc->facts.IOCCapabilities &
3035 MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
3036 iounit_pg1_flags &=
3037 ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3038 else
3039 iounit_pg1_flags |=
3040 MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
3041 ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
3042 mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
3044 if (ioc->iounit_pg8.NumSensors)
3045 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
3049 * _base_release_memory_pools - release memory
3050 * @ioc: per adapter object
3052 * Free memory allocated from _base_allocate_memory_pools.
3054 * Return nothing.
3056 static void
3057 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
3059 int i = 0;
3060 struct reply_post_struct *rps;
3062 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3063 __func__));
3065 if (ioc->request) {
3066 pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
3067 ioc->request, ioc->request_dma);
3068 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3069 "request_pool(0x%p): free\n",
3070 ioc->name, ioc->request));
3071 ioc->request = NULL;
3074 if (ioc->sense) {
3075 pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
3076 if (ioc->sense_dma_pool)
3077 pci_pool_destroy(ioc->sense_dma_pool);
3078 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3079 "sense_pool(0x%p): free\n",
3080 ioc->name, ioc->sense));
3081 ioc->sense = NULL;
3084 if (ioc->reply) {
3085 pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
3086 if (ioc->reply_dma_pool)
3087 pci_pool_destroy(ioc->reply_dma_pool);
3088 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3089 "reply_pool(0x%p): free\n",
3090 ioc->name, ioc->reply));
3091 ioc->reply = NULL;
3094 if (ioc->reply_free) {
3095 pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
3096 ioc->reply_free_dma);
3097 if (ioc->reply_free_dma_pool)
3098 pci_pool_destroy(ioc->reply_free_dma_pool);
3099 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3100 "reply_free_pool(0x%p): free\n",
3101 ioc->name, ioc->reply_free));
3102 ioc->reply_free = NULL;
3105 if (ioc->reply_post) {
3106 do {
3107 rps = &ioc->reply_post[i];
3108 if (rps->reply_post_free) {
3109 pci_pool_free(
3110 ioc->reply_post_free_dma_pool,
3111 rps->reply_post_free,
3112 rps->reply_post_free_dma);
3113 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3114 "reply_post_free_pool(0x%p): free\n",
3115 ioc->name, rps->reply_post_free));
3116 rps->reply_post_free = NULL;
3118 } while (ioc->rdpq_array_enable &&
3119 (++i < ioc->reply_queue_count));
3121 if (ioc->reply_post_free_dma_pool)
3122 pci_pool_destroy(ioc->reply_post_free_dma_pool);
3123 kfree(ioc->reply_post);
3126 if (ioc->config_page) {
3127 dexitprintk(ioc, pr_info(MPT3SAS_FMT
3128 "config_page(0x%p): free\n", ioc->name,
3129 ioc->config_page));
3130 pci_free_consistent(ioc->pdev, ioc->config_page_sz,
3131 ioc->config_page, ioc->config_page_dma);
3134 if (ioc->scsi_lookup) {
3135 free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
3136 ioc->scsi_lookup = NULL;
3138 kfree(ioc->hpr_lookup);
3139 ioc->hpr_lookup = NULL;
3140 kfree(ioc->internal_lookup);
3141 ioc->internal_lookup = NULL;
3142 if (ioc->chain_lookup) {
3143 for (i = 0; i < ioc->chain_depth; i++) {
3144 if (ioc->chain_lookup[i].chain_buffer)
3145 pci_pool_free(ioc->chain_dma_pool,
3146 ioc->chain_lookup[i].chain_buffer,
3147 ioc->chain_lookup[i].chain_buffer_dma);
3149 if (ioc->chain_dma_pool)
3150 pci_pool_destroy(ioc->chain_dma_pool);
3151 free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
3152 ioc->chain_lookup = NULL;
3157 * _base_allocate_memory_pools - allocate start of day memory pools
3158 * @ioc: per adapter object
3159 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3161 * Returns 0 success, anything else error
3163 static int
3164 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3166 struct mpt3sas_facts *facts;
3167 u16 max_sge_elements;
3168 u16 chains_needed_per_io;
3169 u32 sz, total_sz, reply_post_free_sz;
3170 u32 retry_sz;
3171 u16 max_request_credit;
3172 unsigned short sg_tablesize;
3173 u16 sge_size;
3174 int i;
3176 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3177 __func__));
3180 retry_sz = 0;
3181 facts = &ioc->facts;
3183 /* command line tunables for max sgl entries */
3184 if (max_sgl_entries != -1)
3185 sg_tablesize = max_sgl_entries;
3186 else {
3187 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
3188 sg_tablesize = MPT2SAS_SG_DEPTH;
3189 else
3190 sg_tablesize = MPT3SAS_SG_DEPTH;
3193 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
3194 sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
3195 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
3196 sg_tablesize = min_t(unsigned short, sg_tablesize,
3197 SCSI_MAX_SG_CHAIN_SEGMENTS);
3198 pr_warn(MPT3SAS_FMT
3199 "sg_tablesize(%u) is bigger than kernel"
3200 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
3201 sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
3203 ioc->shost->sg_tablesize = sg_tablesize;
3205 ioc->hi_priority_depth = facts->HighPriorityCredit;
3206 ioc->internal_depth = ioc->hi_priority_depth + (5);
3207 /* command line tunables for max controller queue depth */
3208 if (max_queue_depth != -1 && max_queue_depth != 0) {
3209 max_request_credit = min_t(u16, max_queue_depth +
3210 ioc->hi_priority_depth + ioc->internal_depth,
3211 facts->RequestCredit);
3212 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
3213 max_request_credit = MAX_HBA_QUEUE_DEPTH;
3214 } else
3215 max_request_credit = min_t(u16, facts->RequestCredit,
3216 MAX_HBA_QUEUE_DEPTH);
3218 ioc->hba_queue_depth = max_request_credit;
3220 /* request frame size */
3221 ioc->request_sz = facts->IOCRequestFrameSize * 4;
3223 /* reply frame size */
3224 ioc->reply_sz = facts->ReplyFrameSize * 4;
3226 /* calculate the max scatter element size */
3227 sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
3229 retry_allocation:
3230 total_sz = 0;
3231 /* calculate number of sg elements left over in the 1st frame */
3232 max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
3233 sizeof(Mpi2SGEIOUnion_t)) + sge_size);
3234 ioc->max_sges_in_main_message = max_sge_elements/sge_size;
3236 /* now do the same for a chain buffer */
3237 max_sge_elements = ioc->request_sz - sge_size;
3238 ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
3241 * MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
3243 chains_needed_per_io = ((ioc->shost->sg_tablesize -
3244 ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
3245 + 1;
3246 if (chains_needed_per_io > facts->MaxChainDepth) {
3247 chains_needed_per_io = facts->MaxChainDepth;
3248 ioc->shost->sg_tablesize = min_t(u16,
3249 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
3250 * chains_needed_per_io), ioc->shost->sg_tablesize);
3252 ioc->chains_needed_per_io = chains_needed_per_io;
3254 /* reply free queue sizing - taking into account for 64 FW events */
3255 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3257 /* calculate reply descriptor post queue depth */
3258 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
3259 ioc->reply_free_queue_depth + 1 ;
3260 /* align the reply post queue on the next 16 count boundary */
3261 if (ioc->reply_post_queue_depth % 16)
3262 ioc->reply_post_queue_depth += 16 -
3263 (ioc->reply_post_queue_depth % 16);
3266 if (ioc->reply_post_queue_depth >
3267 facts->MaxReplyDescriptorPostQueueDepth) {
3268 ioc->reply_post_queue_depth =
3269 facts->MaxReplyDescriptorPostQueueDepth -
3270 (facts->MaxReplyDescriptorPostQueueDepth % 16);
3271 ioc->hba_queue_depth =
3272 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
3273 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
3276 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
3277 "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
3278 "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
3279 ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
3280 ioc->chains_needed_per_io));
3282 /* reply post queue, 16 byte align */
3283 reply_post_free_sz = ioc->reply_post_queue_depth *
3284 sizeof(Mpi2DefaultReplyDescriptor_t);
3286 sz = reply_post_free_sz;
3287 if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
3288 sz *= ioc->reply_queue_count;
3290 ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
3291 (ioc->reply_queue_count):1,
3292 sizeof(struct reply_post_struct), GFP_KERNEL);
3294 if (!ioc->reply_post) {
3295 pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
3296 ioc->name);
3297 goto out;
3299 ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
3300 ioc->pdev, sz, 16, 0);
3301 if (!ioc->reply_post_free_dma_pool) {
3302 pr_err(MPT3SAS_FMT
3303 "reply_post_free pool: pci_pool_create failed\n",
3304 ioc->name);
3305 goto out;
3307 i = 0;
3308 do {
3309 ioc->reply_post[i].reply_post_free =
3310 pci_pool_alloc(ioc->reply_post_free_dma_pool,
3311 GFP_KERNEL,
3312 &ioc->reply_post[i].reply_post_free_dma);
3313 if (!ioc->reply_post[i].reply_post_free) {
3314 pr_err(MPT3SAS_FMT
3315 "reply_post_free pool: pci_pool_alloc failed\n",
3316 ioc->name);
3317 goto out;
3319 memset(ioc->reply_post[i].reply_post_free, 0, sz);
3320 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3321 "reply post free pool (0x%p): depth(%d),"
3322 "element_size(%d), pool_size(%d kB)\n", ioc->name,
3323 ioc->reply_post[i].reply_post_free,
3324 ioc->reply_post_queue_depth, 8, sz/1024));
3325 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3326 "reply_post_free_dma = (0x%llx)\n", ioc->name,
3327 (unsigned long long)
3328 ioc->reply_post[i].reply_post_free_dma));
3329 total_sz += sz;
3330 } while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
3332 if (ioc->dma_mask > 32) {
3333 if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
3334 pr_warn(MPT3SAS_FMT
3335 "no suitable consistent DMA mask for %s\n",
3336 ioc->name, pci_name(ioc->pdev));
3337 goto out;
3341 ioc->scsiio_depth = ioc->hba_queue_depth -
3342 ioc->hi_priority_depth - ioc->internal_depth;
3344 /* set the scsi host can_queue depth
3345 * with some internal commands that could be outstanding
3347 ioc->shost->can_queue = ioc->scsiio_depth;
3348 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3349 "scsi host: can_queue depth (%d)\n",
3350 ioc->name, ioc->shost->can_queue));
3353 /* contiguous pool for request and chains, 16 byte align, one extra "
3354 * "frame for smid=0
3356 ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
3357 sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
3359 /* hi-priority queue */
3360 sz += (ioc->hi_priority_depth * ioc->request_sz);
3362 /* internal queue */
3363 sz += (ioc->internal_depth * ioc->request_sz);
3365 ioc->request_dma_sz = sz;
3366 ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
3367 if (!ioc->request) {
3368 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3369 "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3370 "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
3371 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3372 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
3373 goto out;
3374 retry_sz += 64;
3375 ioc->hba_queue_depth = max_request_credit - retry_sz;
3376 goto retry_allocation;
3379 if (retry_sz)
3380 pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
3381 "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
3382 "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
3383 ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
3385 /* hi-priority queue */
3386 ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
3387 ioc->request_sz);
3388 ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
3389 ioc->request_sz);
3391 /* internal queue */
3392 ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
3393 ioc->request_sz);
3394 ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
3395 ioc->request_sz);
3397 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3398 "request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3399 ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
3400 (ioc->hba_queue_depth * ioc->request_sz)/1024));
3402 dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
3403 ioc->name, (unsigned long long) ioc->request_dma));
3404 total_sz += sz;
3406 sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
3407 ioc->scsi_lookup_pages = get_order(sz);
3408 ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
3409 GFP_KERNEL, ioc->scsi_lookup_pages);
3410 if (!ioc->scsi_lookup) {
3411 pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
3412 ioc->name, (int)sz);
3413 goto out;
3416 dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
3417 ioc->name, ioc->request, ioc->scsiio_depth));
3419 ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
3420 sz = ioc->chain_depth * sizeof(struct chain_tracker);
3421 ioc->chain_pages = get_order(sz);
3422 ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
3423 GFP_KERNEL, ioc->chain_pages);
3424 if (!ioc->chain_lookup) {
3425 pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
3426 ioc->name);
3427 goto out;
3429 ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
3430 ioc->request_sz, 16, 0);
3431 if (!ioc->chain_dma_pool) {
3432 pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
3433 ioc->name);
3434 goto out;
3436 for (i = 0; i < ioc->chain_depth; i++) {
3437 ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
3438 ioc->chain_dma_pool , GFP_KERNEL,
3439 &ioc->chain_lookup[i].chain_buffer_dma);
3440 if (!ioc->chain_lookup[i].chain_buffer) {
3441 ioc->chain_depth = i;
3442 goto chain_done;
3444 total_sz += ioc->request_sz;
3446 chain_done:
3447 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3448 "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
3449 ioc->name, ioc->chain_depth, ioc->request_sz,
3450 ((ioc->chain_depth * ioc->request_sz))/1024));
3452 /* initialize hi-priority queue smid's */
3453 ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
3454 sizeof(struct request_tracker), GFP_KERNEL);
3455 if (!ioc->hpr_lookup) {
3456 pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
3457 ioc->name);
3458 goto out;
3460 ioc->hi_priority_smid = ioc->scsiio_depth + 1;
3461 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3462 "hi_priority(0x%p): depth(%d), start smid(%d)\n",
3463 ioc->name, ioc->hi_priority,
3464 ioc->hi_priority_depth, ioc->hi_priority_smid));
3466 /* initialize internal queue smid's */
3467 ioc->internal_lookup = kcalloc(ioc->internal_depth,
3468 sizeof(struct request_tracker), GFP_KERNEL);
3469 if (!ioc->internal_lookup) {
3470 pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
3471 ioc->name);
3472 goto out;
3474 ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
3475 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3476 "internal(0x%p): depth(%d), start smid(%d)\n",
3477 ioc->name, ioc->internal,
3478 ioc->internal_depth, ioc->internal_smid));
3480 /* sense buffers, 4 byte align */
3481 sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
3482 ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
3484 if (!ioc->sense_dma_pool) {
3485 pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
3486 ioc->name);
3487 goto out;
3489 ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
3490 &ioc->sense_dma);
3491 if (!ioc->sense) {
3492 pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
3493 ioc->name);
3494 goto out;
3496 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3497 "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
3498 "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
3499 SCSI_SENSE_BUFFERSIZE, sz/1024));
3500 dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
3501 ioc->name, (unsigned long long)ioc->sense_dma));
3502 total_sz += sz;
3504 /* reply pool, 4 byte align */
3505 sz = ioc->reply_free_queue_depth * ioc->reply_sz;
3506 ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3508 if (!ioc->reply_dma_pool) {
3509 pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3510 ioc->name);
3511 goto out;
3513 ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3514 &ioc->reply_dma);
3515 if (!ioc->reply) {
3516 pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3517 ioc->name);
3518 goto out;
3520 ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3521 ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3522 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3523 "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3524 ioc->name, ioc->reply,
3525 ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3526 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3527 ioc->name, (unsigned long long)ioc->reply_dma));
3528 total_sz += sz;
3530 /* reply free queue, 16 byte align */
3531 sz = ioc->reply_free_queue_depth * 4;
3532 ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3533 ioc->pdev, sz, 16, 0);
3534 if (!ioc->reply_free_dma_pool) {
3535 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3536 ioc->name);
3537 goto out;
3539 ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3540 &ioc->reply_free_dma);
3541 if (!ioc->reply_free) {
3542 pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3543 ioc->name);
3544 goto out;
3546 memset(ioc->reply_free, 0, sz);
3547 dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3548 "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3549 ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3550 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3551 "reply_free_dma (0x%llx)\n",
3552 ioc->name, (unsigned long long)ioc->reply_free_dma));
3553 total_sz += sz;
3555 ioc->config_page_sz = 512;
3556 ioc->config_page = pci_alloc_consistent(ioc->pdev,
3557 ioc->config_page_sz, &ioc->config_page_dma);
3558 if (!ioc->config_page) {
3559 pr_err(MPT3SAS_FMT
3560 "config page: pci_pool_alloc failed\n",
3561 ioc->name);
3562 goto out;
3564 dinitprintk(ioc, pr_info(MPT3SAS_FMT
3565 "config page(0x%p): size(%d)\n",
3566 ioc->name, ioc->config_page, ioc->config_page_sz));
3567 dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3568 ioc->name, (unsigned long long)ioc->config_page_dma));
3569 total_sz += ioc->config_page_sz;
3571 pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3572 ioc->name, total_sz/1024);
3573 pr_info(MPT3SAS_FMT
3574 "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3575 ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3576 pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3577 ioc->name, ioc->shost->sg_tablesize);
3578 return 0;
3580 out:
3581 return -ENOMEM;
3585 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3586 * @ioc: Pointer to MPT_ADAPTER structure
3587 * @cooked: Request raw or cooked IOC state
3589 * Returns all IOC Doorbell register bits if cooked==0, else just the
3590 * Doorbell bits in MPI_IOC_STATE_MASK.
3593 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3595 u32 s, sc;
3597 s = readl(&ioc->chip->Doorbell);
3598 sc = s & MPI2_IOC_STATE_MASK;
3599 return cooked ? sc : s;
3603 * _base_wait_on_iocstate - waiting on a particular ioc state
3604 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3605 * @timeout: timeout in second
3606 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3608 * Returns 0 for success, non-zero for failure.
3610 static int
3611 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3612 int sleep_flag)
3614 u32 count, cntdn;
3615 u32 current_state;
3617 count = 0;
3618 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3619 do {
3620 current_state = mpt3sas_base_get_iocstate(ioc, 1);
3621 if (current_state == ioc_state)
3622 return 0;
3623 if (count && current_state == MPI2_IOC_STATE_FAULT)
3624 break;
3625 if (sleep_flag == CAN_SLEEP)
3626 usleep_range(1000, 1500);
3627 else
3628 udelay(500);
3629 count++;
3630 } while (--cntdn);
3632 return current_state;
3636 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3637 * a write to the doorbell)
3638 * @ioc: per adapter object
3639 * @timeout: timeout in second
3640 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3642 * Returns 0 for success, non-zero for failure.
3644 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3646 static int
3647 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
3649 static int
3650 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3651 int sleep_flag)
3653 u32 cntdn, count;
3654 u32 int_status;
3656 count = 0;
3657 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3658 do {
3659 int_status = readl(&ioc->chip->HostInterruptStatus);
3660 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3661 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3662 "%s: successful count(%d), timeout(%d)\n",
3663 ioc->name, __func__, count, timeout));
3664 return 0;
3666 if (sleep_flag == CAN_SLEEP)
3667 usleep_range(1000, 1500);
3668 else
3669 udelay(500);
3670 count++;
3671 } while (--cntdn);
3673 pr_err(MPT3SAS_FMT
3674 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3675 ioc->name, __func__, count, int_status);
3676 return -EFAULT;
3680 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3681 * @ioc: per adapter object
3682 * @timeout: timeout in second
3683 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3685 * Returns 0 for success, non-zero for failure.
3687 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3688 * doorbell.
3690 static int
3691 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3692 int sleep_flag)
3694 u32 cntdn, count;
3695 u32 int_status;
3696 u32 doorbell;
3698 count = 0;
3699 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3700 do {
3701 int_status = readl(&ioc->chip->HostInterruptStatus);
3702 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3703 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3704 "%s: successful count(%d), timeout(%d)\n",
3705 ioc->name, __func__, count, timeout));
3706 return 0;
3707 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3708 doorbell = readl(&ioc->chip->Doorbell);
3709 if ((doorbell & MPI2_IOC_STATE_MASK) ==
3710 MPI2_IOC_STATE_FAULT) {
3711 mpt3sas_base_fault_info(ioc , doorbell);
3712 return -EFAULT;
3714 } else if (int_status == 0xFFFFFFFF)
3715 goto out;
3717 if (sleep_flag == CAN_SLEEP)
3718 usleep_range(1000, 1500);
3719 else
3720 udelay(500);
3721 count++;
3722 } while (--cntdn);
3724 out:
3725 pr_err(MPT3SAS_FMT
3726 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3727 ioc->name, __func__, count, int_status);
3728 return -EFAULT;
3732 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3733 * @ioc: per adapter object
3734 * @timeout: timeout in second
3735 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3737 * Returns 0 for success, non-zero for failure.
3740 static int
3741 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3742 int sleep_flag)
3744 u32 cntdn, count;
3745 u32 doorbell_reg;
3747 count = 0;
3748 cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3749 do {
3750 doorbell_reg = readl(&ioc->chip->Doorbell);
3751 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3752 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3753 "%s: successful count(%d), timeout(%d)\n",
3754 ioc->name, __func__, count, timeout));
3755 return 0;
3757 if (sleep_flag == CAN_SLEEP)
3758 usleep_range(1000, 1500);
3759 else
3760 udelay(500);
3761 count++;
3762 } while (--cntdn);
3764 pr_err(MPT3SAS_FMT
3765 "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3766 ioc->name, __func__, count, doorbell_reg);
3767 return -EFAULT;
3771 * _base_send_ioc_reset - send doorbell reset
3772 * @ioc: per adapter object
3773 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3774 * @timeout: timeout in second
3775 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3777 * Returns 0 for success, non-zero for failure.
3779 static int
3780 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3781 int sleep_flag)
3783 u32 ioc_state;
3784 int r = 0;
3786 if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3787 pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3788 ioc->name, __func__);
3789 return -EFAULT;
3792 if (!(ioc->facts.IOCCapabilities &
3793 MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3794 return -EFAULT;
3796 pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3798 writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3799 &ioc->chip->Doorbell);
3800 if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3801 r = -EFAULT;
3802 goto out;
3804 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3805 timeout, sleep_flag);
3806 if (ioc_state) {
3807 pr_err(MPT3SAS_FMT
3808 "%s: failed going to ready state (ioc_state=0x%x)\n",
3809 ioc->name, __func__, ioc_state);
3810 r = -EFAULT;
3811 goto out;
3813 out:
3814 pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3815 ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3816 return r;
3820 * _base_handshake_req_reply_wait - send request thru doorbell interface
3821 * @ioc: per adapter object
3822 * @request_bytes: request length
3823 * @request: pointer having request payload
3824 * @reply_bytes: reply length
3825 * @reply: pointer to reply payload
3826 * @timeout: timeout in second
3827 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3829 * Returns 0 for success, non-zero for failure.
3831 static int
3832 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3833 u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3835 MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3836 int i;
3837 u8 failed;
3838 u16 dummy;
3839 __le32 *mfp;
3841 /* make sure doorbell is not in use */
3842 if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3843 pr_err(MPT3SAS_FMT
3844 "doorbell is in use (line=%d)\n",
3845 ioc->name, __LINE__);
3846 return -EFAULT;
3849 /* clear pending doorbell interrupts from previous state changes */
3850 if (readl(&ioc->chip->HostInterruptStatus) &
3851 MPI2_HIS_IOC2SYS_DB_STATUS)
3852 writel(0, &ioc->chip->HostInterruptStatus);
3854 /* send message to ioc */
3855 writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3856 ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3857 &ioc->chip->Doorbell);
3859 if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3860 pr_err(MPT3SAS_FMT
3861 "doorbell handshake int failed (line=%d)\n",
3862 ioc->name, __LINE__);
3863 return -EFAULT;
3865 writel(0, &ioc->chip->HostInterruptStatus);
3867 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3868 pr_err(MPT3SAS_FMT
3869 "doorbell handshake ack failed (line=%d)\n",
3870 ioc->name, __LINE__);
3871 return -EFAULT;
3874 /* send message 32-bits at a time */
3875 for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3876 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3877 if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3878 failed = 1;
3881 if (failed) {
3882 pr_err(MPT3SAS_FMT
3883 "doorbell handshake sending request failed (line=%d)\n",
3884 ioc->name, __LINE__);
3885 return -EFAULT;
3888 /* now wait for the reply */
3889 if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3890 pr_err(MPT3SAS_FMT
3891 "doorbell handshake int failed (line=%d)\n",
3892 ioc->name, __LINE__);
3893 return -EFAULT;
3896 /* read the first two 16-bits, it gives the total length of the reply */
3897 reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3898 & MPI2_DOORBELL_DATA_MASK);
3899 writel(0, &ioc->chip->HostInterruptStatus);
3900 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3901 pr_err(MPT3SAS_FMT
3902 "doorbell handshake int failed (line=%d)\n",
3903 ioc->name, __LINE__);
3904 return -EFAULT;
3906 reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3907 & MPI2_DOORBELL_DATA_MASK);
3908 writel(0, &ioc->chip->HostInterruptStatus);
3910 for (i = 2; i < default_reply->MsgLength * 2; i++) {
3911 if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3912 pr_err(MPT3SAS_FMT
3913 "doorbell handshake int failed (line=%d)\n",
3914 ioc->name, __LINE__);
3915 return -EFAULT;
3917 if (i >= reply_bytes/2) /* overflow case */
3918 dummy = readl(&ioc->chip->Doorbell);
3919 else
3920 reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3921 & MPI2_DOORBELL_DATA_MASK);
3922 writel(0, &ioc->chip->HostInterruptStatus);
3925 _base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3926 if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3927 dhsprintk(ioc, pr_info(MPT3SAS_FMT
3928 "doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3930 writel(0, &ioc->chip->HostInterruptStatus);
3932 if (ioc->logging_level & MPT_DEBUG_INIT) {
3933 mfp = (__le32 *)reply;
3934 pr_info("\toffset:data\n");
3935 for (i = 0; i < reply_bytes/4; i++)
3936 pr_info("\t[0x%02x]:%08x\n", i*4,
3937 le32_to_cpu(mfp[i]));
3939 return 0;
3943 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3944 * @ioc: per adapter object
3945 * @mpi_reply: the reply payload from FW
3946 * @mpi_request: the request payload sent to FW
3948 * The SAS IO Unit Control Request message allows the host to perform low-level
3949 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3950 * to obtain the IOC assigned device handles for a device if it has other
3951 * identifying information about the device, in addition allows the host to
3952 * remove IOC resources associated with the device.
3954 * Returns 0 for success, non-zero for failure.
3957 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3958 Mpi2SasIoUnitControlReply_t *mpi_reply,
3959 Mpi2SasIoUnitControlRequest_t *mpi_request)
3961 u16 smid;
3962 u32 ioc_state;
3963 unsigned long timeleft;
3964 bool issue_reset = false;
3965 int rc;
3966 void *request;
3967 u16 wait_state_count;
3969 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3970 __func__));
3972 mutex_lock(&ioc->base_cmds.mutex);
3974 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3975 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3976 ioc->name, __func__);
3977 rc = -EAGAIN;
3978 goto out;
3981 wait_state_count = 0;
3982 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3983 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3984 if (wait_state_count++ == 10) {
3985 pr_err(MPT3SAS_FMT
3986 "%s: failed due to ioc not operational\n",
3987 ioc->name, __func__);
3988 rc = -EFAULT;
3989 goto out;
3991 ssleep(1);
3992 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3993 pr_info(MPT3SAS_FMT
3994 "%s: waiting for operational state(count=%d)\n",
3995 ioc->name, __func__, wait_state_count);
3998 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3999 if (!smid) {
4000 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4001 ioc->name, __func__);
4002 rc = -EAGAIN;
4003 goto out;
4006 rc = 0;
4007 ioc->base_cmds.status = MPT3_CMD_PENDING;
4008 request = mpt3sas_base_get_msg_frame(ioc, smid);
4009 ioc->base_cmds.smid = smid;
4010 memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
4011 if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4012 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
4013 ioc->ioc_link_reset_in_progress = 1;
4014 init_completion(&ioc->base_cmds.done);
4015 mpt3sas_base_put_smid_default(ioc, smid);
4016 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4017 msecs_to_jiffies(10000));
4018 if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
4019 mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
4020 ioc->ioc_link_reset_in_progress)
4021 ioc->ioc_link_reset_in_progress = 0;
4022 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4023 pr_err(MPT3SAS_FMT "%s: timeout\n",
4024 ioc->name, __func__);
4025 _debug_dump_mf(mpi_request,
4026 sizeof(Mpi2SasIoUnitControlRequest_t)/4);
4027 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4028 issue_reset = true;
4029 goto issue_host_reset;
4031 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4032 memcpy(mpi_reply, ioc->base_cmds.reply,
4033 sizeof(Mpi2SasIoUnitControlReply_t));
4034 else
4035 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
4036 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4037 goto out;
4039 issue_host_reset:
4040 if (issue_reset)
4041 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4042 FORCE_BIG_HAMMER);
4043 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4044 rc = -EFAULT;
4045 out:
4046 mutex_unlock(&ioc->base_cmds.mutex);
4047 return rc;
4051 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
4052 * @ioc: per adapter object
4053 * @mpi_reply: the reply payload from FW
4054 * @mpi_request: the request payload sent to FW
4056 * The SCSI Enclosure Processor request message causes the IOC to
4057 * communicate with SES devices to control LED status signals.
4059 * Returns 0 for success, non-zero for failure.
4062 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
4063 Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
4065 u16 smid;
4066 u32 ioc_state;
4067 unsigned long timeleft;
4068 bool issue_reset = false;
4069 int rc;
4070 void *request;
4071 u16 wait_state_count;
4073 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4074 __func__));
4076 mutex_lock(&ioc->base_cmds.mutex);
4078 if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
4079 pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
4080 ioc->name, __func__);
4081 rc = -EAGAIN;
4082 goto out;
4085 wait_state_count = 0;
4086 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4087 while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
4088 if (wait_state_count++ == 10) {
4089 pr_err(MPT3SAS_FMT
4090 "%s: failed due to ioc not operational\n",
4091 ioc->name, __func__);
4092 rc = -EFAULT;
4093 goto out;
4095 ssleep(1);
4096 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
4097 pr_info(MPT3SAS_FMT
4098 "%s: waiting for operational state(count=%d)\n",
4099 ioc->name,
4100 __func__, wait_state_count);
4103 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4104 if (!smid) {
4105 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4106 ioc->name, __func__);
4107 rc = -EAGAIN;
4108 goto out;
4111 rc = 0;
4112 ioc->base_cmds.status = MPT3_CMD_PENDING;
4113 request = mpt3sas_base_get_msg_frame(ioc, smid);
4114 ioc->base_cmds.smid = smid;
4115 memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
4116 init_completion(&ioc->base_cmds.done);
4117 mpt3sas_base_put_smid_default(ioc, smid);
4118 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
4119 msecs_to_jiffies(10000));
4120 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4121 pr_err(MPT3SAS_FMT "%s: timeout\n",
4122 ioc->name, __func__);
4123 _debug_dump_mf(mpi_request,
4124 sizeof(Mpi2SepRequest_t)/4);
4125 if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
4126 issue_reset = false;
4127 goto issue_host_reset;
4129 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
4130 memcpy(mpi_reply, ioc->base_cmds.reply,
4131 sizeof(Mpi2SepReply_t));
4132 else
4133 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
4134 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4135 goto out;
4137 issue_host_reset:
4138 if (issue_reset)
4139 mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
4140 FORCE_BIG_HAMMER);
4141 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4142 rc = -EFAULT;
4143 out:
4144 mutex_unlock(&ioc->base_cmds.mutex);
4145 return rc;
4149 * _base_get_port_facts - obtain port facts reply and save in ioc
4150 * @ioc: per adapter object
4151 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4153 * Returns 0 for success, non-zero for failure.
4155 static int
4156 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
4158 Mpi2PortFactsRequest_t mpi_request;
4159 Mpi2PortFactsReply_t mpi_reply;
4160 struct mpt3sas_port_facts *pfacts;
4161 int mpi_reply_sz, mpi_request_sz, r;
4163 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4164 __func__));
4166 mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
4167 mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
4168 memset(&mpi_request, 0, mpi_request_sz);
4169 mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
4170 mpi_request.PortNumber = port;
4171 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4172 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4174 if (r != 0) {
4175 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4176 ioc->name, __func__, r);
4177 return r;
4180 pfacts = &ioc->pfacts[port];
4181 memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
4182 pfacts->PortNumber = mpi_reply.PortNumber;
4183 pfacts->VP_ID = mpi_reply.VP_ID;
4184 pfacts->VF_ID = mpi_reply.VF_ID;
4185 pfacts->MaxPostedCmdBuffers =
4186 le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
4188 return 0;
4192 * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
4193 * @ioc: per adapter object
4194 * @timeout:
4195 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4197 * Returns 0 for success, non-zero for failure.
4199 static int
4200 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout,
4201 int sleep_flag)
4203 u32 ioc_state;
4204 int rc;
4206 dinitprintk(ioc, printk(MPT3SAS_FMT "%s\n", ioc->name,
4207 __func__));
4209 if (ioc->pci_error_recovery) {
4210 dfailprintk(ioc, printk(MPT3SAS_FMT
4211 "%s: host in pci error recovery\n", ioc->name, __func__));
4212 return -EFAULT;
4215 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4216 dhsprintk(ioc, printk(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4217 ioc->name, __func__, ioc_state));
4219 if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
4220 (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4221 return 0;
4223 if (ioc_state & MPI2_DOORBELL_USED) {
4224 dhsprintk(ioc, printk(MPT3SAS_FMT
4225 "unexpected doorbell active!\n", ioc->name));
4226 goto issue_diag_reset;
4229 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4230 mpt3sas_base_fault_info(ioc, ioc_state &
4231 MPI2_DOORBELL_DATA_MASK);
4232 goto issue_diag_reset;
4235 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
4236 timeout, sleep_flag);
4237 if (ioc_state) {
4238 dfailprintk(ioc, printk(MPT3SAS_FMT
4239 "%s: failed going to ready state (ioc_state=0x%x)\n",
4240 ioc->name, __func__, ioc_state));
4241 return -EFAULT;
4244 issue_diag_reset:
4245 rc = _base_diag_reset(ioc, sleep_flag);
4246 return rc;
4250 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
4251 * @ioc: per adapter object
4252 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4254 * Returns 0 for success, non-zero for failure.
4256 static int
4257 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4259 Mpi2IOCFactsRequest_t mpi_request;
4260 Mpi2IOCFactsReply_t mpi_reply;
4261 struct mpt3sas_facts *facts;
4262 int mpi_reply_sz, mpi_request_sz, r;
4264 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4265 __func__));
4267 r = _base_wait_for_iocstate(ioc, 10, sleep_flag);
4268 if (r) {
4269 dfailprintk(ioc, printk(MPT3SAS_FMT
4270 "%s: failed getting to correct state\n",
4271 ioc->name, __func__));
4272 return r;
4274 mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
4275 mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
4276 memset(&mpi_request, 0, mpi_request_sz);
4277 mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
4278 r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
4279 (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
4281 if (r != 0) {
4282 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4283 ioc->name, __func__, r);
4284 return r;
4287 facts = &ioc->facts;
4288 memset(facts, 0, sizeof(struct mpt3sas_facts));
4289 facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
4290 facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
4291 facts->VP_ID = mpi_reply.VP_ID;
4292 facts->VF_ID = mpi_reply.VF_ID;
4293 facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
4294 facts->MaxChainDepth = mpi_reply.MaxChainDepth;
4295 facts->WhoInit = mpi_reply.WhoInit;
4296 facts->NumberOfPorts = mpi_reply.NumberOfPorts;
4297 facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
4298 facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
4299 facts->MaxReplyDescriptorPostQueueDepth =
4300 le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
4301 facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
4302 facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
4303 if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
4304 ioc->ir_firmware = 1;
4305 if ((facts->IOCCapabilities &
4306 MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
4307 ioc->rdpq_array_capable = 1;
4308 facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
4309 facts->IOCRequestFrameSize =
4310 le16_to_cpu(mpi_reply.IOCRequestFrameSize);
4311 facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
4312 facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
4313 ioc->shost->max_id = -1;
4314 facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
4315 facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
4316 facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
4317 facts->HighPriorityCredit =
4318 le16_to_cpu(mpi_reply.HighPriorityCredit);
4319 facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
4320 facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
4322 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4323 "hba queue depth(%d), max chains per io(%d)\n",
4324 ioc->name, facts->RequestCredit,
4325 facts->MaxChainDepth));
4326 dinitprintk(ioc, pr_info(MPT3SAS_FMT
4327 "request frame size(%d), reply frame size(%d)\n", ioc->name,
4328 facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
4329 return 0;
4333 * _base_send_ioc_init - send ioc_init to firmware
4334 * @ioc: per adapter object
4335 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4337 * Returns 0 for success, non-zero for failure.
4339 static int
4340 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4342 Mpi2IOCInitRequest_t mpi_request;
4343 Mpi2IOCInitReply_t mpi_reply;
4344 int i, r = 0;
4345 struct timeval current_time;
4346 u16 ioc_status;
4347 u32 reply_post_free_array_sz = 0;
4348 Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
4349 dma_addr_t reply_post_free_array_dma;
4351 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4352 __func__));
4354 memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
4355 mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
4356 mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
4357 mpi_request.VF_ID = 0; /* TODO */
4358 mpi_request.VP_ID = 0;
4359 mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
4360 mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
4362 if (_base_is_controller_msix_enabled(ioc))
4363 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
4364 mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
4365 mpi_request.ReplyDescriptorPostQueueDepth =
4366 cpu_to_le16(ioc->reply_post_queue_depth);
4367 mpi_request.ReplyFreeQueueDepth =
4368 cpu_to_le16(ioc->reply_free_queue_depth);
4370 mpi_request.SenseBufferAddressHigh =
4371 cpu_to_le32((u64)ioc->sense_dma >> 32);
4372 mpi_request.SystemReplyAddressHigh =
4373 cpu_to_le32((u64)ioc->reply_dma >> 32);
4374 mpi_request.SystemRequestFrameBaseAddress =
4375 cpu_to_le64((u64)ioc->request_dma);
4376 mpi_request.ReplyFreeQueueAddress =
4377 cpu_to_le64((u64)ioc->reply_free_dma);
4379 if (ioc->rdpq_array_enable) {
4380 reply_post_free_array_sz = ioc->reply_queue_count *
4381 sizeof(Mpi2IOCInitRDPQArrayEntry);
4382 reply_post_free_array = pci_alloc_consistent(ioc->pdev,
4383 reply_post_free_array_sz, &reply_post_free_array_dma);
4384 if (!reply_post_free_array) {
4385 pr_err(MPT3SAS_FMT
4386 "reply_post_free_array: pci_alloc_consistent failed\n",
4387 ioc->name);
4388 r = -ENOMEM;
4389 goto out;
4391 memset(reply_post_free_array, 0, reply_post_free_array_sz);
4392 for (i = 0; i < ioc->reply_queue_count; i++)
4393 reply_post_free_array[i].RDPQBaseAddress =
4394 cpu_to_le64(
4395 (u64)ioc->reply_post[i].reply_post_free_dma);
4396 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
4397 mpi_request.ReplyDescriptorPostQueueAddress =
4398 cpu_to_le64((u64)reply_post_free_array_dma);
4399 } else {
4400 mpi_request.ReplyDescriptorPostQueueAddress =
4401 cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
4404 /* This time stamp specifies number of milliseconds
4405 * since epoch ~ midnight January 1, 1970.
4407 do_gettimeofday(&current_time);
4408 mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
4409 (current_time.tv_usec / 1000));
4411 if (ioc->logging_level & MPT_DEBUG_INIT) {
4412 __le32 *mfp;
4413 int i;
4415 mfp = (__le32 *)&mpi_request;
4416 pr_info("\toffset:data\n");
4417 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
4418 pr_info("\t[0x%02x]:%08x\n", i*4,
4419 le32_to_cpu(mfp[i]));
4422 r = _base_handshake_req_reply_wait(ioc,
4423 sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
4424 sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
4425 sleep_flag);
4427 if (r != 0) {
4428 pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
4429 ioc->name, __func__, r);
4430 goto out;
4433 ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
4434 if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
4435 mpi_reply.IOCLogInfo) {
4436 pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
4437 r = -EIO;
4440 out:
4441 if (reply_post_free_array)
4442 pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
4443 reply_post_free_array,
4444 reply_post_free_array_dma);
4445 return r;
4449 * mpt3sas_port_enable_done - command completion routine for port enable
4450 * @ioc: per adapter object
4451 * @smid: system request message index
4452 * @msix_index: MSIX table index supplied by the OS
4453 * @reply: reply message frame(lower 32bit addr)
4455 * Return 1 meaning mf should be freed from _base_interrupt
4456 * 0 means the mf is freed from this function.
4459 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
4460 u32 reply)
4462 MPI2DefaultReply_t *mpi_reply;
4463 u16 ioc_status;
4465 if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
4466 return 1;
4468 mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
4469 if (!mpi_reply)
4470 return 1;
4472 if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
4473 return 1;
4475 ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
4476 ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
4477 ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
4478 memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
4479 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4480 if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
4481 ioc->port_enable_failed = 1;
4483 if (ioc->is_driver_loading) {
4484 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4485 mpt3sas_port_enable_complete(ioc);
4486 return 1;
4487 } else {
4488 ioc->start_scan_failed = ioc_status;
4489 ioc->start_scan = 0;
4490 return 1;
4493 complete(&ioc->port_enable_cmds.done);
4494 return 1;
4498 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
4499 * @ioc: per adapter object
4500 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4502 * Returns 0 for success, non-zero for failure.
4504 static int
4505 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4507 Mpi2PortEnableRequest_t *mpi_request;
4508 Mpi2PortEnableReply_t *mpi_reply;
4509 unsigned long timeleft;
4510 int r = 0;
4511 u16 smid;
4512 u16 ioc_status;
4514 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4516 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4517 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4518 ioc->name, __func__);
4519 return -EAGAIN;
4522 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4523 if (!smid) {
4524 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4525 ioc->name, __func__);
4526 return -EAGAIN;
4529 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4530 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4531 ioc->port_enable_cmds.smid = smid;
4532 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4533 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4535 init_completion(&ioc->port_enable_cmds.done);
4536 mpt3sas_base_put_smid_default(ioc, smid);
4537 timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
4538 300*HZ);
4539 if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
4540 pr_err(MPT3SAS_FMT "%s: timeout\n",
4541 ioc->name, __func__);
4542 _debug_dump_mf(mpi_request,
4543 sizeof(Mpi2PortEnableRequest_t)/4);
4544 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
4545 r = -EFAULT;
4546 else
4547 r = -ETIME;
4548 goto out;
4551 mpi_reply = ioc->port_enable_cmds.reply;
4552 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
4553 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4554 pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
4555 ioc->name, __func__, ioc_status);
4556 r = -EFAULT;
4557 goto out;
4560 out:
4561 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4562 pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
4563 "SUCCESS" : "FAILED"));
4564 return r;
4568 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
4569 * @ioc: per adapter object
4571 * Returns 0 for success, non-zero for failure.
4574 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4576 Mpi2PortEnableRequest_t *mpi_request;
4577 u16 smid;
4579 pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4581 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4582 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4583 ioc->name, __func__);
4584 return -EAGAIN;
4587 smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4588 if (!smid) {
4589 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4590 ioc->name, __func__);
4591 return -EAGAIN;
4594 ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4595 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4596 ioc->port_enable_cmds.smid = smid;
4597 memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4598 mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4600 mpt3sas_base_put_smid_default(ioc, smid);
4601 return 0;
4605 * _base_determine_wait_on_discovery - desposition
4606 * @ioc: per adapter object
4608 * Decide whether to wait on discovery to complete. Used to either
4609 * locate boot device, or report volumes ahead of physical devices.
4611 * Returns 1 for wait, 0 for don't wait
4613 static int
4614 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4616 /* We wait for discovery to complete if IR firmware is loaded.
4617 * The sas topology events arrive before PD events, so we need time to
4618 * turn on the bit in ioc->pd_handles to indicate PD
4619 * Also, it maybe required to report Volumes ahead of physical
4620 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4622 if (ioc->ir_firmware)
4623 return 1;
4625 /* if no Bios, then we don't need to wait */
4626 if (!ioc->bios_pg3.BiosVersion)
4627 return 0;
4629 /* Bios is present, then we drop down here.
4631 * If there any entries in the Bios Page 2, then we wait
4632 * for discovery to complete.
4635 /* Current Boot Device */
4636 if ((ioc->bios_pg2.CurrentBootDeviceForm &
4637 MPI2_BIOSPAGE2_FORM_MASK) ==
4638 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4639 /* Request Boot Device */
4640 (ioc->bios_pg2.ReqBootDeviceForm &
4641 MPI2_BIOSPAGE2_FORM_MASK) ==
4642 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4643 /* Alternate Request Boot Device */
4644 (ioc->bios_pg2.ReqAltBootDeviceForm &
4645 MPI2_BIOSPAGE2_FORM_MASK) ==
4646 MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4647 return 0;
4649 return 1;
4653 * _base_unmask_events - turn on notification for this event
4654 * @ioc: per adapter object
4655 * @event: firmware event
4657 * The mask is stored in ioc->event_masks.
4659 static void
4660 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4662 u32 desired_event;
4664 if (event >= 128)
4665 return;
4667 desired_event = (1 << (event % 32));
4669 if (event < 32)
4670 ioc->event_masks[0] &= ~desired_event;
4671 else if (event < 64)
4672 ioc->event_masks[1] &= ~desired_event;
4673 else if (event < 96)
4674 ioc->event_masks[2] &= ~desired_event;
4675 else if (event < 128)
4676 ioc->event_masks[3] &= ~desired_event;
4680 * _base_event_notification - send event notification
4681 * @ioc: per adapter object
4682 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4684 * Returns 0 for success, non-zero for failure.
4686 static int
4687 _base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4689 Mpi2EventNotificationRequest_t *mpi_request;
4690 unsigned long timeleft;
4691 u16 smid;
4692 int r = 0;
4693 int i;
4695 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4696 __func__));
4698 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4699 pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4700 ioc->name, __func__);
4701 return -EAGAIN;
4704 smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4705 if (!smid) {
4706 pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4707 ioc->name, __func__);
4708 return -EAGAIN;
4710 ioc->base_cmds.status = MPT3_CMD_PENDING;
4711 mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4712 ioc->base_cmds.smid = smid;
4713 memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4714 mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4715 mpi_request->VF_ID = 0; /* TODO */
4716 mpi_request->VP_ID = 0;
4717 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4718 mpi_request->EventMasks[i] =
4719 cpu_to_le32(ioc->event_masks[i]);
4720 init_completion(&ioc->base_cmds.done);
4721 mpt3sas_base_put_smid_default(ioc, smid);
4722 timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4723 if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4724 pr_err(MPT3SAS_FMT "%s: timeout\n",
4725 ioc->name, __func__);
4726 _debug_dump_mf(mpi_request,
4727 sizeof(Mpi2EventNotificationRequest_t)/4);
4728 if (ioc->base_cmds.status & MPT3_CMD_RESET)
4729 r = -EFAULT;
4730 else
4731 r = -ETIME;
4732 } else
4733 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4734 ioc->name, __func__));
4735 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4736 return r;
4740 * mpt3sas_base_validate_event_type - validating event types
4741 * @ioc: per adapter object
4742 * @event: firmware event
4744 * This will turn on firmware event notification when application
4745 * ask for that event. We don't mask events that are already enabled.
4747 void
4748 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4750 int i, j;
4751 u32 event_mask, desired_event;
4752 u8 send_update_to_fw;
4754 for (i = 0, send_update_to_fw = 0; i <
4755 MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4756 event_mask = ~event_type[i];
4757 desired_event = 1;
4758 for (j = 0; j < 32; j++) {
4759 if (!(event_mask & desired_event) &&
4760 (ioc->event_masks[i] & desired_event)) {
4761 ioc->event_masks[i] &= ~desired_event;
4762 send_update_to_fw = 1;
4764 desired_event = (desired_event << 1);
4768 if (!send_update_to_fw)
4769 return;
4771 mutex_lock(&ioc->base_cmds.mutex);
4772 _base_event_notification(ioc, CAN_SLEEP);
4773 mutex_unlock(&ioc->base_cmds.mutex);
4777 * _base_diag_reset - the "big hammer" start of day reset
4778 * @ioc: per adapter object
4779 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4781 * Returns 0 for success, non-zero for failure.
4783 static int
4784 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4786 u32 host_diagnostic;
4787 u32 ioc_state;
4788 u32 count;
4789 u32 hcb_size;
4791 pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4793 drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4794 ioc->name));
4796 count = 0;
4797 do {
4798 /* Write magic sequence to WriteSequence register
4799 * Loop until in diagnostic mode
4801 drsprintk(ioc, pr_info(MPT3SAS_FMT
4802 "write magic sequence\n", ioc->name));
4803 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4804 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4805 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4806 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4807 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4808 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4809 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4811 /* wait 100 msec */
4812 if (sleep_flag == CAN_SLEEP)
4813 msleep(100);
4814 else
4815 mdelay(100);
4817 if (count++ > 20)
4818 goto out;
4820 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4821 drsprintk(ioc, pr_info(MPT3SAS_FMT
4822 "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4823 ioc->name, count, host_diagnostic));
4825 } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4827 hcb_size = readl(&ioc->chip->HCBSize);
4829 drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4830 ioc->name));
4831 writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4832 &ioc->chip->HostDiagnostic);
4834 /*This delay allows the chip PCIe hardware time to finish reset tasks*/
4835 if (sleep_flag == CAN_SLEEP)
4836 msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4837 else
4838 mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4840 /* Approximately 300 second max wait */
4841 for (count = 0; count < (300000000 /
4842 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4844 host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4846 if (host_diagnostic == 0xFFFFFFFF)
4847 goto out;
4848 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4849 break;
4851 /* Wait to pass the second read delay window */
4852 if (sleep_flag == CAN_SLEEP)
4853 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4854 / 1000);
4855 else
4856 mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4857 / 1000);
4860 if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4862 drsprintk(ioc, pr_info(MPT3SAS_FMT
4863 "restart the adapter assuming the HCB Address points to good F/W\n",
4864 ioc->name));
4865 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4866 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4867 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4869 drsprintk(ioc, pr_info(MPT3SAS_FMT
4870 "re-enable the HCDW\n", ioc->name));
4871 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4872 &ioc->chip->HCBSize);
4875 drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4876 ioc->name));
4877 writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4878 &ioc->chip->HostDiagnostic);
4880 drsprintk(ioc, pr_info(MPT3SAS_FMT
4881 "disable writes to the diagnostic register\n", ioc->name));
4882 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4884 drsprintk(ioc, pr_info(MPT3SAS_FMT
4885 "Wait for FW to go to the READY state\n", ioc->name));
4886 ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4887 sleep_flag);
4888 if (ioc_state) {
4889 pr_err(MPT3SAS_FMT
4890 "%s: failed going to ready state (ioc_state=0x%x)\n",
4891 ioc->name, __func__, ioc_state);
4892 goto out;
4895 pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4896 return 0;
4898 out:
4899 pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4900 return -EFAULT;
4904 * _base_make_ioc_ready - put controller in READY state
4905 * @ioc: per adapter object
4906 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4907 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4909 * Returns 0 for success, non-zero for failure.
4911 static int
4912 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4913 enum reset_type type)
4915 u32 ioc_state;
4916 int rc;
4917 int count;
4919 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4920 __func__));
4922 if (ioc->pci_error_recovery)
4923 return 0;
4925 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4926 dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4927 ioc->name, __func__, ioc_state));
4929 /* if in RESET state, it should move to READY state shortly */
4930 count = 0;
4931 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4932 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4933 MPI2_IOC_STATE_READY) {
4934 if (count++ == 10) {
4935 pr_err(MPT3SAS_FMT
4936 "%s: failed going to ready state (ioc_state=0x%x)\n",
4937 ioc->name, __func__, ioc_state);
4938 return -EFAULT;
4940 if (sleep_flag == CAN_SLEEP)
4941 ssleep(1);
4942 else
4943 mdelay(1000);
4944 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4948 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4949 return 0;
4951 if (ioc_state & MPI2_DOORBELL_USED) {
4952 dhsprintk(ioc, pr_info(MPT3SAS_FMT
4953 "unexpected doorbell active!\n",
4954 ioc->name));
4955 goto issue_diag_reset;
4958 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4959 mpt3sas_base_fault_info(ioc, ioc_state &
4960 MPI2_DOORBELL_DATA_MASK);
4961 goto issue_diag_reset;
4964 if (type == FORCE_BIG_HAMMER)
4965 goto issue_diag_reset;
4967 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4968 if (!(_base_send_ioc_reset(ioc,
4969 MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4970 return 0;
4973 issue_diag_reset:
4974 rc = _base_diag_reset(ioc, CAN_SLEEP);
4975 return rc;
4979 * _base_make_ioc_operational - put controller in OPERATIONAL state
4980 * @ioc: per adapter object
4981 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4983 * Returns 0 for success, non-zero for failure.
4985 static int
4986 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4988 int r, i, index;
4989 unsigned long flags;
4990 u32 reply_address;
4991 u16 smid;
4992 struct _tr_list *delayed_tr, *delayed_tr_next;
4993 u8 hide_flag;
4994 struct adapter_reply_queue *reply_q;
4995 Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
4997 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4998 __func__));
5000 /* clean the delayed target reset list */
5001 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5002 &ioc->delayed_tr_list, list) {
5003 list_del(&delayed_tr->list);
5004 kfree(delayed_tr);
5008 list_for_each_entry_safe(delayed_tr, delayed_tr_next,
5009 &ioc->delayed_tr_volume_list, list) {
5010 list_del(&delayed_tr->list);
5011 kfree(delayed_tr);
5014 /* initialize the scsi lookup free list */
5015 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5016 INIT_LIST_HEAD(&ioc->free_list);
5017 smid = 1;
5018 for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
5019 INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
5020 ioc->scsi_lookup[i].cb_idx = 0xFF;
5021 ioc->scsi_lookup[i].smid = smid;
5022 ioc->scsi_lookup[i].scmd = NULL;
5023 ioc->scsi_lookup[i].direct_io = 0;
5024 list_add_tail(&ioc->scsi_lookup[i].tracker_list,
5025 &ioc->free_list);
5028 /* hi-priority queue */
5029 INIT_LIST_HEAD(&ioc->hpr_free_list);
5030 smid = ioc->hi_priority_smid;
5031 for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
5032 ioc->hpr_lookup[i].cb_idx = 0xFF;
5033 ioc->hpr_lookup[i].smid = smid;
5034 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
5035 &ioc->hpr_free_list);
5038 /* internal queue */
5039 INIT_LIST_HEAD(&ioc->internal_free_list);
5040 smid = ioc->internal_smid;
5041 for (i = 0; i < ioc->internal_depth; i++, smid++) {
5042 ioc->internal_lookup[i].cb_idx = 0xFF;
5043 ioc->internal_lookup[i].smid = smid;
5044 list_add_tail(&ioc->internal_lookup[i].tracker_list,
5045 &ioc->internal_free_list);
5048 /* chain pool */
5049 INIT_LIST_HEAD(&ioc->free_chain_list);
5050 for (i = 0; i < ioc->chain_depth; i++)
5051 list_add_tail(&ioc->chain_lookup[i].tracker_list,
5052 &ioc->free_chain_list);
5054 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5056 /* initialize Reply Free Queue */
5057 for (i = 0, reply_address = (u32)ioc->reply_dma ;
5058 i < ioc->reply_free_queue_depth ; i++, reply_address +=
5059 ioc->reply_sz)
5060 ioc->reply_free[i] = cpu_to_le32(reply_address);
5062 /* initialize reply queues */
5063 if (ioc->is_driver_loading)
5064 _base_assign_reply_queues(ioc);
5066 /* initialize Reply Post Free Queue */
5067 index = 0;
5068 reply_post_free_contig = ioc->reply_post[0].reply_post_free;
5069 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5071 * If RDPQ is enabled, switch to the next allocation.
5072 * Otherwise advance within the contiguous region.
5074 if (ioc->rdpq_array_enable) {
5075 reply_q->reply_post_free =
5076 ioc->reply_post[index++].reply_post_free;
5077 } else {
5078 reply_q->reply_post_free = reply_post_free_contig;
5079 reply_post_free_contig += ioc->reply_post_queue_depth;
5082 reply_q->reply_post_host_index = 0;
5083 for (i = 0; i < ioc->reply_post_queue_depth; i++)
5084 reply_q->reply_post_free[i].Words =
5085 cpu_to_le64(ULLONG_MAX);
5086 if (!_base_is_controller_msix_enabled(ioc))
5087 goto skip_init_reply_post_free_queue;
5089 skip_init_reply_post_free_queue:
5091 r = _base_send_ioc_init(ioc, sleep_flag);
5092 if (r)
5093 return r;
5095 /* initialize reply free host index */
5096 ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
5097 writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
5099 /* initialize reply post host index */
5100 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
5101 if (ioc->msix96_vector)
5102 writel((reply_q->msix_index & 7)<<
5103 MPI2_RPHI_MSIX_INDEX_SHIFT,
5104 ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
5105 else
5106 writel(reply_q->msix_index <<
5107 MPI2_RPHI_MSIX_INDEX_SHIFT,
5108 &ioc->chip->ReplyPostHostIndex);
5110 if (!_base_is_controller_msix_enabled(ioc))
5111 goto skip_init_reply_post_host_index;
5114 skip_init_reply_post_host_index:
5116 _base_unmask_interrupts(ioc);
5117 r = _base_event_notification(ioc, sleep_flag);
5118 if (r)
5119 return r;
5121 if (sleep_flag == CAN_SLEEP)
5122 _base_static_config_pages(ioc);
5125 if (ioc->is_driver_loading) {
5127 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
5128 == 0x80) {
5129 hide_flag = (u8) (
5130 le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
5131 MFG_PAGE10_HIDE_SSDS_MASK);
5132 if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
5133 ioc->mfg_pg10_hide_flag = hide_flag;
5136 ioc->wait_for_discovery_to_complete =
5137 _base_determine_wait_on_discovery(ioc);
5139 return r; /* scan_start and scan_finished support */
5142 r = _base_send_port_enable(ioc, sleep_flag);
5143 if (r)
5144 return r;
5146 return r;
5150 * mpt3sas_base_free_resources - free resources controller resources
5151 * @ioc: per adapter object
5153 * Return nothing.
5155 void
5156 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
5158 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5159 __func__));
5161 /* synchronizing freeing resource with pci_access_mutex lock */
5162 mutex_lock(&ioc->pci_access_mutex);
5163 if (ioc->chip_phys && ioc->chip) {
5164 _base_mask_interrupts(ioc);
5165 ioc->shost_recovery = 1;
5166 _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5167 ioc->shost_recovery = 0;
5170 mpt3sas_base_unmap_resources(ioc);
5171 mutex_unlock(&ioc->pci_access_mutex);
5172 return;
5176 * mpt3sas_base_attach - attach controller instance
5177 * @ioc: per adapter object
5179 * Returns 0 for success, non-zero for failure.
5182 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
5184 int r, i;
5185 int cpu_id, last_cpu_id = 0;
5187 dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5188 __func__));
5190 /* setup cpu_msix_table */
5191 ioc->cpu_count = num_online_cpus();
5192 for_each_online_cpu(cpu_id)
5193 last_cpu_id = cpu_id;
5194 ioc->cpu_msix_table_sz = last_cpu_id + 1;
5195 ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
5196 ioc->reply_queue_count = 1;
5197 if (!ioc->cpu_msix_table) {
5198 dfailprintk(ioc, pr_info(MPT3SAS_FMT
5199 "allocation for cpu_msix_table failed!!!\n",
5200 ioc->name));
5201 r = -ENOMEM;
5202 goto out_free_resources;
5205 if (ioc->is_warpdrive) {
5206 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
5207 sizeof(resource_size_t *), GFP_KERNEL);
5208 if (!ioc->reply_post_host_index) {
5209 dfailprintk(ioc, pr_info(MPT3SAS_FMT "allocation "
5210 "for cpu_msix_table failed!!!\n", ioc->name));
5211 r = -ENOMEM;
5212 goto out_free_resources;
5216 ioc->rdpq_array_enable_assigned = 0;
5217 ioc->dma_mask = 0;
5218 r = mpt3sas_base_map_resources(ioc);
5219 if (r)
5220 goto out_free_resources;
5222 pci_set_drvdata(ioc->pdev, ioc->shost);
5223 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5224 if (r)
5225 goto out_free_resources;
5227 switch (ioc->hba_mpi_version_belonged) {
5228 case MPI2_VERSION:
5229 ioc->build_sg_scmd = &_base_build_sg_scmd;
5230 ioc->build_sg = &_base_build_sg;
5231 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
5232 break;
5233 case MPI25_VERSION:
5235 * In SAS3.0,
5236 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
5237 * Target Status - all require the IEEE formated scatter gather
5238 * elements.
5240 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
5241 ioc->build_sg = &_base_build_sg_ieee;
5242 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
5243 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
5244 break;
5248 * These function pointers for other requests that don't
5249 * the require IEEE scatter gather elements.
5251 * For example Configuration Pages and SAS IOUNIT Control don't.
5253 ioc->build_sg_mpi = &_base_build_sg;
5254 ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
5256 r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
5257 if (r)
5258 goto out_free_resources;
5260 ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
5261 sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
5262 if (!ioc->pfacts) {
5263 r = -ENOMEM;
5264 goto out_free_resources;
5267 for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
5268 r = _base_get_port_facts(ioc, i, CAN_SLEEP);
5269 if (r)
5270 goto out_free_resources;
5273 r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
5274 if (r)
5275 goto out_free_resources;
5277 init_waitqueue_head(&ioc->reset_wq);
5279 /* allocate memory pd handle bitmask list */
5280 ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
5281 if (ioc->facts.MaxDevHandle % 8)
5282 ioc->pd_handles_sz++;
5283 ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
5284 GFP_KERNEL);
5285 if (!ioc->pd_handles) {
5286 r = -ENOMEM;
5287 goto out_free_resources;
5289 ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
5290 GFP_KERNEL);
5291 if (!ioc->blocking_handles) {
5292 r = -ENOMEM;
5293 goto out_free_resources;
5296 ioc->fwfault_debug = mpt3sas_fwfault_debug;
5298 /* base internal command bits */
5299 mutex_init(&ioc->base_cmds.mutex);
5300 ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5301 ioc->base_cmds.status = MPT3_CMD_NOT_USED;
5303 /* port_enable command bits */
5304 ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5305 ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
5307 /* transport internal command bits */
5308 ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5309 ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
5310 mutex_init(&ioc->transport_cmds.mutex);
5312 /* scsih internal command bits */
5313 ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5314 ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
5315 mutex_init(&ioc->scsih_cmds.mutex);
5317 /* task management internal command bits */
5318 ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5319 ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
5320 mutex_init(&ioc->tm_cmds.mutex);
5322 /* config page internal command bits */
5323 ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5324 ioc->config_cmds.status = MPT3_CMD_NOT_USED;
5325 mutex_init(&ioc->config_cmds.mutex);
5327 /* ctl module internal command bits */
5328 ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
5329 ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
5330 ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
5331 mutex_init(&ioc->ctl_cmds.mutex);
5333 if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
5334 !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
5335 !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
5336 !ioc->ctl_cmds.sense) {
5337 r = -ENOMEM;
5338 goto out_free_resources;
5341 for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
5342 ioc->event_masks[i] = -1;
5344 /* here we enable the events we care about */
5345 _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
5346 _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
5347 _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
5348 _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
5349 _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
5350 _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
5351 _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
5352 _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
5353 _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
5354 _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
5355 _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
5357 r = _base_make_ioc_operational(ioc, CAN_SLEEP);
5358 if (r)
5359 goto out_free_resources;
5361 ioc->non_operational_loop = 0;
5362 return 0;
5364 out_free_resources:
5366 ioc->remove_host = 1;
5368 mpt3sas_base_free_resources(ioc);
5369 _base_release_memory_pools(ioc);
5370 pci_set_drvdata(ioc->pdev, NULL);
5371 kfree(ioc->cpu_msix_table);
5372 if (ioc->is_warpdrive)
5373 kfree(ioc->reply_post_host_index);
5374 kfree(ioc->pd_handles);
5375 kfree(ioc->blocking_handles);
5376 kfree(ioc->tm_cmds.reply);
5377 kfree(ioc->transport_cmds.reply);
5378 kfree(ioc->scsih_cmds.reply);
5379 kfree(ioc->config_cmds.reply);
5380 kfree(ioc->base_cmds.reply);
5381 kfree(ioc->port_enable_cmds.reply);
5382 kfree(ioc->ctl_cmds.reply);
5383 kfree(ioc->ctl_cmds.sense);
5384 kfree(ioc->pfacts);
5385 ioc->ctl_cmds.reply = NULL;
5386 ioc->base_cmds.reply = NULL;
5387 ioc->tm_cmds.reply = NULL;
5388 ioc->scsih_cmds.reply = NULL;
5389 ioc->transport_cmds.reply = NULL;
5390 ioc->config_cmds.reply = NULL;
5391 ioc->pfacts = NULL;
5392 return r;
5397 * mpt3sas_base_detach - remove controller instance
5398 * @ioc: per adapter object
5400 * Return nothing.
5402 void
5403 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
5405 dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
5406 __func__));
5408 mpt3sas_base_stop_watchdog(ioc);
5409 mpt3sas_base_free_resources(ioc);
5410 _base_release_memory_pools(ioc);
5411 pci_set_drvdata(ioc->pdev, NULL);
5412 kfree(ioc->cpu_msix_table);
5413 if (ioc->is_warpdrive)
5414 kfree(ioc->reply_post_host_index);
5415 kfree(ioc->pd_handles);
5416 kfree(ioc->blocking_handles);
5417 kfree(ioc->pfacts);
5418 kfree(ioc->ctl_cmds.reply);
5419 kfree(ioc->ctl_cmds.sense);
5420 kfree(ioc->base_cmds.reply);
5421 kfree(ioc->port_enable_cmds.reply);
5422 kfree(ioc->tm_cmds.reply);
5423 kfree(ioc->transport_cmds.reply);
5424 kfree(ioc->scsih_cmds.reply);
5425 kfree(ioc->config_cmds.reply);
5429 * _base_reset_handler - reset callback handler (for base)
5430 * @ioc: per adapter object
5431 * @reset_phase: phase
5433 * The handler for doing any required cleanup or initialization.
5435 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
5436 * MPT3_IOC_DONE_RESET
5438 * Return nothing.
5440 static void
5441 _base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
5443 mpt3sas_scsih_reset_handler(ioc, reset_phase);
5444 mpt3sas_ctl_reset_handler(ioc, reset_phase);
5445 switch (reset_phase) {
5446 case MPT3_IOC_PRE_RESET:
5447 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5448 "%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
5449 break;
5450 case MPT3_IOC_AFTER_RESET:
5451 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5452 "%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
5453 if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
5454 ioc->transport_cmds.status |= MPT3_CMD_RESET;
5455 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
5456 complete(&ioc->transport_cmds.done);
5458 if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
5459 ioc->base_cmds.status |= MPT3_CMD_RESET;
5460 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
5461 complete(&ioc->base_cmds.done);
5463 if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
5464 ioc->port_enable_failed = 1;
5465 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
5466 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
5467 if (ioc->is_driver_loading) {
5468 ioc->start_scan_failed =
5469 MPI2_IOCSTATUS_INTERNAL_ERROR;
5470 ioc->start_scan = 0;
5471 ioc->port_enable_cmds.status =
5472 MPT3_CMD_NOT_USED;
5473 } else
5474 complete(&ioc->port_enable_cmds.done);
5476 if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
5477 ioc->config_cmds.status |= MPT3_CMD_RESET;
5478 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
5479 ioc->config_cmds.smid = USHRT_MAX;
5480 complete(&ioc->config_cmds.done);
5482 break;
5483 case MPT3_IOC_DONE_RESET:
5484 dtmprintk(ioc, pr_info(MPT3SAS_FMT
5485 "%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
5486 break;
5491 * _wait_for_commands_to_complete - reset controller
5492 * @ioc: Pointer to MPT_ADAPTER structure
5493 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5495 * This function waiting(3s) for all pending commands to complete
5496 * prior to putting controller in reset.
5498 static void
5499 _wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
5501 u32 ioc_state;
5502 unsigned long flags;
5503 u16 i;
5505 ioc->pending_io_count = 0;
5506 if (sleep_flag != CAN_SLEEP)
5507 return;
5509 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5510 if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
5511 return;
5513 /* pending command count */
5514 spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
5515 for (i = 0; i < ioc->scsiio_depth; i++)
5516 if (ioc->scsi_lookup[i].cb_idx != 0xFF)
5517 ioc->pending_io_count++;
5518 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
5520 if (!ioc->pending_io_count)
5521 return;
5523 /* wait for pending commands to complete */
5524 wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
5528 * mpt3sas_base_hard_reset_handler - reset controller
5529 * @ioc: Pointer to MPT_ADAPTER structure
5530 * @sleep_flag: CAN_SLEEP or NO_SLEEP
5531 * @type: FORCE_BIG_HAMMER or SOFT_RESET
5533 * Returns 0 for success, non-zero for failure.
5536 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
5537 enum reset_type type)
5539 int r;
5540 unsigned long flags;
5541 u32 ioc_state;
5542 u8 is_fault = 0, is_trigger = 0;
5544 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
5545 __func__));
5547 if (ioc->pci_error_recovery) {
5548 pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
5549 ioc->name, __func__);
5550 r = 0;
5551 goto out_unlocked;
5554 if (mpt3sas_fwfault_debug)
5555 mpt3sas_halt_firmware(ioc);
5557 /* TODO - What we really should be doing is pulling
5558 * out all the code associated with NO_SLEEP; its never used.
5559 * That is legacy code from mpt fusion driver, ported over.
5560 * I will leave this BUG_ON here for now till its been resolved.
5562 BUG_ON(sleep_flag == NO_SLEEP);
5564 /* wait for an active reset in progress to complete */
5565 if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
5566 do {
5567 ssleep(1);
5568 } while (ioc->shost_recovery == 1);
5569 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5570 __func__));
5571 return ioc->ioc_reset_in_progress_status;
5574 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5575 ioc->shost_recovery = 1;
5576 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5578 if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5579 MPT3_DIAG_BUFFER_IS_REGISTERED) &&
5580 (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
5581 MPT3_DIAG_BUFFER_IS_RELEASED))) {
5582 is_trigger = 1;
5583 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5584 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
5585 is_fault = 1;
5587 _base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
5588 _wait_for_commands_to_complete(ioc, sleep_flag);
5589 _base_mask_interrupts(ioc);
5590 r = _base_make_ioc_ready(ioc, sleep_flag, type);
5591 if (r)
5592 goto out;
5593 _base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
5595 /* If this hard reset is called while port enable is active, then
5596 * there is no reason to call make_ioc_operational
5598 if (ioc->is_driver_loading && ioc->port_enable_failed) {
5599 ioc->remove_host = 1;
5600 r = -EFAULT;
5601 goto out;
5603 r = _base_get_ioc_facts(ioc, CAN_SLEEP);
5604 if (r)
5605 goto out;
5607 if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5608 panic("%s: Issue occurred with flashing controller firmware."
5609 "Please reboot the system and ensure that the correct"
5610 " firmware version is running\n", ioc->name);
5612 r = _base_make_ioc_operational(ioc, sleep_flag);
5613 if (!r)
5614 _base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5616 out:
5617 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5618 ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5620 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5621 ioc->ioc_reset_in_progress_status = r;
5622 ioc->shost_recovery = 0;
5623 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5624 ioc->ioc_reset_count++;
5625 mutex_unlock(&ioc->reset_in_progress_mutex);
5627 out_unlocked:
5628 if ((r == 0) && is_trigger) {
5629 if (is_fault)
5630 mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5631 else
5632 mpt3sas_trigger_master(ioc,
5633 MASTER_TRIGGER_ADAPTER_RESET);
5635 dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5636 __func__));
5637 return r;