HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / btrfs / root-tree.c
blob6a6efb26d52fbbf81ae331366e06cc92f5b4077b
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/err.h>
20 #include <linux/uuid.h>
21 #include "ctree.h"
22 #include "transaction.h"
23 #include "disk-io.h"
24 #include "print-tree.h"
27 * Read a root item from the tree. In case we detect a root item smaller then
28 * sizeof(root_item), we know it's an old version of the root structure and
29 * initialize all new fields to zero. The same happens if we detect mismatching
30 * generation numbers as then we know the root was once mounted with an older
31 * kernel that was not aware of the root item structure change.
33 static void btrfs_read_root_item(struct extent_buffer *eb, int slot,
34 struct btrfs_root_item *item)
36 uuid_le uuid;
37 int len;
38 int need_reset = 0;
40 len = btrfs_item_size_nr(eb, slot);
41 read_extent_buffer(eb, item, btrfs_item_ptr_offset(eb, slot),
42 min_t(int, len, (int)sizeof(*item)));
43 if (len < sizeof(*item))
44 need_reset = 1;
45 if (!need_reset && btrfs_root_generation(item)
46 != btrfs_root_generation_v2(item)) {
47 if (btrfs_root_generation_v2(item) != 0) {
48 btrfs_warn(eb->fs_info,
49 "mismatching "
50 "generation and generation_v2 "
51 "found in root item. This root "
52 "was probably mounted with an "
53 "older kernel. Resetting all "
54 "new fields.");
56 need_reset = 1;
58 if (need_reset) {
59 memset(&item->generation_v2, 0,
60 sizeof(*item) - offsetof(struct btrfs_root_item,
61 generation_v2));
63 uuid_le_gen(&uuid);
64 memcpy(item->uuid, uuid.b, BTRFS_UUID_SIZE);
69 * btrfs_find_root - lookup the root by the key.
70 * root: the root of the root tree
71 * search_key: the key to search
72 * path: the path we search
73 * root_item: the root item of the tree we look for
74 * root_key: the reak key of the tree we look for
76 * If ->offset of 'seach_key' is -1ULL, it means we are not sure the offset
77 * of the search key, just lookup the root with the highest offset for a
78 * given objectid.
80 * If we find something return 0, otherwise > 0, < 0 on error.
82 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
83 struct btrfs_path *path, struct btrfs_root_item *root_item,
84 struct btrfs_key *root_key)
86 struct btrfs_key found_key;
87 struct extent_buffer *l;
88 int ret;
89 int slot;
91 ret = btrfs_search_slot(NULL, root, search_key, path, 0, 0);
92 if (ret < 0)
93 return ret;
95 if (search_key->offset != -1ULL) { /* the search key is exact */
96 if (ret > 0)
97 goto out;
98 } else {
99 BUG_ON(ret == 0); /* Logical error */
100 if (path->slots[0] == 0)
101 goto out;
102 path->slots[0]--;
103 ret = 0;
106 l = path->nodes[0];
107 slot = path->slots[0];
109 btrfs_item_key_to_cpu(l, &found_key, slot);
110 if (found_key.objectid != search_key->objectid ||
111 found_key.type != BTRFS_ROOT_ITEM_KEY) {
112 ret = 1;
113 goto out;
116 if (root_item)
117 btrfs_read_root_item(l, slot, root_item);
118 if (root_key)
119 memcpy(root_key, &found_key, sizeof(found_key));
120 out:
121 btrfs_release_path(path);
122 return ret;
125 void btrfs_set_root_node(struct btrfs_root_item *item,
126 struct extent_buffer *node)
128 btrfs_set_root_bytenr(item, node->start);
129 btrfs_set_root_level(item, btrfs_header_level(node));
130 btrfs_set_root_generation(item, btrfs_header_generation(node));
134 * copy the data in 'item' into the btree
136 int btrfs_update_root(struct btrfs_trans_handle *trans, struct btrfs_root
137 *root, struct btrfs_key *key, struct btrfs_root_item
138 *item)
140 struct btrfs_path *path;
141 struct extent_buffer *l;
142 int ret;
143 int slot;
144 unsigned long ptr;
145 u32 old_len;
147 path = btrfs_alloc_path();
148 if (!path)
149 return -ENOMEM;
151 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
152 if (ret < 0) {
153 btrfs_abort_transaction(trans, root, ret);
154 goto out;
157 if (ret != 0) {
158 btrfs_print_leaf(root, path->nodes[0]);
159 btrfs_crit(root->fs_info, "unable to update root key %llu %u %llu",
160 key->objectid, key->type, key->offset);
161 BUG_ON(1);
164 l = path->nodes[0];
165 slot = path->slots[0];
166 ptr = btrfs_item_ptr_offset(l, slot);
167 old_len = btrfs_item_size_nr(l, slot);
170 * If this is the first time we update the root item which originated
171 * from an older kernel, we need to enlarge the item size to make room
172 * for the added fields.
174 if (old_len < sizeof(*item)) {
175 btrfs_release_path(path);
176 ret = btrfs_search_slot(trans, root, key, path,
177 -1, 1);
178 if (ret < 0) {
179 btrfs_abort_transaction(trans, root, ret);
180 goto out;
183 ret = btrfs_del_item(trans, root, path);
184 if (ret < 0) {
185 btrfs_abort_transaction(trans, root, ret);
186 goto out;
188 btrfs_release_path(path);
189 ret = btrfs_insert_empty_item(trans, root, path,
190 key, sizeof(*item));
191 if (ret < 0) {
192 btrfs_abort_transaction(trans, root, ret);
193 goto out;
195 l = path->nodes[0];
196 slot = path->slots[0];
197 ptr = btrfs_item_ptr_offset(l, slot);
201 * Update generation_v2 so at the next mount we know the new root
202 * fields are valid.
204 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
206 write_extent_buffer(l, item, ptr, sizeof(*item));
207 btrfs_mark_buffer_dirty(path->nodes[0]);
208 out:
209 btrfs_free_path(path);
210 return ret;
213 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
214 struct btrfs_key *key, struct btrfs_root_item *item)
217 * Make sure generation v1 and v2 match. See update_root for details.
219 btrfs_set_root_generation_v2(item, btrfs_root_generation(item));
220 return btrfs_insert_item(trans, root, key, item, sizeof(*item));
223 int btrfs_find_orphan_roots(struct btrfs_root *tree_root)
225 struct extent_buffer *leaf;
226 struct btrfs_path *path;
227 struct btrfs_key key;
228 struct btrfs_key root_key;
229 struct btrfs_root *root;
230 int err = 0;
231 int ret;
232 bool can_recover = true;
234 if (tree_root->fs_info->sb->s_flags & MS_RDONLY)
235 can_recover = false;
237 path = btrfs_alloc_path();
238 if (!path)
239 return -ENOMEM;
241 key.objectid = BTRFS_ORPHAN_OBJECTID;
242 key.type = BTRFS_ORPHAN_ITEM_KEY;
243 key.offset = 0;
245 root_key.type = BTRFS_ROOT_ITEM_KEY;
246 root_key.offset = (u64)-1;
248 while (1) {
249 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
250 if (ret < 0) {
251 err = ret;
252 break;
255 leaf = path->nodes[0];
256 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
257 ret = btrfs_next_leaf(tree_root, path);
258 if (ret < 0)
259 err = ret;
260 if (ret != 0)
261 break;
262 leaf = path->nodes[0];
265 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
266 btrfs_release_path(path);
268 if (key.objectid != BTRFS_ORPHAN_OBJECTID ||
269 key.type != BTRFS_ORPHAN_ITEM_KEY)
270 break;
272 root_key.objectid = key.offset;
273 key.offset++;
276 * The root might have been inserted already, as before we look
277 * for orphan roots, log replay might have happened, which
278 * triggers a transaction commit and qgroup accounting, which
279 * in turn reads and inserts fs roots while doing backref
280 * walking.
282 root = btrfs_lookup_fs_root(tree_root->fs_info,
283 root_key.objectid);
284 if (root) {
285 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
286 &root->state));
287 if (btrfs_root_refs(&root->root_item) == 0)
288 btrfs_add_dead_root(root);
289 continue;
292 root = btrfs_read_fs_root(tree_root, &root_key);
293 err = PTR_ERR_OR_ZERO(root);
294 if (err && err != -ENOENT) {
295 break;
296 } else if (err == -ENOENT) {
297 struct btrfs_trans_handle *trans;
299 btrfs_release_path(path);
301 trans = btrfs_join_transaction(tree_root);
302 if (IS_ERR(trans)) {
303 err = PTR_ERR(trans);
304 btrfs_std_error(tree_root->fs_info, err,
305 "Failed to start trans to delete "
306 "orphan item");
307 break;
309 err = btrfs_del_orphan_item(trans, tree_root,
310 root_key.objectid);
311 btrfs_end_transaction(trans, tree_root);
312 if (err) {
313 btrfs_std_error(tree_root->fs_info, err,
314 "Failed to delete root orphan "
315 "item");
316 break;
318 continue;
321 err = btrfs_init_fs_root(root);
322 if (err) {
323 btrfs_free_fs_root(root);
324 break;
327 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
329 err = btrfs_insert_fs_root(root->fs_info, root);
330 if (err) {
331 BUG_ON(err == -EEXIST);
332 btrfs_free_fs_root(root);
333 break;
336 if (btrfs_root_refs(&root->root_item) == 0)
337 btrfs_add_dead_root(root);
340 btrfs_free_path(path);
341 return err;
344 /* drop the root item for 'key' from 'root' */
345 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
346 struct btrfs_key *key)
348 struct btrfs_path *path;
349 int ret;
351 path = btrfs_alloc_path();
352 if (!path)
353 return -ENOMEM;
354 ret = btrfs_search_slot(trans, root, key, path, -1, 1);
355 if (ret < 0)
356 goto out;
358 BUG_ON(ret != 0);
360 ret = btrfs_del_item(trans, root, path);
361 out:
362 btrfs_free_path(path);
363 return ret;
366 int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
367 struct btrfs_root *tree_root,
368 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
369 const char *name, int name_len)
372 struct btrfs_path *path;
373 struct btrfs_root_ref *ref;
374 struct extent_buffer *leaf;
375 struct btrfs_key key;
376 unsigned long ptr;
377 int err = 0;
378 int ret;
380 path = btrfs_alloc_path();
381 if (!path)
382 return -ENOMEM;
384 key.objectid = root_id;
385 key.type = BTRFS_ROOT_BACKREF_KEY;
386 key.offset = ref_id;
387 again:
388 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
389 BUG_ON(ret < 0);
390 if (ret == 0) {
391 leaf = path->nodes[0];
392 ref = btrfs_item_ptr(leaf, path->slots[0],
393 struct btrfs_root_ref);
395 WARN_ON(btrfs_root_ref_dirid(leaf, ref) != dirid);
396 WARN_ON(btrfs_root_ref_name_len(leaf, ref) != name_len);
397 ptr = (unsigned long)(ref + 1);
398 WARN_ON(memcmp_extent_buffer(leaf, name, ptr, name_len));
399 *sequence = btrfs_root_ref_sequence(leaf, ref);
401 ret = btrfs_del_item(trans, tree_root, path);
402 if (ret) {
403 err = ret;
404 goto out;
406 } else
407 err = -ENOENT;
409 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
410 btrfs_release_path(path);
411 key.objectid = ref_id;
412 key.type = BTRFS_ROOT_REF_KEY;
413 key.offset = root_id;
414 goto again;
417 out:
418 btrfs_free_path(path);
419 return err;
423 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
424 * or BTRFS_ROOT_BACKREF_KEY.
426 * The dirid, sequence, name and name_len refer to the directory entry
427 * that is referencing the root.
429 * For a forward ref, the root_id is the id of the tree referencing
430 * the root and ref_id is the id of the subvol or snapshot.
432 * For a back ref the root_id is the id of the subvol or snapshot and
433 * ref_id is the id of the tree referencing it.
435 * Will return 0, -ENOMEM, or anything from the CoW path
437 int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
438 struct btrfs_root *tree_root,
439 u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
440 const char *name, int name_len)
442 struct btrfs_key key;
443 int ret;
444 struct btrfs_path *path;
445 struct btrfs_root_ref *ref;
446 struct extent_buffer *leaf;
447 unsigned long ptr;
449 path = btrfs_alloc_path();
450 if (!path)
451 return -ENOMEM;
453 key.objectid = root_id;
454 key.type = BTRFS_ROOT_BACKREF_KEY;
455 key.offset = ref_id;
456 again:
457 ret = btrfs_insert_empty_item(trans, tree_root, path, &key,
458 sizeof(*ref) + name_len);
459 if (ret) {
460 btrfs_abort_transaction(trans, tree_root, ret);
461 btrfs_free_path(path);
462 return ret;
465 leaf = path->nodes[0];
466 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
467 btrfs_set_root_ref_dirid(leaf, ref, dirid);
468 btrfs_set_root_ref_sequence(leaf, ref, sequence);
469 btrfs_set_root_ref_name_len(leaf, ref, name_len);
470 ptr = (unsigned long)(ref + 1);
471 write_extent_buffer(leaf, name, ptr, name_len);
472 btrfs_mark_buffer_dirty(leaf);
474 if (key.type == BTRFS_ROOT_BACKREF_KEY) {
475 btrfs_release_path(path);
476 key.objectid = ref_id;
477 key.type = BTRFS_ROOT_REF_KEY;
478 key.offset = root_id;
479 goto again;
482 btrfs_free_path(path);
483 return 0;
487 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
488 * for subvolumes. To work around this problem, we steal a bit from
489 * root_item->inode_item->flags, and use it to indicate if those fields
490 * have been properly initialized.
492 void btrfs_check_and_init_root_item(struct btrfs_root_item *root_item)
494 u64 inode_flags = btrfs_stack_inode_flags(&root_item->inode);
496 if (!(inode_flags & BTRFS_INODE_ROOT_ITEM_INIT)) {
497 inode_flags |= BTRFS_INODE_ROOT_ITEM_INIT;
498 btrfs_set_stack_inode_flags(&root_item->inode, inode_flags);
499 btrfs_set_root_flags(root_item, 0);
500 btrfs_set_root_limit(root_item, 0);
504 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
505 struct btrfs_root *root)
507 struct btrfs_root_item *item = &root->root_item;
508 struct timespec ct = CURRENT_TIME;
510 spin_lock(&root->root_item_lock);
511 btrfs_set_root_ctransid(item, trans->transid);
512 btrfs_set_stack_timespec_sec(&item->ctime, ct.tv_sec);
513 btrfs_set_stack_timespec_nsec(&item->ctime, ct.tv_nsec);
514 spin_unlock(&root->root_item_lock);