HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / btrfs / send.c
blobde0ebb3b3cd3c2a98e77485ad07f995100d0b380
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "xattr.h"
39 static int g_verbose = 0;
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
50 struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
56 char *buf;
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
59 char inline_buf[];
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * a allocation later during send.
66 char pad[256];
69 #define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 /* reused for each extent */
74 struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
79 u64 found_refs;
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct send_ctx {
86 struct file *send_filp;
87 loff_t send_off;
88 char *send_buf;
89 u32 send_size;
90 u32 send_max_size;
91 u64 total_send_size;
92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
95 struct btrfs_root *send_root;
96 struct btrfs_root *parent_root;
97 struct clone_root *clone_roots;
98 int clone_roots_cnt;
100 /* current state of the compare_tree call */
101 struct btrfs_path *left_path;
102 struct btrfs_path *right_path;
103 struct btrfs_key *cmp_key;
106 * infos of the currently processed inode. In case of deleted inodes,
107 * these are the values from the deleted inode.
109 u64 cur_ino;
110 u64 cur_inode_gen;
111 int cur_inode_new;
112 int cur_inode_new_gen;
113 int cur_inode_deleted;
114 u64 cur_inode_size;
115 u64 cur_inode_mode;
116 u64 cur_inode_rdev;
117 u64 cur_inode_last_extent;
119 u64 send_progress;
121 struct list_head new_refs;
122 struct list_head deleted_refs;
124 struct radix_tree_root name_cache;
125 struct list_head name_cache_list;
126 int name_cache_size;
128 struct file_ra_state ra;
130 char *read_buf;
133 * We process inodes by their increasing order, so if before an
134 * incremental send we reverse the parent/child relationship of
135 * directories such that a directory with a lower inode number was
136 * the parent of a directory with a higher inode number, and the one
137 * becoming the new parent got renamed too, we can't rename/move the
138 * directory with lower inode number when we finish processing it - we
139 * must process the directory with higher inode number first, then
140 * rename/move it and then rename/move the directory with lower inode
141 * number. Example follows.
143 * Tree state when the first send was performed:
146 * |-- a (ino 257)
147 * |-- b (ino 258)
150 * |-- c (ino 259)
151 * | |-- d (ino 260)
153 * |-- c2 (ino 261)
155 * Tree state when the second (incremental) send is performed:
158 * |-- a (ino 257)
159 * |-- b (ino 258)
160 * |-- c2 (ino 261)
161 * |-- d2 (ino 260)
162 * |-- cc (ino 259)
164 * The sequence of steps that lead to the second state was:
166 * mv /a/b/c/d /a/b/c2/d2
167 * mv /a/b/c /a/b/c2/d2/cc
169 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 * before we move "d", which has higher inode number.
172 * So we just memorize which move/rename operations must be performed
173 * later when their respective parent is processed and moved/renamed.
176 /* Indexed by parent directory inode number. */
177 struct rb_root pending_dir_moves;
180 * Reverse index, indexed by the inode number of a directory that
181 * is waiting for the move/rename of its immediate parent before its
182 * own move/rename can be performed.
184 struct rb_root waiting_dir_moves;
187 * A directory that is going to be rm'ed might have a child directory
188 * which is in the pending directory moves index above. In this case,
189 * the directory can only be removed after the move/rename of its child
190 * is performed. Example:
192 * Parent snapshot:
194 * . (ino 256)
195 * |-- a/ (ino 257)
196 * |-- b/ (ino 258)
197 * |-- c/ (ino 259)
198 * | |-- x/ (ino 260)
200 * |-- y/ (ino 261)
202 * Send snapshot:
204 * . (ino 256)
205 * |-- a/ (ino 257)
206 * |-- b/ (ino 258)
207 * |-- YY/ (ino 261)
208 * |-- x/ (ino 260)
210 * Sequence of steps that lead to the send snapshot:
211 * rm -f /a/b/c/foo.txt
212 * mv /a/b/y /a/b/YY
213 * mv /a/b/c/x /a/b/YY
214 * rmdir /a/b/c
216 * When the child is processed, its move/rename is delayed until its
217 * parent is processed (as explained above), but all other operations
218 * like update utimes, chown, chgrp, etc, are performed and the paths
219 * that it uses for those operations must use the orphanized name of
220 * its parent (the directory we're going to rm later), so we need to
221 * memorize that name.
223 * Indexed by the inode number of the directory to be deleted.
225 struct rb_root orphan_dirs;
228 struct pending_dir_move {
229 struct rb_node node;
230 struct list_head list;
231 u64 parent_ino;
232 u64 ino;
233 u64 gen;
234 bool is_orphan;
235 struct list_head update_refs;
238 struct waiting_dir_move {
239 struct rb_node node;
240 u64 ino;
242 * There might be some directory that could not be removed because it
243 * was waiting for this directory inode to be moved first. Therefore
244 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
246 u64 rmdir_ino;
247 bool orphanized;
250 struct orphan_dir_info {
251 struct rb_node node;
252 u64 ino;
253 u64 gen;
256 struct name_cache_entry {
257 struct list_head list;
259 * radix_tree has only 32bit entries but we need to handle 64bit inums.
260 * We use the lower 32bit of the 64bit inum to store it in the tree. If
261 * more then one inum would fall into the same entry, we use radix_list
262 * to store the additional entries. radix_list is also used to store
263 * entries where two entries have the same inum but different
264 * generations.
266 struct list_head radix_list;
267 u64 ino;
268 u64 gen;
269 u64 parent_ino;
270 u64 parent_gen;
271 int ret;
272 int need_later_update;
273 int name_len;
274 char name[];
277 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
279 static struct waiting_dir_move *
280 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
282 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
284 static int need_send_hole(struct send_ctx *sctx)
286 return (sctx->parent_root && !sctx->cur_inode_new &&
287 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
288 S_ISREG(sctx->cur_inode_mode));
291 static void fs_path_reset(struct fs_path *p)
293 if (p->reversed) {
294 p->start = p->buf + p->buf_len - 1;
295 p->end = p->start;
296 *p->start = 0;
297 } else {
298 p->start = p->buf;
299 p->end = p->start;
300 *p->start = 0;
304 static struct fs_path *fs_path_alloc(void)
306 struct fs_path *p;
308 p = kmalloc(sizeof(*p), GFP_NOFS);
309 if (!p)
310 return NULL;
311 p->reversed = 0;
312 p->buf = p->inline_buf;
313 p->buf_len = FS_PATH_INLINE_SIZE;
314 fs_path_reset(p);
315 return p;
318 static struct fs_path *fs_path_alloc_reversed(void)
320 struct fs_path *p;
322 p = fs_path_alloc();
323 if (!p)
324 return NULL;
325 p->reversed = 1;
326 fs_path_reset(p);
327 return p;
330 static void fs_path_free(struct fs_path *p)
332 if (!p)
333 return;
334 if (p->buf != p->inline_buf)
335 kfree(p->buf);
336 kfree(p);
339 static int fs_path_len(struct fs_path *p)
341 return p->end - p->start;
344 static int fs_path_ensure_buf(struct fs_path *p, int len)
346 char *tmp_buf;
347 int path_len;
348 int old_buf_len;
350 len++;
352 if (p->buf_len >= len)
353 return 0;
355 if (len > PATH_MAX) {
356 WARN_ON(1);
357 return -ENOMEM;
360 path_len = p->end - p->start;
361 old_buf_len = p->buf_len;
364 * First time the inline_buf does not suffice
366 if (p->buf == p->inline_buf) {
367 tmp_buf = kmalloc(len, GFP_NOFS);
368 if (tmp_buf)
369 memcpy(tmp_buf, p->buf, old_buf_len);
370 } else {
371 tmp_buf = krealloc(p->buf, len, GFP_NOFS);
373 if (!tmp_buf)
374 return -ENOMEM;
375 p->buf = tmp_buf;
377 * The real size of the buffer is bigger, this will let the fast path
378 * happen most of the time
380 p->buf_len = ksize(p->buf);
382 if (p->reversed) {
383 tmp_buf = p->buf + old_buf_len - path_len - 1;
384 p->end = p->buf + p->buf_len - 1;
385 p->start = p->end - path_len;
386 memmove(p->start, tmp_buf, path_len + 1);
387 } else {
388 p->start = p->buf;
389 p->end = p->start + path_len;
391 return 0;
394 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
395 char **prepared)
397 int ret;
398 int new_len;
400 new_len = p->end - p->start + name_len;
401 if (p->start != p->end)
402 new_len++;
403 ret = fs_path_ensure_buf(p, new_len);
404 if (ret < 0)
405 goto out;
407 if (p->reversed) {
408 if (p->start != p->end)
409 *--p->start = '/';
410 p->start -= name_len;
411 *prepared = p->start;
412 } else {
413 if (p->start != p->end)
414 *p->end++ = '/';
415 *prepared = p->end;
416 p->end += name_len;
417 *p->end = 0;
420 out:
421 return ret;
424 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
426 int ret;
427 char *prepared;
429 ret = fs_path_prepare_for_add(p, name_len, &prepared);
430 if (ret < 0)
431 goto out;
432 memcpy(prepared, name, name_len);
434 out:
435 return ret;
438 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
440 int ret;
441 char *prepared;
443 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
444 if (ret < 0)
445 goto out;
446 memcpy(prepared, p2->start, p2->end - p2->start);
448 out:
449 return ret;
452 static int fs_path_add_from_extent_buffer(struct fs_path *p,
453 struct extent_buffer *eb,
454 unsigned long off, int len)
456 int ret;
457 char *prepared;
459 ret = fs_path_prepare_for_add(p, len, &prepared);
460 if (ret < 0)
461 goto out;
463 read_extent_buffer(eb, prepared, off, len);
465 out:
466 return ret;
469 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
471 int ret;
473 p->reversed = from->reversed;
474 fs_path_reset(p);
476 ret = fs_path_add_path(p, from);
478 return ret;
482 static void fs_path_unreverse(struct fs_path *p)
484 char *tmp;
485 int len;
487 if (!p->reversed)
488 return;
490 tmp = p->start;
491 len = p->end - p->start;
492 p->start = p->buf;
493 p->end = p->start + len;
494 memmove(p->start, tmp, len + 1);
495 p->reversed = 0;
498 static struct btrfs_path *alloc_path_for_send(void)
500 struct btrfs_path *path;
502 path = btrfs_alloc_path();
503 if (!path)
504 return NULL;
505 path->search_commit_root = 1;
506 path->skip_locking = 1;
507 path->need_commit_sem = 1;
508 return path;
511 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
513 int ret;
514 mm_segment_t old_fs;
515 u32 pos = 0;
517 old_fs = get_fs();
518 set_fs(KERNEL_DS);
520 while (pos < len) {
521 ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 len - pos, off);
523 /* TODO handle that correctly */
524 /*if (ret == -ERESTARTSYS) {
525 continue;
527 if (ret < 0)
528 goto out;
529 if (ret == 0) {
530 ret = -EIO;
531 goto out;
533 pos += ret;
536 ret = 0;
538 out:
539 set_fs(old_fs);
540 return ret;
543 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
545 struct btrfs_tlv_header *hdr;
546 int total_len = sizeof(*hdr) + len;
547 int left = sctx->send_max_size - sctx->send_size;
549 if (unlikely(left < total_len))
550 return -EOVERFLOW;
552 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
553 hdr->tlv_type = cpu_to_le16(attr);
554 hdr->tlv_len = cpu_to_le16(len);
555 memcpy(hdr + 1, data, len);
556 sctx->send_size += total_len;
558 return 0;
561 #define TLV_PUT_DEFINE_INT(bits) \
562 static int tlv_put_u##bits(struct send_ctx *sctx, \
563 u##bits attr, u##bits value) \
565 __le##bits __tmp = cpu_to_le##bits(value); \
566 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
569 TLV_PUT_DEFINE_INT(64)
571 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
572 const char *str, int len)
574 if (len == -1)
575 len = strlen(str);
576 return tlv_put(sctx, attr, str, len);
579 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
580 const u8 *uuid)
582 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
585 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
586 struct extent_buffer *eb,
587 struct btrfs_timespec *ts)
589 struct btrfs_timespec bts;
590 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
591 return tlv_put(sctx, attr, &bts, sizeof(bts));
595 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 do { \
597 ret = tlv_put(sctx, attrtype, attrlen, data); \
598 if (ret < 0) \
599 goto tlv_put_failure; \
600 } while (0)
602 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 do { \
604 ret = tlv_put_u##bits(sctx, attrtype, value); \
605 if (ret < 0) \
606 goto tlv_put_failure; \
607 } while (0)
609 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
610 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
611 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
612 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
613 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 do { \
615 ret = tlv_put_string(sctx, attrtype, str, len); \
616 if (ret < 0) \
617 goto tlv_put_failure; \
618 } while (0)
619 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 do { \
621 ret = tlv_put_string(sctx, attrtype, p->start, \
622 p->end - p->start); \
623 if (ret < 0) \
624 goto tlv_put_failure; \
625 } while(0)
626 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 do { \
628 ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 if (ret < 0) \
630 goto tlv_put_failure; \
631 } while (0)
632 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 do { \
634 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 if (ret < 0) \
636 goto tlv_put_failure; \
637 } while (0)
639 static int send_header(struct send_ctx *sctx)
641 struct btrfs_stream_header hdr;
643 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
644 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
646 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
647 &sctx->send_off);
651 * For each command/item we want to send to userspace, we call this function.
653 static int begin_cmd(struct send_ctx *sctx, int cmd)
655 struct btrfs_cmd_header *hdr;
657 if (WARN_ON(!sctx->send_buf))
658 return -EINVAL;
660 BUG_ON(sctx->send_size);
662 sctx->send_size += sizeof(*hdr);
663 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
664 hdr->cmd = cpu_to_le16(cmd);
666 return 0;
669 static int send_cmd(struct send_ctx *sctx)
671 int ret;
672 struct btrfs_cmd_header *hdr;
673 u32 crc;
675 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
676 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
677 hdr->crc = 0;
679 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
680 hdr->crc = cpu_to_le32(crc);
682 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
683 &sctx->send_off);
685 sctx->total_send_size += sctx->send_size;
686 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
687 sctx->send_size = 0;
689 return ret;
693 * Sends a move instruction to user space
695 static int send_rename(struct send_ctx *sctx,
696 struct fs_path *from, struct fs_path *to)
698 int ret;
700 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
702 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
703 if (ret < 0)
704 goto out;
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
709 ret = send_cmd(sctx);
711 tlv_put_failure:
712 out:
713 return ret;
717 * Sends a link instruction to user space
719 static int send_link(struct send_ctx *sctx,
720 struct fs_path *path, struct fs_path *lnk)
722 int ret;
724 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
726 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
727 if (ret < 0)
728 goto out;
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
731 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
733 ret = send_cmd(sctx);
735 tlv_put_failure:
736 out:
737 return ret;
741 * Sends an unlink instruction to user space
743 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
745 int ret;
747 verbose_printk("btrfs: send_unlink %s\n", path->start);
749 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
750 if (ret < 0)
751 goto out;
753 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
755 ret = send_cmd(sctx);
757 tlv_put_failure:
758 out:
759 return ret;
763 * Sends a rmdir instruction to user space
765 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
767 int ret;
769 verbose_printk("btrfs: send_rmdir %s\n", path->start);
771 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
772 if (ret < 0)
773 goto out;
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
777 ret = send_cmd(sctx);
779 tlv_put_failure:
780 out:
781 return ret;
785 * Helper function to retrieve some fields from an inode item.
787 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
788 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
789 u64 *gid, u64 *rdev)
791 int ret;
792 struct btrfs_inode_item *ii;
793 struct btrfs_key key;
795 key.objectid = ino;
796 key.type = BTRFS_INODE_ITEM_KEY;
797 key.offset = 0;
798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
799 if (ret) {
800 if (ret > 0)
801 ret = -ENOENT;
802 return ret;
805 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
806 struct btrfs_inode_item);
807 if (size)
808 *size = btrfs_inode_size(path->nodes[0], ii);
809 if (gen)
810 *gen = btrfs_inode_generation(path->nodes[0], ii);
811 if (mode)
812 *mode = btrfs_inode_mode(path->nodes[0], ii);
813 if (uid)
814 *uid = btrfs_inode_uid(path->nodes[0], ii);
815 if (gid)
816 *gid = btrfs_inode_gid(path->nodes[0], ii);
817 if (rdev)
818 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
820 return ret;
823 static int get_inode_info(struct btrfs_root *root,
824 u64 ino, u64 *size, u64 *gen,
825 u64 *mode, u64 *uid, u64 *gid,
826 u64 *rdev)
828 struct btrfs_path *path;
829 int ret;
831 path = alloc_path_for_send();
832 if (!path)
833 return -ENOMEM;
834 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 rdev);
836 btrfs_free_path(path);
837 return ret;
840 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
841 struct fs_path *p,
842 void *ctx);
845 * Helper function to iterate the entries in ONE btrfs_inode_ref or
846 * btrfs_inode_extref.
847 * The iterate callback may return a non zero value to stop iteration. This can
848 * be a negative value for error codes or 1 to simply stop it.
850 * path must point to the INODE_REF or INODE_EXTREF when called.
852 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
853 struct btrfs_key *found_key, int resolve,
854 iterate_inode_ref_t iterate, void *ctx)
856 struct extent_buffer *eb = path->nodes[0];
857 struct btrfs_item *item;
858 struct btrfs_inode_ref *iref;
859 struct btrfs_inode_extref *extref;
860 struct btrfs_path *tmp_path;
861 struct fs_path *p;
862 u32 cur = 0;
863 u32 total;
864 int slot = path->slots[0];
865 u32 name_len;
866 char *start;
867 int ret = 0;
868 int num = 0;
869 int index;
870 u64 dir;
871 unsigned long name_off;
872 unsigned long elem_size;
873 unsigned long ptr;
875 p = fs_path_alloc_reversed();
876 if (!p)
877 return -ENOMEM;
879 tmp_path = alloc_path_for_send();
880 if (!tmp_path) {
881 fs_path_free(p);
882 return -ENOMEM;
886 if (found_key->type == BTRFS_INODE_REF_KEY) {
887 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
888 struct btrfs_inode_ref);
889 item = btrfs_item_nr(slot);
890 total = btrfs_item_size(eb, item);
891 elem_size = sizeof(*iref);
892 } else {
893 ptr = btrfs_item_ptr_offset(eb, slot);
894 total = btrfs_item_size_nr(eb, slot);
895 elem_size = sizeof(*extref);
898 while (cur < total) {
899 fs_path_reset(p);
901 if (found_key->type == BTRFS_INODE_REF_KEY) {
902 iref = (struct btrfs_inode_ref *)(ptr + cur);
903 name_len = btrfs_inode_ref_name_len(eb, iref);
904 name_off = (unsigned long)(iref + 1);
905 index = btrfs_inode_ref_index(eb, iref);
906 dir = found_key->offset;
907 } else {
908 extref = (struct btrfs_inode_extref *)(ptr + cur);
909 name_len = btrfs_inode_extref_name_len(eb, extref);
910 name_off = (unsigned long)&extref->name;
911 index = btrfs_inode_extref_index(eb, extref);
912 dir = btrfs_inode_extref_parent(eb, extref);
915 if (resolve) {
916 start = btrfs_ref_to_path(root, tmp_path, name_len,
917 name_off, eb, dir,
918 p->buf, p->buf_len);
919 if (IS_ERR(start)) {
920 ret = PTR_ERR(start);
921 goto out;
923 if (start < p->buf) {
924 /* overflow , try again with larger buffer */
925 ret = fs_path_ensure_buf(p,
926 p->buf_len + p->buf - start);
927 if (ret < 0)
928 goto out;
929 start = btrfs_ref_to_path(root, tmp_path,
930 name_len, name_off,
931 eb, dir,
932 p->buf, p->buf_len);
933 if (IS_ERR(start)) {
934 ret = PTR_ERR(start);
935 goto out;
937 BUG_ON(start < p->buf);
939 p->start = start;
940 } else {
941 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
942 name_len);
943 if (ret < 0)
944 goto out;
947 cur += elem_size + name_len;
948 ret = iterate(num, dir, index, p, ctx);
949 if (ret)
950 goto out;
951 num++;
954 out:
955 btrfs_free_path(tmp_path);
956 fs_path_free(p);
957 return ret;
960 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
961 const char *name, int name_len,
962 const char *data, int data_len,
963 u8 type, void *ctx);
966 * Helper function to iterate the entries in ONE btrfs_dir_item.
967 * The iterate callback may return a non zero value to stop iteration. This can
968 * be a negative value for error codes or 1 to simply stop it.
970 * path must point to the dir item when called.
972 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
973 struct btrfs_key *found_key,
974 iterate_dir_item_t iterate, void *ctx)
976 int ret = 0;
977 struct extent_buffer *eb;
978 struct btrfs_item *item;
979 struct btrfs_dir_item *di;
980 struct btrfs_key di_key;
981 char *buf = NULL;
982 int buf_len;
983 u32 name_len;
984 u32 data_len;
985 u32 cur;
986 u32 len;
987 u32 total;
988 int slot;
989 int num;
990 u8 type;
993 * Start with a small buffer (1 page). If later we end up needing more
994 * space, which can happen for xattrs on a fs with a leaf size greater
995 * then the page size, attempt to increase the buffer. Typically xattr
996 * values are small.
998 buf_len = PATH_MAX;
999 buf = kmalloc(buf_len, GFP_NOFS);
1000 if (!buf) {
1001 ret = -ENOMEM;
1002 goto out;
1005 eb = path->nodes[0];
1006 slot = path->slots[0];
1007 item = btrfs_item_nr(slot);
1008 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1009 cur = 0;
1010 len = 0;
1011 total = btrfs_item_size(eb, item);
1013 num = 0;
1014 while (cur < total) {
1015 name_len = btrfs_dir_name_len(eb, di);
1016 data_len = btrfs_dir_data_len(eb, di);
1017 type = btrfs_dir_type(eb, di);
1018 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1020 if (type == BTRFS_FT_XATTR) {
1021 if (name_len > XATTR_NAME_MAX) {
1022 ret = -ENAMETOOLONG;
1023 goto out;
1025 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1026 ret = -E2BIG;
1027 goto out;
1029 } else {
1031 * Path too long
1033 if (name_len + data_len > PATH_MAX) {
1034 ret = -ENAMETOOLONG;
1035 goto out;
1039 if (name_len + data_len > buf_len) {
1040 buf_len = name_len + data_len;
1041 if (is_vmalloc_addr(buf)) {
1042 vfree(buf);
1043 buf = NULL;
1044 } else {
1045 char *tmp = krealloc(buf, buf_len,
1046 GFP_NOFS | __GFP_NOWARN);
1048 if (!tmp)
1049 kfree(buf);
1050 buf = tmp;
1052 if (!buf) {
1053 buf = vmalloc(buf_len);
1054 if (!buf) {
1055 ret = -ENOMEM;
1056 goto out;
1061 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1062 name_len + data_len);
1064 len = sizeof(*di) + name_len + data_len;
1065 di = (struct btrfs_dir_item *)((char *)di + len);
1066 cur += len;
1068 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1069 data_len, type, ctx);
1070 if (ret < 0)
1071 goto out;
1072 if (ret) {
1073 ret = 0;
1074 goto out;
1077 num++;
1080 out:
1081 kvfree(buf);
1082 return ret;
1085 static int __copy_first_ref(int num, u64 dir, int index,
1086 struct fs_path *p, void *ctx)
1088 int ret;
1089 struct fs_path *pt = ctx;
1091 ret = fs_path_copy(pt, p);
1092 if (ret < 0)
1093 return ret;
1095 /* we want the first only */
1096 return 1;
1100 * Retrieve the first path of an inode. If an inode has more then one
1101 * ref/hardlink, this is ignored.
1103 static int get_inode_path(struct btrfs_root *root,
1104 u64 ino, struct fs_path *path)
1106 int ret;
1107 struct btrfs_key key, found_key;
1108 struct btrfs_path *p;
1110 p = alloc_path_for_send();
1111 if (!p)
1112 return -ENOMEM;
1114 fs_path_reset(path);
1116 key.objectid = ino;
1117 key.type = BTRFS_INODE_REF_KEY;
1118 key.offset = 0;
1120 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1121 if (ret < 0)
1122 goto out;
1123 if (ret) {
1124 ret = 1;
1125 goto out;
1127 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1128 if (found_key.objectid != ino ||
1129 (found_key.type != BTRFS_INODE_REF_KEY &&
1130 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1131 ret = -ENOENT;
1132 goto out;
1135 ret = iterate_inode_ref(root, p, &found_key, 1,
1136 __copy_first_ref, path);
1137 if (ret < 0)
1138 goto out;
1139 ret = 0;
1141 out:
1142 btrfs_free_path(p);
1143 return ret;
1146 struct backref_ctx {
1147 struct send_ctx *sctx;
1149 struct btrfs_path *path;
1150 /* number of total found references */
1151 u64 found;
1154 * used for clones found in send_root. clones found behind cur_objectid
1155 * and cur_offset are not considered as allowed clones.
1157 u64 cur_objectid;
1158 u64 cur_offset;
1160 /* may be truncated in case it's the last extent in a file */
1161 u64 extent_len;
1163 /* data offset in the file extent item */
1164 u64 data_offset;
1166 /* Just to check for bugs in backref resolving */
1167 int found_itself;
1170 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1172 u64 root = (u64)(uintptr_t)key;
1173 struct clone_root *cr = (struct clone_root *)elt;
1175 if (root < cr->root->objectid)
1176 return -1;
1177 if (root > cr->root->objectid)
1178 return 1;
1179 return 0;
1182 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1184 struct clone_root *cr1 = (struct clone_root *)e1;
1185 struct clone_root *cr2 = (struct clone_root *)e2;
1187 if (cr1->root->objectid < cr2->root->objectid)
1188 return -1;
1189 if (cr1->root->objectid > cr2->root->objectid)
1190 return 1;
1191 return 0;
1195 * Called for every backref that is found for the current extent.
1196 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1198 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1200 struct backref_ctx *bctx = ctx_;
1201 struct clone_root *found;
1202 int ret;
1203 u64 i_size;
1205 /* First check if the root is in the list of accepted clone sources */
1206 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1207 bctx->sctx->clone_roots_cnt,
1208 sizeof(struct clone_root),
1209 __clone_root_cmp_bsearch);
1210 if (!found)
1211 return 0;
1213 if (found->root == bctx->sctx->send_root &&
1214 ino == bctx->cur_objectid &&
1215 offset == bctx->cur_offset) {
1216 bctx->found_itself = 1;
1220 * There are inodes that have extents that lie behind its i_size. Don't
1221 * accept clones from these extents.
1223 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 NULL, NULL, NULL);
1225 btrfs_release_path(bctx->path);
1226 if (ret < 0)
1227 return ret;
1229 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1230 return 0;
1233 * Make sure we don't consider clones from send_root that are
1234 * behind the current inode/offset.
1236 if (found->root == bctx->sctx->send_root) {
1238 * TODO for the moment we don't accept clones from the inode
1239 * that is currently send. We may change this when
1240 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1241 * file.
1243 if (ino >= bctx->cur_objectid)
1244 return 0;
1245 #if 0
1246 if (ino > bctx->cur_objectid)
1247 return 0;
1248 if (offset + bctx->extent_len > bctx->cur_offset)
1249 return 0;
1250 #endif
1253 bctx->found++;
1254 found->found_refs++;
1255 if (ino < found->ino) {
1256 found->ino = ino;
1257 found->offset = offset;
1258 } else if (found->ino == ino) {
1260 * same extent found more then once in the same file.
1262 if (found->offset > offset + bctx->extent_len)
1263 found->offset = offset;
1266 return 0;
1270 * Given an inode, offset and extent item, it finds a good clone for a clone
1271 * instruction. Returns -ENOENT when none could be found. The function makes
1272 * sure that the returned clone is usable at the point where sending is at the
1273 * moment. This means, that no clones are accepted which lie behind the current
1274 * inode+offset.
1276 * path must point to the extent item when called.
1278 static int find_extent_clone(struct send_ctx *sctx,
1279 struct btrfs_path *path,
1280 u64 ino, u64 data_offset,
1281 u64 ino_size,
1282 struct clone_root **found)
1284 int ret;
1285 int extent_type;
1286 u64 logical;
1287 u64 disk_byte;
1288 u64 num_bytes;
1289 u64 extent_item_pos;
1290 u64 flags = 0;
1291 struct btrfs_file_extent_item *fi;
1292 struct extent_buffer *eb = path->nodes[0];
1293 struct backref_ctx *backref_ctx = NULL;
1294 struct clone_root *cur_clone_root;
1295 struct btrfs_key found_key;
1296 struct btrfs_path *tmp_path;
1297 int compressed;
1298 u32 i;
1300 tmp_path = alloc_path_for_send();
1301 if (!tmp_path)
1302 return -ENOMEM;
1304 /* We only use this path under the commit sem */
1305 tmp_path->need_commit_sem = 0;
1307 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_NOFS);
1308 if (!backref_ctx) {
1309 ret = -ENOMEM;
1310 goto out;
1313 backref_ctx->path = tmp_path;
1315 if (data_offset >= ino_size) {
1317 * There may be extents that lie behind the file's size.
1318 * I at least had this in combination with snapshotting while
1319 * writing large files.
1321 ret = 0;
1322 goto out;
1325 fi = btrfs_item_ptr(eb, path->slots[0],
1326 struct btrfs_file_extent_item);
1327 extent_type = btrfs_file_extent_type(eb, fi);
1328 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1329 ret = -ENOENT;
1330 goto out;
1332 compressed = btrfs_file_extent_compression(eb, fi);
1334 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1335 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1336 if (disk_byte == 0) {
1337 ret = -ENOENT;
1338 goto out;
1340 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1342 down_read(&sctx->send_root->fs_info->commit_root_sem);
1343 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1344 &found_key, &flags);
1345 up_read(&sctx->send_root->fs_info->commit_root_sem);
1346 btrfs_release_path(tmp_path);
1348 if (ret < 0)
1349 goto out;
1350 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1351 ret = -EIO;
1352 goto out;
1356 * Setup the clone roots.
1358 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359 cur_clone_root = sctx->clone_roots + i;
1360 cur_clone_root->ino = (u64)-1;
1361 cur_clone_root->offset = 0;
1362 cur_clone_root->found_refs = 0;
1365 backref_ctx->sctx = sctx;
1366 backref_ctx->found = 0;
1367 backref_ctx->cur_objectid = ino;
1368 backref_ctx->cur_offset = data_offset;
1369 backref_ctx->found_itself = 0;
1370 backref_ctx->extent_len = num_bytes;
1372 * For non-compressed extents iterate_extent_inodes() gives us extent
1373 * offsets that already take into account the data offset, but not for
1374 * compressed extents, since the offset is logical and not relative to
1375 * the physical extent locations. We must take this into account to
1376 * avoid sending clone offsets that go beyond the source file's size,
1377 * which would result in the clone ioctl failing with -EINVAL on the
1378 * receiving end.
1380 if (compressed == BTRFS_COMPRESS_NONE)
1381 backref_ctx->data_offset = 0;
1382 else
1383 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1386 * The last extent of a file may be too large due to page alignment.
1387 * We need to adjust extent_len in this case so that the checks in
1388 * __iterate_backrefs work.
1390 if (data_offset + num_bytes >= ino_size)
1391 backref_ctx->extent_len = ino_size - data_offset;
1394 * Now collect all backrefs.
1396 if (compressed == BTRFS_COMPRESS_NONE)
1397 extent_item_pos = logical - found_key.objectid;
1398 else
1399 extent_item_pos = 0;
1400 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1401 found_key.objectid, extent_item_pos, 1,
1402 __iterate_backrefs, backref_ctx);
1404 if (ret < 0)
1405 goto out;
1407 if (!backref_ctx->found_itself) {
1408 /* found a bug in backref code? */
1409 ret = -EIO;
1410 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1411 "send_root. inode=%llu, offset=%llu, "
1412 "disk_byte=%llu found extent=%llu",
1413 ino, data_offset, disk_byte, found_key.objectid);
1414 goto out;
1417 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 "ino=%llu, "
1419 "num_bytes=%llu, logical=%llu\n",
1420 data_offset, ino, num_bytes, logical);
1422 if (!backref_ctx->found)
1423 verbose_printk("btrfs: no clones found\n");
1425 cur_clone_root = NULL;
1426 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1427 if (sctx->clone_roots[i].found_refs) {
1428 if (!cur_clone_root)
1429 cur_clone_root = sctx->clone_roots + i;
1430 else if (sctx->clone_roots[i].root == sctx->send_root)
1431 /* prefer clones from send_root over others */
1432 cur_clone_root = sctx->clone_roots + i;
1437 if (cur_clone_root) {
1438 *found = cur_clone_root;
1439 ret = 0;
1440 } else {
1441 ret = -ENOENT;
1444 out:
1445 btrfs_free_path(tmp_path);
1446 kfree(backref_ctx);
1447 return ret;
1450 static int read_symlink(struct btrfs_root *root,
1451 u64 ino,
1452 struct fs_path *dest)
1454 int ret;
1455 struct btrfs_path *path;
1456 struct btrfs_key key;
1457 struct btrfs_file_extent_item *ei;
1458 u8 type;
1459 u8 compression;
1460 unsigned long off;
1461 int len;
1463 path = alloc_path_for_send();
1464 if (!path)
1465 return -ENOMEM;
1467 key.objectid = ino;
1468 key.type = BTRFS_EXTENT_DATA_KEY;
1469 key.offset = 0;
1470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471 if (ret < 0)
1472 goto out;
1473 if (ret) {
1475 * An empty symlink inode. Can happen in rare error paths when
1476 * creating a symlink (transaction committed before the inode
1477 * eviction handler removed the symlink inode items and a crash
1478 * happened in between or the subvol was snapshoted in between).
1479 * Print an informative message to dmesg/syslog so that the user
1480 * can delete the symlink.
1482 btrfs_err(root->fs_info,
1483 "Found empty symlink inode %llu at root %llu",
1484 ino, root->root_key.objectid);
1485 ret = -EIO;
1486 goto out;
1489 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1490 struct btrfs_file_extent_item);
1491 type = btrfs_file_extent_type(path->nodes[0], ei);
1492 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1493 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1494 BUG_ON(compression);
1496 off = btrfs_file_extent_inline_start(ei);
1497 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1499 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1501 out:
1502 btrfs_free_path(path);
1503 return ret;
1507 * Helper function to generate a file name that is unique in the root of
1508 * send_root and parent_root. This is used to generate names for orphan inodes.
1510 static int gen_unique_name(struct send_ctx *sctx,
1511 u64 ino, u64 gen,
1512 struct fs_path *dest)
1514 int ret = 0;
1515 struct btrfs_path *path;
1516 struct btrfs_dir_item *di;
1517 char tmp[64];
1518 int len;
1519 u64 idx = 0;
1521 path = alloc_path_for_send();
1522 if (!path)
1523 return -ENOMEM;
1525 while (1) {
1526 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527 ino, gen, idx);
1528 ASSERT(len < sizeof(tmp));
1530 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1531 path, BTRFS_FIRST_FREE_OBJECTID,
1532 tmp, strlen(tmp), 0);
1533 btrfs_release_path(path);
1534 if (IS_ERR(di)) {
1535 ret = PTR_ERR(di);
1536 goto out;
1538 if (di) {
1539 /* not unique, try again */
1540 idx++;
1541 continue;
1544 if (!sctx->parent_root) {
1545 /* unique */
1546 ret = 0;
1547 break;
1550 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1551 path, BTRFS_FIRST_FREE_OBJECTID,
1552 tmp, strlen(tmp), 0);
1553 btrfs_release_path(path);
1554 if (IS_ERR(di)) {
1555 ret = PTR_ERR(di);
1556 goto out;
1558 if (di) {
1559 /* not unique, try again */
1560 idx++;
1561 continue;
1563 /* unique */
1564 break;
1567 ret = fs_path_add(dest, tmp, strlen(tmp));
1569 out:
1570 btrfs_free_path(path);
1571 return ret;
1574 enum inode_state {
1575 inode_state_no_change,
1576 inode_state_will_create,
1577 inode_state_did_create,
1578 inode_state_will_delete,
1579 inode_state_did_delete,
1582 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1584 int ret;
1585 int left_ret;
1586 int right_ret;
1587 u64 left_gen;
1588 u64 right_gen;
1590 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591 NULL, NULL);
1592 if (ret < 0 && ret != -ENOENT)
1593 goto out;
1594 left_ret = ret;
1596 if (!sctx->parent_root) {
1597 right_ret = -ENOENT;
1598 } else {
1599 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1600 NULL, NULL, NULL, NULL);
1601 if (ret < 0 && ret != -ENOENT)
1602 goto out;
1603 right_ret = ret;
1606 if (!left_ret && !right_ret) {
1607 if (left_gen == gen && right_gen == gen) {
1608 ret = inode_state_no_change;
1609 } else if (left_gen == gen) {
1610 if (ino < sctx->send_progress)
1611 ret = inode_state_did_create;
1612 else
1613 ret = inode_state_will_create;
1614 } else if (right_gen == gen) {
1615 if (ino < sctx->send_progress)
1616 ret = inode_state_did_delete;
1617 else
1618 ret = inode_state_will_delete;
1619 } else {
1620 ret = -ENOENT;
1622 } else if (!left_ret) {
1623 if (left_gen == gen) {
1624 if (ino < sctx->send_progress)
1625 ret = inode_state_did_create;
1626 else
1627 ret = inode_state_will_create;
1628 } else {
1629 ret = -ENOENT;
1631 } else if (!right_ret) {
1632 if (right_gen == gen) {
1633 if (ino < sctx->send_progress)
1634 ret = inode_state_did_delete;
1635 else
1636 ret = inode_state_will_delete;
1637 } else {
1638 ret = -ENOENT;
1640 } else {
1641 ret = -ENOENT;
1644 out:
1645 return ret;
1648 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1650 int ret;
1652 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1653 return 1;
1655 ret = get_cur_inode_state(sctx, ino, gen);
1656 if (ret < 0)
1657 goto out;
1659 if (ret == inode_state_no_change ||
1660 ret == inode_state_did_create ||
1661 ret == inode_state_will_delete)
1662 ret = 1;
1663 else
1664 ret = 0;
1666 out:
1667 return ret;
1671 * Helper function to lookup a dir item in a dir.
1673 static int lookup_dir_item_inode(struct btrfs_root *root,
1674 u64 dir, const char *name, int name_len,
1675 u64 *found_inode,
1676 u8 *found_type)
1678 int ret = 0;
1679 struct btrfs_dir_item *di;
1680 struct btrfs_key key;
1681 struct btrfs_path *path;
1683 path = alloc_path_for_send();
1684 if (!path)
1685 return -ENOMEM;
1687 di = btrfs_lookup_dir_item(NULL, root, path,
1688 dir, name, name_len, 0);
1689 if (!di) {
1690 ret = -ENOENT;
1691 goto out;
1693 if (IS_ERR(di)) {
1694 ret = PTR_ERR(di);
1695 goto out;
1697 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1698 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1699 ret = -ENOENT;
1700 goto out;
1702 *found_inode = key.objectid;
1703 *found_type = btrfs_dir_type(path->nodes[0], di);
1705 out:
1706 btrfs_free_path(path);
1707 return ret;
1711 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1712 * generation of the parent dir and the name of the dir entry.
1714 static int get_first_ref(struct btrfs_root *root, u64 ino,
1715 u64 *dir, u64 *dir_gen, struct fs_path *name)
1717 int ret;
1718 struct btrfs_key key;
1719 struct btrfs_key found_key;
1720 struct btrfs_path *path;
1721 int len;
1722 u64 parent_dir;
1724 path = alloc_path_for_send();
1725 if (!path)
1726 return -ENOMEM;
1728 key.objectid = ino;
1729 key.type = BTRFS_INODE_REF_KEY;
1730 key.offset = 0;
1732 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1733 if (ret < 0)
1734 goto out;
1735 if (!ret)
1736 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1737 path->slots[0]);
1738 if (ret || found_key.objectid != ino ||
1739 (found_key.type != BTRFS_INODE_REF_KEY &&
1740 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1741 ret = -ENOENT;
1742 goto out;
1745 if (found_key.type == BTRFS_INODE_REF_KEY) {
1746 struct btrfs_inode_ref *iref;
1747 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1748 struct btrfs_inode_ref);
1749 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1750 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1751 (unsigned long)(iref + 1),
1752 len);
1753 parent_dir = found_key.offset;
1754 } else {
1755 struct btrfs_inode_extref *extref;
1756 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1757 struct btrfs_inode_extref);
1758 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1759 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1760 (unsigned long)&extref->name, len);
1761 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1763 if (ret < 0)
1764 goto out;
1765 btrfs_release_path(path);
1767 if (dir_gen) {
1768 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1769 NULL, NULL, NULL);
1770 if (ret < 0)
1771 goto out;
1774 *dir = parent_dir;
1776 out:
1777 btrfs_free_path(path);
1778 return ret;
1781 static int is_first_ref(struct btrfs_root *root,
1782 u64 ino, u64 dir,
1783 const char *name, int name_len)
1785 int ret;
1786 struct fs_path *tmp_name;
1787 u64 tmp_dir;
1789 tmp_name = fs_path_alloc();
1790 if (!tmp_name)
1791 return -ENOMEM;
1793 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1794 if (ret < 0)
1795 goto out;
1797 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1798 ret = 0;
1799 goto out;
1802 ret = !memcmp(tmp_name->start, name, name_len);
1804 out:
1805 fs_path_free(tmp_name);
1806 return ret;
1810 * Used by process_recorded_refs to determine if a new ref would overwrite an
1811 * already existing ref. In case it detects an overwrite, it returns the
1812 * inode/gen in who_ino/who_gen.
1813 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1814 * to make sure later references to the overwritten inode are possible.
1815 * Orphanizing is however only required for the first ref of an inode.
1816 * process_recorded_refs does an additional is_first_ref check to see if
1817 * orphanizing is really required.
1819 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1820 const char *name, int name_len,
1821 u64 *who_ino, u64 *who_gen)
1823 int ret = 0;
1824 u64 gen;
1825 u64 other_inode = 0;
1826 u8 other_type = 0;
1828 if (!sctx->parent_root)
1829 goto out;
1831 ret = is_inode_existent(sctx, dir, dir_gen);
1832 if (ret <= 0)
1833 goto out;
1836 * If we have a parent root we need to verify that the parent dir was
1837 * not delted and then re-created, if it was then we have no overwrite
1838 * and we can just unlink this entry.
1840 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1841 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1842 NULL, NULL, NULL);
1843 if (ret < 0 && ret != -ENOENT)
1844 goto out;
1845 if (ret) {
1846 ret = 0;
1847 goto out;
1849 if (gen != dir_gen)
1850 goto out;
1853 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1854 &other_inode, &other_type);
1855 if (ret < 0 && ret != -ENOENT)
1856 goto out;
1857 if (ret) {
1858 ret = 0;
1859 goto out;
1863 * Check if the overwritten ref was already processed. If yes, the ref
1864 * was already unlinked/moved, so we can safely assume that we will not
1865 * overwrite anything at this point in time.
1867 if (other_inode > sctx->send_progress) {
1868 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1869 who_gen, NULL, NULL, NULL, NULL);
1870 if (ret < 0)
1871 goto out;
1873 ret = 1;
1874 *who_ino = other_inode;
1875 } else {
1876 ret = 0;
1879 out:
1880 return ret;
1884 * Checks if the ref was overwritten by an already processed inode. This is
1885 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1886 * thus the orphan name needs be used.
1887 * process_recorded_refs also uses it to avoid unlinking of refs that were
1888 * overwritten.
1890 static int did_overwrite_ref(struct send_ctx *sctx,
1891 u64 dir, u64 dir_gen,
1892 u64 ino, u64 ino_gen,
1893 const char *name, int name_len)
1895 int ret = 0;
1896 u64 gen;
1897 u64 ow_inode;
1898 u8 other_type;
1900 if (!sctx->parent_root)
1901 goto out;
1903 ret = is_inode_existent(sctx, dir, dir_gen);
1904 if (ret <= 0)
1905 goto out;
1907 /* check if the ref was overwritten by another ref */
1908 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1909 &ow_inode, &other_type);
1910 if (ret < 0 && ret != -ENOENT)
1911 goto out;
1912 if (ret) {
1913 /* was never and will never be overwritten */
1914 ret = 0;
1915 goto out;
1918 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1919 NULL, NULL);
1920 if (ret < 0)
1921 goto out;
1923 if (ow_inode == ino && gen == ino_gen) {
1924 ret = 0;
1925 goto out;
1929 * We know that it is or will be overwritten. Check this now.
1930 * The current inode being processed might have been the one that caused
1931 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1932 * the current inode being processed.
1934 if ((ow_inode < sctx->send_progress) ||
1935 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1936 gen == sctx->cur_inode_gen))
1937 ret = 1;
1938 else
1939 ret = 0;
1941 out:
1942 return ret;
1946 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1947 * that got overwritten. This is used by process_recorded_refs to determine
1948 * if it has to use the path as returned by get_cur_path or the orphan name.
1950 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1952 int ret = 0;
1953 struct fs_path *name = NULL;
1954 u64 dir;
1955 u64 dir_gen;
1957 if (!sctx->parent_root)
1958 goto out;
1960 name = fs_path_alloc();
1961 if (!name)
1962 return -ENOMEM;
1964 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1965 if (ret < 0)
1966 goto out;
1968 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1969 name->start, fs_path_len(name));
1971 out:
1972 fs_path_free(name);
1973 return ret;
1977 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1978 * so we need to do some special handling in case we have clashes. This function
1979 * takes care of this with the help of name_cache_entry::radix_list.
1980 * In case of error, nce is kfreed.
1982 static int name_cache_insert(struct send_ctx *sctx,
1983 struct name_cache_entry *nce)
1985 int ret = 0;
1986 struct list_head *nce_head;
1988 nce_head = radix_tree_lookup(&sctx->name_cache,
1989 (unsigned long)nce->ino);
1990 if (!nce_head) {
1991 nce_head = kmalloc(sizeof(*nce_head), GFP_NOFS);
1992 if (!nce_head) {
1993 kfree(nce);
1994 return -ENOMEM;
1996 INIT_LIST_HEAD(nce_head);
1998 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1999 if (ret < 0) {
2000 kfree(nce_head);
2001 kfree(nce);
2002 return ret;
2005 list_add_tail(&nce->radix_list, nce_head);
2006 list_add_tail(&nce->list, &sctx->name_cache_list);
2007 sctx->name_cache_size++;
2009 return ret;
2012 static void name_cache_delete(struct send_ctx *sctx,
2013 struct name_cache_entry *nce)
2015 struct list_head *nce_head;
2017 nce_head = radix_tree_lookup(&sctx->name_cache,
2018 (unsigned long)nce->ino);
2019 if (!nce_head) {
2020 btrfs_err(sctx->send_root->fs_info,
2021 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2022 nce->ino, sctx->name_cache_size);
2025 list_del(&nce->radix_list);
2026 list_del(&nce->list);
2027 sctx->name_cache_size--;
2030 * We may not get to the final release of nce_head if the lookup fails
2032 if (nce_head && list_empty(nce_head)) {
2033 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2034 kfree(nce_head);
2038 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2039 u64 ino, u64 gen)
2041 struct list_head *nce_head;
2042 struct name_cache_entry *cur;
2044 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2045 if (!nce_head)
2046 return NULL;
2048 list_for_each_entry(cur, nce_head, radix_list) {
2049 if (cur->ino == ino && cur->gen == gen)
2050 return cur;
2052 return NULL;
2056 * Removes the entry from the list and adds it back to the end. This marks the
2057 * entry as recently used so that name_cache_clean_unused does not remove it.
2059 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2061 list_del(&nce->list);
2062 list_add_tail(&nce->list, &sctx->name_cache_list);
2066 * Remove some entries from the beginning of name_cache_list.
2068 static void name_cache_clean_unused(struct send_ctx *sctx)
2070 struct name_cache_entry *nce;
2072 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2073 return;
2075 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2076 nce = list_entry(sctx->name_cache_list.next,
2077 struct name_cache_entry, list);
2078 name_cache_delete(sctx, nce);
2079 kfree(nce);
2083 static void name_cache_free(struct send_ctx *sctx)
2085 struct name_cache_entry *nce;
2087 while (!list_empty(&sctx->name_cache_list)) {
2088 nce = list_entry(sctx->name_cache_list.next,
2089 struct name_cache_entry, list);
2090 name_cache_delete(sctx, nce);
2091 kfree(nce);
2096 * Used by get_cur_path for each ref up to the root.
2097 * Returns 0 if it succeeded.
2098 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2099 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2100 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2101 * Returns <0 in case of error.
2103 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2104 u64 ino, u64 gen,
2105 u64 *parent_ino,
2106 u64 *parent_gen,
2107 struct fs_path *dest)
2109 int ret;
2110 int nce_ret;
2111 struct name_cache_entry *nce = NULL;
2114 * First check if we already did a call to this function with the same
2115 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2116 * return the cached result.
2118 nce = name_cache_search(sctx, ino, gen);
2119 if (nce) {
2120 if (ino < sctx->send_progress && nce->need_later_update) {
2121 name_cache_delete(sctx, nce);
2122 kfree(nce);
2123 nce = NULL;
2124 } else {
2125 name_cache_used(sctx, nce);
2126 *parent_ino = nce->parent_ino;
2127 *parent_gen = nce->parent_gen;
2128 ret = fs_path_add(dest, nce->name, nce->name_len);
2129 if (ret < 0)
2130 goto out;
2131 ret = nce->ret;
2132 goto out;
2137 * If the inode is not existent yet, add the orphan name and return 1.
2138 * This should only happen for the parent dir that we determine in
2139 * __record_new_ref
2141 ret = is_inode_existent(sctx, ino, gen);
2142 if (ret < 0)
2143 goto out;
2145 if (!ret) {
2146 ret = gen_unique_name(sctx, ino, gen, dest);
2147 if (ret < 0)
2148 goto out;
2149 ret = 1;
2150 goto out_cache;
2154 * Depending on whether the inode was already processed or not, use
2155 * send_root or parent_root for ref lookup.
2157 if (ino < sctx->send_progress)
2158 ret = get_first_ref(sctx->send_root, ino,
2159 parent_ino, parent_gen, dest);
2160 else
2161 ret = get_first_ref(sctx->parent_root, ino,
2162 parent_ino, parent_gen, dest);
2163 if (ret < 0)
2164 goto out;
2167 * Check if the ref was overwritten by an inode's ref that was processed
2168 * earlier. If yes, treat as orphan and return 1.
2170 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2171 dest->start, dest->end - dest->start);
2172 if (ret < 0)
2173 goto out;
2174 if (ret) {
2175 fs_path_reset(dest);
2176 ret = gen_unique_name(sctx, ino, gen, dest);
2177 if (ret < 0)
2178 goto out;
2179 ret = 1;
2182 out_cache:
2184 * Store the result of the lookup in the name cache.
2186 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_NOFS);
2187 if (!nce) {
2188 ret = -ENOMEM;
2189 goto out;
2192 nce->ino = ino;
2193 nce->gen = gen;
2194 nce->parent_ino = *parent_ino;
2195 nce->parent_gen = *parent_gen;
2196 nce->name_len = fs_path_len(dest);
2197 nce->ret = ret;
2198 strcpy(nce->name, dest->start);
2200 if (ino < sctx->send_progress)
2201 nce->need_later_update = 0;
2202 else
2203 nce->need_later_update = 1;
2205 nce_ret = name_cache_insert(sctx, nce);
2206 if (nce_ret < 0)
2207 ret = nce_ret;
2208 name_cache_clean_unused(sctx);
2210 out:
2211 return ret;
2215 * Magic happens here. This function returns the first ref to an inode as it
2216 * would look like while receiving the stream at this point in time.
2217 * We walk the path up to the root. For every inode in between, we check if it
2218 * was already processed/sent. If yes, we continue with the parent as found
2219 * in send_root. If not, we continue with the parent as found in parent_root.
2220 * If we encounter an inode that was deleted at this point in time, we use the
2221 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2222 * that were not created yet and overwritten inodes/refs.
2224 * When do we have have orphan inodes:
2225 * 1. When an inode is freshly created and thus no valid refs are available yet
2226 * 2. When a directory lost all it's refs (deleted) but still has dir items
2227 * inside which were not processed yet (pending for move/delete). If anyone
2228 * tried to get the path to the dir items, it would get a path inside that
2229 * orphan directory.
2230 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2231 * of an unprocessed inode. If in that case the first ref would be
2232 * overwritten, the overwritten inode gets "orphanized". Later when we
2233 * process this overwritten inode, it is restored at a new place by moving
2234 * the orphan inode.
2236 * sctx->send_progress tells this function at which point in time receiving
2237 * would be.
2239 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2240 struct fs_path *dest)
2242 int ret = 0;
2243 struct fs_path *name = NULL;
2244 u64 parent_inode = 0;
2245 u64 parent_gen = 0;
2246 int stop = 0;
2248 name = fs_path_alloc();
2249 if (!name) {
2250 ret = -ENOMEM;
2251 goto out;
2254 dest->reversed = 1;
2255 fs_path_reset(dest);
2257 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2258 struct waiting_dir_move *wdm;
2260 fs_path_reset(name);
2262 if (is_waiting_for_rm(sctx, ino)) {
2263 ret = gen_unique_name(sctx, ino, gen, name);
2264 if (ret < 0)
2265 goto out;
2266 ret = fs_path_add_path(dest, name);
2267 break;
2270 wdm = get_waiting_dir_move(sctx, ino);
2271 if (wdm && wdm->orphanized) {
2272 ret = gen_unique_name(sctx, ino, gen, name);
2273 stop = 1;
2274 } else if (wdm) {
2275 ret = get_first_ref(sctx->parent_root, ino,
2276 &parent_inode, &parent_gen, name);
2277 } else {
2278 ret = __get_cur_name_and_parent(sctx, ino, gen,
2279 &parent_inode,
2280 &parent_gen, name);
2281 if (ret)
2282 stop = 1;
2285 if (ret < 0)
2286 goto out;
2288 ret = fs_path_add_path(dest, name);
2289 if (ret < 0)
2290 goto out;
2292 ino = parent_inode;
2293 gen = parent_gen;
2296 out:
2297 fs_path_free(name);
2298 if (!ret)
2299 fs_path_unreverse(dest);
2300 return ret;
2304 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2306 static int send_subvol_begin(struct send_ctx *sctx)
2308 int ret;
2309 struct btrfs_root *send_root = sctx->send_root;
2310 struct btrfs_root *parent_root = sctx->parent_root;
2311 struct btrfs_path *path;
2312 struct btrfs_key key;
2313 struct btrfs_root_ref *ref;
2314 struct extent_buffer *leaf;
2315 char *name = NULL;
2316 int namelen;
2318 path = btrfs_alloc_path();
2319 if (!path)
2320 return -ENOMEM;
2322 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_NOFS);
2323 if (!name) {
2324 btrfs_free_path(path);
2325 return -ENOMEM;
2328 key.objectid = send_root->objectid;
2329 key.type = BTRFS_ROOT_BACKREF_KEY;
2330 key.offset = 0;
2332 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2333 &key, path, 1, 0);
2334 if (ret < 0)
2335 goto out;
2336 if (ret) {
2337 ret = -ENOENT;
2338 goto out;
2341 leaf = path->nodes[0];
2342 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2343 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2344 key.objectid != send_root->objectid) {
2345 ret = -ENOENT;
2346 goto out;
2348 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2349 namelen = btrfs_root_ref_name_len(leaf, ref);
2350 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2351 btrfs_release_path(path);
2353 if (parent_root) {
2354 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2355 if (ret < 0)
2356 goto out;
2357 } else {
2358 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2359 if (ret < 0)
2360 goto out;
2363 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2365 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 sctx->send_root->root_item.received_uuid);
2368 else
2369 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2370 sctx->send_root->root_item.uuid);
2372 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2373 le64_to_cpu(sctx->send_root->root_item.ctransid));
2374 if (parent_root) {
2375 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2376 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 parent_root->root_item.received_uuid);
2378 else
2379 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2380 parent_root->root_item.uuid);
2381 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2382 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2385 ret = send_cmd(sctx);
2387 tlv_put_failure:
2388 out:
2389 btrfs_free_path(path);
2390 kfree(name);
2391 return ret;
2394 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2396 int ret = 0;
2397 struct fs_path *p;
2399 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2401 p = fs_path_alloc();
2402 if (!p)
2403 return -ENOMEM;
2405 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2406 if (ret < 0)
2407 goto out;
2409 ret = get_cur_path(sctx, ino, gen, p);
2410 if (ret < 0)
2411 goto out;
2412 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2413 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2415 ret = send_cmd(sctx);
2417 tlv_put_failure:
2418 out:
2419 fs_path_free(p);
2420 return ret;
2423 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2425 int ret = 0;
2426 struct fs_path *p;
2428 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2430 p = fs_path_alloc();
2431 if (!p)
2432 return -ENOMEM;
2434 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2435 if (ret < 0)
2436 goto out;
2438 ret = get_cur_path(sctx, ino, gen, p);
2439 if (ret < 0)
2440 goto out;
2441 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2442 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2444 ret = send_cmd(sctx);
2446 tlv_put_failure:
2447 out:
2448 fs_path_free(p);
2449 return ret;
2452 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2454 int ret = 0;
2455 struct fs_path *p;
2457 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2459 p = fs_path_alloc();
2460 if (!p)
2461 return -ENOMEM;
2463 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2464 if (ret < 0)
2465 goto out;
2467 ret = get_cur_path(sctx, ino, gen, p);
2468 if (ret < 0)
2469 goto out;
2470 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2471 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2472 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2474 ret = send_cmd(sctx);
2476 tlv_put_failure:
2477 out:
2478 fs_path_free(p);
2479 return ret;
2482 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2484 int ret = 0;
2485 struct fs_path *p = NULL;
2486 struct btrfs_inode_item *ii;
2487 struct btrfs_path *path = NULL;
2488 struct extent_buffer *eb;
2489 struct btrfs_key key;
2490 int slot;
2492 verbose_printk("btrfs: send_utimes %llu\n", ino);
2494 p = fs_path_alloc();
2495 if (!p)
2496 return -ENOMEM;
2498 path = alloc_path_for_send();
2499 if (!path) {
2500 ret = -ENOMEM;
2501 goto out;
2504 key.objectid = ino;
2505 key.type = BTRFS_INODE_ITEM_KEY;
2506 key.offset = 0;
2507 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2508 if (ret < 0)
2509 goto out;
2511 eb = path->nodes[0];
2512 slot = path->slots[0];
2513 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2515 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2516 if (ret < 0)
2517 goto out;
2519 ret = get_cur_path(sctx, ino, gen, p);
2520 if (ret < 0)
2521 goto out;
2522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2523 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2524 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2525 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2526 /* TODO Add otime support when the otime patches get into upstream */
2528 ret = send_cmd(sctx);
2530 tlv_put_failure:
2531 out:
2532 fs_path_free(p);
2533 btrfs_free_path(path);
2534 return ret;
2538 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2539 * a valid path yet because we did not process the refs yet. So, the inode
2540 * is created as orphan.
2542 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2544 int ret = 0;
2545 struct fs_path *p;
2546 int cmd;
2547 u64 gen;
2548 u64 mode;
2549 u64 rdev;
2551 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2553 p = fs_path_alloc();
2554 if (!p)
2555 return -ENOMEM;
2557 if (ino != sctx->cur_ino) {
2558 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2559 NULL, NULL, &rdev);
2560 if (ret < 0)
2561 goto out;
2562 } else {
2563 gen = sctx->cur_inode_gen;
2564 mode = sctx->cur_inode_mode;
2565 rdev = sctx->cur_inode_rdev;
2568 if (S_ISREG(mode)) {
2569 cmd = BTRFS_SEND_C_MKFILE;
2570 } else if (S_ISDIR(mode)) {
2571 cmd = BTRFS_SEND_C_MKDIR;
2572 } else if (S_ISLNK(mode)) {
2573 cmd = BTRFS_SEND_C_SYMLINK;
2574 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2575 cmd = BTRFS_SEND_C_MKNOD;
2576 } else if (S_ISFIFO(mode)) {
2577 cmd = BTRFS_SEND_C_MKFIFO;
2578 } else if (S_ISSOCK(mode)) {
2579 cmd = BTRFS_SEND_C_MKSOCK;
2580 } else {
2581 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2582 (int)(mode & S_IFMT));
2583 ret = -ENOTSUPP;
2584 goto out;
2587 ret = begin_cmd(sctx, cmd);
2588 if (ret < 0)
2589 goto out;
2591 ret = gen_unique_name(sctx, ino, gen, p);
2592 if (ret < 0)
2593 goto out;
2595 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2596 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2598 if (S_ISLNK(mode)) {
2599 fs_path_reset(p);
2600 ret = read_symlink(sctx->send_root, ino, p);
2601 if (ret < 0)
2602 goto out;
2603 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2604 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2605 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2606 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2607 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2610 ret = send_cmd(sctx);
2611 if (ret < 0)
2612 goto out;
2615 tlv_put_failure:
2616 out:
2617 fs_path_free(p);
2618 return ret;
2622 * We need some special handling for inodes that get processed before the parent
2623 * directory got created. See process_recorded_refs for details.
2624 * This function does the check if we already created the dir out of order.
2626 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2628 int ret = 0;
2629 struct btrfs_path *path = NULL;
2630 struct btrfs_key key;
2631 struct btrfs_key found_key;
2632 struct btrfs_key di_key;
2633 struct extent_buffer *eb;
2634 struct btrfs_dir_item *di;
2635 int slot;
2637 path = alloc_path_for_send();
2638 if (!path) {
2639 ret = -ENOMEM;
2640 goto out;
2643 key.objectid = dir;
2644 key.type = BTRFS_DIR_INDEX_KEY;
2645 key.offset = 0;
2646 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2647 if (ret < 0)
2648 goto out;
2650 while (1) {
2651 eb = path->nodes[0];
2652 slot = path->slots[0];
2653 if (slot >= btrfs_header_nritems(eb)) {
2654 ret = btrfs_next_leaf(sctx->send_root, path);
2655 if (ret < 0) {
2656 goto out;
2657 } else if (ret > 0) {
2658 ret = 0;
2659 break;
2661 continue;
2664 btrfs_item_key_to_cpu(eb, &found_key, slot);
2665 if (found_key.objectid != key.objectid ||
2666 found_key.type != key.type) {
2667 ret = 0;
2668 goto out;
2671 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2672 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2674 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2675 di_key.objectid < sctx->send_progress) {
2676 ret = 1;
2677 goto out;
2680 path->slots[0]++;
2683 out:
2684 btrfs_free_path(path);
2685 return ret;
2689 * Only creates the inode if it is:
2690 * 1. Not a directory
2691 * 2. Or a directory which was not created already due to out of order
2692 * directories. See did_create_dir and process_recorded_refs for details.
2694 static int send_create_inode_if_needed(struct send_ctx *sctx)
2696 int ret;
2698 if (S_ISDIR(sctx->cur_inode_mode)) {
2699 ret = did_create_dir(sctx, sctx->cur_ino);
2700 if (ret < 0)
2701 goto out;
2702 if (ret) {
2703 ret = 0;
2704 goto out;
2708 ret = send_create_inode(sctx, sctx->cur_ino);
2709 if (ret < 0)
2710 goto out;
2712 out:
2713 return ret;
2716 struct recorded_ref {
2717 struct list_head list;
2718 char *dir_path;
2719 char *name;
2720 struct fs_path *full_path;
2721 u64 dir;
2722 u64 dir_gen;
2723 int dir_path_len;
2724 int name_len;
2728 * We need to process new refs before deleted refs, but compare_tree gives us
2729 * everything mixed. So we first record all refs and later process them.
2730 * This function is a helper to record one ref.
2732 static int __record_ref(struct list_head *head, u64 dir,
2733 u64 dir_gen, struct fs_path *path)
2735 struct recorded_ref *ref;
2737 ref = kmalloc(sizeof(*ref), GFP_NOFS);
2738 if (!ref)
2739 return -ENOMEM;
2741 ref->dir = dir;
2742 ref->dir_gen = dir_gen;
2743 ref->full_path = path;
2745 ref->name = (char *)kbasename(ref->full_path->start);
2746 ref->name_len = ref->full_path->end - ref->name;
2747 ref->dir_path = ref->full_path->start;
2748 if (ref->name == ref->full_path->start)
2749 ref->dir_path_len = 0;
2750 else
2751 ref->dir_path_len = ref->full_path->end -
2752 ref->full_path->start - 1 - ref->name_len;
2754 list_add_tail(&ref->list, head);
2755 return 0;
2758 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2760 struct recorded_ref *new;
2762 new = kmalloc(sizeof(*ref), GFP_NOFS);
2763 if (!new)
2764 return -ENOMEM;
2766 new->dir = ref->dir;
2767 new->dir_gen = ref->dir_gen;
2768 new->full_path = NULL;
2769 INIT_LIST_HEAD(&new->list);
2770 list_add_tail(&new->list, list);
2771 return 0;
2774 static void __free_recorded_refs(struct list_head *head)
2776 struct recorded_ref *cur;
2778 while (!list_empty(head)) {
2779 cur = list_entry(head->next, struct recorded_ref, list);
2780 fs_path_free(cur->full_path);
2781 list_del(&cur->list);
2782 kfree(cur);
2786 static void free_recorded_refs(struct send_ctx *sctx)
2788 __free_recorded_refs(&sctx->new_refs);
2789 __free_recorded_refs(&sctx->deleted_refs);
2793 * Renames/moves a file/dir to its orphan name. Used when the first
2794 * ref of an unprocessed inode gets overwritten and for all non empty
2795 * directories.
2797 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2798 struct fs_path *path)
2800 int ret;
2801 struct fs_path *orphan;
2803 orphan = fs_path_alloc();
2804 if (!orphan)
2805 return -ENOMEM;
2807 ret = gen_unique_name(sctx, ino, gen, orphan);
2808 if (ret < 0)
2809 goto out;
2811 ret = send_rename(sctx, path, orphan);
2813 out:
2814 fs_path_free(orphan);
2815 return ret;
2818 static struct orphan_dir_info *
2819 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2821 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2822 struct rb_node *parent = NULL;
2823 struct orphan_dir_info *entry, *odi;
2825 odi = kmalloc(sizeof(*odi), GFP_NOFS);
2826 if (!odi)
2827 return ERR_PTR(-ENOMEM);
2828 odi->ino = dir_ino;
2829 odi->gen = 0;
2831 while (*p) {
2832 parent = *p;
2833 entry = rb_entry(parent, struct orphan_dir_info, node);
2834 if (dir_ino < entry->ino) {
2835 p = &(*p)->rb_left;
2836 } else if (dir_ino > entry->ino) {
2837 p = &(*p)->rb_right;
2838 } else {
2839 kfree(odi);
2840 return entry;
2844 rb_link_node(&odi->node, parent, p);
2845 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2846 return odi;
2849 static struct orphan_dir_info *
2850 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2852 struct rb_node *n = sctx->orphan_dirs.rb_node;
2853 struct orphan_dir_info *entry;
2855 while (n) {
2856 entry = rb_entry(n, struct orphan_dir_info, node);
2857 if (dir_ino < entry->ino)
2858 n = n->rb_left;
2859 else if (dir_ino > entry->ino)
2860 n = n->rb_right;
2861 else
2862 return entry;
2864 return NULL;
2867 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2869 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2871 return odi != NULL;
2874 static void free_orphan_dir_info(struct send_ctx *sctx,
2875 struct orphan_dir_info *odi)
2877 if (!odi)
2878 return;
2879 rb_erase(&odi->node, &sctx->orphan_dirs);
2880 kfree(odi);
2884 * Returns 1 if a directory can be removed at this point in time.
2885 * We check this by iterating all dir items and checking if the inode behind
2886 * the dir item was already processed.
2888 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2889 u64 send_progress)
2891 int ret = 0;
2892 struct btrfs_root *root = sctx->parent_root;
2893 struct btrfs_path *path;
2894 struct btrfs_key key;
2895 struct btrfs_key found_key;
2896 struct btrfs_key loc;
2897 struct btrfs_dir_item *di;
2900 * Don't try to rmdir the top/root subvolume dir.
2902 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2903 return 0;
2905 path = alloc_path_for_send();
2906 if (!path)
2907 return -ENOMEM;
2909 key.objectid = dir;
2910 key.type = BTRFS_DIR_INDEX_KEY;
2911 key.offset = 0;
2912 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2913 if (ret < 0)
2914 goto out;
2916 while (1) {
2917 struct waiting_dir_move *dm;
2919 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2920 ret = btrfs_next_leaf(root, path);
2921 if (ret < 0)
2922 goto out;
2923 else if (ret > 0)
2924 break;
2925 continue;
2927 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2928 path->slots[0]);
2929 if (found_key.objectid != key.objectid ||
2930 found_key.type != key.type)
2931 break;
2933 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2934 struct btrfs_dir_item);
2935 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2937 dm = get_waiting_dir_move(sctx, loc.objectid);
2938 if (dm) {
2939 struct orphan_dir_info *odi;
2941 odi = add_orphan_dir_info(sctx, dir);
2942 if (IS_ERR(odi)) {
2943 ret = PTR_ERR(odi);
2944 goto out;
2946 odi->gen = dir_gen;
2947 dm->rmdir_ino = dir;
2948 ret = 0;
2949 goto out;
2952 if (loc.objectid > send_progress) {
2953 ret = 0;
2954 goto out;
2957 path->slots[0]++;
2960 ret = 1;
2962 out:
2963 btrfs_free_path(path);
2964 return ret;
2967 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2969 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2971 return entry != NULL;
2974 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2976 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2977 struct rb_node *parent = NULL;
2978 struct waiting_dir_move *entry, *dm;
2980 dm = kmalloc(sizeof(*dm), GFP_NOFS);
2981 if (!dm)
2982 return -ENOMEM;
2983 dm->ino = ino;
2984 dm->rmdir_ino = 0;
2985 dm->orphanized = orphanized;
2987 while (*p) {
2988 parent = *p;
2989 entry = rb_entry(parent, struct waiting_dir_move, node);
2990 if (ino < entry->ino) {
2991 p = &(*p)->rb_left;
2992 } else if (ino > entry->ino) {
2993 p = &(*p)->rb_right;
2994 } else {
2995 kfree(dm);
2996 return -EEXIST;
3000 rb_link_node(&dm->node, parent, p);
3001 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3002 return 0;
3005 static struct waiting_dir_move *
3006 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3008 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3009 struct waiting_dir_move *entry;
3011 while (n) {
3012 entry = rb_entry(n, struct waiting_dir_move, node);
3013 if (ino < entry->ino)
3014 n = n->rb_left;
3015 else if (ino > entry->ino)
3016 n = n->rb_right;
3017 else
3018 return entry;
3020 return NULL;
3023 static void free_waiting_dir_move(struct send_ctx *sctx,
3024 struct waiting_dir_move *dm)
3026 if (!dm)
3027 return;
3028 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3029 kfree(dm);
3032 static int add_pending_dir_move(struct send_ctx *sctx,
3033 u64 ino,
3034 u64 ino_gen,
3035 u64 parent_ino,
3036 struct list_head *new_refs,
3037 struct list_head *deleted_refs,
3038 const bool is_orphan)
3040 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3041 struct rb_node *parent = NULL;
3042 struct pending_dir_move *entry = NULL, *pm;
3043 struct recorded_ref *cur;
3044 int exists = 0;
3045 int ret;
3047 pm = kmalloc(sizeof(*pm), GFP_NOFS);
3048 if (!pm)
3049 return -ENOMEM;
3050 pm->parent_ino = parent_ino;
3051 pm->ino = ino;
3052 pm->gen = ino_gen;
3053 pm->is_orphan = is_orphan;
3054 INIT_LIST_HEAD(&pm->list);
3055 INIT_LIST_HEAD(&pm->update_refs);
3056 RB_CLEAR_NODE(&pm->node);
3058 while (*p) {
3059 parent = *p;
3060 entry = rb_entry(parent, struct pending_dir_move, node);
3061 if (parent_ino < entry->parent_ino) {
3062 p = &(*p)->rb_left;
3063 } else if (parent_ino > entry->parent_ino) {
3064 p = &(*p)->rb_right;
3065 } else {
3066 exists = 1;
3067 break;
3071 list_for_each_entry(cur, deleted_refs, list) {
3072 ret = dup_ref(cur, &pm->update_refs);
3073 if (ret < 0)
3074 goto out;
3076 list_for_each_entry(cur, new_refs, list) {
3077 ret = dup_ref(cur, &pm->update_refs);
3078 if (ret < 0)
3079 goto out;
3082 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3083 if (ret)
3084 goto out;
3086 if (exists) {
3087 list_add_tail(&pm->list, &entry->list);
3088 } else {
3089 rb_link_node(&pm->node, parent, p);
3090 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3092 ret = 0;
3093 out:
3094 if (ret) {
3095 __free_recorded_refs(&pm->update_refs);
3096 kfree(pm);
3098 return ret;
3101 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3102 u64 parent_ino)
3104 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3105 struct pending_dir_move *entry;
3107 while (n) {
3108 entry = rb_entry(n, struct pending_dir_move, node);
3109 if (parent_ino < entry->parent_ino)
3110 n = n->rb_left;
3111 else if (parent_ino > entry->parent_ino)
3112 n = n->rb_right;
3113 else
3114 return entry;
3116 return NULL;
3119 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3121 struct fs_path *from_path = NULL;
3122 struct fs_path *to_path = NULL;
3123 struct fs_path *name = NULL;
3124 u64 orig_progress = sctx->send_progress;
3125 struct recorded_ref *cur;
3126 u64 parent_ino, parent_gen;
3127 struct waiting_dir_move *dm = NULL;
3128 u64 rmdir_ino = 0;
3129 int ret;
3131 name = fs_path_alloc();
3132 from_path = fs_path_alloc();
3133 if (!name || !from_path) {
3134 ret = -ENOMEM;
3135 goto out;
3138 dm = get_waiting_dir_move(sctx, pm->ino);
3139 ASSERT(dm);
3140 rmdir_ino = dm->rmdir_ino;
3141 free_waiting_dir_move(sctx, dm);
3143 if (pm->is_orphan) {
3144 ret = gen_unique_name(sctx, pm->ino,
3145 pm->gen, from_path);
3146 } else {
3147 ret = get_first_ref(sctx->parent_root, pm->ino,
3148 &parent_ino, &parent_gen, name);
3149 if (ret < 0)
3150 goto out;
3151 ret = get_cur_path(sctx, parent_ino, parent_gen,
3152 from_path);
3153 if (ret < 0)
3154 goto out;
3155 ret = fs_path_add_path(from_path, name);
3157 if (ret < 0)
3158 goto out;
3160 sctx->send_progress = sctx->cur_ino + 1;
3161 fs_path_reset(name);
3162 to_path = name;
3163 name = NULL;
3164 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3165 if (ret < 0)
3166 goto out;
3168 ret = send_rename(sctx, from_path, to_path);
3169 if (ret < 0)
3170 goto out;
3172 if (rmdir_ino) {
3173 struct orphan_dir_info *odi;
3175 odi = get_orphan_dir_info(sctx, rmdir_ino);
3176 if (!odi) {
3177 /* already deleted */
3178 goto finish;
3180 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3181 if (ret < 0)
3182 goto out;
3183 if (!ret)
3184 goto finish;
3186 name = fs_path_alloc();
3187 if (!name) {
3188 ret = -ENOMEM;
3189 goto out;
3191 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3192 if (ret < 0)
3193 goto out;
3194 ret = send_rmdir(sctx, name);
3195 if (ret < 0)
3196 goto out;
3197 free_orphan_dir_info(sctx, odi);
3200 finish:
3201 ret = send_utimes(sctx, pm->ino, pm->gen);
3202 if (ret < 0)
3203 goto out;
3206 * After rename/move, need to update the utimes of both new parent(s)
3207 * and old parent(s).
3209 list_for_each_entry(cur, &pm->update_refs, list) {
3210 if (cur->dir == rmdir_ino)
3211 continue;
3212 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3213 if (ret < 0)
3214 goto out;
3217 out:
3218 fs_path_free(name);
3219 fs_path_free(from_path);
3220 fs_path_free(to_path);
3221 sctx->send_progress = orig_progress;
3223 return ret;
3226 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3228 if (!list_empty(&m->list))
3229 list_del(&m->list);
3230 if (!RB_EMPTY_NODE(&m->node))
3231 rb_erase(&m->node, &sctx->pending_dir_moves);
3232 __free_recorded_refs(&m->update_refs);
3233 kfree(m);
3236 static void tail_append_pending_moves(struct send_ctx *sctx,
3237 struct pending_dir_move *moves,
3238 struct list_head *stack)
3240 if (list_empty(&moves->list)) {
3241 list_add_tail(&moves->list, stack);
3242 } else {
3243 LIST_HEAD(list);
3244 list_splice_init(&moves->list, &list);
3245 list_add_tail(&moves->list, stack);
3246 list_splice_tail(&list, stack);
3248 if (!RB_EMPTY_NODE(&moves->node)) {
3249 rb_erase(&moves->node, &sctx->pending_dir_moves);
3250 RB_CLEAR_NODE(&moves->node);
3254 static int apply_children_dir_moves(struct send_ctx *sctx)
3256 struct pending_dir_move *pm;
3257 struct list_head stack;
3258 u64 parent_ino = sctx->cur_ino;
3259 int ret = 0;
3261 pm = get_pending_dir_moves(sctx, parent_ino);
3262 if (!pm)
3263 return 0;
3265 INIT_LIST_HEAD(&stack);
3266 tail_append_pending_moves(sctx, pm, &stack);
3268 while (!list_empty(&stack)) {
3269 pm = list_first_entry(&stack, struct pending_dir_move, list);
3270 parent_ino = pm->ino;
3271 ret = apply_dir_move(sctx, pm);
3272 free_pending_move(sctx, pm);
3273 if (ret)
3274 goto out;
3275 pm = get_pending_dir_moves(sctx, parent_ino);
3276 if (pm)
3277 tail_append_pending_moves(sctx, pm, &stack);
3279 return 0;
3281 out:
3282 while (!list_empty(&stack)) {
3283 pm = list_first_entry(&stack, struct pending_dir_move, list);
3284 free_pending_move(sctx, pm);
3286 return ret;
3290 * We might need to delay a directory rename even when no ancestor directory
3291 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3292 * renamed. This happens when we rename a directory to the old name (the name
3293 * in the parent root) of some other unrelated directory that got its rename
3294 * delayed due to some ancestor with higher number that got renamed.
3296 * Example:
3298 * Parent snapshot:
3299 * . (ino 256)
3300 * |---- a/ (ino 257)
3301 * | |---- file (ino 260)
3303 * |---- b/ (ino 258)
3304 * |---- c/ (ino 259)
3306 * Send snapshot:
3307 * . (ino 256)
3308 * |---- a/ (ino 258)
3309 * |---- x/ (ino 259)
3310 * |---- y/ (ino 257)
3311 * |----- file (ino 260)
3313 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3314 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3315 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3316 * must issue is:
3318 * 1 - rename 259 from 'c' to 'x'
3319 * 2 - rename 257 from 'a' to 'x/y'
3320 * 3 - rename 258 from 'b' to 'a'
3322 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3323 * be done right away and < 0 on error.
3325 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3326 struct recorded_ref *parent_ref,
3327 const bool is_orphan)
3329 struct btrfs_path *path;
3330 struct btrfs_key key;
3331 struct btrfs_key di_key;
3332 struct btrfs_dir_item *di;
3333 u64 left_gen;
3334 u64 right_gen;
3335 int ret = 0;
3337 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3338 return 0;
3340 path = alloc_path_for_send();
3341 if (!path)
3342 return -ENOMEM;
3344 key.objectid = parent_ref->dir;
3345 key.type = BTRFS_DIR_ITEM_KEY;
3346 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3348 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3349 if (ret < 0) {
3350 goto out;
3351 } else if (ret > 0) {
3352 ret = 0;
3353 goto out;
3356 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3357 parent_ref->name, parent_ref->name_len);
3358 if (!di) {
3359 ret = 0;
3360 goto out;
3363 * di_key.objectid has the number of the inode that has a dentry in the
3364 * parent directory with the same name that sctx->cur_ino is being
3365 * renamed to. We need to check if that inode is in the send root as
3366 * well and if it is currently marked as an inode with a pending rename,
3367 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3368 * that it happens after that other inode is renamed.
3370 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3371 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3372 ret = 0;
3373 goto out;
3376 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3377 &left_gen, NULL, NULL, NULL, NULL);
3378 if (ret < 0)
3379 goto out;
3380 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3381 &right_gen, NULL, NULL, NULL, NULL);
3382 if (ret < 0) {
3383 if (ret == -ENOENT)
3384 ret = 0;
3385 goto out;
3388 /* Different inode, no need to delay the rename of sctx->cur_ino */
3389 if (right_gen != left_gen) {
3390 ret = 0;
3391 goto out;
3394 if (is_waiting_for_move(sctx, di_key.objectid)) {
3395 ret = add_pending_dir_move(sctx,
3396 sctx->cur_ino,
3397 sctx->cur_inode_gen,
3398 di_key.objectid,
3399 &sctx->new_refs,
3400 &sctx->deleted_refs,
3401 is_orphan);
3402 if (!ret)
3403 ret = 1;
3405 out:
3406 btrfs_free_path(path);
3407 return ret;
3411 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3412 * Return 1 if true, 0 if false and < 0 on error.
3414 static int is_ancestor(struct btrfs_root *root,
3415 const u64 ino1,
3416 const u64 ino1_gen,
3417 const u64 ino2,
3418 struct fs_path *fs_path)
3420 u64 ino = ino2;
3422 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3423 int ret;
3424 u64 parent;
3425 u64 parent_gen;
3427 fs_path_reset(fs_path);
3428 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3429 if (ret < 0) {
3430 if (ret == -ENOENT && ino == ino2)
3431 ret = 0;
3432 return ret;
3434 if (parent == ino1)
3435 return parent_gen == ino1_gen ? 1 : 0;
3436 ino = parent;
3438 return 0;
3441 static int wait_for_parent_move(struct send_ctx *sctx,
3442 struct recorded_ref *parent_ref,
3443 const bool is_orphan)
3445 int ret = 0;
3446 u64 ino = parent_ref->dir;
3447 u64 parent_ino_before, parent_ino_after;
3448 struct fs_path *path_before = NULL;
3449 struct fs_path *path_after = NULL;
3450 int len1, len2;
3452 path_after = fs_path_alloc();
3453 path_before = fs_path_alloc();
3454 if (!path_after || !path_before) {
3455 ret = -ENOMEM;
3456 goto out;
3460 * Our current directory inode may not yet be renamed/moved because some
3461 * ancestor (immediate or not) has to be renamed/moved first. So find if
3462 * such ancestor exists and make sure our own rename/move happens after
3463 * that ancestor is processed to avoid path build infinite loops (done
3464 * at get_cur_path()).
3466 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3467 if (is_waiting_for_move(sctx, ino)) {
3469 * If the current inode is an ancestor of ino in the
3470 * parent root, we need to delay the rename of the
3471 * current inode, otherwise don't delayed the rename
3472 * because we can end up with a circular dependency
3473 * of renames, resulting in some directories never
3474 * getting the respective rename operations issued in
3475 * the send stream or getting into infinite path build
3476 * loops.
3478 ret = is_ancestor(sctx->parent_root,
3479 sctx->cur_ino, sctx->cur_inode_gen,
3480 ino, path_before);
3481 break;
3484 fs_path_reset(path_before);
3485 fs_path_reset(path_after);
3487 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3488 NULL, path_after);
3489 if (ret < 0)
3490 goto out;
3491 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3492 NULL, path_before);
3493 if (ret < 0 && ret != -ENOENT) {
3494 goto out;
3495 } else if (ret == -ENOENT) {
3496 ret = 0;
3497 break;
3500 len1 = fs_path_len(path_before);
3501 len2 = fs_path_len(path_after);
3502 if (ino > sctx->cur_ino &&
3503 (parent_ino_before != parent_ino_after || len1 != len2 ||
3504 memcmp(path_before->start, path_after->start, len1))) {
3505 ret = 1;
3506 break;
3508 ino = parent_ino_after;
3511 out:
3512 fs_path_free(path_before);
3513 fs_path_free(path_after);
3515 if (ret == 1) {
3516 ret = add_pending_dir_move(sctx,
3517 sctx->cur_ino,
3518 sctx->cur_inode_gen,
3519 ino,
3520 &sctx->new_refs,
3521 &sctx->deleted_refs,
3522 is_orphan);
3523 if (!ret)
3524 ret = 1;
3527 return ret;
3531 * This does all the move/link/unlink/rmdir magic.
3533 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3535 int ret = 0;
3536 struct recorded_ref *cur;
3537 struct recorded_ref *cur2;
3538 struct list_head check_dirs;
3539 struct fs_path *valid_path = NULL;
3540 u64 ow_inode = 0;
3541 u64 ow_gen;
3542 int did_overwrite = 0;
3543 int is_orphan = 0;
3544 u64 last_dir_ino_rm = 0;
3545 bool can_rename = true;
3547 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3550 * This should never happen as the root dir always has the same ref
3551 * which is always '..'
3553 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3554 INIT_LIST_HEAD(&check_dirs);
3556 valid_path = fs_path_alloc();
3557 if (!valid_path) {
3558 ret = -ENOMEM;
3559 goto out;
3563 * First, check if the first ref of the current inode was overwritten
3564 * before. If yes, we know that the current inode was already orphanized
3565 * and thus use the orphan name. If not, we can use get_cur_path to
3566 * get the path of the first ref as it would like while receiving at
3567 * this point in time.
3568 * New inodes are always orphan at the beginning, so force to use the
3569 * orphan name in this case.
3570 * The first ref is stored in valid_path and will be updated if it
3571 * gets moved around.
3573 if (!sctx->cur_inode_new) {
3574 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3575 sctx->cur_inode_gen);
3576 if (ret < 0)
3577 goto out;
3578 if (ret)
3579 did_overwrite = 1;
3581 if (sctx->cur_inode_new || did_overwrite) {
3582 ret = gen_unique_name(sctx, sctx->cur_ino,
3583 sctx->cur_inode_gen, valid_path);
3584 if (ret < 0)
3585 goto out;
3586 is_orphan = 1;
3587 } else {
3588 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3589 valid_path);
3590 if (ret < 0)
3591 goto out;
3594 list_for_each_entry(cur, &sctx->new_refs, list) {
3596 * We may have refs where the parent directory does not exist
3597 * yet. This happens if the parent directories inum is higher
3598 * the the current inum. To handle this case, we create the
3599 * parent directory out of order. But we need to check if this
3600 * did already happen before due to other refs in the same dir.
3602 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3603 if (ret < 0)
3604 goto out;
3605 if (ret == inode_state_will_create) {
3606 ret = 0;
3608 * First check if any of the current inodes refs did
3609 * already create the dir.
3611 list_for_each_entry(cur2, &sctx->new_refs, list) {
3612 if (cur == cur2)
3613 break;
3614 if (cur2->dir == cur->dir) {
3615 ret = 1;
3616 break;
3621 * If that did not happen, check if a previous inode
3622 * did already create the dir.
3624 if (!ret)
3625 ret = did_create_dir(sctx, cur->dir);
3626 if (ret < 0)
3627 goto out;
3628 if (!ret) {
3629 ret = send_create_inode(sctx, cur->dir);
3630 if (ret < 0)
3631 goto out;
3636 * Check if this new ref would overwrite the first ref of
3637 * another unprocessed inode. If yes, orphanize the
3638 * overwritten inode. If we find an overwritten ref that is
3639 * not the first ref, simply unlink it.
3641 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3642 cur->name, cur->name_len,
3643 &ow_inode, &ow_gen);
3644 if (ret < 0)
3645 goto out;
3646 if (ret) {
3647 ret = is_first_ref(sctx->parent_root,
3648 ow_inode, cur->dir, cur->name,
3649 cur->name_len);
3650 if (ret < 0)
3651 goto out;
3652 if (ret) {
3653 struct name_cache_entry *nce;
3655 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3656 cur->full_path);
3657 if (ret < 0)
3658 goto out;
3660 * Make sure we clear our orphanized inode's
3661 * name from the name cache. This is because the
3662 * inode ow_inode might be an ancestor of some
3663 * other inode that will be orphanized as well
3664 * later and has an inode number greater than
3665 * sctx->send_progress. We need to prevent
3666 * future name lookups from using the old name
3667 * and get instead the orphan name.
3669 nce = name_cache_search(sctx, ow_inode, ow_gen);
3670 if (nce) {
3671 name_cache_delete(sctx, nce);
3672 kfree(nce);
3674 } else {
3675 ret = send_unlink(sctx, cur->full_path);
3676 if (ret < 0)
3677 goto out;
3681 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3682 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3683 if (ret < 0)
3684 goto out;
3685 if (ret == 1) {
3686 can_rename = false;
3687 *pending_move = 1;
3691 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3692 can_rename) {
3693 ret = wait_for_parent_move(sctx, cur, is_orphan);
3694 if (ret < 0)
3695 goto out;
3696 if (ret == 1) {
3697 can_rename = false;
3698 *pending_move = 1;
3703 * link/move the ref to the new place. If we have an orphan
3704 * inode, move it and update valid_path. If not, link or move
3705 * it depending on the inode mode.
3707 if (is_orphan && can_rename) {
3708 ret = send_rename(sctx, valid_path, cur->full_path);
3709 if (ret < 0)
3710 goto out;
3711 is_orphan = 0;
3712 ret = fs_path_copy(valid_path, cur->full_path);
3713 if (ret < 0)
3714 goto out;
3715 } else if (can_rename) {
3716 if (S_ISDIR(sctx->cur_inode_mode)) {
3718 * Dirs can't be linked, so move it. For moved
3719 * dirs, we always have one new and one deleted
3720 * ref. The deleted ref is ignored later.
3722 ret = send_rename(sctx, valid_path,
3723 cur->full_path);
3724 if (!ret)
3725 ret = fs_path_copy(valid_path,
3726 cur->full_path);
3727 if (ret < 0)
3728 goto out;
3729 } else {
3730 ret = send_link(sctx, cur->full_path,
3731 valid_path);
3732 if (ret < 0)
3733 goto out;
3736 ret = dup_ref(cur, &check_dirs);
3737 if (ret < 0)
3738 goto out;
3741 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3743 * Check if we can already rmdir the directory. If not,
3744 * orphanize it. For every dir item inside that gets deleted
3745 * later, we do this check again and rmdir it then if possible.
3746 * See the use of check_dirs for more details.
3748 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3749 sctx->cur_ino);
3750 if (ret < 0)
3751 goto out;
3752 if (ret) {
3753 ret = send_rmdir(sctx, valid_path);
3754 if (ret < 0)
3755 goto out;
3756 } else if (!is_orphan) {
3757 ret = orphanize_inode(sctx, sctx->cur_ino,
3758 sctx->cur_inode_gen, valid_path);
3759 if (ret < 0)
3760 goto out;
3761 is_orphan = 1;
3764 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3765 ret = dup_ref(cur, &check_dirs);
3766 if (ret < 0)
3767 goto out;
3769 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3770 !list_empty(&sctx->deleted_refs)) {
3772 * We have a moved dir. Add the old parent to check_dirs
3774 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3775 list);
3776 ret = dup_ref(cur, &check_dirs);
3777 if (ret < 0)
3778 goto out;
3779 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3781 * We have a non dir inode. Go through all deleted refs and
3782 * unlink them if they were not already overwritten by other
3783 * inodes.
3785 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3786 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3787 sctx->cur_ino, sctx->cur_inode_gen,
3788 cur->name, cur->name_len);
3789 if (ret < 0)
3790 goto out;
3791 if (!ret) {
3792 ret = send_unlink(sctx, cur->full_path);
3793 if (ret < 0)
3794 goto out;
3796 ret = dup_ref(cur, &check_dirs);
3797 if (ret < 0)
3798 goto out;
3801 * If the inode is still orphan, unlink the orphan. This may
3802 * happen when a previous inode did overwrite the first ref
3803 * of this inode and no new refs were added for the current
3804 * inode. Unlinking does not mean that the inode is deleted in
3805 * all cases. There may still be links to this inode in other
3806 * places.
3808 if (is_orphan) {
3809 ret = send_unlink(sctx, valid_path);
3810 if (ret < 0)
3811 goto out;
3816 * We did collect all parent dirs where cur_inode was once located. We
3817 * now go through all these dirs and check if they are pending for
3818 * deletion and if it's finally possible to perform the rmdir now.
3819 * We also update the inode stats of the parent dirs here.
3821 list_for_each_entry(cur, &check_dirs, list) {
3823 * In case we had refs into dirs that were not processed yet,
3824 * we don't need to do the utime and rmdir logic for these dirs.
3825 * The dir will be processed later.
3827 if (cur->dir > sctx->cur_ino)
3828 continue;
3830 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3831 if (ret < 0)
3832 goto out;
3834 if (ret == inode_state_did_create ||
3835 ret == inode_state_no_change) {
3836 /* TODO delayed utimes */
3837 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3838 if (ret < 0)
3839 goto out;
3840 } else if (ret == inode_state_did_delete &&
3841 cur->dir != last_dir_ino_rm) {
3842 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3843 sctx->cur_ino);
3844 if (ret < 0)
3845 goto out;
3846 if (ret) {
3847 ret = get_cur_path(sctx, cur->dir,
3848 cur->dir_gen, valid_path);
3849 if (ret < 0)
3850 goto out;
3851 ret = send_rmdir(sctx, valid_path);
3852 if (ret < 0)
3853 goto out;
3854 last_dir_ino_rm = cur->dir;
3859 ret = 0;
3861 out:
3862 __free_recorded_refs(&check_dirs);
3863 free_recorded_refs(sctx);
3864 fs_path_free(valid_path);
3865 return ret;
3868 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3869 struct fs_path *name, void *ctx, struct list_head *refs)
3871 int ret = 0;
3872 struct send_ctx *sctx = ctx;
3873 struct fs_path *p;
3874 u64 gen;
3876 p = fs_path_alloc();
3877 if (!p)
3878 return -ENOMEM;
3880 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3881 NULL, NULL);
3882 if (ret < 0)
3883 goto out;
3885 ret = get_cur_path(sctx, dir, gen, p);
3886 if (ret < 0)
3887 goto out;
3888 ret = fs_path_add_path(p, name);
3889 if (ret < 0)
3890 goto out;
3892 ret = __record_ref(refs, dir, gen, p);
3894 out:
3895 if (ret)
3896 fs_path_free(p);
3897 return ret;
3900 static int __record_new_ref(int num, u64 dir, int index,
3901 struct fs_path *name,
3902 void *ctx)
3904 struct send_ctx *sctx = ctx;
3905 return record_ref(sctx->send_root, num, dir, index, name,
3906 ctx, &sctx->new_refs);
3910 static int __record_deleted_ref(int num, u64 dir, int index,
3911 struct fs_path *name,
3912 void *ctx)
3914 struct send_ctx *sctx = ctx;
3915 return record_ref(sctx->parent_root, num, dir, index, name,
3916 ctx, &sctx->deleted_refs);
3919 static int record_new_ref(struct send_ctx *sctx)
3921 int ret;
3923 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3924 sctx->cmp_key, 0, __record_new_ref, sctx);
3925 if (ret < 0)
3926 goto out;
3927 ret = 0;
3929 out:
3930 return ret;
3933 static int record_deleted_ref(struct send_ctx *sctx)
3935 int ret;
3937 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3938 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3939 if (ret < 0)
3940 goto out;
3941 ret = 0;
3943 out:
3944 return ret;
3947 struct find_ref_ctx {
3948 u64 dir;
3949 u64 dir_gen;
3950 struct btrfs_root *root;
3951 struct fs_path *name;
3952 int found_idx;
3955 static int __find_iref(int num, u64 dir, int index,
3956 struct fs_path *name,
3957 void *ctx_)
3959 struct find_ref_ctx *ctx = ctx_;
3960 u64 dir_gen;
3961 int ret;
3963 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3964 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3966 * To avoid doing extra lookups we'll only do this if everything
3967 * else matches.
3969 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3970 NULL, NULL, NULL);
3971 if (ret)
3972 return ret;
3973 if (dir_gen != ctx->dir_gen)
3974 return 0;
3975 ctx->found_idx = num;
3976 return 1;
3978 return 0;
3981 static int find_iref(struct btrfs_root *root,
3982 struct btrfs_path *path,
3983 struct btrfs_key *key,
3984 u64 dir, u64 dir_gen, struct fs_path *name)
3986 int ret;
3987 struct find_ref_ctx ctx;
3989 ctx.dir = dir;
3990 ctx.name = name;
3991 ctx.dir_gen = dir_gen;
3992 ctx.found_idx = -1;
3993 ctx.root = root;
3995 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3996 if (ret < 0)
3997 return ret;
3999 if (ctx.found_idx == -1)
4000 return -ENOENT;
4002 return ctx.found_idx;
4005 static int __record_changed_new_ref(int num, u64 dir, int index,
4006 struct fs_path *name,
4007 void *ctx)
4009 u64 dir_gen;
4010 int ret;
4011 struct send_ctx *sctx = ctx;
4013 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4014 NULL, NULL, NULL);
4015 if (ret)
4016 return ret;
4018 ret = find_iref(sctx->parent_root, sctx->right_path,
4019 sctx->cmp_key, dir, dir_gen, name);
4020 if (ret == -ENOENT)
4021 ret = __record_new_ref(num, dir, index, name, sctx);
4022 else if (ret > 0)
4023 ret = 0;
4025 return ret;
4028 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4029 struct fs_path *name,
4030 void *ctx)
4032 u64 dir_gen;
4033 int ret;
4034 struct send_ctx *sctx = ctx;
4036 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4037 NULL, NULL, NULL);
4038 if (ret)
4039 return ret;
4041 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4042 dir, dir_gen, name);
4043 if (ret == -ENOENT)
4044 ret = __record_deleted_ref(num, dir, index, name, sctx);
4045 else if (ret > 0)
4046 ret = 0;
4048 return ret;
4051 static int record_changed_ref(struct send_ctx *sctx)
4053 int ret = 0;
4055 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4056 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4057 if (ret < 0)
4058 goto out;
4059 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4060 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4061 if (ret < 0)
4062 goto out;
4063 ret = 0;
4065 out:
4066 return ret;
4070 * Record and process all refs at once. Needed when an inode changes the
4071 * generation number, which means that it was deleted and recreated.
4073 static int process_all_refs(struct send_ctx *sctx,
4074 enum btrfs_compare_tree_result cmd)
4076 int ret;
4077 struct btrfs_root *root;
4078 struct btrfs_path *path;
4079 struct btrfs_key key;
4080 struct btrfs_key found_key;
4081 struct extent_buffer *eb;
4082 int slot;
4083 iterate_inode_ref_t cb;
4084 int pending_move = 0;
4086 path = alloc_path_for_send();
4087 if (!path)
4088 return -ENOMEM;
4090 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4091 root = sctx->send_root;
4092 cb = __record_new_ref;
4093 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4094 root = sctx->parent_root;
4095 cb = __record_deleted_ref;
4096 } else {
4097 btrfs_err(sctx->send_root->fs_info,
4098 "Wrong command %d in process_all_refs", cmd);
4099 ret = -EINVAL;
4100 goto out;
4103 key.objectid = sctx->cmp_key->objectid;
4104 key.type = BTRFS_INODE_REF_KEY;
4105 key.offset = 0;
4106 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4107 if (ret < 0)
4108 goto out;
4110 while (1) {
4111 eb = path->nodes[0];
4112 slot = path->slots[0];
4113 if (slot >= btrfs_header_nritems(eb)) {
4114 ret = btrfs_next_leaf(root, path);
4115 if (ret < 0)
4116 goto out;
4117 else if (ret > 0)
4118 break;
4119 continue;
4122 btrfs_item_key_to_cpu(eb, &found_key, slot);
4124 if (found_key.objectid != key.objectid ||
4125 (found_key.type != BTRFS_INODE_REF_KEY &&
4126 found_key.type != BTRFS_INODE_EXTREF_KEY))
4127 break;
4129 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4130 if (ret < 0)
4131 goto out;
4133 path->slots[0]++;
4135 btrfs_release_path(path);
4137 ret = process_recorded_refs(sctx, &pending_move);
4138 /* Only applicable to an incremental send. */
4139 ASSERT(pending_move == 0);
4141 out:
4142 btrfs_free_path(path);
4143 return ret;
4146 static int send_set_xattr(struct send_ctx *sctx,
4147 struct fs_path *path,
4148 const char *name, int name_len,
4149 const char *data, int data_len)
4151 int ret = 0;
4153 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4154 if (ret < 0)
4155 goto out;
4157 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4158 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4159 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4161 ret = send_cmd(sctx);
4163 tlv_put_failure:
4164 out:
4165 return ret;
4168 static int send_remove_xattr(struct send_ctx *sctx,
4169 struct fs_path *path,
4170 const char *name, int name_len)
4172 int ret = 0;
4174 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4175 if (ret < 0)
4176 goto out;
4178 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4179 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4181 ret = send_cmd(sctx);
4183 tlv_put_failure:
4184 out:
4185 return ret;
4188 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4189 const char *name, int name_len,
4190 const char *data, int data_len,
4191 u8 type, void *ctx)
4193 int ret;
4194 struct send_ctx *sctx = ctx;
4195 struct fs_path *p;
4196 posix_acl_xattr_header dummy_acl;
4198 /* Capabilities are emitted by finish_inode_if_needed */
4199 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4200 return 0;
4202 p = fs_path_alloc();
4203 if (!p)
4204 return -ENOMEM;
4207 * This hack is needed because empty acl's are stored as zero byte
4208 * data in xattrs. Problem with that is, that receiving these zero byte
4209 * acl's will fail later. To fix this, we send a dummy acl list that
4210 * only contains the version number and no entries.
4212 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4213 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4214 if (data_len == 0) {
4215 dummy_acl.a_version =
4216 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4217 data = (char *)&dummy_acl;
4218 data_len = sizeof(dummy_acl);
4222 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4223 if (ret < 0)
4224 goto out;
4226 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4228 out:
4229 fs_path_free(p);
4230 return ret;
4233 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4234 const char *name, int name_len,
4235 const char *data, int data_len,
4236 u8 type, void *ctx)
4238 int ret;
4239 struct send_ctx *sctx = ctx;
4240 struct fs_path *p;
4242 p = fs_path_alloc();
4243 if (!p)
4244 return -ENOMEM;
4246 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4247 if (ret < 0)
4248 goto out;
4250 ret = send_remove_xattr(sctx, p, name, name_len);
4252 out:
4253 fs_path_free(p);
4254 return ret;
4257 static int process_new_xattr(struct send_ctx *sctx)
4259 int ret = 0;
4261 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4262 sctx->cmp_key, __process_new_xattr, sctx);
4264 return ret;
4267 static int process_deleted_xattr(struct send_ctx *sctx)
4269 int ret;
4271 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4272 sctx->cmp_key, __process_deleted_xattr, sctx);
4274 return ret;
4277 struct find_xattr_ctx {
4278 const char *name;
4279 int name_len;
4280 int found_idx;
4281 char *found_data;
4282 int found_data_len;
4285 static int __find_xattr(int num, struct btrfs_key *di_key,
4286 const char *name, int name_len,
4287 const char *data, int data_len,
4288 u8 type, void *vctx)
4290 struct find_xattr_ctx *ctx = vctx;
4292 if (name_len == ctx->name_len &&
4293 strncmp(name, ctx->name, name_len) == 0) {
4294 ctx->found_idx = num;
4295 ctx->found_data_len = data_len;
4296 ctx->found_data = kmemdup(data, data_len, GFP_NOFS);
4297 if (!ctx->found_data)
4298 return -ENOMEM;
4299 return 1;
4301 return 0;
4304 static int find_xattr(struct btrfs_root *root,
4305 struct btrfs_path *path,
4306 struct btrfs_key *key,
4307 const char *name, int name_len,
4308 char **data, int *data_len)
4310 int ret;
4311 struct find_xattr_ctx ctx;
4313 ctx.name = name;
4314 ctx.name_len = name_len;
4315 ctx.found_idx = -1;
4316 ctx.found_data = NULL;
4317 ctx.found_data_len = 0;
4319 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4320 if (ret < 0)
4321 return ret;
4323 if (ctx.found_idx == -1)
4324 return -ENOENT;
4325 if (data) {
4326 *data = ctx.found_data;
4327 *data_len = ctx.found_data_len;
4328 } else {
4329 kfree(ctx.found_data);
4331 return ctx.found_idx;
4335 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4336 const char *name, int name_len,
4337 const char *data, int data_len,
4338 u8 type, void *ctx)
4340 int ret;
4341 struct send_ctx *sctx = ctx;
4342 char *found_data = NULL;
4343 int found_data_len = 0;
4345 ret = find_xattr(sctx->parent_root, sctx->right_path,
4346 sctx->cmp_key, name, name_len, &found_data,
4347 &found_data_len);
4348 if (ret == -ENOENT) {
4349 ret = __process_new_xattr(num, di_key, name, name_len, data,
4350 data_len, type, ctx);
4351 } else if (ret >= 0) {
4352 if (data_len != found_data_len ||
4353 memcmp(data, found_data, data_len)) {
4354 ret = __process_new_xattr(num, di_key, name, name_len,
4355 data, data_len, type, ctx);
4356 } else {
4357 ret = 0;
4361 kfree(found_data);
4362 return ret;
4365 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4366 const char *name, int name_len,
4367 const char *data, int data_len,
4368 u8 type, void *ctx)
4370 int ret;
4371 struct send_ctx *sctx = ctx;
4373 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4374 name, name_len, NULL, NULL);
4375 if (ret == -ENOENT)
4376 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4377 data_len, type, ctx);
4378 else if (ret >= 0)
4379 ret = 0;
4381 return ret;
4384 static int process_changed_xattr(struct send_ctx *sctx)
4386 int ret = 0;
4388 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4389 sctx->cmp_key, __process_changed_new_xattr, sctx);
4390 if (ret < 0)
4391 goto out;
4392 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4393 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4395 out:
4396 return ret;
4399 static int process_all_new_xattrs(struct send_ctx *sctx)
4401 int ret;
4402 struct btrfs_root *root;
4403 struct btrfs_path *path;
4404 struct btrfs_key key;
4405 struct btrfs_key found_key;
4406 struct extent_buffer *eb;
4407 int slot;
4409 path = alloc_path_for_send();
4410 if (!path)
4411 return -ENOMEM;
4413 root = sctx->send_root;
4415 key.objectid = sctx->cmp_key->objectid;
4416 key.type = BTRFS_XATTR_ITEM_KEY;
4417 key.offset = 0;
4418 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4419 if (ret < 0)
4420 goto out;
4422 while (1) {
4423 eb = path->nodes[0];
4424 slot = path->slots[0];
4425 if (slot >= btrfs_header_nritems(eb)) {
4426 ret = btrfs_next_leaf(root, path);
4427 if (ret < 0) {
4428 goto out;
4429 } else if (ret > 0) {
4430 ret = 0;
4431 break;
4433 continue;
4436 btrfs_item_key_to_cpu(eb, &found_key, slot);
4437 if (found_key.objectid != key.objectid ||
4438 found_key.type != key.type) {
4439 ret = 0;
4440 goto out;
4443 ret = iterate_dir_item(root, path, &found_key,
4444 __process_new_xattr, sctx);
4445 if (ret < 0)
4446 goto out;
4448 path->slots[0]++;
4451 out:
4452 btrfs_free_path(path);
4453 return ret;
4456 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4458 struct btrfs_root *root = sctx->send_root;
4459 struct btrfs_fs_info *fs_info = root->fs_info;
4460 struct inode *inode;
4461 struct page *page;
4462 char *addr;
4463 struct btrfs_key key;
4464 pgoff_t index = offset >> PAGE_CACHE_SHIFT;
4465 pgoff_t last_index;
4466 unsigned pg_offset = offset & ~PAGE_CACHE_MASK;
4467 ssize_t ret = 0;
4469 key.objectid = sctx->cur_ino;
4470 key.type = BTRFS_INODE_ITEM_KEY;
4471 key.offset = 0;
4473 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4474 if (IS_ERR(inode))
4475 return PTR_ERR(inode);
4477 if (offset + len > i_size_read(inode)) {
4478 if (offset > i_size_read(inode))
4479 len = 0;
4480 else
4481 len = offset - i_size_read(inode);
4483 if (len == 0)
4484 goto out;
4486 last_index = (offset + len - 1) >> PAGE_CACHE_SHIFT;
4488 /* initial readahead */
4489 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4490 file_ra_state_init(&sctx->ra, inode->i_mapping);
4491 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4492 last_index - index + 1);
4494 while (index <= last_index) {
4495 unsigned cur_len = min_t(unsigned, len,
4496 PAGE_CACHE_SIZE - pg_offset);
4497 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4498 if (!page) {
4499 ret = -ENOMEM;
4500 break;
4503 if (!PageUptodate(page)) {
4504 btrfs_readpage(NULL, page);
4505 lock_page(page);
4506 if (!PageUptodate(page)) {
4507 unlock_page(page);
4508 page_cache_release(page);
4509 ret = -EIO;
4510 break;
4514 addr = kmap(page);
4515 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4516 kunmap(page);
4517 unlock_page(page);
4518 page_cache_release(page);
4519 index++;
4520 pg_offset = 0;
4521 len -= cur_len;
4522 ret += cur_len;
4524 out:
4525 iput(inode);
4526 return ret;
4530 * Read some bytes from the current inode/file and send a write command to
4531 * user space.
4533 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4535 int ret = 0;
4536 struct fs_path *p;
4537 ssize_t num_read = 0;
4539 p = fs_path_alloc();
4540 if (!p)
4541 return -ENOMEM;
4543 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4545 num_read = fill_read_buf(sctx, offset, len);
4546 if (num_read <= 0) {
4547 if (num_read < 0)
4548 ret = num_read;
4549 goto out;
4552 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4553 if (ret < 0)
4554 goto out;
4556 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4557 if (ret < 0)
4558 goto out;
4560 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4561 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4562 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4564 ret = send_cmd(sctx);
4566 tlv_put_failure:
4567 out:
4568 fs_path_free(p);
4569 if (ret < 0)
4570 return ret;
4571 return num_read;
4575 * Send a clone command to user space.
4577 static int send_clone(struct send_ctx *sctx,
4578 u64 offset, u32 len,
4579 struct clone_root *clone_root)
4581 int ret = 0;
4582 struct fs_path *p;
4583 u64 gen;
4585 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4586 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4587 clone_root->root->objectid, clone_root->ino,
4588 clone_root->offset);
4590 p = fs_path_alloc();
4591 if (!p)
4592 return -ENOMEM;
4594 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4595 if (ret < 0)
4596 goto out;
4598 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4599 if (ret < 0)
4600 goto out;
4602 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4603 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4604 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4606 if (clone_root->root == sctx->send_root) {
4607 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4608 &gen, NULL, NULL, NULL, NULL);
4609 if (ret < 0)
4610 goto out;
4611 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4612 } else {
4613 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4615 if (ret < 0)
4616 goto out;
4619 * If the parent we're using has a received_uuid set then use that as
4620 * our clone source as that is what we will look for when doing a
4621 * receive.
4623 * This covers the case that we create a snapshot off of a received
4624 * subvolume and then use that as the parent and try to receive on a
4625 * different host.
4627 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4628 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4629 clone_root->root->root_item.received_uuid);
4630 else
4631 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4632 clone_root->root->root_item.uuid);
4633 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4634 le64_to_cpu(clone_root->root->root_item.ctransid));
4635 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4636 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4637 clone_root->offset);
4639 ret = send_cmd(sctx);
4641 tlv_put_failure:
4642 out:
4643 fs_path_free(p);
4644 return ret;
4648 * Send an update extent command to user space.
4650 static int send_update_extent(struct send_ctx *sctx,
4651 u64 offset, u32 len)
4653 int ret = 0;
4654 struct fs_path *p;
4656 p = fs_path_alloc();
4657 if (!p)
4658 return -ENOMEM;
4660 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4661 if (ret < 0)
4662 goto out;
4664 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4665 if (ret < 0)
4666 goto out;
4668 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4669 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4670 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4672 ret = send_cmd(sctx);
4674 tlv_put_failure:
4675 out:
4676 fs_path_free(p);
4677 return ret;
4680 static int send_hole(struct send_ctx *sctx, u64 end)
4682 struct fs_path *p = NULL;
4683 u64 offset = sctx->cur_inode_last_extent;
4684 u64 len;
4685 int ret = 0;
4687 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4688 return send_update_extent(sctx, offset, end - offset);
4690 p = fs_path_alloc();
4691 if (!p)
4692 return -ENOMEM;
4693 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4694 if (ret < 0)
4695 goto tlv_put_failure;
4696 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4697 while (offset < end) {
4698 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4700 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4701 if (ret < 0)
4702 break;
4703 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4704 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4705 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4706 ret = send_cmd(sctx);
4707 if (ret < 0)
4708 break;
4709 offset += len;
4711 tlv_put_failure:
4712 fs_path_free(p);
4713 return ret;
4716 static int send_extent_data(struct send_ctx *sctx,
4717 const u64 offset,
4718 const u64 len)
4720 u64 sent = 0;
4722 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4723 return send_update_extent(sctx, offset, len);
4725 while (sent < len) {
4726 u64 size = len - sent;
4727 int ret;
4729 if (size > BTRFS_SEND_READ_SIZE)
4730 size = BTRFS_SEND_READ_SIZE;
4731 ret = send_write(sctx, offset + sent, size);
4732 if (ret < 0)
4733 return ret;
4734 if (!ret)
4735 break;
4736 sent += ret;
4738 return 0;
4742 * Search for a capability xattr related to sctx->cur_ino. If the capability is
4743 * found, call send_set_xattr function to emit it.
4745 * Return 0 if there isn't a capability, or when the capability was emitted
4746 * successfully, or < 0 if an error occurred.
4748 static int send_capabilities(struct send_ctx *sctx)
4750 struct fs_path *fspath = NULL;
4751 struct btrfs_path *path;
4752 struct btrfs_dir_item *di;
4753 struct extent_buffer *leaf;
4754 unsigned long data_ptr;
4755 char *buf = NULL;
4756 int buf_len;
4757 int ret = 0;
4759 path = alloc_path_for_send();
4760 if (!path)
4761 return -ENOMEM;
4763 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
4764 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
4765 if (!di) {
4766 /* There is no xattr for this inode */
4767 goto out;
4768 } else if (IS_ERR(di)) {
4769 ret = PTR_ERR(di);
4770 goto out;
4773 leaf = path->nodes[0];
4774 buf_len = btrfs_dir_data_len(leaf, di);
4776 fspath = fs_path_alloc();
4777 buf = kmalloc(buf_len, GFP_KERNEL);
4778 if (!fspath || !buf) {
4779 ret = -ENOMEM;
4780 goto out;
4783 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
4784 if (ret < 0)
4785 goto out;
4787 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
4788 read_extent_buffer(leaf, buf, data_ptr, buf_len);
4790 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
4791 strlen(XATTR_NAME_CAPS), buf, buf_len);
4792 out:
4793 kfree(buf);
4794 fs_path_free(fspath);
4795 btrfs_free_path(path);
4796 return ret;
4799 static int clone_range(struct send_ctx *sctx,
4800 struct clone_root *clone_root,
4801 const u64 disk_byte,
4802 u64 data_offset,
4803 u64 offset,
4804 u64 len)
4806 struct btrfs_path *path;
4807 struct btrfs_key key;
4808 int ret;
4810 path = alloc_path_for_send();
4811 if (!path)
4812 return -ENOMEM;
4815 * We can't send a clone operation for the entire range if we find
4816 * extent items in the respective range in the source file that
4817 * refer to different extents or if we find holes.
4818 * So check for that and do a mix of clone and regular write/copy
4819 * operations if needed.
4821 * Example:
4823 * mkfs.btrfs -f /dev/sda
4824 * mount /dev/sda /mnt
4825 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4826 * cp --reflink=always /mnt/foo /mnt/bar
4827 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4828 * btrfs subvolume snapshot -r /mnt /mnt/snap
4830 * If when we send the snapshot and we are processing file bar (which
4831 * has a higher inode number than foo) we blindly send a clone operation
4832 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4833 * a file bar that matches the content of file foo - iow, doesn't match
4834 * the content from bar in the original filesystem.
4836 key.objectid = clone_root->ino;
4837 key.type = BTRFS_EXTENT_DATA_KEY;
4838 key.offset = clone_root->offset;
4839 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4840 if (ret < 0)
4841 goto out;
4842 if (ret > 0 && path->slots[0] > 0) {
4843 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4844 if (key.objectid == clone_root->ino &&
4845 key.type == BTRFS_EXTENT_DATA_KEY)
4846 path->slots[0]--;
4849 while (true) {
4850 struct extent_buffer *leaf = path->nodes[0];
4851 int slot = path->slots[0];
4852 struct btrfs_file_extent_item *ei;
4853 u8 type;
4854 u64 ext_len;
4855 u64 clone_len;
4857 if (slot >= btrfs_header_nritems(leaf)) {
4858 ret = btrfs_next_leaf(clone_root->root, path);
4859 if (ret < 0)
4860 goto out;
4861 else if (ret > 0)
4862 break;
4863 continue;
4866 btrfs_item_key_to_cpu(leaf, &key, slot);
4869 * We might have an implicit trailing hole (NO_HOLES feature
4870 * enabled). We deal with it after leaving this loop.
4872 if (key.objectid != clone_root->ino ||
4873 key.type != BTRFS_EXTENT_DATA_KEY)
4874 break;
4876 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4877 type = btrfs_file_extent_type(leaf, ei);
4878 if (type == BTRFS_FILE_EXTENT_INLINE) {
4879 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4880 ext_len = PAGE_CACHE_ALIGN(ext_len);
4881 } else {
4882 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4885 if (key.offset + ext_len <= clone_root->offset)
4886 goto next;
4888 if (key.offset > clone_root->offset) {
4889 /* Implicit hole, NO_HOLES feature enabled. */
4890 u64 hole_len = key.offset - clone_root->offset;
4892 if (hole_len > len)
4893 hole_len = len;
4894 ret = send_extent_data(sctx, offset, hole_len);
4895 if (ret < 0)
4896 goto out;
4898 len -= hole_len;
4899 if (len == 0)
4900 break;
4901 offset += hole_len;
4902 clone_root->offset += hole_len;
4903 data_offset += hole_len;
4906 if (key.offset >= clone_root->offset + len)
4907 break;
4909 clone_len = min_t(u64, ext_len, len);
4911 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4912 btrfs_file_extent_offset(leaf, ei) == data_offset)
4913 ret = send_clone(sctx, offset, clone_len, clone_root);
4914 else
4915 ret = send_extent_data(sctx, offset, clone_len);
4917 if (ret < 0)
4918 goto out;
4920 len -= clone_len;
4921 if (len == 0)
4922 break;
4923 offset += clone_len;
4924 clone_root->offset += clone_len;
4925 data_offset += clone_len;
4926 next:
4927 path->slots[0]++;
4930 if (len > 0)
4931 ret = send_extent_data(sctx, offset, len);
4932 else
4933 ret = 0;
4934 out:
4935 btrfs_free_path(path);
4936 return ret;
4939 static int send_write_or_clone(struct send_ctx *sctx,
4940 struct btrfs_path *path,
4941 struct btrfs_key *key,
4942 struct clone_root *clone_root)
4944 int ret = 0;
4945 struct btrfs_file_extent_item *ei;
4946 u64 offset = key->offset;
4947 u64 len;
4948 u8 type;
4949 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4951 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4952 struct btrfs_file_extent_item);
4953 type = btrfs_file_extent_type(path->nodes[0], ei);
4954 if (type == BTRFS_FILE_EXTENT_INLINE) {
4955 len = btrfs_file_extent_inline_len(path->nodes[0],
4956 path->slots[0], ei);
4958 * it is possible the inline item won't cover the whole page,
4959 * but there may be items after this page. Make
4960 * sure to send the whole thing
4962 len = PAGE_CACHE_ALIGN(len);
4963 } else {
4964 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4967 if (offset + len > sctx->cur_inode_size)
4968 len = sctx->cur_inode_size - offset;
4969 if (len == 0) {
4970 ret = 0;
4971 goto out;
4974 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4975 u64 disk_byte;
4976 u64 data_offset;
4978 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4979 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4980 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4981 offset, len);
4982 } else {
4983 ret = send_extent_data(sctx, offset, len);
4985 out:
4986 return ret;
4989 static int is_extent_unchanged(struct send_ctx *sctx,
4990 struct btrfs_path *left_path,
4991 struct btrfs_key *ekey)
4993 int ret = 0;
4994 struct btrfs_key key;
4995 struct btrfs_path *path = NULL;
4996 struct extent_buffer *eb;
4997 int slot;
4998 struct btrfs_key found_key;
4999 struct btrfs_file_extent_item *ei;
5000 u64 left_disknr;
5001 u64 right_disknr;
5002 u64 left_offset;
5003 u64 right_offset;
5004 u64 left_offset_fixed;
5005 u64 left_len;
5006 u64 right_len;
5007 u64 left_gen;
5008 u64 right_gen;
5009 u8 left_type;
5010 u8 right_type;
5012 path = alloc_path_for_send();
5013 if (!path)
5014 return -ENOMEM;
5016 eb = left_path->nodes[0];
5017 slot = left_path->slots[0];
5018 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5019 left_type = btrfs_file_extent_type(eb, ei);
5021 if (left_type != BTRFS_FILE_EXTENT_REG) {
5022 ret = 0;
5023 goto out;
5025 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5026 left_len = btrfs_file_extent_num_bytes(eb, ei);
5027 left_offset = btrfs_file_extent_offset(eb, ei);
5028 left_gen = btrfs_file_extent_generation(eb, ei);
5031 * Following comments will refer to these graphics. L is the left
5032 * extents which we are checking at the moment. 1-8 are the right
5033 * extents that we iterate.
5035 * |-----L-----|
5036 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5038 * |-----L-----|
5039 * |--1--|-2b-|...(same as above)
5041 * Alternative situation. Happens on files where extents got split.
5042 * |-----L-----|
5043 * |-----------7-----------|-6-|
5045 * Alternative situation. Happens on files which got larger.
5046 * |-----L-----|
5047 * |-8-|
5048 * Nothing follows after 8.
5051 key.objectid = ekey->objectid;
5052 key.type = BTRFS_EXTENT_DATA_KEY;
5053 key.offset = ekey->offset;
5054 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5055 if (ret < 0)
5056 goto out;
5057 if (ret) {
5058 ret = 0;
5059 goto out;
5063 * Handle special case where the right side has no extents at all.
5065 eb = path->nodes[0];
5066 slot = path->slots[0];
5067 btrfs_item_key_to_cpu(eb, &found_key, slot);
5068 if (found_key.objectid != key.objectid ||
5069 found_key.type != key.type) {
5070 /* If we're a hole then just pretend nothing changed */
5071 ret = (left_disknr) ? 0 : 1;
5072 goto out;
5076 * We're now on 2a, 2b or 7.
5078 key = found_key;
5079 while (key.offset < ekey->offset + left_len) {
5080 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5081 right_type = btrfs_file_extent_type(eb, ei);
5082 if (right_type != BTRFS_FILE_EXTENT_REG &&
5083 right_type != BTRFS_FILE_EXTENT_INLINE) {
5084 ret = 0;
5085 goto out;
5088 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5089 right_len = btrfs_file_extent_inline_len(eb, slot, ei);
5090 right_len = PAGE_ALIGN(right_len);
5091 } else {
5092 right_len = btrfs_file_extent_num_bytes(eb, ei);
5096 * Are we at extent 8? If yes, we know the extent is changed.
5097 * This may only happen on the first iteration.
5099 if (found_key.offset + right_len <= ekey->offset) {
5100 /* If we're a hole just pretend nothing changed */
5101 ret = (left_disknr) ? 0 : 1;
5102 goto out;
5106 * We just wanted to see if when we have an inline extent, what
5107 * follows it is a regular extent (wanted to check the above
5108 * condition for inline extents too). This should normally not
5109 * happen but it's possible for example when we have an inline
5110 * compressed extent representing data with a size matching
5111 * the page size (currently the same as sector size).
5113 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5114 ret = 0;
5115 goto out;
5118 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5119 right_offset = btrfs_file_extent_offset(eb, ei);
5120 right_gen = btrfs_file_extent_generation(eb, ei);
5122 left_offset_fixed = left_offset;
5123 if (key.offset < ekey->offset) {
5124 /* Fix the right offset for 2a and 7. */
5125 right_offset += ekey->offset - key.offset;
5126 } else {
5127 /* Fix the left offset for all behind 2a and 2b */
5128 left_offset_fixed += key.offset - ekey->offset;
5132 * Check if we have the same extent.
5134 if (left_disknr != right_disknr ||
5135 left_offset_fixed != right_offset ||
5136 left_gen != right_gen) {
5137 ret = 0;
5138 goto out;
5142 * Go to the next extent.
5144 ret = btrfs_next_item(sctx->parent_root, path);
5145 if (ret < 0)
5146 goto out;
5147 if (!ret) {
5148 eb = path->nodes[0];
5149 slot = path->slots[0];
5150 btrfs_item_key_to_cpu(eb, &found_key, slot);
5152 if (ret || found_key.objectid != key.objectid ||
5153 found_key.type != key.type) {
5154 key.offset += right_len;
5155 break;
5157 if (found_key.offset != key.offset + right_len) {
5158 ret = 0;
5159 goto out;
5161 key = found_key;
5165 * We're now behind the left extent (treat as unchanged) or at the end
5166 * of the right side (treat as changed).
5168 if (key.offset >= ekey->offset + left_len)
5169 ret = 1;
5170 else
5171 ret = 0;
5174 out:
5175 btrfs_free_path(path);
5176 return ret;
5179 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5181 struct btrfs_path *path;
5182 struct btrfs_root *root = sctx->send_root;
5183 struct btrfs_file_extent_item *fi;
5184 struct btrfs_key key;
5185 u64 extent_end;
5186 u8 type;
5187 int ret;
5189 path = alloc_path_for_send();
5190 if (!path)
5191 return -ENOMEM;
5193 sctx->cur_inode_last_extent = 0;
5195 key.objectid = sctx->cur_ino;
5196 key.type = BTRFS_EXTENT_DATA_KEY;
5197 key.offset = offset;
5198 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5199 if (ret < 0)
5200 goto out;
5201 ret = 0;
5202 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5203 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5204 goto out;
5206 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5207 struct btrfs_file_extent_item);
5208 type = btrfs_file_extent_type(path->nodes[0], fi);
5209 if (type == BTRFS_FILE_EXTENT_INLINE) {
5210 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5211 path->slots[0], fi);
5212 extent_end = ALIGN(key.offset + size,
5213 sctx->send_root->sectorsize);
5214 } else {
5215 extent_end = key.offset +
5216 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5218 sctx->cur_inode_last_extent = extent_end;
5219 out:
5220 btrfs_free_path(path);
5221 return ret;
5224 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5225 struct btrfs_key *key)
5227 struct btrfs_file_extent_item *fi;
5228 u64 extent_end;
5229 u8 type;
5230 int ret = 0;
5232 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5233 return 0;
5235 if (sctx->cur_inode_last_extent == (u64)-1) {
5236 ret = get_last_extent(sctx, key->offset - 1);
5237 if (ret)
5238 return ret;
5241 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5242 struct btrfs_file_extent_item);
5243 type = btrfs_file_extent_type(path->nodes[0], fi);
5244 if (type == BTRFS_FILE_EXTENT_INLINE) {
5245 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5246 path->slots[0], fi);
5247 extent_end = ALIGN(key->offset + size,
5248 sctx->send_root->sectorsize);
5249 } else {
5250 extent_end = key->offset +
5251 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5254 if (path->slots[0] == 0 &&
5255 sctx->cur_inode_last_extent < key->offset) {
5257 * We might have skipped entire leafs that contained only
5258 * file extent items for our current inode. These leafs have
5259 * a generation number smaller (older) than the one in the
5260 * current leaf and the leaf our last extent came from, and
5261 * are located between these 2 leafs.
5263 ret = get_last_extent(sctx, key->offset - 1);
5264 if (ret)
5265 return ret;
5268 if (sctx->cur_inode_last_extent < key->offset)
5269 ret = send_hole(sctx, key->offset);
5270 sctx->cur_inode_last_extent = extent_end;
5271 return ret;
5274 static int process_extent(struct send_ctx *sctx,
5275 struct btrfs_path *path,
5276 struct btrfs_key *key)
5278 struct clone_root *found_clone = NULL;
5279 int ret = 0;
5281 if (S_ISLNK(sctx->cur_inode_mode))
5282 return 0;
5284 if (sctx->parent_root && !sctx->cur_inode_new) {
5285 ret = is_extent_unchanged(sctx, path, key);
5286 if (ret < 0)
5287 goto out;
5288 if (ret) {
5289 ret = 0;
5290 goto out_hole;
5292 } else {
5293 struct btrfs_file_extent_item *ei;
5294 u8 type;
5296 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5297 struct btrfs_file_extent_item);
5298 type = btrfs_file_extent_type(path->nodes[0], ei);
5299 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5300 type == BTRFS_FILE_EXTENT_REG) {
5302 * The send spec does not have a prealloc command yet,
5303 * so just leave a hole for prealloc'ed extents until
5304 * we have enough commands queued up to justify rev'ing
5305 * the send spec.
5307 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5308 ret = 0;
5309 goto out;
5312 /* Have a hole, just skip it. */
5313 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5314 ret = 0;
5315 goto out;
5320 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5321 sctx->cur_inode_size, &found_clone);
5322 if (ret != -ENOENT && ret < 0)
5323 goto out;
5325 ret = send_write_or_clone(sctx, path, key, found_clone);
5326 if (ret)
5327 goto out;
5328 out_hole:
5329 ret = maybe_send_hole(sctx, path, key);
5330 out:
5331 return ret;
5334 static int process_all_extents(struct send_ctx *sctx)
5336 int ret;
5337 struct btrfs_root *root;
5338 struct btrfs_path *path;
5339 struct btrfs_key key;
5340 struct btrfs_key found_key;
5341 struct extent_buffer *eb;
5342 int slot;
5344 root = sctx->send_root;
5345 path = alloc_path_for_send();
5346 if (!path)
5347 return -ENOMEM;
5349 key.objectid = sctx->cmp_key->objectid;
5350 key.type = BTRFS_EXTENT_DATA_KEY;
5351 key.offset = 0;
5352 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5353 if (ret < 0)
5354 goto out;
5356 while (1) {
5357 eb = path->nodes[0];
5358 slot = path->slots[0];
5360 if (slot >= btrfs_header_nritems(eb)) {
5361 ret = btrfs_next_leaf(root, path);
5362 if (ret < 0) {
5363 goto out;
5364 } else if (ret > 0) {
5365 ret = 0;
5366 break;
5368 continue;
5371 btrfs_item_key_to_cpu(eb, &found_key, slot);
5373 if (found_key.objectid != key.objectid ||
5374 found_key.type != key.type) {
5375 ret = 0;
5376 goto out;
5379 ret = process_extent(sctx, path, &found_key);
5380 if (ret < 0)
5381 goto out;
5383 path->slots[0]++;
5386 out:
5387 btrfs_free_path(path);
5388 return ret;
5391 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5392 int *pending_move,
5393 int *refs_processed)
5395 int ret = 0;
5397 if (sctx->cur_ino == 0)
5398 goto out;
5399 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5400 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5401 goto out;
5402 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5403 goto out;
5405 ret = process_recorded_refs(sctx, pending_move);
5406 if (ret < 0)
5407 goto out;
5409 *refs_processed = 1;
5410 out:
5411 return ret;
5414 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5416 int ret = 0;
5417 u64 left_mode;
5418 u64 left_uid;
5419 u64 left_gid;
5420 u64 right_mode;
5421 u64 right_uid;
5422 u64 right_gid;
5423 int need_chmod = 0;
5424 int need_chown = 0;
5425 int pending_move = 0;
5426 int refs_processed = 0;
5428 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5429 &refs_processed);
5430 if (ret < 0)
5431 goto out;
5434 * We have processed the refs and thus need to advance send_progress.
5435 * Now, calls to get_cur_xxx will take the updated refs of the current
5436 * inode into account.
5438 * On the other hand, if our current inode is a directory and couldn't
5439 * be moved/renamed because its parent was renamed/moved too and it has
5440 * a higher inode number, we can only move/rename our current inode
5441 * after we moved/renamed its parent. Therefore in this case operate on
5442 * the old path (pre move/rename) of our current inode, and the
5443 * move/rename will be performed later.
5445 if (refs_processed && !pending_move)
5446 sctx->send_progress = sctx->cur_ino + 1;
5448 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5449 goto out;
5450 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5451 goto out;
5453 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5454 &left_mode, &left_uid, &left_gid, NULL);
5455 if (ret < 0)
5456 goto out;
5458 if (!sctx->parent_root || sctx->cur_inode_new) {
5459 need_chown = 1;
5460 if (!S_ISLNK(sctx->cur_inode_mode))
5461 need_chmod = 1;
5462 } else {
5463 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5464 NULL, NULL, &right_mode, &right_uid,
5465 &right_gid, NULL);
5466 if (ret < 0)
5467 goto out;
5469 if (left_uid != right_uid || left_gid != right_gid)
5470 need_chown = 1;
5471 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5472 need_chmod = 1;
5475 if (S_ISREG(sctx->cur_inode_mode)) {
5476 if (need_send_hole(sctx)) {
5477 if (sctx->cur_inode_last_extent == (u64)-1 ||
5478 sctx->cur_inode_last_extent <
5479 sctx->cur_inode_size) {
5480 ret = get_last_extent(sctx, (u64)-1);
5481 if (ret)
5482 goto out;
5484 if (sctx->cur_inode_last_extent <
5485 sctx->cur_inode_size) {
5486 ret = send_hole(sctx, sctx->cur_inode_size);
5487 if (ret)
5488 goto out;
5491 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5492 sctx->cur_inode_size);
5493 if (ret < 0)
5494 goto out;
5497 if (need_chown) {
5498 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5499 left_uid, left_gid);
5500 if (ret < 0)
5501 goto out;
5503 if (need_chmod) {
5504 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5505 left_mode);
5506 if (ret < 0)
5507 goto out;
5510 ret = send_capabilities(sctx);
5511 if (ret < 0)
5512 goto out;
5515 * If other directory inodes depended on our current directory
5516 * inode's move/rename, now do their move/rename operations.
5518 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5519 ret = apply_children_dir_moves(sctx);
5520 if (ret)
5521 goto out;
5523 * Need to send that every time, no matter if it actually
5524 * changed between the two trees as we have done changes to
5525 * the inode before. If our inode is a directory and it's
5526 * waiting to be moved/renamed, we will send its utimes when
5527 * it's moved/renamed, therefore we don't need to do it here.
5529 sctx->send_progress = sctx->cur_ino + 1;
5530 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5531 if (ret < 0)
5532 goto out;
5535 out:
5536 return ret;
5539 static int changed_inode(struct send_ctx *sctx,
5540 enum btrfs_compare_tree_result result)
5542 int ret = 0;
5543 struct btrfs_key *key = sctx->cmp_key;
5544 struct btrfs_inode_item *left_ii = NULL;
5545 struct btrfs_inode_item *right_ii = NULL;
5546 u64 left_gen = 0;
5547 u64 right_gen = 0;
5549 sctx->cur_ino = key->objectid;
5550 sctx->cur_inode_new_gen = 0;
5551 sctx->cur_inode_last_extent = (u64)-1;
5554 * Set send_progress to current inode. This will tell all get_cur_xxx
5555 * functions that the current inode's refs are not updated yet. Later,
5556 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5558 sctx->send_progress = sctx->cur_ino;
5560 if (result == BTRFS_COMPARE_TREE_NEW ||
5561 result == BTRFS_COMPARE_TREE_CHANGED) {
5562 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5563 sctx->left_path->slots[0],
5564 struct btrfs_inode_item);
5565 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5566 left_ii);
5567 } else {
5568 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5569 sctx->right_path->slots[0],
5570 struct btrfs_inode_item);
5571 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5572 right_ii);
5574 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5575 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5576 sctx->right_path->slots[0],
5577 struct btrfs_inode_item);
5579 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5580 right_ii);
5583 * The cur_ino = root dir case is special here. We can't treat
5584 * the inode as deleted+reused because it would generate a
5585 * stream that tries to delete/mkdir the root dir.
5587 if (left_gen != right_gen &&
5588 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5589 sctx->cur_inode_new_gen = 1;
5592 if (result == BTRFS_COMPARE_TREE_NEW) {
5593 sctx->cur_inode_gen = left_gen;
5594 sctx->cur_inode_new = 1;
5595 sctx->cur_inode_deleted = 0;
5596 sctx->cur_inode_size = btrfs_inode_size(
5597 sctx->left_path->nodes[0], left_ii);
5598 sctx->cur_inode_mode = btrfs_inode_mode(
5599 sctx->left_path->nodes[0], left_ii);
5600 sctx->cur_inode_rdev = btrfs_inode_rdev(
5601 sctx->left_path->nodes[0], left_ii);
5602 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5603 ret = send_create_inode_if_needed(sctx);
5604 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5605 sctx->cur_inode_gen = right_gen;
5606 sctx->cur_inode_new = 0;
5607 sctx->cur_inode_deleted = 1;
5608 sctx->cur_inode_size = btrfs_inode_size(
5609 sctx->right_path->nodes[0], right_ii);
5610 sctx->cur_inode_mode = btrfs_inode_mode(
5611 sctx->right_path->nodes[0], right_ii);
5612 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5614 * We need to do some special handling in case the inode was
5615 * reported as changed with a changed generation number. This
5616 * means that the original inode was deleted and new inode
5617 * reused the same inum. So we have to treat the old inode as
5618 * deleted and the new one as new.
5620 if (sctx->cur_inode_new_gen) {
5622 * First, process the inode as if it was deleted.
5624 sctx->cur_inode_gen = right_gen;
5625 sctx->cur_inode_new = 0;
5626 sctx->cur_inode_deleted = 1;
5627 sctx->cur_inode_size = btrfs_inode_size(
5628 sctx->right_path->nodes[0], right_ii);
5629 sctx->cur_inode_mode = btrfs_inode_mode(
5630 sctx->right_path->nodes[0], right_ii);
5631 ret = process_all_refs(sctx,
5632 BTRFS_COMPARE_TREE_DELETED);
5633 if (ret < 0)
5634 goto out;
5637 * Now process the inode as if it was new.
5639 sctx->cur_inode_gen = left_gen;
5640 sctx->cur_inode_new = 1;
5641 sctx->cur_inode_deleted = 0;
5642 sctx->cur_inode_size = btrfs_inode_size(
5643 sctx->left_path->nodes[0], left_ii);
5644 sctx->cur_inode_mode = btrfs_inode_mode(
5645 sctx->left_path->nodes[0], left_ii);
5646 sctx->cur_inode_rdev = btrfs_inode_rdev(
5647 sctx->left_path->nodes[0], left_ii);
5648 ret = send_create_inode_if_needed(sctx);
5649 if (ret < 0)
5650 goto out;
5652 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5653 if (ret < 0)
5654 goto out;
5656 * Advance send_progress now as we did not get into
5657 * process_recorded_refs_if_needed in the new_gen case.
5659 sctx->send_progress = sctx->cur_ino + 1;
5662 * Now process all extents and xattrs of the inode as if
5663 * they were all new.
5665 ret = process_all_extents(sctx);
5666 if (ret < 0)
5667 goto out;
5668 ret = process_all_new_xattrs(sctx);
5669 if (ret < 0)
5670 goto out;
5671 } else {
5672 sctx->cur_inode_gen = left_gen;
5673 sctx->cur_inode_new = 0;
5674 sctx->cur_inode_new_gen = 0;
5675 sctx->cur_inode_deleted = 0;
5676 sctx->cur_inode_size = btrfs_inode_size(
5677 sctx->left_path->nodes[0], left_ii);
5678 sctx->cur_inode_mode = btrfs_inode_mode(
5679 sctx->left_path->nodes[0], left_ii);
5683 out:
5684 return ret;
5688 * We have to process new refs before deleted refs, but compare_trees gives us
5689 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5690 * first and later process them in process_recorded_refs.
5691 * For the cur_inode_new_gen case, we skip recording completely because
5692 * changed_inode did already initiate processing of refs. The reason for this is
5693 * that in this case, compare_tree actually compares the refs of 2 different
5694 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5695 * refs of the right tree as deleted and all refs of the left tree as new.
5697 static int changed_ref(struct send_ctx *sctx,
5698 enum btrfs_compare_tree_result result)
5700 int ret = 0;
5702 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5704 if (!sctx->cur_inode_new_gen &&
5705 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5706 if (result == BTRFS_COMPARE_TREE_NEW)
5707 ret = record_new_ref(sctx);
5708 else if (result == BTRFS_COMPARE_TREE_DELETED)
5709 ret = record_deleted_ref(sctx);
5710 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5711 ret = record_changed_ref(sctx);
5714 return ret;
5718 * Process new/deleted/changed xattrs. We skip processing in the
5719 * cur_inode_new_gen case because changed_inode did already initiate processing
5720 * of xattrs. The reason is the same as in changed_ref
5722 static int changed_xattr(struct send_ctx *sctx,
5723 enum btrfs_compare_tree_result result)
5725 int ret = 0;
5727 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5729 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5730 if (result == BTRFS_COMPARE_TREE_NEW)
5731 ret = process_new_xattr(sctx);
5732 else if (result == BTRFS_COMPARE_TREE_DELETED)
5733 ret = process_deleted_xattr(sctx);
5734 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5735 ret = process_changed_xattr(sctx);
5738 return ret;
5742 * Process new/deleted/changed extents. We skip processing in the
5743 * cur_inode_new_gen case because changed_inode did already initiate processing
5744 * of extents. The reason is the same as in changed_ref
5746 static int changed_extent(struct send_ctx *sctx,
5747 enum btrfs_compare_tree_result result)
5749 int ret = 0;
5751 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5753 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5754 if (result != BTRFS_COMPARE_TREE_DELETED)
5755 ret = process_extent(sctx, sctx->left_path,
5756 sctx->cmp_key);
5759 return ret;
5762 static int dir_changed(struct send_ctx *sctx, u64 dir)
5764 u64 orig_gen, new_gen;
5765 int ret;
5767 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5768 NULL, NULL);
5769 if (ret)
5770 return ret;
5772 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5773 NULL, NULL, NULL);
5774 if (ret)
5775 return ret;
5777 return (orig_gen != new_gen) ? 1 : 0;
5780 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5781 struct btrfs_key *key)
5783 struct btrfs_inode_extref *extref;
5784 struct extent_buffer *leaf;
5785 u64 dirid = 0, last_dirid = 0;
5786 unsigned long ptr;
5787 u32 item_size;
5788 u32 cur_offset = 0;
5789 int ref_name_len;
5790 int ret = 0;
5792 /* Easy case, just check this one dirid */
5793 if (key->type == BTRFS_INODE_REF_KEY) {
5794 dirid = key->offset;
5796 ret = dir_changed(sctx, dirid);
5797 goto out;
5800 leaf = path->nodes[0];
5801 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5802 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5803 while (cur_offset < item_size) {
5804 extref = (struct btrfs_inode_extref *)(ptr +
5805 cur_offset);
5806 dirid = btrfs_inode_extref_parent(leaf, extref);
5807 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5808 cur_offset += ref_name_len + sizeof(*extref);
5809 if (dirid == last_dirid)
5810 continue;
5811 ret = dir_changed(sctx, dirid);
5812 if (ret)
5813 break;
5814 last_dirid = dirid;
5816 out:
5817 return ret;
5821 * Updates compare related fields in sctx and simply forwards to the actual
5822 * changed_xxx functions.
5824 static int changed_cb(struct btrfs_root *left_root,
5825 struct btrfs_root *right_root,
5826 struct btrfs_path *left_path,
5827 struct btrfs_path *right_path,
5828 struct btrfs_key *key,
5829 enum btrfs_compare_tree_result result,
5830 void *ctx)
5832 int ret = 0;
5833 struct send_ctx *sctx = ctx;
5835 if (result == BTRFS_COMPARE_TREE_SAME) {
5836 if (key->type == BTRFS_INODE_REF_KEY ||
5837 key->type == BTRFS_INODE_EXTREF_KEY) {
5838 ret = compare_refs(sctx, left_path, key);
5839 if (!ret)
5840 return 0;
5841 if (ret < 0)
5842 return ret;
5843 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5844 return maybe_send_hole(sctx, left_path, key);
5845 } else {
5846 return 0;
5848 result = BTRFS_COMPARE_TREE_CHANGED;
5849 ret = 0;
5852 sctx->left_path = left_path;
5853 sctx->right_path = right_path;
5854 sctx->cmp_key = key;
5856 ret = finish_inode_if_needed(sctx, 0);
5857 if (ret < 0)
5858 goto out;
5860 /* Ignore non-FS objects */
5861 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5862 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5863 goto out;
5865 if (key->type == BTRFS_INODE_ITEM_KEY)
5866 ret = changed_inode(sctx, result);
5867 else if (key->type == BTRFS_INODE_REF_KEY ||
5868 key->type == BTRFS_INODE_EXTREF_KEY)
5869 ret = changed_ref(sctx, result);
5870 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5871 ret = changed_xattr(sctx, result);
5872 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5873 ret = changed_extent(sctx, result);
5875 out:
5876 return ret;
5879 static int full_send_tree(struct send_ctx *sctx)
5881 int ret;
5882 struct btrfs_root *send_root = sctx->send_root;
5883 struct btrfs_key key;
5884 struct btrfs_key found_key;
5885 struct btrfs_path *path;
5886 struct extent_buffer *eb;
5887 int slot;
5889 path = alloc_path_for_send();
5890 if (!path)
5891 return -ENOMEM;
5893 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5894 key.type = BTRFS_INODE_ITEM_KEY;
5895 key.offset = 0;
5897 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5898 if (ret < 0)
5899 goto out;
5900 if (ret)
5901 goto out_finish;
5903 while (1) {
5904 eb = path->nodes[0];
5905 slot = path->slots[0];
5906 btrfs_item_key_to_cpu(eb, &found_key, slot);
5908 ret = changed_cb(send_root, NULL, path, NULL,
5909 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5910 if (ret < 0)
5911 goto out;
5913 key.objectid = found_key.objectid;
5914 key.type = found_key.type;
5915 key.offset = found_key.offset + 1;
5917 ret = btrfs_next_item(send_root, path);
5918 if (ret < 0)
5919 goto out;
5920 if (ret) {
5921 ret = 0;
5922 break;
5926 out_finish:
5927 ret = finish_inode_if_needed(sctx, 1);
5929 out:
5930 btrfs_free_path(path);
5931 return ret;
5934 static int send_subvol(struct send_ctx *sctx)
5936 int ret;
5938 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5939 ret = send_header(sctx);
5940 if (ret < 0)
5941 goto out;
5944 ret = send_subvol_begin(sctx);
5945 if (ret < 0)
5946 goto out;
5948 if (sctx->parent_root) {
5949 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5950 changed_cb, sctx);
5951 if (ret < 0)
5952 goto out;
5953 ret = finish_inode_if_needed(sctx, 1);
5954 if (ret < 0)
5955 goto out;
5956 } else {
5957 ret = full_send_tree(sctx);
5958 if (ret < 0)
5959 goto out;
5962 out:
5963 free_recorded_refs(sctx);
5964 return ret;
5968 * If orphan cleanup did remove any orphans from a root, it means the tree
5969 * was modified and therefore the commit root is not the same as the current
5970 * root anymore. This is a problem, because send uses the commit root and
5971 * therefore can see inode items that don't exist in the current root anymore,
5972 * and for example make calls to btrfs_iget, which will do tree lookups based
5973 * on the current root and not on the commit root. Those lookups will fail,
5974 * returning a -ESTALE error, and making send fail with that error. So make
5975 * sure a send does not see any orphans we have just removed, and that it will
5976 * see the same inodes regardless of whether a transaction commit happened
5977 * before it started (meaning that the commit root will be the same as the
5978 * current root) or not.
5980 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5982 int i;
5983 struct btrfs_trans_handle *trans = NULL;
5985 again:
5986 if (sctx->parent_root &&
5987 sctx->parent_root->node != sctx->parent_root->commit_root)
5988 goto commit_trans;
5990 for (i = 0; i < sctx->clone_roots_cnt; i++)
5991 if (sctx->clone_roots[i].root->node !=
5992 sctx->clone_roots[i].root->commit_root)
5993 goto commit_trans;
5995 if (trans)
5996 return btrfs_end_transaction(trans, sctx->send_root);
5998 return 0;
6000 commit_trans:
6001 /* Use any root, all fs roots will get their commit roots updated. */
6002 if (!trans) {
6003 trans = btrfs_join_transaction(sctx->send_root);
6004 if (IS_ERR(trans))
6005 return PTR_ERR(trans);
6006 goto again;
6009 return btrfs_commit_transaction(trans, sctx->send_root);
6012 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6014 spin_lock(&root->root_item_lock);
6015 root->send_in_progress--;
6017 * Not much left to do, we don't know why it's unbalanced and
6018 * can't blindly reset it to 0.
6020 if (root->send_in_progress < 0)
6021 btrfs_err(root->fs_info,
6022 "send_in_progres unbalanced %d root %llu",
6023 root->send_in_progress, root->root_key.objectid);
6024 spin_unlock(&root->root_item_lock);
6027 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6029 int ret = 0;
6030 struct btrfs_root *send_root;
6031 struct btrfs_root *clone_root;
6032 struct btrfs_fs_info *fs_info;
6033 struct btrfs_ioctl_send_args *arg = NULL;
6034 struct btrfs_key key;
6035 struct send_ctx *sctx = NULL;
6036 u32 i;
6037 u64 *clone_sources_tmp = NULL;
6038 int clone_sources_to_rollback = 0;
6039 int sort_clone_roots = 0;
6040 int index;
6042 if (!capable(CAP_SYS_ADMIN))
6043 return -EPERM;
6045 send_root = BTRFS_I(file_inode(mnt_file))->root;
6046 fs_info = send_root->fs_info;
6049 * The subvolume must remain read-only during send, protect against
6050 * making it RW. This also protects against deletion.
6052 spin_lock(&send_root->root_item_lock);
6053 send_root->send_in_progress++;
6054 spin_unlock(&send_root->root_item_lock);
6057 * This is done when we lookup the root, it should already be complete
6058 * by the time we get here.
6060 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6063 * Userspace tools do the checks and warn the user if it's
6064 * not RO.
6066 if (!btrfs_root_readonly(send_root)) {
6067 ret = -EPERM;
6068 goto out;
6071 arg = memdup_user(arg_, sizeof(*arg));
6072 if (IS_ERR(arg)) {
6073 ret = PTR_ERR(arg);
6074 arg = NULL;
6075 goto out;
6078 if (!access_ok(VERIFY_READ, arg->clone_sources,
6079 sizeof(*arg->clone_sources) *
6080 arg->clone_sources_count)) {
6081 ret = -EFAULT;
6082 goto out;
6085 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6086 ret = -EINVAL;
6087 goto out;
6090 sctx = kzalloc(sizeof(struct send_ctx), GFP_NOFS);
6091 if (!sctx) {
6092 ret = -ENOMEM;
6093 goto out;
6096 INIT_LIST_HEAD(&sctx->new_refs);
6097 INIT_LIST_HEAD(&sctx->deleted_refs);
6098 INIT_RADIX_TREE(&sctx->name_cache, GFP_NOFS);
6099 INIT_LIST_HEAD(&sctx->name_cache_list);
6101 sctx->flags = arg->flags;
6103 sctx->send_filp = fget(arg->send_fd);
6104 if (!sctx->send_filp) {
6105 ret = -EBADF;
6106 goto out;
6109 sctx->send_root = send_root;
6111 * Unlikely but possible, if the subvolume is marked for deletion but
6112 * is slow to remove the directory entry, send can still be started
6114 if (btrfs_root_dead(sctx->send_root)) {
6115 ret = -EPERM;
6116 goto out;
6119 sctx->clone_roots_cnt = arg->clone_sources_count;
6121 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6122 sctx->send_buf = vmalloc(sctx->send_max_size);
6123 if (!sctx->send_buf) {
6124 ret = -ENOMEM;
6125 goto out;
6128 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6129 if (!sctx->read_buf) {
6130 ret = -ENOMEM;
6131 goto out;
6134 sctx->pending_dir_moves = RB_ROOT;
6135 sctx->waiting_dir_moves = RB_ROOT;
6136 sctx->orphan_dirs = RB_ROOT;
6138 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6139 (arg->clone_sources_count + 1));
6140 if (!sctx->clone_roots) {
6141 ret = -ENOMEM;
6142 goto out;
6145 if (arg->clone_sources_count) {
6146 clone_sources_tmp = vmalloc(arg->clone_sources_count *
6147 sizeof(*arg->clone_sources));
6148 if (!clone_sources_tmp) {
6149 ret = -ENOMEM;
6150 goto out;
6153 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6154 arg->clone_sources_count *
6155 sizeof(*arg->clone_sources));
6156 if (ret) {
6157 ret = -EFAULT;
6158 goto out;
6161 for (i = 0; i < arg->clone_sources_count; i++) {
6162 key.objectid = clone_sources_tmp[i];
6163 key.type = BTRFS_ROOT_ITEM_KEY;
6164 key.offset = (u64)-1;
6166 index = srcu_read_lock(&fs_info->subvol_srcu);
6168 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6169 if (IS_ERR(clone_root)) {
6170 srcu_read_unlock(&fs_info->subvol_srcu, index);
6171 ret = PTR_ERR(clone_root);
6172 goto out;
6174 spin_lock(&clone_root->root_item_lock);
6175 if (!btrfs_root_readonly(clone_root) ||
6176 btrfs_root_dead(clone_root)) {
6177 spin_unlock(&clone_root->root_item_lock);
6178 srcu_read_unlock(&fs_info->subvol_srcu, index);
6179 ret = -EPERM;
6180 goto out;
6182 clone_root->send_in_progress++;
6183 spin_unlock(&clone_root->root_item_lock);
6184 srcu_read_unlock(&fs_info->subvol_srcu, index);
6186 sctx->clone_roots[i].root = clone_root;
6187 clone_sources_to_rollback = i + 1;
6189 vfree(clone_sources_tmp);
6190 clone_sources_tmp = NULL;
6193 if (arg->parent_root) {
6194 key.objectid = arg->parent_root;
6195 key.type = BTRFS_ROOT_ITEM_KEY;
6196 key.offset = (u64)-1;
6198 index = srcu_read_lock(&fs_info->subvol_srcu);
6200 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6201 if (IS_ERR(sctx->parent_root)) {
6202 srcu_read_unlock(&fs_info->subvol_srcu, index);
6203 ret = PTR_ERR(sctx->parent_root);
6204 goto out;
6207 spin_lock(&sctx->parent_root->root_item_lock);
6208 sctx->parent_root->send_in_progress++;
6209 if (!btrfs_root_readonly(sctx->parent_root) ||
6210 btrfs_root_dead(sctx->parent_root)) {
6211 spin_unlock(&sctx->parent_root->root_item_lock);
6212 srcu_read_unlock(&fs_info->subvol_srcu, index);
6213 ret = -EPERM;
6214 goto out;
6216 spin_unlock(&sctx->parent_root->root_item_lock);
6218 srcu_read_unlock(&fs_info->subvol_srcu, index);
6222 * Clones from send_root are allowed, but only if the clone source
6223 * is behind the current send position. This is checked while searching
6224 * for possible clone sources.
6226 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6228 /* We do a bsearch later */
6229 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6230 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6231 NULL);
6232 sort_clone_roots = 1;
6234 ret = ensure_commit_roots_uptodate(sctx);
6235 if (ret)
6236 goto out;
6238 current->journal_info = BTRFS_SEND_TRANS_STUB;
6239 ret = send_subvol(sctx);
6240 current->journal_info = NULL;
6241 if (ret < 0)
6242 goto out;
6244 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6245 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6246 if (ret < 0)
6247 goto out;
6248 ret = send_cmd(sctx);
6249 if (ret < 0)
6250 goto out;
6253 out:
6254 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6255 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6256 struct rb_node *n;
6257 struct pending_dir_move *pm;
6259 n = rb_first(&sctx->pending_dir_moves);
6260 pm = rb_entry(n, struct pending_dir_move, node);
6261 while (!list_empty(&pm->list)) {
6262 struct pending_dir_move *pm2;
6264 pm2 = list_first_entry(&pm->list,
6265 struct pending_dir_move, list);
6266 free_pending_move(sctx, pm2);
6268 free_pending_move(sctx, pm);
6271 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6272 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6273 struct rb_node *n;
6274 struct waiting_dir_move *dm;
6276 n = rb_first(&sctx->waiting_dir_moves);
6277 dm = rb_entry(n, struct waiting_dir_move, node);
6278 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6279 kfree(dm);
6282 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6283 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6284 struct rb_node *n;
6285 struct orphan_dir_info *odi;
6287 n = rb_first(&sctx->orphan_dirs);
6288 odi = rb_entry(n, struct orphan_dir_info, node);
6289 free_orphan_dir_info(sctx, odi);
6292 if (sort_clone_roots) {
6293 for (i = 0; i < sctx->clone_roots_cnt; i++)
6294 btrfs_root_dec_send_in_progress(
6295 sctx->clone_roots[i].root);
6296 } else {
6297 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6298 btrfs_root_dec_send_in_progress(
6299 sctx->clone_roots[i].root);
6301 btrfs_root_dec_send_in_progress(send_root);
6303 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6304 btrfs_root_dec_send_in_progress(sctx->parent_root);
6306 kfree(arg);
6307 vfree(clone_sources_tmp);
6309 if (sctx) {
6310 if (sctx->send_filp)
6311 fput(sctx->send_filp);
6313 vfree(sctx->clone_roots);
6314 vfree(sctx->send_buf);
6315 vfree(sctx->read_buf);
6317 name_cache_free(sctx);
6319 kfree(sctx);
6322 return ret;