2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/percpu_counter.h>
31 #include "print-tree.h"
35 #include "free-space-cache.h"
40 #undef SCRAMBLE_DELAYED_REFS
43 * control flags for do_chunk_alloc's force field
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
57 CHUNK_ALLOC_NO_FORCE
= 0,
58 CHUNK_ALLOC_LIMITED
= 1,
59 CHUNK_ALLOC_FORCE
= 2,
63 * Control how reservations are dealt with.
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
74 RESERVE_ALLOC_NO_ACCOUNT
= 2,
77 static int update_block_group(struct btrfs_trans_handle
*trans
,
78 struct btrfs_root
*root
, u64 bytenr
,
79 u64 num_bytes
, int alloc
);
80 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
81 struct btrfs_root
*root
,
82 struct btrfs_delayed_ref_node
*node
, u64 parent
,
83 u64 root_objectid
, u64 owner_objectid
,
84 u64 owner_offset
, int refs_to_drop
,
85 struct btrfs_delayed_extent_op
*extra_op
);
86 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
87 struct extent_buffer
*leaf
,
88 struct btrfs_extent_item
*ei
);
89 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
90 struct btrfs_root
*root
,
91 u64 parent
, u64 root_objectid
,
92 u64 flags
, u64 owner
, u64 offset
,
93 struct btrfs_key
*ins
, int ref_mod
);
94 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
,
96 u64 parent
, u64 root_objectid
,
97 u64 flags
, struct btrfs_disk_key
*key
,
98 int level
, struct btrfs_key
*ins
);
99 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
100 struct btrfs_root
*extent_root
, u64 flags
,
102 static int find_next_key(struct btrfs_path
*path
, int level
,
103 struct btrfs_key
*key
);
104 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
105 int dump_block_groups
);
106 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
107 u64 num_bytes
, int reserve
,
109 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
111 int btrfs_pin_extent(struct btrfs_root
*root
,
112 u64 bytenr
, u64 num_bytes
, int reserved
);
115 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
118 return cache
->cached
== BTRFS_CACHE_FINISHED
||
119 cache
->cached
== BTRFS_CACHE_ERROR
;
122 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
124 return (cache
->flags
& bits
) == bits
;
127 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
129 atomic_inc(&cache
->count
);
132 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
134 if (atomic_dec_and_test(&cache
->count
)) {
135 WARN_ON(cache
->pinned
> 0);
136 WARN_ON(cache
->reserved
> 0);
137 kfree(cache
->free_space_ctl
);
143 * this adds the block group to the fs_info rb tree for the block group
146 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
147 struct btrfs_block_group_cache
*block_group
)
150 struct rb_node
*parent
= NULL
;
151 struct btrfs_block_group_cache
*cache
;
153 spin_lock(&info
->block_group_cache_lock
);
154 p
= &info
->block_group_cache_tree
.rb_node
;
158 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
160 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
162 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
165 spin_unlock(&info
->block_group_cache_lock
);
170 rb_link_node(&block_group
->cache_node
, parent
, p
);
171 rb_insert_color(&block_group
->cache_node
,
172 &info
->block_group_cache_tree
);
174 if (info
->first_logical_byte
> block_group
->key
.objectid
)
175 info
->first_logical_byte
= block_group
->key
.objectid
;
177 spin_unlock(&info
->block_group_cache_lock
);
183 * This will return the block group at or after bytenr if contains is 0, else
184 * it will return the block group that contains the bytenr
186 static struct btrfs_block_group_cache
*
187 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
190 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
194 spin_lock(&info
->block_group_cache_lock
);
195 n
= info
->block_group_cache_tree
.rb_node
;
198 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
200 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
201 start
= cache
->key
.objectid
;
203 if (bytenr
< start
) {
204 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
207 } else if (bytenr
> start
) {
208 if (contains
&& bytenr
<= end
) {
219 btrfs_get_block_group(ret
);
220 if (bytenr
== 0 && info
->first_logical_byte
> ret
->key
.objectid
)
221 info
->first_logical_byte
= ret
->key
.objectid
;
223 spin_unlock(&info
->block_group_cache_lock
);
228 static int add_excluded_extent(struct btrfs_root
*root
,
229 u64 start
, u64 num_bytes
)
231 u64 end
= start
+ num_bytes
- 1;
232 set_extent_bits(&root
->fs_info
->freed_extents
[0],
233 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
234 set_extent_bits(&root
->fs_info
->freed_extents
[1],
235 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
239 static void free_excluded_extents(struct btrfs_root
*root
,
240 struct btrfs_block_group_cache
*cache
)
244 start
= cache
->key
.objectid
;
245 end
= start
+ cache
->key
.offset
- 1;
247 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
248 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
249 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
250 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
253 static int exclude_super_stripes(struct btrfs_root
*root
,
254 struct btrfs_block_group_cache
*cache
)
261 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
262 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
263 cache
->bytes_super
+= stripe_len
;
264 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
270 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
271 bytenr
= btrfs_sb_offset(i
);
272 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
273 cache
->key
.objectid
, bytenr
,
274 0, &logical
, &nr
, &stripe_len
);
281 if (logical
[nr
] > cache
->key
.objectid
+
285 if (logical
[nr
] + stripe_len
<= cache
->key
.objectid
)
289 if (start
< cache
->key
.objectid
) {
290 start
= cache
->key
.objectid
;
291 len
= (logical
[nr
] + stripe_len
) - start
;
293 len
= min_t(u64
, stripe_len
,
294 cache
->key
.objectid
+
295 cache
->key
.offset
- start
);
298 cache
->bytes_super
+= len
;
299 ret
= add_excluded_extent(root
, start
, len
);
311 static struct btrfs_caching_control
*
312 get_caching_control(struct btrfs_block_group_cache
*cache
)
314 struct btrfs_caching_control
*ctl
;
316 spin_lock(&cache
->lock
);
317 if (!cache
->caching_ctl
) {
318 spin_unlock(&cache
->lock
);
322 ctl
= cache
->caching_ctl
;
323 atomic_inc(&ctl
->count
);
324 spin_unlock(&cache
->lock
);
328 static void put_caching_control(struct btrfs_caching_control
*ctl
)
330 if (atomic_dec_and_test(&ctl
->count
))
334 #ifdef CONFIG_BTRFS_DEBUG
335 static void fragment_free_space(struct btrfs_root
*root
,
336 struct btrfs_block_group_cache
*block_group
)
338 u64 start
= block_group
->key
.objectid
;
339 u64 len
= block_group
->key
.offset
;
340 u64 chunk
= block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
?
341 root
->nodesize
: root
->sectorsize
;
342 u64 step
= chunk
<< 1;
344 while (len
> chunk
) {
345 btrfs_remove_free_space(block_group
, start
, chunk
);
356 * this is only called by cache_block_group, since we could have freed extents
357 * we need to check the pinned_extents for any extents that can't be used yet
358 * since their free space will be released as soon as the transaction commits.
360 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
361 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
363 u64 extent_start
, extent_end
, size
, total_added
= 0;
366 while (start
< end
) {
367 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
368 &extent_start
, &extent_end
,
369 EXTENT_DIRTY
| EXTENT_UPTODATE
,
374 if (extent_start
<= start
) {
375 start
= extent_end
+ 1;
376 } else if (extent_start
> start
&& extent_start
< end
) {
377 size
= extent_start
- start
;
379 ret
= btrfs_add_free_space(block_group
, start
,
381 BUG_ON(ret
); /* -ENOMEM or logic error */
382 start
= extent_end
+ 1;
391 ret
= btrfs_add_free_space(block_group
, start
, size
);
392 BUG_ON(ret
); /* -ENOMEM or logic error */
398 static noinline
void caching_thread(struct btrfs_work
*work
)
400 struct btrfs_block_group_cache
*block_group
;
401 struct btrfs_fs_info
*fs_info
;
402 struct btrfs_caching_control
*caching_ctl
;
403 struct btrfs_root
*extent_root
;
404 struct btrfs_path
*path
;
405 struct extent_buffer
*leaf
;
406 struct btrfs_key key
;
413 caching_ctl
= container_of(work
, struct btrfs_caching_control
, work
);
414 block_group
= caching_ctl
->block_group
;
415 fs_info
= block_group
->fs_info
;
416 extent_root
= fs_info
->extent_root
;
418 path
= btrfs_alloc_path();
422 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
424 #ifdef CONFIG_BTRFS_DEBUG
426 * If we're fragmenting we don't want to make anybody think we can
427 * allocate from this block group until we've had a chance to fragment
430 if (btrfs_should_fragment_free_space(extent_root
, block_group
))
434 * We don't want to deadlock with somebody trying to allocate a new
435 * extent for the extent root while also trying to search the extent
436 * root to add free space. So we skip locking and search the commit
437 * root, since its read-only
439 path
->skip_locking
= 1;
440 path
->search_commit_root
= 1;
445 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
447 mutex_lock(&caching_ctl
->mutex
);
448 /* need to make sure the commit_root doesn't disappear */
449 down_read(&fs_info
->commit_root_sem
);
452 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
456 leaf
= path
->nodes
[0];
457 nritems
= btrfs_header_nritems(leaf
);
460 if (btrfs_fs_closing(fs_info
) > 1) {
465 if (path
->slots
[0] < nritems
) {
466 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
468 ret
= find_next_key(path
, 0, &key
);
472 if (need_resched() ||
473 rwsem_is_contended(&fs_info
->commit_root_sem
)) {
475 caching_ctl
->progress
= last
;
476 btrfs_release_path(path
);
477 up_read(&fs_info
->commit_root_sem
);
478 mutex_unlock(&caching_ctl
->mutex
);
483 ret
= btrfs_next_leaf(extent_root
, path
);
488 leaf
= path
->nodes
[0];
489 nritems
= btrfs_header_nritems(leaf
);
493 if (key
.objectid
< last
) {
496 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
499 caching_ctl
->progress
= last
;
500 btrfs_release_path(path
);
504 if (key
.objectid
< block_group
->key
.objectid
) {
509 if (key
.objectid
>= block_group
->key
.objectid
+
510 block_group
->key
.offset
)
513 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
514 key
.type
== BTRFS_METADATA_ITEM_KEY
) {
515 total_found
+= add_new_free_space(block_group
,
518 if (key
.type
== BTRFS_METADATA_ITEM_KEY
)
519 last
= key
.objectid
+
520 fs_info
->tree_root
->nodesize
;
522 last
= key
.objectid
+ key
.offset
;
524 if (total_found
> (1024 * 1024 * 2)) {
527 wake_up(&caching_ctl
->wait
);
534 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
535 block_group
->key
.objectid
+
536 block_group
->key
.offset
);
537 spin_lock(&block_group
->lock
);
538 block_group
->caching_ctl
= NULL
;
539 block_group
->cached
= BTRFS_CACHE_FINISHED
;
540 spin_unlock(&block_group
->lock
);
542 #ifdef CONFIG_BTRFS_DEBUG
543 if (btrfs_should_fragment_free_space(extent_root
, block_group
)) {
546 spin_lock(&block_group
->space_info
->lock
);
547 spin_lock(&block_group
->lock
);
548 bytes_used
= block_group
->key
.offset
-
549 btrfs_block_group_used(&block_group
->item
);
550 block_group
->space_info
->bytes_used
+= bytes_used
>> 1;
551 spin_unlock(&block_group
->lock
);
552 spin_unlock(&block_group
->space_info
->lock
);
553 fragment_free_space(extent_root
, block_group
);
557 caching_ctl
->progress
= (u64
)-1;
559 btrfs_free_path(path
);
560 up_read(&fs_info
->commit_root_sem
);
562 free_excluded_extents(extent_root
, block_group
);
564 mutex_unlock(&caching_ctl
->mutex
);
567 spin_lock(&block_group
->lock
);
568 block_group
->caching_ctl
= NULL
;
569 block_group
->cached
= BTRFS_CACHE_ERROR
;
570 spin_unlock(&block_group
->lock
);
572 wake_up(&caching_ctl
->wait
);
574 put_caching_control(caching_ctl
);
575 btrfs_put_block_group(block_group
);
578 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
582 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
583 struct btrfs_caching_control
*caching_ctl
;
586 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_NOFS
);
590 INIT_LIST_HEAD(&caching_ctl
->list
);
591 mutex_init(&caching_ctl
->mutex
);
592 init_waitqueue_head(&caching_ctl
->wait
);
593 caching_ctl
->block_group
= cache
;
594 caching_ctl
->progress
= cache
->key
.objectid
;
595 atomic_set(&caching_ctl
->count
, 1);
596 btrfs_init_work(&caching_ctl
->work
, btrfs_cache_helper
,
597 caching_thread
, NULL
, NULL
);
599 spin_lock(&cache
->lock
);
601 * This should be a rare occasion, but this could happen I think in the
602 * case where one thread starts to load the space cache info, and then
603 * some other thread starts a transaction commit which tries to do an
604 * allocation while the other thread is still loading the space cache
605 * info. The previous loop should have kept us from choosing this block
606 * group, but if we've moved to the state where we will wait on caching
607 * block groups we need to first check if we're doing a fast load here,
608 * so we can wait for it to finish, otherwise we could end up allocating
609 * from a block group who's cache gets evicted for one reason or
612 while (cache
->cached
== BTRFS_CACHE_FAST
) {
613 struct btrfs_caching_control
*ctl
;
615 ctl
= cache
->caching_ctl
;
616 atomic_inc(&ctl
->count
);
617 prepare_to_wait(&ctl
->wait
, &wait
, TASK_UNINTERRUPTIBLE
);
618 spin_unlock(&cache
->lock
);
622 finish_wait(&ctl
->wait
, &wait
);
623 put_caching_control(ctl
);
624 spin_lock(&cache
->lock
);
627 if (cache
->cached
!= BTRFS_CACHE_NO
) {
628 spin_unlock(&cache
->lock
);
632 WARN_ON(cache
->caching_ctl
);
633 cache
->caching_ctl
= caching_ctl
;
634 cache
->cached
= BTRFS_CACHE_FAST
;
635 spin_unlock(&cache
->lock
);
637 if (fs_info
->mount_opt
& BTRFS_MOUNT_SPACE_CACHE
) {
638 mutex_lock(&caching_ctl
->mutex
);
639 ret
= load_free_space_cache(fs_info
, cache
);
641 spin_lock(&cache
->lock
);
643 cache
->caching_ctl
= NULL
;
644 cache
->cached
= BTRFS_CACHE_FINISHED
;
645 cache
->last_byte_to_unpin
= (u64
)-1;
646 caching_ctl
->progress
= (u64
)-1;
648 if (load_cache_only
) {
649 cache
->caching_ctl
= NULL
;
650 cache
->cached
= BTRFS_CACHE_NO
;
652 cache
->cached
= BTRFS_CACHE_STARTED
;
653 cache
->has_caching_ctl
= 1;
656 spin_unlock(&cache
->lock
);
657 #ifdef CONFIG_BTRFS_DEBUG
659 btrfs_should_fragment_free_space(fs_info
->extent_root
,
663 spin_lock(&cache
->space_info
->lock
);
664 spin_lock(&cache
->lock
);
665 bytes_used
= cache
->key
.offset
-
666 btrfs_block_group_used(&cache
->item
);
667 cache
->space_info
->bytes_used
+= bytes_used
>> 1;
668 spin_unlock(&cache
->lock
);
669 spin_unlock(&cache
->space_info
->lock
);
670 fragment_free_space(fs_info
->extent_root
, cache
);
673 mutex_unlock(&caching_ctl
->mutex
);
675 wake_up(&caching_ctl
->wait
);
677 put_caching_control(caching_ctl
);
678 free_excluded_extents(fs_info
->extent_root
, cache
);
683 * We are not going to do the fast caching, set cached to the
684 * appropriate value and wakeup any waiters.
686 spin_lock(&cache
->lock
);
687 if (load_cache_only
) {
688 cache
->caching_ctl
= NULL
;
689 cache
->cached
= BTRFS_CACHE_NO
;
691 cache
->cached
= BTRFS_CACHE_STARTED
;
692 cache
->has_caching_ctl
= 1;
694 spin_unlock(&cache
->lock
);
695 wake_up(&caching_ctl
->wait
);
698 if (load_cache_only
) {
699 put_caching_control(caching_ctl
);
703 down_write(&fs_info
->commit_root_sem
);
704 atomic_inc(&caching_ctl
->count
);
705 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
706 up_write(&fs_info
->commit_root_sem
);
708 btrfs_get_block_group(cache
);
710 btrfs_queue_work(fs_info
->caching_workers
, &caching_ctl
->work
);
716 * return the block group that starts at or after bytenr
718 static struct btrfs_block_group_cache
*
719 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
721 struct btrfs_block_group_cache
*cache
;
723 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
729 * return the block group that contains the given bytenr
731 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
732 struct btrfs_fs_info
*info
,
735 struct btrfs_block_group_cache
*cache
;
737 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
742 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
745 struct list_head
*head
= &info
->space_info
;
746 struct btrfs_space_info
*found
;
748 flags
&= BTRFS_BLOCK_GROUP_TYPE_MASK
;
751 list_for_each_entry_rcu(found
, head
, list
) {
752 if (found
->flags
& flags
) {
762 * after adding space to the filesystem, we need to clear the full flags
763 * on all the space infos.
765 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
767 struct list_head
*head
= &info
->space_info
;
768 struct btrfs_space_info
*found
;
771 list_for_each_entry_rcu(found
, head
, list
)
776 /* simple helper to search for an existing data extent at a given offset */
777 int btrfs_lookup_data_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
780 struct btrfs_key key
;
781 struct btrfs_path
*path
;
783 path
= btrfs_alloc_path();
787 key
.objectid
= start
;
789 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
790 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
792 btrfs_free_path(path
);
797 * helper function to lookup reference count and flags of a tree block.
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
805 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
806 struct btrfs_root
*root
, u64 bytenr
,
807 u64 offset
, int metadata
, u64
*refs
, u64
*flags
)
809 struct btrfs_delayed_ref_head
*head
;
810 struct btrfs_delayed_ref_root
*delayed_refs
;
811 struct btrfs_path
*path
;
812 struct btrfs_extent_item
*ei
;
813 struct extent_buffer
*leaf
;
814 struct btrfs_key key
;
821 * If we don't have skinny metadata, don't bother doing anything
824 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
)) {
825 offset
= root
->nodesize
;
829 path
= btrfs_alloc_path();
834 path
->skip_locking
= 1;
835 path
->search_commit_root
= 1;
839 key
.objectid
= bytenr
;
842 key
.type
= BTRFS_METADATA_ITEM_KEY
;
844 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
846 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
851 if (ret
> 0 && metadata
&& key
.type
== BTRFS_METADATA_ITEM_KEY
) {
852 if (path
->slots
[0]) {
854 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
856 if (key
.objectid
== bytenr
&&
857 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
858 key
.offset
== root
->nodesize
)
864 leaf
= path
->nodes
[0];
865 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
866 if (item_size
>= sizeof(*ei
)) {
867 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
868 struct btrfs_extent_item
);
869 num_refs
= btrfs_extent_refs(leaf
, ei
);
870 extent_flags
= btrfs_extent_flags(leaf
, ei
);
872 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
873 struct btrfs_extent_item_v0
*ei0
;
874 BUG_ON(item_size
!= sizeof(*ei0
));
875 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
876 struct btrfs_extent_item_v0
);
877 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
878 /* FIXME: this isn't correct for data */
879 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
884 BUG_ON(num_refs
== 0);
894 delayed_refs
= &trans
->transaction
->delayed_refs
;
895 spin_lock(&delayed_refs
->lock
);
896 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
898 if (!mutex_trylock(&head
->mutex
)) {
899 atomic_inc(&head
->node
.refs
);
900 spin_unlock(&delayed_refs
->lock
);
902 btrfs_release_path(path
);
905 * Mutex was contended, block until it's released and try
908 mutex_lock(&head
->mutex
);
909 mutex_unlock(&head
->mutex
);
910 btrfs_put_delayed_ref(&head
->node
);
913 spin_lock(&head
->lock
);
914 if (head
->extent_op
&& head
->extent_op
->update_flags
)
915 extent_flags
|= head
->extent_op
->flags_to_set
;
917 BUG_ON(num_refs
== 0);
919 num_refs
+= head
->node
.ref_mod
;
920 spin_unlock(&head
->lock
);
921 mutex_unlock(&head
->mutex
);
923 spin_unlock(&delayed_refs
->lock
);
925 WARN_ON(num_refs
== 0);
929 *flags
= extent_flags
;
931 btrfs_free_path(path
);
936 * Back reference rules. Back refs have three main goals:
938 * 1) differentiate between all holders of references to an extent so that
939 * when a reference is dropped we can make sure it was a valid reference
940 * before freeing the extent.
942 * 2) Provide enough information to quickly find the holders of an extent
943 * if we notice a given block is corrupted or bad.
945 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
946 * maintenance. This is actually the same as #2, but with a slightly
947 * different use case.
949 * There are two kinds of back refs. The implicit back refs is optimized
950 * for pointers in non-shared tree blocks. For a given pointer in a block,
951 * back refs of this kind provide information about the block's owner tree
952 * and the pointer's key. These information allow us to find the block by
953 * b-tree searching. The full back refs is for pointers in tree blocks not
954 * referenced by their owner trees. The location of tree block is recorded
955 * in the back refs. Actually the full back refs is generic, and can be
956 * used in all cases the implicit back refs is used. The major shortcoming
957 * of the full back refs is its overhead. Every time a tree block gets
958 * COWed, we have to update back refs entry for all pointers in it.
960 * For a newly allocated tree block, we use implicit back refs for
961 * pointers in it. This means most tree related operations only involve
962 * implicit back refs. For a tree block created in old transaction, the
963 * only way to drop a reference to it is COW it. So we can detect the
964 * event that tree block loses its owner tree's reference and do the
965 * back refs conversion.
967 * When a tree block is COW'd through a tree, there are four cases:
969 * The reference count of the block is one and the tree is the block's
970 * owner tree. Nothing to do in this case.
972 * The reference count of the block is one and the tree is not the
973 * block's owner tree. In this case, full back refs is used for pointers
974 * in the block. Remove these full back refs, add implicit back refs for
975 * every pointers in the new block.
977 * The reference count of the block is greater than one and the tree is
978 * the block's owner tree. In this case, implicit back refs is used for
979 * pointers in the block. Add full back refs for every pointers in the
980 * block, increase lower level extents' reference counts. The original
981 * implicit back refs are entailed to the new block.
983 * The reference count of the block is greater than one and the tree is
984 * not the block's owner tree. Add implicit back refs for every pointer in
985 * the new block, increase lower level extents' reference count.
987 * Back Reference Key composing:
989 * The key objectid corresponds to the first byte in the extent,
990 * The key type is used to differentiate between types of back refs.
991 * There are different meanings of the key offset for different types
994 * File extents can be referenced by:
996 * - multiple snapshots, subvolumes, or different generations in one subvol
997 * - different files inside a single subvolume
998 * - different offsets inside a file (bookend extents in file.c)
1000 * The extent ref structure for the implicit back refs has fields for:
1002 * - Objectid of the subvolume root
1003 * - objectid of the file holding the reference
1004 * - original offset in the file
1005 * - how many bookend extents
1007 * The key offset for the implicit back refs is hash of the first
1010 * The extent ref structure for the full back refs has field for:
1012 * - number of pointers in the tree leaf
1014 * The key offset for the implicit back refs is the first byte of
1017 * When a file extent is allocated, The implicit back refs is used.
1018 * the fields are filled in:
1020 * (root_key.objectid, inode objectid, offset in file, 1)
1022 * When a file extent is removed file truncation, we find the
1023 * corresponding implicit back refs and check the following fields:
1025 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1027 * Btree extents can be referenced by:
1029 * - Different subvolumes
1031 * Both the implicit back refs and the full back refs for tree blocks
1032 * only consist of key. The key offset for the implicit back refs is
1033 * objectid of block's owner tree. The key offset for the full back refs
1034 * is the first byte of parent block.
1036 * When implicit back refs is used, information about the lowest key and
1037 * level of the tree block are required. These information are stored in
1038 * tree block info structure.
1041 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1042 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
1043 struct btrfs_root
*root
,
1044 struct btrfs_path
*path
,
1045 u64 owner
, u32 extra_size
)
1047 struct btrfs_extent_item
*item
;
1048 struct btrfs_extent_item_v0
*ei0
;
1049 struct btrfs_extent_ref_v0
*ref0
;
1050 struct btrfs_tree_block_info
*bi
;
1051 struct extent_buffer
*leaf
;
1052 struct btrfs_key key
;
1053 struct btrfs_key found_key
;
1054 u32 new_size
= sizeof(*item
);
1058 leaf
= path
->nodes
[0];
1059 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
1061 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1062 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1063 struct btrfs_extent_item_v0
);
1064 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
1066 if (owner
== (u64
)-1) {
1068 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1069 ret
= btrfs_next_leaf(root
, path
);
1072 BUG_ON(ret
> 0); /* Corruption */
1073 leaf
= path
->nodes
[0];
1075 btrfs_item_key_to_cpu(leaf
, &found_key
,
1077 BUG_ON(key
.objectid
!= found_key
.objectid
);
1078 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
1082 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1083 struct btrfs_extent_ref_v0
);
1084 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
1088 btrfs_release_path(path
);
1090 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
1091 new_size
+= sizeof(*bi
);
1093 new_size
-= sizeof(*ei0
);
1094 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
1095 new_size
+ extra_size
, 1);
1098 BUG_ON(ret
); /* Corruption */
1100 btrfs_extend_item(root
, path
, new_size
);
1102 leaf
= path
->nodes
[0];
1103 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1104 btrfs_set_extent_refs(leaf
, item
, refs
);
1105 /* FIXME: get real generation */
1106 btrfs_set_extent_generation(leaf
, item
, 0);
1107 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1108 btrfs_set_extent_flags(leaf
, item
,
1109 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
1110 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
1111 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
1112 /* FIXME: get first key of the block */
1113 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
1114 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
1116 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
1118 btrfs_mark_buffer_dirty(leaf
);
1123 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
1125 u32 high_crc
= ~(u32
)0;
1126 u32 low_crc
= ~(u32
)0;
1129 lenum
= cpu_to_le64(root_objectid
);
1130 high_crc
= btrfs_crc32c(high_crc
, &lenum
, sizeof(lenum
));
1131 lenum
= cpu_to_le64(owner
);
1132 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1133 lenum
= cpu_to_le64(offset
);
1134 low_crc
= btrfs_crc32c(low_crc
, &lenum
, sizeof(lenum
));
1136 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
1139 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
1140 struct btrfs_extent_data_ref
*ref
)
1142 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
1143 btrfs_extent_data_ref_objectid(leaf
, ref
),
1144 btrfs_extent_data_ref_offset(leaf
, ref
));
1147 static int match_extent_data_ref(struct extent_buffer
*leaf
,
1148 struct btrfs_extent_data_ref
*ref
,
1149 u64 root_objectid
, u64 owner
, u64 offset
)
1151 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
1152 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
1153 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
1158 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
1159 struct btrfs_root
*root
,
1160 struct btrfs_path
*path
,
1161 u64 bytenr
, u64 parent
,
1163 u64 owner
, u64 offset
)
1165 struct btrfs_key key
;
1166 struct btrfs_extent_data_ref
*ref
;
1167 struct extent_buffer
*leaf
;
1173 key
.objectid
= bytenr
;
1175 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1176 key
.offset
= parent
;
1178 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1179 key
.offset
= hash_extent_data_ref(root_objectid
,
1184 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1193 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1194 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1195 btrfs_release_path(path
);
1196 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1207 leaf
= path
->nodes
[0];
1208 nritems
= btrfs_header_nritems(leaf
);
1210 if (path
->slots
[0] >= nritems
) {
1211 ret
= btrfs_next_leaf(root
, path
);
1217 leaf
= path
->nodes
[0];
1218 nritems
= btrfs_header_nritems(leaf
);
1222 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1223 if (key
.objectid
!= bytenr
||
1224 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1227 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1228 struct btrfs_extent_data_ref
);
1230 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1233 btrfs_release_path(path
);
1245 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1246 struct btrfs_root
*root
,
1247 struct btrfs_path
*path
,
1248 u64 bytenr
, u64 parent
,
1249 u64 root_objectid
, u64 owner
,
1250 u64 offset
, int refs_to_add
)
1252 struct btrfs_key key
;
1253 struct extent_buffer
*leaf
;
1258 key
.objectid
= bytenr
;
1260 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1261 key
.offset
= parent
;
1262 size
= sizeof(struct btrfs_shared_data_ref
);
1264 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1265 key
.offset
= hash_extent_data_ref(root_objectid
,
1267 size
= sizeof(struct btrfs_extent_data_ref
);
1270 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1271 if (ret
&& ret
!= -EEXIST
)
1274 leaf
= path
->nodes
[0];
1276 struct btrfs_shared_data_ref
*ref
;
1277 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1278 struct btrfs_shared_data_ref
);
1280 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1282 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1283 num_refs
+= refs_to_add
;
1284 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1287 struct btrfs_extent_data_ref
*ref
;
1288 while (ret
== -EEXIST
) {
1289 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1290 struct btrfs_extent_data_ref
);
1291 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1294 btrfs_release_path(path
);
1296 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1298 if (ret
&& ret
!= -EEXIST
)
1301 leaf
= path
->nodes
[0];
1303 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1304 struct btrfs_extent_data_ref
);
1306 btrfs_set_extent_data_ref_root(leaf
, ref
,
1308 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1309 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1310 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1312 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1313 num_refs
+= refs_to_add
;
1314 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1317 btrfs_mark_buffer_dirty(leaf
);
1320 btrfs_release_path(path
);
1324 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1325 struct btrfs_root
*root
,
1326 struct btrfs_path
*path
,
1327 int refs_to_drop
, int *last_ref
)
1329 struct btrfs_key key
;
1330 struct btrfs_extent_data_ref
*ref1
= NULL
;
1331 struct btrfs_shared_data_ref
*ref2
= NULL
;
1332 struct extent_buffer
*leaf
;
1336 leaf
= path
->nodes
[0];
1337 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1339 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1340 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1341 struct btrfs_extent_data_ref
);
1342 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1343 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1344 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1345 struct btrfs_shared_data_ref
);
1346 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1347 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1348 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1349 struct btrfs_extent_ref_v0
*ref0
;
1350 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1351 struct btrfs_extent_ref_v0
);
1352 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1358 BUG_ON(num_refs
< refs_to_drop
);
1359 num_refs
-= refs_to_drop
;
1361 if (num_refs
== 0) {
1362 ret
= btrfs_del_item(trans
, root
, path
);
1365 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1366 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1367 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1368 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1369 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1371 struct btrfs_extent_ref_v0
*ref0
;
1372 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1373 struct btrfs_extent_ref_v0
);
1374 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1377 btrfs_mark_buffer_dirty(leaf
);
1382 static noinline u32
extent_data_ref_count(struct btrfs_path
*path
,
1383 struct btrfs_extent_inline_ref
*iref
)
1385 struct btrfs_key key
;
1386 struct extent_buffer
*leaf
;
1387 struct btrfs_extent_data_ref
*ref1
;
1388 struct btrfs_shared_data_ref
*ref2
;
1391 leaf
= path
->nodes
[0];
1392 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1394 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1395 BTRFS_EXTENT_DATA_REF_KEY
) {
1396 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1397 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1399 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1400 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1402 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1403 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1404 struct btrfs_extent_data_ref
);
1405 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1406 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1407 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1408 struct btrfs_shared_data_ref
);
1409 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1411 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1412 struct btrfs_extent_ref_v0
*ref0
;
1413 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1414 struct btrfs_extent_ref_v0
);
1415 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1423 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1424 struct btrfs_root
*root
,
1425 struct btrfs_path
*path
,
1426 u64 bytenr
, u64 parent
,
1429 struct btrfs_key key
;
1432 key
.objectid
= bytenr
;
1434 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1435 key
.offset
= parent
;
1437 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1438 key
.offset
= root_objectid
;
1441 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1444 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1445 if (ret
== -ENOENT
&& parent
) {
1446 btrfs_release_path(path
);
1447 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1448 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1456 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1457 struct btrfs_root
*root
,
1458 struct btrfs_path
*path
,
1459 u64 bytenr
, u64 parent
,
1462 struct btrfs_key key
;
1465 key
.objectid
= bytenr
;
1467 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1468 key
.offset
= parent
;
1470 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1471 key
.offset
= root_objectid
;
1474 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1475 btrfs_release_path(path
);
1479 static inline int extent_ref_type(u64 parent
, u64 owner
)
1482 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1484 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1486 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1489 type
= BTRFS_SHARED_DATA_REF_KEY
;
1491 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1496 static int find_next_key(struct btrfs_path
*path
, int level
,
1497 struct btrfs_key
*key
)
1500 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1501 if (!path
->nodes
[level
])
1503 if (path
->slots
[level
] + 1 >=
1504 btrfs_header_nritems(path
->nodes
[level
]))
1507 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1508 path
->slots
[level
] + 1);
1510 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1511 path
->slots
[level
] + 1);
1518 * look for inline back ref. if back ref is found, *ref_ret is set
1519 * to the address of inline back ref, and 0 is returned.
1521 * if back ref isn't found, *ref_ret is set to the address where it
1522 * should be inserted, and -ENOENT is returned.
1524 * if insert is true and there are too many inline back refs, the path
1525 * points to the extent item, and -EAGAIN is returned.
1527 * NOTE: inline back refs are ordered in the same way that back ref
1528 * items in the tree are ordered.
1530 static noinline_for_stack
1531 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1532 struct btrfs_root
*root
,
1533 struct btrfs_path
*path
,
1534 struct btrfs_extent_inline_ref
**ref_ret
,
1535 u64 bytenr
, u64 num_bytes
,
1536 u64 parent
, u64 root_objectid
,
1537 u64 owner
, u64 offset
, int insert
)
1539 struct btrfs_key key
;
1540 struct extent_buffer
*leaf
;
1541 struct btrfs_extent_item
*ei
;
1542 struct btrfs_extent_inline_ref
*iref
;
1552 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
1555 key
.objectid
= bytenr
;
1556 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1557 key
.offset
= num_bytes
;
1559 want
= extent_ref_type(parent
, owner
);
1561 extra_size
= btrfs_extent_inline_ref_size(want
);
1562 path
->keep_locks
= 1;
1567 * Owner is our parent level, so we can just add one to get the level
1568 * for the block we are interested in.
1570 if (skinny_metadata
&& owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1571 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1576 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1583 * We may be a newly converted file system which still has the old fat
1584 * extent entries for metadata, so try and see if we have one of those.
1586 if (ret
> 0 && skinny_metadata
) {
1587 skinny_metadata
= false;
1588 if (path
->slots
[0]) {
1590 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1592 if (key
.objectid
== bytenr
&&
1593 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
1594 key
.offset
== num_bytes
)
1598 key
.objectid
= bytenr
;
1599 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1600 key
.offset
= num_bytes
;
1601 btrfs_release_path(path
);
1606 if (ret
&& !insert
) {
1609 } else if (WARN_ON(ret
)) {
1614 leaf
= path
->nodes
[0];
1615 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1616 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1617 if (item_size
< sizeof(*ei
)) {
1622 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1628 leaf
= path
->nodes
[0];
1629 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1632 BUG_ON(item_size
< sizeof(*ei
));
1634 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1635 flags
= btrfs_extent_flags(leaf
, ei
);
1637 ptr
= (unsigned long)(ei
+ 1);
1638 end
= (unsigned long)ei
+ item_size
;
1640 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
&& !skinny_metadata
) {
1641 ptr
+= sizeof(struct btrfs_tree_block_info
);
1651 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1652 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1656 ptr
+= btrfs_extent_inline_ref_size(type
);
1660 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1661 struct btrfs_extent_data_ref
*dref
;
1662 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1663 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1668 if (hash_extent_data_ref_item(leaf
, dref
) <
1669 hash_extent_data_ref(root_objectid
, owner
, offset
))
1673 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1675 if (parent
== ref_offset
) {
1679 if (ref_offset
< parent
)
1682 if (root_objectid
== ref_offset
) {
1686 if (ref_offset
< root_objectid
)
1690 ptr
+= btrfs_extent_inline_ref_size(type
);
1692 if (err
== -ENOENT
&& insert
) {
1693 if (item_size
+ extra_size
>=
1694 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1699 * To add new inline back ref, we have to make sure
1700 * there is no corresponding back ref item.
1701 * For simplicity, we just do not add new inline back
1702 * ref if there is any kind of item for this block
1704 if (find_next_key(path
, 0, &key
) == 0 &&
1705 key
.objectid
== bytenr
&&
1706 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1711 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1714 path
->keep_locks
= 0;
1715 btrfs_unlock_up_safe(path
, 1);
1721 * helper to add new inline back ref
1723 static noinline_for_stack
1724 void setup_inline_extent_backref(struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 struct btrfs_extent_inline_ref
*iref
,
1727 u64 parent
, u64 root_objectid
,
1728 u64 owner
, u64 offset
, int refs_to_add
,
1729 struct btrfs_delayed_extent_op
*extent_op
)
1731 struct extent_buffer
*leaf
;
1732 struct btrfs_extent_item
*ei
;
1735 unsigned long item_offset
;
1740 leaf
= path
->nodes
[0];
1741 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1742 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1744 type
= extent_ref_type(parent
, owner
);
1745 size
= btrfs_extent_inline_ref_size(type
);
1747 btrfs_extend_item(root
, path
, size
);
1749 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1750 refs
= btrfs_extent_refs(leaf
, ei
);
1751 refs
+= refs_to_add
;
1752 btrfs_set_extent_refs(leaf
, ei
, refs
);
1754 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1756 ptr
= (unsigned long)ei
+ item_offset
;
1757 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1758 if (ptr
< end
- size
)
1759 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1762 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1763 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1764 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1765 struct btrfs_extent_data_ref
*dref
;
1766 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1767 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1768 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1769 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1770 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1771 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1772 struct btrfs_shared_data_ref
*sref
;
1773 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1774 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1775 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1776 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1777 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1779 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1781 btrfs_mark_buffer_dirty(leaf
);
1784 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1785 struct btrfs_root
*root
,
1786 struct btrfs_path
*path
,
1787 struct btrfs_extent_inline_ref
**ref_ret
,
1788 u64 bytenr
, u64 num_bytes
, u64 parent
,
1789 u64 root_objectid
, u64 owner
, u64 offset
)
1793 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1794 bytenr
, num_bytes
, parent
,
1795 root_objectid
, owner
, offset
, 0);
1799 btrfs_release_path(path
);
1802 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1803 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1806 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1807 root_objectid
, owner
, offset
);
1813 * helper to update/remove inline back ref
1815 static noinline_for_stack
1816 void update_inline_extent_backref(struct btrfs_root
*root
,
1817 struct btrfs_path
*path
,
1818 struct btrfs_extent_inline_ref
*iref
,
1820 struct btrfs_delayed_extent_op
*extent_op
,
1823 struct extent_buffer
*leaf
;
1824 struct btrfs_extent_item
*ei
;
1825 struct btrfs_extent_data_ref
*dref
= NULL
;
1826 struct btrfs_shared_data_ref
*sref
= NULL
;
1834 leaf
= path
->nodes
[0];
1835 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1836 refs
= btrfs_extent_refs(leaf
, ei
);
1837 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1838 refs
+= refs_to_mod
;
1839 btrfs_set_extent_refs(leaf
, ei
, refs
);
1841 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1843 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1845 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1846 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1847 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1848 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1849 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1850 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1853 BUG_ON(refs_to_mod
!= -1);
1856 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1857 refs
+= refs_to_mod
;
1860 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1861 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1863 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1866 size
= btrfs_extent_inline_ref_size(type
);
1867 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1868 ptr
= (unsigned long)iref
;
1869 end
= (unsigned long)ei
+ item_size
;
1870 if (ptr
+ size
< end
)
1871 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1874 btrfs_truncate_item(root
, path
, item_size
, 1);
1876 btrfs_mark_buffer_dirty(leaf
);
1879 static noinline_for_stack
1880 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1881 struct btrfs_root
*root
,
1882 struct btrfs_path
*path
,
1883 u64 bytenr
, u64 num_bytes
, u64 parent
,
1884 u64 root_objectid
, u64 owner
,
1885 u64 offset
, int refs_to_add
,
1886 struct btrfs_delayed_extent_op
*extent_op
)
1888 struct btrfs_extent_inline_ref
*iref
;
1891 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1892 bytenr
, num_bytes
, parent
,
1893 root_objectid
, owner
, offset
, 1);
1895 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1896 update_inline_extent_backref(root
, path
, iref
,
1897 refs_to_add
, extent_op
, NULL
);
1898 } else if (ret
== -ENOENT
) {
1899 setup_inline_extent_backref(root
, path
, iref
, parent
,
1900 root_objectid
, owner
, offset
,
1901 refs_to_add
, extent_op
);
1907 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1908 struct btrfs_root
*root
,
1909 struct btrfs_path
*path
,
1910 u64 bytenr
, u64 parent
, u64 root_objectid
,
1911 u64 owner
, u64 offset
, int refs_to_add
)
1914 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1915 BUG_ON(refs_to_add
!= 1);
1916 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1917 parent
, root_objectid
);
1919 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1920 parent
, root_objectid
,
1921 owner
, offset
, refs_to_add
);
1926 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1927 struct btrfs_root
*root
,
1928 struct btrfs_path
*path
,
1929 struct btrfs_extent_inline_ref
*iref
,
1930 int refs_to_drop
, int is_data
, int *last_ref
)
1934 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1936 update_inline_extent_backref(root
, path
, iref
,
1937 -refs_to_drop
, NULL
, last_ref
);
1938 } else if (is_data
) {
1939 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
,
1943 ret
= btrfs_del_item(trans
, root
, path
);
1948 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1949 static int btrfs_issue_discard(struct block_device
*bdev
, u64 start
, u64 len
,
1950 u64
*discarded_bytes
)
1953 u64 bytes_left
, end
;
1954 u64 aligned_start
= ALIGN(start
, 1 << 9);
1956 if (WARN_ON(start
!= aligned_start
)) {
1957 len
-= aligned_start
- start
;
1958 len
= round_down(len
, 1 << 9);
1959 start
= aligned_start
;
1962 *discarded_bytes
= 0;
1970 /* Skip any superblocks on this device. */
1971 for (j
= 0; j
< BTRFS_SUPER_MIRROR_MAX
; j
++) {
1972 u64 sb_start
= btrfs_sb_offset(j
);
1973 u64 sb_end
= sb_start
+ BTRFS_SUPER_INFO_SIZE
;
1974 u64 size
= sb_start
- start
;
1976 if (!in_range(sb_start
, start
, bytes_left
) &&
1977 !in_range(sb_end
, start
, bytes_left
) &&
1978 !in_range(start
, sb_start
, BTRFS_SUPER_INFO_SIZE
))
1982 * Superblock spans beginning of range. Adjust start and
1985 if (sb_start
<= start
) {
1986 start
+= sb_end
- start
;
1991 bytes_left
= end
- start
;
1996 ret
= blkdev_issue_discard(bdev
, start
>> 9, size
>> 9,
1999 *discarded_bytes
+= size
;
2000 else if (ret
!= -EOPNOTSUPP
)
2009 bytes_left
= end
- start
;
2013 ret
= blkdev_issue_discard(bdev
, start
>> 9, bytes_left
>> 9,
2016 *discarded_bytes
+= bytes_left
;
2021 int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
2022 u64 num_bytes
, u64
*actual_bytes
)
2025 u64 discarded_bytes
= 0;
2026 struct btrfs_bio
*bbio
= NULL
;
2029 /* Tell the block device(s) that the sectors can be discarded */
2030 ret
= btrfs_map_block(root
->fs_info
, REQ_DISCARD
,
2031 bytenr
, &num_bytes
, &bbio
, 0);
2032 /* Error condition is -ENOMEM */
2034 struct btrfs_bio_stripe
*stripe
= bbio
->stripes
;
2038 for (i
= 0; i
< bbio
->num_stripes
; i
++, stripe
++) {
2040 if (!stripe
->dev
->can_discard
)
2043 ret
= btrfs_issue_discard(stripe
->dev
->bdev
,
2048 discarded_bytes
+= bytes
;
2049 else if (ret
!= -EOPNOTSUPP
)
2050 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2053 * Just in case we get back EOPNOTSUPP for some reason,
2054 * just ignore the return value so we don't screw up
2055 * people calling discard_extent.
2059 btrfs_put_bbio(bbio
);
2063 *actual_bytes
= discarded_bytes
;
2066 if (ret
== -EOPNOTSUPP
)
2071 /* Can return -ENOMEM */
2072 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2073 struct btrfs_root
*root
,
2074 u64 bytenr
, u64 num_bytes
, u64 parent
,
2075 u64 root_objectid
, u64 owner
, u64 offset
)
2078 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2080 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
2081 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
2083 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
2084 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
2086 parent
, root_objectid
, (int)owner
,
2087 BTRFS_ADD_DELAYED_REF
, NULL
);
2089 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
2090 num_bytes
, parent
, root_objectid
,
2092 BTRFS_ADD_DELAYED_REF
, NULL
);
2097 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
2098 struct btrfs_root
*root
,
2099 struct btrfs_delayed_ref_node
*node
,
2100 u64 parent
, u64 root_objectid
,
2101 u64 owner
, u64 offset
, int refs_to_add
,
2102 struct btrfs_delayed_extent_op
*extent_op
)
2104 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2105 struct btrfs_path
*path
;
2106 struct extent_buffer
*leaf
;
2107 struct btrfs_extent_item
*item
;
2108 struct btrfs_key key
;
2109 u64 bytenr
= node
->bytenr
;
2110 u64 num_bytes
= node
->num_bytes
;
2114 path
= btrfs_alloc_path();
2119 path
->leave_spinning
= 1;
2120 /* this will setup the path even if it fails to insert the back ref */
2121 ret
= insert_inline_extent_backref(trans
, fs_info
->extent_root
, path
,
2122 bytenr
, num_bytes
, parent
,
2123 root_objectid
, owner
, offset
,
2124 refs_to_add
, extent_op
);
2125 if ((ret
< 0 && ret
!= -EAGAIN
) || !ret
)
2129 * Ok we had -EAGAIN which means we didn't have space to insert and
2130 * inline extent ref, so just update the reference count and add a
2133 leaf
= path
->nodes
[0];
2134 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2135 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2136 refs
= btrfs_extent_refs(leaf
, item
);
2137 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
2139 __run_delayed_extent_op(extent_op
, leaf
, item
);
2141 btrfs_mark_buffer_dirty(leaf
);
2142 btrfs_release_path(path
);
2145 path
->leave_spinning
= 1;
2146 /* now insert the actual backref */
2147 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
2148 path
, bytenr
, parent
, root_objectid
,
2149 owner
, offset
, refs_to_add
);
2151 btrfs_abort_transaction(trans
, root
, ret
);
2153 btrfs_free_path(path
);
2157 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
2158 struct btrfs_root
*root
,
2159 struct btrfs_delayed_ref_node
*node
,
2160 struct btrfs_delayed_extent_op
*extent_op
,
2161 int insert_reserved
)
2164 struct btrfs_delayed_data_ref
*ref
;
2165 struct btrfs_key ins
;
2170 ins
.objectid
= node
->bytenr
;
2171 ins
.offset
= node
->num_bytes
;
2172 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2174 ref
= btrfs_delayed_node_to_data_ref(node
);
2175 trace_run_delayed_data_ref(node
, ref
, node
->action
);
2177 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2178 parent
= ref
->parent
;
2179 ref_root
= ref
->root
;
2181 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2183 flags
|= extent_op
->flags_to_set
;
2184 ret
= alloc_reserved_file_extent(trans
, root
,
2185 parent
, ref_root
, flags
,
2186 ref
->objectid
, ref
->offset
,
2187 &ins
, node
->ref_mod
);
2188 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2189 ret
= __btrfs_inc_extent_ref(trans
, root
, node
, parent
,
2190 ref_root
, ref
->objectid
,
2191 ref
->offset
, node
->ref_mod
,
2193 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2194 ret
= __btrfs_free_extent(trans
, root
, node
, parent
,
2195 ref_root
, ref
->objectid
,
2196 ref
->offset
, node
->ref_mod
,
2204 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
2205 struct extent_buffer
*leaf
,
2206 struct btrfs_extent_item
*ei
)
2208 u64 flags
= btrfs_extent_flags(leaf
, ei
);
2209 if (extent_op
->update_flags
) {
2210 flags
|= extent_op
->flags_to_set
;
2211 btrfs_set_extent_flags(leaf
, ei
, flags
);
2214 if (extent_op
->update_key
) {
2215 struct btrfs_tree_block_info
*bi
;
2216 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
2217 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
2218 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
2222 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
2223 struct btrfs_root
*root
,
2224 struct btrfs_delayed_ref_node
*node
,
2225 struct btrfs_delayed_extent_op
*extent_op
)
2227 struct btrfs_key key
;
2228 struct btrfs_path
*path
;
2229 struct btrfs_extent_item
*ei
;
2230 struct extent_buffer
*leaf
;
2234 int metadata
= !extent_op
->is_data
;
2239 if (metadata
&& !btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2242 path
= btrfs_alloc_path();
2246 key
.objectid
= node
->bytenr
;
2249 key
.type
= BTRFS_METADATA_ITEM_KEY
;
2250 key
.offset
= extent_op
->level
;
2252 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2253 key
.offset
= node
->num_bytes
;
2258 path
->leave_spinning
= 1;
2259 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
2267 if (path
->slots
[0] > 0) {
2269 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
2271 if (key
.objectid
== node
->bytenr
&&
2272 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
2273 key
.offset
== node
->num_bytes
)
2277 btrfs_release_path(path
);
2280 key
.objectid
= node
->bytenr
;
2281 key
.offset
= node
->num_bytes
;
2282 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2291 leaf
= path
->nodes
[0];
2292 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2293 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2294 if (item_size
< sizeof(*ei
)) {
2295 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
2301 leaf
= path
->nodes
[0];
2302 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2305 BUG_ON(item_size
< sizeof(*ei
));
2306 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2307 __run_delayed_extent_op(extent_op
, leaf
, ei
);
2309 btrfs_mark_buffer_dirty(leaf
);
2311 btrfs_free_path(path
);
2315 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
2316 struct btrfs_root
*root
,
2317 struct btrfs_delayed_ref_node
*node
,
2318 struct btrfs_delayed_extent_op
*extent_op
,
2319 int insert_reserved
)
2322 struct btrfs_delayed_tree_ref
*ref
;
2323 struct btrfs_key ins
;
2326 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
2329 ref
= btrfs_delayed_node_to_tree_ref(node
);
2330 trace_run_delayed_tree_ref(node
, ref
, node
->action
);
2332 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2333 parent
= ref
->parent
;
2334 ref_root
= ref
->root
;
2336 ins
.objectid
= node
->bytenr
;
2337 if (skinny_metadata
) {
2338 ins
.offset
= ref
->level
;
2339 ins
.type
= BTRFS_METADATA_ITEM_KEY
;
2341 ins
.offset
= node
->num_bytes
;
2342 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2345 if (node
->ref_mod
!= 1) {
2346 btrfs_err(root
->fs_info
,
2347 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2348 node
->bytenr
, node
->ref_mod
, node
->action
, ref_root
,
2352 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2353 BUG_ON(!extent_op
|| !extent_op
->update_flags
);
2354 ret
= alloc_reserved_tree_block(trans
, root
,
2356 extent_op
->flags_to_set
,
2359 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2360 ret
= __btrfs_inc_extent_ref(trans
, root
, node
,
2364 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2365 ret
= __btrfs_free_extent(trans
, root
, node
,
2367 ref
->level
, 0, 1, extent_op
);
2374 /* helper function to actually process a single delayed ref entry */
2375 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2376 struct btrfs_root
*root
,
2377 struct btrfs_delayed_ref_node
*node
,
2378 struct btrfs_delayed_extent_op
*extent_op
,
2379 int insert_reserved
)
2383 if (trans
->aborted
) {
2384 if (insert_reserved
)
2385 btrfs_pin_extent(root
, node
->bytenr
,
2386 node
->num_bytes
, 1);
2390 if (btrfs_delayed_ref_is_head(node
)) {
2391 struct btrfs_delayed_ref_head
*head
;
2393 * we've hit the end of the chain and we were supposed
2394 * to insert this extent into the tree. But, it got
2395 * deleted before we ever needed to insert it, so all
2396 * we have to do is clean up the accounting
2399 head
= btrfs_delayed_node_to_head(node
);
2400 trace_run_delayed_ref_head(node
, head
, node
->action
);
2402 if (insert_reserved
) {
2403 btrfs_pin_extent(root
, node
->bytenr
,
2404 node
->num_bytes
, 1);
2405 if (head
->is_data
) {
2406 ret
= btrfs_del_csums(trans
, root
,
2412 /* Also free its reserved qgroup space */
2413 btrfs_qgroup_free_delayed_ref(root
->fs_info
,
2414 head
->qgroup_ref_root
,
2415 head
->qgroup_reserved
);
2419 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2420 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2421 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2423 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2424 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2425 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2432 static inline struct btrfs_delayed_ref_node
*
2433 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2435 struct btrfs_delayed_ref_node
*ref
;
2437 if (list_empty(&head
->ref_list
))
2441 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2442 * This is to prevent a ref count from going down to zero, which deletes
2443 * the extent item from the extent tree, when there still are references
2444 * to add, which would fail because they would not find the extent item.
2446 list_for_each_entry(ref
, &head
->ref_list
, list
) {
2447 if (ref
->action
== BTRFS_ADD_DELAYED_REF
)
2451 return list_entry(head
->ref_list
.next
, struct btrfs_delayed_ref_node
,
2456 * Returns 0 on success or if called with an already aborted transaction.
2457 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2459 static noinline
int __btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2460 struct btrfs_root
*root
,
2463 struct btrfs_delayed_ref_root
*delayed_refs
;
2464 struct btrfs_delayed_ref_node
*ref
;
2465 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2466 struct btrfs_delayed_extent_op
*extent_op
;
2467 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2468 ktime_t start
= ktime_get();
2470 unsigned long count
= 0;
2471 unsigned long actual_count
= 0;
2472 int must_insert_reserved
= 0;
2474 delayed_refs
= &trans
->transaction
->delayed_refs
;
2480 spin_lock(&delayed_refs
->lock
);
2481 locked_ref
= btrfs_select_ref_head(trans
);
2483 spin_unlock(&delayed_refs
->lock
);
2487 /* grab the lock that says we are going to process
2488 * all the refs for this head */
2489 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2490 spin_unlock(&delayed_refs
->lock
);
2492 * we may have dropped the spin lock to get the head
2493 * mutex lock, and that might have given someone else
2494 * time to free the head. If that's true, it has been
2495 * removed from our list and we can move on.
2497 if (ret
== -EAGAIN
) {
2505 * We need to try and merge add/drops of the same ref since we
2506 * can run into issues with relocate dropping the implicit ref
2507 * and then it being added back again before the drop can
2508 * finish. If we merged anything we need to re-loop so we can
2510 * Or we can get node references of the same type that weren't
2511 * merged when created due to bumps in the tree mod seq, and
2512 * we need to merge them to prevent adding an inline extent
2513 * backref before dropping it (triggering a BUG_ON at
2514 * insert_inline_extent_backref()).
2516 spin_lock(&locked_ref
->lock
);
2517 btrfs_merge_delayed_refs(trans
, fs_info
, delayed_refs
,
2521 * locked_ref is the head node, so we have to go one
2522 * node back for any delayed ref updates
2524 ref
= select_delayed_ref(locked_ref
);
2526 if (ref
&& ref
->seq
&&
2527 btrfs_check_delayed_seq(fs_info
, delayed_refs
, ref
->seq
)) {
2528 spin_unlock(&locked_ref
->lock
);
2529 spin_lock(&delayed_refs
->lock
);
2530 locked_ref
->processing
= 0;
2531 delayed_refs
->num_heads_ready
++;
2532 spin_unlock(&delayed_refs
->lock
);
2533 btrfs_delayed_ref_unlock(locked_ref
);
2541 * record the must insert reserved flag before we
2542 * drop the spin lock.
2544 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2545 locked_ref
->must_insert_reserved
= 0;
2547 extent_op
= locked_ref
->extent_op
;
2548 locked_ref
->extent_op
= NULL
;
2553 /* All delayed refs have been processed, Go ahead
2554 * and send the head node to run_one_delayed_ref,
2555 * so that any accounting fixes can happen
2557 ref
= &locked_ref
->node
;
2559 if (extent_op
&& must_insert_reserved
) {
2560 btrfs_free_delayed_extent_op(extent_op
);
2565 spin_unlock(&locked_ref
->lock
);
2566 ret
= run_delayed_extent_op(trans
, root
,
2568 btrfs_free_delayed_extent_op(extent_op
);
2572 * Need to reset must_insert_reserved if
2573 * there was an error so the abort stuff
2574 * can cleanup the reserved space
2577 if (must_insert_reserved
)
2578 locked_ref
->must_insert_reserved
= 1;
2579 spin_lock(&delayed_refs
->lock
);
2580 locked_ref
->processing
= 0;
2581 delayed_refs
->num_heads_ready
++;
2582 spin_unlock(&delayed_refs
->lock
);
2583 btrfs_debug(fs_info
, "run_delayed_extent_op returned %d", ret
);
2584 btrfs_delayed_ref_unlock(locked_ref
);
2591 * Need to drop our head ref lock and re-aqcuire the
2592 * delayed ref lock and then re-check to make sure
2595 spin_unlock(&locked_ref
->lock
);
2596 spin_lock(&delayed_refs
->lock
);
2597 spin_lock(&locked_ref
->lock
);
2598 if (!list_empty(&locked_ref
->ref_list
) ||
2599 locked_ref
->extent_op
) {
2600 spin_unlock(&locked_ref
->lock
);
2601 spin_unlock(&delayed_refs
->lock
);
2605 delayed_refs
->num_heads
--;
2606 rb_erase(&locked_ref
->href_node
,
2607 &delayed_refs
->href_root
);
2608 spin_unlock(&delayed_refs
->lock
);
2612 list_del(&ref
->list
);
2614 atomic_dec(&delayed_refs
->num_entries
);
2616 if (!btrfs_delayed_ref_is_head(ref
)) {
2618 * when we play the delayed ref, also correct the
2621 switch (ref
->action
) {
2622 case BTRFS_ADD_DELAYED_REF
:
2623 case BTRFS_ADD_DELAYED_EXTENT
:
2624 locked_ref
->node
.ref_mod
-= ref
->ref_mod
;
2626 case BTRFS_DROP_DELAYED_REF
:
2627 locked_ref
->node
.ref_mod
+= ref
->ref_mod
;
2633 spin_unlock(&locked_ref
->lock
);
2635 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2636 must_insert_reserved
);
2638 btrfs_free_delayed_extent_op(extent_op
);
2640 locked_ref
->processing
= 0;
2641 btrfs_delayed_ref_unlock(locked_ref
);
2642 btrfs_put_delayed_ref(ref
);
2643 btrfs_debug(fs_info
, "run_one_delayed_ref returned %d", ret
);
2648 * If this node is a head, that means all the refs in this head
2649 * have been dealt with, and we will pick the next head to deal
2650 * with, so we must unlock the head and drop it from the cluster
2651 * list before we release it.
2653 if (btrfs_delayed_ref_is_head(ref
)) {
2654 if (locked_ref
->is_data
&&
2655 locked_ref
->total_ref_mod
< 0) {
2656 spin_lock(&delayed_refs
->lock
);
2657 delayed_refs
->pending_csums
-= ref
->num_bytes
;
2658 spin_unlock(&delayed_refs
->lock
);
2660 btrfs_delayed_ref_unlock(locked_ref
);
2663 btrfs_put_delayed_ref(ref
);
2669 * We don't want to include ref heads since we can have empty ref heads
2670 * and those will drastically skew our runtime down since we just do
2671 * accounting, no actual extent tree updates.
2673 if (actual_count
> 0) {
2674 u64 runtime
= ktime_to_ns(ktime_sub(ktime_get(), start
));
2678 * We weigh the current average higher than our current runtime
2679 * to avoid large swings in the average.
2681 spin_lock(&delayed_refs
->lock
);
2682 avg
= fs_info
->avg_delayed_ref_runtime
* 3 + runtime
;
2683 fs_info
->avg_delayed_ref_runtime
= avg
>> 2; /* div by 4 */
2684 spin_unlock(&delayed_refs
->lock
);
2689 #ifdef SCRAMBLE_DELAYED_REFS
2691 * Normally delayed refs get processed in ascending bytenr order. This
2692 * correlates in most cases to the order added. To expose dependencies on this
2693 * order, we start to process the tree in the middle instead of the beginning
2695 static u64
find_middle(struct rb_root
*root
)
2697 struct rb_node
*n
= root
->rb_node
;
2698 struct btrfs_delayed_ref_node
*entry
;
2701 u64 first
= 0, last
= 0;
2705 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2706 first
= entry
->bytenr
;
2710 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2711 last
= entry
->bytenr
;
2716 entry
= rb_entry(n
, struct btrfs_delayed_ref_node
, rb_node
);
2717 WARN_ON(!entry
->in_tree
);
2719 middle
= entry
->bytenr
;
2732 static inline u64
heads_to_leaves(struct btrfs_root
*root
, u64 heads
)
2736 num_bytes
= heads
* (sizeof(struct btrfs_extent_item
) +
2737 sizeof(struct btrfs_extent_inline_ref
));
2738 if (!btrfs_fs_incompat(root
->fs_info
, SKINNY_METADATA
))
2739 num_bytes
+= heads
* sizeof(struct btrfs_tree_block_info
);
2742 * We don't ever fill up leaves all the way so multiply by 2 just to be
2743 * closer to what we're really going to want to ouse.
2745 return div_u64(num_bytes
, BTRFS_LEAF_DATA_SIZE(root
));
2749 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2750 * would require to store the csums for that many bytes.
2752 u64
btrfs_csum_bytes_to_leaves(struct btrfs_root
*root
, u64 csum_bytes
)
2755 u64 num_csums_per_leaf
;
2758 csum_size
= BTRFS_LEAF_DATA_SIZE(root
) - sizeof(struct btrfs_item
);
2759 num_csums_per_leaf
= div64_u64(csum_size
,
2760 (u64
)btrfs_super_csum_size(root
->fs_info
->super_copy
));
2761 num_csums
= div64_u64(csum_bytes
, root
->sectorsize
);
2762 num_csums
+= num_csums_per_leaf
- 1;
2763 num_csums
= div64_u64(num_csums
, num_csums_per_leaf
);
2767 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle
*trans
,
2768 struct btrfs_root
*root
)
2770 struct btrfs_block_rsv
*global_rsv
;
2771 u64 num_heads
= trans
->transaction
->delayed_refs
.num_heads_ready
;
2772 u64 csum_bytes
= trans
->transaction
->delayed_refs
.pending_csums
;
2773 u64 num_dirty_bgs
= trans
->transaction
->num_dirty_bgs
;
2774 u64 num_bytes
, num_dirty_bgs_bytes
;
2777 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
2778 num_heads
= heads_to_leaves(root
, num_heads
);
2780 num_bytes
+= (num_heads
- 1) * root
->nodesize
;
2782 num_bytes
+= btrfs_csum_bytes_to_leaves(root
, csum_bytes
) * root
->nodesize
;
2783 num_dirty_bgs_bytes
= btrfs_calc_trans_metadata_size(root
,
2785 global_rsv
= &root
->fs_info
->global_block_rsv
;
2788 * If we can't allocate any more chunks lets make sure we have _lots_ of
2789 * wiggle room since running delayed refs can create more delayed refs.
2791 if (global_rsv
->space_info
->full
) {
2792 num_dirty_bgs_bytes
<<= 1;
2796 spin_lock(&global_rsv
->lock
);
2797 if (global_rsv
->reserved
<= num_bytes
+ num_dirty_bgs_bytes
)
2799 spin_unlock(&global_rsv
->lock
);
2803 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle
*trans
,
2804 struct btrfs_root
*root
)
2806 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2808 atomic_read(&trans
->transaction
->delayed_refs
.num_entries
);
2813 avg_runtime
= fs_info
->avg_delayed_ref_runtime
;
2814 val
= num_entries
* avg_runtime
;
2815 if (num_entries
* avg_runtime
>= NSEC_PER_SEC
)
2817 if (val
>= NSEC_PER_SEC
/ 2)
2820 return btrfs_check_space_for_delayed_refs(trans
, root
);
2823 struct async_delayed_refs
{
2824 struct btrfs_root
*root
;
2828 struct completion wait
;
2829 struct btrfs_work work
;
2832 static void delayed_ref_async_start(struct btrfs_work
*work
)
2834 struct async_delayed_refs
*async
;
2835 struct btrfs_trans_handle
*trans
;
2838 async
= container_of(work
, struct async_delayed_refs
, work
);
2840 trans
= btrfs_join_transaction(async
->root
);
2841 if (IS_ERR(trans
)) {
2842 async
->error
= PTR_ERR(trans
);
2847 * trans->sync means that when we call end_transaciton, we won't
2848 * wait on delayed refs
2851 ret
= btrfs_run_delayed_refs(trans
, async
->root
, async
->count
);
2855 ret
= btrfs_end_transaction(trans
, async
->root
);
2856 if (ret
&& !async
->error
)
2860 complete(&async
->wait
);
2865 int btrfs_async_run_delayed_refs(struct btrfs_root
*root
,
2866 unsigned long count
, int wait
)
2868 struct async_delayed_refs
*async
;
2871 async
= kmalloc(sizeof(*async
), GFP_NOFS
);
2875 async
->root
= root
->fs_info
->tree_root
;
2876 async
->count
= count
;
2882 init_completion(&async
->wait
);
2884 btrfs_init_work(&async
->work
, btrfs_extent_refs_helper
,
2885 delayed_ref_async_start
, NULL
, NULL
);
2887 btrfs_queue_work(root
->fs_info
->extent_workers
, &async
->work
);
2890 wait_for_completion(&async
->wait
);
2899 * this starts processing the delayed reference count updates and
2900 * extent insertions we have queued up so far. count can be
2901 * 0, which means to process everything in the tree at the start
2902 * of the run (but not newly added entries), or it can be some target
2903 * number you'd like to process.
2905 * Returns 0 on success or if called with an aborted transaction
2906 * Returns <0 on error and aborts the transaction
2908 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2909 struct btrfs_root
*root
, unsigned long count
)
2911 struct rb_node
*node
;
2912 struct btrfs_delayed_ref_root
*delayed_refs
;
2913 struct btrfs_delayed_ref_head
*head
;
2915 int run_all
= count
== (unsigned long)-1;
2916 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
2918 /* We'll clean this up in btrfs_cleanup_transaction */
2922 if (root
== root
->fs_info
->extent_root
)
2923 root
= root
->fs_info
->tree_root
;
2925 delayed_refs
= &trans
->transaction
->delayed_refs
;
2927 count
= atomic_read(&delayed_refs
->num_entries
) * 2;
2930 #ifdef SCRAMBLE_DELAYED_REFS
2931 delayed_refs
->run_delayed_start
= find_middle(&delayed_refs
->root
);
2933 trans
->can_flush_pending_bgs
= false;
2934 ret
= __btrfs_run_delayed_refs(trans
, root
, count
);
2936 btrfs_abort_transaction(trans
, root
, ret
);
2941 if (!list_empty(&trans
->new_bgs
))
2942 btrfs_create_pending_block_groups(trans
, root
);
2944 spin_lock(&delayed_refs
->lock
);
2945 node
= rb_first(&delayed_refs
->href_root
);
2947 spin_unlock(&delayed_refs
->lock
);
2950 count
= (unsigned long)-1;
2953 head
= rb_entry(node
, struct btrfs_delayed_ref_head
,
2955 if (btrfs_delayed_ref_is_head(&head
->node
)) {
2956 struct btrfs_delayed_ref_node
*ref
;
2959 atomic_inc(&ref
->refs
);
2961 spin_unlock(&delayed_refs
->lock
);
2963 * Mutex was contended, block until it's
2964 * released and try again
2966 mutex_lock(&head
->mutex
);
2967 mutex_unlock(&head
->mutex
);
2969 btrfs_put_delayed_ref(ref
);
2975 node
= rb_next(node
);
2977 spin_unlock(&delayed_refs
->lock
);
2982 assert_qgroups_uptodate(trans
);
2983 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
2987 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2988 struct btrfs_root
*root
,
2989 u64 bytenr
, u64 num_bytes
, u64 flags
,
2990 int level
, int is_data
)
2992 struct btrfs_delayed_extent_op
*extent_op
;
2995 extent_op
= btrfs_alloc_delayed_extent_op();
2999 extent_op
->flags_to_set
= flags
;
3000 extent_op
->update_flags
= 1;
3001 extent_op
->update_key
= 0;
3002 extent_op
->is_data
= is_data
? 1 : 0;
3003 extent_op
->level
= level
;
3005 ret
= btrfs_add_delayed_extent_op(root
->fs_info
, trans
, bytenr
,
3006 num_bytes
, extent_op
);
3008 btrfs_free_delayed_extent_op(extent_op
);
3012 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
3013 struct btrfs_root
*root
,
3014 struct btrfs_path
*path
,
3015 u64 objectid
, u64 offset
, u64 bytenr
)
3017 struct btrfs_delayed_ref_head
*head
;
3018 struct btrfs_delayed_ref_node
*ref
;
3019 struct btrfs_delayed_data_ref
*data_ref
;
3020 struct btrfs_delayed_ref_root
*delayed_refs
;
3023 delayed_refs
= &trans
->transaction
->delayed_refs
;
3024 spin_lock(&delayed_refs
->lock
);
3025 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
3027 spin_unlock(&delayed_refs
->lock
);
3031 if (!mutex_trylock(&head
->mutex
)) {
3032 atomic_inc(&head
->node
.refs
);
3033 spin_unlock(&delayed_refs
->lock
);
3035 btrfs_release_path(path
);
3038 * Mutex was contended, block until it's released and let
3041 mutex_lock(&head
->mutex
);
3042 mutex_unlock(&head
->mutex
);
3043 btrfs_put_delayed_ref(&head
->node
);
3046 spin_unlock(&delayed_refs
->lock
);
3048 spin_lock(&head
->lock
);
3049 list_for_each_entry(ref
, &head
->ref_list
, list
) {
3050 /* If it's a shared ref we know a cross reference exists */
3051 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
) {
3056 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
3059 * If our ref doesn't match the one we're currently looking at
3060 * then we have a cross reference.
3062 if (data_ref
->root
!= root
->root_key
.objectid
||
3063 data_ref
->objectid
!= objectid
||
3064 data_ref
->offset
!= offset
) {
3069 spin_unlock(&head
->lock
);
3070 mutex_unlock(&head
->mutex
);
3074 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
3075 struct btrfs_root
*root
,
3076 struct btrfs_path
*path
,
3077 u64 objectid
, u64 offset
, u64 bytenr
)
3079 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3080 struct extent_buffer
*leaf
;
3081 struct btrfs_extent_data_ref
*ref
;
3082 struct btrfs_extent_inline_ref
*iref
;
3083 struct btrfs_extent_item
*ei
;
3084 struct btrfs_key key
;
3088 key
.objectid
= bytenr
;
3089 key
.offset
= (u64
)-1;
3090 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3092 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
3095 BUG_ON(ret
== 0); /* Corruption */
3098 if (path
->slots
[0] == 0)
3102 leaf
= path
->nodes
[0];
3103 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3105 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
3109 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
3110 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3111 if (item_size
< sizeof(*ei
)) {
3112 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
3116 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
3118 if (item_size
!= sizeof(*ei
) +
3119 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
3122 if (btrfs_extent_generation(leaf
, ei
) <=
3123 btrfs_root_last_snapshot(&root
->root_item
))
3126 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
3127 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
3128 BTRFS_EXTENT_DATA_REF_KEY
)
3131 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
3132 if (btrfs_extent_refs(leaf
, ei
) !=
3133 btrfs_extent_data_ref_count(leaf
, ref
) ||
3134 btrfs_extent_data_ref_root(leaf
, ref
) !=
3135 root
->root_key
.objectid
||
3136 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
3137 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
3145 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
3146 struct btrfs_root
*root
,
3147 u64 objectid
, u64 offset
, u64 bytenr
)
3149 struct btrfs_path
*path
;
3153 path
= btrfs_alloc_path();
3158 ret
= check_committed_ref(trans
, root
, path
, objectid
,
3160 if (ret
&& ret
!= -ENOENT
)
3163 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
3165 } while (ret2
== -EAGAIN
);
3167 if (ret2
&& ret2
!= -ENOENT
) {
3172 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
3175 btrfs_free_path(path
);
3176 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
3181 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
3182 struct btrfs_root
*root
,
3183 struct extent_buffer
*buf
,
3184 int full_backref
, int inc
)
3191 struct btrfs_key key
;
3192 struct btrfs_file_extent_item
*fi
;
3196 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
3197 u64
, u64
, u64
, u64
, u64
, u64
);
3200 if (btrfs_test_is_dummy_root(root
))
3203 ref_root
= btrfs_header_owner(buf
);
3204 nritems
= btrfs_header_nritems(buf
);
3205 level
= btrfs_header_level(buf
);
3207 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) && level
== 0)
3211 process_func
= btrfs_inc_extent_ref
;
3213 process_func
= btrfs_free_extent
;
3216 parent
= buf
->start
;
3220 for (i
= 0; i
< nritems
; i
++) {
3222 btrfs_item_key_to_cpu(buf
, &key
, i
);
3223 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3225 fi
= btrfs_item_ptr(buf
, i
,
3226 struct btrfs_file_extent_item
);
3227 if (btrfs_file_extent_type(buf
, fi
) ==
3228 BTRFS_FILE_EXTENT_INLINE
)
3230 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
3234 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
3235 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
3236 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3237 parent
, ref_root
, key
.objectid
,
3242 bytenr
= btrfs_node_blockptr(buf
, i
);
3243 num_bytes
= root
->nodesize
;
3244 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
3245 parent
, ref_root
, level
- 1, 0);
3255 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3256 struct extent_buffer
*buf
, int full_backref
)
3258 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
3261 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3262 struct extent_buffer
*buf
, int full_backref
)
3264 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
3267 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
3268 struct btrfs_root
*root
,
3269 struct btrfs_path
*path
,
3270 struct btrfs_block_group_cache
*cache
)
3273 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
3275 struct extent_buffer
*leaf
;
3277 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
3284 leaf
= path
->nodes
[0];
3285 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3286 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
3287 btrfs_mark_buffer_dirty(leaf
);
3289 btrfs_release_path(path
);
3294 static struct btrfs_block_group_cache
*
3295 next_block_group(struct btrfs_root
*root
,
3296 struct btrfs_block_group_cache
*cache
)
3298 struct rb_node
*node
;
3300 spin_lock(&root
->fs_info
->block_group_cache_lock
);
3302 /* If our block group was removed, we need a full search. */
3303 if (RB_EMPTY_NODE(&cache
->cache_node
)) {
3304 const u64 next_bytenr
= cache
->key
.objectid
+ cache
->key
.offset
;
3306 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3307 btrfs_put_block_group(cache
);
3308 cache
= btrfs_lookup_first_block_group(root
->fs_info
,
3312 node
= rb_next(&cache
->cache_node
);
3313 btrfs_put_block_group(cache
);
3315 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
3317 btrfs_get_block_group(cache
);
3320 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
3324 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
3325 struct btrfs_trans_handle
*trans
,
3326 struct btrfs_path
*path
)
3328 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
3329 struct inode
*inode
= NULL
;
3331 int dcs
= BTRFS_DC_ERROR
;
3337 * If this block group is smaller than 100 megs don't bother caching the
3340 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
3341 spin_lock(&block_group
->lock
);
3342 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
3343 spin_unlock(&block_group
->lock
);
3350 inode
= lookup_free_space_inode(root
, block_group
, path
);
3351 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
3352 ret
= PTR_ERR(inode
);
3353 btrfs_release_path(path
);
3357 if (IS_ERR(inode
)) {
3361 if (block_group
->ro
)
3364 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
3371 * We want to set the generation to 0, that way if anything goes wrong
3372 * from here on out we know not to trust this cache when we load up next
3375 BTRFS_I(inode
)->generation
= 0;
3376 ret
= btrfs_update_inode(trans
, root
, inode
);
3379 * So theoretically we could recover from this, simply set the
3380 * super cache generation to 0 so we know to invalidate the
3381 * cache, but then we'd have to keep track of the block groups
3382 * that fail this way so we know we _have_ to reset this cache
3383 * before the next commit or risk reading stale cache. So to
3384 * limit our exposure to horrible edge cases lets just abort the
3385 * transaction, this only happens in really bad situations
3388 btrfs_abort_transaction(trans
, root
, ret
);
3393 /* We've already setup this transaction, go ahead and exit */
3394 if (block_group
->cache_generation
== trans
->transid
&&
3395 i_size_read(inode
)) {
3396 dcs
= BTRFS_DC_SETUP
;
3400 if (i_size_read(inode
) > 0) {
3401 ret
= btrfs_check_trunc_cache_free_space(root
,
3402 &root
->fs_info
->global_block_rsv
);
3406 ret
= btrfs_truncate_free_space_cache(root
, trans
, NULL
, inode
);
3411 spin_lock(&block_group
->lock
);
3412 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
||
3413 !btrfs_test_opt(root
, SPACE_CACHE
)) {
3415 * don't bother trying to write stuff out _if_
3416 * a) we're not cached,
3417 * b) we're with nospace_cache mount option.
3419 dcs
= BTRFS_DC_WRITTEN
;
3420 spin_unlock(&block_group
->lock
);
3423 spin_unlock(&block_group
->lock
);
3426 * We hit an ENOSPC when setting up the cache in this transaction, just
3427 * skip doing the setup, we've already cleared the cache so we're safe.
3429 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
)) {
3435 * Try to preallocate enough space based on how big the block group is.
3436 * Keep in mind this has to include any pinned space which could end up
3437 * taking up quite a bit since it's not folded into the other space
3440 num_pages
= div_u64(block_group
->key
.offset
, 256 * 1024 * 1024);
3445 num_pages
*= PAGE_CACHE_SIZE
;
3447 ret
= btrfs_check_data_free_space(inode
, 0, num_pages
);
3451 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
3452 num_pages
, num_pages
,
3455 * Our cache requires contiguous chunks so that we don't modify a bunch
3456 * of metadata or split extents when writing the cache out, which means
3457 * we can enospc if we are heavily fragmented in addition to just normal
3458 * out of space conditions. So if we hit this just skip setting up any
3459 * other block groups for this transaction, maybe we'll unpin enough
3460 * space the next time around.
3463 dcs
= BTRFS_DC_SETUP
;
3464 else if (ret
== -ENOSPC
)
3465 set_bit(BTRFS_TRANS_CACHE_ENOSPC
, &trans
->transaction
->flags
);
3466 btrfs_free_reserved_data_space(inode
, 0, num_pages
);
3471 btrfs_release_path(path
);
3473 spin_lock(&block_group
->lock
);
3474 if (!ret
&& dcs
== BTRFS_DC_SETUP
)
3475 block_group
->cache_generation
= trans
->transid
;
3476 block_group
->disk_cache_state
= dcs
;
3477 spin_unlock(&block_group
->lock
);
3482 int btrfs_setup_space_cache(struct btrfs_trans_handle
*trans
,
3483 struct btrfs_root
*root
)
3485 struct btrfs_block_group_cache
*cache
, *tmp
;
3486 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3487 struct btrfs_path
*path
;
3489 if (list_empty(&cur_trans
->dirty_bgs
) ||
3490 !btrfs_test_opt(root
, SPACE_CACHE
))
3493 path
= btrfs_alloc_path();
3497 /* Could add new block groups, use _safe just in case */
3498 list_for_each_entry_safe(cache
, tmp
, &cur_trans
->dirty_bgs
,
3500 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
3501 cache_save_setup(cache
, trans
, path
);
3504 btrfs_free_path(path
);
3509 * transaction commit does final block group cache writeback during a
3510 * critical section where nothing is allowed to change the FS. This is
3511 * required in order for the cache to actually match the block group,
3512 * but can introduce a lot of latency into the commit.
3514 * So, btrfs_start_dirty_block_groups is here to kick off block group
3515 * cache IO. There's a chance we'll have to redo some of it if the
3516 * block group changes again during the commit, but it greatly reduces
3517 * the commit latency by getting rid of the easy block groups while
3518 * we're still allowing others to join the commit.
3520 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3521 struct btrfs_root
*root
)
3523 struct btrfs_block_group_cache
*cache
;
3524 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3527 struct btrfs_path
*path
= NULL
;
3529 struct list_head
*io
= &cur_trans
->io_bgs
;
3530 int num_started
= 0;
3533 spin_lock(&cur_trans
->dirty_bgs_lock
);
3534 if (list_empty(&cur_trans
->dirty_bgs
)) {
3535 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3538 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3539 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3543 * make sure all the block groups on our dirty list actually
3546 btrfs_create_pending_block_groups(trans
, root
);
3549 path
= btrfs_alloc_path();
3555 * cache_write_mutex is here only to save us from balance or automatic
3556 * removal of empty block groups deleting this block group while we are
3557 * writing out the cache
3559 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3560 while (!list_empty(&dirty
)) {
3561 cache
= list_first_entry(&dirty
,
3562 struct btrfs_block_group_cache
,
3565 * this can happen if something re-dirties a block
3566 * group that is already under IO. Just wait for it to
3567 * finish and then do it all again
3569 if (!list_empty(&cache
->io_list
)) {
3570 list_del_init(&cache
->io_list
);
3571 btrfs_wait_cache_io(root
, trans
, cache
,
3572 &cache
->io_ctl
, path
,
3573 cache
->key
.objectid
);
3574 btrfs_put_block_group(cache
);
3579 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3580 * if it should update the cache_state. Don't delete
3581 * until after we wait.
3583 * Since we're not running in the commit critical section
3584 * we need the dirty_bgs_lock to protect from update_block_group
3586 spin_lock(&cur_trans
->dirty_bgs_lock
);
3587 list_del_init(&cache
->dirty_list
);
3588 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3592 cache_save_setup(cache
, trans
, path
);
3594 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3595 cache
->io_ctl
.inode
= NULL
;
3596 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3597 if (ret
== 0 && cache
->io_ctl
.inode
) {
3602 * the cache_write_mutex is protecting
3605 list_add_tail(&cache
->io_list
, io
);
3608 * if we failed to write the cache, the
3609 * generation will be bad and life goes on
3615 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3617 * Our block group might still be attached to the list
3618 * of new block groups in the transaction handle of some
3619 * other task (struct btrfs_trans_handle->new_bgs). This
3620 * means its block group item isn't yet in the extent
3621 * tree. If this happens ignore the error, as we will
3622 * try again later in the critical section of the
3623 * transaction commit.
3625 if (ret
== -ENOENT
) {
3627 spin_lock(&cur_trans
->dirty_bgs_lock
);
3628 if (list_empty(&cache
->dirty_list
)) {
3629 list_add_tail(&cache
->dirty_list
,
3630 &cur_trans
->dirty_bgs
);
3631 btrfs_get_block_group(cache
);
3633 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3635 btrfs_abort_transaction(trans
, root
, ret
);
3639 /* if its not on the io list, we need to put the block group */
3641 btrfs_put_block_group(cache
);
3647 * Avoid blocking other tasks for too long. It might even save
3648 * us from writing caches for block groups that are going to be
3651 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3652 mutex_lock(&trans
->transaction
->cache_write_mutex
);
3654 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
3657 * go through delayed refs for all the stuff we've just kicked off
3658 * and then loop back (just once)
3660 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
3661 if (!ret
&& loops
== 0) {
3663 spin_lock(&cur_trans
->dirty_bgs_lock
);
3664 list_splice_init(&cur_trans
->dirty_bgs
, &dirty
);
3666 * dirty_bgs_lock protects us from concurrent block group
3667 * deletes too (not just cache_write_mutex).
3669 if (!list_empty(&dirty
)) {
3670 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3673 spin_unlock(&cur_trans
->dirty_bgs_lock
);
3676 btrfs_free_path(path
);
3680 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
3681 struct btrfs_root
*root
)
3683 struct btrfs_block_group_cache
*cache
;
3684 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
3687 struct btrfs_path
*path
;
3688 struct list_head
*io
= &cur_trans
->io_bgs
;
3689 int num_started
= 0;
3691 path
= btrfs_alloc_path();
3696 * We don't need the lock here since we are protected by the transaction
3697 * commit. We want to do the cache_save_setup first and then run the
3698 * delayed refs to make sure we have the best chance at doing this all
3701 while (!list_empty(&cur_trans
->dirty_bgs
)) {
3702 cache
= list_first_entry(&cur_trans
->dirty_bgs
,
3703 struct btrfs_block_group_cache
,
3707 * this can happen if cache_save_setup re-dirties a block
3708 * group that is already under IO. Just wait for it to
3709 * finish and then do it all again
3711 if (!list_empty(&cache
->io_list
)) {
3712 list_del_init(&cache
->io_list
);
3713 btrfs_wait_cache_io(root
, trans
, cache
,
3714 &cache
->io_ctl
, path
,
3715 cache
->key
.objectid
);
3716 btrfs_put_block_group(cache
);
3720 * don't remove from the dirty list until after we've waited
3723 list_del_init(&cache
->dirty_list
);
3726 cache_save_setup(cache
, trans
, path
);
3729 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long) -1);
3731 if (!ret
&& cache
->disk_cache_state
== BTRFS_DC_SETUP
) {
3732 cache
->io_ctl
.inode
= NULL
;
3733 ret
= btrfs_write_out_cache(root
, trans
, cache
, path
);
3734 if (ret
== 0 && cache
->io_ctl
.inode
) {
3737 list_add_tail(&cache
->io_list
, io
);
3740 * if we failed to write the cache, the
3741 * generation will be bad and life goes on
3747 ret
= write_one_cache_group(trans
, root
, path
, cache
);
3749 btrfs_abort_transaction(trans
, root
, ret
);
3752 /* if its not on the io list, we need to put the block group */
3754 btrfs_put_block_group(cache
);
3757 while (!list_empty(io
)) {
3758 cache
= list_first_entry(io
, struct btrfs_block_group_cache
,
3760 list_del_init(&cache
->io_list
);
3761 btrfs_wait_cache_io(root
, trans
, cache
,
3762 &cache
->io_ctl
, path
, cache
->key
.objectid
);
3763 btrfs_put_block_group(cache
);
3766 btrfs_free_path(path
);
3770 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
3772 struct btrfs_block_group_cache
*block_group
;
3775 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
3776 if (!block_group
|| block_group
->ro
)
3779 btrfs_put_block_group(block_group
);
3783 static const char *alloc_name(u64 flags
)
3786 case BTRFS_BLOCK_GROUP_METADATA
|BTRFS_BLOCK_GROUP_DATA
:
3788 case BTRFS_BLOCK_GROUP_METADATA
:
3790 case BTRFS_BLOCK_GROUP_DATA
:
3792 case BTRFS_BLOCK_GROUP_SYSTEM
:
3796 return "invalid-combination";
3800 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
3801 u64 total_bytes
, u64 bytes_used
,
3802 struct btrfs_space_info
**space_info
)
3804 struct btrfs_space_info
*found
;
3809 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3810 BTRFS_BLOCK_GROUP_RAID10
))
3815 found
= __find_space_info(info
, flags
);
3817 spin_lock(&found
->lock
);
3818 found
->total_bytes
+= total_bytes
;
3819 found
->disk_total
+= total_bytes
* factor
;
3820 found
->bytes_used
+= bytes_used
;
3821 found
->disk_used
+= bytes_used
* factor
;
3822 if (total_bytes
> 0)
3824 spin_unlock(&found
->lock
);
3825 *space_info
= found
;
3828 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3832 ret
= percpu_counter_init(&found
->total_bytes_pinned
, 0, GFP_KERNEL
);
3838 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3839 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3840 init_rwsem(&found
->groups_sem
);
3841 spin_lock_init(&found
->lock
);
3842 found
->flags
= flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
;
3843 found
->total_bytes
= total_bytes
;
3844 found
->disk_total
= total_bytes
* factor
;
3845 found
->bytes_used
= bytes_used
;
3846 found
->disk_used
= bytes_used
* factor
;
3847 found
->bytes_pinned
= 0;
3848 found
->bytes_reserved
= 0;
3849 found
->bytes_readonly
= 0;
3850 found
->bytes_may_use
= 0;
3852 found
->max_extent_size
= 0;
3853 found
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
3854 found
->chunk_alloc
= 0;
3856 init_waitqueue_head(&found
->wait
);
3857 INIT_LIST_HEAD(&found
->ro_bgs
);
3859 ret
= kobject_init_and_add(&found
->kobj
, &space_info_ktype
,
3860 info
->space_info_kobj
, "%s",
3861 alloc_name(found
->flags
));
3863 percpu_counter_destroy(&found
->total_bytes_pinned
);
3868 *space_info
= found
;
3869 list_add_rcu(&found
->list
, &info
->space_info
);
3870 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3871 info
->data_sinfo
= found
;
3876 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3878 u64 extra_flags
= chunk_to_extended(flags
) &
3879 BTRFS_EXTENDED_PROFILE_MASK
;
3881 write_seqlock(&fs_info
->profiles_lock
);
3882 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3883 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3884 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3885 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3886 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3887 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3888 write_sequnlock(&fs_info
->profiles_lock
);
3892 * returns target flags in extended format or 0 if restripe for this
3893 * chunk_type is not in progress
3895 * should be called with either volume_mutex or balance_lock held
3897 static u64
get_restripe_target(struct btrfs_fs_info
*fs_info
, u64 flags
)
3899 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3905 if (flags
& BTRFS_BLOCK_GROUP_DATA
&&
3906 bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3907 target
= BTRFS_BLOCK_GROUP_DATA
| bctl
->data
.target
;
3908 } else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
&&
3909 bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3910 target
= BTRFS_BLOCK_GROUP_SYSTEM
| bctl
->sys
.target
;
3911 } else if (flags
& BTRFS_BLOCK_GROUP_METADATA
&&
3912 bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) {
3913 target
= BTRFS_BLOCK_GROUP_METADATA
| bctl
->meta
.target
;
3920 * @flags: available profiles in extended format (see ctree.h)
3922 * Returns reduced profile in chunk format. If profile changing is in
3923 * progress (either running or paused) picks the target profile (if it's
3924 * already available), otherwise falls back to plain reducing.
3926 static u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3928 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
3934 * see if restripe for this chunk_type is in progress, if so
3935 * try to reduce to the target profile
3937 spin_lock(&root
->fs_info
->balance_lock
);
3938 target
= get_restripe_target(root
->fs_info
, flags
);
3940 /* pick target profile only if it's already available */
3941 if ((flags
& target
) & BTRFS_EXTENDED_PROFILE_MASK
) {
3942 spin_unlock(&root
->fs_info
->balance_lock
);
3943 return extended_to_chunk(target
);
3946 spin_unlock(&root
->fs_info
->balance_lock
);
3948 /* First, mask out the RAID levels which aren't possible */
3949 for (raid_type
= 0; raid_type
< BTRFS_NR_RAID_TYPES
; raid_type
++) {
3950 if (num_devices
>= btrfs_raid_array
[raid_type
].devs_min
)
3951 allowed
|= btrfs_raid_group
[raid_type
];
3955 if (allowed
& BTRFS_BLOCK_GROUP_RAID6
)
3956 allowed
= BTRFS_BLOCK_GROUP_RAID6
;
3957 else if (allowed
& BTRFS_BLOCK_GROUP_RAID5
)
3958 allowed
= BTRFS_BLOCK_GROUP_RAID5
;
3959 else if (allowed
& BTRFS_BLOCK_GROUP_RAID10
)
3960 allowed
= BTRFS_BLOCK_GROUP_RAID10
;
3961 else if (allowed
& BTRFS_BLOCK_GROUP_RAID1
)
3962 allowed
= BTRFS_BLOCK_GROUP_RAID1
;
3963 else if (allowed
& BTRFS_BLOCK_GROUP_RAID0
)
3964 allowed
= BTRFS_BLOCK_GROUP_RAID0
;
3966 flags
&= ~BTRFS_BLOCK_GROUP_PROFILE_MASK
;
3968 return extended_to_chunk(flags
| allowed
);
3971 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 orig_flags
)
3978 seq
= read_seqbegin(&root
->fs_info
->profiles_lock
);
3980 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3981 flags
|= root
->fs_info
->avail_data_alloc_bits
;
3982 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3983 flags
|= root
->fs_info
->avail_system_alloc_bits
;
3984 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3985 flags
|= root
->fs_info
->avail_metadata_alloc_bits
;
3986 } while (read_seqretry(&root
->fs_info
->profiles_lock
, seq
));
3988 return btrfs_reduce_alloc_profile(root
, flags
);
3991 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3997 flags
= BTRFS_BLOCK_GROUP_DATA
;
3998 else if (root
== root
->fs_info
->chunk_root
)
3999 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
4001 flags
= BTRFS_BLOCK_GROUP_METADATA
;
4003 ret
= get_alloc_profile(root
, flags
);
4007 int btrfs_alloc_data_chunk_ondemand(struct inode
*inode
, u64 bytes
)
4009 struct btrfs_space_info
*data_sinfo
;
4010 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4011 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4014 int need_commit
= 2;
4015 int have_pinned_space
;
4017 /* make sure bytes are sectorsize aligned */
4018 bytes
= ALIGN(bytes
, root
->sectorsize
);
4020 if (btrfs_is_free_space_inode(inode
)) {
4022 ASSERT(current
->journal_info
);
4025 data_sinfo
= fs_info
->data_sinfo
;
4030 /* make sure we have enough space to handle the data first */
4031 spin_lock(&data_sinfo
->lock
);
4032 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
4033 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
4034 data_sinfo
->bytes_may_use
;
4036 if (used
+ bytes
> data_sinfo
->total_bytes
) {
4037 struct btrfs_trans_handle
*trans
;
4040 * if we don't have enough free bytes in this space then we need
4041 * to alloc a new chunk.
4043 if (!data_sinfo
->full
) {
4046 data_sinfo
->force_alloc
= CHUNK_ALLOC_FORCE
;
4047 spin_unlock(&data_sinfo
->lock
);
4049 alloc_target
= btrfs_get_alloc_profile(root
, 1);
4051 * It is ugly that we don't call nolock join
4052 * transaction for the free space inode case here.
4053 * But it is safe because we only do the data space
4054 * reservation for the free space cache in the
4055 * transaction context, the common join transaction
4056 * just increase the counter of the current transaction
4057 * handler, doesn't try to acquire the trans_lock of
4060 trans
= btrfs_join_transaction(root
);
4062 return PTR_ERR(trans
);
4064 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4066 CHUNK_ALLOC_NO_FORCE
);
4067 btrfs_end_transaction(trans
, root
);
4072 have_pinned_space
= 1;
4078 data_sinfo
= fs_info
->data_sinfo
;
4084 * If we don't have enough pinned space to deal with this
4085 * allocation, and no removed chunk in current transaction,
4086 * don't bother committing the transaction.
4088 have_pinned_space
= percpu_counter_compare(
4089 &data_sinfo
->total_bytes_pinned
,
4090 used
+ bytes
- data_sinfo
->total_bytes
);
4091 spin_unlock(&data_sinfo
->lock
);
4093 /* commit the current transaction and try again */
4096 !atomic_read(&root
->fs_info
->open_ioctl_trans
)) {
4099 if (need_commit
> 0) {
4100 btrfs_start_delalloc_roots(fs_info
, 0, -1);
4101 btrfs_wait_ordered_roots(fs_info
, -1);
4104 trans
= btrfs_join_transaction(root
);
4106 return PTR_ERR(trans
);
4107 if (have_pinned_space
>= 0 ||
4108 test_bit(BTRFS_TRANS_HAVE_FREE_BGS
,
4109 &trans
->transaction
->flags
) ||
4111 ret
= btrfs_commit_transaction(trans
, root
);
4115 * The cleaner kthread might still be doing iput
4116 * operations. Wait for it to finish so that
4117 * more space is released.
4119 mutex_lock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4120 mutex_unlock(&root
->fs_info
->cleaner_delayed_iput_mutex
);
4123 btrfs_end_transaction(trans
, root
);
4127 trace_btrfs_space_reservation(root
->fs_info
,
4128 "space_info:enospc",
4129 data_sinfo
->flags
, bytes
, 1);
4132 data_sinfo
->bytes_may_use
+= bytes
;
4133 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4134 data_sinfo
->flags
, bytes
, 1);
4135 spin_unlock(&data_sinfo
->lock
);
4141 * New check_data_free_space() with ability for precious data reservation
4142 * Will replace old btrfs_check_data_free_space(), but for patch split,
4143 * add a new function first and then replace it.
4145 int btrfs_check_data_free_space(struct inode
*inode
, u64 start
, u64 len
)
4147 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4150 /* align the range */
4151 len
= round_up(start
+ len
, root
->sectorsize
) -
4152 round_down(start
, root
->sectorsize
);
4153 start
= round_down(start
, root
->sectorsize
);
4155 ret
= btrfs_alloc_data_chunk_ondemand(inode
, len
);
4160 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4162 * TODO: Find a good method to avoid reserve data space for NOCOW
4163 * range, but don't impact performance on quota disable case.
4165 ret
= btrfs_qgroup_reserve_data(inode
, start
, len
);
4170 * Called if we need to clear a data reservation for this inode
4171 * Normally in a error case.
4173 * This one will *NOT* use accurate qgroup reserved space API, just for case
4174 * which we can't sleep and is sure it won't affect qgroup reserved space.
4175 * Like clear_bit_hook().
4177 void btrfs_free_reserved_data_space_noquota(struct inode
*inode
, u64 start
,
4180 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4181 struct btrfs_space_info
*data_sinfo
;
4183 /* Make sure the range is aligned to sectorsize */
4184 len
= round_up(start
+ len
, root
->sectorsize
) -
4185 round_down(start
, root
->sectorsize
);
4186 start
= round_down(start
, root
->sectorsize
);
4188 data_sinfo
= root
->fs_info
->data_sinfo
;
4189 spin_lock(&data_sinfo
->lock
);
4190 if (WARN_ON(data_sinfo
->bytes_may_use
< len
))
4191 data_sinfo
->bytes_may_use
= 0;
4193 data_sinfo
->bytes_may_use
-= len
;
4194 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4195 data_sinfo
->flags
, len
, 0);
4196 spin_unlock(&data_sinfo
->lock
);
4200 * Called if we need to clear a data reservation for this inode
4201 * Normally in a error case.
4203 * This one will handle the per-indoe data rsv map for accurate reserved
4206 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 start
, u64 len
)
4208 btrfs_free_reserved_data_space_noquota(inode
, start
, len
);
4209 btrfs_qgroup_free_data(inode
, start
, len
);
4212 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
4214 struct list_head
*head
= &info
->space_info
;
4215 struct btrfs_space_info
*found
;
4218 list_for_each_entry_rcu(found
, head
, list
) {
4219 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4220 found
->force_alloc
= CHUNK_ALLOC_FORCE
;
4225 static inline u64
calc_global_rsv_need_space(struct btrfs_block_rsv
*global
)
4227 return (global
->size
<< 1);
4230 static int should_alloc_chunk(struct btrfs_root
*root
,
4231 struct btrfs_space_info
*sinfo
, int force
)
4233 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4234 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
4235 u64 num_allocated
= sinfo
->bytes_used
+ sinfo
->bytes_reserved
;
4238 if (force
== CHUNK_ALLOC_FORCE
)
4242 * We need to take into account the global rsv because for all intents
4243 * and purposes it's used space. Don't worry about locking the
4244 * global_rsv, it doesn't change except when the transaction commits.
4246 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
4247 num_allocated
+= calc_global_rsv_need_space(global_rsv
);
4250 * in limited mode, we want to have some free space up to
4251 * about 1% of the FS size.
4253 if (force
== CHUNK_ALLOC_LIMITED
) {
4254 thresh
= btrfs_super_total_bytes(root
->fs_info
->super_copy
);
4255 thresh
= max_t(u64
, 64 * 1024 * 1024,
4256 div_factor_fine(thresh
, 1));
4258 if (num_bytes
- num_allocated
< thresh
)
4262 if (num_allocated
+ 2 * 1024 * 1024 < div_factor(num_bytes
, 8))
4267 static u64
get_profile_num_devs(struct btrfs_root
*root
, u64 type
)
4271 if (type
& (BTRFS_BLOCK_GROUP_RAID10
|
4272 BTRFS_BLOCK_GROUP_RAID0
|
4273 BTRFS_BLOCK_GROUP_RAID5
|
4274 BTRFS_BLOCK_GROUP_RAID6
))
4275 num_dev
= root
->fs_info
->fs_devices
->rw_devices
;
4276 else if (type
& BTRFS_BLOCK_GROUP_RAID1
)
4279 num_dev
= 1; /* DUP or single */
4285 * If @is_allocation is true, reserve space in the system space info necessary
4286 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4289 void check_system_chunk(struct btrfs_trans_handle
*trans
,
4290 struct btrfs_root
*root
,
4293 struct btrfs_space_info
*info
;
4300 * Needed because we can end up allocating a system chunk and for an
4301 * atomic and race free space reservation in the chunk block reserve.
4303 ASSERT(mutex_is_locked(&root
->fs_info
->chunk_mutex
));
4305 info
= __find_space_info(root
->fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
4306 spin_lock(&info
->lock
);
4307 left
= info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
4308 info
->bytes_reserved
- info
->bytes_readonly
-
4309 info
->bytes_may_use
;
4310 spin_unlock(&info
->lock
);
4312 num_devs
= get_profile_num_devs(root
, type
);
4314 /* num_devs device items to update and 1 chunk item to add or remove */
4315 thresh
= btrfs_calc_trunc_metadata_size(root
, num_devs
) +
4316 btrfs_calc_trans_metadata_size(root
, 1);
4318 if (left
< thresh
&& btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
4319 btrfs_info(root
->fs_info
, "left=%llu, need=%llu, flags=%llu",
4320 left
, thresh
, type
);
4321 dump_space_info(info
, 0, 0);
4324 if (left
< thresh
) {
4327 flags
= btrfs_get_alloc_profile(root
->fs_info
->chunk_root
, 0);
4329 * Ignore failure to create system chunk. We might end up not
4330 * needing it, as we might not need to COW all nodes/leafs from
4331 * the paths we visit in the chunk tree (they were already COWed
4332 * or created in the current transaction for example).
4334 ret
= btrfs_alloc_chunk(trans
, root
, flags
);
4338 ret
= btrfs_block_rsv_add(root
->fs_info
->chunk_root
,
4339 &root
->fs_info
->chunk_block_rsv
,
4340 thresh
, BTRFS_RESERVE_NO_FLUSH
);
4342 trans
->chunk_bytes_reserved
+= thresh
;
4346 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
4347 struct btrfs_root
*extent_root
, u64 flags
, int force
)
4349 struct btrfs_space_info
*space_info
;
4350 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
4351 int wait_for_alloc
= 0;
4354 /* Don't re-enter if we're already allocating a chunk */
4355 if (trans
->allocating_chunk
)
4358 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
4360 ret
= update_space_info(extent_root
->fs_info
, flags
,
4362 BUG_ON(ret
); /* -ENOMEM */
4364 BUG_ON(!space_info
); /* Logic error */
4367 spin_lock(&space_info
->lock
);
4368 if (force
< space_info
->force_alloc
)
4369 force
= space_info
->force_alloc
;
4370 if (space_info
->full
) {
4371 if (should_alloc_chunk(extent_root
, space_info
, force
))
4375 spin_unlock(&space_info
->lock
);
4379 if (!should_alloc_chunk(extent_root
, space_info
, force
)) {
4380 spin_unlock(&space_info
->lock
);
4382 } else if (space_info
->chunk_alloc
) {
4385 space_info
->chunk_alloc
= 1;
4388 spin_unlock(&space_info
->lock
);
4390 mutex_lock(&fs_info
->chunk_mutex
);
4393 * The chunk_mutex is held throughout the entirety of a chunk
4394 * allocation, so once we've acquired the chunk_mutex we know that the
4395 * other guy is done and we need to recheck and see if we should
4398 if (wait_for_alloc
) {
4399 mutex_unlock(&fs_info
->chunk_mutex
);
4405 trans
->allocating_chunk
= true;
4408 * If we have mixed data/metadata chunks we want to make sure we keep
4409 * allocating mixed chunks instead of individual chunks.
4411 if (btrfs_mixed_space_info(space_info
))
4412 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
4415 * if we're doing a data chunk, go ahead and make sure that
4416 * we keep a reasonable number of metadata chunks allocated in the
4419 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
4420 fs_info
->data_chunk_allocations
++;
4421 if (!(fs_info
->data_chunk_allocations
%
4422 fs_info
->metadata_ratio
))
4423 force_metadata_allocation(fs_info
);
4427 * Check if we have enough space in SYSTEM chunk because we may need
4428 * to update devices.
4430 check_system_chunk(trans
, extent_root
, flags
);
4432 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
4433 trans
->allocating_chunk
= false;
4435 spin_lock(&space_info
->lock
);
4436 if (ret
< 0 && ret
!= -ENOSPC
)
4439 space_info
->full
= 1;
4443 space_info
->force_alloc
= CHUNK_ALLOC_NO_FORCE
;
4445 space_info
->chunk_alloc
= 0;
4446 spin_unlock(&space_info
->lock
);
4447 mutex_unlock(&fs_info
->chunk_mutex
);
4449 * When we allocate a new chunk we reserve space in the chunk block
4450 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4451 * add new nodes/leafs to it if we end up needing to do it when
4452 * inserting the chunk item and updating device items as part of the
4453 * second phase of chunk allocation, performed by
4454 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4455 * large number of new block groups to create in our transaction
4456 * handle's new_bgs list to avoid exhausting the chunk block reserve
4457 * in extreme cases - like having a single transaction create many new
4458 * block groups when starting to write out the free space caches of all
4459 * the block groups that were made dirty during the lifetime of the
4462 if (trans
->can_flush_pending_bgs
&&
4463 trans
->chunk_bytes_reserved
>= (2 * 1024 * 1024ull)) {
4464 btrfs_create_pending_block_groups(trans
, trans
->root
);
4465 btrfs_trans_release_chunk_metadata(trans
);
4470 static int can_overcommit(struct btrfs_root
*root
,
4471 struct btrfs_space_info
*space_info
, u64 bytes
,
4472 enum btrfs_reserve_flush_enum flush
)
4474 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
4475 u64 profile
= btrfs_get_alloc_profile(root
, 0);
4480 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4481 space_info
->bytes_pinned
+ space_info
->bytes_readonly
;
4484 * We only want to allow over committing if we have lots of actual space
4485 * free, but if we don't have enough space to handle the global reserve
4486 * space then we could end up having a real enospc problem when trying
4487 * to allocate a chunk or some other such important allocation.
4489 spin_lock(&global_rsv
->lock
);
4490 space_size
= calc_global_rsv_need_space(global_rsv
);
4491 spin_unlock(&global_rsv
->lock
);
4492 if (used
+ space_size
>= space_info
->total_bytes
)
4495 used
+= space_info
->bytes_may_use
;
4497 spin_lock(&root
->fs_info
->free_chunk_lock
);
4498 avail
= root
->fs_info
->free_chunk_space
;
4499 spin_unlock(&root
->fs_info
->free_chunk_lock
);
4502 * If we have dup, raid1 or raid10 then only half of the free
4503 * space is actually useable. For raid56, the space info used
4504 * doesn't include the parity drive, so we don't have to
4507 if (profile
& (BTRFS_BLOCK_GROUP_DUP
|
4508 BTRFS_BLOCK_GROUP_RAID1
|
4509 BTRFS_BLOCK_GROUP_RAID10
))
4513 * If we aren't flushing all things, let us overcommit up to
4514 * 1/2th of the space. If we can flush, don't let us overcommit
4515 * too much, let it overcommit up to 1/8 of the space.
4517 if (flush
== BTRFS_RESERVE_FLUSH_ALL
)
4522 if (used
+ bytes
< space_info
->total_bytes
+ avail
)
4527 static void btrfs_writeback_inodes_sb_nr(struct btrfs_root
*root
,
4528 unsigned long nr_pages
, int nr_items
)
4530 struct super_block
*sb
= root
->fs_info
->sb
;
4532 if (down_read_trylock(&sb
->s_umount
)) {
4533 writeback_inodes_sb_nr(sb
, nr_pages
, WB_REASON_FS_FREE_SPACE
);
4534 up_read(&sb
->s_umount
);
4537 * We needn't worry the filesystem going from r/w to r/o though
4538 * we don't acquire ->s_umount mutex, because the filesystem
4539 * should guarantee the delalloc inodes list be empty after
4540 * the filesystem is readonly(all dirty pages are written to
4543 btrfs_start_delalloc_roots(root
->fs_info
, 0, nr_items
);
4544 if (!current
->journal_info
)
4545 btrfs_wait_ordered_roots(root
->fs_info
, nr_items
);
4549 static inline int calc_reclaim_items_nr(struct btrfs_root
*root
, u64 to_reclaim
)
4554 bytes
= btrfs_calc_trans_metadata_size(root
, 1);
4555 nr
= (int)div64_u64(to_reclaim
, bytes
);
4561 #define EXTENT_SIZE_PER_ITEM (256 * 1024)
4564 * shrink metadata reservation for delalloc
4566 static void shrink_delalloc(struct btrfs_root
*root
, u64 to_reclaim
, u64 orig
,
4569 struct btrfs_block_rsv
*block_rsv
;
4570 struct btrfs_space_info
*space_info
;
4571 struct btrfs_trans_handle
*trans
;
4575 unsigned long nr_pages
;
4578 enum btrfs_reserve_flush_enum flush
;
4580 /* Calc the number of the pages we need flush for space reservation */
4581 items
= calc_reclaim_items_nr(root
, to_reclaim
);
4582 to_reclaim
= items
* EXTENT_SIZE_PER_ITEM
;
4584 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4585 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
4586 space_info
= block_rsv
->space_info
;
4588 delalloc_bytes
= percpu_counter_sum_positive(
4589 &root
->fs_info
->delalloc_bytes
);
4590 if (delalloc_bytes
== 0) {
4594 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4599 while (delalloc_bytes
&& loops
< 3) {
4600 max_reclaim
= min(delalloc_bytes
, to_reclaim
);
4601 nr_pages
= max_reclaim
>> PAGE_CACHE_SHIFT
;
4602 btrfs_writeback_inodes_sb_nr(root
, nr_pages
, items
);
4604 * We need to wait for the async pages to actually start before
4607 max_reclaim
= atomic_read(&root
->fs_info
->async_delalloc_pages
);
4611 if (max_reclaim
<= nr_pages
)
4614 max_reclaim
-= nr_pages
;
4616 wait_event(root
->fs_info
->async_submit_wait
,
4617 atomic_read(&root
->fs_info
->async_delalloc_pages
) <=
4621 flush
= BTRFS_RESERVE_FLUSH_ALL
;
4623 flush
= BTRFS_RESERVE_NO_FLUSH
;
4624 spin_lock(&space_info
->lock
);
4625 if (can_overcommit(root
, space_info
, orig
, flush
)) {
4626 spin_unlock(&space_info
->lock
);
4629 spin_unlock(&space_info
->lock
);
4632 if (wait_ordered
&& !trans
) {
4633 btrfs_wait_ordered_roots(root
->fs_info
, items
);
4635 time_left
= schedule_timeout_killable(1);
4639 delalloc_bytes
= percpu_counter_sum_positive(
4640 &root
->fs_info
->delalloc_bytes
);
4645 * maybe_commit_transaction - possibly commit the transaction if its ok to
4646 * @root - the root we're allocating for
4647 * @bytes - the number of bytes we want to reserve
4648 * @force - force the commit
4650 * This will check to make sure that committing the transaction will actually
4651 * get us somewhere and then commit the transaction if it does. Otherwise it
4652 * will return -ENOSPC.
4654 static int may_commit_transaction(struct btrfs_root
*root
,
4655 struct btrfs_space_info
*space_info
,
4656 u64 bytes
, int force
)
4658 struct btrfs_block_rsv
*delayed_rsv
= &root
->fs_info
->delayed_block_rsv
;
4659 struct btrfs_trans_handle
*trans
;
4661 trans
= (struct btrfs_trans_handle
*)current
->journal_info
;
4668 /* See if there is enough pinned space to make this reservation */
4669 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4674 * See if there is some space in the delayed insertion reservation for
4677 if (space_info
!= delayed_rsv
->space_info
)
4680 spin_lock(&delayed_rsv
->lock
);
4681 if (percpu_counter_compare(&space_info
->total_bytes_pinned
,
4682 bytes
- delayed_rsv
->size
) >= 0) {
4683 spin_unlock(&delayed_rsv
->lock
);
4686 spin_unlock(&delayed_rsv
->lock
);
4689 trans
= btrfs_join_transaction(root
);
4693 return btrfs_commit_transaction(trans
, root
);
4697 FLUSH_DELAYED_ITEMS_NR
= 1,
4698 FLUSH_DELAYED_ITEMS
= 2,
4700 FLUSH_DELALLOC_WAIT
= 4,
4705 static int flush_space(struct btrfs_root
*root
,
4706 struct btrfs_space_info
*space_info
, u64 num_bytes
,
4707 u64 orig_bytes
, int state
)
4709 struct btrfs_trans_handle
*trans
;
4714 case FLUSH_DELAYED_ITEMS_NR
:
4715 case FLUSH_DELAYED_ITEMS
:
4716 if (state
== FLUSH_DELAYED_ITEMS_NR
)
4717 nr
= calc_reclaim_items_nr(root
, num_bytes
) * 2;
4721 trans
= btrfs_join_transaction(root
);
4722 if (IS_ERR(trans
)) {
4723 ret
= PTR_ERR(trans
);
4726 ret
= btrfs_run_delayed_items_nr(trans
, root
, nr
);
4727 btrfs_end_transaction(trans
, root
);
4729 case FLUSH_DELALLOC
:
4730 case FLUSH_DELALLOC_WAIT
:
4731 shrink_delalloc(root
, num_bytes
* 2, orig_bytes
,
4732 state
== FLUSH_DELALLOC_WAIT
);
4735 trans
= btrfs_join_transaction(root
);
4736 if (IS_ERR(trans
)) {
4737 ret
= PTR_ERR(trans
);
4740 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
4741 btrfs_get_alloc_profile(root
, 0),
4742 CHUNK_ALLOC_NO_FORCE
);
4743 btrfs_end_transaction(trans
, root
);
4748 ret
= may_commit_transaction(root
, space_info
, orig_bytes
, 0);
4759 btrfs_calc_reclaim_metadata_size(struct btrfs_root
*root
,
4760 struct btrfs_space_info
*space_info
)
4766 to_reclaim
= min_t(u64
, num_online_cpus() * 1024 * 1024,
4768 spin_lock(&space_info
->lock
);
4769 if (can_overcommit(root
, space_info
, to_reclaim
,
4770 BTRFS_RESERVE_FLUSH_ALL
)) {
4775 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4776 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4777 space_info
->bytes_may_use
;
4778 if (can_overcommit(root
, space_info
, 1024 * 1024,
4779 BTRFS_RESERVE_FLUSH_ALL
))
4780 expected
= div_factor_fine(space_info
->total_bytes
, 95);
4782 expected
= div_factor_fine(space_info
->total_bytes
, 90);
4784 if (used
> expected
)
4785 to_reclaim
= used
- expected
;
4788 to_reclaim
= min(to_reclaim
, space_info
->bytes_may_use
+
4789 space_info
->bytes_reserved
);
4791 spin_unlock(&space_info
->lock
);
4796 static inline int need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4797 struct btrfs_fs_info
*fs_info
, u64 used
)
4799 u64 thresh
= div_factor_fine(space_info
->total_bytes
, 98);
4801 /* If we're just plain full then async reclaim just slows us down. */
4802 if (space_info
->bytes_used
>= thresh
)
4805 return (used
>= thresh
&& !btrfs_fs_closing(fs_info
) &&
4806 !test_bit(BTRFS_FS_STATE_REMOUNTING
, &fs_info
->fs_state
));
4809 static int btrfs_need_do_async_reclaim(struct btrfs_space_info
*space_info
,
4810 struct btrfs_fs_info
*fs_info
,
4815 spin_lock(&space_info
->lock
);
4817 * We run out of space and have not got any free space via flush_space,
4818 * so don't bother doing async reclaim.
4820 if (flush_state
> COMMIT_TRANS
&& space_info
->full
) {
4821 spin_unlock(&space_info
->lock
);
4825 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4826 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4827 space_info
->bytes_may_use
;
4828 if (need_do_async_reclaim(space_info
, fs_info
, used
)) {
4829 spin_unlock(&space_info
->lock
);
4832 spin_unlock(&space_info
->lock
);
4837 static void btrfs_async_reclaim_metadata_space(struct work_struct
*work
)
4839 struct btrfs_fs_info
*fs_info
;
4840 struct btrfs_space_info
*space_info
;
4844 fs_info
= container_of(work
, struct btrfs_fs_info
, async_reclaim_work
);
4845 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
4847 to_reclaim
= btrfs_calc_reclaim_metadata_size(fs_info
->fs_root
,
4852 flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4854 flush_space(fs_info
->fs_root
, space_info
, to_reclaim
,
4855 to_reclaim
, flush_state
);
4857 if (!btrfs_need_do_async_reclaim(space_info
, fs_info
,
4860 } while (flush_state
< COMMIT_TRANS
);
4863 void btrfs_init_async_reclaim_work(struct work_struct
*work
)
4865 INIT_WORK(work
, btrfs_async_reclaim_metadata_space
);
4869 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4870 * @root - the root we're allocating for
4871 * @block_rsv - the block_rsv we're allocating for
4872 * @orig_bytes - the number of bytes we want
4873 * @flush - whether or not we can flush to make our reservation
4875 * This will reserve orgi_bytes number of bytes from the space info associated
4876 * with the block_rsv. If there is not enough space it will make an attempt to
4877 * flush out space to make room. It will do this by flushing delalloc if
4878 * possible or committing the transaction. If flush is 0 then no attempts to
4879 * regain reservations will be made and this will fail if there is not enough
4882 static int reserve_metadata_bytes(struct btrfs_root
*root
,
4883 struct btrfs_block_rsv
*block_rsv
,
4885 enum btrfs_reserve_flush_enum flush
)
4887 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
4889 u64 num_bytes
= orig_bytes
;
4890 int flush_state
= FLUSH_DELAYED_ITEMS_NR
;
4892 bool flushing
= false;
4896 spin_lock(&space_info
->lock
);
4898 * We only want to wait if somebody other than us is flushing and we
4899 * are actually allowed to flush all things.
4901 while (flush
== BTRFS_RESERVE_FLUSH_ALL
&& !flushing
&&
4902 space_info
->flush
) {
4903 spin_unlock(&space_info
->lock
);
4905 * If we have a trans handle we can't wait because the flusher
4906 * may have to commit the transaction, which would mean we would
4907 * deadlock since we are waiting for the flusher to finish, but
4908 * hold the current transaction open.
4910 if (current
->journal_info
)
4912 ret
= wait_event_killable(space_info
->wait
, !space_info
->flush
);
4913 /* Must have been killed, return */
4917 spin_lock(&space_info
->lock
);
4921 used
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
4922 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
4923 space_info
->bytes_may_use
;
4926 * The idea here is that we've not already over-reserved the block group
4927 * then we can go ahead and save our reservation first and then start
4928 * flushing if we need to. Otherwise if we've already overcommitted
4929 * lets start flushing stuff first and then come back and try to make
4932 if (used
<= space_info
->total_bytes
) {
4933 if (used
+ orig_bytes
<= space_info
->total_bytes
) {
4934 space_info
->bytes_may_use
+= orig_bytes
;
4935 trace_btrfs_space_reservation(root
->fs_info
,
4936 "space_info", space_info
->flags
, orig_bytes
, 1);
4940 * Ok set num_bytes to orig_bytes since we aren't
4941 * overocmmitted, this way we only try and reclaim what
4944 num_bytes
= orig_bytes
;
4948 * Ok we're over committed, set num_bytes to the overcommitted
4949 * amount plus the amount of bytes that we need for this
4952 num_bytes
= used
- space_info
->total_bytes
+
4956 if (ret
&& can_overcommit(root
, space_info
, orig_bytes
, flush
)) {
4957 space_info
->bytes_may_use
+= orig_bytes
;
4958 trace_btrfs_space_reservation(root
->fs_info
, "space_info",
4959 space_info
->flags
, orig_bytes
,
4965 * Couldn't make our reservation, save our place so while we're trying
4966 * to reclaim space we can actually use it instead of somebody else
4967 * stealing it from us.
4969 * We make the other tasks wait for the flush only when we can flush
4972 if (ret
&& flush
!= BTRFS_RESERVE_NO_FLUSH
) {
4974 space_info
->flush
= 1;
4975 } else if (!ret
&& space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
4978 * We will do the space reservation dance during log replay,
4979 * which means we won't have fs_info->fs_root set, so don't do
4980 * the async reclaim as we will panic.
4982 if (!root
->fs_info
->log_root_recovering
&&
4983 need_do_async_reclaim(space_info
, root
->fs_info
, used
) &&
4984 !work_busy(&root
->fs_info
->async_reclaim_work
))
4985 queue_work(system_unbound_wq
,
4986 &root
->fs_info
->async_reclaim_work
);
4988 spin_unlock(&space_info
->lock
);
4990 if (!ret
|| flush
== BTRFS_RESERVE_NO_FLUSH
)
4993 ret
= flush_space(root
, space_info
, num_bytes
, orig_bytes
,
4998 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4999 * would happen. So skip delalloc flush.
5001 if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
5002 (flush_state
== FLUSH_DELALLOC
||
5003 flush_state
== FLUSH_DELALLOC_WAIT
))
5004 flush_state
= ALLOC_CHUNK
;
5008 else if (flush
== BTRFS_RESERVE_FLUSH_LIMIT
&&
5009 flush_state
< COMMIT_TRANS
)
5011 else if (flush
== BTRFS_RESERVE_FLUSH_ALL
&&
5012 flush_state
<= COMMIT_TRANS
)
5016 if (ret
== -ENOSPC
&&
5017 unlikely(root
->orphan_cleanup_state
== ORPHAN_CLEANUP_STARTED
)) {
5018 struct btrfs_block_rsv
*global_rsv
=
5019 &root
->fs_info
->global_block_rsv
;
5021 if (block_rsv
!= global_rsv
&&
5022 !block_rsv_use_bytes(global_rsv
, orig_bytes
))
5026 trace_btrfs_space_reservation(root
->fs_info
,
5027 "space_info:enospc",
5028 space_info
->flags
, orig_bytes
, 1);
5030 spin_lock(&space_info
->lock
);
5031 space_info
->flush
= 0;
5032 wake_up_all(&space_info
->wait
);
5033 spin_unlock(&space_info
->lock
);
5038 static struct btrfs_block_rsv
*get_block_rsv(
5039 const struct btrfs_trans_handle
*trans
,
5040 const struct btrfs_root
*root
)
5042 struct btrfs_block_rsv
*block_rsv
= NULL
;
5044 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
5045 (root
== root
->fs_info
->csum_root
&& trans
->adding_csums
) ||
5046 (root
== root
->fs_info
->uuid_root
))
5047 block_rsv
= trans
->block_rsv
;
5050 block_rsv
= root
->block_rsv
;
5053 block_rsv
= &root
->fs_info
->empty_block_rsv
;
5058 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
5062 spin_lock(&block_rsv
->lock
);
5063 if (block_rsv
->reserved
>= num_bytes
) {
5064 block_rsv
->reserved
-= num_bytes
;
5065 if (block_rsv
->reserved
< block_rsv
->size
)
5066 block_rsv
->full
= 0;
5069 spin_unlock(&block_rsv
->lock
);
5073 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
5074 u64 num_bytes
, int update_size
)
5076 spin_lock(&block_rsv
->lock
);
5077 block_rsv
->reserved
+= num_bytes
;
5079 block_rsv
->size
+= num_bytes
;
5080 else if (block_rsv
->reserved
>= block_rsv
->size
)
5081 block_rsv
->full
= 1;
5082 spin_unlock(&block_rsv
->lock
);
5085 int btrfs_cond_migrate_bytes(struct btrfs_fs_info
*fs_info
,
5086 struct btrfs_block_rsv
*dest
, u64 num_bytes
,
5089 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
5092 if (global_rsv
->space_info
!= dest
->space_info
)
5095 spin_lock(&global_rsv
->lock
);
5096 min_bytes
= div_factor(global_rsv
->size
, min_factor
);
5097 if (global_rsv
->reserved
< min_bytes
+ num_bytes
) {
5098 spin_unlock(&global_rsv
->lock
);
5101 global_rsv
->reserved
-= num_bytes
;
5102 if (global_rsv
->reserved
< global_rsv
->size
)
5103 global_rsv
->full
= 0;
5104 spin_unlock(&global_rsv
->lock
);
5106 block_rsv_add_bytes(dest
, num_bytes
, 1);
5110 static void block_rsv_release_bytes(struct btrfs_fs_info
*fs_info
,
5111 struct btrfs_block_rsv
*block_rsv
,
5112 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
5114 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
5116 spin_lock(&block_rsv
->lock
);
5117 if (num_bytes
== (u64
)-1)
5118 num_bytes
= block_rsv
->size
;
5119 block_rsv
->size
-= num_bytes
;
5120 if (block_rsv
->reserved
>= block_rsv
->size
) {
5121 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5122 block_rsv
->reserved
= block_rsv
->size
;
5123 block_rsv
->full
= 1;
5127 spin_unlock(&block_rsv
->lock
);
5129 if (num_bytes
> 0) {
5131 spin_lock(&dest
->lock
);
5135 bytes_to_add
= dest
->size
- dest
->reserved
;
5136 bytes_to_add
= min(num_bytes
, bytes_to_add
);
5137 dest
->reserved
+= bytes_to_add
;
5138 if (dest
->reserved
>= dest
->size
)
5140 num_bytes
-= bytes_to_add
;
5142 spin_unlock(&dest
->lock
);
5145 spin_lock(&space_info
->lock
);
5146 space_info
->bytes_may_use
-= num_bytes
;
5147 trace_btrfs_space_reservation(fs_info
, "space_info",
5148 space_info
->flags
, num_bytes
, 0);
5149 spin_unlock(&space_info
->lock
);
5154 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
5155 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
5159 ret
= block_rsv_use_bytes(src
, num_bytes
);
5163 block_rsv_add_bytes(dst
, num_bytes
, 1);
5167 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
, unsigned short type
)
5169 memset(rsv
, 0, sizeof(*rsv
));
5170 spin_lock_init(&rsv
->lock
);
5174 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
,
5175 unsigned short type
)
5177 struct btrfs_block_rsv
*block_rsv
;
5178 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5180 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
5184 btrfs_init_block_rsv(block_rsv
, type
);
5185 block_rsv
->space_info
= __find_space_info(fs_info
,
5186 BTRFS_BLOCK_GROUP_METADATA
);
5190 void btrfs_free_block_rsv(struct btrfs_root
*root
,
5191 struct btrfs_block_rsv
*rsv
)
5195 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5199 void __btrfs_free_block_rsv(struct btrfs_block_rsv
*rsv
)
5204 int btrfs_block_rsv_add(struct btrfs_root
*root
,
5205 struct btrfs_block_rsv
*block_rsv
, u64 num_bytes
,
5206 enum btrfs_reserve_flush_enum flush
)
5213 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5215 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
5222 int btrfs_block_rsv_check(struct btrfs_root
*root
,
5223 struct btrfs_block_rsv
*block_rsv
, int min_factor
)
5231 spin_lock(&block_rsv
->lock
);
5232 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
5233 if (block_rsv
->reserved
>= num_bytes
)
5235 spin_unlock(&block_rsv
->lock
);
5240 int btrfs_block_rsv_refill(struct btrfs_root
*root
,
5241 struct btrfs_block_rsv
*block_rsv
, u64 min_reserved
,
5242 enum btrfs_reserve_flush_enum flush
)
5250 spin_lock(&block_rsv
->lock
);
5251 num_bytes
= min_reserved
;
5252 if (block_rsv
->reserved
>= num_bytes
)
5255 num_bytes
-= block_rsv
->reserved
;
5256 spin_unlock(&block_rsv
->lock
);
5261 ret
= reserve_metadata_bytes(root
, block_rsv
, num_bytes
, flush
);
5263 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
5270 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
5271 struct btrfs_block_rsv
*dst_rsv
,
5274 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5277 void btrfs_block_rsv_release(struct btrfs_root
*root
,
5278 struct btrfs_block_rsv
*block_rsv
,
5281 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5282 if (global_rsv
== block_rsv
||
5283 block_rsv
->space_info
!= global_rsv
->space_info
)
5285 block_rsv_release_bytes(root
->fs_info
, block_rsv
, global_rsv
,
5290 * helper to calculate size of global block reservation.
5291 * the desired value is sum of space used by extent tree,
5292 * checksum tree and root tree
5294 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
5296 struct btrfs_space_info
*sinfo
;
5300 int csum_size
= btrfs_super_csum_size(fs_info
->super_copy
);
5302 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
5303 spin_lock(&sinfo
->lock
);
5304 data_used
= sinfo
->bytes_used
;
5305 spin_unlock(&sinfo
->lock
);
5307 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5308 spin_lock(&sinfo
->lock
);
5309 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
5311 meta_used
= sinfo
->bytes_used
;
5312 spin_unlock(&sinfo
->lock
);
5314 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
5316 num_bytes
+= div_u64(data_used
+ meta_used
, 50);
5318 if (num_bytes
* 3 > meta_used
)
5319 num_bytes
= div_u64(meta_used
, 3);
5321 return ALIGN(num_bytes
, fs_info
->extent_root
->nodesize
<< 10);
5324 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5326 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
5327 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
5330 num_bytes
= calc_global_metadata_size(fs_info
);
5332 spin_lock(&sinfo
->lock
);
5333 spin_lock(&block_rsv
->lock
);
5335 block_rsv
->size
= min_t(u64
, num_bytes
, 512 * 1024 * 1024);
5337 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
5338 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
5339 sinfo
->bytes_may_use
;
5341 if (sinfo
->total_bytes
> num_bytes
) {
5342 num_bytes
= sinfo
->total_bytes
- num_bytes
;
5343 block_rsv
->reserved
+= num_bytes
;
5344 sinfo
->bytes_may_use
+= num_bytes
;
5345 trace_btrfs_space_reservation(fs_info
, "space_info",
5346 sinfo
->flags
, num_bytes
, 1);
5349 if (block_rsv
->reserved
>= block_rsv
->size
) {
5350 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
5351 sinfo
->bytes_may_use
-= num_bytes
;
5352 trace_btrfs_space_reservation(fs_info
, "space_info",
5353 sinfo
->flags
, num_bytes
, 0);
5354 block_rsv
->reserved
= block_rsv
->size
;
5355 block_rsv
->full
= 1;
5358 spin_unlock(&block_rsv
->lock
);
5359 spin_unlock(&sinfo
->lock
);
5362 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5364 struct btrfs_space_info
*space_info
;
5366 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
5367 fs_info
->chunk_block_rsv
.space_info
= space_info
;
5369 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
5370 fs_info
->global_block_rsv
.space_info
= space_info
;
5371 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
5372 fs_info
->trans_block_rsv
.space_info
= space_info
;
5373 fs_info
->empty_block_rsv
.space_info
= space_info
;
5374 fs_info
->delayed_block_rsv
.space_info
= space_info
;
5376 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
5377 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
5378 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
5379 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
5380 if (fs_info
->quota_root
)
5381 fs_info
->quota_root
->block_rsv
= &fs_info
->global_block_rsv
;
5382 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
5384 update_global_block_rsv(fs_info
);
5387 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
5389 block_rsv_release_bytes(fs_info
, &fs_info
->global_block_rsv
, NULL
,
5391 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
5392 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
5393 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
5394 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
5395 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
5396 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
5397 WARN_ON(fs_info
->delayed_block_rsv
.size
> 0);
5398 WARN_ON(fs_info
->delayed_block_rsv
.reserved
> 0);
5401 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
5402 struct btrfs_root
*root
)
5404 if (!trans
->block_rsv
)
5407 if (!trans
->bytes_reserved
)
5410 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
5411 trans
->transid
, trans
->bytes_reserved
, 0);
5412 btrfs_block_rsv_release(root
, trans
->block_rsv
, trans
->bytes_reserved
);
5413 trans
->bytes_reserved
= 0;
5417 * To be called after all the new block groups attached to the transaction
5418 * handle have been created (btrfs_create_pending_block_groups()).
5420 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle
*trans
)
5422 struct btrfs_fs_info
*fs_info
= trans
->root
->fs_info
;
5424 if (!trans
->chunk_bytes_reserved
)
5427 WARN_ON_ONCE(!list_empty(&trans
->new_bgs
));
5429 block_rsv_release_bytes(fs_info
, &fs_info
->chunk_block_rsv
, NULL
,
5430 trans
->chunk_bytes_reserved
);
5431 trans
->chunk_bytes_reserved
= 0;
5434 /* Can only return 0 or -ENOSPC */
5435 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
5436 struct inode
*inode
)
5438 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5439 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
5440 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
5443 * We need to hold space in order to delete our orphan item once we've
5444 * added it, so this takes the reservation so we can release it later
5445 * when we are truly done with the orphan item.
5447 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5448 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5449 btrfs_ino(inode
), num_bytes
, 1);
5450 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
5453 void btrfs_orphan_release_metadata(struct inode
*inode
)
5455 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5456 u64 num_bytes
= btrfs_calc_trans_metadata_size(root
, 1);
5457 trace_btrfs_space_reservation(root
->fs_info
, "orphan",
5458 btrfs_ino(inode
), num_bytes
, 0);
5459 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
5463 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5464 * root: the root of the parent directory
5465 * rsv: block reservation
5466 * items: the number of items that we need do reservation
5467 * qgroup_reserved: used to return the reserved size in qgroup
5469 * This function is used to reserve the space for snapshot/subvolume
5470 * creation and deletion. Those operations are different with the
5471 * common file/directory operations, they change two fs/file trees
5472 * and root tree, the number of items that the qgroup reserves is
5473 * different with the free space reservation. So we can not use
5474 * the space reseravtion mechanism in start_transaction().
5476 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
5477 struct btrfs_block_rsv
*rsv
,
5479 u64
*qgroup_reserved
,
5480 bool use_global_rsv
)
5484 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5486 if (root
->fs_info
->quota_enabled
) {
5487 /* One for parent inode, two for dir entries */
5488 num_bytes
= 3 * root
->nodesize
;
5489 ret
= btrfs_qgroup_reserve_meta(root
, num_bytes
);
5496 *qgroup_reserved
= num_bytes
;
5498 num_bytes
= btrfs_calc_trans_metadata_size(root
, items
);
5499 rsv
->space_info
= __find_space_info(root
->fs_info
,
5500 BTRFS_BLOCK_GROUP_METADATA
);
5501 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
,
5502 BTRFS_RESERVE_FLUSH_ALL
);
5504 if (ret
== -ENOSPC
&& use_global_rsv
)
5505 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
);
5507 if (ret
&& *qgroup_reserved
)
5508 btrfs_qgroup_free_meta(root
, *qgroup_reserved
);
5513 void btrfs_subvolume_release_metadata(struct btrfs_root
*root
,
5514 struct btrfs_block_rsv
*rsv
,
5515 u64 qgroup_reserved
)
5517 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
5521 * drop_outstanding_extent - drop an outstanding extent
5522 * @inode: the inode we're dropping the extent for
5523 * @num_bytes: the number of bytes we're relaseing.
5525 * This is called when we are freeing up an outstanding extent, either called
5526 * after an error or after an extent is written. This will return the number of
5527 * reserved extents that need to be freed. This must be called with
5528 * BTRFS_I(inode)->lock held.
5530 static unsigned drop_outstanding_extent(struct inode
*inode
, u64 num_bytes
)
5532 unsigned drop_inode_space
= 0;
5533 unsigned dropped_extents
= 0;
5534 unsigned num_extents
= 0;
5536 num_extents
= (unsigned)div64_u64(num_bytes
+
5537 BTRFS_MAX_EXTENT_SIZE
- 1,
5538 BTRFS_MAX_EXTENT_SIZE
);
5539 ASSERT(num_extents
);
5540 ASSERT(BTRFS_I(inode
)->outstanding_extents
>= num_extents
);
5541 BTRFS_I(inode
)->outstanding_extents
-= num_extents
;
5543 if (BTRFS_I(inode
)->outstanding_extents
== 0 &&
5544 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5545 &BTRFS_I(inode
)->runtime_flags
))
5546 drop_inode_space
= 1;
5549 * If we have more or the same amount of outsanding extents than we have
5550 * reserved then we need to leave the reserved extents count alone.
5552 if (BTRFS_I(inode
)->outstanding_extents
>=
5553 BTRFS_I(inode
)->reserved_extents
)
5554 return drop_inode_space
;
5556 dropped_extents
= BTRFS_I(inode
)->reserved_extents
-
5557 BTRFS_I(inode
)->outstanding_extents
;
5558 BTRFS_I(inode
)->reserved_extents
-= dropped_extents
;
5559 return dropped_extents
+ drop_inode_space
;
5563 * calc_csum_metadata_size - return the amount of metada space that must be
5564 * reserved/free'd for the given bytes.
5565 * @inode: the inode we're manipulating
5566 * @num_bytes: the number of bytes in question
5567 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5569 * This adjusts the number of csum_bytes in the inode and then returns the
5570 * correct amount of metadata that must either be reserved or freed. We
5571 * calculate how many checksums we can fit into one leaf and then divide the
5572 * number of bytes that will need to be checksumed by this value to figure out
5573 * how many checksums will be required. If we are adding bytes then the number
5574 * may go up and we will return the number of additional bytes that must be
5575 * reserved. If it is going down we will return the number of bytes that must
5578 * This must be called with BTRFS_I(inode)->lock held.
5580 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
,
5583 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5584 u64 old_csums
, num_csums
;
5586 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
&&
5587 BTRFS_I(inode
)->csum_bytes
== 0)
5590 old_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5592 BTRFS_I(inode
)->csum_bytes
+= num_bytes
;
5594 BTRFS_I(inode
)->csum_bytes
-= num_bytes
;
5595 num_csums
= btrfs_csum_bytes_to_leaves(root
, BTRFS_I(inode
)->csum_bytes
);
5597 /* No change, no need to reserve more */
5598 if (old_csums
== num_csums
)
5602 return btrfs_calc_trans_metadata_size(root
,
5603 num_csums
- old_csums
);
5605 return btrfs_calc_trans_metadata_size(root
, old_csums
- num_csums
);
5608 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
5610 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5611 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
5614 unsigned nr_extents
= 0;
5615 int extra_reserve
= 0;
5616 enum btrfs_reserve_flush_enum flush
= BTRFS_RESERVE_FLUSH_ALL
;
5618 bool delalloc_lock
= true;
5622 /* If we are a free space inode we need to not flush since we will be in
5623 * the middle of a transaction commit. We also don't need the delalloc
5624 * mutex since we won't race with anybody. We need this mostly to make
5625 * lockdep shut its filthy mouth.
5627 if (btrfs_is_free_space_inode(inode
)) {
5628 flush
= BTRFS_RESERVE_NO_FLUSH
;
5629 delalloc_lock
= false;
5632 if (flush
!= BTRFS_RESERVE_NO_FLUSH
&&
5633 btrfs_transaction_in_commit(root
->fs_info
))
5634 schedule_timeout(1);
5637 mutex_lock(&BTRFS_I(inode
)->delalloc_mutex
);
5639 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5641 spin_lock(&BTRFS_I(inode
)->lock
);
5642 nr_extents
= (unsigned)div64_u64(num_bytes
+
5643 BTRFS_MAX_EXTENT_SIZE
- 1,
5644 BTRFS_MAX_EXTENT_SIZE
);
5645 BTRFS_I(inode
)->outstanding_extents
+= nr_extents
;
5648 if (BTRFS_I(inode
)->outstanding_extents
>
5649 BTRFS_I(inode
)->reserved_extents
)
5650 nr_extents
= BTRFS_I(inode
)->outstanding_extents
-
5651 BTRFS_I(inode
)->reserved_extents
;
5654 * Add an item to reserve for updating the inode when we complete the
5657 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5658 &BTRFS_I(inode
)->runtime_flags
)) {
5663 to_reserve
= btrfs_calc_trans_metadata_size(root
, nr_extents
);
5664 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
, 1);
5665 csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5666 spin_unlock(&BTRFS_I(inode
)->lock
);
5668 if (root
->fs_info
->quota_enabled
) {
5669 ret
= btrfs_qgroup_reserve_meta(root
,
5670 nr_extents
* root
->nodesize
);
5675 ret
= reserve_metadata_bytes(root
, block_rsv
, to_reserve
, flush
);
5676 if (unlikely(ret
)) {
5677 btrfs_qgroup_free_meta(root
, nr_extents
* root
->nodesize
);
5681 spin_lock(&BTRFS_I(inode
)->lock
);
5682 if (extra_reserve
) {
5683 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED
,
5684 &BTRFS_I(inode
)->runtime_flags
);
5687 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
5688 spin_unlock(&BTRFS_I(inode
)->lock
);
5691 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5694 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5695 btrfs_ino(inode
), to_reserve
, 1);
5696 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
5701 spin_lock(&BTRFS_I(inode
)->lock
);
5702 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5704 * If the inodes csum_bytes is the same as the original
5705 * csum_bytes then we know we haven't raced with any free()ers
5706 * so we can just reduce our inodes csum bytes and carry on.
5708 if (BTRFS_I(inode
)->csum_bytes
== csum_bytes
) {
5709 calc_csum_metadata_size(inode
, num_bytes
, 0);
5711 u64 orig_csum_bytes
= BTRFS_I(inode
)->csum_bytes
;
5715 * This is tricky, but first we need to figure out how much we
5716 * free'd from any free-ers that occured during this
5717 * reservation, so we reset ->csum_bytes to the csum_bytes
5718 * before we dropped our lock, and then call the free for the
5719 * number of bytes that were freed while we were trying our
5722 bytes
= csum_bytes
- BTRFS_I(inode
)->csum_bytes
;
5723 BTRFS_I(inode
)->csum_bytes
= csum_bytes
;
5724 to_free
= calc_csum_metadata_size(inode
, bytes
, 0);
5728 * Now we need to see how much we would have freed had we not
5729 * been making this reservation and our ->csum_bytes were not
5730 * artificially inflated.
5732 BTRFS_I(inode
)->csum_bytes
= csum_bytes
- num_bytes
;
5733 bytes
= csum_bytes
- orig_csum_bytes
;
5734 bytes
= calc_csum_metadata_size(inode
, bytes
, 0);
5737 * Now reset ->csum_bytes to what it should be. If bytes is
5738 * more than to_free then we would have free'd more space had we
5739 * not had an artificially high ->csum_bytes, so we need to free
5740 * the remainder. If bytes is the same or less then we don't
5741 * need to do anything, the other free-ers did the correct
5744 BTRFS_I(inode
)->csum_bytes
= orig_csum_bytes
- num_bytes
;
5745 if (bytes
> to_free
)
5746 to_free
= bytes
- to_free
;
5750 spin_unlock(&BTRFS_I(inode
)->lock
);
5752 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5755 btrfs_block_rsv_release(root
, block_rsv
, to_free
);
5756 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5757 btrfs_ino(inode
), to_free
, 0);
5760 mutex_unlock(&BTRFS_I(inode
)->delalloc_mutex
);
5765 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5766 * @inode: the inode to release the reservation for
5767 * @num_bytes: the number of bytes we're releasing
5769 * This will release the metadata reservation for an inode. This can be called
5770 * once we complete IO for a given set of bytes to release their metadata
5773 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
5775 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5779 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
5780 spin_lock(&BTRFS_I(inode
)->lock
);
5781 dropped
= drop_outstanding_extent(inode
, num_bytes
);
5784 to_free
= calc_csum_metadata_size(inode
, num_bytes
, 0);
5785 spin_unlock(&BTRFS_I(inode
)->lock
);
5787 to_free
+= btrfs_calc_trans_metadata_size(root
, dropped
);
5789 if (btrfs_test_is_dummy_root(root
))
5792 trace_btrfs_space_reservation(root
->fs_info
, "delalloc",
5793 btrfs_ino(inode
), to_free
, 0);
5795 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
5800 * btrfs_delalloc_reserve_space - reserve data and metadata space for
5802 * @inode: inode we're writing to
5803 * @start: start range we are writing to
5804 * @len: how long the range we are writing to
5806 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
5808 * This will do the following things
5810 * o reserve space in data space info for num bytes
5811 * and reserve precious corresponding qgroup space
5812 * (Done in check_data_free_space)
5814 * o reserve space for metadata space, based on the number of outstanding
5815 * extents and how much csums will be needed
5816 * also reserve metadata space in a per root over-reserve method.
5817 * o add to the inodes->delalloc_bytes
5818 * o add it to the fs_info's delalloc inodes list.
5819 * (Above 3 all done in delalloc_reserve_metadata)
5821 * Return 0 for success
5822 * Return <0 for error(-ENOSPC or -EQUOT)
5824 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 start
, u64 len
)
5828 ret
= btrfs_check_data_free_space(inode
, start
, len
);
5831 ret
= btrfs_delalloc_reserve_metadata(inode
, len
);
5833 btrfs_free_reserved_data_space(inode
, start
, len
);
5838 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5839 * @inode: inode we're releasing space for
5840 * @start: start position of the space already reserved
5841 * @len: the len of the space already reserved
5843 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5844 * called in the case that we don't need the metadata AND data reservations
5845 * anymore. So if there is an error or we insert an inline extent.
5847 * This function will release the metadata space that was not used and will
5848 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5849 * list if there are no delalloc bytes left.
5850 * Also it will handle the qgroup reserved space.
5852 void btrfs_delalloc_release_space(struct inode
*inode
, u64 start
, u64 len
)
5854 btrfs_delalloc_release_metadata(inode
, len
);
5855 btrfs_free_reserved_data_space(inode
, start
, len
);
5858 static int update_block_group(struct btrfs_trans_handle
*trans
,
5859 struct btrfs_root
*root
, u64 bytenr
,
5860 u64 num_bytes
, int alloc
)
5862 struct btrfs_block_group_cache
*cache
= NULL
;
5863 struct btrfs_fs_info
*info
= root
->fs_info
;
5864 u64 total
= num_bytes
;
5869 /* block accounting for super block */
5870 spin_lock(&info
->delalloc_root_lock
);
5871 old_val
= btrfs_super_bytes_used(info
->super_copy
);
5873 old_val
+= num_bytes
;
5875 old_val
-= num_bytes
;
5876 btrfs_set_super_bytes_used(info
->super_copy
, old_val
);
5877 spin_unlock(&info
->delalloc_root_lock
);
5880 cache
= btrfs_lookup_block_group(info
, bytenr
);
5883 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
5884 BTRFS_BLOCK_GROUP_RAID1
|
5885 BTRFS_BLOCK_GROUP_RAID10
))
5890 * If this block group has free space cache written out, we
5891 * need to make sure to load it if we are removing space. This
5892 * is because we need the unpinning stage to actually add the
5893 * space back to the block group, otherwise we will leak space.
5895 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
5896 cache_block_group(cache
, 1);
5898 byte_in_group
= bytenr
- cache
->key
.objectid
;
5899 WARN_ON(byte_in_group
> cache
->key
.offset
);
5901 spin_lock(&cache
->space_info
->lock
);
5902 spin_lock(&cache
->lock
);
5904 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
5905 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
5906 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
5908 old_val
= btrfs_block_group_used(&cache
->item
);
5909 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
5911 old_val
+= num_bytes
;
5912 btrfs_set_block_group_used(&cache
->item
, old_val
);
5913 cache
->reserved
-= num_bytes
;
5914 cache
->space_info
->bytes_reserved
-= num_bytes
;
5915 cache
->space_info
->bytes_used
+= num_bytes
;
5916 cache
->space_info
->disk_used
+= num_bytes
* factor
;
5917 spin_unlock(&cache
->lock
);
5918 spin_unlock(&cache
->space_info
->lock
);
5920 old_val
-= num_bytes
;
5921 btrfs_set_block_group_used(&cache
->item
, old_val
);
5922 cache
->pinned
+= num_bytes
;
5923 cache
->space_info
->bytes_pinned
+= num_bytes
;
5924 cache
->space_info
->bytes_used
-= num_bytes
;
5925 cache
->space_info
->disk_used
-= num_bytes
* factor
;
5926 spin_unlock(&cache
->lock
);
5927 spin_unlock(&cache
->space_info
->lock
);
5929 set_extent_dirty(info
->pinned_extents
,
5930 bytenr
, bytenr
+ num_bytes
- 1,
5931 GFP_NOFS
| __GFP_NOFAIL
);
5934 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
5935 if (list_empty(&cache
->dirty_list
)) {
5936 list_add_tail(&cache
->dirty_list
,
5937 &trans
->transaction
->dirty_bgs
);
5938 trans
->transaction
->num_dirty_bgs
++;
5939 btrfs_get_block_group(cache
);
5941 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
5944 * No longer have used bytes in this block group, queue it for
5945 * deletion. We do this after adding the block group to the
5946 * dirty list to avoid races between cleaner kthread and space
5949 if (!alloc
&& old_val
== 0) {
5950 spin_lock(&info
->unused_bgs_lock
);
5951 if (list_empty(&cache
->bg_list
)) {
5952 btrfs_get_block_group(cache
);
5953 list_add_tail(&cache
->bg_list
,
5956 spin_unlock(&info
->unused_bgs_lock
);
5959 btrfs_put_block_group(cache
);
5961 bytenr
+= num_bytes
;
5966 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
5968 struct btrfs_block_group_cache
*cache
;
5971 spin_lock(&root
->fs_info
->block_group_cache_lock
);
5972 bytenr
= root
->fs_info
->first_logical_byte
;
5973 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
5975 if (bytenr
< (u64
)-1)
5978 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
5982 bytenr
= cache
->key
.objectid
;
5983 btrfs_put_block_group(cache
);
5988 static int pin_down_extent(struct btrfs_root
*root
,
5989 struct btrfs_block_group_cache
*cache
,
5990 u64 bytenr
, u64 num_bytes
, int reserved
)
5992 spin_lock(&cache
->space_info
->lock
);
5993 spin_lock(&cache
->lock
);
5994 cache
->pinned
+= num_bytes
;
5995 cache
->space_info
->bytes_pinned
+= num_bytes
;
5997 cache
->reserved
-= num_bytes
;
5998 cache
->space_info
->bytes_reserved
-= num_bytes
;
6000 spin_unlock(&cache
->lock
);
6001 spin_unlock(&cache
->space_info
->lock
);
6003 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
6004 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
6006 trace_btrfs_reserved_extent_free(root
, bytenr
, num_bytes
);
6011 * this function must be called within transaction
6013 int btrfs_pin_extent(struct btrfs_root
*root
,
6014 u64 bytenr
, u64 num_bytes
, int reserved
)
6016 struct btrfs_block_group_cache
*cache
;
6018 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6019 BUG_ON(!cache
); /* Logic error */
6021 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
6023 btrfs_put_block_group(cache
);
6028 * this function must be called within transaction
6030 int btrfs_pin_extent_for_log_replay(struct btrfs_root
*root
,
6031 u64 bytenr
, u64 num_bytes
)
6033 struct btrfs_block_group_cache
*cache
;
6036 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
6041 * pull in the free space cache (if any) so that our pin
6042 * removes the free space from the cache. We have load_only set
6043 * to one because the slow code to read in the free extents does check
6044 * the pinned extents.
6046 cache_block_group(cache
, 1);
6048 pin_down_extent(root
, cache
, bytenr
, num_bytes
, 0);
6050 /* remove us from the free space cache (if we're there at all) */
6051 ret
= btrfs_remove_free_space(cache
, bytenr
, num_bytes
);
6052 btrfs_put_block_group(cache
);
6056 static int __exclude_logged_extent(struct btrfs_root
*root
, u64 start
, u64 num_bytes
)
6059 struct btrfs_block_group_cache
*block_group
;
6060 struct btrfs_caching_control
*caching_ctl
;
6062 block_group
= btrfs_lookup_block_group(root
->fs_info
, start
);
6066 cache_block_group(block_group
, 0);
6067 caching_ctl
= get_caching_control(block_group
);
6071 BUG_ON(!block_group_cache_done(block_group
));
6072 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
6074 mutex_lock(&caching_ctl
->mutex
);
6076 if (start
>= caching_ctl
->progress
) {
6077 ret
= add_excluded_extent(root
, start
, num_bytes
);
6078 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
6079 ret
= btrfs_remove_free_space(block_group
,
6082 num_bytes
= caching_ctl
->progress
- start
;
6083 ret
= btrfs_remove_free_space(block_group
,
6088 num_bytes
= (start
+ num_bytes
) -
6089 caching_ctl
->progress
;
6090 start
= caching_ctl
->progress
;
6091 ret
= add_excluded_extent(root
, start
, num_bytes
);
6094 mutex_unlock(&caching_ctl
->mutex
);
6095 put_caching_control(caching_ctl
);
6097 btrfs_put_block_group(block_group
);
6101 int btrfs_exclude_logged_extents(struct btrfs_root
*log
,
6102 struct extent_buffer
*eb
)
6104 struct btrfs_file_extent_item
*item
;
6105 struct btrfs_key key
;
6109 if (!btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
))
6112 for (i
= 0; i
< btrfs_header_nritems(eb
); i
++) {
6113 btrfs_item_key_to_cpu(eb
, &key
, i
);
6114 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
6116 item
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
6117 found_type
= btrfs_file_extent_type(eb
, item
);
6118 if (found_type
== BTRFS_FILE_EXTENT_INLINE
)
6120 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
6122 key
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
6123 key
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
6124 __exclude_logged_extent(log
, key
.objectid
, key
.offset
);
6131 * btrfs_update_reserved_bytes - update the block_group and space info counters
6132 * @cache: The cache we are manipulating
6133 * @num_bytes: The number of bytes in question
6134 * @reserve: One of the reservation enums
6135 * @delalloc: The blocks are allocated for the delalloc write
6137 * This is called by the allocator when it reserves space, or by somebody who is
6138 * freeing space that was never actually used on disk. For example if you
6139 * reserve some space for a new leaf in transaction A and before transaction A
6140 * commits you free that leaf, you call this with reserve set to 0 in order to
6141 * clear the reservation.
6143 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6144 * ENOSPC accounting. For data we handle the reservation through clearing the
6145 * delalloc bits in the io_tree. We have to do this since we could end up
6146 * allocating less disk space for the amount of data we have reserved in the
6147 * case of compression.
6149 * If this is a reservation and the block group has become read only we cannot
6150 * make the reservation and return -EAGAIN, otherwise this function always
6153 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
6154 u64 num_bytes
, int reserve
, int delalloc
)
6156 struct btrfs_space_info
*space_info
= cache
->space_info
;
6159 spin_lock(&space_info
->lock
);
6160 spin_lock(&cache
->lock
);
6161 if (reserve
!= RESERVE_FREE
) {
6165 cache
->reserved
+= num_bytes
;
6166 space_info
->bytes_reserved
+= num_bytes
;
6167 if (reserve
== RESERVE_ALLOC
) {
6168 trace_btrfs_space_reservation(cache
->fs_info
,
6169 "space_info", space_info
->flags
,
6171 space_info
->bytes_may_use
-= num_bytes
;
6175 cache
->delalloc_bytes
+= num_bytes
;
6179 space_info
->bytes_readonly
+= num_bytes
;
6180 cache
->reserved
-= num_bytes
;
6181 space_info
->bytes_reserved
-= num_bytes
;
6184 cache
->delalloc_bytes
-= num_bytes
;
6186 spin_unlock(&cache
->lock
);
6187 spin_unlock(&space_info
->lock
);
6191 void btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
6192 struct btrfs_root
*root
)
6194 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6195 struct btrfs_caching_control
*next
;
6196 struct btrfs_caching_control
*caching_ctl
;
6197 struct btrfs_block_group_cache
*cache
;
6199 down_write(&fs_info
->commit_root_sem
);
6201 list_for_each_entry_safe(caching_ctl
, next
,
6202 &fs_info
->caching_block_groups
, list
) {
6203 cache
= caching_ctl
->block_group
;
6204 if (block_group_cache_done(cache
)) {
6205 cache
->last_byte_to_unpin
= (u64
)-1;
6206 list_del_init(&caching_ctl
->list
);
6207 put_caching_control(caching_ctl
);
6209 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
6213 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6214 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
6216 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
6218 up_write(&fs_info
->commit_root_sem
);
6220 update_global_block_rsv(fs_info
);
6224 * Returns the free cluster for the given space info and sets empty_cluster to
6225 * what it should be based on the mount options.
6227 static struct btrfs_free_cluster
*
6228 fetch_cluster_info(struct btrfs_root
*root
, struct btrfs_space_info
*space_info
,
6231 struct btrfs_free_cluster
*ret
= NULL
;
6232 bool ssd
= btrfs_test_opt(root
, SSD
);
6235 if (btrfs_mixed_space_info(space_info
))
6239 *empty_cluster
= 2 * 1024 * 1024;
6240 if (space_info
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
6241 ret
= &root
->fs_info
->meta_alloc_cluster
;
6243 *empty_cluster
= 64 * 1024;
6244 } else if ((space_info
->flags
& BTRFS_BLOCK_GROUP_DATA
) && ssd
) {
6245 ret
= &root
->fs_info
->data_alloc_cluster
;
6251 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
,
6252 const bool return_free_space
)
6254 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6255 struct btrfs_block_group_cache
*cache
= NULL
;
6256 struct btrfs_space_info
*space_info
;
6257 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
6258 struct btrfs_free_cluster
*cluster
= NULL
;
6260 u64 total_unpinned
= 0;
6261 u64 empty_cluster
= 0;
6264 while (start
<= end
) {
6267 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
6269 btrfs_put_block_group(cache
);
6271 cache
= btrfs_lookup_block_group(fs_info
, start
);
6272 BUG_ON(!cache
); /* Logic error */
6274 cluster
= fetch_cluster_info(root
,
6277 empty_cluster
<<= 1;
6280 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
6281 len
= min(len
, end
+ 1 - start
);
6283 if (start
< cache
->last_byte_to_unpin
) {
6284 len
= min(len
, cache
->last_byte_to_unpin
- start
);
6285 if (return_free_space
)
6286 btrfs_add_free_space(cache
, start
, len
);
6290 total_unpinned
+= len
;
6291 space_info
= cache
->space_info
;
6294 * If this space cluster has been marked as fragmented and we've
6295 * unpinned enough in this block group to potentially allow a
6296 * cluster to be created inside of it go ahead and clear the
6299 if (cluster
&& cluster
->fragmented
&&
6300 total_unpinned
> empty_cluster
) {
6301 spin_lock(&cluster
->lock
);
6302 cluster
->fragmented
= 0;
6303 spin_unlock(&cluster
->lock
);
6306 spin_lock(&space_info
->lock
);
6307 spin_lock(&cache
->lock
);
6308 cache
->pinned
-= len
;
6309 space_info
->bytes_pinned
-= len
;
6310 space_info
->max_extent_size
= 0;
6311 percpu_counter_add(&space_info
->total_bytes_pinned
, -len
);
6313 space_info
->bytes_readonly
+= len
;
6316 spin_unlock(&cache
->lock
);
6317 if (!readonly
&& global_rsv
->space_info
== space_info
) {
6318 spin_lock(&global_rsv
->lock
);
6319 if (!global_rsv
->full
) {
6320 len
= min(len
, global_rsv
->size
-
6321 global_rsv
->reserved
);
6322 global_rsv
->reserved
+= len
;
6323 space_info
->bytes_may_use
+= len
;
6324 if (global_rsv
->reserved
>= global_rsv
->size
)
6325 global_rsv
->full
= 1;
6327 spin_unlock(&global_rsv
->lock
);
6329 spin_unlock(&space_info
->lock
);
6333 btrfs_put_block_group(cache
);
6337 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
6338 struct btrfs_root
*root
)
6340 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6341 struct btrfs_block_group_cache
*block_group
, *tmp
;
6342 struct list_head
*deleted_bgs
;
6343 struct extent_io_tree
*unpin
;
6348 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
6349 unpin
= &fs_info
->freed_extents
[1];
6351 unpin
= &fs_info
->freed_extents
[0];
6353 while (!trans
->aborted
) {
6354 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
6355 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
6356 EXTENT_DIRTY
, NULL
);
6358 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6362 if (btrfs_test_opt(root
, DISCARD
))
6363 ret
= btrfs_discard_extent(root
, start
,
6364 end
+ 1 - start
, NULL
);
6366 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
6367 unpin_extent_range(root
, start
, end
, true);
6368 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
6373 * Transaction is finished. We don't need the lock anymore. We
6374 * do need to clean up the block groups in case of a transaction
6377 deleted_bgs
= &trans
->transaction
->deleted_bgs
;
6378 list_for_each_entry_safe(block_group
, tmp
, deleted_bgs
, bg_list
) {
6382 if (!trans
->aborted
)
6383 ret
= btrfs_discard_extent(root
,
6384 block_group
->key
.objectid
,
6385 block_group
->key
.offset
,
6388 list_del_init(&block_group
->bg_list
);
6389 btrfs_put_block_group_trimming(block_group
);
6390 btrfs_put_block_group(block_group
);
6393 const char *errstr
= btrfs_decode_error(ret
);
6395 "Discard failed while removing blockgroup: errno=%d %s\n",
6403 static void add_pinned_bytes(struct btrfs_fs_info
*fs_info
, u64 num_bytes
,
6404 u64 owner
, u64 root_objectid
)
6406 struct btrfs_space_info
*space_info
;
6409 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6410 if (root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
)
6411 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
6413 flags
= BTRFS_BLOCK_GROUP_METADATA
;
6415 flags
= BTRFS_BLOCK_GROUP_DATA
;
6418 space_info
= __find_space_info(fs_info
, flags
);
6419 BUG_ON(!space_info
); /* Logic bug */
6420 percpu_counter_add(&space_info
->total_bytes_pinned
, num_bytes
);
6424 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
6425 struct btrfs_root
*root
,
6426 struct btrfs_delayed_ref_node
*node
, u64 parent
,
6427 u64 root_objectid
, u64 owner_objectid
,
6428 u64 owner_offset
, int refs_to_drop
,
6429 struct btrfs_delayed_extent_op
*extent_op
)
6431 struct btrfs_key key
;
6432 struct btrfs_path
*path
;
6433 struct btrfs_fs_info
*info
= root
->fs_info
;
6434 struct btrfs_root
*extent_root
= info
->extent_root
;
6435 struct extent_buffer
*leaf
;
6436 struct btrfs_extent_item
*ei
;
6437 struct btrfs_extent_inline_ref
*iref
;
6440 int extent_slot
= 0;
6441 int found_extent
= 0;
6445 u64 bytenr
= node
->bytenr
;
6446 u64 num_bytes
= node
->num_bytes
;
6448 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
6451 path
= btrfs_alloc_path();
6456 path
->leave_spinning
= 1;
6458 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
6459 BUG_ON(!is_data
&& refs_to_drop
!= 1);
6462 skinny_metadata
= 0;
6464 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
6465 bytenr
, num_bytes
, parent
,
6466 root_objectid
, owner_objectid
,
6469 extent_slot
= path
->slots
[0];
6470 while (extent_slot
>= 0) {
6471 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6473 if (key
.objectid
!= bytenr
)
6475 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6476 key
.offset
== num_bytes
) {
6480 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
6481 key
.offset
== owner_objectid
) {
6485 if (path
->slots
[0] - extent_slot
> 5)
6489 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6490 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
6491 if (found_extent
&& item_size
< sizeof(*ei
))
6494 if (!found_extent
) {
6496 ret
= remove_extent_backref(trans
, extent_root
, path
,
6498 is_data
, &last_ref
);
6500 btrfs_abort_transaction(trans
, extent_root
, ret
);
6503 btrfs_release_path(path
);
6504 path
->leave_spinning
= 1;
6506 key
.objectid
= bytenr
;
6507 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6508 key
.offset
= num_bytes
;
6510 if (!is_data
&& skinny_metadata
) {
6511 key
.type
= BTRFS_METADATA_ITEM_KEY
;
6512 key
.offset
= owner_objectid
;
6515 ret
= btrfs_search_slot(trans
, extent_root
,
6517 if (ret
> 0 && skinny_metadata
&& path
->slots
[0]) {
6519 * Couldn't find our skinny metadata item,
6520 * see if we have ye olde extent item.
6523 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
6525 if (key
.objectid
== bytenr
&&
6526 key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
6527 key
.offset
== num_bytes
)
6531 if (ret
> 0 && skinny_metadata
) {
6532 skinny_metadata
= false;
6533 key
.objectid
= bytenr
;
6534 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6535 key
.offset
= num_bytes
;
6536 btrfs_release_path(path
);
6537 ret
= btrfs_search_slot(trans
, extent_root
,
6542 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6545 btrfs_print_leaf(extent_root
,
6549 btrfs_abort_transaction(trans
, extent_root
, ret
);
6552 extent_slot
= path
->slots
[0];
6554 } else if (WARN_ON(ret
== -ENOENT
)) {
6555 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6557 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
6558 bytenr
, parent
, root_objectid
, owner_objectid
,
6560 btrfs_abort_transaction(trans
, extent_root
, ret
);
6563 btrfs_abort_transaction(trans
, extent_root
, ret
);
6567 leaf
= path
->nodes
[0];
6568 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6569 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6570 if (item_size
< sizeof(*ei
)) {
6571 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
6572 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
6575 btrfs_abort_transaction(trans
, extent_root
, ret
);
6579 btrfs_release_path(path
);
6580 path
->leave_spinning
= 1;
6582 key
.objectid
= bytenr
;
6583 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
6584 key
.offset
= num_bytes
;
6586 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
6589 btrfs_err(info
, "umm, got %d back from search, was looking for %llu",
6591 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
6594 btrfs_abort_transaction(trans
, extent_root
, ret
);
6598 extent_slot
= path
->slots
[0];
6599 leaf
= path
->nodes
[0];
6600 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
6603 BUG_ON(item_size
< sizeof(*ei
));
6604 ei
= btrfs_item_ptr(leaf
, extent_slot
,
6605 struct btrfs_extent_item
);
6606 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
6607 key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
6608 struct btrfs_tree_block_info
*bi
;
6609 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
6610 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
6611 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
6614 refs
= btrfs_extent_refs(leaf
, ei
);
6615 if (refs
< refs_to_drop
) {
6616 btrfs_err(info
, "trying to drop %d refs but we only have %Lu "
6617 "for bytenr %Lu", refs_to_drop
, refs
, bytenr
);
6619 btrfs_abort_transaction(trans
, extent_root
, ret
);
6622 refs
-= refs_to_drop
;
6626 __run_delayed_extent_op(extent_op
, leaf
, ei
);
6628 * In the case of inline back ref, reference count will
6629 * be updated by remove_extent_backref
6632 BUG_ON(!found_extent
);
6634 btrfs_set_extent_refs(leaf
, ei
, refs
);
6635 btrfs_mark_buffer_dirty(leaf
);
6638 ret
= remove_extent_backref(trans
, extent_root
, path
,
6640 is_data
, &last_ref
);
6642 btrfs_abort_transaction(trans
, extent_root
, ret
);
6646 add_pinned_bytes(root
->fs_info
, -num_bytes
, owner_objectid
,
6650 BUG_ON(is_data
&& refs_to_drop
!=
6651 extent_data_ref_count(path
, iref
));
6653 BUG_ON(path
->slots
[0] != extent_slot
);
6655 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
6656 path
->slots
[0] = extent_slot
;
6662 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
6665 btrfs_abort_transaction(trans
, extent_root
, ret
);
6668 btrfs_release_path(path
);
6671 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
6673 btrfs_abort_transaction(trans
, extent_root
, ret
);
6678 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
6680 btrfs_abort_transaction(trans
, extent_root
, ret
);
6684 btrfs_release_path(path
);
6687 btrfs_free_path(path
);
6692 * when we free an block, it is possible (and likely) that we free the last
6693 * delayed ref for that extent as well. This searches the delayed ref tree for
6694 * a given extent, and if there are no other delayed refs to be processed, it
6695 * removes it from the tree.
6697 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
6698 struct btrfs_root
*root
, u64 bytenr
)
6700 struct btrfs_delayed_ref_head
*head
;
6701 struct btrfs_delayed_ref_root
*delayed_refs
;
6704 delayed_refs
= &trans
->transaction
->delayed_refs
;
6705 spin_lock(&delayed_refs
->lock
);
6706 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
6708 goto out_delayed_unlock
;
6710 spin_lock(&head
->lock
);
6711 if (!list_empty(&head
->ref_list
))
6714 if (head
->extent_op
) {
6715 if (!head
->must_insert_reserved
)
6717 btrfs_free_delayed_extent_op(head
->extent_op
);
6718 head
->extent_op
= NULL
;
6722 * waiting for the lock here would deadlock. If someone else has it
6723 * locked they are already in the process of dropping it anyway
6725 if (!mutex_trylock(&head
->mutex
))
6729 * at this point we have a head with no other entries. Go
6730 * ahead and process it.
6732 head
->node
.in_tree
= 0;
6733 rb_erase(&head
->href_node
, &delayed_refs
->href_root
);
6735 atomic_dec(&delayed_refs
->num_entries
);
6738 * we don't take a ref on the node because we're removing it from the
6739 * tree, so we just steal the ref the tree was holding.
6741 delayed_refs
->num_heads
--;
6742 if (head
->processing
== 0)
6743 delayed_refs
->num_heads_ready
--;
6744 head
->processing
= 0;
6745 spin_unlock(&head
->lock
);
6746 spin_unlock(&delayed_refs
->lock
);
6748 BUG_ON(head
->extent_op
);
6749 if (head
->must_insert_reserved
)
6752 mutex_unlock(&head
->mutex
);
6753 btrfs_put_delayed_ref(&head
->node
);
6756 spin_unlock(&head
->lock
);
6759 spin_unlock(&delayed_refs
->lock
);
6763 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
6764 struct btrfs_root
*root
,
6765 struct extent_buffer
*buf
,
6766 u64 parent
, int last_ref
)
6771 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6772 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
6773 buf
->start
, buf
->len
,
6774 parent
, root
->root_key
.objectid
,
6775 btrfs_header_level(buf
),
6776 BTRFS_DROP_DELAYED_REF
, NULL
);
6777 BUG_ON(ret
); /* -ENOMEM */
6783 if (btrfs_header_generation(buf
) == trans
->transid
) {
6784 struct btrfs_block_group_cache
*cache
;
6786 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
6787 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
6792 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
6794 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
6795 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
6796 btrfs_put_block_group(cache
);
6800 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
6802 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
6803 btrfs_update_reserved_bytes(cache
, buf
->len
, RESERVE_FREE
, 0);
6804 btrfs_put_block_group(cache
);
6805 trace_btrfs_reserved_extent_free(root
, buf
->start
, buf
->len
);
6810 add_pinned_bytes(root
->fs_info
, buf
->len
,
6811 btrfs_header_level(buf
),
6812 root
->root_key
.objectid
);
6815 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6818 clear_bit(EXTENT_BUFFER_CORRUPT
, &buf
->bflags
);
6821 /* Can return -ENOMEM */
6822 int btrfs_free_extent(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
6823 u64 bytenr
, u64 num_bytes
, u64 parent
, u64 root_objectid
,
6824 u64 owner
, u64 offset
)
6827 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6829 if (btrfs_test_is_dummy_root(root
))
6832 add_pinned_bytes(root
->fs_info
, num_bytes
, owner
, root_objectid
);
6835 * tree log blocks never actually go into the extent allocation
6836 * tree, just update pinning info and exit early.
6838 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
6839 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
6840 /* unlocks the pinned mutex */
6841 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
6843 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
6844 ret
= btrfs_add_delayed_tree_ref(fs_info
, trans
, bytenr
,
6846 parent
, root_objectid
, (int)owner
,
6847 BTRFS_DROP_DELAYED_REF
, NULL
);
6849 ret
= btrfs_add_delayed_data_ref(fs_info
, trans
, bytenr
,
6851 parent
, root_objectid
, owner
,
6853 BTRFS_DROP_DELAYED_REF
, NULL
);
6859 * when we wait for progress in the block group caching, its because
6860 * our allocation attempt failed at least once. So, we must sleep
6861 * and let some progress happen before we try again.
6863 * This function will sleep at least once waiting for new free space to
6864 * show up, and then it will check the block group free space numbers
6865 * for our min num_bytes. Another option is to have it go ahead
6866 * and look in the rbtree for a free extent of a given size, but this
6869 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6870 * any of the information in this block group.
6872 static noinline
void
6873 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
6876 struct btrfs_caching_control
*caching_ctl
;
6878 caching_ctl
= get_caching_control(cache
);
6882 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
6883 (cache
->free_space_ctl
->free_space
>= num_bytes
));
6885 put_caching_control(caching_ctl
);
6889 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
6891 struct btrfs_caching_control
*caching_ctl
;
6894 caching_ctl
= get_caching_control(cache
);
6896 return (cache
->cached
== BTRFS_CACHE_ERROR
) ? -EIO
: 0;
6898 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
6899 if (cache
->cached
== BTRFS_CACHE_ERROR
)
6901 put_caching_control(caching_ctl
);
6905 int __get_raid_index(u64 flags
)
6907 if (flags
& BTRFS_BLOCK_GROUP_RAID10
)
6908 return BTRFS_RAID_RAID10
;
6909 else if (flags
& BTRFS_BLOCK_GROUP_RAID1
)
6910 return BTRFS_RAID_RAID1
;
6911 else if (flags
& BTRFS_BLOCK_GROUP_DUP
)
6912 return BTRFS_RAID_DUP
;
6913 else if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
6914 return BTRFS_RAID_RAID0
;
6915 else if (flags
& BTRFS_BLOCK_GROUP_RAID5
)
6916 return BTRFS_RAID_RAID5
;
6917 else if (flags
& BTRFS_BLOCK_GROUP_RAID6
)
6918 return BTRFS_RAID_RAID6
;
6920 return BTRFS_RAID_SINGLE
; /* BTRFS_BLOCK_GROUP_SINGLE */
6923 int get_block_group_index(struct btrfs_block_group_cache
*cache
)
6925 return __get_raid_index(cache
->flags
);
6928 static const char *btrfs_raid_type_names
[BTRFS_NR_RAID_TYPES
] = {
6929 [BTRFS_RAID_RAID10
] = "raid10",
6930 [BTRFS_RAID_RAID1
] = "raid1",
6931 [BTRFS_RAID_DUP
] = "dup",
6932 [BTRFS_RAID_RAID0
] = "raid0",
6933 [BTRFS_RAID_SINGLE
] = "single",
6934 [BTRFS_RAID_RAID5
] = "raid5",
6935 [BTRFS_RAID_RAID6
] = "raid6",
6938 static const char *get_raid_name(enum btrfs_raid_types type
)
6940 if (type
>= BTRFS_NR_RAID_TYPES
)
6943 return btrfs_raid_type_names
[type
];
6946 enum btrfs_loop_type
{
6947 LOOP_CACHING_NOWAIT
= 0,
6948 LOOP_CACHING_WAIT
= 1,
6949 LOOP_ALLOC_CHUNK
= 2,
6950 LOOP_NO_EMPTY_SIZE
= 3,
6954 btrfs_lock_block_group(struct btrfs_block_group_cache
*cache
,
6958 down_read(&cache
->data_rwsem
);
6962 btrfs_grab_block_group(struct btrfs_block_group_cache
*cache
,
6965 btrfs_get_block_group(cache
);
6967 down_read(&cache
->data_rwsem
);
6970 static struct btrfs_block_group_cache
*
6971 btrfs_lock_cluster(struct btrfs_block_group_cache
*block_group
,
6972 struct btrfs_free_cluster
*cluster
,
6975 struct btrfs_block_group_cache
*used_bg
;
6976 bool locked
= false;
6978 spin_lock(&cluster
->refill_lock
);
6980 if (used_bg
== cluster
->block_group
)
6983 up_read(&used_bg
->data_rwsem
);
6984 btrfs_put_block_group(used_bg
);
6987 used_bg
= cluster
->block_group
;
6991 if (used_bg
== block_group
)
6994 btrfs_get_block_group(used_bg
);
6999 if (down_read_trylock(&used_bg
->data_rwsem
))
7002 spin_unlock(&cluster
->refill_lock
);
7003 down_read(&used_bg
->data_rwsem
);
7009 btrfs_release_block_group(struct btrfs_block_group_cache
*cache
,
7013 up_read(&cache
->data_rwsem
);
7014 btrfs_put_block_group(cache
);
7018 * walks the btree of allocated extents and find a hole of a given size.
7019 * The key ins is changed to record the hole:
7020 * ins->objectid == start position
7021 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7022 * ins->offset == the size of the hole.
7023 * Any available blocks before search_start are skipped.
7025 * If there is no suitable free space, we will record the max size of
7026 * the free space extent currently.
7028 static noinline
int find_free_extent(struct btrfs_root
*orig_root
,
7029 u64 num_bytes
, u64 empty_size
,
7030 u64 hint_byte
, struct btrfs_key
*ins
,
7031 u64 flags
, int delalloc
)
7034 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
7035 struct btrfs_free_cluster
*last_ptr
= NULL
;
7036 struct btrfs_block_group_cache
*block_group
= NULL
;
7037 u64 search_start
= 0;
7038 u64 max_extent_size
= 0;
7039 u64 empty_cluster
= 0;
7040 struct btrfs_space_info
*space_info
;
7042 int index
= __get_raid_index(flags
);
7043 int alloc_type
= (flags
& BTRFS_BLOCK_GROUP_DATA
) ?
7044 RESERVE_ALLOC_NO_ACCOUNT
: RESERVE_ALLOC
;
7045 bool failed_cluster_refill
= false;
7046 bool failed_alloc
= false;
7047 bool use_cluster
= true;
7048 bool have_caching_bg
= false;
7049 bool orig_have_caching_bg
= false;
7050 bool full_search
= false;
7052 WARN_ON(num_bytes
< root
->sectorsize
);
7053 ins
->type
= BTRFS_EXTENT_ITEM_KEY
;
7057 trace_find_free_extent(orig_root
, num_bytes
, empty_size
, flags
);
7059 space_info
= __find_space_info(root
->fs_info
, flags
);
7061 btrfs_err(root
->fs_info
, "No space info for %llu", flags
);
7066 * If our free space is heavily fragmented we may not be able to make
7067 * big contiguous allocations, so instead of doing the expensive search
7068 * for free space, simply return ENOSPC with our max_extent_size so we
7069 * can go ahead and search for a more manageable chunk.
7071 * If our max_extent_size is large enough for our allocation simply
7072 * disable clustering since we will likely not be able to find enough
7073 * space to create a cluster and induce latency trying.
7075 if (unlikely(space_info
->max_extent_size
)) {
7076 spin_lock(&space_info
->lock
);
7077 if (space_info
->max_extent_size
&&
7078 num_bytes
> space_info
->max_extent_size
) {
7079 ins
->offset
= space_info
->max_extent_size
;
7080 spin_unlock(&space_info
->lock
);
7082 } else if (space_info
->max_extent_size
) {
7083 use_cluster
= false;
7085 spin_unlock(&space_info
->lock
);
7088 last_ptr
= fetch_cluster_info(orig_root
, space_info
, &empty_cluster
);
7090 spin_lock(&last_ptr
->lock
);
7091 if (last_ptr
->block_group
)
7092 hint_byte
= last_ptr
->window_start
;
7093 if (last_ptr
->fragmented
) {
7095 * We still set window_start so we can keep track of the
7096 * last place we found an allocation to try and save
7099 hint_byte
= last_ptr
->window_start
;
7100 use_cluster
= false;
7102 spin_unlock(&last_ptr
->lock
);
7105 search_start
= max(search_start
, first_logical_byte(root
, 0));
7106 search_start
= max(search_start
, hint_byte
);
7107 if (search_start
== hint_byte
) {
7108 block_group
= btrfs_lookup_block_group(root
->fs_info
,
7111 * we don't want to use the block group if it doesn't match our
7112 * allocation bits, or if its not cached.
7114 * However if we are re-searching with an ideal block group
7115 * picked out then we don't care that the block group is cached.
7117 if (block_group
&& block_group_bits(block_group
, flags
) &&
7118 block_group
->cached
!= BTRFS_CACHE_NO
) {
7119 down_read(&space_info
->groups_sem
);
7120 if (list_empty(&block_group
->list
) ||
7123 * someone is removing this block group,
7124 * we can't jump into the have_block_group
7125 * target because our list pointers are not
7128 btrfs_put_block_group(block_group
);
7129 up_read(&space_info
->groups_sem
);
7131 index
= get_block_group_index(block_group
);
7132 btrfs_lock_block_group(block_group
, delalloc
);
7133 goto have_block_group
;
7135 } else if (block_group
) {
7136 btrfs_put_block_group(block_group
);
7140 have_caching_bg
= false;
7141 if (index
== 0 || index
== __get_raid_index(flags
))
7143 down_read(&space_info
->groups_sem
);
7144 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
7149 btrfs_grab_block_group(block_group
, delalloc
);
7150 search_start
= block_group
->key
.objectid
;
7153 * this can happen if we end up cycling through all the
7154 * raid types, but we want to make sure we only allocate
7155 * for the proper type.
7157 if (!block_group_bits(block_group
, flags
)) {
7158 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
7159 BTRFS_BLOCK_GROUP_RAID1
|
7160 BTRFS_BLOCK_GROUP_RAID5
|
7161 BTRFS_BLOCK_GROUP_RAID6
|
7162 BTRFS_BLOCK_GROUP_RAID10
;
7165 * if they asked for extra copies and this block group
7166 * doesn't provide them, bail. This does allow us to
7167 * fill raid0 from raid1.
7169 if ((flags
& extra
) && !(block_group
->flags
& extra
))
7173 * This block group has different flags than we want.
7174 * It's possible that we have MIXED_GROUP flag but no
7175 * block group is mixed. Just skip such block group.
7177 btrfs_release_block_group(block_group
, delalloc
);
7182 cached
= block_group_cache_done(block_group
);
7183 if (unlikely(!cached
)) {
7184 have_caching_bg
= true;
7185 ret
= cache_block_group(block_group
, 0);
7190 if (unlikely(block_group
->cached
== BTRFS_CACHE_ERROR
))
7192 if (unlikely(block_group
->ro
))
7196 * Ok we want to try and use the cluster allocator, so
7199 if (last_ptr
&& use_cluster
) {
7200 struct btrfs_block_group_cache
*used_block_group
;
7201 unsigned long aligned_cluster
;
7203 * the refill lock keeps out other
7204 * people trying to start a new cluster
7206 used_block_group
= btrfs_lock_cluster(block_group
,
7209 if (!used_block_group
)
7210 goto refill_cluster
;
7212 if (used_block_group
!= block_group
&&
7213 (used_block_group
->ro
||
7214 !block_group_bits(used_block_group
, flags
)))
7215 goto release_cluster
;
7217 offset
= btrfs_alloc_from_cluster(used_block_group
,
7220 used_block_group
->key
.objectid
,
7223 /* we have a block, we're done */
7224 spin_unlock(&last_ptr
->refill_lock
);
7225 trace_btrfs_reserve_extent_cluster(root
,
7227 search_start
, num_bytes
);
7228 if (used_block_group
!= block_group
) {
7229 btrfs_release_block_group(block_group
,
7231 block_group
= used_block_group
;
7236 WARN_ON(last_ptr
->block_group
!= used_block_group
);
7238 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7239 * set up a new clusters, so lets just skip it
7240 * and let the allocator find whatever block
7241 * it can find. If we reach this point, we
7242 * will have tried the cluster allocator
7243 * plenty of times and not have found
7244 * anything, so we are likely way too
7245 * fragmented for the clustering stuff to find
7248 * However, if the cluster is taken from the
7249 * current block group, release the cluster
7250 * first, so that we stand a better chance of
7251 * succeeding in the unclustered
7253 if (loop
>= LOOP_NO_EMPTY_SIZE
&&
7254 used_block_group
!= block_group
) {
7255 spin_unlock(&last_ptr
->refill_lock
);
7256 btrfs_release_block_group(used_block_group
,
7258 goto unclustered_alloc
;
7262 * this cluster didn't work out, free it and
7265 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7267 if (used_block_group
!= block_group
)
7268 btrfs_release_block_group(used_block_group
,
7271 if (loop
>= LOOP_NO_EMPTY_SIZE
) {
7272 spin_unlock(&last_ptr
->refill_lock
);
7273 goto unclustered_alloc
;
7276 aligned_cluster
= max_t(unsigned long,
7277 empty_cluster
+ empty_size
,
7278 block_group
->full_stripe_len
);
7280 /* allocate a cluster in this block group */
7281 ret
= btrfs_find_space_cluster(root
, block_group
,
7282 last_ptr
, search_start
,
7287 * now pull our allocation out of this
7290 offset
= btrfs_alloc_from_cluster(block_group
,
7296 /* we found one, proceed */
7297 spin_unlock(&last_ptr
->refill_lock
);
7298 trace_btrfs_reserve_extent_cluster(root
,
7299 block_group
, search_start
,
7303 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
7304 && !failed_cluster_refill
) {
7305 spin_unlock(&last_ptr
->refill_lock
);
7307 failed_cluster_refill
= true;
7308 wait_block_group_cache_progress(block_group
,
7309 num_bytes
+ empty_cluster
+ empty_size
);
7310 goto have_block_group
;
7314 * at this point we either didn't find a cluster
7315 * or we weren't able to allocate a block from our
7316 * cluster. Free the cluster we've been trying
7317 * to use, and go to the next block group
7319 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
7320 spin_unlock(&last_ptr
->refill_lock
);
7326 * We are doing an unclustered alloc, set the fragmented flag so
7327 * we don't bother trying to setup a cluster again until we get
7330 if (unlikely(last_ptr
)) {
7331 spin_lock(&last_ptr
->lock
);
7332 last_ptr
->fragmented
= 1;
7333 spin_unlock(&last_ptr
->lock
);
7335 spin_lock(&block_group
->free_space_ctl
->tree_lock
);
7337 block_group
->free_space_ctl
->free_space
<
7338 num_bytes
+ empty_cluster
+ empty_size
) {
7339 if (block_group
->free_space_ctl
->free_space
>
7342 block_group
->free_space_ctl
->free_space
;
7343 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7346 spin_unlock(&block_group
->free_space_ctl
->tree_lock
);
7348 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
7349 num_bytes
, empty_size
,
7352 * If we didn't find a chunk, and we haven't failed on this
7353 * block group before, and this block group is in the middle of
7354 * caching and we are ok with waiting, then go ahead and wait
7355 * for progress to be made, and set failed_alloc to true.
7357 * If failed_alloc is true then we've already waited on this
7358 * block group once and should move on to the next block group.
7360 if (!offset
&& !failed_alloc
&& !cached
&&
7361 loop
> LOOP_CACHING_NOWAIT
) {
7362 wait_block_group_cache_progress(block_group
,
7363 num_bytes
+ empty_size
);
7364 failed_alloc
= true;
7365 goto have_block_group
;
7366 } else if (!offset
) {
7370 search_start
= ALIGN(offset
, root
->stripesize
);
7372 /* move on to the next group */
7373 if (search_start
+ num_bytes
>
7374 block_group
->key
.objectid
+ block_group
->key
.offset
) {
7375 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7379 if (offset
< search_start
)
7380 btrfs_add_free_space(block_group
, offset
,
7381 search_start
- offset
);
7382 BUG_ON(offset
> search_start
);
7384 ret
= btrfs_update_reserved_bytes(block_group
, num_bytes
,
7385 alloc_type
, delalloc
);
7386 if (ret
== -EAGAIN
) {
7387 btrfs_add_free_space(block_group
, offset
, num_bytes
);
7391 /* we are all good, lets return */
7392 ins
->objectid
= search_start
;
7393 ins
->offset
= num_bytes
;
7395 trace_btrfs_reserve_extent(orig_root
, block_group
,
7396 search_start
, num_bytes
);
7397 btrfs_release_block_group(block_group
, delalloc
);
7400 failed_cluster_refill
= false;
7401 failed_alloc
= false;
7402 BUG_ON(index
!= get_block_group_index(block_group
));
7403 btrfs_release_block_group(block_group
, delalloc
);
7405 up_read(&space_info
->groups_sem
);
7407 if ((loop
== LOOP_CACHING_NOWAIT
) && have_caching_bg
7408 && !orig_have_caching_bg
)
7409 orig_have_caching_bg
= true;
7411 if (!ins
->objectid
&& loop
>= LOOP_CACHING_WAIT
&& have_caching_bg
)
7414 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
7418 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7419 * caching kthreads as we move along
7420 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7421 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7422 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7425 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
) {
7427 if (loop
== LOOP_CACHING_NOWAIT
) {
7429 * We want to skip the LOOP_CACHING_WAIT step if we
7430 * don't have any unached bgs and we've alrelady done a
7431 * full search through.
7433 if (orig_have_caching_bg
|| !full_search
)
7434 loop
= LOOP_CACHING_WAIT
;
7436 loop
= LOOP_ALLOC_CHUNK
;
7441 if (loop
== LOOP_ALLOC_CHUNK
) {
7442 struct btrfs_trans_handle
*trans
;
7445 trans
= current
->journal_info
;
7449 trans
= btrfs_join_transaction(root
);
7451 if (IS_ERR(trans
)) {
7452 ret
= PTR_ERR(trans
);
7456 ret
= do_chunk_alloc(trans
, root
, flags
,
7460 * If we can't allocate a new chunk we've already looped
7461 * through at least once, move on to the NO_EMPTY_SIZE
7465 loop
= LOOP_NO_EMPTY_SIZE
;
7468 * Do not bail out on ENOSPC since we
7469 * can do more things.
7471 if (ret
< 0 && ret
!= -ENOSPC
)
7472 btrfs_abort_transaction(trans
,
7477 btrfs_end_transaction(trans
, root
);
7482 if (loop
== LOOP_NO_EMPTY_SIZE
) {
7484 * Don't loop again if we already have no empty_size and
7487 if (empty_size
== 0 &&
7488 empty_cluster
== 0) {
7497 } else if (!ins
->objectid
) {
7499 } else if (ins
->objectid
) {
7500 if (!use_cluster
&& last_ptr
) {
7501 spin_lock(&last_ptr
->lock
);
7502 last_ptr
->window_start
= ins
->objectid
;
7503 spin_unlock(&last_ptr
->lock
);
7508 if (ret
== -ENOSPC
) {
7509 spin_lock(&space_info
->lock
);
7510 space_info
->max_extent_size
= max_extent_size
;
7511 spin_unlock(&space_info
->lock
);
7512 ins
->offset
= max_extent_size
;
7517 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
7518 int dump_block_groups
)
7520 struct btrfs_block_group_cache
*cache
;
7523 spin_lock(&info
->lock
);
7524 printk(KERN_INFO
"BTRFS: space_info %llu has %llu free, is %sfull\n",
7526 info
->total_bytes
- info
->bytes_used
- info
->bytes_pinned
-
7527 info
->bytes_reserved
- info
->bytes_readonly
,
7528 (info
->full
) ? "" : "not ");
7529 printk(KERN_INFO
"BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
7530 "reserved=%llu, may_use=%llu, readonly=%llu\n",
7531 info
->total_bytes
, info
->bytes_used
, info
->bytes_pinned
,
7532 info
->bytes_reserved
, info
->bytes_may_use
,
7533 info
->bytes_readonly
);
7534 spin_unlock(&info
->lock
);
7536 if (!dump_block_groups
)
7539 down_read(&info
->groups_sem
);
7541 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
7542 spin_lock(&cache
->lock
);
7543 printk(KERN_INFO
"BTRFS: "
7544 "block group %llu has %llu bytes, "
7545 "%llu used %llu pinned %llu reserved %s\n",
7546 cache
->key
.objectid
, cache
->key
.offset
,
7547 btrfs_block_group_used(&cache
->item
), cache
->pinned
,
7548 cache
->reserved
, cache
->ro
? "[readonly]" : "");
7549 btrfs_dump_free_space(cache
, bytes
);
7550 spin_unlock(&cache
->lock
);
7552 if (++index
< BTRFS_NR_RAID_TYPES
)
7554 up_read(&info
->groups_sem
);
7557 int btrfs_reserve_extent(struct btrfs_root
*root
,
7558 u64 num_bytes
, u64 min_alloc_size
,
7559 u64 empty_size
, u64 hint_byte
,
7560 struct btrfs_key
*ins
, int is_data
, int delalloc
)
7562 bool final_tried
= num_bytes
== min_alloc_size
;
7566 flags
= btrfs_get_alloc_profile(root
, is_data
);
7568 WARN_ON(num_bytes
< root
->sectorsize
);
7569 ret
= find_free_extent(root
, num_bytes
, empty_size
, hint_byte
, ins
,
7572 if (ret
== -ENOSPC
) {
7573 if (!final_tried
&& ins
->offset
) {
7574 num_bytes
= min(num_bytes
>> 1, ins
->offset
);
7575 num_bytes
= round_down(num_bytes
, root
->sectorsize
);
7576 num_bytes
= max(num_bytes
, min_alloc_size
);
7577 if (num_bytes
== min_alloc_size
)
7580 } else if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7581 struct btrfs_space_info
*sinfo
;
7583 sinfo
= __find_space_info(root
->fs_info
, flags
);
7584 btrfs_err(root
->fs_info
, "allocation failed flags %llu, wanted %llu",
7587 dump_space_info(sinfo
, num_bytes
, 1);
7594 static int __btrfs_free_reserved_extent(struct btrfs_root
*root
,
7596 int pin
, int delalloc
)
7598 struct btrfs_block_group_cache
*cache
;
7601 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
7603 btrfs_err(root
->fs_info
, "Unable to find block group for %llu",
7609 pin_down_extent(root
, cache
, start
, len
, 1);
7611 if (btrfs_test_opt(root
, DISCARD
))
7612 ret
= btrfs_discard_extent(root
, start
, len
, NULL
);
7613 btrfs_add_free_space(cache
, start
, len
);
7614 btrfs_update_reserved_bytes(cache
, len
, RESERVE_FREE
, delalloc
);
7617 btrfs_put_block_group(cache
);
7619 trace_btrfs_reserved_extent_free(root
, start
, len
);
7624 int btrfs_free_reserved_extent(struct btrfs_root
*root
,
7625 u64 start
, u64 len
, int delalloc
)
7627 return __btrfs_free_reserved_extent(root
, start
, len
, 0, delalloc
);
7630 int btrfs_free_and_pin_reserved_extent(struct btrfs_root
*root
,
7633 return __btrfs_free_reserved_extent(root
, start
, len
, 1, 0);
7636 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7637 struct btrfs_root
*root
,
7638 u64 parent
, u64 root_objectid
,
7639 u64 flags
, u64 owner
, u64 offset
,
7640 struct btrfs_key
*ins
, int ref_mod
)
7643 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7644 struct btrfs_extent_item
*extent_item
;
7645 struct btrfs_extent_inline_ref
*iref
;
7646 struct btrfs_path
*path
;
7647 struct extent_buffer
*leaf
;
7652 type
= BTRFS_SHARED_DATA_REF_KEY
;
7654 type
= BTRFS_EXTENT_DATA_REF_KEY
;
7656 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
7658 path
= btrfs_alloc_path();
7662 path
->leave_spinning
= 1;
7663 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7666 btrfs_free_path(path
);
7670 leaf
= path
->nodes
[0];
7671 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7672 struct btrfs_extent_item
);
7673 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
7674 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7675 btrfs_set_extent_flags(leaf
, extent_item
,
7676 flags
| BTRFS_EXTENT_FLAG_DATA
);
7678 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7679 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
7681 struct btrfs_shared_data_ref
*ref
;
7682 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
7683 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7684 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
7686 struct btrfs_extent_data_ref
*ref
;
7687 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
7688 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
7689 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
7690 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
7691 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
7694 btrfs_mark_buffer_dirty(path
->nodes
[0]);
7695 btrfs_free_path(path
);
7697 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
7698 if (ret
) { /* -ENOENT, logic error */
7699 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7700 ins
->objectid
, ins
->offset
);
7703 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, ins
->offset
);
7707 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
7708 struct btrfs_root
*root
,
7709 u64 parent
, u64 root_objectid
,
7710 u64 flags
, struct btrfs_disk_key
*key
,
7711 int level
, struct btrfs_key
*ins
)
7714 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7715 struct btrfs_extent_item
*extent_item
;
7716 struct btrfs_tree_block_info
*block_info
;
7717 struct btrfs_extent_inline_ref
*iref
;
7718 struct btrfs_path
*path
;
7719 struct extent_buffer
*leaf
;
7720 u32 size
= sizeof(*extent_item
) + sizeof(*iref
);
7721 u64 num_bytes
= ins
->offset
;
7722 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7725 if (!skinny_metadata
)
7726 size
+= sizeof(*block_info
);
7728 path
= btrfs_alloc_path();
7730 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7735 path
->leave_spinning
= 1;
7736 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
7739 btrfs_free_path(path
);
7740 btrfs_free_and_pin_reserved_extent(root
, ins
->objectid
,
7745 leaf
= path
->nodes
[0];
7746 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
7747 struct btrfs_extent_item
);
7748 btrfs_set_extent_refs(leaf
, extent_item
, 1);
7749 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
7750 btrfs_set_extent_flags(leaf
, extent_item
,
7751 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
7753 if (skinny_metadata
) {
7754 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
7755 num_bytes
= root
->nodesize
;
7757 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
7758 btrfs_set_tree_block_key(leaf
, block_info
, key
);
7759 btrfs_set_tree_block_level(leaf
, block_info
, level
);
7760 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
7764 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
7765 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7766 BTRFS_SHARED_BLOCK_REF_KEY
);
7767 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
7769 btrfs_set_extent_inline_ref_type(leaf
, iref
,
7770 BTRFS_TREE_BLOCK_REF_KEY
);
7771 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
7774 btrfs_mark_buffer_dirty(leaf
);
7775 btrfs_free_path(path
);
7777 ret
= update_block_group(trans
, root
, ins
->objectid
, root
->nodesize
,
7779 if (ret
) { /* -ENOENT, logic error */
7780 btrfs_err(fs_info
, "update block group failed for %llu %llu",
7781 ins
->objectid
, ins
->offset
);
7785 trace_btrfs_reserved_extent_alloc(root
, ins
->objectid
, root
->nodesize
);
7789 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
7790 struct btrfs_root
*root
,
7791 u64 root_objectid
, u64 owner
,
7792 u64 offset
, u64 ram_bytes
,
7793 struct btrfs_key
*ins
)
7797 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
7799 ret
= btrfs_add_delayed_data_ref(root
->fs_info
, trans
, ins
->objectid
,
7801 root_objectid
, owner
, offset
,
7802 ram_bytes
, BTRFS_ADD_DELAYED_EXTENT
,
7808 * this is used by the tree logging recovery code. It records that
7809 * an extent has been allocated and makes sure to clear the free
7810 * space cache bits as well
7812 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
7813 struct btrfs_root
*root
,
7814 u64 root_objectid
, u64 owner
, u64 offset
,
7815 struct btrfs_key
*ins
)
7818 struct btrfs_block_group_cache
*block_group
;
7821 * Mixed block groups will exclude before processing the log so we only
7822 * need to do the exlude dance if this fs isn't mixed.
7824 if (!btrfs_fs_incompat(root
->fs_info
, MIXED_GROUPS
)) {
7825 ret
= __exclude_logged_extent(root
, ins
->objectid
, ins
->offset
);
7830 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
7834 ret
= btrfs_update_reserved_bytes(block_group
, ins
->offset
,
7835 RESERVE_ALLOC_NO_ACCOUNT
, 0);
7836 BUG_ON(ret
); /* logic error */
7837 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
7838 0, owner
, offset
, ins
, 1);
7839 btrfs_put_block_group(block_group
);
7843 static struct extent_buffer
*
7844 btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
7845 u64 bytenr
, int level
)
7847 struct extent_buffer
*buf
;
7849 buf
= btrfs_find_create_tree_block(root
, bytenr
);
7851 return ERR_PTR(-ENOMEM
);
7854 * Extra safety check in case the extent tree is corrupted and extent
7855 * allocator chooses to use a tree block which is already used and
7858 if (buf
->lock_owner
== current
->pid
) {
7859 btrfs_err_rl(root
->fs_info
,
7860 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
7861 buf
->start
, btrfs_header_owner(buf
), current
->pid
);
7862 free_extent_buffer(buf
);
7863 return ERR_PTR(-EUCLEAN
);
7866 btrfs_set_header_generation(buf
, trans
->transid
);
7867 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, buf
, level
);
7868 btrfs_tree_lock(buf
);
7869 clean_tree_block(trans
, root
->fs_info
, buf
);
7870 clear_bit(EXTENT_BUFFER_STALE
, &buf
->bflags
);
7872 btrfs_set_lock_blocking(buf
);
7873 btrfs_set_buffer_uptodate(buf
);
7875 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
7876 buf
->log_index
= root
->log_transid
% 2;
7878 * we allow two log transactions at a time, use different
7879 * EXENT bit to differentiate dirty pages.
7881 if (buf
->log_index
== 0)
7882 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
7883 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7885 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
7886 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7888 buf
->log_index
= -1;
7889 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
7890 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
7892 trans
->dirty
= true;
7893 /* this returns a buffer locked for blocking */
7897 static struct btrfs_block_rsv
*
7898 use_block_rsv(struct btrfs_trans_handle
*trans
,
7899 struct btrfs_root
*root
, u32 blocksize
)
7901 struct btrfs_block_rsv
*block_rsv
;
7902 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
7904 bool global_updated
= false;
7906 block_rsv
= get_block_rsv(trans
, root
);
7908 if (unlikely(block_rsv
->size
== 0))
7911 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
7915 if (block_rsv
->failfast
)
7916 return ERR_PTR(ret
);
7918 if (block_rsv
->type
== BTRFS_BLOCK_RSV_GLOBAL
&& !global_updated
) {
7919 global_updated
= true;
7920 update_global_block_rsv(root
->fs_info
);
7924 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
7925 static DEFINE_RATELIMIT_STATE(_rs
,
7926 DEFAULT_RATELIMIT_INTERVAL
* 10,
7927 /*DEFAULT_RATELIMIT_BURST*/ 1);
7928 if (__ratelimit(&_rs
))
7930 "BTRFS: block rsv returned %d\n", ret
);
7933 ret
= reserve_metadata_bytes(root
, block_rsv
, blocksize
,
7934 BTRFS_RESERVE_NO_FLUSH
);
7938 * If we couldn't reserve metadata bytes try and use some from
7939 * the global reserve if its space type is the same as the global
7942 if (block_rsv
->type
!= BTRFS_BLOCK_RSV_GLOBAL
&&
7943 block_rsv
->space_info
== global_rsv
->space_info
) {
7944 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
7948 return ERR_PTR(ret
);
7951 static void unuse_block_rsv(struct btrfs_fs_info
*fs_info
,
7952 struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
7954 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
7955 block_rsv_release_bytes(fs_info
, block_rsv
, NULL
, 0);
7959 * finds a free extent and does all the dirty work required for allocation
7960 * returns the tree buffer or an ERR_PTR on error.
7962 struct extent_buffer
*btrfs_alloc_tree_block(struct btrfs_trans_handle
*trans
,
7963 struct btrfs_root
*root
,
7964 u64 parent
, u64 root_objectid
,
7965 struct btrfs_disk_key
*key
, int level
,
7966 u64 hint
, u64 empty_size
)
7968 struct btrfs_key ins
;
7969 struct btrfs_block_rsv
*block_rsv
;
7970 struct extent_buffer
*buf
;
7971 struct btrfs_delayed_extent_op
*extent_op
;
7974 u32 blocksize
= root
->nodesize
;
7975 bool skinny_metadata
= btrfs_fs_incompat(root
->fs_info
,
7978 if (btrfs_test_is_dummy_root(root
)) {
7979 buf
= btrfs_init_new_buffer(trans
, root
, root
->alloc_bytenr
,
7982 root
->alloc_bytenr
+= blocksize
;
7986 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
7987 if (IS_ERR(block_rsv
))
7988 return ERR_CAST(block_rsv
);
7990 ret
= btrfs_reserve_extent(root
, blocksize
, blocksize
,
7991 empty_size
, hint
, &ins
, 0, 0);
7995 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
, level
);
7998 goto out_free_reserved
;
8001 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
8003 parent
= ins
.objectid
;
8004 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8008 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
8009 extent_op
= btrfs_alloc_delayed_extent_op();
8015 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
8017 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
8018 extent_op
->flags_to_set
= flags
;
8019 if (skinny_metadata
)
8020 extent_op
->update_key
= 0;
8022 extent_op
->update_key
= 1;
8023 extent_op
->update_flags
= 1;
8024 extent_op
->is_data
= 0;
8025 extent_op
->level
= level
;
8027 ret
= btrfs_add_delayed_tree_ref(root
->fs_info
, trans
,
8028 ins
.objectid
, ins
.offset
,
8029 parent
, root_objectid
, level
,
8030 BTRFS_ADD_DELAYED_EXTENT
,
8033 goto out_free_delayed
;
8038 btrfs_free_delayed_extent_op(extent_op
);
8040 free_extent_buffer(buf
);
8042 btrfs_free_reserved_extent(root
, ins
.objectid
, ins
.offset
, 0);
8044 unuse_block_rsv(root
->fs_info
, block_rsv
, blocksize
);
8045 return ERR_PTR(ret
);
8048 struct walk_control
{
8049 u64 refs
[BTRFS_MAX_LEVEL
];
8050 u64 flags
[BTRFS_MAX_LEVEL
];
8051 struct btrfs_key update_progress
;
8062 #define DROP_REFERENCE 1
8063 #define UPDATE_BACKREF 2
8065 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
8066 struct btrfs_root
*root
,
8067 struct walk_control
*wc
,
8068 struct btrfs_path
*path
)
8076 struct btrfs_key key
;
8077 struct extent_buffer
*eb
;
8082 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
8083 wc
->reada_count
= wc
->reada_count
* 2 / 3;
8084 wc
->reada_count
= max(wc
->reada_count
, 2);
8086 wc
->reada_count
= wc
->reada_count
* 3 / 2;
8087 wc
->reada_count
= min_t(int, wc
->reada_count
,
8088 BTRFS_NODEPTRS_PER_BLOCK(root
));
8091 eb
= path
->nodes
[wc
->level
];
8092 nritems
= btrfs_header_nritems(eb
);
8093 blocksize
= root
->nodesize
;
8095 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
8096 if (nread
>= wc
->reada_count
)
8100 bytenr
= btrfs_node_blockptr(eb
, slot
);
8101 generation
= btrfs_node_ptr_generation(eb
, slot
);
8103 if (slot
== path
->slots
[wc
->level
])
8106 if (wc
->stage
== UPDATE_BACKREF
&&
8107 generation
<= root
->root_key
.offset
)
8110 /* We don't lock the tree block, it's OK to be racy here */
8111 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
,
8112 wc
->level
- 1, 1, &refs
,
8114 /* We don't care about errors in readahead. */
8119 if (wc
->stage
== DROP_REFERENCE
) {
8123 if (wc
->level
== 1 &&
8124 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8126 if (!wc
->update_ref
||
8127 generation
<= root
->root_key
.offset
)
8129 btrfs_node_key_to_cpu(eb
, &key
, slot
);
8130 ret
= btrfs_comp_cpu_keys(&key
,
8131 &wc
->update_progress
);
8135 if (wc
->level
== 1 &&
8136 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8140 readahead_tree_block(root
, bytenr
);
8143 wc
->reada_slot
= slot
;
8147 * These may not be seen by the usual inc/dec ref code so we have to
8150 static int record_one_subtree_extent(struct btrfs_trans_handle
*trans
,
8151 struct btrfs_root
*root
, u64 bytenr
,
8154 struct btrfs_qgroup_extent_record
*qrecord
;
8155 struct btrfs_delayed_ref_root
*delayed_refs
;
8157 qrecord
= kmalloc(sizeof(*qrecord
), GFP_NOFS
);
8161 qrecord
->bytenr
= bytenr
;
8162 qrecord
->num_bytes
= num_bytes
;
8163 qrecord
->old_roots
= NULL
;
8165 delayed_refs
= &trans
->transaction
->delayed_refs
;
8166 spin_lock(&delayed_refs
->lock
);
8167 if (btrfs_qgroup_insert_dirty_extent(delayed_refs
, qrecord
))
8169 spin_unlock(&delayed_refs
->lock
);
8174 static int account_leaf_items(struct btrfs_trans_handle
*trans
,
8175 struct btrfs_root
*root
,
8176 struct extent_buffer
*eb
)
8178 int nr
= btrfs_header_nritems(eb
);
8179 int i
, extent_type
, ret
;
8180 struct btrfs_key key
;
8181 struct btrfs_file_extent_item
*fi
;
8182 u64 bytenr
, num_bytes
;
8184 /* We can be called directly from walk_up_proc() */
8185 if (!root
->fs_info
->quota_enabled
)
8188 for (i
= 0; i
< nr
; i
++) {
8189 btrfs_item_key_to_cpu(eb
, &key
, i
);
8191 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
8194 fi
= btrfs_item_ptr(eb
, i
, struct btrfs_file_extent_item
);
8195 /* filter out non qgroup-accountable extents */
8196 extent_type
= btrfs_file_extent_type(eb
, fi
);
8198 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
8201 bytenr
= btrfs_file_extent_disk_bytenr(eb
, fi
);
8205 num_bytes
= btrfs_file_extent_disk_num_bytes(eb
, fi
);
8207 ret
= record_one_subtree_extent(trans
, root
, bytenr
, num_bytes
);
8215 * Walk up the tree from the bottom, freeing leaves and any interior
8216 * nodes which have had all slots visited. If a node (leaf or
8217 * interior) is freed, the node above it will have it's slot
8218 * incremented. The root node will never be freed.
8220 * At the end of this function, we should have a path which has all
8221 * slots incremented to the next position for a search. If we need to
8222 * read a new node it will be NULL and the node above it will have the
8223 * correct slot selected for a later read.
8225 * If we increment the root nodes slot counter past the number of
8226 * elements, 1 is returned to signal completion of the search.
8228 static int adjust_slots_upwards(struct btrfs_root
*root
,
8229 struct btrfs_path
*path
, int root_level
)
8233 struct extent_buffer
*eb
;
8235 if (root_level
== 0)
8238 while (level
<= root_level
) {
8239 eb
= path
->nodes
[level
];
8240 nr
= btrfs_header_nritems(eb
);
8241 path
->slots
[level
]++;
8242 slot
= path
->slots
[level
];
8243 if (slot
>= nr
|| level
== 0) {
8245 * Don't free the root - we will detect this
8246 * condition after our loop and return a
8247 * positive value for caller to stop walking the tree.
8249 if (level
!= root_level
) {
8250 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8251 path
->locks
[level
] = 0;
8253 free_extent_buffer(eb
);
8254 path
->nodes
[level
] = NULL
;
8255 path
->slots
[level
] = 0;
8259 * We have a valid slot to walk back down
8260 * from. Stop here so caller can process these
8269 eb
= path
->nodes
[root_level
];
8270 if (path
->slots
[root_level
] >= btrfs_header_nritems(eb
))
8277 * root_eb is the subtree root and is locked before this function is called.
8279 static int account_shared_subtree(struct btrfs_trans_handle
*trans
,
8280 struct btrfs_root
*root
,
8281 struct extent_buffer
*root_eb
,
8287 struct extent_buffer
*eb
= root_eb
;
8288 struct btrfs_path
*path
= NULL
;
8290 BUG_ON(root_level
< 0 || root_level
> BTRFS_MAX_LEVEL
);
8291 BUG_ON(root_eb
== NULL
);
8293 if (!root
->fs_info
->quota_enabled
)
8296 if (!extent_buffer_uptodate(root_eb
)) {
8297 ret
= btrfs_read_buffer(root_eb
, root_gen
);
8302 if (root_level
== 0) {
8303 ret
= account_leaf_items(trans
, root
, root_eb
);
8307 path
= btrfs_alloc_path();
8312 * Walk down the tree. Missing extent blocks are filled in as
8313 * we go. Metadata is accounted every time we read a new
8316 * When we reach a leaf, we account for file extent items in it,
8317 * walk back up the tree (adjusting slot pointers as we go)
8318 * and restart the search process.
8320 extent_buffer_get(root_eb
); /* For path */
8321 path
->nodes
[root_level
] = root_eb
;
8322 path
->slots
[root_level
] = 0;
8323 path
->locks
[root_level
] = 0; /* so release_path doesn't try to unlock */
8326 while (level
>= 0) {
8327 if (path
->nodes
[level
] == NULL
) {
8332 /* We need to get child blockptr/gen from
8333 * parent before we can read it. */
8334 eb
= path
->nodes
[level
+ 1];
8335 parent_slot
= path
->slots
[level
+ 1];
8336 child_bytenr
= btrfs_node_blockptr(eb
, parent_slot
);
8337 child_gen
= btrfs_node_ptr_generation(eb
, parent_slot
);
8339 eb
= read_tree_block(root
, child_bytenr
, child_gen
);
8343 } else if (!extent_buffer_uptodate(eb
)) {
8344 free_extent_buffer(eb
);
8349 path
->nodes
[level
] = eb
;
8350 path
->slots
[level
] = 0;
8352 btrfs_tree_read_lock(eb
);
8353 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
8354 path
->locks
[level
] = BTRFS_READ_LOCK_BLOCKING
;
8356 ret
= record_one_subtree_extent(trans
, root
, child_bytenr
,
8363 ret
= account_leaf_items(trans
, root
, path
->nodes
[level
]);
8367 /* Nonzero return here means we completed our search */
8368 ret
= adjust_slots_upwards(root
, path
, root_level
);
8372 /* Restart search with new slots */
8381 btrfs_free_path(path
);
8387 * helper to process tree block while walking down the tree.
8389 * when wc->stage == UPDATE_BACKREF, this function updates
8390 * back refs for pointers in the block.
8392 * NOTE: return value 1 means we should stop walking down.
8394 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
8395 struct btrfs_root
*root
,
8396 struct btrfs_path
*path
,
8397 struct walk_control
*wc
, int lookup_info
)
8399 int level
= wc
->level
;
8400 struct extent_buffer
*eb
= path
->nodes
[level
];
8401 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
8404 if (wc
->stage
== UPDATE_BACKREF
&&
8405 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
8409 * when reference count of tree block is 1, it won't increase
8410 * again. once full backref flag is set, we never clear it.
8413 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
8414 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
8415 BUG_ON(!path
->locks
[level
]);
8416 ret
= btrfs_lookup_extent_info(trans
, root
,
8417 eb
->start
, level
, 1,
8420 BUG_ON(ret
== -ENOMEM
);
8423 BUG_ON(wc
->refs
[level
] == 0);
8426 if (wc
->stage
== DROP_REFERENCE
) {
8427 if (wc
->refs
[level
] > 1)
8430 if (path
->locks
[level
] && !wc
->keep_locks
) {
8431 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8432 path
->locks
[level
] = 0;
8437 /* wc->stage == UPDATE_BACKREF */
8438 if (!(wc
->flags
[level
] & flag
)) {
8439 BUG_ON(!path
->locks
[level
]);
8440 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
8441 BUG_ON(ret
); /* -ENOMEM */
8442 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8443 BUG_ON(ret
); /* -ENOMEM */
8444 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
8446 btrfs_header_level(eb
), 0);
8447 BUG_ON(ret
); /* -ENOMEM */
8448 wc
->flags
[level
] |= flag
;
8452 * the block is shared by multiple trees, so it's not good to
8453 * keep the tree lock
8455 if (path
->locks
[level
] && level
> 0) {
8456 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8457 path
->locks
[level
] = 0;
8463 * helper to process tree block pointer.
8465 * when wc->stage == DROP_REFERENCE, this function checks
8466 * reference count of the block pointed to. if the block
8467 * is shared and we need update back refs for the subtree
8468 * rooted at the block, this function changes wc->stage to
8469 * UPDATE_BACKREF. if the block is shared and there is no
8470 * need to update back, this function drops the reference
8473 * NOTE: return value 1 means we should stop walking down.
8475 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
8476 struct btrfs_root
*root
,
8477 struct btrfs_path
*path
,
8478 struct walk_control
*wc
, int *lookup_info
)
8484 struct btrfs_key key
;
8485 struct extent_buffer
*next
;
8486 int level
= wc
->level
;
8489 bool need_account
= false;
8491 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
8492 path
->slots
[level
]);
8494 * if the lower level block was created before the snapshot
8495 * was created, we know there is no need to update back refs
8498 if (wc
->stage
== UPDATE_BACKREF
&&
8499 generation
<= root
->root_key
.offset
) {
8504 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
8505 blocksize
= root
->nodesize
;
8507 next
= btrfs_find_tree_block(root
->fs_info
, bytenr
);
8509 next
= btrfs_find_create_tree_block(root
, bytenr
);
8512 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, next
,
8516 btrfs_tree_lock(next
);
8517 btrfs_set_lock_blocking(next
);
8519 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, level
- 1, 1,
8520 &wc
->refs
[level
- 1],
8521 &wc
->flags
[level
- 1]);
8525 if (unlikely(wc
->refs
[level
- 1] == 0)) {
8526 btrfs_err(root
->fs_info
, "Missing references.");
8532 if (wc
->stage
== DROP_REFERENCE
) {
8533 if (wc
->refs
[level
- 1] > 1) {
8534 need_account
= true;
8536 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8539 if (!wc
->update_ref
||
8540 generation
<= root
->root_key
.offset
)
8543 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
8544 path
->slots
[level
]);
8545 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
8549 wc
->stage
= UPDATE_BACKREF
;
8550 wc
->shared_level
= level
- 1;
8554 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
8558 if (!btrfs_buffer_uptodate(next
, generation
, 0)) {
8559 btrfs_tree_unlock(next
);
8560 free_extent_buffer(next
);
8566 if (reada
&& level
== 1)
8567 reada_walk_down(trans
, root
, wc
, path
);
8568 next
= read_tree_block(root
, bytenr
, generation
);
8570 return PTR_ERR(next
);
8571 } else if (!extent_buffer_uptodate(next
)) {
8572 free_extent_buffer(next
);
8575 btrfs_tree_lock(next
);
8576 btrfs_set_lock_blocking(next
);
8580 ASSERT(level
== btrfs_header_level(next
));
8581 if (level
!= btrfs_header_level(next
)) {
8582 btrfs_err(root
->fs_info
, "mismatched level");
8586 path
->nodes
[level
] = next
;
8587 path
->slots
[level
] = 0;
8588 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8594 wc
->refs
[level
- 1] = 0;
8595 wc
->flags
[level
- 1] = 0;
8596 if (wc
->stage
== DROP_REFERENCE
) {
8597 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
8598 parent
= path
->nodes
[level
]->start
;
8600 ASSERT(root
->root_key
.objectid
==
8601 btrfs_header_owner(path
->nodes
[level
]));
8602 if (root
->root_key
.objectid
!=
8603 btrfs_header_owner(path
->nodes
[level
])) {
8604 btrfs_err(root
->fs_info
,
8605 "mismatched block owner");
8613 ret
= account_shared_subtree(trans
, root
, next
,
8614 generation
, level
- 1);
8616 btrfs_err_rl(root
->fs_info
,
8618 "%d accounting shared subtree. Quota "
8619 "is out of sync, rescan required.",
8623 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
8624 root
->root_key
.objectid
, level
- 1, 0);
8633 btrfs_tree_unlock(next
);
8634 free_extent_buffer(next
);
8640 * helper to process tree block while walking up the tree.
8642 * when wc->stage == DROP_REFERENCE, this function drops
8643 * reference count on the block.
8645 * when wc->stage == UPDATE_BACKREF, this function changes
8646 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8647 * to UPDATE_BACKREF previously while processing the block.
8649 * NOTE: return value 1 means we should stop walking up.
8651 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
8652 struct btrfs_root
*root
,
8653 struct btrfs_path
*path
,
8654 struct walk_control
*wc
)
8657 int level
= wc
->level
;
8658 struct extent_buffer
*eb
= path
->nodes
[level
];
8661 if (wc
->stage
== UPDATE_BACKREF
) {
8662 BUG_ON(wc
->shared_level
< level
);
8663 if (level
< wc
->shared_level
)
8666 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
8670 wc
->stage
= DROP_REFERENCE
;
8671 wc
->shared_level
= -1;
8672 path
->slots
[level
] = 0;
8675 * check reference count again if the block isn't locked.
8676 * we should start walking down the tree again if reference
8679 if (!path
->locks
[level
]) {
8681 btrfs_tree_lock(eb
);
8682 btrfs_set_lock_blocking(eb
);
8683 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8685 ret
= btrfs_lookup_extent_info(trans
, root
,
8686 eb
->start
, level
, 1,
8690 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8691 path
->locks
[level
] = 0;
8694 BUG_ON(wc
->refs
[level
] == 0);
8695 if (wc
->refs
[level
] == 1) {
8696 btrfs_tree_unlock_rw(eb
, path
->locks
[level
]);
8697 path
->locks
[level
] = 0;
8703 /* wc->stage == DROP_REFERENCE */
8704 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
8706 if (wc
->refs
[level
] == 1) {
8708 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8709 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
8711 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
8712 BUG_ON(ret
); /* -ENOMEM */
8713 ret
= account_leaf_items(trans
, root
, eb
);
8715 btrfs_err_rl(root
->fs_info
,
8717 "%d accounting leaf items. Quota "
8718 "is out of sync, rescan required.",
8722 /* make block locked assertion in clean_tree_block happy */
8723 if (!path
->locks
[level
] &&
8724 btrfs_header_generation(eb
) == trans
->transid
) {
8725 btrfs_tree_lock(eb
);
8726 btrfs_set_lock_blocking(eb
);
8727 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8729 clean_tree_block(trans
, root
->fs_info
, eb
);
8732 if (eb
== root
->node
) {
8733 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8735 else if (root
->root_key
.objectid
!= btrfs_header_owner(eb
))
8736 goto owner_mismatch
;
8738 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
8739 parent
= path
->nodes
[level
+ 1]->start
;
8740 else if (root
->root_key
.objectid
!=
8741 btrfs_header_owner(path
->nodes
[level
+ 1]))
8742 goto owner_mismatch
;
8745 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
8747 wc
->refs
[level
] = 0;
8748 wc
->flags
[level
] = 0;
8752 btrfs_err_rl(root
->fs_info
, "unexpected tree owner, have %llu expect %llu",
8753 btrfs_header_owner(eb
), root
->root_key
.objectid
);
8757 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
8758 struct btrfs_root
*root
,
8759 struct btrfs_path
*path
,
8760 struct walk_control
*wc
)
8762 int level
= wc
->level
;
8763 int lookup_info
= 1;
8766 while (level
>= 0) {
8767 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
8774 if (path
->slots
[level
] >=
8775 btrfs_header_nritems(path
->nodes
[level
]))
8778 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
8780 path
->slots
[level
]++;
8789 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
8790 struct btrfs_root
*root
,
8791 struct btrfs_path
*path
,
8792 struct walk_control
*wc
, int max_level
)
8794 int level
= wc
->level
;
8797 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
8798 while (level
< max_level
&& path
->nodes
[level
]) {
8800 if (path
->slots
[level
] + 1 <
8801 btrfs_header_nritems(path
->nodes
[level
])) {
8802 path
->slots
[level
]++;
8805 ret
= walk_up_proc(trans
, root
, path
, wc
);
8811 if (path
->locks
[level
]) {
8812 btrfs_tree_unlock_rw(path
->nodes
[level
],
8813 path
->locks
[level
]);
8814 path
->locks
[level
] = 0;
8816 free_extent_buffer(path
->nodes
[level
]);
8817 path
->nodes
[level
] = NULL
;
8825 * drop a subvolume tree.
8827 * this function traverses the tree freeing any blocks that only
8828 * referenced by the tree.
8830 * when a shared tree block is found. this function decreases its
8831 * reference count by one. if update_ref is true, this function
8832 * also make sure backrefs for the shared block and all lower level
8833 * blocks are properly updated.
8835 * If called with for_reloc == 0, may exit early with -EAGAIN
8837 int btrfs_drop_snapshot(struct btrfs_root
*root
,
8838 struct btrfs_block_rsv
*block_rsv
, int update_ref
,
8841 struct btrfs_path
*path
;
8842 struct btrfs_trans_handle
*trans
;
8843 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8844 struct btrfs_root_item
*root_item
= &root
->root_item
;
8845 struct walk_control
*wc
;
8846 struct btrfs_key key
;
8850 bool root_dropped
= false;
8852 btrfs_debug(root
->fs_info
, "Drop subvolume %llu", root
->objectid
);
8854 path
= btrfs_alloc_path();
8860 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
8862 btrfs_free_path(path
);
8867 trans
= btrfs_start_transaction(tree_root
, 0);
8868 if (IS_ERR(trans
)) {
8869 err
= PTR_ERR(trans
);
8874 trans
->block_rsv
= block_rsv
;
8876 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
8877 level
= btrfs_header_level(root
->node
);
8878 path
->nodes
[level
] = btrfs_lock_root_node(root
);
8879 btrfs_set_lock_blocking(path
->nodes
[level
]);
8880 path
->slots
[level
] = 0;
8881 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8882 memset(&wc
->update_progress
, 0,
8883 sizeof(wc
->update_progress
));
8885 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
8886 memcpy(&wc
->update_progress
, &key
,
8887 sizeof(wc
->update_progress
));
8889 level
= root_item
->drop_level
;
8891 path
->lowest_level
= level
;
8892 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
8893 path
->lowest_level
= 0;
8901 * unlock our path, this is safe because only this
8902 * function is allowed to delete this snapshot
8904 btrfs_unlock_up_safe(path
, 0);
8906 level
= btrfs_header_level(root
->node
);
8908 btrfs_tree_lock(path
->nodes
[level
]);
8909 btrfs_set_lock_blocking(path
->nodes
[level
]);
8910 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
8912 ret
= btrfs_lookup_extent_info(trans
, root
,
8913 path
->nodes
[level
]->start
,
8914 level
, 1, &wc
->refs
[level
],
8920 BUG_ON(wc
->refs
[level
] == 0);
8922 if (level
== root_item
->drop_level
)
8925 btrfs_tree_unlock(path
->nodes
[level
]);
8926 path
->locks
[level
] = 0;
8927 WARN_ON(wc
->refs
[level
] != 1);
8933 wc
->shared_level
= -1;
8934 wc
->stage
= DROP_REFERENCE
;
8935 wc
->update_ref
= update_ref
;
8937 wc
->for_reloc
= for_reloc
;
8938 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
8942 ret
= walk_down_tree(trans
, root
, path
, wc
);
8948 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
8955 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
8959 if (wc
->stage
== DROP_REFERENCE
) {
8961 btrfs_node_key(path
->nodes
[level
],
8962 &root_item
->drop_progress
,
8963 path
->slots
[level
]);
8964 root_item
->drop_level
= level
;
8967 BUG_ON(wc
->level
== 0);
8968 if (btrfs_should_end_transaction(trans
, tree_root
) ||
8969 (!for_reloc
&& btrfs_need_cleaner_sleep(root
))) {
8970 ret
= btrfs_update_root(trans
, tree_root
,
8974 btrfs_abort_transaction(trans
, tree_root
, ret
);
8979 btrfs_end_transaction_throttle(trans
, tree_root
);
8980 if (!for_reloc
&& btrfs_need_cleaner_sleep(root
)) {
8981 pr_debug("BTRFS: drop snapshot early exit\n");
8986 trans
= btrfs_start_transaction(tree_root
, 0);
8987 if (IS_ERR(trans
)) {
8988 err
= PTR_ERR(trans
);
8992 trans
->block_rsv
= block_rsv
;
8995 btrfs_release_path(path
);
8999 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
9001 btrfs_abort_transaction(trans
, tree_root
, ret
);
9005 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
9006 ret
= btrfs_find_root(tree_root
, &root
->root_key
, path
,
9009 btrfs_abort_transaction(trans
, tree_root
, ret
);
9012 } else if (ret
> 0) {
9013 /* if we fail to delete the orphan item this time
9014 * around, it'll get picked up the next time.
9016 * The most common failure here is just -ENOENT.
9018 btrfs_del_orphan_item(trans
, tree_root
,
9019 root
->root_key
.objectid
);
9023 if (test_bit(BTRFS_ROOT_IN_RADIX
, &root
->state
)) {
9024 btrfs_add_dropped_root(trans
, root
);
9026 free_extent_buffer(root
->node
);
9027 free_extent_buffer(root
->commit_root
);
9028 btrfs_put_fs_root(root
);
9030 root_dropped
= true;
9032 btrfs_end_transaction_throttle(trans
, tree_root
);
9035 btrfs_free_path(path
);
9038 * So if we need to stop dropping the snapshot for whatever reason we
9039 * need to make sure to add it back to the dead root list so that we
9040 * keep trying to do the work later. This also cleans up roots if we
9041 * don't have it in the radix (like when we recover after a power fail
9042 * or unmount) so we don't leak memory.
9044 if (!for_reloc
&& root_dropped
== false)
9045 btrfs_add_dead_root(root
);
9046 if (err
&& err
!= -EAGAIN
)
9047 btrfs_std_error(root
->fs_info
, err
, NULL
);
9052 * drop subtree rooted at tree block 'node'.
9054 * NOTE: this function will unlock and release tree block 'node'
9055 * only used by relocation code
9057 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
9058 struct btrfs_root
*root
,
9059 struct extent_buffer
*node
,
9060 struct extent_buffer
*parent
)
9062 struct btrfs_path
*path
;
9063 struct walk_control
*wc
;
9069 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
9071 path
= btrfs_alloc_path();
9075 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
9077 btrfs_free_path(path
);
9081 btrfs_assert_tree_locked(parent
);
9082 parent_level
= btrfs_header_level(parent
);
9083 extent_buffer_get(parent
);
9084 path
->nodes
[parent_level
] = parent
;
9085 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
9087 btrfs_assert_tree_locked(node
);
9088 level
= btrfs_header_level(node
);
9089 path
->nodes
[level
] = node
;
9090 path
->slots
[level
] = 0;
9091 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
9093 wc
->refs
[parent_level
] = 1;
9094 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
9096 wc
->shared_level
= -1;
9097 wc
->stage
= DROP_REFERENCE
;
9101 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
9104 wret
= walk_down_tree(trans
, root
, path
, wc
);
9110 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
9118 btrfs_free_path(path
);
9122 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
9128 * if restripe for this chunk_type is on pick target profile and
9129 * return, otherwise do the usual balance
9131 stripped
= get_restripe_target(root
->fs_info
, flags
);
9133 return extended_to_chunk(stripped
);
9135 num_devices
= root
->fs_info
->fs_devices
->rw_devices
;
9137 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
9138 BTRFS_BLOCK_GROUP_RAID5
| BTRFS_BLOCK_GROUP_RAID6
|
9139 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
9141 if (num_devices
== 1) {
9142 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9143 stripped
= flags
& ~stripped
;
9145 /* turn raid0 into single device chunks */
9146 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
9149 /* turn mirroring into duplication */
9150 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9151 BTRFS_BLOCK_GROUP_RAID10
))
9152 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
9154 /* they already had raid on here, just return */
9155 if (flags
& stripped
)
9158 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
9159 stripped
= flags
& ~stripped
;
9161 /* switch duplicated blocks with raid1 */
9162 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
9163 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
9165 /* this is drive concat, leave it alone */
9171 static int inc_block_group_ro(struct btrfs_block_group_cache
*cache
, int force
)
9173 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9175 u64 min_allocable_bytes
;
9179 * We need some metadata space and system metadata space for
9180 * allocating chunks in some corner cases until we force to set
9181 * it to be readonly.
9184 (BTRFS_BLOCK_GROUP_SYSTEM
| BTRFS_BLOCK_GROUP_METADATA
)) &&
9186 min_allocable_bytes
= 1 * 1024 * 1024;
9188 min_allocable_bytes
= 0;
9190 spin_lock(&sinfo
->lock
);
9191 spin_lock(&cache
->lock
);
9199 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
9200 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
9202 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
9203 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+ num_bytes
+
9204 min_allocable_bytes
<= sinfo
->total_bytes
) {
9205 sinfo
->bytes_readonly
+= num_bytes
;
9207 list_add_tail(&cache
->ro_list
, &sinfo
->ro_bgs
);
9211 spin_unlock(&cache
->lock
);
9212 spin_unlock(&sinfo
->lock
);
9216 int btrfs_inc_block_group_ro(struct btrfs_root
*root
,
9217 struct btrfs_block_group_cache
*cache
)
9220 struct btrfs_trans_handle
*trans
;
9225 trans
= btrfs_join_transaction(root
);
9227 return PTR_ERR(trans
);
9230 * we're not allowed to set block groups readonly after the dirty
9231 * block groups cache has started writing. If it already started,
9232 * back off and let this transaction commit
9234 mutex_lock(&root
->fs_info
->ro_block_group_mutex
);
9235 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &trans
->transaction
->flags
)) {
9236 u64 transid
= trans
->transid
;
9238 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9239 btrfs_end_transaction(trans
, root
);
9241 ret
= btrfs_wait_for_commit(root
, transid
);
9248 * if we are changing raid levels, try to allocate a corresponding
9249 * block group with the new raid level.
9251 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9252 if (alloc_flags
!= cache
->flags
) {
9253 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9256 * ENOSPC is allowed here, we may have enough space
9257 * already allocated at the new raid level to
9266 ret
= inc_block_group_ro(cache
, 0);
9269 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
9270 ret
= do_chunk_alloc(trans
, root
, alloc_flags
,
9274 ret
= inc_block_group_ro(cache
, 0);
9276 if (cache
->flags
& BTRFS_BLOCK_GROUP_SYSTEM
) {
9277 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
9278 lock_chunks(root
->fs_info
->chunk_root
);
9279 check_system_chunk(trans
, root
, alloc_flags
);
9280 unlock_chunks(root
->fs_info
->chunk_root
);
9282 mutex_unlock(&root
->fs_info
->ro_block_group_mutex
);
9284 btrfs_end_transaction(trans
, root
);
9288 int btrfs_force_chunk_alloc(struct btrfs_trans_handle
*trans
,
9289 struct btrfs_root
*root
, u64 type
)
9291 u64 alloc_flags
= get_alloc_profile(root
, type
);
9292 return do_chunk_alloc(trans
, root
, alloc_flags
,
9297 * helper to account the unused space of all the readonly block group in the
9298 * space_info. takes mirrors into account.
9300 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
9302 struct btrfs_block_group_cache
*block_group
;
9306 /* It's df, we don't care if it's racey */
9307 if (list_empty(&sinfo
->ro_bgs
))
9310 spin_lock(&sinfo
->lock
);
9311 list_for_each_entry(block_group
, &sinfo
->ro_bgs
, ro_list
) {
9312 spin_lock(&block_group
->lock
);
9314 if (!block_group
->ro
) {
9315 spin_unlock(&block_group
->lock
);
9319 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
9320 BTRFS_BLOCK_GROUP_RAID10
|
9321 BTRFS_BLOCK_GROUP_DUP
))
9326 free_bytes
+= (block_group
->key
.offset
-
9327 btrfs_block_group_used(&block_group
->item
)) *
9330 spin_unlock(&block_group
->lock
);
9332 spin_unlock(&sinfo
->lock
);
9337 void btrfs_dec_block_group_ro(struct btrfs_root
*root
,
9338 struct btrfs_block_group_cache
*cache
)
9340 struct btrfs_space_info
*sinfo
= cache
->space_info
;
9345 spin_lock(&sinfo
->lock
);
9346 spin_lock(&cache
->lock
);
9348 num_bytes
= cache
->key
.offset
- cache
->reserved
-
9349 cache
->pinned
- cache
->bytes_super
-
9350 btrfs_block_group_used(&cache
->item
);
9351 sinfo
->bytes_readonly
-= num_bytes
;
9352 list_del_init(&cache
->ro_list
);
9354 spin_unlock(&cache
->lock
);
9355 spin_unlock(&sinfo
->lock
);
9359 * checks to see if its even possible to relocate this block group.
9361 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9362 * ok to go ahead and try.
9364 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
9366 struct btrfs_block_group_cache
*block_group
;
9367 struct btrfs_space_info
*space_info
;
9368 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
9369 struct btrfs_device
*device
;
9370 struct btrfs_trans_handle
*trans
;
9379 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
9381 /* odd, couldn't find the block group, leave it alone */
9385 min_free
= btrfs_block_group_used(&block_group
->item
);
9387 /* no bytes used, we're good */
9391 space_info
= block_group
->space_info
;
9392 spin_lock(&space_info
->lock
);
9394 full
= space_info
->full
;
9397 * if this is the last block group we have in this space, we can't
9398 * relocate it unless we're able to allocate a new chunk below.
9400 * Otherwise, we need to make sure we have room in the space to handle
9401 * all of the extents from this block group. If we can, we're good
9403 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
9404 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
9405 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
9406 min_free
< space_info
->total_bytes
)) {
9407 spin_unlock(&space_info
->lock
);
9410 spin_unlock(&space_info
->lock
);
9413 * ok we don't have enough space, but maybe we have free space on our
9414 * devices to allocate new chunks for relocation, so loop through our
9415 * alloc devices and guess if we have enough space. if this block
9416 * group is going to be restriped, run checks against the target
9417 * profile instead of the current one.
9429 target
= get_restripe_target(root
->fs_info
, block_group
->flags
);
9431 index
= __get_raid_index(extended_to_chunk(target
));
9434 * this is just a balance, so if we were marked as full
9435 * we know there is no space for a new chunk
9440 index
= get_block_group_index(block_group
);
9443 if (index
== BTRFS_RAID_RAID10
) {
9447 } else if (index
== BTRFS_RAID_RAID1
) {
9449 } else if (index
== BTRFS_RAID_DUP
) {
9452 } else if (index
== BTRFS_RAID_RAID0
) {
9453 dev_min
= fs_devices
->rw_devices
;
9454 min_free
= div64_u64(min_free
, dev_min
);
9457 /* We need to do this so that we can look at pending chunks */
9458 trans
= btrfs_join_transaction(root
);
9459 if (IS_ERR(trans
)) {
9460 ret
= PTR_ERR(trans
);
9464 mutex_lock(&root
->fs_info
->chunk_mutex
);
9465 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
9469 * check to make sure we can actually find a chunk with enough
9470 * space to fit our block group in.
9472 if (device
->total_bytes
> device
->bytes_used
+ min_free
&&
9473 !device
->is_tgtdev_for_dev_replace
) {
9474 ret
= find_free_dev_extent(trans
, device
, min_free
,
9479 if (dev_nr
>= dev_min
)
9485 mutex_unlock(&root
->fs_info
->chunk_mutex
);
9486 btrfs_end_transaction(trans
, root
);
9488 btrfs_put_block_group(block_group
);
9492 static int find_first_block_group(struct btrfs_root
*root
,
9493 struct btrfs_path
*path
, struct btrfs_key
*key
)
9496 struct btrfs_key found_key
;
9497 struct extent_buffer
*leaf
;
9498 struct btrfs_block_group_item bg
;
9502 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
9507 slot
= path
->slots
[0];
9508 leaf
= path
->nodes
[0];
9509 if (slot
>= btrfs_header_nritems(leaf
)) {
9510 ret
= btrfs_next_leaf(root
, path
);
9517 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
9519 if (found_key
.objectid
>= key
->objectid
&&
9520 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
9521 struct extent_map_tree
*em_tree
;
9522 struct extent_map
*em
;
9524 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
9525 read_lock(&em_tree
->lock
);
9526 em
= lookup_extent_mapping(em_tree
, found_key
.objectid
,
9528 read_unlock(&em_tree
->lock
);
9530 btrfs_err(root
->fs_info
,
9531 "logical %llu len %llu found bg but no related chunk",
9532 found_key
.objectid
, found_key
.offset
);
9534 } else if (em
->start
!= found_key
.objectid
||
9535 em
->len
!= found_key
.offset
) {
9536 btrfs_err(root
->fs_info
,
9537 "block group %llu len %llu mismatch with chunk %llu len %llu",
9538 found_key
.objectid
, found_key
.offset
,
9539 em
->start
, em
->len
);
9542 read_extent_buffer(leaf
, &bg
,
9543 btrfs_item_ptr_offset(leaf
, slot
),
9545 flags
= btrfs_block_group_flags(&bg
) &
9546 BTRFS_BLOCK_GROUP_TYPE_MASK
;
9548 if (flags
!= (em
->map_lookup
->type
&
9549 BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
9550 btrfs_err(root
->fs_info
,
9551 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9553 found_key
.offset
, flags
,
9554 (BTRFS_BLOCK_GROUP_TYPE_MASK
&
9555 em
->map_lookup
->type
));
9561 free_extent_map(em
);
9570 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
9572 struct btrfs_block_group_cache
*block_group
;
9576 struct inode
*inode
;
9578 block_group
= btrfs_lookup_first_block_group(info
, last
);
9579 while (block_group
) {
9580 wait_block_group_cache_done(block_group
);
9581 spin_lock(&block_group
->lock
);
9582 if (block_group
->iref
)
9584 spin_unlock(&block_group
->lock
);
9585 block_group
= next_block_group(info
->tree_root
,
9595 inode
= block_group
->inode
;
9596 block_group
->iref
= 0;
9597 block_group
->inode
= NULL
;
9598 spin_unlock(&block_group
->lock
);
9600 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
9601 btrfs_put_block_group(block_group
);
9605 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
9607 struct btrfs_block_group_cache
*block_group
;
9608 struct btrfs_space_info
*space_info
;
9609 struct btrfs_caching_control
*caching_ctl
;
9612 down_write(&info
->commit_root_sem
);
9613 while (!list_empty(&info
->caching_block_groups
)) {
9614 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
9615 struct btrfs_caching_control
, list
);
9616 list_del(&caching_ctl
->list
);
9617 put_caching_control(caching_ctl
);
9619 up_write(&info
->commit_root_sem
);
9621 spin_lock(&info
->unused_bgs_lock
);
9622 while (!list_empty(&info
->unused_bgs
)) {
9623 block_group
= list_first_entry(&info
->unused_bgs
,
9624 struct btrfs_block_group_cache
,
9626 list_del_init(&block_group
->bg_list
);
9627 btrfs_put_block_group(block_group
);
9629 spin_unlock(&info
->unused_bgs_lock
);
9631 spin_lock(&info
->block_group_cache_lock
);
9632 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
9633 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
9635 rb_erase(&block_group
->cache_node
,
9636 &info
->block_group_cache_tree
);
9637 RB_CLEAR_NODE(&block_group
->cache_node
);
9638 spin_unlock(&info
->block_group_cache_lock
);
9640 down_write(&block_group
->space_info
->groups_sem
);
9641 list_del(&block_group
->list
);
9642 up_write(&block_group
->space_info
->groups_sem
);
9644 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
9645 wait_block_group_cache_done(block_group
);
9648 * We haven't cached this block group, which means we could
9649 * possibly have excluded extents on this block group.
9651 if (block_group
->cached
== BTRFS_CACHE_NO
||
9652 block_group
->cached
== BTRFS_CACHE_ERROR
)
9653 free_excluded_extents(info
->extent_root
, block_group
);
9655 btrfs_remove_free_space_cache(block_group
);
9656 btrfs_put_block_group(block_group
);
9658 spin_lock(&info
->block_group_cache_lock
);
9660 spin_unlock(&info
->block_group_cache_lock
);
9662 /* now that all the block groups are freed, go through and
9663 * free all the space_info structs. This is only called during
9664 * the final stages of unmount, and so we know nobody is
9665 * using them. We call synchronize_rcu() once before we start,
9666 * just to be on the safe side.
9670 release_global_block_rsv(info
);
9672 while (!list_empty(&info
->space_info
)) {
9675 space_info
= list_entry(info
->space_info
.next
,
9676 struct btrfs_space_info
,
9678 if (btrfs_test_opt(info
->tree_root
, ENOSPC_DEBUG
)) {
9679 if (WARN_ON(space_info
->bytes_pinned
> 0 ||
9680 space_info
->bytes_reserved
> 0 ||
9681 space_info
->bytes_may_use
> 0)) {
9682 dump_space_info(space_info
, 0, 0);
9685 list_del(&space_info
->list
);
9686 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
9687 struct kobject
*kobj
;
9688 kobj
= space_info
->block_group_kobjs
[i
];
9689 space_info
->block_group_kobjs
[i
] = NULL
;
9695 kobject_del(&space_info
->kobj
);
9696 kobject_put(&space_info
->kobj
);
9701 static void __link_block_group(struct btrfs_space_info
*space_info
,
9702 struct btrfs_block_group_cache
*cache
)
9704 int index
= get_block_group_index(cache
);
9707 down_write(&space_info
->groups_sem
);
9708 if (list_empty(&space_info
->block_groups
[index
]))
9710 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
9711 up_write(&space_info
->groups_sem
);
9714 struct raid_kobject
*rkobj
;
9717 rkobj
= kzalloc(sizeof(*rkobj
), GFP_NOFS
);
9720 rkobj
->raid_type
= index
;
9721 kobject_init(&rkobj
->kobj
, &btrfs_raid_ktype
);
9722 ret
= kobject_add(&rkobj
->kobj
, &space_info
->kobj
,
9723 "%s", get_raid_name(index
));
9725 kobject_put(&rkobj
->kobj
);
9728 space_info
->block_group_kobjs
[index
] = &rkobj
->kobj
;
9733 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
9736 static struct btrfs_block_group_cache
*
9737 btrfs_create_block_group_cache(struct btrfs_root
*root
, u64 start
, u64 size
)
9739 struct btrfs_block_group_cache
*cache
;
9741 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
9745 cache
->free_space_ctl
= kzalloc(sizeof(*cache
->free_space_ctl
),
9747 if (!cache
->free_space_ctl
) {
9752 cache
->key
.objectid
= start
;
9753 cache
->key
.offset
= size
;
9754 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9756 cache
->sectorsize
= root
->sectorsize
;
9757 cache
->fs_info
= root
->fs_info
;
9758 cache
->full_stripe_len
= btrfs_full_stripe_len(root
,
9759 &root
->fs_info
->mapping_tree
,
9761 atomic_set(&cache
->count
, 1);
9762 spin_lock_init(&cache
->lock
);
9763 init_rwsem(&cache
->data_rwsem
);
9764 INIT_LIST_HEAD(&cache
->list
);
9765 INIT_LIST_HEAD(&cache
->cluster_list
);
9766 INIT_LIST_HEAD(&cache
->bg_list
);
9767 INIT_LIST_HEAD(&cache
->ro_list
);
9768 INIT_LIST_HEAD(&cache
->dirty_list
);
9769 INIT_LIST_HEAD(&cache
->io_list
);
9770 btrfs_init_free_space_ctl(cache
);
9771 atomic_set(&cache
->trimming
, 0);
9778 * Iterate all chunks and verify that each of them has the corresponding block
9781 static int check_chunk_block_group_mappings(struct btrfs_fs_info
*fs_info
)
9783 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
9784 struct extent_map
*em
;
9785 struct btrfs_block_group_cache
*bg
;
9790 read_lock(&map_tree
->map_tree
.lock
);
9792 * lookup_extent_mapping will return the first extent map
9793 * intersecting the range, so setting @len to 1 is enough to
9794 * get the first chunk.
9796 em
= lookup_extent_mapping(&map_tree
->map_tree
, start
, 1);
9797 read_unlock(&map_tree
->map_tree
.lock
);
9801 bg
= btrfs_lookup_block_group(fs_info
, em
->start
);
9804 "chunk start=%llu len=%llu doesn't have corresponding block group",
9805 em
->start
, em
->len
);
9807 free_extent_map(em
);
9810 if (bg
->key
.objectid
!= em
->start
||
9811 bg
->key
.offset
!= em
->len
||
9812 (bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
) !=
9813 (em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
9815 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
9817 em
->map_lookup
->type
& BTRFS_BLOCK_GROUP_TYPE_MASK
,
9818 bg
->key
.objectid
, bg
->key
.offset
,
9819 bg
->flags
& BTRFS_BLOCK_GROUP_TYPE_MASK
);
9821 free_extent_map(em
);
9822 btrfs_put_block_group(bg
);
9825 start
= em
->start
+ em
->len
;
9826 free_extent_map(em
);
9827 btrfs_put_block_group(bg
);
9832 int btrfs_read_block_groups(struct btrfs_root
*root
)
9834 struct btrfs_path
*path
;
9836 struct btrfs_block_group_cache
*cache
;
9837 struct btrfs_fs_info
*info
= root
->fs_info
;
9838 struct btrfs_space_info
*space_info
;
9839 struct btrfs_key key
;
9840 struct btrfs_key found_key
;
9841 struct extent_buffer
*leaf
;
9847 feature
= btrfs_super_incompat_flags(info
->super_copy
);
9848 mixed
= !!(feature
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
);
9850 root
= info
->extent_root
;
9853 key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
9854 path
= btrfs_alloc_path();
9859 cache_gen
= btrfs_super_cache_generation(root
->fs_info
->super_copy
);
9860 if (btrfs_test_opt(root
, SPACE_CACHE
) &&
9861 btrfs_super_generation(root
->fs_info
->super_copy
) != cache_gen
)
9863 if (btrfs_test_opt(root
, CLEAR_CACHE
))
9867 ret
= find_first_block_group(root
, path
, &key
);
9873 leaf
= path
->nodes
[0];
9874 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
9876 cache
= btrfs_create_block_group_cache(root
, found_key
.objectid
,
9885 * When we mount with old space cache, we need to
9886 * set BTRFS_DC_CLEAR and set dirty flag.
9888 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9889 * truncate the old free space cache inode and
9891 * b) Setting 'dirty flag' makes sure that we flush
9892 * the new space cache info onto disk.
9894 if (btrfs_test_opt(root
, SPACE_CACHE
))
9895 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
9898 read_extent_buffer(leaf
, &cache
->item
,
9899 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
9900 sizeof(cache
->item
));
9901 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
9903 ((cache
->flags
& BTRFS_BLOCK_GROUP_METADATA
) &&
9904 (cache
->flags
& BTRFS_BLOCK_GROUP_DATA
))) {
9906 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9907 cache
->key
.objectid
);
9908 btrfs_put_block_group(cache
);
9913 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
9914 btrfs_release_path(path
);
9917 * We need to exclude the super stripes now so that the space
9918 * info has super bytes accounted for, otherwise we'll think
9919 * we have more space than we actually do.
9921 ret
= exclude_super_stripes(root
, cache
);
9924 * We may have excluded something, so call this just in
9927 free_excluded_extents(root
, cache
);
9928 btrfs_put_block_group(cache
);
9933 * check for two cases, either we are full, and therefore
9934 * don't need to bother with the caching work since we won't
9935 * find any space, or we are empty, and we can just add all
9936 * the space in and be done with it. This saves us _alot_ of
9937 * time, particularly in the full case.
9939 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
9940 cache
->last_byte_to_unpin
= (u64
)-1;
9941 cache
->cached
= BTRFS_CACHE_FINISHED
;
9942 free_excluded_extents(root
, cache
);
9943 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9944 cache
->last_byte_to_unpin
= (u64
)-1;
9945 cache
->cached
= BTRFS_CACHE_FINISHED
;
9946 add_new_free_space(cache
, root
->fs_info
,
9948 found_key
.objectid
+
9950 free_excluded_extents(root
, cache
);
9953 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
9955 btrfs_remove_free_space_cache(cache
);
9956 btrfs_put_block_group(cache
);
9960 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
9961 btrfs_block_group_used(&cache
->item
),
9964 btrfs_remove_free_space_cache(cache
);
9965 spin_lock(&info
->block_group_cache_lock
);
9966 rb_erase(&cache
->cache_node
,
9967 &info
->block_group_cache_tree
);
9968 RB_CLEAR_NODE(&cache
->cache_node
);
9969 spin_unlock(&info
->block_group_cache_lock
);
9970 btrfs_put_block_group(cache
);
9974 cache
->space_info
= space_info
;
9975 spin_lock(&cache
->space_info
->lock
);
9976 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
9977 spin_unlock(&cache
->space_info
->lock
);
9979 __link_block_group(space_info
, cache
);
9981 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
9982 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
)) {
9983 inc_block_group_ro(cache
, 1);
9984 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
9985 spin_lock(&info
->unused_bgs_lock
);
9986 /* Should always be true but just in case. */
9987 if (list_empty(&cache
->bg_list
)) {
9988 btrfs_get_block_group(cache
);
9989 list_add_tail(&cache
->bg_list
,
9992 spin_unlock(&info
->unused_bgs_lock
);
9996 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
9997 if (!(get_alloc_profile(root
, space_info
->flags
) &
9998 (BTRFS_BLOCK_GROUP_RAID10
|
9999 BTRFS_BLOCK_GROUP_RAID1
|
10000 BTRFS_BLOCK_GROUP_RAID5
|
10001 BTRFS_BLOCK_GROUP_RAID6
|
10002 BTRFS_BLOCK_GROUP_DUP
)))
10005 * avoid allocating from un-mirrored block group if there are
10006 * mirrored block groups.
10008 list_for_each_entry(cache
,
10009 &space_info
->block_groups
[BTRFS_RAID_RAID0
],
10011 inc_block_group_ro(cache
, 1);
10012 list_for_each_entry(cache
,
10013 &space_info
->block_groups
[BTRFS_RAID_SINGLE
],
10015 inc_block_group_ro(cache
, 1);
10018 init_global_block_rsv(info
);
10019 ret
= check_chunk_block_group_mappings(info
);
10021 btrfs_free_path(path
);
10025 void btrfs_create_pending_block_groups(struct btrfs_trans_handle
*trans
,
10026 struct btrfs_root
*root
)
10028 struct btrfs_block_group_cache
*block_group
;
10029 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
10030 struct btrfs_block_group_item item
;
10031 struct btrfs_key key
;
10033 bool can_flush_pending_bgs
= trans
->can_flush_pending_bgs
;
10035 trans
->can_flush_pending_bgs
= false;
10036 while (!list_empty(&trans
->new_bgs
)) {
10037 block_group
= list_first_entry(&trans
->new_bgs
,
10038 struct btrfs_block_group_cache
,
10043 spin_lock(&block_group
->lock
);
10044 memcpy(&item
, &block_group
->item
, sizeof(item
));
10045 memcpy(&key
, &block_group
->key
, sizeof(key
));
10046 spin_unlock(&block_group
->lock
);
10048 ret
= btrfs_insert_item(trans
, extent_root
, &key
, &item
,
10051 btrfs_abort_transaction(trans
, extent_root
, ret
);
10052 ret
= btrfs_finish_chunk_alloc(trans
, extent_root
,
10053 key
.objectid
, key
.offset
);
10055 btrfs_abort_transaction(trans
, extent_root
, ret
);
10057 list_del_init(&block_group
->bg_list
);
10059 trans
->can_flush_pending_bgs
= can_flush_pending_bgs
;
10062 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
10063 struct btrfs_root
*root
, u64 bytes_used
,
10064 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
10068 struct btrfs_root
*extent_root
;
10069 struct btrfs_block_group_cache
*cache
;
10071 extent_root
= root
->fs_info
->extent_root
;
10073 btrfs_set_log_full_commit(root
->fs_info
, trans
);
10075 cache
= btrfs_create_block_group_cache(root
, chunk_offset
, size
);
10079 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
10080 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
10081 btrfs_set_block_group_flags(&cache
->item
, type
);
10083 cache
->flags
= type
;
10084 cache
->last_byte_to_unpin
= (u64
)-1;
10085 cache
->cached
= BTRFS_CACHE_FINISHED
;
10086 ret
= exclude_super_stripes(root
, cache
);
10089 * We may have excluded something, so call this just in
10092 free_excluded_extents(root
, cache
);
10093 btrfs_put_block_group(cache
);
10097 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
10098 chunk_offset
+ size
);
10100 free_excluded_extents(root
, cache
);
10102 #ifdef CONFIG_BTRFS_DEBUG
10103 if (btrfs_should_fragment_free_space(root
, cache
)) {
10104 u64 new_bytes_used
= size
- bytes_used
;
10106 bytes_used
+= new_bytes_used
>> 1;
10107 fragment_free_space(root
, cache
);
10111 * Call to ensure the corresponding space_info object is created and
10112 * assigned to our block group, but don't update its counters just yet.
10113 * We want our bg to be added to the rbtree with its ->space_info set.
10115 ret
= update_space_info(root
->fs_info
, cache
->flags
, 0, 0,
10116 &cache
->space_info
);
10118 btrfs_remove_free_space_cache(cache
);
10119 btrfs_put_block_group(cache
);
10123 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
10125 btrfs_remove_free_space_cache(cache
);
10126 btrfs_put_block_group(cache
);
10131 * Now that our block group has its ->space_info set and is inserted in
10132 * the rbtree, update the space info's counters.
10134 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
10135 &cache
->space_info
);
10137 btrfs_remove_free_space_cache(cache
);
10138 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10139 rb_erase(&cache
->cache_node
,
10140 &root
->fs_info
->block_group_cache_tree
);
10141 RB_CLEAR_NODE(&cache
->cache_node
);
10142 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10143 btrfs_put_block_group(cache
);
10146 update_global_block_rsv(root
->fs_info
);
10148 spin_lock(&cache
->space_info
->lock
);
10149 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
10150 spin_unlock(&cache
->space_info
->lock
);
10152 __link_block_group(cache
->space_info
, cache
);
10154 list_add_tail(&cache
->bg_list
, &trans
->new_bgs
);
10156 set_avail_alloc_bits(extent_root
->fs_info
, type
);
10161 static void clear_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
10163 u64 extra_flags
= chunk_to_extended(flags
) &
10164 BTRFS_EXTENDED_PROFILE_MASK
;
10166 write_seqlock(&fs_info
->profiles_lock
);
10167 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
10168 fs_info
->avail_data_alloc_bits
&= ~extra_flags
;
10169 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
10170 fs_info
->avail_metadata_alloc_bits
&= ~extra_flags
;
10171 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
10172 fs_info
->avail_system_alloc_bits
&= ~extra_flags
;
10173 write_sequnlock(&fs_info
->profiles_lock
);
10176 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
10177 struct btrfs_root
*root
, u64 group_start
,
10178 struct extent_map
*em
)
10180 struct btrfs_path
*path
;
10181 struct btrfs_block_group_cache
*block_group
;
10182 struct btrfs_free_cluster
*cluster
;
10183 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
10184 struct btrfs_key key
;
10185 struct inode
*inode
;
10186 struct kobject
*kobj
= NULL
;
10190 struct btrfs_caching_control
*caching_ctl
= NULL
;
10193 root
= root
->fs_info
->extent_root
;
10195 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
10196 BUG_ON(!block_group
);
10197 BUG_ON(!block_group
->ro
);
10200 * Free the reserved super bytes from this block group before
10203 free_excluded_extents(root
, block_group
);
10205 memcpy(&key
, &block_group
->key
, sizeof(key
));
10206 index
= get_block_group_index(block_group
);
10207 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
10208 BTRFS_BLOCK_GROUP_RAID1
|
10209 BTRFS_BLOCK_GROUP_RAID10
))
10214 /* make sure this block group isn't part of an allocation cluster */
10215 cluster
= &root
->fs_info
->data_alloc_cluster
;
10216 spin_lock(&cluster
->refill_lock
);
10217 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10218 spin_unlock(&cluster
->refill_lock
);
10221 * make sure this block group isn't part of a metadata
10222 * allocation cluster
10224 cluster
= &root
->fs_info
->meta_alloc_cluster
;
10225 spin_lock(&cluster
->refill_lock
);
10226 btrfs_return_cluster_to_free_space(block_group
, cluster
);
10227 spin_unlock(&cluster
->refill_lock
);
10229 path
= btrfs_alloc_path();
10236 * get the inode first so any iput calls done for the io_list
10237 * aren't the final iput (no unlinks allowed now)
10239 inode
= lookup_free_space_inode(tree_root
, block_group
, path
);
10241 mutex_lock(&trans
->transaction
->cache_write_mutex
);
10243 * make sure our free spache cache IO is done before remove the
10246 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10247 if (!list_empty(&block_group
->io_list
)) {
10248 list_del_init(&block_group
->io_list
);
10250 WARN_ON(!IS_ERR(inode
) && inode
!= block_group
->io_ctl
.inode
);
10252 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10253 btrfs_wait_cache_io(root
, trans
, block_group
,
10254 &block_group
->io_ctl
, path
,
10255 block_group
->key
.objectid
);
10256 btrfs_put_block_group(block_group
);
10257 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10260 if (!list_empty(&block_group
->dirty_list
)) {
10261 list_del_init(&block_group
->dirty_list
);
10262 btrfs_put_block_group(block_group
);
10264 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10265 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
10267 if (!IS_ERR(inode
)) {
10268 ret
= btrfs_orphan_add(trans
, inode
);
10270 btrfs_add_delayed_iput(inode
);
10273 clear_nlink(inode
);
10274 /* One for the block groups ref */
10275 spin_lock(&block_group
->lock
);
10276 if (block_group
->iref
) {
10277 block_group
->iref
= 0;
10278 block_group
->inode
= NULL
;
10279 spin_unlock(&block_group
->lock
);
10282 spin_unlock(&block_group
->lock
);
10284 /* One for our lookup ref */
10285 btrfs_add_delayed_iput(inode
);
10288 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
10289 key
.offset
= block_group
->key
.objectid
;
10292 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
10296 btrfs_release_path(path
);
10298 ret
= btrfs_del_item(trans
, tree_root
, path
);
10301 btrfs_release_path(path
);
10304 spin_lock(&root
->fs_info
->block_group_cache_lock
);
10305 rb_erase(&block_group
->cache_node
,
10306 &root
->fs_info
->block_group_cache_tree
);
10307 RB_CLEAR_NODE(&block_group
->cache_node
);
10309 if (root
->fs_info
->first_logical_byte
== block_group
->key
.objectid
)
10310 root
->fs_info
->first_logical_byte
= (u64
)-1;
10311 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
10313 down_write(&block_group
->space_info
->groups_sem
);
10315 * we must use list_del_init so people can check to see if they
10316 * are still on the list after taking the semaphore
10318 list_del_init(&block_group
->list
);
10319 if (list_empty(&block_group
->space_info
->block_groups
[index
])) {
10320 kobj
= block_group
->space_info
->block_group_kobjs
[index
];
10321 block_group
->space_info
->block_group_kobjs
[index
] = NULL
;
10322 clear_avail_alloc_bits(root
->fs_info
, block_group
->flags
);
10324 up_write(&block_group
->space_info
->groups_sem
);
10330 if (block_group
->has_caching_ctl
)
10331 caching_ctl
= get_caching_control(block_group
);
10332 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
10333 wait_block_group_cache_done(block_group
);
10334 if (block_group
->has_caching_ctl
) {
10335 down_write(&root
->fs_info
->commit_root_sem
);
10336 if (!caching_ctl
) {
10337 struct btrfs_caching_control
*ctl
;
10339 list_for_each_entry(ctl
,
10340 &root
->fs_info
->caching_block_groups
, list
)
10341 if (ctl
->block_group
== block_group
) {
10343 atomic_inc(&caching_ctl
->count
);
10348 list_del_init(&caching_ctl
->list
);
10349 up_write(&root
->fs_info
->commit_root_sem
);
10351 /* Once for the caching bgs list and once for us. */
10352 put_caching_control(caching_ctl
);
10353 put_caching_control(caching_ctl
);
10357 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
10358 if (!list_empty(&block_group
->dirty_list
)) {
10361 if (!list_empty(&block_group
->io_list
)) {
10364 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
10365 btrfs_remove_free_space_cache(block_group
);
10367 spin_lock(&block_group
->space_info
->lock
);
10368 list_del_init(&block_group
->ro_list
);
10370 if (btrfs_test_opt(root
, ENOSPC_DEBUG
)) {
10371 WARN_ON(block_group
->space_info
->total_bytes
10372 < block_group
->key
.offset
);
10373 WARN_ON(block_group
->space_info
->bytes_readonly
10374 < block_group
->key
.offset
);
10375 WARN_ON(block_group
->space_info
->disk_total
10376 < block_group
->key
.offset
* factor
);
10378 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
10379 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
10380 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
10382 spin_unlock(&block_group
->space_info
->lock
);
10384 memcpy(&key
, &block_group
->key
, sizeof(key
));
10387 if (!list_empty(&em
->list
)) {
10388 /* We're in the transaction->pending_chunks list. */
10389 free_extent_map(em
);
10391 spin_lock(&block_group
->lock
);
10392 block_group
->removed
= 1;
10394 * At this point trimming can't start on this block group, because we
10395 * removed the block group from the tree fs_info->block_group_cache_tree
10396 * so no one can't find it anymore and even if someone already got this
10397 * block group before we removed it from the rbtree, they have already
10398 * incremented block_group->trimming - if they didn't, they won't find
10399 * any free space entries because we already removed them all when we
10400 * called btrfs_remove_free_space_cache().
10402 * And we must not remove the extent map from the fs_info->mapping_tree
10403 * to prevent the same logical address range and physical device space
10404 * ranges from being reused for a new block group. This is because our
10405 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10406 * completely transactionless, so while it is trimming a range the
10407 * currently running transaction might finish and a new one start,
10408 * allowing for new block groups to be created that can reuse the same
10409 * physical device locations unless we take this special care.
10411 * There may also be an implicit trim operation if the file system
10412 * is mounted with -odiscard. The same protections must remain
10413 * in place until the extents have been discarded completely when
10414 * the transaction commit has completed.
10416 remove_em
= (atomic_read(&block_group
->trimming
) == 0);
10418 * Make sure a trimmer task always sees the em in the pinned_chunks list
10419 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10420 * before checking block_group->removed).
10424 * Our em might be in trans->transaction->pending_chunks which
10425 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10426 * and so is the fs_info->pinned_chunks list.
10428 * So at this point we must be holding the chunk_mutex to avoid
10429 * any races with chunk allocation (more specifically at
10430 * volumes.c:contains_pending_extent()), to ensure it always
10431 * sees the em, either in the pending_chunks list or in the
10432 * pinned_chunks list.
10434 list_move_tail(&em
->list
, &root
->fs_info
->pinned_chunks
);
10436 spin_unlock(&block_group
->lock
);
10439 struct extent_map_tree
*em_tree
;
10441 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
10442 write_lock(&em_tree
->lock
);
10444 * The em might be in the pending_chunks list, so make sure the
10445 * chunk mutex is locked, since remove_extent_mapping() will
10446 * delete us from that list.
10448 remove_extent_mapping(em_tree
, em
);
10449 write_unlock(&em_tree
->lock
);
10450 /* once for the tree */
10451 free_extent_map(em
);
10454 unlock_chunks(root
);
10456 btrfs_put_block_group(block_group
);
10457 btrfs_put_block_group(block_group
);
10459 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
10465 ret
= btrfs_del_item(trans
, root
, path
);
10467 btrfs_free_path(path
);
10471 struct btrfs_trans_handle
*
10472 btrfs_start_trans_remove_block_group(struct btrfs_fs_info
*fs_info
,
10473 const u64 chunk_offset
)
10475 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
.map_tree
;
10476 struct extent_map
*em
;
10477 struct map_lookup
*map
;
10478 unsigned int num_items
;
10480 read_lock(&em_tree
->lock
);
10481 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
10482 read_unlock(&em_tree
->lock
);
10483 ASSERT(em
&& em
->start
== chunk_offset
);
10486 * We need to reserve 3 + N units from the metadata space info in order
10487 * to remove a block group (done at btrfs_remove_chunk() and at
10488 * btrfs_remove_block_group()), which are used for:
10490 * 1 unit for adding the free space inode's orphan (located in the tree
10492 * 1 unit for deleting the block group item (located in the extent
10494 * 1 unit for deleting the free space item (located in tree of tree
10496 * N units for deleting N device extent items corresponding to each
10497 * stripe (located in the device tree).
10499 * In order to remove a block group we also need to reserve units in the
10500 * system space info in order to update the chunk tree (update one or
10501 * more device items and remove one chunk item), but this is done at
10502 * btrfs_remove_chunk() through a call to check_system_chunk().
10504 map
= em
->map_lookup
;
10505 num_items
= 3 + map
->num_stripes
;
10506 free_extent_map(em
);
10508 return btrfs_start_transaction_fallback_global_rsv(fs_info
->extent_root
,
10513 * Process the unused_bgs list and remove any that don't have any allocated
10514 * space inside of them.
10516 void btrfs_delete_unused_bgs(struct btrfs_fs_info
*fs_info
)
10518 struct btrfs_block_group_cache
*block_group
;
10519 struct btrfs_space_info
*space_info
;
10520 struct btrfs_root
*root
= fs_info
->extent_root
;
10521 struct btrfs_trans_handle
*trans
;
10524 if (!fs_info
->open
)
10527 spin_lock(&fs_info
->unused_bgs_lock
);
10528 while (!list_empty(&fs_info
->unused_bgs
)) {
10532 block_group
= list_first_entry(&fs_info
->unused_bgs
,
10533 struct btrfs_block_group_cache
,
10535 list_del_init(&block_group
->bg_list
);
10537 space_info
= block_group
->space_info
;
10539 if (ret
|| btrfs_mixed_space_info(space_info
)) {
10540 btrfs_put_block_group(block_group
);
10543 spin_unlock(&fs_info
->unused_bgs_lock
);
10545 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
10547 /* Don't want to race with allocators so take the groups_sem */
10548 down_write(&space_info
->groups_sem
);
10549 spin_lock(&block_group
->lock
);
10550 if (block_group
->reserved
|| block_group
->pinned
||
10551 btrfs_block_group_used(&block_group
->item
) ||
10553 list_is_singular(&block_group
->list
)) {
10555 * We want to bail if we made new allocations or have
10556 * outstanding allocations in this block group. We do
10557 * the ro check in case balance is currently acting on
10558 * this block group.
10560 spin_unlock(&block_group
->lock
);
10561 up_write(&space_info
->groups_sem
);
10564 spin_unlock(&block_group
->lock
);
10566 /* We don't want to force the issue, only flip if it's ok. */
10567 ret
= inc_block_group_ro(block_group
, 0);
10568 up_write(&space_info
->groups_sem
);
10575 * Want to do this before we do anything else so we can recover
10576 * properly if we fail to join the transaction.
10578 trans
= btrfs_start_trans_remove_block_group(fs_info
,
10579 block_group
->key
.objectid
);
10580 if (IS_ERR(trans
)) {
10581 btrfs_dec_block_group_ro(root
, block_group
);
10582 ret
= PTR_ERR(trans
);
10587 * We could have pending pinned extents for this block group,
10588 * just delete them, we don't care about them anymore.
10590 start
= block_group
->key
.objectid
;
10591 end
= start
+ block_group
->key
.offset
- 1;
10593 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10594 * btrfs_finish_extent_commit(). If we are at transaction N,
10595 * another task might be running finish_extent_commit() for the
10596 * previous transaction N - 1, and have seen a range belonging
10597 * to the block group in freed_extents[] before we were able to
10598 * clear the whole block group range from freed_extents[]. This
10599 * means that task can lookup for the block group after we
10600 * unpinned it from freed_extents[] and removed it, leading to
10601 * a BUG_ON() at btrfs_unpin_extent_range().
10603 mutex_lock(&fs_info
->unused_bg_unpin_mutex
);
10604 ret
= clear_extent_bits(&fs_info
->freed_extents
[0], start
, end
,
10605 EXTENT_DIRTY
, GFP_NOFS
);
10607 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10608 btrfs_dec_block_group_ro(root
, block_group
);
10611 ret
= clear_extent_bits(&fs_info
->freed_extents
[1], start
, end
,
10612 EXTENT_DIRTY
, GFP_NOFS
);
10614 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10615 btrfs_dec_block_group_ro(root
, block_group
);
10618 mutex_unlock(&fs_info
->unused_bg_unpin_mutex
);
10620 /* Reset pinned so btrfs_put_block_group doesn't complain */
10621 spin_lock(&space_info
->lock
);
10622 spin_lock(&block_group
->lock
);
10624 space_info
->bytes_pinned
-= block_group
->pinned
;
10625 space_info
->bytes_readonly
+= block_group
->pinned
;
10626 percpu_counter_add(&space_info
->total_bytes_pinned
,
10627 -block_group
->pinned
);
10628 block_group
->pinned
= 0;
10630 spin_unlock(&block_group
->lock
);
10631 spin_unlock(&space_info
->lock
);
10633 /* DISCARD can flip during remount */
10634 trimming
= btrfs_test_opt(root
, DISCARD
);
10636 /* Implicit trim during transaction commit. */
10638 btrfs_get_block_group_trimming(block_group
);
10641 * Btrfs_remove_chunk will abort the transaction if things go
10644 ret
= btrfs_remove_chunk(trans
, root
,
10645 block_group
->key
.objectid
);
10649 btrfs_put_block_group_trimming(block_group
);
10654 * If we're not mounted with -odiscard, we can just forget
10655 * about this block group. Otherwise we'll need to wait
10656 * until transaction commit to do the actual discard.
10659 spin_lock(&fs_info
->unused_bgs_lock
);
10661 * A concurrent scrub might have added us to the list
10662 * fs_info->unused_bgs, so use a list_move operation
10663 * to add the block group to the deleted_bgs list.
10665 list_move(&block_group
->bg_list
,
10666 &trans
->transaction
->deleted_bgs
);
10667 spin_unlock(&fs_info
->unused_bgs_lock
);
10668 btrfs_get_block_group(block_group
);
10671 btrfs_end_transaction(trans
, root
);
10673 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
10674 btrfs_put_block_group(block_group
);
10675 spin_lock(&fs_info
->unused_bgs_lock
);
10677 spin_unlock(&fs_info
->unused_bgs_lock
);
10680 int btrfs_init_space_info(struct btrfs_fs_info
*fs_info
)
10682 struct btrfs_space_info
*space_info
;
10683 struct btrfs_super_block
*disk_super
;
10689 disk_super
= fs_info
->super_copy
;
10690 if (!btrfs_super_root(disk_super
))
10693 features
= btrfs_super_incompat_flags(disk_super
);
10694 if (features
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
10697 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
10698 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10703 flags
= BTRFS_BLOCK_GROUP_METADATA
| BTRFS_BLOCK_GROUP_DATA
;
10704 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10706 flags
= BTRFS_BLOCK_GROUP_METADATA
;
10707 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10711 flags
= BTRFS_BLOCK_GROUP_DATA
;
10712 ret
= update_space_info(fs_info
, flags
, 0, 0, &space_info
);
10718 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
10720 return unpin_extent_range(root
, start
, end
, false);
10724 * It used to be that old block groups would be left around forever.
10725 * Iterating over them would be enough to trim unused space. Since we
10726 * now automatically remove them, we also need to iterate over unallocated
10729 * We don't want a transaction for this since the discard may take a
10730 * substantial amount of time. We don't require that a transaction be
10731 * running, but we do need to take a running transaction into account
10732 * to ensure that we're not discarding chunks that were released in
10733 * the current transaction.
10735 * Holding the chunks lock will prevent other threads from allocating
10736 * or releasing chunks, but it won't prevent a running transaction
10737 * from committing and releasing the memory that the pending chunks
10738 * list head uses. For that, we need to take a reference to the
10741 static int btrfs_trim_free_extents(struct btrfs_device
*device
,
10742 struct fstrim_range
*range
, u64
*trimmed
)
10744 u64 start
= range
->start
, len
= 0;
10749 /* Discard not supported = nothing to do. */
10750 if (!blk_queue_discard(bdev_get_queue(device
->bdev
)))
10753 /* Not writeable = nothing to do. */
10754 if (!device
->writeable
)
10757 /* No free space = nothing to do. */
10758 if (device
->total_bytes
<= device
->bytes_used
)
10764 struct btrfs_fs_info
*fs_info
= device
->dev_root
->fs_info
;
10765 struct btrfs_transaction
*trans
;
10768 ret
= mutex_lock_interruptible(&fs_info
->chunk_mutex
);
10772 down_read(&fs_info
->commit_root_sem
);
10774 spin_lock(&fs_info
->trans_lock
);
10775 trans
= fs_info
->running_transaction
;
10777 atomic_inc(&trans
->use_count
);
10778 spin_unlock(&fs_info
->trans_lock
);
10780 ret
= find_free_dev_extent_start(trans
, device
, range
->minlen
,
10781 start
, &start
, &len
);
10783 btrfs_put_transaction(trans
);
10786 up_read(&fs_info
->commit_root_sem
);
10787 mutex_unlock(&fs_info
->chunk_mutex
);
10788 if (ret
== -ENOSPC
)
10793 /* If we are out of the passed range break */
10794 if (start
> range
->start
+ range
->len
- 1) {
10795 mutex_unlock(&fs_info
->chunk_mutex
);
10800 start
= max(range
->start
, start
);
10801 len
= min(range
->len
, len
);
10803 ret
= btrfs_issue_discard(device
->bdev
, start
, len
, &bytes
);
10804 up_read(&fs_info
->commit_root_sem
);
10805 mutex_unlock(&fs_info
->chunk_mutex
);
10813 /* We've trimmed enough */
10814 if (*trimmed
>= range
->len
)
10817 if (fatal_signal_pending(current
)) {
10818 ret
= -ERESTARTSYS
;
10828 int btrfs_trim_fs(struct btrfs_root
*root
, struct fstrim_range
*range
)
10830 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10831 struct btrfs_block_group_cache
*cache
= NULL
;
10832 struct btrfs_device
*device
;
10833 struct list_head
*devices
;
10840 cache
= btrfs_lookup_first_block_group(fs_info
, range
->start
);
10842 if (cache
->key
.objectid
>= (range
->start
+ range
->len
)) {
10843 btrfs_put_block_group(cache
);
10847 start
= max(range
->start
, cache
->key
.objectid
);
10848 end
= min(range
->start
+ range
->len
,
10849 cache
->key
.objectid
+ cache
->key
.offset
);
10851 if (end
- start
>= range
->minlen
) {
10852 if (!block_group_cache_done(cache
)) {
10853 ret
= cache_block_group(cache
, 0);
10855 btrfs_put_block_group(cache
);
10858 ret
= wait_block_group_cache_done(cache
);
10860 btrfs_put_block_group(cache
);
10864 ret
= btrfs_trim_block_group(cache
,
10870 trimmed
+= group_trimmed
;
10872 btrfs_put_block_group(cache
);
10877 cache
= next_block_group(fs_info
->tree_root
, cache
);
10880 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
10881 devices
= &root
->fs_info
->fs_devices
->devices
;
10882 list_for_each_entry(device
, devices
, dev_list
) {
10883 ret
= btrfs_trim_free_extents(device
, range
, &group_trimmed
);
10887 trimmed
+= group_trimmed
;
10889 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
10891 range
->len
= trimmed
;
10896 * btrfs_{start,end}_write_no_snapshoting() are similar to
10897 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10898 * data into the page cache through nocow before the subvolume is snapshoted,
10899 * but flush the data into disk after the snapshot creation, or to prevent
10900 * operations while snapshoting is ongoing and that cause the snapshot to be
10901 * inconsistent (writes followed by expanding truncates for example).
10903 void btrfs_end_write_no_snapshoting(struct btrfs_root
*root
)
10905 percpu_counter_dec(&root
->subv_writers
->counter
);
10907 * Make sure counter is updated before we wake up waiters.
10910 if (waitqueue_active(&root
->subv_writers
->wait
))
10911 wake_up(&root
->subv_writers
->wait
);
10914 int btrfs_start_write_no_snapshoting(struct btrfs_root
*root
)
10916 if (atomic_read(&root
->will_be_snapshoted
))
10919 percpu_counter_inc(&root
->subv_writers
->counter
);
10921 * Make sure counter is updated before we check for snapshot creation.
10924 if (atomic_read(&root
->will_be_snapshoted
)) {
10925 btrfs_end_write_no_snapshoting(root
);