2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
38 #include "transaction.h"
39 #include "btrfs_inode.h"
41 #include "print-tree.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
52 #include "tree-checker.h"
55 #include <asm/cpufeature.h>
58 static const struct extent_io_ops btree_extent_io_ops
;
59 static void end_workqueue_fn(struct btrfs_work
*work
);
60 static void free_fs_root(struct btrfs_root
*root
);
61 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
63 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
65 struct btrfs_root
*root
);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
);
67 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
68 struct extent_io_tree
*dirty_pages
,
70 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
71 struct extent_io_tree
*pinned_extents
);
72 static int btrfs_cleanup_transaction(struct btrfs_root
*root
);
73 static void btrfs_error_commit_super(struct btrfs_root
*root
);
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
78 * by writes to insert metadata for new file extents after IO is complete.
80 struct btrfs_end_io_wq
{
84 struct btrfs_fs_info
*info
;
86 enum btrfs_wq_endio_type metadata
;
87 struct list_head list
;
88 struct btrfs_work work
;
91 static struct kmem_cache
*btrfs_end_io_wq_cache
;
93 int __init
btrfs_end_io_wq_init(void)
95 btrfs_end_io_wq_cache
= kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq
),
98 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
,
100 if (!btrfs_end_io_wq_cache
)
105 void btrfs_end_io_wq_exit(void)
107 if (btrfs_end_io_wq_cache
)
108 kmem_cache_destroy(btrfs_end_io_wq_cache
);
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
116 struct async_submit_bio
{
119 struct list_head list
;
120 extent_submit_bio_hook_t
*submit_bio_start
;
121 extent_submit_bio_hook_t
*submit_bio_done
;
124 unsigned long bio_flags
;
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
130 struct btrfs_work work
;
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
157 #ifdef CONFIG_DEBUG_LOCK_ALLOC
158 # if BTRFS_MAX_LEVEL != 8
162 static struct btrfs_lockdep_keyset
{
163 u64 id
; /* root objectid */
164 const char *name_stem
; /* lock name stem */
165 char names
[BTRFS_MAX_LEVEL
+ 1][20];
166 struct lock_class_key keys
[BTRFS_MAX_LEVEL
+ 1];
167 } btrfs_lockdep_keysets
[] = {
168 { .id
= BTRFS_ROOT_TREE_OBJECTID
, .name_stem
= "root" },
169 { .id
= BTRFS_EXTENT_TREE_OBJECTID
, .name_stem
= "extent" },
170 { .id
= BTRFS_CHUNK_TREE_OBJECTID
, .name_stem
= "chunk" },
171 { .id
= BTRFS_DEV_TREE_OBJECTID
, .name_stem
= "dev" },
172 { .id
= BTRFS_FS_TREE_OBJECTID
, .name_stem
= "fs" },
173 { .id
= BTRFS_CSUM_TREE_OBJECTID
, .name_stem
= "csum" },
174 { .id
= BTRFS_QUOTA_TREE_OBJECTID
, .name_stem
= "quota" },
175 { .id
= BTRFS_TREE_LOG_OBJECTID
, .name_stem
= "log" },
176 { .id
= BTRFS_TREE_RELOC_OBJECTID
, .name_stem
= "treloc" },
177 { .id
= BTRFS_DATA_RELOC_TREE_OBJECTID
, .name_stem
= "dreloc" },
178 { .id
= BTRFS_UUID_TREE_OBJECTID
, .name_stem
= "uuid" },
179 { .id
= 0, .name_stem
= "tree" },
182 void __init
btrfs_init_lockdep(void)
186 /* initialize lockdep class names */
187 for (i
= 0; i
< ARRAY_SIZE(btrfs_lockdep_keysets
); i
++) {
188 struct btrfs_lockdep_keyset
*ks
= &btrfs_lockdep_keysets
[i
];
190 for (j
= 0; j
< ARRAY_SIZE(ks
->names
); j
++)
191 snprintf(ks
->names
[j
], sizeof(ks
->names
[j
]),
192 "btrfs-%s-%02d", ks
->name_stem
, j
);
196 void btrfs_set_buffer_lockdep_class(u64 objectid
, struct extent_buffer
*eb
,
199 struct btrfs_lockdep_keyset
*ks
;
201 BUG_ON(level
>= ARRAY_SIZE(ks
->keys
));
203 /* find the matching keyset, id 0 is the default entry */
204 for (ks
= btrfs_lockdep_keysets
; ks
->id
; ks
++)
205 if (ks
->id
== objectid
)
208 lockdep_set_class_and_name(&eb
->lock
,
209 &ks
->keys
[level
], ks
->names
[level
]);
215 * extents on the btree inode are pretty simple, there's one extent
216 * that covers the entire device
218 static struct extent_map
*btree_get_extent(struct inode
*inode
,
219 struct page
*page
, size_t pg_offset
, u64 start
, u64 len
,
222 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
223 struct extent_map
*em
;
226 read_lock(&em_tree
->lock
);
227 em
= lookup_extent_mapping(em_tree
, start
, len
);
230 BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
231 read_unlock(&em_tree
->lock
);
234 read_unlock(&em_tree
->lock
);
236 em
= alloc_extent_map();
238 em
= ERR_PTR(-ENOMEM
);
243 em
->block_len
= (u64
)-1;
245 em
->bdev
= BTRFS_I(inode
)->root
->fs_info
->fs_devices
->latest_bdev
;
247 write_lock(&em_tree
->lock
);
248 ret
= add_extent_mapping(em_tree
, em
, 0);
249 if (ret
== -EEXIST
) {
251 em
= lookup_extent_mapping(em_tree
, start
, len
);
258 write_unlock(&em_tree
->lock
);
264 u32
btrfs_csum_data(char *data
, u32 seed
, size_t len
)
266 return btrfs_crc32c(seed
, data
, len
);
269 void btrfs_csum_final(u32 crc
, char *result
)
271 put_unaligned_le32(~crc
, result
);
275 * compute the csum for a btree block, and either verify it or write it
276 * into the csum field of the block.
278 static int csum_tree_block(struct btrfs_fs_info
*fs_info
,
279 struct extent_buffer
*buf
,
282 u16 csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
285 unsigned long cur_len
;
286 unsigned long offset
= BTRFS_CSUM_SIZE
;
288 unsigned long map_start
;
289 unsigned long map_len
;
292 unsigned long inline_result
;
294 len
= buf
->len
- offset
;
296 err
= map_private_extent_buffer(buf
, offset
, 32,
297 &kaddr
, &map_start
, &map_len
);
300 cur_len
= min(len
, map_len
- (offset
- map_start
));
301 crc
= btrfs_csum_data(kaddr
+ offset
- map_start
,
306 if (csum_size
> sizeof(inline_result
)) {
307 result
= kzalloc(csum_size
, GFP_NOFS
);
311 result
= (char *)&inline_result
;
314 btrfs_csum_final(crc
, result
);
317 if (memcmp_extent_buffer(buf
, result
, 0, csum_size
)) {
320 memcpy(&found
, result
, csum_size
);
322 read_extent_buffer(buf
, &val
, 0, csum_size
);
323 btrfs_warn_rl(fs_info
,
324 "%s checksum verify failed on %llu wanted %X found %X "
326 fs_info
->sb
->s_id
, buf
->start
,
327 val
, found
, btrfs_header_level(buf
));
328 if (result
!= (char *)&inline_result
)
333 write_extent_buffer(buf
, result
, 0, csum_size
);
335 if (result
!= (char *)&inline_result
)
341 * we can't consider a given block up to date unless the transid of the
342 * block matches the transid in the parent node's pointer. This is how we
343 * detect blocks that either didn't get written at all or got written
344 * in the wrong place.
346 static int verify_parent_transid(struct extent_io_tree
*io_tree
,
347 struct extent_buffer
*eb
, u64 parent_transid
,
350 struct extent_state
*cached_state
= NULL
;
352 bool need_lock
= (current
->journal_info
== BTRFS_SEND_TRANS_STUB
);
354 if (!parent_transid
|| btrfs_header_generation(eb
) == parent_transid
)
361 btrfs_tree_read_lock(eb
);
362 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
365 lock_extent_bits(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
367 if (extent_buffer_uptodate(eb
) &&
368 btrfs_header_generation(eb
) == parent_transid
) {
372 btrfs_err_rl(eb
->fs_info
,
373 "parent transid verify failed on %llu wanted %llu found %llu",
375 parent_transid
, btrfs_header_generation(eb
));
379 * Things reading via commit roots that don't have normal protection,
380 * like send, can have a really old block in cache that may point at a
381 * block that has been free'd and re-allocated. So don't clear uptodate
382 * if we find an eb that is under IO (dirty/writeback) because we could
383 * end up reading in the stale data and then writing it back out and
384 * making everybody very sad.
386 if (!extent_buffer_under_io(eb
))
387 clear_extent_buffer_uptodate(eb
);
389 unlock_extent_cached(io_tree
, eb
->start
, eb
->start
+ eb
->len
- 1,
390 &cached_state
, GFP_NOFS
);
392 btrfs_tree_read_unlock_blocking(eb
);
397 * Return 0 if the superblock checksum type matches the checksum value of that
398 * algorithm. Pass the raw disk superblock data.
400 static int btrfs_check_super_csum(char *raw_disk_sb
)
402 struct btrfs_super_block
*disk_sb
=
403 (struct btrfs_super_block
*)raw_disk_sb
;
404 u16 csum_type
= btrfs_super_csum_type(disk_sb
);
407 if (csum_type
== BTRFS_CSUM_TYPE_CRC32
) {
409 const int csum_size
= sizeof(crc
);
410 char result
[csum_size
];
413 * The super_block structure does not span the whole
414 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 * is filled with zeros and is included in the checkum.
417 crc
= btrfs_csum_data(raw_disk_sb
+ BTRFS_CSUM_SIZE
,
418 crc
, BTRFS_SUPER_INFO_SIZE
- BTRFS_CSUM_SIZE
);
419 btrfs_csum_final(crc
, result
);
421 if (memcmp(raw_disk_sb
, result
, csum_size
))
425 if (csum_type
>= ARRAY_SIZE(btrfs_csum_sizes
)) {
426 printk(KERN_ERR
"BTRFS: unsupported checksum algorithm %u\n",
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
438 static int btree_read_extent_buffer_pages(struct btrfs_root
*root
,
439 struct extent_buffer
*eb
,
440 u64 start
, u64 parent_transid
)
442 struct extent_io_tree
*io_tree
;
447 int failed_mirror
= 0;
449 io_tree
= &BTRFS_I(root
->fs_info
->btree_inode
)->io_tree
;
451 clear_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
452 ret
= read_extent_buffer_pages(io_tree
, eb
, start
,
454 btree_get_extent
, mirror_num
);
456 if (!verify_parent_transid(io_tree
, eb
,
463 num_copies
= btrfs_num_copies(root
->fs_info
,
468 if (!failed_mirror
) {
470 failed_mirror
= eb
->read_mirror
;
474 if (mirror_num
== failed_mirror
)
477 if (mirror_num
> num_copies
)
481 if (failed
&& !ret
&& failed_mirror
)
482 repair_eb_io_failure(root
, eb
, failed_mirror
);
488 * checksum a dirty tree block before IO. This has extra checks to make sure
489 * we only fill in the checksum field in the first page of a multi-page block
492 static int csum_dirty_buffer(struct btrfs_fs_info
*fs_info
, struct page
*page
)
494 u64 start
= page_offset(page
);
496 struct extent_buffer
*eb
;
498 eb
= (struct extent_buffer
*)page
->private;
499 if (page
!= eb
->pages
[0])
501 found_start
= btrfs_header_bytenr(eb
);
502 if (WARN_ON(found_start
!= start
|| !PageUptodate(page
)))
504 csum_tree_block(fs_info
, eb
, 0);
508 static int check_tree_block_fsid(struct btrfs_fs_info
*fs_info
,
509 struct extent_buffer
*eb
)
511 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
512 u8 fsid
[BTRFS_UUID_SIZE
];
515 read_extent_buffer(eb
, fsid
, btrfs_header_fsid(), BTRFS_FSID_SIZE
);
517 if (!memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
)) {
521 fs_devices
= fs_devices
->seed
;
526 static int btree_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
527 u64 phy_offset
, struct page
*page
,
528 u64 start
, u64 end
, int mirror
)
532 struct extent_buffer
*eb
;
533 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
540 eb
= (struct extent_buffer
*)page
->private;
542 /* the pending IO might have been the only thing that kept this buffer
543 * in memory. Make sure we have a ref for all this other checks
545 extent_buffer_get(eb
);
547 reads_done
= atomic_dec_and_test(&eb
->io_pages
);
551 eb
->read_mirror
= mirror
;
552 if (test_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
)) {
557 found_start
= btrfs_header_bytenr(eb
);
558 if (found_start
!= eb
->start
) {
559 btrfs_err_rl(eb
->fs_info
, "bad tree block start %llu %llu",
560 found_start
, eb
->start
);
564 if (check_tree_block_fsid(root
->fs_info
, eb
)) {
565 btrfs_err_rl(eb
->fs_info
, "bad fsid on block %llu",
570 found_level
= btrfs_header_level(eb
);
571 if (found_level
>= BTRFS_MAX_LEVEL
) {
572 btrfs_err(root
->fs_info
, "bad tree block level %d",
573 (int)btrfs_header_level(eb
));
578 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb
),
581 ret
= csum_tree_block(root
->fs_info
, eb
, 1);
588 * If this is a leaf block and it is corrupt, set the corrupt bit so
589 * that we don't try and read the other copies of this block, just
592 if (found_level
== 0 && btrfs_check_leaf_full(root
, eb
)) {
593 set_bit(EXTENT_BUFFER_CORRUPT
, &eb
->bflags
);
597 if (found_level
> 0 && btrfs_check_node(root
, eb
))
601 set_extent_buffer_uptodate(eb
);
604 test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
605 btree_readahead_hook(root
, eb
, eb
->start
, ret
);
609 * our io error hook is going to dec the io pages
610 * again, we have to make sure it has something
613 atomic_inc(&eb
->io_pages
);
614 clear_extent_buffer_uptodate(eb
);
616 free_extent_buffer(eb
);
621 static int btree_io_failed_hook(struct page
*page
, int failed_mirror
)
623 struct extent_buffer
*eb
;
624 struct btrfs_root
*root
= BTRFS_I(page
->mapping
->host
)->root
;
626 eb
= (struct extent_buffer
*)page
->private;
627 set_bit(EXTENT_BUFFER_READ_ERR
, &eb
->bflags
);
628 eb
->read_mirror
= failed_mirror
;
629 atomic_dec(&eb
->io_pages
);
630 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD
, &eb
->bflags
))
631 btree_readahead_hook(root
, eb
, eb
->start
, -EIO
);
632 return -EIO
; /* we fixed nothing */
635 static void end_workqueue_bio(struct bio
*bio
)
637 struct btrfs_end_io_wq
*end_io_wq
= bio
->bi_private
;
638 struct btrfs_fs_info
*fs_info
;
639 struct btrfs_workqueue
*wq
;
640 btrfs_work_func_t func
;
642 fs_info
= end_io_wq
->info
;
643 end_io_wq
->error
= bio
->bi_error
;
645 if (bio
->bi_rw
& REQ_WRITE
) {
646 if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_METADATA
) {
647 wq
= fs_info
->endio_meta_write_workers
;
648 func
= btrfs_endio_meta_write_helper
;
649 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_FREE_SPACE
) {
650 wq
= fs_info
->endio_freespace_worker
;
651 func
= btrfs_freespace_write_helper
;
652 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
653 wq
= fs_info
->endio_raid56_workers
;
654 func
= btrfs_endio_raid56_helper
;
656 wq
= fs_info
->endio_write_workers
;
657 func
= btrfs_endio_write_helper
;
660 if (unlikely(end_io_wq
->metadata
==
661 BTRFS_WQ_ENDIO_DIO_REPAIR
)) {
662 wq
= fs_info
->endio_repair_workers
;
663 func
= btrfs_endio_repair_helper
;
664 } else if (end_io_wq
->metadata
== BTRFS_WQ_ENDIO_RAID56
) {
665 wq
= fs_info
->endio_raid56_workers
;
666 func
= btrfs_endio_raid56_helper
;
667 } else if (end_io_wq
->metadata
) {
668 wq
= fs_info
->endio_meta_workers
;
669 func
= btrfs_endio_meta_helper
;
671 wq
= fs_info
->endio_workers
;
672 func
= btrfs_endio_helper
;
676 btrfs_init_work(&end_io_wq
->work
, func
, end_workqueue_fn
, NULL
, NULL
);
677 btrfs_queue_work(wq
, &end_io_wq
->work
);
680 int btrfs_bio_wq_end_io(struct btrfs_fs_info
*info
, struct bio
*bio
,
681 enum btrfs_wq_endio_type metadata
)
683 struct btrfs_end_io_wq
*end_io_wq
;
685 end_io_wq
= kmem_cache_alloc(btrfs_end_io_wq_cache
, GFP_NOFS
);
689 end_io_wq
->private = bio
->bi_private
;
690 end_io_wq
->end_io
= bio
->bi_end_io
;
691 end_io_wq
->info
= info
;
692 end_io_wq
->error
= 0;
693 end_io_wq
->bio
= bio
;
694 end_io_wq
->metadata
= metadata
;
696 bio
->bi_private
= end_io_wq
;
697 bio
->bi_end_io
= end_workqueue_bio
;
701 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info
*info
)
703 unsigned long limit
= min_t(unsigned long,
704 info
->thread_pool_size
,
705 info
->fs_devices
->open_devices
);
709 static void run_one_async_start(struct btrfs_work
*work
)
711 struct async_submit_bio
*async
;
714 async
= container_of(work
, struct async_submit_bio
, work
);
715 ret
= async
->submit_bio_start(async
->inode
, async
->rw
, async
->bio
,
716 async
->mirror_num
, async
->bio_flags
,
722 static void run_one_async_done(struct btrfs_work
*work
)
724 struct btrfs_fs_info
*fs_info
;
725 struct async_submit_bio
*async
;
728 async
= container_of(work
, struct async_submit_bio
, work
);
729 fs_info
= BTRFS_I(async
->inode
)->root
->fs_info
;
731 limit
= btrfs_async_submit_limit(fs_info
);
732 limit
= limit
* 2 / 3;
735 * atomic_dec_return implies a barrier for waitqueue_active
737 if (atomic_dec_return(&fs_info
->nr_async_submits
) < limit
&&
738 waitqueue_active(&fs_info
->async_submit_wait
))
739 wake_up(&fs_info
->async_submit_wait
);
741 /* If an error occured we just want to clean up the bio and move on */
743 async
->bio
->bi_error
= async
->error
;
744 bio_endio(async
->bio
);
748 async
->submit_bio_done(async
->inode
, async
->rw
, async
->bio
,
749 async
->mirror_num
, async
->bio_flags
,
753 static void run_one_async_free(struct btrfs_work
*work
)
755 struct async_submit_bio
*async
;
757 async
= container_of(work
, struct async_submit_bio
, work
);
761 int btrfs_wq_submit_bio(struct btrfs_fs_info
*fs_info
, struct inode
*inode
,
762 int rw
, struct bio
*bio
, int mirror_num
,
763 unsigned long bio_flags
,
765 extent_submit_bio_hook_t
*submit_bio_start
,
766 extent_submit_bio_hook_t
*submit_bio_done
)
768 struct async_submit_bio
*async
;
770 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
774 async
->inode
= inode
;
777 async
->mirror_num
= mirror_num
;
778 async
->submit_bio_start
= submit_bio_start
;
779 async
->submit_bio_done
= submit_bio_done
;
781 btrfs_init_work(&async
->work
, btrfs_worker_helper
, run_one_async_start
,
782 run_one_async_done
, run_one_async_free
);
784 async
->bio_flags
= bio_flags
;
785 async
->bio_offset
= bio_offset
;
789 atomic_inc(&fs_info
->nr_async_submits
);
792 btrfs_set_work_high_priority(&async
->work
);
794 btrfs_queue_work(fs_info
->workers
, &async
->work
);
796 while (atomic_read(&fs_info
->async_submit_draining
) &&
797 atomic_read(&fs_info
->nr_async_submits
)) {
798 wait_event(fs_info
->async_submit_wait
,
799 (atomic_read(&fs_info
->nr_async_submits
) == 0));
805 static int btree_csum_one_bio(struct bio
*bio
)
807 struct bio_vec
*bvec
;
808 struct btrfs_root
*root
;
811 bio_for_each_segment_all(bvec
, bio
, i
) {
812 root
= BTRFS_I(bvec
->bv_page
->mapping
->host
)->root
;
813 ret
= csum_dirty_buffer(root
->fs_info
, bvec
->bv_page
);
821 static int __btree_submit_bio_start(struct inode
*inode
, int rw
,
822 struct bio
*bio
, int mirror_num
,
823 unsigned long bio_flags
,
827 * when we're called for a write, we're already in the async
828 * submission context. Just jump into btrfs_map_bio
830 return btree_csum_one_bio(bio
);
833 static int __btree_submit_bio_done(struct inode
*inode
, int rw
, struct bio
*bio
,
834 int mirror_num
, unsigned long bio_flags
,
840 * when we're called for a write, we're already in the async
841 * submission context. Just jump into btrfs_map_bio
843 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
, mirror_num
, 1);
851 static int check_async_write(struct inode
*inode
, unsigned long bio_flags
)
853 if (bio_flags
& EXTENT_BIO_TREE_LOG
)
856 if (static_cpu_has(X86_FEATURE_XMM4_2
))
862 static int btree_submit_bio_hook(struct inode
*inode
, int rw
, struct bio
*bio
,
863 int mirror_num
, unsigned long bio_flags
,
866 int async
= check_async_write(inode
, bio_flags
);
869 if (!(rw
& REQ_WRITE
)) {
871 * called for a read, do the setup so that checksum validation
872 * can happen in the async kernel threads
874 ret
= btrfs_bio_wq_end_io(BTRFS_I(inode
)->root
->fs_info
,
875 bio
, BTRFS_WQ_ENDIO_METADATA
);
878 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
881 ret
= btree_csum_one_bio(bio
);
884 ret
= btrfs_map_bio(BTRFS_I(inode
)->root
, rw
, bio
,
888 * kthread helpers are used to submit writes so that
889 * checksumming can happen in parallel across all CPUs
891 ret
= btrfs_wq_submit_bio(BTRFS_I(inode
)->root
->fs_info
,
892 inode
, rw
, bio
, mirror_num
, 0,
894 __btree_submit_bio_start
,
895 __btree_submit_bio_done
);
908 #ifdef CONFIG_MIGRATION
909 static int btree_migratepage(struct address_space
*mapping
,
910 struct page
*newpage
, struct page
*page
,
911 enum migrate_mode mode
)
914 * we can't safely write a btree page from here,
915 * we haven't done the locking hook
920 * Buffers may be managed in a filesystem specific way.
921 * We must have no buffers or drop them.
923 if (page_has_private(page
) &&
924 !try_to_release_page(page
, GFP_KERNEL
))
926 return migrate_page(mapping
, newpage
, page
, mode
);
931 static int btree_writepages(struct address_space
*mapping
,
932 struct writeback_control
*wbc
)
934 struct btrfs_fs_info
*fs_info
;
937 if (wbc
->sync_mode
== WB_SYNC_NONE
) {
939 if (wbc
->for_kupdate
)
942 fs_info
= BTRFS_I(mapping
->host
)->root
->fs_info
;
943 /* this is a bit racy, but that's ok */
944 ret
= __percpu_counter_compare(&fs_info
->dirty_metadata_bytes
,
945 BTRFS_DIRTY_METADATA_THRESH
,
946 fs_info
->dirty_metadata_batch
);
950 return btree_write_cache_pages(mapping
, wbc
);
953 static int btree_readpage(struct file
*file
, struct page
*page
)
955 struct extent_io_tree
*tree
;
956 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
957 return extent_read_full_page(tree
, page
, btree_get_extent
, 0);
960 static int btree_releasepage(struct page
*page
, gfp_t gfp_flags
)
962 if (PageWriteback(page
) || PageDirty(page
))
965 return try_release_extent_buffer(page
);
968 static void btree_invalidatepage(struct page
*page
, unsigned int offset
,
971 struct extent_io_tree
*tree
;
972 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
973 extent_invalidatepage(tree
, page
, offset
);
974 btree_releasepage(page
, GFP_NOFS
);
975 if (PagePrivate(page
)) {
976 btrfs_warn(BTRFS_I(page
->mapping
->host
)->root
->fs_info
,
977 "page private not zero on page %llu",
978 (unsigned long long)page_offset(page
));
979 ClearPagePrivate(page
);
980 set_page_private(page
, 0);
981 page_cache_release(page
);
985 static int btree_set_page_dirty(struct page
*page
)
988 struct extent_buffer
*eb
;
990 BUG_ON(!PagePrivate(page
));
991 eb
= (struct extent_buffer
*)page
->private;
993 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY
, &eb
->bflags
));
994 BUG_ON(!atomic_read(&eb
->refs
));
995 btrfs_assert_tree_locked(eb
);
997 return __set_page_dirty_nobuffers(page
);
1000 static const struct address_space_operations btree_aops
= {
1001 .readpage
= btree_readpage
,
1002 .writepages
= btree_writepages
,
1003 .releasepage
= btree_releasepage
,
1004 .invalidatepage
= btree_invalidatepage
,
1005 #ifdef CONFIG_MIGRATION
1006 .migratepage
= btree_migratepage
,
1008 .set_page_dirty
= btree_set_page_dirty
,
1011 void readahead_tree_block(struct btrfs_root
*root
, u64 bytenr
)
1013 struct extent_buffer
*buf
= NULL
;
1014 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1016 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1019 read_extent_buffer_pages(&BTRFS_I(btree_inode
)->io_tree
,
1020 buf
, 0, WAIT_NONE
, btree_get_extent
, 0);
1021 free_extent_buffer(buf
);
1024 int reada_tree_block_flagged(struct btrfs_root
*root
, u64 bytenr
,
1025 int mirror_num
, struct extent_buffer
**eb
)
1027 struct extent_buffer
*buf
= NULL
;
1028 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
1029 struct extent_io_tree
*io_tree
= &BTRFS_I(btree_inode
)->io_tree
;
1032 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1036 set_bit(EXTENT_BUFFER_READAHEAD
, &buf
->bflags
);
1038 ret
= read_extent_buffer_pages(io_tree
, buf
, 0, WAIT_PAGE_LOCK
,
1039 btree_get_extent
, mirror_num
);
1041 free_extent_buffer(buf
);
1045 if (test_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
)) {
1046 free_extent_buffer(buf
);
1048 } else if (extent_buffer_uptodate(buf
)) {
1051 free_extent_buffer(buf
);
1056 struct extent_buffer
*btrfs_find_tree_block(struct btrfs_fs_info
*fs_info
,
1059 return find_extent_buffer(fs_info
, bytenr
);
1062 struct extent_buffer
*btrfs_find_create_tree_block(struct btrfs_root
*root
,
1065 if (btrfs_test_is_dummy_root(root
))
1066 return alloc_test_extent_buffer(root
->fs_info
, bytenr
);
1067 return alloc_extent_buffer(root
->fs_info
, bytenr
);
1071 int btrfs_write_tree_block(struct extent_buffer
*buf
)
1073 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
1074 buf
->start
+ buf
->len
- 1);
1077 int btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
1079 return filemap_fdatawait_range(buf
->pages
[0]->mapping
,
1080 buf
->start
, buf
->start
+ buf
->len
- 1);
1083 struct extent_buffer
*read_tree_block(struct btrfs_root
*root
, u64 bytenr
,
1086 struct extent_buffer
*buf
= NULL
;
1089 buf
= btrfs_find_create_tree_block(root
, bytenr
);
1091 return ERR_PTR(-ENOMEM
);
1093 ret
= btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
1095 free_extent_buffer(buf
);
1096 return ERR_PTR(ret
);
1102 void clean_tree_block(struct btrfs_trans_handle
*trans
,
1103 struct btrfs_fs_info
*fs_info
,
1104 struct extent_buffer
*buf
)
1106 if (btrfs_header_generation(buf
) ==
1107 fs_info
->running_transaction
->transid
) {
1108 btrfs_assert_tree_locked(buf
);
1110 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
)) {
1111 __percpu_counter_add(&fs_info
->dirty_metadata_bytes
,
1113 fs_info
->dirty_metadata_batch
);
1114 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1115 btrfs_set_lock_blocking(buf
);
1116 clear_extent_buffer_dirty(buf
);
1121 static struct btrfs_subvolume_writers
*btrfs_alloc_subvolume_writers(void)
1123 struct btrfs_subvolume_writers
*writers
;
1126 writers
= kmalloc(sizeof(*writers
), GFP_NOFS
);
1128 return ERR_PTR(-ENOMEM
);
1130 ret
= percpu_counter_init(&writers
->counter
, 0, GFP_NOFS
);
1133 return ERR_PTR(ret
);
1136 init_waitqueue_head(&writers
->wait
);
1141 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers
*writers
)
1143 percpu_counter_destroy(&writers
->counter
);
1147 static void __setup_root(u32 nodesize
, u32 sectorsize
, u32 stripesize
,
1148 struct btrfs_root
*root
, struct btrfs_fs_info
*fs_info
,
1152 root
->commit_root
= NULL
;
1153 root
->sectorsize
= sectorsize
;
1154 root
->nodesize
= nodesize
;
1155 root
->stripesize
= stripesize
;
1157 root
->orphan_cleanup_state
= 0;
1159 root
->objectid
= objectid
;
1160 root
->last_trans
= 0;
1161 root
->highest_objectid
= 0;
1162 root
->nr_delalloc_inodes
= 0;
1163 root
->nr_ordered_extents
= 0;
1165 root
->inode_tree
= RB_ROOT
;
1166 INIT_RADIX_TREE(&root
->delayed_nodes_tree
, GFP_ATOMIC
);
1167 root
->block_rsv
= NULL
;
1168 root
->orphan_block_rsv
= NULL
;
1170 INIT_LIST_HEAD(&root
->dirty_list
);
1171 INIT_LIST_HEAD(&root
->root_list
);
1172 INIT_LIST_HEAD(&root
->delalloc_inodes
);
1173 INIT_LIST_HEAD(&root
->delalloc_root
);
1174 INIT_LIST_HEAD(&root
->ordered_extents
);
1175 INIT_LIST_HEAD(&root
->ordered_root
);
1176 INIT_LIST_HEAD(&root
->logged_list
[0]);
1177 INIT_LIST_HEAD(&root
->logged_list
[1]);
1178 spin_lock_init(&root
->orphan_lock
);
1179 spin_lock_init(&root
->inode_lock
);
1180 spin_lock_init(&root
->delalloc_lock
);
1181 spin_lock_init(&root
->ordered_extent_lock
);
1182 spin_lock_init(&root
->accounting_lock
);
1183 spin_lock_init(&root
->log_extents_lock
[0]);
1184 spin_lock_init(&root
->log_extents_lock
[1]);
1185 mutex_init(&root
->objectid_mutex
);
1186 mutex_init(&root
->log_mutex
);
1187 mutex_init(&root
->ordered_extent_mutex
);
1188 mutex_init(&root
->delalloc_mutex
);
1189 init_waitqueue_head(&root
->log_writer_wait
);
1190 init_waitqueue_head(&root
->log_commit_wait
[0]);
1191 init_waitqueue_head(&root
->log_commit_wait
[1]);
1192 INIT_LIST_HEAD(&root
->log_ctxs
[0]);
1193 INIT_LIST_HEAD(&root
->log_ctxs
[1]);
1194 atomic_set(&root
->log_commit
[0], 0);
1195 atomic_set(&root
->log_commit
[1], 0);
1196 atomic_set(&root
->log_writers
, 0);
1197 atomic_set(&root
->log_batch
, 0);
1198 atomic_set(&root
->orphan_inodes
, 0);
1199 atomic_set(&root
->refs
, 1);
1200 atomic_set(&root
->will_be_snapshoted
, 0);
1201 atomic_set(&root
->qgroup_meta_rsv
, 0);
1202 root
->log_transid
= 0;
1203 root
->log_transid_committed
= -1;
1204 root
->last_log_commit
= 0;
1206 extent_io_tree_init(&root
->dirty_log_pages
,
1207 fs_info
->btree_inode
->i_mapping
);
1209 memset(&root
->root_key
, 0, sizeof(root
->root_key
));
1210 memset(&root
->root_item
, 0, sizeof(root
->root_item
));
1211 memset(&root
->defrag_progress
, 0, sizeof(root
->defrag_progress
));
1213 root
->defrag_trans_start
= fs_info
->generation
;
1215 root
->defrag_trans_start
= 0;
1216 root
->root_key
.objectid
= objectid
;
1219 spin_lock_init(&root
->root_item_lock
);
1222 static struct btrfs_root
*btrfs_alloc_root(struct btrfs_fs_info
*fs_info
)
1224 struct btrfs_root
*root
= kzalloc(sizeof(*root
), GFP_NOFS
);
1226 root
->fs_info
= fs_info
;
1230 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1231 /* Should only be used by the testing infrastructure */
1232 struct btrfs_root
*btrfs_alloc_dummy_root(void)
1234 struct btrfs_root
*root
;
1236 root
= btrfs_alloc_root(NULL
);
1238 return ERR_PTR(-ENOMEM
);
1239 __setup_root(4096, 4096, 4096, root
, NULL
, 1);
1240 set_bit(BTRFS_ROOT_DUMMY_ROOT
, &root
->state
);
1241 root
->alloc_bytenr
= 0;
1247 struct btrfs_root
*btrfs_create_tree(struct btrfs_trans_handle
*trans
,
1248 struct btrfs_fs_info
*fs_info
,
1251 struct extent_buffer
*leaf
;
1252 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1253 struct btrfs_root
*root
;
1254 struct btrfs_key key
;
1258 root
= btrfs_alloc_root(fs_info
);
1260 return ERR_PTR(-ENOMEM
);
1262 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1263 tree_root
->stripesize
, root
, fs_info
, objectid
);
1264 root
->root_key
.objectid
= objectid
;
1265 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1266 root
->root_key
.offset
= 0;
1268 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
1270 ret
= PTR_ERR(leaf
);
1275 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1276 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1277 btrfs_set_header_generation(leaf
, trans
->transid
);
1278 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1279 btrfs_set_header_owner(leaf
, objectid
);
1282 write_extent_buffer(leaf
, fs_info
->fsid
, btrfs_header_fsid(),
1284 write_extent_buffer(leaf
, fs_info
->chunk_tree_uuid
,
1285 btrfs_header_chunk_tree_uuid(leaf
),
1287 btrfs_mark_buffer_dirty(leaf
);
1289 root
->commit_root
= btrfs_root_node(root
);
1290 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
1292 root
->root_item
.flags
= 0;
1293 root
->root_item
.byte_limit
= 0;
1294 btrfs_set_root_bytenr(&root
->root_item
, leaf
->start
);
1295 btrfs_set_root_generation(&root
->root_item
, trans
->transid
);
1296 btrfs_set_root_level(&root
->root_item
, 0);
1297 btrfs_set_root_refs(&root
->root_item
, 1);
1298 btrfs_set_root_used(&root
->root_item
, leaf
->len
);
1299 btrfs_set_root_last_snapshot(&root
->root_item
, 0);
1300 btrfs_set_root_dirid(&root
->root_item
, 0);
1302 memcpy(root
->root_item
.uuid
, uuid
.b
, BTRFS_UUID_SIZE
);
1303 root
->root_item
.drop_level
= 0;
1305 key
.objectid
= objectid
;
1306 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1308 ret
= btrfs_insert_root(trans
, tree_root
, &key
, &root
->root_item
);
1312 btrfs_tree_unlock(leaf
);
1318 btrfs_tree_unlock(leaf
);
1319 free_extent_buffer(root
->commit_root
);
1320 free_extent_buffer(leaf
);
1324 return ERR_PTR(ret
);
1327 static struct btrfs_root
*alloc_log_tree(struct btrfs_trans_handle
*trans
,
1328 struct btrfs_fs_info
*fs_info
)
1330 struct btrfs_root
*root
;
1331 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1332 struct extent_buffer
*leaf
;
1334 root
= btrfs_alloc_root(fs_info
);
1336 return ERR_PTR(-ENOMEM
);
1338 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1339 tree_root
->stripesize
, root
, fs_info
,
1340 BTRFS_TREE_LOG_OBJECTID
);
1342 root
->root_key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
1343 root
->root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
1344 root
->root_key
.offset
= BTRFS_TREE_LOG_OBJECTID
;
1347 * DON'T set REF_COWS for log trees
1349 * log trees do not get reference counted because they go away
1350 * before a real commit is actually done. They do store pointers
1351 * to file data extents, and those reference counts still get
1352 * updated (along with back refs to the log tree).
1355 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, BTRFS_TREE_LOG_OBJECTID
,
1359 return ERR_CAST(leaf
);
1362 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
1363 btrfs_set_header_bytenr(leaf
, leaf
->start
);
1364 btrfs_set_header_generation(leaf
, trans
->transid
);
1365 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
1366 btrfs_set_header_owner(leaf
, BTRFS_TREE_LOG_OBJECTID
);
1369 write_extent_buffer(root
->node
, root
->fs_info
->fsid
,
1370 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
1371 btrfs_mark_buffer_dirty(root
->node
);
1372 btrfs_tree_unlock(root
->node
);
1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle
*trans
,
1377 struct btrfs_fs_info
*fs_info
)
1379 struct btrfs_root
*log_root
;
1381 log_root
= alloc_log_tree(trans
, fs_info
);
1382 if (IS_ERR(log_root
))
1383 return PTR_ERR(log_root
);
1384 WARN_ON(fs_info
->log_root_tree
);
1385 fs_info
->log_root_tree
= log_root
;
1389 int btrfs_add_log_tree(struct btrfs_trans_handle
*trans
,
1390 struct btrfs_root
*root
)
1392 struct btrfs_root
*log_root
;
1393 struct btrfs_inode_item
*inode_item
;
1395 log_root
= alloc_log_tree(trans
, root
->fs_info
);
1396 if (IS_ERR(log_root
))
1397 return PTR_ERR(log_root
);
1399 log_root
->last_trans
= trans
->transid
;
1400 log_root
->root_key
.offset
= root
->root_key
.objectid
;
1402 inode_item
= &log_root
->root_item
.inode
;
1403 btrfs_set_stack_inode_generation(inode_item
, 1);
1404 btrfs_set_stack_inode_size(inode_item
, 3);
1405 btrfs_set_stack_inode_nlink(inode_item
, 1);
1406 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
1407 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
1409 btrfs_set_root_node(&log_root
->root_item
, log_root
->node
);
1411 WARN_ON(root
->log_root
);
1412 root
->log_root
= log_root
;
1413 root
->log_transid
= 0;
1414 root
->log_transid_committed
= -1;
1415 root
->last_log_commit
= 0;
1419 static struct btrfs_root
*btrfs_read_tree_root(struct btrfs_root
*tree_root
,
1420 struct btrfs_key
*key
)
1422 struct btrfs_root
*root
;
1423 struct btrfs_fs_info
*fs_info
= tree_root
->fs_info
;
1424 struct btrfs_path
*path
;
1428 path
= btrfs_alloc_path();
1430 return ERR_PTR(-ENOMEM
);
1432 root
= btrfs_alloc_root(fs_info
);
1438 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
1439 tree_root
->stripesize
, root
, fs_info
, key
->objectid
);
1441 ret
= btrfs_find_root(tree_root
, key
, path
,
1442 &root
->root_item
, &root
->root_key
);
1449 generation
= btrfs_root_generation(&root
->root_item
);
1450 root
->node
= read_tree_block(root
, btrfs_root_bytenr(&root
->root_item
),
1452 if (IS_ERR(root
->node
)) {
1453 ret
= PTR_ERR(root
->node
);
1455 } else if (!btrfs_buffer_uptodate(root
->node
, generation
, 0)) {
1457 free_extent_buffer(root
->node
);
1460 root
->commit_root
= btrfs_root_node(root
);
1462 btrfs_free_path(path
);
1468 root
= ERR_PTR(ret
);
1472 struct btrfs_root
*btrfs_read_fs_root(struct btrfs_root
*tree_root
,
1473 struct btrfs_key
*location
)
1475 struct btrfs_root
*root
;
1477 root
= btrfs_read_tree_root(tree_root
, location
);
1481 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
1482 set_bit(BTRFS_ROOT_REF_COWS
, &root
->state
);
1483 btrfs_check_and_init_root_item(&root
->root_item
);
1489 int btrfs_init_fs_root(struct btrfs_root
*root
)
1492 struct btrfs_subvolume_writers
*writers
;
1494 root
->free_ino_ctl
= kzalloc(sizeof(*root
->free_ino_ctl
), GFP_NOFS
);
1495 root
->free_ino_pinned
= kzalloc(sizeof(*root
->free_ino_pinned
),
1497 if (!root
->free_ino_pinned
|| !root
->free_ino_ctl
) {
1502 writers
= btrfs_alloc_subvolume_writers();
1503 if (IS_ERR(writers
)) {
1504 ret
= PTR_ERR(writers
);
1507 root
->subv_writers
= writers
;
1509 btrfs_init_free_ino_ctl(root
);
1510 spin_lock_init(&root
->ino_cache_lock
);
1511 init_waitqueue_head(&root
->ino_cache_wait
);
1513 ret
= get_anon_bdev(&root
->anon_dev
);
1517 mutex_lock(&root
->objectid_mutex
);
1518 ret
= btrfs_find_highest_objectid(root
,
1519 &root
->highest_objectid
);
1521 mutex_unlock(&root
->objectid_mutex
);
1525 ASSERT(root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
1527 mutex_unlock(&root
->objectid_mutex
);
1532 free_anon_bdev(root
->anon_dev
);
1534 btrfs_free_subvolume_writers(root
->subv_writers
);
1536 kfree(root
->free_ino_ctl
);
1537 kfree(root
->free_ino_pinned
);
1541 struct btrfs_root
*btrfs_lookup_fs_root(struct btrfs_fs_info
*fs_info
,
1544 struct btrfs_root
*root
;
1546 spin_lock(&fs_info
->fs_roots_radix_lock
);
1547 root
= radix_tree_lookup(&fs_info
->fs_roots_radix
,
1548 (unsigned long)root_id
);
1549 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1553 int btrfs_insert_fs_root(struct btrfs_fs_info
*fs_info
,
1554 struct btrfs_root
*root
)
1558 ret
= radix_tree_preload(GFP_NOFS
& ~__GFP_HIGHMEM
);
1562 spin_lock(&fs_info
->fs_roots_radix_lock
);
1563 ret
= radix_tree_insert(&fs_info
->fs_roots_radix
,
1564 (unsigned long)root
->root_key
.objectid
,
1567 set_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
);
1568 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1569 radix_tree_preload_end();
1574 struct btrfs_root
*btrfs_get_fs_root(struct btrfs_fs_info
*fs_info
,
1575 struct btrfs_key
*location
,
1578 struct btrfs_root
*root
;
1579 struct btrfs_path
*path
;
1580 struct btrfs_key key
;
1583 if (location
->objectid
== BTRFS_ROOT_TREE_OBJECTID
)
1584 return fs_info
->tree_root
;
1585 if (location
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
1586 return fs_info
->extent_root
;
1587 if (location
->objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
1588 return fs_info
->chunk_root
;
1589 if (location
->objectid
== BTRFS_DEV_TREE_OBJECTID
)
1590 return fs_info
->dev_root
;
1591 if (location
->objectid
== BTRFS_CSUM_TREE_OBJECTID
)
1592 return fs_info
->csum_root
;
1593 if (location
->objectid
== BTRFS_QUOTA_TREE_OBJECTID
)
1594 return fs_info
->quota_root
? fs_info
->quota_root
:
1596 if (location
->objectid
== BTRFS_UUID_TREE_OBJECTID
)
1597 return fs_info
->uuid_root
? fs_info
->uuid_root
:
1600 root
= btrfs_lookup_fs_root(fs_info
, location
->objectid
);
1602 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0)
1603 return ERR_PTR(-ENOENT
);
1607 root
= btrfs_read_fs_root(fs_info
->tree_root
, location
);
1611 if (check_ref
&& btrfs_root_refs(&root
->root_item
) == 0) {
1616 ret
= btrfs_init_fs_root(root
);
1620 path
= btrfs_alloc_path();
1625 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
1626 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1627 key
.offset
= location
->objectid
;
1629 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
1630 btrfs_free_path(path
);
1634 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
);
1636 ret
= btrfs_insert_fs_root(fs_info
, root
);
1638 if (ret
== -EEXIST
) {
1647 return ERR_PTR(ret
);
1650 static int btrfs_congested_fn(void *congested_data
, int bdi_bits
)
1652 struct btrfs_fs_info
*info
= (struct btrfs_fs_info
*)congested_data
;
1654 struct btrfs_device
*device
;
1655 struct backing_dev_info
*bdi
;
1658 list_for_each_entry_rcu(device
, &info
->fs_devices
->devices
, dev_list
) {
1661 bdi
= blk_get_backing_dev_info(device
->bdev
);
1662 if (bdi_congested(bdi
, bdi_bits
)) {
1671 static int setup_bdi(struct btrfs_fs_info
*info
, struct backing_dev_info
*bdi
)
1675 err
= bdi_setup_and_register(bdi
, "btrfs");
1679 bdi
->ra_pages
= VM_MAX_READAHEAD
* 1024 / PAGE_CACHE_SIZE
;
1680 bdi
->congested_fn
= btrfs_congested_fn
;
1681 bdi
->congested_data
= info
;
1682 bdi
->capabilities
|= BDI_CAP_CGROUP_WRITEBACK
;
1687 * called by the kthread helper functions to finally call the bio end_io
1688 * functions. This is where read checksum verification actually happens
1690 static void end_workqueue_fn(struct btrfs_work
*work
)
1693 struct btrfs_end_io_wq
*end_io_wq
;
1695 end_io_wq
= container_of(work
, struct btrfs_end_io_wq
, work
);
1696 bio
= end_io_wq
->bio
;
1698 bio
->bi_error
= end_io_wq
->error
;
1699 bio
->bi_private
= end_io_wq
->private;
1700 bio
->bi_end_io
= end_io_wq
->end_io
;
1702 kmem_cache_free(btrfs_end_io_wq_cache
, end_io_wq
);
1705 static int cleaner_kthread(void *arg
)
1707 struct btrfs_root
*root
= arg
;
1709 struct btrfs_trans_handle
*trans
;
1714 /* Make the cleaner go to sleep early. */
1715 if (btrfs_need_cleaner_sleep(root
))
1718 if (!mutex_trylock(&root
->fs_info
->cleaner_mutex
))
1722 * Avoid the problem that we change the status of the fs
1723 * during the above check and trylock.
1725 if (btrfs_need_cleaner_sleep(root
)) {
1726 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1730 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1731 btrfs_run_delayed_iputs(root
);
1732 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
1734 again
= btrfs_clean_one_deleted_snapshot(root
);
1735 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
1738 * The defragger has dealt with the R/O remount and umount,
1739 * needn't do anything special here.
1741 btrfs_run_defrag_inodes(root
->fs_info
);
1744 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1745 * with relocation (btrfs_relocate_chunk) and relocation
1746 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1747 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1748 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1749 * unused block groups.
1751 btrfs_delete_unused_bgs(root
->fs_info
);
1754 set_current_state(TASK_INTERRUPTIBLE
);
1755 if (!kthread_should_stop())
1757 __set_current_state(TASK_RUNNING
);
1759 } while (!kthread_should_stop());
1762 * Transaction kthread is stopped before us and wakes us up.
1763 * However we might have started a new transaction and COWed some
1764 * tree blocks when deleting unused block groups for example. So
1765 * make sure we commit the transaction we started to have a clean
1766 * shutdown when evicting the btree inode - if it has dirty pages
1767 * when we do the final iput() on it, eviction will trigger a
1768 * writeback for it which will fail with null pointer dereferences
1769 * since work queues and other resources were already released and
1770 * destroyed by the time the iput/eviction/writeback is made.
1772 trans
= btrfs_attach_transaction(root
);
1773 if (IS_ERR(trans
)) {
1774 if (PTR_ERR(trans
) != -ENOENT
)
1775 btrfs_err(root
->fs_info
,
1776 "cleaner transaction attach returned %ld",
1781 ret
= btrfs_commit_transaction(trans
, root
);
1783 btrfs_err(root
->fs_info
,
1784 "cleaner open transaction commit returned %d",
1791 static int transaction_kthread(void *arg
)
1793 struct btrfs_root
*root
= arg
;
1794 struct btrfs_trans_handle
*trans
;
1795 struct btrfs_transaction
*cur
;
1798 unsigned long delay
;
1802 cannot_commit
= false;
1803 delay
= HZ
* root
->fs_info
->commit_interval
;
1804 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
1806 spin_lock(&root
->fs_info
->trans_lock
);
1807 cur
= root
->fs_info
->running_transaction
;
1809 spin_unlock(&root
->fs_info
->trans_lock
);
1813 now
= get_seconds();
1814 if (cur
->state
< TRANS_STATE_BLOCKED
&&
1815 (now
< cur
->start_time
||
1816 now
- cur
->start_time
< root
->fs_info
->commit_interval
)) {
1817 spin_unlock(&root
->fs_info
->trans_lock
);
1821 transid
= cur
->transid
;
1822 spin_unlock(&root
->fs_info
->trans_lock
);
1824 /* If the file system is aborted, this will always fail. */
1825 trans
= btrfs_attach_transaction(root
);
1826 if (IS_ERR(trans
)) {
1827 if (PTR_ERR(trans
) != -ENOENT
)
1828 cannot_commit
= true;
1831 if (transid
== trans
->transid
) {
1832 btrfs_commit_transaction(trans
, root
);
1834 btrfs_end_transaction(trans
, root
);
1837 wake_up_process(root
->fs_info
->cleaner_kthread
);
1838 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
1840 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR
,
1841 &root
->fs_info
->fs_state
)))
1842 btrfs_cleanup_transaction(root
);
1843 if (!try_to_freeze()) {
1844 set_current_state(TASK_INTERRUPTIBLE
);
1845 if (!kthread_should_stop() &&
1846 (!btrfs_transaction_blocked(root
->fs_info
) ||
1848 schedule_timeout(delay
);
1849 __set_current_state(TASK_RUNNING
);
1851 } while (!kthread_should_stop());
1856 * this will find the highest generation in the array of
1857 * root backups. The index of the highest array is returned,
1858 * or -1 if we can't find anything.
1860 * We check to make sure the array is valid by comparing the
1861 * generation of the latest root in the array with the generation
1862 * in the super block. If they don't match we pitch it.
1864 static int find_newest_super_backup(struct btrfs_fs_info
*info
, u64 newest_gen
)
1867 int newest_index
= -1;
1868 struct btrfs_root_backup
*root_backup
;
1871 for (i
= 0; i
< BTRFS_NUM_BACKUP_ROOTS
; i
++) {
1872 root_backup
= info
->super_copy
->super_roots
+ i
;
1873 cur
= btrfs_backup_tree_root_gen(root_backup
);
1874 if (cur
== newest_gen
)
1878 /* check to see if we actually wrapped around */
1879 if (newest_index
== BTRFS_NUM_BACKUP_ROOTS
- 1) {
1880 root_backup
= info
->super_copy
->super_roots
;
1881 cur
= btrfs_backup_tree_root_gen(root_backup
);
1882 if (cur
== newest_gen
)
1885 return newest_index
;
1890 * find the oldest backup so we know where to store new entries
1891 * in the backup array. This will set the backup_root_index
1892 * field in the fs_info struct
1894 static void find_oldest_super_backup(struct btrfs_fs_info
*info
,
1897 int newest_index
= -1;
1899 newest_index
= find_newest_super_backup(info
, newest_gen
);
1900 /* if there was garbage in there, just move along */
1901 if (newest_index
== -1) {
1902 info
->backup_root_index
= 0;
1904 info
->backup_root_index
= (newest_index
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1909 * copy all the root pointers into the super backup array.
1910 * this will bump the backup pointer by one when it is
1913 static void backup_super_roots(struct btrfs_fs_info
*info
)
1916 struct btrfs_root_backup
*root_backup
;
1919 next_backup
= info
->backup_root_index
;
1920 last_backup
= (next_backup
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
1921 BTRFS_NUM_BACKUP_ROOTS
;
1924 * just overwrite the last backup if we're at the same generation
1925 * this happens only at umount
1927 root_backup
= info
->super_for_commit
->super_roots
+ last_backup
;
1928 if (btrfs_backup_tree_root_gen(root_backup
) ==
1929 btrfs_header_generation(info
->tree_root
->node
))
1930 next_backup
= last_backup
;
1932 root_backup
= info
->super_for_commit
->super_roots
+ next_backup
;
1935 * make sure all of our padding and empty slots get zero filled
1936 * regardless of which ones we use today
1938 memset(root_backup
, 0, sizeof(*root_backup
));
1940 info
->backup_root_index
= (next_backup
+ 1) % BTRFS_NUM_BACKUP_ROOTS
;
1942 btrfs_set_backup_tree_root(root_backup
, info
->tree_root
->node
->start
);
1943 btrfs_set_backup_tree_root_gen(root_backup
,
1944 btrfs_header_generation(info
->tree_root
->node
));
1946 btrfs_set_backup_tree_root_level(root_backup
,
1947 btrfs_header_level(info
->tree_root
->node
));
1949 btrfs_set_backup_chunk_root(root_backup
, info
->chunk_root
->node
->start
);
1950 btrfs_set_backup_chunk_root_gen(root_backup
,
1951 btrfs_header_generation(info
->chunk_root
->node
));
1952 btrfs_set_backup_chunk_root_level(root_backup
,
1953 btrfs_header_level(info
->chunk_root
->node
));
1955 btrfs_set_backup_extent_root(root_backup
, info
->extent_root
->node
->start
);
1956 btrfs_set_backup_extent_root_gen(root_backup
,
1957 btrfs_header_generation(info
->extent_root
->node
));
1958 btrfs_set_backup_extent_root_level(root_backup
,
1959 btrfs_header_level(info
->extent_root
->node
));
1962 * we might commit during log recovery, which happens before we set
1963 * the fs_root. Make sure it is valid before we fill it in.
1965 if (info
->fs_root
&& info
->fs_root
->node
) {
1966 btrfs_set_backup_fs_root(root_backup
,
1967 info
->fs_root
->node
->start
);
1968 btrfs_set_backup_fs_root_gen(root_backup
,
1969 btrfs_header_generation(info
->fs_root
->node
));
1970 btrfs_set_backup_fs_root_level(root_backup
,
1971 btrfs_header_level(info
->fs_root
->node
));
1974 btrfs_set_backup_dev_root(root_backup
, info
->dev_root
->node
->start
);
1975 btrfs_set_backup_dev_root_gen(root_backup
,
1976 btrfs_header_generation(info
->dev_root
->node
));
1977 btrfs_set_backup_dev_root_level(root_backup
,
1978 btrfs_header_level(info
->dev_root
->node
));
1980 btrfs_set_backup_csum_root(root_backup
, info
->csum_root
->node
->start
);
1981 btrfs_set_backup_csum_root_gen(root_backup
,
1982 btrfs_header_generation(info
->csum_root
->node
));
1983 btrfs_set_backup_csum_root_level(root_backup
,
1984 btrfs_header_level(info
->csum_root
->node
));
1986 btrfs_set_backup_total_bytes(root_backup
,
1987 btrfs_super_total_bytes(info
->super_copy
));
1988 btrfs_set_backup_bytes_used(root_backup
,
1989 btrfs_super_bytes_used(info
->super_copy
));
1990 btrfs_set_backup_num_devices(root_backup
,
1991 btrfs_super_num_devices(info
->super_copy
));
1994 * if we don't copy this out to the super_copy, it won't get remembered
1995 * for the next commit
1997 memcpy(&info
->super_copy
->super_roots
,
1998 &info
->super_for_commit
->super_roots
,
1999 sizeof(*root_backup
) * BTRFS_NUM_BACKUP_ROOTS
);
2003 * this copies info out of the root backup array and back into
2004 * the in-memory super block. It is meant to help iterate through
2005 * the array, so you send it the number of backups you've already
2006 * tried and the last backup index you used.
2008 * this returns -1 when it has tried all the backups
2010 static noinline
int next_root_backup(struct btrfs_fs_info
*info
,
2011 struct btrfs_super_block
*super
,
2012 int *num_backups_tried
, int *backup_index
)
2014 struct btrfs_root_backup
*root_backup
;
2015 int newest
= *backup_index
;
2017 if (*num_backups_tried
== 0) {
2018 u64 gen
= btrfs_super_generation(super
);
2020 newest
= find_newest_super_backup(info
, gen
);
2024 *backup_index
= newest
;
2025 *num_backups_tried
= 1;
2026 } else if (*num_backups_tried
== BTRFS_NUM_BACKUP_ROOTS
) {
2027 /* we've tried all the backups, all done */
2030 /* jump to the next oldest backup */
2031 newest
= (*backup_index
+ BTRFS_NUM_BACKUP_ROOTS
- 1) %
2032 BTRFS_NUM_BACKUP_ROOTS
;
2033 *backup_index
= newest
;
2034 *num_backups_tried
+= 1;
2036 root_backup
= super
->super_roots
+ newest
;
2038 btrfs_set_super_generation(super
,
2039 btrfs_backup_tree_root_gen(root_backup
));
2040 btrfs_set_super_root(super
, btrfs_backup_tree_root(root_backup
));
2041 btrfs_set_super_root_level(super
,
2042 btrfs_backup_tree_root_level(root_backup
));
2043 btrfs_set_super_bytes_used(super
, btrfs_backup_bytes_used(root_backup
));
2046 * fixme: the total bytes and num_devices need to match or we should
2049 btrfs_set_super_total_bytes(super
, btrfs_backup_total_bytes(root_backup
));
2050 btrfs_set_super_num_devices(super
, btrfs_backup_num_devices(root_backup
));
2054 /* helper to cleanup workers */
2055 static void btrfs_stop_all_workers(struct btrfs_fs_info
*fs_info
)
2057 btrfs_destroy_workqueue(fs_info
->fixup_workers
);
2058 btrfs_destroy_workqueue(fs_info
->delalloc_workers
);
2059 btrfs_destroy_workqueue(fs_info
->workers
);
2060 btrfs_destroy_workqueue(fs_info
->endio_workers
);
2061 btrfs_destroy_workqueue(fs_info
->endio_meta_workers
);
2062 btrfs_destroy_workqueue(fs_info
->endio_raid56_workers
);
2063 btrfs_destroy_workqueue(fs_info
->endio_repair_workers
);
2064 btrfs_destroy_workqueue(fs_info
->rmw_workers
);
2065 btrfs_destroy_workqueue(fs_info
->endio_meta_write_workers
);
2066 btrfs_destroy_workqueue(fs_info
->endio_write_workers
);
2067 btrfs_destroy_workqueue(fs_info
->endio_freespace_worker
);
2068 btrfs_destroy_workqueue(fs_info
->submit_workers
);
2069 btrfs_destroy_workqueue(fs_info
->delayed_workers
);
2070 btrfs_destroy_workqueue(fs_info
->caching_workers
);
2071 btrfs_destroy_workqueue(fs_info
->readahead_workers
);
2072 btrfs_destroy_workqueue(fs_info
->flush_workers
);
2073 btrfs_destroy_workqueue(fs_info
->qgroup_rescan_workers
);
2074 btrfs_destroy_workqueue(fs_info
->extent_workers
);
2077 static void free_root_extent_buffers(struct btrfs_root
*root
)
2080 free_extent_buffer(root
->node
);
2081 free_extent_buffer(root
->commit_root
);
2083 root
->commit_root
= NULL
;
2087 /* helper to cleanup tree roots */
2088 static void free_root_pointers(struct btrfs_fs_info
*info
, int chunk_root
)
2090 free_root_extent_buffers(info
->tree_root
);
2092 free_root_extent_buffers(info
->dev_root
);
2093 free_root_extent_buffers(info
->extent_root
);
2094 free_root_extent_buffers(info
->csum_root
);
2095 free_root_extent_buffers(info
->quota_root
);
2096 free_root_extent_buffers(info
->uuid_root
);
2098 free_root_extent_buffers(info
->chunk_root
);
2101 void btrfs_free_fs_roots(struct btrfs_fs_info
*fs_info
)
2104 struct btrfs_root
*gang
[8];
2107 while (!list_empty(&fs_info
->dead_roots
)) {
2108 gang
[0] = list_entry(fs_info
->dead_roots
.next
,
2109 struct btrfs_root
, root_list
);
2110 list_del(&gang
[0]->root_list
);
2112 if (test_bit(BTRFS_ROOT_IN_RADIX
, &gang
[0]->state
)) {
2113 btrfs_drop_and_free_fs_root(fs_info
, gang
[0]);
2115 free_extent_buffer(gang
[0]->node
);
2116 free_extent_buffer(gang
[0]->commit_root
);
2117 btrfs_put_fs_root(gang
[0]);
2122 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
2127 for (i
= 0; i
< ret
; i
++)
2128 btrfs_drop_and_free_fs_root(fs_info
, gang
[i
]);
2131 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
2132 btrfs_free_log_root_tree(NULL
, fs_info
);
2133 btrfs_destroy_pinned_extent(fs_info
->tree_root
,
2134 fs_info
->pinned_extents
);
2138 static void btrfs_init_scrub(struct btrfs_fs_info
*fs_info
)
2140 mutex_init(&fs_info
->scrub_lock
);
2141 atomic_set(&fs_info
->scrubs_running
, 0);
2142 atomic_set(&fs_info
->scrub_pause_req
, 0);
2143 atomic_set(&fs_info
->scrubs_paused
, 0);
2144 atomic_set(&fs_info
->scrub_cancel_req
, 0);
2145 init_waitqueue_head(&fs_info
->scrub_pause_wait
);
2146 fs_info
->scrub_workers_refcnt
= 0;
2149 static void btrfs_init_balance(struct btrfs_fs_info
*fs_info
)
2151 spin_lock_init(&fs_info
->balance_lock
);
2152 mutex_init(&fs_info
->balance_mutex
);
2153 atomic_set(&fs_info
->balance_running
, 0);
2154 atomic_set(&fs_info
->balance_pause_req
, 0);
2155 atomic_set(&fs_info
->balance_cancel_req
, 0);
2156 fs_info
->balance_ctl
= NULL
;
2157 init_waitqueue_head(&fs_info
->balance_wait_q
);
2160 static void btrfs_init_btree_inode(struct btrfs_fs_info
*fs_info
,
2161 struct btrfs_root
*tree_root
)
2163 fs_info
->btree_inode
->i_ino
= BTRFS_BTREE_INODE_OBJECTID
;
2164 set_nlink(fs_info
->btree_inode
, 1);
2166 * we set the i_size on the btree inode to the max possible int.
2167 * the real end of the address space is determined by all of
2168 * the devices in the system
2170 fs_info
->btree_inode
->i_size
= OFFSET_MAX
;
2171 fs_info
->btree_inode
->i_mapping
->a_ops
= &btree_aops
;
2173 RB_CLEAR_NODE(&BTRFS_I(fs_info
->btree_inode
)->rb_node
);
2174 extent_io_tree_init(&BTRFS_I(fs_info
->btree_inode
)->io_tree
,
2175 fs_info
->btree_inode
->i_mapping
);
2176 BTRFS_I(fs_info
->btree_inode
)->io_tree
.track_uptodate
= 0;
2177 extent_map_tree_init(&BTRFS_I(fs_info
->btree_inode
)->extent_tree
);
2179 BTRFS_I(fs_info
->btree_inode
)->io_tree
.ops
= &btree_extent_io_ops
;
2181 BTRFS_I(fs_info
->btree_inode
)->root
= tree_root
;
2182 memset(&BTRFS_I(fs_info
->btree_inode
)->location
, 0,
2183 sizeof(struct btrfs_key
));
2184 set_bit(BTRFS_INODE_DUMMY
,
2185 &BTRFS_I(fs_info
->btree_inode
)->runtime_flags
);
2186 btrfs_insert_inode_hash(fs_info
->btree_inode
);
2189 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info
*fs_info
)
2191 fs_info
->dev_replace
.lock_owner
= 0;
2192 atomic_set(&fs_info
->dev_replace
.nesting_level
, 0);
2193 mutex_init(&fs_info
->dev_replace
.lock_finishing_cancel_unmount
);
2194 mutex_init(&fs_info
->dev_replace
.lock_management_lock
);
2195 mutex_init(&fs_info
->dev_replace
.lock
);
2196 init_waitqueue_head(&fs_info
->replace_wait
);
2199 static void btrfs_init_qgroup(struct btrfs_fs_info
*fs_info
)
2201 spin_lock_init(&fs_info
->qgroup_lock
);
2202 mutex_init(&fs_info
->qgroup_ioctl_lock
);
2203 fs_info
->qgroup_tree
= RB_ROOT
;
2204 fs_info
->qgroup_op_tree
= RB_ROOT
;
2205 INIT_LIST_HEAD(&fs_info
->dirty_qgroups
);
2206 fs_info
->qgroup_seq
= 1;
2207 fs_info
->quota_enabled
= 0;
2208 fs_info
->pending_quota_state
= 0;
2209 fs_info
->qgroup_ulist
= NULL
;
2210 fs_info
->qgroup_rescan_running
= false;
2211 mutex_init(&fs_info
->qgroup_rescan_lock
);
2214 static int btrfs_init_workqueues(struct btrfs_fs_info
*fs_info
,
2215 struct btrfs_fs_devices
*fs_devices
)
2217 int max_active
= fs_info
->thread_pool_size
;
2218 unsigned int flags
= WQ_MEM_RECLAIM
| WQ_FREEZABLE
| WQ_UNBOUND
;
2221 btrfs_alloc_workqueue("worker", flags
| WQ_HIGHPRI
,
2224 fs_info
->delalloc_workers
=
2225 btrfs_alloc_workqueue("delalloc", flags
, max_active
, 2);
2227 fs_info
->flush_workers
=
2228 btrfs_alloc_workqueue("flush_delalloc", flags
, max_active
, 0);
2230 fs_info
->caching_workers
=
2231 btrfs_alloc_workqueue("cache", flags
, max_active
, 0);
2234 * a higher idle thresh on the submit workers makes it much more
2235 * likely that bios will be send down in a sane order to the
2238 fs_info
->submit_workers
=
2239 btrfs_alloc_workqueue("submit", flags
,
2240 min_t(u64
, fs_devices
->num_devices
,
2243 fs_info
->fixup_workers
=
2244 btrfs_alloc_workqueue("fixup", flags
, 1, 0);
2247 * endios are largely parallel and should have a very
2250 fs_info
->endio_workers
=
2251 btrfs_alloc_workqueue("endio", flags
, max_active
, 4);
2252 fs_info
->endio_meta_workers
=
2253 btrfs_alloc_workqueue("endio-meta", flags
, max_active
, 4);
2254 fs_info
->endio_meta_write_workers
=
2255 btrfs_alloc_workqueue("endio-meta-write", flags
, max_active
, 2);
2256 fs_info
->endio_raid56_workers
=
2257 btrfs_alloc_workqueue("endio-raid56", flags
, max_active
, 4);
2258 fs_info
->endio_repair_workers
=
2259 btrfs_alloc_workqueue("endio-repair", flags
, 1, 0);
2260 fs_info
->rmw_workers
=
2261 btrfs_alloc_workqueue("rmw", flags
, max_active
, 2);
2262 fs_info
->endio_write_workers
=
2263 btrfs_alloc_workqueue("endio-write", flags
, max_active
, 2);
2264 fs_info
->endio_freespace_worker
=
2265 btrfs_alloc_workqueue("freespace-write", flags
, max_active
, 0);
2266 fs_info
->delayed_workers
=
2267 btrfs_alloc_workqueue("delayed-meta", flags
, max_active
, 0);
2268 fs_info
->readahead_workers
=
2269 btrfs_alloc_workqueue("readahead", flags
, max_active
, 2);
2270 fs_info
->qgroup_rescan_workers
=
2271 btrfs_alloc_workqueue("qgroup-rescan", flags
, 1, 0);
2272 fs_info
->extent_workers
=
2273 btrfs_alloc_workqueue("extent-refs", flags
,
2274 min_t(u64
, fs_devices
->num_devices
,
2277 if (!(fs_info
->workers
&& fs_info
->delalloc_workers
&&
2278 fs_info
->submit_workers
&& fs_info
->flush_workers
&&
2279 fs_info
->endio_workers
&& fs_info
->endio_meta_workers
&&
2280 fs_info
->endio_meta_write_workers
&&
2281 fs_info
->endio_repair_workers
&&
2282 fs_info
->endio_write_workers
&& fs_info
->endio_raid56_workers
&&
2283 fs_info
->endio_freespace_worker
&& fs_info
->rmw_workers
&&
2284 fs_info
->caching_workers
&& fs_info
->readahead_workers
&&
2285 fs_info
->fixup_workers
&& fs_info
->delayed_workers
&&
2286 fs_info
->extent_workers
&&
2287 fs_info
->qgroup_rescan_workers
)) {
2294 static int btrfs_replay_log(struct btrfs_fs_info
*fs_info
,
2295 struct btrfs_fs_devices
*fs_devices
)
2298 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
2299 struct btrfs_root
*log_tree_root
;
2300 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2301 u64 bytenr
= btrfs_super_log_root(disk_super
);
2303 if (fs_devices
->rw_devices
== 0) {
2304 btrfs_warn(fs_info
, "log replay required on RO media");
2308 log_tree_root
= btrfs_alloc_root(fs_info
);
2312 __setup_root(tree_root
->nodesize
, tree_root
->sectorsize
,
2313 tree_root
->stripesize
, log_tree_root
, fs_info
,
2314 BTRFS_TREE_LOG_OBJECTID
);
2316 log_tree_root
->node
= read_tree_block(tree_root
, bytenr
,
2317 fs_info
->generation
+ 1);
2318 if (IS_ERR(log_tree_root
->node
)) {
2319 btrfs_warn(fs_info
, "failed to read log tree");
2320 ret
= PTR_ERR(log_tree_root
->node
);
2321 kfree(log_tree_root
);
2323 } else if (!extent_buffer_uptodate(log_tree_root
->node
)) {
2324 btrfs_err(fs_info
, "failed to read log tree");
2325 free_extent_buffer(log_tree_root
->node
);
2326 kfree(log_tree_root
);
2329 /* returns with log_tree_root freed on success */
2330 ret
= btrfs_recover_log_trees(log_tree_root
);
2332 btrfs_std_error(tree_root
->fs_info
, ret
,
2333 "Failed to recover log tree");
2334 free_extent_buffer(log_tree_root
->node
);
2335 kfree(log_tree_root
);
2339 if (fs_info
->sb
->s_flags
& MS_RDONLY
) {
2340 ret
= btrfs_commit_super(tree_root
);
2348 static int btrfs_read_roots(struct btrfs_fs_info
*fs_info
,
2349 struct btrfs_root
*tree_root
)
2351 struct btrfs_root
*root
;
2352 struct btrfs_key location
;
2355 location
.objectid
= BTRFS_EXTENT_TREE_OBJECTID
;
2356 location
.type
= BTRFS_ROOT_ITEM_KEY
;
2357 location
.offset
= 0;
2359 root
= btrfs_read_tree_root(tree_root
, &location
);
2361 return PTR_ERR(root
);
2362 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2363 fs_info
->extent_root
= root
;
2365 location
.objectid
= BTRFS_DEV_TREE_OBJECTID
;
2366 root
= btrfs_read_tree_root(tree_root
, &location
);
2368 return PTR_ERR(root
);
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2370 fs_info
->dev_root
= root
;
2371 btrfs_init_devices_late(fs_info
);
2373 location
.objectid
= BTRFS_CSUM_TREE_OBJECTID
;
2374 root
= btrfs_read_tree_root(tree_root
, &location
);
2376 return PTR_ERR(root
);
2377 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2378 fs_info
->csum_root
= root
;
2380 location
.objectid
= BTRFS_QUOTA_TREE_OBJECTID
;
2381 root
= btrfs_read_tree_root(tree_root
, &location
);
2382 if (!IS_ERR(root
)) {
2383 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2384 fs_info
->quota_enabled
= 1;
2385 fs_info
->pending_quota_state
= 1;
2386 fs_info
->quota_root
= root
;
2389 location
.objectid
= BTRFS_UUID_TREE_OBJECTID
;
2390 root
= btrfs_read_tree_root(tree_root
, &location
);
2392 ret
= PTR_ERR(root
);
2396 set_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
);
2397 fs_info
->uuid_root
= root
;
2403 int open_ctree(struct super_block
*sb
,
2404 struct btrfs_fs_devices
*fs_devices
,
2412 struct btrfs_key location
;
2413 struct buffer_head
*bh
;
2414 struct btrfs_super_block
*disk_super
;
2415 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
2416 struct btrfs_root
*tree_root
;
2417 struct btrfs_root
*chunk_root
;
2420 int num_backups_tried
= 0;
2421 int backup_index
= 0;
2424 tree_root
= fs_info
->tree_root
= btrfs_alloc_root(fs_info
);
2425 chunk_root
= fs_info
->chunk_root
= btrfs_alloc_root(fs_info
);
2426 if (!tree_root
|| !chunk_root
) {
2431 ret
= init_srcu_struct(&fs_info
->subvol_srcu
);
2437 ret
= setup_bdi(fs_info
, &fs_info
->bdi
);
2443 ret
= percpu_counter_init(&fs_info
->dirty_metadata_bytes
, 0, GFP_KERNEL
);
2448 fs_info
->dirty_metadata_batch
= PAGE_CACHE_SIZE
*
2449 (1 + ilog2(nr_cpu_ids
));
2451 ret
= percpu_counter_init(&fs_info
->delalloc_bytes
, 0, GFP_KERNEL
);
2454 goto fail_dirty_metadata_bytes
;
2457 ret
= percpu_counter_init(&fs_info
->bio_counter
, 0, GFP_KERNEL
);
2460 goto fail_delalloc_bytes
;
2463 fs_info
->btree_inode
= new_inode(sb
);
2464 if (!fs_info
->btree_inode
) {
2466 goto fail_bio_counter
;
2469 mapping_set_gfp_mask(fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
2471 INIT_RADIX_TREE(&fs_info
->fs_roots_radix
, GFP_ATOMIC
);
2472 INIT_RADIX_TREE(&fs_info
->buffer_radix
, GFP_ATOMIC
);
2473 INIT_LIST_HEAD(&fs_info
->trans_list
);
2474 INIT_LIST_HEAD(&fs_info
->dead_roots
);
2475 INIT_LIST_HEAD(&fs_info
->delayed_iputs
);
2476 INIT_LIST_HEAD(&fs_info
->delalloc_roots
);
2477 INIT_LIST_HEAD(&fs_info
->caching_block_groups
);
2478 spin_lock_init(&fs_info
->delalloc_root_lock
);
2479 spin_lock_init(&fs_info
->trans_lock
);
2480 spin_lock_init(&fs_info
->fs_roots_radix_lock
);
2481 spin_lock_init(&fs_info
->delayed_iput_lock
);
2482 spin_lock_init(&fs_info
->defrag_inodes_lock
);
2483 spin_lock_init(&fs_info
->free_chunk_lock
);
2484 spin_lock_init(&fs_info
->super_lock
);
2485 spin_lock_init(&fs_info
->qgroup_op_lock
);
2486 spin_lock_init(&fs_info
->buffer_lock
);
2487 spin_lock_init(&fs_info
->unused_bgs_lock
);
2488 rwlock_init(&fs_info
->tree_mod_log_lock
);
2489 mutex_init(&fs_info
->unused_bg_unpin_mutex
);
2490 mutex_init(&fs_info
->delete_unused_bgs_mutex
);
2491 mutex_init(&fs_info
->reloc_mutex
);
2492 mutex_init(&fs_info
->delalloc_root_mutex
);
2493 mutex_init(&fs_info
->cleaner_delayed_iput_mutex
);
2494 seqlock_init(&fs_info
->profiles_lock
);
2496 INIT_LIST_HEAD(&fs_info
->dirty_cowonly_roots
);
2497 INIT_LIST_HEAD(&fs_info
->space_info
);
2498 INIT_LIST_HEAD(&fs_info
->tree_mod_seq_list
);
2499 INIT_LIST_HEAD(&fs_info
->unused_bgs
);
2500 btrfs_mapping_init(&fs_info
->mapping_tree
);
2501 btrfs_init_block_rsv(&fs_info
->global_block_rsv
,
2502 BTRFS_BLOCK_RSV_GLOBAL
);
2503 btrfs_init_block_rsv(&fs_info
->delalloc_block_rsv
,
2504 BTRFS_BLOCK_RSV_DELALLOC
);
2505 btrfs_init_block_rsv(&fs_info
->trans_block_rsv
, BTRFS_BLOCK_RSV_TRANS
);
2506 btrfs_init_block_rsv(&fs_info
->chunk_block_rsv
, BTRFS_BLOCK_RSV_CHUNK
);
2507 btrfs_init_block_rsv(&fs_info
->empty_block_rsv
, BTRFS_BLOCK_RSV_EMPTY
);
2508 btrfs_init_block_rsv(&fs_info
->delayed_block_rsv
,
2509 BTRFS_BLOCK_RSV_DELOPS
);
2510 atomic_set(&fs_info
->nr_async_submits
, 0);
2511 atomic_set(&fs_info
->async_delalloc_pages
, 0);
2512 atomic_set(&fs_info
->async_submit_draining
, 0);
2513 atomic_set(&fs_info
->nr_async_bios
, 0);
2514 atomic_set(&fs_info
->defrag_running
, 0);
2515 atomic_set(&fs_info
->qgroup_op_seq
, 0);
2516 atomic64_set(&fs_info
->tree_mod_seq
, 0);
2518 fs_info
->max_inline
= BTRFS_DEFAULT_MAX_INLINE
;
2519 fs_info
->metadata_ratio
= 0;
2520 fs_info
->defrag_inodes
= RB_ROOT
;
2521 fs_info
->free_chunk_space
= 0;
2522 fs_info
->tree_mod_log
= RB_ROOT
;
2523 fs_info
->commit_interval
= BTRFS_DEFAULT_COMMIT_INTERVAL
;
2524 fs_info
->avg_delayed_ref_runtime
= NSEC_PER_SEC
>> 6; /* div by 64 */
2525 /* readahead state */
2526 INIT_RADIX_TREE(&fs_info
->reada_tree
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
2527 spin_lock_init(&fs_info
->reada_lock
);
2529 fs_info
->thread_pool_size
= min_t(unsigned long,
2530 num_online_cpus() + 2, 8);
2532 INIT_LIST_HEAD(&fs_info
->ordered_roots
);
2533 spin_lock_init(&fs_info
->ordered_root_lock
);
2534 fs_info
->delayed_root
= kmalloc(sizeof(struct btrfs_delayed_root
),
2536 if (!fs_info
->delayed_root
) {
2540 btrfs_init_delayed_root(fs_info
->delayed_root
);
2542 btrfs_init_scrub(fs_info
);
2543 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2544 fs_info
->check_integrity_print_mask
= 0;
2546 btrfs_init_balance(fs_info
);
2547 btrfs_init_async_reclaim_work(&fs_info
->async_reclaim_work
);
2549 sb
->s_blocksize
= 4096;
2550 sb
->s_blocksize_bits
= blksize_bits(4096);
2551 sb
->s_bdi
= &fs_info
->bdi
;
2553 btrfs_init_btree_inode(fs_info
, tree_root
);
2555 spin_lock_init(&fs_info
->block_group_cache_lock
);
2556 fs_info
->block_group_cache_tree
= RB_ROOT
;
2557 fs_info
->first_logical_byte
= (u64
)-1;
2559 extent_io_tree_init(&fs_info
->freed_extents
[0],
2560 fs_info
->btree_inode
->i_mapping
);
2561 extent_io_tree_init(&fs_info
->freed_extents
[1],
2562 fs_info
->btree_inode
->i_mapping
);
2563 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
2564 fs_info
->do_barriers
= 1;
2567 mutex_init(&fs_info
->ordered_operations_mutex
);
2568 mutex_init(&fs_info
->tree_log_mutex
);
2569 mutex_init(&fs_info
->chunk_mutex
);
2570 mutex_init(&fs_info
->transaction_kthread_mutex
);
2571 mutex_init(&fs_info
->cleaner_mutex
);
2572 mutex_init(&fs_info
->volume_mutex
);
2573 mutex_init(&fs_info
->ro_block_group_mutex
);
2574 init_rwsem(&fs_info
->commit_root_sem
);
2575 init_rwsem(&fs_info
->cleanup_work_sem
);
2576 init_rwsem(&fs_info
->subvol_sem
);
2577 sema_init(&fs_info
->uuid_tree_rescan_sem
, 1);
2579 btrfs_init_dev_replace_locks(fs_info
);
2580 btrfs_init_qgroup(fs_info
);
2582 btrfs_init_free_cluster(&fs_info
->meta_alloc_cluster
);
2583 btrfs_init_free_cluster(&fs_info
->data_alloc_cluster
);
2585 init_waitqueue_head(&fs_info
->transaction_throttle
);
2586 init_waitqueue_head(&fs_info
->transaction_wait
);
2587 init_waitqueue_head(&fs_info
->transaction_blocked_wait
);
2588 init_waitqueue_head(&fs_info
->async_submit_wait
);
2590 INIT_LIST_HEAD(&fs_info
->pinned_chunks
);
2592 ret
= btrfs_alloc_stripe_hash_table(fs_info
);
2598 __setup_root(4096, 4096, 4096, tree_root
,
2599 fs_info
, BTRFS_ROOT_TREE_OBJECTID
);
2601 invalidate_bdev(fs_devices
->latest_bdev
);
2604 * Read super block and check the signature bytes only
2606 bh
= btrfs_read_dev_super(fs_devices
->latest_bdev
);
2613 * We want to check superblock checksum, the type is stored inside.
2614 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2616 if (btrfs_check_super_csum(bh
->b_data
)) {
2617 printk(KERN_ERR
"BTRFS: superblock checksum mismatch\n");
2624 * super_copy is zeroed at allocation time and we never touch the
2625 * following bytes up to INFO_SIZE, the checksum is calculated from
2626 * the whole block of INFO_SIZE
2628 memcpy(fs_info
->super_copy
, bh
->b_data
, sizeof(*fs_info
->super_copy
));
2629 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2630 sizeof(*fs_info
->super_for_commit
));
2633 memcpy(fs_info
->fsid
, fs_info
->super_copy
->fsid
, BTRFS_FSID_SIZE
);
2635 ret
= btrfs_check_super_valid(fs_info
, sb
->s_flags
& MS_RDONLY
);
2637 printk(KERN_ERR
"BTRFS: superblock contains fatal errors\n");
2642 disk_super
= fs_info
->super_copy
;
2643 if (!btrfs_super_root(disk_super
))
2646 /* check FS state, whether FS is broken. */
2647 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_ERROR
)
2648 set_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
);
2651 * run through our array of backup supers and setup
2652 * our ring pointer to the oldest one
2654 generation
= btrfs_super_generation(disk_super
);
2655 find_oldest_super_backup(fs_info
, generation
);
2658 * In the long term, we'll store the compression type in the super
2659 * block, and it'll be used for per file compression control.
2661 fs_info
->compress_type
= BTRFS_COMPRESS_ZLIB
;
2663 ret
= btrfs_parse_options(tree_root
, options
);
2669 features
= btrfs_super_incompat_flags(disk_super
) &
2670 ~BTRFS_FEATURE_INCOMPAT_SUPP
;
2672 printk(KERN_ERR
"BTRFS: couldn't mount because of "
2673 "unsupported optional features (%Lx).\n",
2680 * Leafsize and nodesize were always equal, this is only a sanity check.
2682 if (le32_to_cpu(disk_super
->__unused_leafsize
) !=
2683 btrfs_super_nodesize(disk_super
)) {
2684 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2685 "blocksizes don't match. node %d leaf %d\n",
2686 btrfs_super_nodesize(disk_super
),
2687 le32_to_cpu(disk_super
->__unused_leafsize
));
2691 if (btrfs_super_nodesize(disk_super
) > BTRFS_MAX_METADATA_BLOCKSIZE
) {
2692 printk(KERN_ERR
"BTRFS: couldn't mount because metadata "
2693 "blocksize (%d) was too large\n",
2694 btrfs_super_nodesize(disk_super
));
2699 features
= btrfs_super_incompat_flags(disk_super
);
2700 features
|= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF
;
2701 if (tree_root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
2702 features
|= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO
;
2704 if (features
& BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA
)
2705 printk(KERN_INFO
"BTRFS: has skinny extents\n");
2708 * flag our filesystem as having big metadata blocks if
2709 * they are bigger than the page size
2711 if (btrfs_super_nodesize(disk_super
) > PAGE_CACHE_SIZE
) {
2712 if (!(features
& BTRFS_FEATURE_INCOMPAT_BIG_METADATA
))
2713 printk(KERN_INFO
"BTRFS: flagging fs with big metadata feature\n");
2714 features
|= BTRFS_FEATURE_INCOMPAT_BIG_METADATA
;
2717 nodesize
= btrfs_super_nodesize(disk_super
);
2718 sectorsize
= btrfs_super_sectorsize(disk_super
);
2719 stripesize
= btrfs_super_stripesize(disk_super
);
2720 fs_info
->dirty_metadata_batch
= nodesize
* (1 + ilog2(nr_cpu_ids
));
2721 fs_info
->delalloc_batch
= sectorsize
* 512 * (1 + ilog2(nr_cpu_ids
));
2724 * mixed block groups end up with duplicate but slightly offset
2725 * extent buffers for the same range. It leads to corruptions
2727 if ((features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
) &&
2728 (sectorsize
!= nodesize
)) {
2729 printk(KERN_ERR
"BTRFS: unequal leaf/node/sector sizes "
2730 "are not allowed for mixed block groups on %s\n",
2736 * Needn't use the lock because there is no other task which will
2739 btrfs_set_super_incompat_flags(disk_super
, features
);
2741 features
= btrfs_super_compat_ro_flags(disk_super
) &
2742 ~BTRFS_FEATURE_COMPAT_RO_SUPP
;
2743 if (!(sb
->s_flags
& MS_RDONLY
) && features
) {
2744 printk(KERN_ERR
"BTRFS: couldn't mount RDWR because of "
2745 "unsupported option features (%Lx).\n",
2751 max_active
= fs_info
->thread_pool_size
;
2753 ret
= btrfs_init_workqueues(fs_info
, fs_devices
);
2756 goto fail_sb_buffer
;
2759 fs_info
->bdi
.ra_pages
*= btrfs_super_num_devices(disk_super
);
2760 fs_info
->bdi
.ra_pages
= max(fs_info
->bdi
.ra_pages
,
2761 4 * 1024 * 1024 / PAGE_CACHE_SIZE
);
2763 tree_root
->nodesize
= nodesize
;
2764 tree_root
->sectorsize
= sectorsize
;
2765 tree_root
->stripesize
= stripesize
;
2767 sb
->s_blocksize
= sectorsize
;
2768 sb
->s_blocksize_bits
= blksize_bits(sectorsize
);
2770 if (btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
2771 printk(KERN_ERR
"BTRFS: valid FS not found on %s\n", sb
->s_id
);
2772 goto fail_sb_buffer
;
2775 if (sectorsize
!= PAGE_SIZE
) {
2776 printk(KERN_ERR
"BTRFS: incompatible sector size (%lu) "
2777 "found on %s\n", (unsigned long)sectorsize
, sb
->s_id
);
2778 goto fail_sb_buffer
;
2781 mutex_lock(&fs_info
->chunk_mutex
);
2782 ret
= btrfs_read_sys_array(tree_root
);
2783 mutex_unlock(&fs_info
->chunk_mutex
);
2785 printk(KERN_ERR
"BTRFS: failed to read the system "
2786 "array on %s\n", sb
->s_id
);
2787 goto fail_sb_buffer
;
2790 generation
= btrfs_super_chunk_root_generation(disk_super
);
2792 __setup_root(nodesize
, sectorsize
, stripesize
, chunk_root
,
2793 fs_info
, BTRFS_CHUNK_TREE_OBJECTID
);
2795 chunk_root
->node
= read_tree_block(chunk_root
,
2796 btrfs_super_chunk_root(disk_super
),
2798 if (IS_ERR(chunk_root
->node
) ||
2799 !extent_buffer_uptodate(chunk_root
->node
)) {
2800 printk(KERN_ERR
"BTRFS: failed to read chunk root on %s\n",
2802 if (!IS_ERR(chunk_root
->node
))
2803 free_extent_buffer(chunk_root
->node
);
2804 chunk_root
->node
= NULL
;
2805 goto fail_tree_roots
;
2807 btrfs_set_root_node(&chunk_root
->root_item
, chunk_root
->node
);
2808 chunk_root
->commit_root
= btrfs_root_node(chunk_root
);
2810 read_extent_buffer(chunk_root
->node
, fs_info
->chunk_tree_uuid
,
2811 btrfs_header_chunk_tree_uuid(chunk_root
->node
), BTRFS_UUID_SIZE
);
2813 ret
= btrfs_read_chunk_tree(chunk_root
);
2815 printk(KERN_ERR
"BTRFS: failed to read chunk tree on %s\n",
2817 goto fail_tree_roots
;
2821 * keep the device that is marked to be the target device for the
2822 * dev_replace procedure
2824 btrfs_close_extra_devices(fs_devices
, 0);
2826 if (!fs_devices
->latest_bdev
) {
2827 printk(KERN_ERR
"BTRFS: failed to read devices on %s\n",
2829 goto fail_tree_roots
;
2833 generation
= btrfs_super_generation(disk_super
);
2835 tree_root
->node
= read_tree_block(tree_root
,
2836 btrfs_super_root(disk_super
),
2838 if (IS_ERR(tree_root
->node
) ||
2839 !extent_buffer_uptodate(tree_root
->node
)) {
2840 printk(KERN_WARNING
"BTRFS: failed to read tree root on %s\n",
2842 if (!IS_ERR(tree_root
->node
))
2843 free_extent_buffer(tree_root
->node
);
2844 tree_root
->node
= NULL
;
2845 goto recovery_tree_root
;
2848 btrfs_set_root_node(&tree_root
->root_item
, tree_root
->node
);
2849 tree_root
->commit_root
= btrfs_root_node(tree_root
);
2850 btrfs_set_root_refs(&tree_root
->root_item
, 1);
2852 mutex_lock(&tree_root
->objectid_mutex
);
2853 ret
= btrfs_find_highest_objectid(tree_root
,
2854 &tree_root
->highest_objectid
);
2856 mutex_unlock(&tree_root
->objectid_mutex
);
2857 goto recovery_tree_root
;
2860 ASSERT(tree_root
->highest_objectid
<= BTRFS_LAST_FREE_OBJECTID
);
2862 mutex_unlock(&tree_root
->objectid_mutex
);
2864 ret
= btrfs_read_roots(fs_info
, tree_root
);
2866 goto recovery_tree_root
;
2868 fs_info
->generation
= generation
;
2869 fs_info
->last_trans_committed
= generation
;
2871 ret
= btrfs_recover_balance(fs_info
);
2873 printk(KERN_ERR
"BTRFS: failed to recover balance\n");
2874 goto fail_block_groups
;
2877 ret
= btrfs_init_dev_stats(fs_info
);
2879 printk(KERN_ERR
"BTRFS: failed to init dev_stats: %d\n",
2881 goto fail_block_groups
;
2884 ret
= btrfs_init_dev_replace(fs_info
);
2886 pr_err("BTRFS: failed to init dev_replace: %d\n", ret
);
2887 goto fail_block_groups
;
2890 btrfs_close_extra_devices(fs_devices
, 1);
2892 ret
= btrfs_sysfs_add_fsid(fs_devices
, NULL
);
2894 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret
);
2895 goto fail_block_groups
;
2898 ret
= btrfs_sysfs_add_device(fs_devices
);
2900 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret
);
2901 goto fail_fsdev_sysfs
;
2904 ret
= btrfs_sysfs_add_mounted(fs_info
);
2906 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret
);
2907 goto fail_fsdev_sysfs
;
2910 ret
= btrfs_init_space_info(fs_info
);
2912 printk(KERN_ERR
"BTRFS: Failed to initial space info: %d\n", ret
);
2916 ret
= btrfs_read_block_groups(fs_info
->extent_root
);
2918 printk(KERN_ERR
"BTRFS: Failed to read block groups: %d\n", ret
);
2921 fs_info
->num_tolerated_disk_barrier_failures
=
2922 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info
);
2923 if (fs_info
->fs_devices
->missing_devices
>
2924 fs_info
->num_tolerated_disk_barrier_failures
&&
2925 !(sb
->s_flags
& MS_RDONLY
)) {
2926 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2927 fs_info
->fs_devices
->missing_devices
,
2928 fs_info
->num_tolerated_disk_barrier_failures
);
2932 fs_info
->cleaner_kthread
= kthread_run(cleaner_kthread
, tree_root
,
2934 if (IS_ERR(fs_info
->cleaner_kthread
))
2937 fs_info
->transaction_kthread
= kthread_run(transaction_kthread
,
2939 "btrfs-transaction");
2940 if (IS_ERR(fs_info
->transaction_kthread
))
2943 if (!btrfs_test_opt(tree_root
, SSD
) &&
2944 !btrfs_test_opt(tree_root
, NOSSD
) &&
2945 !fs_info
->fs_devices
->rotating
) {
2946 printk(KERN_INFO
"BTRFS: detected SSD devices, enabling SSD "
2948 btrfs_set_opt(fs_info
->mount_opt
, SSD
);
2952 * Mount does not set all options immediatelly, we can do it now and do
2953 * not have to wait for transaction commit
2955 btrfs_apply_pending_changes(fs_info
);
2957 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2958 if (btrfs_test_opt(tree_root
, CHECK_INTEGRITY
)) {
2959 ret
= btrfsic_mount(tree_root
, fs_devices
,
2960 btrfs_test_opt(tree_root
,
2961 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA
) ?
2963 fs_info
->check_integrity_print_mask
);
2965 printk(KERN_WARNING
"BTRFS: failed to initialize"
2966 " integrity check module %s\n", sb
->s_id
);
2969 ret
= btrfs_read_qgroup_config(fs_info
);
2971 goto fail_trans_kthread
;
2973 /* do not make disk changes in broken FS */
2974 if (btrfs_super_log_root(disk_super
) != 0) {
2975 btrfs_info(fs_info
, "start tree-log replay");
2976 ret
= btrfs_replay_log(fs_info
, fs_devices
);
2983 ret
= btrfs_find_orphan_roots(tree_root
);
2987 if (!(sb
->s_flags
& MS_RDONLY
)) {
2988 ret
= btrfs_cleanup_fs_roots(fs_info
);
2992 mutex_lock(&fs_info
->cleaner_mutex
);
2993 ret
= btrfs_recover_relocation(tree_root
);
2994 mutex_unlock(&fs_info
->cleaner_mutex
);
2997 "BTRFS: failed to recover relocation\n");
3003 location
.objectid
= BTRFS_FS_TREE_OBJECTID
;
3004 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3005 location
.offset
= 0;
3007 fs_info
->fs_root
= btrfs_read_fs_root_no_name(fs_info
, &location
);
3008 if (IS_ERR(fs_info
->fs_root
)) {
3009 err
= PTR_ERR(fs_info
->fs_root
);
3013 if (sb
->s_flags
& MS_RDONLY
)
3016 down_read(&fs_info
->cleanup_work_sem
);
3017 if ((ret
= btrfs_orphan_cleanup(fs_info
->fs_root
)) ||
3018 (ret
= btrfs_orphan_cleanup(fs_info
->tree_root
))) {
3019 up_read(&fs_info
->cleanup_work_sem
);
3020 close_ctree(tree_root
);
3023 up_read(&fs_info
->cleanup_work_sem
);
3025 ret
= btrfs_resume_balance_async(fs_info
);
3027 printk(KERN_WARNING
"BTRFS: failed to resume balance\n");
3028 close_ctree(tree_root
);
3032 ret
= btrfs_resume_dev_replace_async(fs_info
);
3034 pr_warn("BTRFS: failed to resume dev_replace\n");
3035 close_ctree(tree_root
);
3039 btrfs_qgroup_rescan_resume(fs_info
);
3041 if (!fs_info
->uuid_root
) {
3042 pr_info("BTRFS: creating UUID tree\n");
3043 ret
= btrfs_create_uuid_tree(fs_info
);
3045 pr_warn("BTRFS: failed to create the UUID tree %d\n",
3047 close_ctree(tree_root
);
3050 } else if (btrfs_test_opt(tree_root
, RESCAN_UUID_TREE
) ||
3051 fs_info
->generation
!=
3052 btrfs_super_uuid_tree_generation(disk_super
)) {
3053 pr_info("BTRFS: checking UUID tree\n");
3054 ret
= btrfs_check_uuid_tree(fs_info
);
3056 pr_warn("BTRFS: failed to check the UUID tree %d\n",
3058 close_ctree(tree_root
);
3062 fs_info
->update_uuid_tree_gen
= 1;
3070 btrfs_free_qgroup_config(fs_info
);
3072 kthread_stop(fs_info
->transaction_kthread
);
3073 btrfs_cleanup_transaction(fs_info
->tree_root
);
3074 btrfs_free_fs_roots(fs_info
);
3076 kthread_stop(fs_info
->cleaner_kthread
);
3079 * make sure we're done with the btree inode before we stop our
3082 filemap_write_and_wait(fs_info
->btree_inode
->i_mapping
);
3085 btrfs_sysfs_remove_mounted(fs_info
);
3088 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3091 btrfs_put_block_group_cache(fs_info
);
3092 btrfs_free_block_groups(fs_info
);
3095 free_root_pointers(fs_info
, 1);
3096 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3099 btrfs_stop_all_workers(fs_info
);
3102 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3104 iput(fs_info
->btree_inode
);
3106 percpu_counter_destroy(&fs_info
->bio_counter
);
3107 fail_delalloc_bytes
:
3108 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3109 fail_dirty_metadata_bytes
:
3110 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3112 bdi_destroy(&fs_info
->bdi
);
3114 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3116 btrfs_free_stripe_hash_table(fs_info
);
3117 btrfs_close_devices(fs_info
->fs_devices
);
3121 if (!btrfs_test_opt(tree_root
, RECOVERY
))
3122 goto fail_tree_roots
;
3124 free_root_pointers(fs_info
, 0);
3126 /* don't use the log in recovery mode, it won't be valid */
3127 btrfs_set_super_log_root(disk_super
, 0);
3129 /* we can't trust the free space cache either */
3130 btrfs_set_opt(fs_info
->mount_opt
, CLEAR_CACHE
);
3132 ret
= next_root_backup(fs_info
, fs_info
->super_copy
,
3133 &num_backups_tried
, &backup_index
);
3135 goto fail_block_groups
;
3136 goto retry_root_backup
;
3139 static void btrfs_end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
3142 set_buffer_uptodate(bh
);
3144 struct btrfs_device
*device
= (struct btrfs_device
*)
3147 btrfs_warn_rl_in_rcu(device
->dev_root
->fs_info
,
3148 "lost page write due to IO error on %s",
3149 rcu_str_deref(device
->name
));
3150 /* note, we dont' set_buffer_write_io_error because we have
3151 * our own ways of dealing with the IO errors
3153 clear_buffer_uptodate(bh
);
3154 btrfs_dev_stat_inc_and_print(device
, BTRFS_DEV_STAT_WRITE_ERRS
);
3160 int btrfs_read_dev_one_super(struct block_device
*bdev
, int copy_num
,
3161 struct buffer_head
**bh_ret
)
3163 struct buffer_head
*bh
;
3164 struct btrfs_super_block
*super
;
3167 bytenr
= btrfs_sb_offset(copy_num
);
3168 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>= i_size_read(bdev
->bd_inode
))
3171 bh
= __bread(bdev
, bytenr
/ 4096, BTRFS_SUPER_INFO_SIZE
);
3173 * If we fail to read from the underlying devices, as of now
3174 * the best option we have is to mark it EIO.
3179 super
= (struct btrfs_super_block
*)bh
->b_data
;
3180 if (btrfs_super_bytenr(super
) != bytenr
||
3181 btrfs_super_magic(super
) != BTRFS_MAGIC
) {
3191 struct buffer_head
*btrfs_read_dev_super(struct block_device
*bdev
)
3193 struct buffer_head
*bh
;
3194 struct buffer_head
*latest
= NULL
;
3195 struct btrfs_super_block
*super
;
3200 /* we would like to check all the supers, but that would make
3201 * a btrfs mount succeed after a mkfs from a different FS.
3202 * So, we need to add a special mount option to scan for
3203 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3205 for (i
= 0; i
< 1; i
++) {
3206 ret
= btrfs_read_dev_one_super(bdev
, i
, &bh
);
3210 super
= (struct btrfs_super_block
*)bh
->b_data
;
3212 if (!latest
|| btrfs_super_generation(super
) > transid
) {
3215 transid
= btrfs_super_generation(super
);
3222 return ERR_PTR(ret
);
3228 * this should be called twice, once with wait == 0 and
3229 * once with wait == 1. When wait == 0 is done, all the buffer heads
3230 * we write are pinned.
3232 * They are released when wait == 1 is done.
3233 * max_mirrors must be the same for both runs, and it indicates how
3234 * many supers on this one device should be written.
3236 * max_mirrors == 0 means to write them all.
3238 static int write_dev_supers(struct btrfs_device
*device
,
3239 struct btrfs_super_block
*sb
,
3240 int do_barriers
, int wait
, int max_mirrors
)
3242 struct buffer_head
*bh
;
3249 if (max_mirrors
== 0)
3250 max_mirrors
= BTRFS_SUPER_MIRROR_MAX
;
3252 for (i
= 0; i
< max_mirrors
; i
++) {
3253 bytenr
= btrfs_sb_offset(i
);
3254 if (bytenr
+ BTRFS_SUPER_INFO_SIZE
>=
3255 device
->commit_total_bytes
)
3259 bh
= __find_get_block(device
->bdev
, bytenr
/ 4096,
3260 BTRFS_SUPER_INFO_SIZE
);
3266 if (!buffer_uptodate(bh
))
3269 /* drop our reference */
3272 /* drop the reference from the wait == 0 run */
3276 btrfs_set_super_bytenr(sb
, bytenr
);
3279 crc
= btrfs_csum_data((char *)sb
+
3280 BTRFS_CSUM_SIZE
, crc
,
3281 BTRFS_SUPER_INFO_SIZE
-
3283 btrfs_csum_final(crc
, sb
->csum
);
3286 * one reference for us, and we leave it for the
3289 bh
= __getblk(device
->bdev
, bytenr
/ 4096,
3290 BTRFS_SUPER_INFO_SIZE
);
3292 btrfs_err(device
->dev_root
->fs_info
,
3293 "couldn't get super buffer head for bytenr %llu",
3299 memcpy(bh
->b_data
, sb
, BTRFS_SUPER_INFO_SIZE
);
3301 /* one reference for submit_bh */
3304 set_buffer_uptodate(bh
);
3306 bh
->b_end_io
= btrfs_end_buffer_write_sync
;
3307 bh
->b_private
= device
;
3311 * we fua the first super. The others we allow
3315 ret
= btrfsic_submit_bh(WRITE_FUA
, bh
);
3317 ret
= btrfsic_submit_bh(WRITE_SYNC
, bh
);
3321 return errors
< i
? 0 : -1;
3325 * endio for the write_dev_flush, this will wake anyone waiting
3326 * for the barrier when it is done
3328 static void btrfs_end_empty_barrier(struct bio
*bio
)
3330 if (bio
->bi_private
)
3331 complete(bio
->bi_private
);
3336 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3337 * sent down. With wait == 1, it waits for the previous flush.
3339 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3342 static int write_dev_flush(struct btrfs_device
*device
, int wait
)
3347 if (device
->nobarriers
)
3351 bio
= device
->flush_bio
;
3355 wait_for_completion(&device
->flush_wait
);
3357 if (bio
->bi_error
) {
3358 ret
= bio
->bi_error
;
3359 btrfs_dev_stat_inc_and_print(device
,
3360 BTRFS_DEV_STAT_FLUSH_ERRS
);
3363 /* drop the reference from the wait == 0 run */
3365 device
->flush_bio
= NULL
;
3371 * one reference for us, and we leave it for the
3374 device
->flush_bio
= NULL
;
3375 bio
= btrfs_io_bio_alloc(GFP_NOFS
, 0);
3379 bio
->bi_end_io
= btrfs_end_empty_barrier
;
3380 bio
->bi_bdev
= device
->bdev
;
3381 init_completion(&device
->flush_wait
);
3382 bio
->bi_private
= &device
->flush_wait
;
3383 device
->flush_bio
= bio
;
3386 btrfsic_submit_bio(WRITE_FLUSH
, bio
);
3392 * send an empty flush down to each device in parallel,
3393 * then wait for them
3395 static int barrier_all_devices(struct btrfs_fs_info
*info
)
3397 struct list_head
*head
;
3398 struct btrfs_device
*dev
;
3399 int errors_send
= 0;
3400 int errors_wait
= 0;
3403 /* send down all the barriers */
3404 head
= &info
->fs_devices
->devices
;
3405 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3412 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3415 ret
= write_dev_flush(dev
, 0);
3420 /* wait for all the barriers */
3421 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3428 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3431 ret
= write_dev_flush(dev
, 1);
3435 if (errors_send
> info
->num_tolerated_disk_barrier_failures
||
3436 errors_wait
> info
->num_tolerated_disk_barrier_failures
)
3441 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags
)
3444 int min_tolerated
= INT_MAX
;
3446 if ((flags
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 ||
3447 (flags
& BTRFS_AVAIL_ALLOC_BIT_SINGLE
))
3448 min_tolerated
= min(min_tolerated
,
3449 btrfs_raid_array
[BTRFS_RAID_SINGLE
].
3450 tolerated_failures
);
3452 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3453 if (raid_type
== BTRFS_RAID_SINGLE
)
3455 if (!(flags
& btrfs_raid_group
[raid_type
]))
3457 min_tolerated
= min(min_tolerated
,
3458 btrfs_raid_array
[raid_type
].
3459 tolerated_failures
);
3462 if (min_tolerated
== INT_MAX
) {
3463 pr_warn("BTRFS: unknown raid flag: %llu\n", flags
);
3467 return min_tolerated
;
3470 int btrfs_calc_num_tolerated_disk_barrier_failures(
3471 struct btrfs_fs_info
*fs_info
)
3473 struct btrfs_ioctl_space_info space
;
3474 struct btrfs_space_info
*sinfo
;
3475 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
3476 BTRFS_BLOCK_GROUP_SYSTEM
,
3477 BTRFS_BLOCK_GROUP_METADATA
,
3478 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
3481 int num_tolerated_disk_barrier_failures
=
3482 (int)fs_info
->fs_devices
->num_devices
;
3484 for (i
= 0; i
< ARRAY_SIZE(types
); i
++) {
3485 struct btrfs_space_info
*tmp
;
3489 list_for_each_entry_rcu(tmp
, &fs_info
->space_info
, list
) {
3490 if (tmp
->flags
== types
[i
]) {
3500 down_read(&sinfo
->groups_sem
);
3501 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
3504 if (list_empty(&sinfo
->block_groups
[c
]))
3507 btrfs_get_block_group_info(&sinfo
->block_groups
[c
],
3509 if (space
.total_bytes
== 0 || space
.used_bytes
== 0)
3511 flags
= space
.flags
;
3513 num_tolerated_disk_barrier_failures
= min(
3514 num_tolerated_disk_barrier_failures
,
3515 btrfs_get_num_tolerated_disk_barrier_failures(
3518 up_read(&sinfo
->groups_sem
);
3521 return num_tolerated_disk_barrier_failures
;
3524 static int write_all_supers(struct btrfs_root
*root
, int max_mirrors
)
3526 struct list_head
*head
;
3527 struct btrfs_device
*dev
;
3528 struct btrfs_super_block
*sb
;
3529 struct btrfs_dev_item
*dev_item
;
3533 int total_errors
= 0;
3536 do_barriers
= !btrfs_test_opt(root
, NOBARRIER
);
3537 backup_super_roots(root
->fs_info
);
3539 sb
= root
->fs_info
->super_for_commit
;
3540 dev_item
= &sb
->dev_item
;
3542 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3543 head
= &root
->fs_info
->fs_devices
->devices
;
3544 max_errors
= btrfs_super_num_devices(root
->fs_info
->super_copy
) - 1;
3547 ret
= barrier_all_devices(root
->fs_info
);
3550 &root
->fs_info
->fs_devices
->device_list_mutex
);
3551 btrfs_std_error(root
->fs_info
, ret
,
3552 "errors while submitting device barriers.");
3557 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3562 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3565 btrfs_set_stack_device_generation(dev_item
, 0);
3566 btrfs_set_stack_device_type(dev_item
, dev
->type
);
3567 btrfs_set_stack_device_id(dev_item
, dev
->devid
);
3568 btrfs_set_stack_device_total_bytes(dev_item
,
3569 dev
->commit_total_bytes
);
3570 btrfs_set_stack_device_bytes_used(dev_item
,
3571 dev
->commit_bytes_used
);
3572 btrfs_set_stack_device_io_align(dev_item
, dev
->io_align
);
3573 btrfs_set_stack_device_io_width(dev_item
, dev
->io_width
);
3574 btrfs_set_stack_device_sector_size(dev_item
, dev
->sector_size
);
3575 memcpy(dev_item
->uuid
, dev
->uuid
, BTRFS_UUID_SIZE
);
3576 memcpy(dev_item
->fsid
, dev
->fs_devices
->fsid
, BTRFS_UUID_SIZE
);
3578 flags
= btrfs_super_flags(sb
);
3579 btrfs_set_super_flags(sb
, flags
| BTRFS_HEADER_FLAG_WRITTEN
);
3581 ret
= write_dev_supers(dev
, sb
, do_barriers
, 0, max_mirrors
);
3585 if (total_errors
> max_errors
) {
3586 btrfs_err(root
->fs_info
, "%d errors while writing supers",
3588 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3590 /* FUA is masked off if unsupported and can't be the reason */
3591 btrfs_std_error(root
->fs_info
, -EIO
,
3592 "%d errors while writing supers", total_errors
);
3597 list_for_each_entry_rcu(dev
, head
, dev_list
) {
3600 if (!dev
->in_fs_metadata
|| !dev
->writeable
)
3603 ret
= write_dev_supers(dev
, sb
, do_barriers
, 1, max_mirrors
);
3607 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
3608 if (total_errors
> max_errors
) {
3609 btrfs_std_error(root
->fs_info
, -EIO
,
3610 "%d errors while writing supers", total_errors
);
3616 int write_ctree_super(struct btrfs_trans_handle
*trans
,
3617 struct btrfs_root
*root
, int max_mirrors
)
3619 return write_all_supers(root
, max_mirrors
);
3622 /* Drop a fs root from the radix tree and free it. */
3623 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info
*fs_info
,
3624 struct btrfs_root
*root
)
3626 spin_lock(&fs_info
->fs_roots_radix_lock
);
3627 radix_tree_delete(&fs_info
->fs_roots_radix
,
3628 (unsigned long)root
->root_key
.objectid
);
3629 spin_unlock(&fs_info
->fs_roots_radix_lock
);
3631 if (btrfs_root_refs(&root
->root_item
) == 0)
3632 synchronize_srcu(&fs_info
->subvol_srcu
);
3634 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3635 btrfs_free_log(NULL
, root
);
3637 if (root
->free_ino_pinned
)
3638 __btrfs_remove_free_space_cache(root
->free_ino_pinned
);
3639 if (root
->free_ino_ctl
)
3640 __btrfs_remove_free_space_cache(root
->free_ino_ctl
);
3644 static void free_fs_root(struct btrfs_root
*root
)
3646 iput(root
->ino_cache_inode
);
3647 WARN_ON(!RB_EMPTY_ROOT(&root
->inode_tree
));
3648 btrfs_free_block_rsv(root
, root
->orphan_block_rsv
);
3649 root
->orphan_block_rsv
= NULL
;
3651 free_anon_bdev(root
->anon_dev
);
3652 if (root
->subv_writers
)
3653 btrfs_free_subvolume_writers(root
->subv_writers
);
3654 free_extent_buffer(root
->node
);
3655 free_extent_buffer(root
->commit_root
);
3656 kfree(root
->free_ino_ctl
);
3657 kfree(root
->free_ino_pinned
);
3659 btrfs_put_fs_root(root
);
3662 void btrfs_free_fs_root(struct btrfs_root
*root
)
3667 int btrfs_cleanup_fs_roots(struct btrfs_fs_info
*fs_info
)
3669 u64 root_objectid
= 0;
3670 struct btrfs_root
*gang
[8];
3673 unsigned int ret
= 0;
3677 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
3678 ret
= radix_tree_gang_lookup(&fs_info
->fs_roots_radix
,
3679 (void **)gang
, root_objectid
,
3682 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3685 root_objectid
= gang
[ret
- 1]->root_key
.objectid
+ 1;
3687 for (i
= 0; i
< ret
; i
++) {
3688 /* Avoid to grab roots in dead_roots */
3689 if (btrfs_root_refs(&gang
[i
]->root_item
) == 0) {
3693 /* grab all the search result for later use */
3694 gang
[i
] = btrfs_grab_fs_root(gang
[i
]);
3696 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
3698 for (i
= 0; i
< ret
; i
++) {
3701 root_objectid
= gang
[i
]->root_key
.objectid
;
3702 err
= btrfs_orphan_cleanup(gang
[i
]);
3705 btrfs_put_fs_root(gang
[i
]);
3710 /* release the uncleaned roots due to error */
3711 for (; i
< ret
; i
++) {
3713 btrfs_put_fs_root(gang
[i
]);
3718 int btrfs_commit_super(struct btrfs_root
*root
)
3720 struct btrfs_trans_handle
*trans
;
3722 mutex_lock(&root
->fs_info
->cleaner_mutex
);
3723 btrfs_run_delayed_iputs(root
);
3724 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
3725 wake_up_process(root
->fs_info
->cleaner_kthread
);
3727 /* wait until ongoing cleanup work done */
3728 down_write(&root
->fs_info
->cleanup_work_sem
);
3729 up_write(&root
->fs_info
->cleanup_work_sem
);
3731 trans
= btrfs_join_transaction(root
);
3733 return PTR_ERR(trans
);
3734 return btrfs_commit_transaction(trans
, root
);
3737 void close_ctree(struct btrfs_root
*root
)
3739 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3742 fs_info
->closing
= 1;
3745 /* wait for the qgroup rescan worker to stop */
3746 btrfs_qgroup_wait_for_completion(fs_info
, false);
3748 /* wait for the uuid_scan task to finish */
3749 down(&fs_info
->uuid_tree_rescan_sem
);
3750 /* avoid complains from lockdep et al., set sem back to initial state */
3751 up(&fs_info
->uuid_tree_rescan_sem
);
3753 /* pause restriper - we want to resume on mount */
3754 btrfs_pause_balance(fs_info
);
3756 btrfs_dev_replace_suspend_for_unmount(fs_info
);
3758 btrfs_scrub_cancel(fs_info
);
3760 /* wait for any defraggers to finish */
3761 wait_event(fs_info
->transaction_wait
,
3762 (atomic_read(&fs_info
->defrag_running
) == 0));
3764 /* clear out the rbtree of defraggable inodes */
3765 btrfs_cleanup_defrag_inodes(fs_info
);
3767 cancel_work_sync(&fs_info
->async_reclaim_work
);
3769 if (!(fs_info
->sb
->s_flags
& MS_RDONLY
)) {
3771 * If the cleaner thread is stopped and there are
3772 * block groups queued for removal, the deletion will be
3773 * skipped when we quit the cleaner thread.
3775 btrfs_delete_unused_bgs(root
->fs_info
);
3778 * There might be existing delayed inode workers still running
3779 * and holding an empty delayed inode item. We must wait for
3780 * them to complete first because they can create a transaction.
3781 * This happens when someone calls btrfs_balance_delayed_items()
3782 * and then a transaction commit runs the same delayed nodes
3783 * before any delayed worker has done something with the nodes.
3784 * We must wait for any worker here and not at transaction
3785 * commit time since that could cause a deadlock.
3786 * This is a very rare case.
3788 btrfs_flush_workqueue(fs_info
->delayed_workers
);
3790 ret
= btrfs_commit_super(root
);
3792 btrfs_err(fs_info
, "commit super ret %d", ret
);
3795 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
3796 btrfs_error_commit_super(root
);
3798 kthread_stop(fs_info
->transaction_kthread
);
3799 kthread_stop(fs_info
->cleaner_kthread
);
3801 fs_info
->closing
= 2;
3804 btrfs_free_qgroup_config(fs_info
);
3806 if (percpu_counter_sum(&fs_info
->delalloc_bytes
)) {
3807 btrfs_info(fs_info
, "at unmount delalloc count %lld",
3808 percpu_counter_sum(&fs_info
->delalloc_bytes
));
3811 btrfs_sysfs_remove_mounted(fs_info
);
3812 btrfs_sysfs_remove_fsid(fs_info
->fs_devices
);
3814 btrfs_free_fs_roots(fs_info
);
3816 btrfs_put_block_group_cache(fs_info
);
3818 btrfs_free_block_groups(fs_info
);
3821 * we must make sure there is not any read request to
3822 * submit after we stopping all workers.
3824 invalidate_inode_pages2(fs_info
->btree_inode
->i_mapping
);
3825 btrfs_stop_all_workers(fs_info
);
3828 free_root_pointers(fs_info
, 1);
3830 iput(fs_info
->btree_inode
);
3832 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3833 if (btrfs_test_opt(root
, CHECK_INTEGRITY
))
3834 btrfsic_unmount(root
, fs_info
->fs_devices
);
3837 btrfs_close_devices(fs_info
->fs_devices
);
3838 btrfs_mapping_tree_free(&fs_info
->mapping_tree
);
3840 percpu_counter_destroy(&fs_info
->dirty_metadata_bytes
);
3841 percpu_counter_destroy(&fs_info
->delalloc_bytes
);
3842 percpu_counter_destroy(&fs_info
->bio_counter
);
3843 bdi_destroy(&fs_info
->bdi
);
3844 cleanup_srcu_struct(&fs_info
->subvol_srcu
);
3846 btrfs_free_stripe_hash_table(fs_info
);
3848 __btrfs_free_block_rsv(root
->orphan_block_rsv
);
3849 root
->orphan_block_rsv
= NULL
;
3852 while (!list_empty(&fs_info
->pinned_chunks
)) {
3853 struct extent_map
*em
;
3855 em
= list_first_entry(&fs_info
->pinned_chunks
,
3856 struct extent_map
, list
);
3857 list_del_init(&em
->list
);
3858 free_extent_map(em
);
3860 unlock_chunks(root
);
3863 int btrfs_buffer_uptodate(struct extent_buffer
*buf
, u64 parent_transid
,
3867 struct inode
*btree_inode
= buf
->pages
[0]->mapping
->host
;
3869 ret
= extent_buffer_uptodate(buf
);
3873 ret
= verify_parent_transid(&BTRFS_I(btree_inode
)->io_tree
, buf
,
3874 parent_transid
, atomic
);
3880 int btrfs_set_buffer_uptodate(struct extent_buffer
*buf
)
3882 return set_extent_buffer_uptodate(buf
);
3885 void btrfs_mark_buffer_dirty(struct extent_buffer
*buf
)
3887 struct btrfs_root
*root
;
3888 u64 transid
= btrfs_header_generation(buf
);
3891 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3893 * This is a fast path so only do this check if we have sanity tests
3894 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3895 * outside of the sanity tests.
3897 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY
, &buf
->bflags
)))
3900 root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3901 btrfs_assert_tree_locked(buf
);
3902 if (transid
!= root
->fs_info
->generation
)
3903 WARN(1, KERN_CRIT
"btrfs transid mismatch buffer %llu, "
3904 "found %llu running %llu\n",
3905 buf
->start
, transid
, root
->fs_info
->generation
);
3906 was_dirty
= set_extent_buffer_dirty(buf
);
3908 __percpu_counter_add(&root
->fs_info
->dirty_metadata_bytes
,
3910 root
->fs_info
->dirty_metadata_batch
);
3911 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3913 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
3914 * but item data not updated.
3915 * So here we should only check item pointers, not item data.
3917 if (btrfs_header_level(buf
) == 0 &&
3918 btrfs_check_leaf_relaxed(root
, buf
)) {
3919 btrfs_print_leaf(root
, buf
);
3925 static void __btrfs_btree_balance_dirty(struct btrfs_root
*root
,
3929 * looks as though older kernels can get into trouble with
3930 * this code, they end up stuck in balance_dirty_pages forever
3934 if (current
->flags
& PF_MEMALLOC
)
3938 btrfs_balance_delayed_items(root
);
3940 ret
= __percpu_counter_compare(&root
->fs_info
->dirty_metadata_bytes
,
3941 BTRFS_DIRTY_METADATA_THRESH
,
3942 root
->fs_info
->dirty_metadata_batch
);
3944 balance_dirty_pages_ratelimited(
3945 root
->fs_info
->btree_inode
->i_mapping
);
3950 void btrfs_btree_balance_dirty(struct btrfs_root
*root
)
3952 __btrfs_btree_balance_dirty(root
, 1);
3955 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root
*root
)
3957 __btrfs_btree_balance_dirty(root
, 0);
3960 int btrfs_read_buffer(struct extent_buffer
*buf
, u64 parent_transid
)
3962 struct btrfs_root
*root
= BTRFS_I(buf
->pages
[0]->mapping
->host
)->root
;
3963 return btree_read_extent_buffer_pages(root
, buf
, 0, parent_transid
);
3966 static int btrfs_check_super_valid(struct btrfs_fs_info
*fs_info
,
3969 struct btrfs_super_block
*sb
= fs_info
->super_copy
;
3972 if (btrfs_super_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3973 printk(KERN_ERR
"BTRFS: tree_root level too big: %d >= %d\n",
3974 btrfs_super_root_level(sb
), BTRFS_MAX_LEVEL
);
3977 if (btrfs_super_chunk_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3978 printk(KERN_ERR
"BTRFS: chunk_root level too big: %d >= %d\n",
3979 btrfs_super_chunk_root_level(sb
), BTRFS_MAX_LEVEL
);
3982 if (btrfs_super_log_root_level(sb
) >= BTRFS_MAX_LEVEL
) {
3983 printk(KERN_ERR
"BTRFS: log_root level too big: %d >= %d\n",
3984 btrfs_super_log_root_level(sb
), BTRFS_MAX_LEVEL
);
3989 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3990 * items yet, they'll be verified later. Issue just a warning.
3992 if (!IS_ALIGNED(btrfs_super_root(sb
), 4096))
3993 printk(KERN_WARNING
"BTRFS: tree_root block unaligned: %llu\n",
3994 btrfs_super_root(sb
));
3995 if (!IS_ALIGNED(btrfs_super_chunk_root(sb
), 4096))
3996 printk(KERN_WARNING
"BTRFS: chunk_root block unaligned: %llu\n",
3997 btrfs_super_chunk_root(sb
));
3998 if (!IS_ALIGNED(btrfs_super_log_root(sb
), 4096))
3999 printk(KERN_WARNING
"BTRFS: log_root block unaligned: %llu\n",
4000 btrfs_super_log_root(sb
));
4003 * Check the lower bound, the alignment and other constraints are
4006 if (btrfs_super_nodesize(sb
) < 4096) {
4007 printk(KERN_ERR
"BTRFS: nodesize too small: %u < 4096\n",
4008 btrfs_super_nodesize(sb
));
4011 if (btrfs_super_sectorsize(sb
) < 4096) {
4012 printk(KERN_ERR
"BTRFS: sectorsize too small: %u < 4096\n",
4013 btrfs_super_sectorsize(sb
));
4017 if (memcmp(fs_info
->fsid
, sb
->dev_item
.fsid
, BTRFS_UUID_SIZE
) != 0) {
4018 printk(KERN_ERR
"BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4019 fs_info
->fsid
, sb
->dev_item
.fsid
);
4024 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4027 if (btrfs_super_num_devices(sb
) > (1UL << 31))
4028 printk(KERN_WARNING
"BTRFS: suspicious number of devices: %llu\n",
4029 btrfs_super_num_devices(sb
));
4030 if (btrfs_super_num_devices(sb
) == 0) {
4031 printk(KERN_ERR
"BTRFS: number of devices is 0\n");
4035 if (btrfs_super_bytenr(sb
) != BTRFS_SUPER_INFO_OFFSET
) {
4036 printk(KERN_ERR
"BTRFS: super offset mismatch %llu != %u\n",
4037 btrfs_super_bytenr(sb
), BTRFS_SUPER_INFO_OFFSET
);
4042 * Obvious sys_chunk_array corruptions, it must hold at least one key
4045 if (btrfs_super_sys_array_size(sb
) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4046 printk(KERN_ERR
"BTRFS: system chunk array too big %u > %u\n",
4047 btrfs_super_sys_array_size(sb
),
4048 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
);
4051 if (btrfs_super_sys_array_size(sb
) < sizeof(struct btrfs_disk_key
)
4052 + sizeof(struct btrfs_chunk
)) {
4053 printk(KERN_ERR
"BTRFS: system chunk array too small %u < %zu\n",
4054 btrfs_super_sys_array_size(sb
),
4055 sizeof(struct btrfs_disk_key
)
4056 + sizeof(struct btrfs_chunk
));
4061 * The generation is a global counter, we'll trust it more than the others
4062 * but it's still possible that it's the one that's wrong.
4064 if (btrfs_super_generation(sb
) < btrfs_super_chunk_root_generation(sb
))
4066 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4067 btrfs_super_generation(sb
), btrfs_super_chunk_root_generation(sb
));
4068 if (btrfs_super_generation(sb
) < btrfs_super_cache_generation(sb
)
4069 && btrfs_super_cache_generation(sb
) != (u64
)-1)
4071 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4072 btrfs_super_generation(sb
), btrfs_super_cache_generation(sb
));
4077 static void btrfs_error_commit_super(struct btrfs_root
*root
)
4079 mutex_lock(&root
->fs_info
->cleaner_mutex
);
4080 btrfs_run_delayed_iputs(root
);
4081 mutex_unlock(&root
->fs_info
->cleaner_mutex
);
4083 down_write(&root
->fs_info
->cleanup_work_sem
);
4084 up_write(&root
->fs_info
->cleanup_work_sem
);
4086 /* cleanup FS via transaction */
4087 btrfs_cleanup_transaction(root
);
4090 static void btrfs_destroy_ordered_extents(struct btrfs_root
*root
)
4092 struct btrfs_ordered_extent
*ordered
;
4094 spin_lock(&root
->ordered_extent_lock
);
4096 * This will just short circuit the ordered completion stuff which will
4097 * make sure the ordered extent gets properly cleaned up.
4099 list_for_each_entry(ordered
, &root
->ordered_extents
,
4101 set_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
);
4102 spin_unlock(&root
->ordered_extent_lock
);
4105 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info
*fs_info
)
4107 struct btrfs_root
*root
;
4108 struct list_head splice
;
4110 INIT_LIST_HEAD(&splice
);
4112 spin_lock(&fs_info
->ordered_root_lock
);
4113 list_splice_init(&fs_info
->ordered_roots
, &splice
);
4114 while (!list_empty(&splice
)) {
4115 root
= list_first_entry(&splice
, struct btrfs_root
,
4117 list_move_tail(&root
->ordered_root
,
4118 &fs_info
->ordered_roots
);
4120 spin_unlock(&fs_info
->ordered_root_lock
);
4121 btrfs_destroy_ordered_extents(root
);
4124 spin_lock(&fs_info
->ordered_root_lock
);
4126 spin_unlock(&fs_info
->ordered_root_lock
);
4129 * We need this here because if we've been flipped read-only we won't
4130 * get sync() from the umount, so we need to make sure any ordered
4131 * extents that haven't had their dirty pages IO start writeout yet
4132 * actually get run and error out properly.
4134 btrfs_wait_ordered_roots(fs_info
, -1);
4137 static int btrfs_destroy_delayed_refs(struct btrfs_transaction
*trans
,
4138 struct btrfs_root
*root
)
4140 struct rb_node
*node
;
4141 struct btrfs_delayed_ref_root
*delayed_refs
;
4142 struct btrfs_delayed_ref_node
*ref
;
4145 delayed_refs
= &trans
->delayed_refs
;
4147 spin_lock(&delayed_refs
->lock
);
4148 if (atomic_read(&delayed_refs
->num_entries
) == 0) {
4149 spin_unlock(&delayed_refs
->lock
);
4150 btrfs_info(root
->fs_info
, "delayed_refs has NO entry");
4154 while ((node
= rb_first(&delayed_refs
->href_root
)) != NULL
) {
4155 struct btrfs_delayed_ref_head
*head
;
4156 struct btrfs_delayed_ref_node
*tmp
;
4157 bool pin_bytes
= false;
4159 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
4161 if (!mutex_trylock(&head
->mutex
)) {
4162 atomic_inc(&head
->node
.refs
);
4163 spin_unlock(&delayed_refs
->lock
);
4165 mutex_lock(&head
->mutex
);
4166 mutex_unlock(&head
->mutex
);
4167 btrfs_put_delayed_ref(&head
->node
);
4168 spin_lock(&delayed_refs
->lock
);
4171 spin_lock(&head
->lock
);
4172 list_for_each_entry_safe_reverse(ref
, tmp
, &head
->ref_list
,
4175 list_del(&ref
->list
);
4176 atomic_dec(&delayed_refs
->num_entries
);
4177 btrfs_put_delayed_ref(ref
);
4179 if (head
->must_insert_reserved
)
4181 btrfs_free_delayed_extent_op(head
->extent_op
);
4182 delayed_refs
->num_heads
--;
4183 if (head
->processing
== 0)
4184 delayed_refs
->num_heads_ready
--;
4185 atomic_dec(&delayed_refs
->num_entries
);
4186 head
->node
.in_tree
= 0;
4187 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
4188 spin_unlock(&head
->lock
);
4189 spin_unlock(&delayed_refs
->lock
);
4190 mutex_unlock(&head
->mutex
);
4193 btrfs_pin_extent(root
, head
->node
.bytenr
,
4194 head
->node
.num_bytes
, 1);
4195 btrfs_put_delayed_ref(&head
->node
);
4197 spin_lock(&delayed_refs
->lock
);
4200 spin_unlock(&delayed_refs
->lock
);
4205 static void btrfs_destroy_delalloc_inodes(struct btrfs_root
*root
)
4207 struct btrfs_inode
*btrfs_inode
;
4208 struct list_head splice
;
4210 INIT_LIST_HEAD(&splice
);
4212 spin_lock(&root
->delalloc_lock
);
4213 list_splice_init(&root
->delalloc_inodes
, &splice
);
4215 while (!list_empty(&splice
)) {
4216 btrfs_inode
= list_first_entry(&splice
, struct btrfs_inode
,
4219 list_del_init(&btrfs_inode
->delalloc_inodes
);
4220 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
4221 &btrfs_inode
->runtime_flags
);
4222 spin_unlock(&root
->delalloc_lock
);
4224 btrfs_invalidate_inodes(btrfs_inode
->root
);
4226 spin_lock(&root
->delalloc_lock
);
4229 spin_unlock(&root
->delalloc_lock
);
4232 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info
*fs_info
)
4234 struct btrfs_root
*root
;
4235 struct list_head splice
;
4237 INIT_LIST_HEAD(&splice
);
4239 spin_lock(&fs_info
->delalloc_root_lock
);
4240 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
4241 while (!list_empty(&splice
)) {
4242 root
= list_first_entry(&splice
, struct btrfs_root
,
4244 list_del_init(&root
->delalloc_root
);
4245 root
= btrfs_grab_fs_root(root
);
4247 spin_unlock(&fs_info
->delalloc_root_lock
);
4249 btrfs_destroy_delalloc_inodes(root
);
4250 btrfs_put_fs_root(root
);
4252 spin_lock(&fs_info
->delalloc_root_lock
);
4254 spin_unlock(&fs_info
->delalloc_root_lock
);
4257 static int btrfs_destroy_marked_extents(struct btrfs_root
*root
,
4258 struct extent_io_tree
*dirty_pages
,
4262 struct extent_buffer
*eb
;
4267 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
4272 clear_extent_bits(dirty_pages
, start
, end
, mark
, GFP_NOFS
);
4273 while (start
<= end
) {
4274 eb
= btrfs_find_tree_block(root
->fs_info
, start
);
4275 start
+= root
->nodesize
;
4278 wait_on_extent_buffer_writeback(eb
);
4280 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
,
4282 clear_extent_buffer_dirty(eb
);
4283 free_extent_buffer_stale(eb
);
4290 static int btrfs_destroy_pinned_extent(struct btrfs_root
*root
,
4291 struct extent_io_tree
*pinned_extents
)
4293 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4294 struct extent_io_tree
*unpin
;
4300 unpin
= pinned_extents
;
4304 * The btrfs_finish_extent_commit() may get the same range as
4305 * ours between find_first_extent_bit and clear_extent_dirty.
4306 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4307 * the same extent range.
4309 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
4310 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4311 EXTENT_DIRTY
, NULL
);
4313 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4317 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4318 btrfs_error_unpin_extent_range(root
, start
, end
);
4319 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
4324 if (unpin
== &fs_info
->freed_extents
[0])
4325 unpin
= &fs_info
->freed_extents
[1];
4327 unpin
= &fs_info
->freed_extents
[0];
4335 void btrfs_cleanup_one_transaction(struct btrfs_transaction
*cur_trans
,
4336 struct btrfs_root
*root
)
4338 btrfs_destroy_delayed_refs(cur_trans
, root
);
4340 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
4341 wake_up(&root
->fs_info
->transaction_blocked_wait
);
4343 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
4344 wake_up(&root
->fs_info
->transaction_wait
);
4346 btrfs_destroy_delayed_inodes(root
);
4347 btrfs_assert_delayed_root_empty(root
);
4349 btrfs_destroy_marked_extents(root
, &cur_trans
->dirty_pages
,
4351 btrfs_destroy_pinned_extent(root
,
4352 root
->fs_info
->pinned_extents
);
4354 cur_trans
->state
=TRANS_STATE_COMPLETED
;
4355 wake_up(&cur_trans
->commit_wait
);
4358 memset(cur_trans, 0, sizeof(*cur_trans));
4359 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4363 static int btrfs_cleanup_transaction(struct btrfs_root
*root
)
4365 struct btrfs_transaction
*t
;
4367 mutex_lock(&root
->fs_info
->transaction_kthread_mutex
);
4369 spin_lock(&root
->fs_info
->trans_lock
);
4370 while (!list_empty(&root
->fs_info
->trans_list
)) {
4371 t
= list_first_entry(&root
->fs_info
->trans_list
,
4372 struct btrfs_transaction
, list
);
4373 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
4374 atomic_inc(&t
->use_count
);
4375 spin_unlock(&root
->fs_info
->trans_lock
);
4376 btrfs_wait_for_commit(root
, t
->transid
);
4377 btrfs_put_transaction(t
);
4378 spin_lock(&root
->fs_info
->trans_lock
);
4381 if (t
== root
->fs_info
->running_transaction
) {
4382 t
->state
= TRANS_STATE_COMMIT_DOING
;
4383 spin_unlock(&root
->fs_info
->trans_lock
);
4385 * We wait for 0 num_writers since we don't hold a trans
4386 * handle open currently for this transaction.
4388 wait_event(t
->writer_wait
,
4389 atomic_read(&t
->num_writers
) == 0);
4391 spin_unlock(&root
->fs_info
->trans_lock
);
4393 btrfs_cleanup_one_transaction(t
, root
);
4395 spin_lock(&root
->fs_info
->trans_lock
);
4396 if (t
== root
->fs_info
->running_transaction
)
4397 root
->fs_info
->running_transaction
= NULL
;
4398 list_del_init(&t
->list
);
4399 spin_unlock(&root
->fs_info
->trans_lock
);
4401 btrfs_put_transaction(t
);
4402 trace_btrfs_transaction_commit(root
);
4403 spin_lock(&root
->fs_info
->trans_lock
);
4405 spin_unlock(&root
->fs_info
->trans_lock
);
4406 btrfs_destroy_all_ordered_extents(root
->fs_info
);
4407 btrfs_destroy_delayed_inodes(root
);
4408 btrfs_assert_delayed_root_empty(root
);
4409 btrfs_destroy_pinned_extent(root
, root
->fs_info
->pinned_extents
);
4410 btrfs_destroy_all_delalloc_inodes(root
->fs_info
);
4411 mutex_unlock(&root
->fs_info
->transaction_kthread_mutex
);
4416 static const struct extent_io_ops btree_extent_io_ops
= {
4417 .readpage_end_io_hook
= btree_readpage_end_io_hook
,
4418 .readpage_io_failed_hook
= btree_io_failed_hook
,
4419 .submit_bio_hook
= btree_submit_bio_hook
,
4420 /* note we're sharing with inode.c for the merge bio hook */
4421 .merge_bio_hook
= btrfs_merge_bio_hook
,