2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
26 #include "print-tree.h"
29 #include "inode-map.h"
31 /* magic values for the inode_only field in btrfs_log_inode:
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
37 #define LOG_INODE_ALL 0
38 #define LOG_INODE_EXISTS 1
41 * directory trouble cases
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
50 * rename foo/some_dir foo2/some_dir
52 * fsync foo/some_dir/some_file
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
92 #define LOG_WALK_PIN_ONLY 0
93 #define LOG_WALK_REPLAY_INODES 1
94 #define LOG_WALK_REPLAY_DIR_INDEX 2
95 #define LOG_WALK_REPLAY_ALL 3
97 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
,
102 struct btrfs_log_ctx
*ctx
);
103 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
,
105 struct btrfs_path
*path
, u64 objectid
);
106 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
107 struct btrfs_root
*root
,
108 struct btrfs_root
*log
,
109 struct btrfs_path
*path
,
110 u64 dirid
, int del_all
);
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
140 static int start_log_trans(struct btrfs_trans_handle
*trans
,
141 struct btrfs_root
*root
,
142 struct btrfs_log_ctx
*ctx
)
146 mutex_lock(&root
->log_mutex
);
148 if (root
->log_root
) {
149 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
154 if (!root
->log_start_pid
) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
156 root
->log_start_pid
= current
->pid
;
157 } else if (root
->log_start_pid
!= current
->pid
) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
161 mutex_lock(&root
->fs_info
->tree_log_mutex
);
162 if (!root
->fs_info
->log_root_tree
)
163 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
164 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
168 ret
= btrfs_add_log_tree(trans
, root
);
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
173 root
->log_start_pid
= current
->pid
;
176 atomic_inc(&root
->log_batch
);
177 atomic_inc(&root
->log_writers
);
179 int index
= root
->log_transid
% 2;
180 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
181 ctx
->log_transid
= root
->log_transid
;
185 mutex_unlock(&root
->log_mutex
);
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
194 static int join_running_log_trans(struct btrfs_root
*root
)
202 mutex_lock(&root
->log_mutex
);
203 if (root
->log_root
) {
205 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
216 int btrfs_pin_log_trans(struct btrfs_root
*root
)
220 mutex_lock(&root
->log_mutex
);
221 atomic_inc(&root
->log_writers
);
222 mutex_unlock(&root
->log_mutex
);
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
230 void btrfs_end_log_trans(struct btrfs_root
*root
)
232 if (atomic_dec_and_test(&root
->log_writers
)) {
234 * Implicit memory barrier after atomic_dec_and_test
236 if (waitqueue_active(&root
->log_writer_wait
))
237 wake_up(&root
->log_writer_wait
);
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
248 struct walk_control
{
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
264 /* pin only walk, we record which extents on disk belong to the
269 /* what stage of the replay code we're currently in */
272 /* the root we are currently replaying */
273 struct btrfs_root
*replay_dest
;
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle
*trans
;
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
283 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
284 struct walk_control
*wc
, u64 gen
);
288 * process_func used to pin down extents, write them or wait on them
290 static int process_one_buffer(struct btrfs_root
*log
,
291 struct extent_buffer
*eb
,
292 struct walk_control
*wc
, u64 gen
)
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
300 if (btrfs_fs_incompat(log
->fs_info
, MIXED_GROUPS
)) {
301 ret
= btrfs_read_buffer(eb
, gen
);
307 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
310 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
311 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
312 ret
= btrfs_exclude_logged_extents(log
, eb
);
314 btrfs_write_tree_block(eb
);
316 btrfs_wait_tree_block_writeback(eb
);
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
333 * If the key isn't in the destination yet, a new item is inserted.
335 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
336 struct btrfs_root
*root
,
337 struct btrfs_path
*path
,
338 struct extent_buffer
*eb
, int slot
,
339 struct btrfs_key
*key
)
343 u64 saved_i_size
= 0;
344 int save_old_i_size
= 0;
345 unsigned long src_ptr
;
346 unsigned long dst_ptr
;
347 int overwrite_root
= 0;
348 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
350 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
353 item_size
= btrfs_item_size_nr(eb
, slot
);
354 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
356 /* look for the key in the destination tree */
357 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
364 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
366 if (dst_size
!= item_size
)
369 if (item_size
== 0) {
370 btrfs_release_path(path
);
373 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
374 src_copy
= kmalloc(item_size
, GFP_NOFS
);
375 if (!dst_copy
|| !src_copy
) {
376 btrfs_release_path(path
);
382 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
384 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
385 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
387 ret
= memcmp(dst_copy
, src_copy
, item_size
);
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
398 btrfs_release_path(path
);
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
407 struct btrfs_inode_item
*item
;
411 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
412 struct btrfs_inode_item
);
413 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
414 item
= btrfs_item_ptr(eb
, slot
,
415 struct btrfs_inode_item
);
416 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
423 mode
= btrfs_inode_mode(eb
, item
);
425 btrfs_set_inode_size(eb
, item
, 0);
427 } else if (inode_item
) {
428 struct btrfs_inode_item
*item
;
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
435 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
436 btrfs_set_inode_nbytes(eb
, item
, 0);
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
443 mode
= btrfs_inode_mode(eb
, item
);
445 btrfs_set_inode_size(eb
, item
, 0);
448 btrfs_release_path(path
);
449 /* try to insert the key into the destination tree */
450 path
->skip_release_on_error
= 1;
451 ret
= btrfs_insert_empty_item(trans
, root
, path
,
453 path
->skip_release_on_error
= 0;
455 /* make sure any existing item is the correct size */
456 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
458 found_size
= btrfs_item_size_nr(path
->nodes
[0],
460 if (found_size
> item_size
)
461 btrfs_truncate_item(root
, path
, item_size
, 1);
462 else if (found_size
< item_size
)
463 btrfs_extend_item(root
, path
,
464 item_size
- found_size
);
468 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
480 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
481 struct btrfs_inode_item
*src_item
;
482 struct btrfs_inode_item
*dst_item
;
484 src_item
= (struct btrfs_inode_item
*)src_ptr
;
485 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
487 if (btrfs_inode_generation(eb
, src_item
) == 0) {
488 struct extent_buffer
*dst_eb
= path
->nodes
[0];
489 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
498 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
501 struct btrfs_map_token token
;
503 btrfs_init_map_token(&token
);
504 btrfs_set_token_inode_size(dst_eb
, dst_item
,
510 if (overwrite_root
&&
511 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
512 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
514 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
519 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
522 if (save_old_i_size
) {
523 struct btrfs_inode_item
*dst_item
;
524 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
525 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
528 /* make sure the generation is filled in */
529 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
530 struct btrfs_inode_item
*dst_item
;
531 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
532 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
533 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
538 btrfs_mark_buffer_dirty(path
->nodes
[0]);
539 btrfs_release_path(path
);
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
547 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
550 struct btrfs_key key
;
553 key
.objectid
= objectid
;
554 key
.type
= BTRFS_INODE_ITEM_KEY
;
556 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
559 } else if (is_bad_inode(inode
)) {
566 /* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
578 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
579 struct btrfs_root
*root
,
580 struct btrfs_path
*path
,
581 struct extent_buffer
*eb
, int slot
,
582 struct btrfs_key
*key
)
586 u64 start
= key
->offset
;
588 struct btrfs_file_extent_item
*item
;
589 struct inode
*inode
= NULL
;
593 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
594 found_type
= btrfs_file_extent_type(eb
, item
);
596 if (found_type
== BTRFS_FILE_EXTENT_REG
||
597 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
598 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
599 extent_end
= start
+ nbytes
;
602 * We don't add to the inodes nbytes if we are prealloc or a
605 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
607 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
608 size
= btrfs_file_extent_inline_len(eb
, slot
, item
);
609 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
610 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
616 inode
= read_one_inode(root
, key
->objectid
);
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
627 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
631 (found_type
== BTRFS_FILE_EXTENT_REG
||
632 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
633 struct btrfs_file_extent_item cmp1
;
634 struct btrfs_file_extent_item cmp2
;
635 struct btrfs_file_extent_item
*existing
;
636 struct extent_buffer
*leaf
;
638 leaf
= path
->nodes
[0];
639 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
640 struct btrfs_file_extent_item
);
642 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
644 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
651 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
652 btrfs_release_path(path
);
656 btrfs_release_path(path
);
658 /* drop any overlapping extents */
659 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
663 if (found_type
== BTRFS_FILE_EXTENT_REG
||
664 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
666 unsigned long dest_offset
;
667 struct btrfs_key ins
;
669 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
673 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
675 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
676 (unsigned long)item
, sizeof(*item
));
678 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
679 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
680 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
681 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
683 if (ins
.objectid
> 0) {
686 LIST_HEAD(ordered_sums
);
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
691 ret
= btrfs_lookup_data_extent(root
, ins
.objectid
,
694 ret
= btrfs_inc_extent_ref(trans
, root
,
695 ins
.objectid
, ins
.offset
,
696 0, root
->root_key
.objectid
,
697 key
->objectid
, offset
);
702 * insert the extent pointer in the extent
705 ret
= btrfs_alloc_logged_file_extent(trans
,
706 root
, root
->root_key
.objectid
,
707 key
->objectid
, offset
, &ins
);
711 btrfs_release_path(path
);
713 if (btrfs_file_extent_compression(eb
, item
)) {
714 csum_start
= ins
.objectid
;
715 csum_end
= csum_start
+ ins
.offset
;
717 csum_start
= ins
.objectid
+
718 btrfs_file_extent_offset(eb
, item
);
719 csum_end
= csum_start
+
720 btrfs_file_extent_num_bytes(eb
, item
);
723 ret
= btrfs_lookup_csums_range(root
->log_root
,
724 csum_start
, csum_end
- 1,
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
777 while (!list_empty(&ordered_sums
)) {
778 struct btrfs_ordered_sum
*sums
;
779 sums
= list_entry(ordered_sums
.next
,
780 struct btrfs_ordered_sum
,
783 ret
= btrfs_del_csums(trans
,
784 root
->fs_info
->csum_root
,
788 ret
= btrfs_csum_file_blocks(trans
,
789 root
->fs_info
->csum_root
,
791 list_del(&sums
->list
);
797 btrfs_release_path(path
);
799 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
800 /* inline extents are easy, we just overwrite them */
801 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
806 inode_add_bytes(inode
, nbytes
);
807 ret
= btrfs_update_inode(trans
, root
, inode
);
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
819 * This is a helper function to do the unlink of a specific directory
822 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
823 struct btrfs_root
*root
,
824 struct btrfs_path
*path
,
826 struct btrfs_dir_item
*di
)
831 struct extent_buffer
*leaf
;
832 struct btrfs_key location
;
835 leaf
= path
->nodes
[0];
837 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
838 name_len
= btrfs_dir_name_len(leaf
, di
);
839 name
= kmalloc(name_len
, GFP_NOFS
);
843 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
844 btrfs_release_path(path
);
846 inode
= read_one_inode(root
, location
.objectid
);
852 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
856 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
860 ret
= btrfs_run_delayed_items(trans
, root
);
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
872 static noinline
int inode_in_dir(struct btrfs_root
*root
,
873 struct btrfs_path
*path
,
874 u64 dirid
, u64 objectid
, u64 index
,
875 const char *name
, int name_len
)
877 struct btrfs_dir_item
*di
;
878 struct btrfs_key location
;
881 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
882 index
, name
, name_len
, 0);
883 if (di
&& !IS_ERR(di
)) {
884 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
885 if (location
.objectid
!= objectid
)
889 btrfs_release_path(path
);
891 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
892 if (di
&& !IS_ERR(di
)) {
893 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
894 if (location
.objectid
!= objectid
)
900 btrfs_release_path(path
);
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
914 static noinline
int backref_in_log(struct btrfs_root
*log
,
915 struct btrfs_key
*key
,
917 const char *name
, int namelen
)
919 struct btrfs_path
*path
;
920 struct btrfs_inode_ref
*ref
;
922 unsigned long ptr_end
;
923 unsigned long name_ptr
;
929 path
= btrfs_alloc_path();
933 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
937 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
939 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
940 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
941 name
, namelen
, NULL
))
947 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
948 ptr_end
= ptr
+ item_size
;
949 while (ptr
< ptr_end
) {
950 ref
= (struct btrfs_inode_ref
*)ptr
;
951 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
952 if (found_name_len
== namelen
) {
953 name_ptr
= (unsigned long)(ref
+ 1);
954 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
961 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
964 btrfs_free_path(path
);
968 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
969 struct btrfs_root
*root
,
970 struct btrfs_path
*path
,
971 struct btrfs_root
*log_root
,
972 struct inode
*dir
, struct inode
*inode
,
973 struct extent_buffer
*eb
,
974 u64 inode_objectid
, u64 parent_objectid
,
975 u64 ref_index
, char *name
, int namelen
,
981 struct extent_buffer
*leaf
;
982 struct btrfs_dir_item
*di
;
983 struct btrfs_key search_key
;
984 struct btrfs_inode_extref
*extref
;
987 /* Search old style refs */
988 search_key
.objectid
= inode_objectid
;
989 search_key
.type
= BTRFS_INODE_REF_KEY
;
990 search_key
.offset
= parent_objectid
;
991 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
993 struct btrfs_inode_ref
*victim_ref
;
995 unsigned long ptr_end
;
997 leaf
= path
->nodes
[0];
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1002 if (search_key
.objectid
== search_key
.offset
)
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1009 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1010 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1011 while (ptr
< ptr_end
) {
1012 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1013 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1015 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1019 read_extent_buffer(leaf
, victim_name
,
1020 (unsigned long)(victim_ref
+ 1),
1023 if (!backref_in_log(log_root
, &search_key
,
1028 btrfs_release_path(path
);
1030 ret
= btrfs_unlink_inode(trans
, root
, dir
,
1036 ret
= btrfs_run_delayed_items(trans
, root
);
1044 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1048 * NOTE: we have searched root tree and checked the
1049 * coresponding ref, it does not need to check again.
1053 btrfs_release_path(path
);
1055 /* Same search but for extended refs */
1056 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1057 inode_objectid
, parent_objectid
, 0,
1059 if (!IS_ERR_OR_NULL(extref
)) {
1063 struct inode
*victim_parent
;
1065 leaf
= path
->nodes
[0];
1067 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1068 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1070 while (cur_offset
< item_size
) {
1071 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1073 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1075 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1078 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1081 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1084 search_key
.objectid
= inode_objectid
;
1085 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1086 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1090 if (!backref_in_log(log_root
, &search_key
,
1091 parent_objectid
, victim_name
,
1094 victim_parent
= read_one_inode(root
,
1096 if (victim_parent
) {
1098 btrfs_release_path(path
);
1100 ret
= btrfs_unlink_inode(trans
, root
,
1106 ret
= btrfs_run_delayed_items(
1109 iput(victim_parent
);
1120 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1124 btrfs_release_path(path
);
1126 /* look for a conflicting sequence number */
1127 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1128 ref_index
, name
, namelen
, 0);
1129 if (di
&& !IS_ERR(di
)) {
1130 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1134 btrfs_release_path(path
);
1136 /* look for a conflicing name */
1137 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1139 if (di
&& !IS_ERR(di
)) {
1140 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1144 btrfs_release_path(path
);
1149 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1150 u32
*namelen
, char **name
, u64
*index
,
1151 u64
*parent_objectid
)
1153 struct btrfs_inode_extref
*extref
;
1155 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1157 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1158 *name
= kmalloc(*namelen
, GFP_NOFS
);
1162 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1165 *index
= btrfs_inode_extref_index(eb
, extref
);
1166 if (parent_objectid
)
1167 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1172 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1173 u32
*namelen
, char **name
, u64
*index
)
1175 struct btrfs_inode_ref
*ref
;
1177 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1179 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1180 *name
= kmalloc(*namelen
, GFP_NOFS
);
1184 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1186 *index
= btrfs_inode_ref_index(eb
, ref
);
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1197 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1198 struct btrfs_root
*root
,
1199 struct btrfs_root
*log
,
1200 struct btrfs_path
*path
,
1201 struct extent_buffer
*eb
, int slot
,
1202 struct btrfs_key
*key
)
1204 struct inode
*dir
= NULL
;
1205 struct inode
*inode
= NULL
;
1206 unsigned long ref_ptr
;
1207 unsigned long ref_end
;
1211 int search_done
= 0;
1212 int log_ref_ver
= 0;
1213 u64 parent_objectid
;
1216 int ref_struct_size
;
1218 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1219 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1221 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1222 struct btrfs_inode_extref
*r
;
1224 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1226 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1227 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1229 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1230 parent_objectid
= key
->offset
;
1232 inode_objectid
= key
->objectid
;
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1240 dir
= read_one_inode(root
, parent_objectid
);
1246 inode
= read_one_inode(root
, inode_objectid
);
1252 while (ref_ptr
< ref_end
) {
1254 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1255 &ref_index
, &parent_objectid
);
1257 * parent object can change from one array
1261 dir
= read_one_inode(root
, parent_objectid
);
1267 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1275 ref_index
, name
, namelen
)) {
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1285 ret
= __add_inode_ref(trans
, root
, path
, log
,
1289 ref_index
, name
, namelen
,
1298 /* insert our name */
1299 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1304 btrfs_update_inode(trans
, root
, inode
);
1307 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1316 /* finally write the back reference in the inode */
1317 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1319 btrfs_release_path(path
);
1326 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1327 struct btrfs_root
*root
, u64 ino
)
1331 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1338 static int count_inode_extrefs(struct btrfs_root
*root
,
1339 struct inode
*inode
, struct btrfs_path
*path
)
1343 unsigned int nlink
= 0;
1346 u64 inode_objectid
= btrfs_ino(inode
);
1349 struct btrfs_inode_extref
*extref
;
1350 struct extent_buffer
*leaf
;
1353 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1358 leaf
= path
->nodes
[0];
1359 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1360 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1363 while (cur_offset
< item_size
) {
1364 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1365 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1369 cur_offset
+= name_len
+ sizeof(*extref
);
1373 btrfs_release_path(path
);
1375 btrfs_release_path(path
);
1377 if (ret
< 0 && ret
!= -ENOENT
)
1382 static int count_inode_refs(struct btrfs_root
*root
,
1383 struct inode
*inode
, struct btrfs_path
*path
)
1386 struct btrfs_key key
;
1387 unsigned int nlink
= 0;
1389 unsigned long ptr_end
;
1391 u64 ino
= btrfs_ino(inode
);
1394 key
.type
= BTRFS_INODE_REF_KEY
;
1395 key
.offset
= (u64
)-1;
1398 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1402 if (path
->slots
[0] == 0)
1407 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1409 if (key
.objectid
!= ino
||
1410 key
.type
!= BTRFS_INODE_REF_KEY
)
1412 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1413 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1415 while (ptr
< ptr_end
) {
1416 struct btrfs_inode_ref
*ref
;
1418 ref
= (struct btrfs_inode_ref
*)ptr
;
1419 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1421 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1425 if (key
.offset
== 0)
1427 if (path
->slots
[0] > 0) {
1432 btrfs_release_path(path
);
1434 btrfs_release_path(path
);
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1449 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1450 struct btrfs_root
*root
,
1451 struct inode
*inode
)
1453 struct btrfs_path
*path
;
1456 u64 ino
= btrfs_ino(inode
);
1458 path
= btrfs_alloc_path();
1462 ret
= count_inode_refs(root
, inode
, path
);
1468 ret
= count_inode_extrefs(root
, inode
, path
);
1476 if (nlink
!= inode
->i_nlink
) {
1477 set_nlink(inode
, nlink
);
1478 btrfs_update_inode(trans
, root
, inode
);
1480 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1482 if (inode
->i_nlink
== 0) {
1483 if (S_ISDIR(inode
->i_mode
)) {
1484 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1489 ret
= insert_orphan_item(trans
, root
, ino
);
1493 btrfs_free_path(path
);
1497 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1498 struct btrfs_root
*root
,
1499 struct btrfs_path
*path
)
1502 struct btrfs_key key
;
1503 struct inode
*inode
;
1505 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1506 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1507 key
.offset
= (u64
)-1;
1509 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1514 if (path
->slots
[0] == 0)
1519 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1520 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1521 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1524 ret
= btrfs_del_item(trans
, root
, path
);
1528 btrfs_release_path(path
);
1529 inode
= read_one_inode(root
, key
.offset
);
1533 ret
= fixup_inode_link_count(trans
, root
, inode
);
1539 * fixup on a directory may create new entries,
1540 * make sure we always look for the highset possible
1543 key
.offset
= (u64
)-1;
1547 btrfs_release_path(path
);
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done. The link count is incremented here
1555 * so the inode won't go away until we check it
1557 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1558 struct btrfs_root
*root
,
1559 struct btrfs_path
*path
,
1562 struct btrfs_key key
;
1564 struct inode
*inode
;
1566 inode
= read_one_inode(root
, objectid
);
1570 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1571 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1572 key
.offset
= objectid
;
1574 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1576 btrfs_release_path(path
);
1578 if (!inode
->i_nlink
)
1579 set_nlink(inode
, 1);
1582 ret
= btrfs_update_inode(trans
, root
, inode
);
1583 } else if (ret
== -EEXIST
) {
1586 BUG(); /* Logic Error */
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist. This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1598 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1599 struct btrfs_root
*root
,
1600 u64 dirid
, u64 index
,
1601 char *name
, int name_len
,
1602 struct btrfs_key
*location
)
1604 struct inode
*inode
;
1608 inode
= read_one_inode(root
, location
->objectid
);
1612 dir
= read_one_inode(root
, dirid
);
1618 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1620 /* FIXME, put inode into FIXUP list */
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1631 static bool name_in_log_ref(struct btrfs_root
*log_root
,
1632 const char *name
, const int name_len
,
1633 const u64 dirid
, const u64 ino
)
1635 struct btrfs_key search_key
;
1637 search_key
.objectid
= ino
;
1638 search_key
.type
= BTRFS_INODE_REF_KEY
;
1639 search_key
.offset
= dirid
;
1640 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1643 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1644 search_key
.offset
= btrfs_extref_hash(dirid
, name
, name_len
);
1645 if (backref_in_log(log_root
, &search_key
, dirid
, name
, name_len
))
1652 * take a single entry in a log directory item and replay it into
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped. fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1667 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1668 struct btrfs_root
*root
,
1669 struct btrfs_path
*path
,
1670 struct extent_buffer
*eb
,
1671 struct btrfs_dir_item
*di
,
1672 struct btrfs_key
*key
)
1676 struct btrfs_dir_item
*dst_di
;
1677 struct btrfs_key found_key
;
1678 struct btrfs_key log_key
;
1683 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1684 bool name_added
= false;
1686 dir
= read_one_inode(root
, key
->objectid
);
1690 name_len
= btrfs_dir_name_len(eb
, di
);
1691 name
= kmalloc(name_len
, GFP_NOFS
);
1697 log_type
= btrfs_dir_type(eb
, di
);
1698 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1701 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1702 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1707 btrfs_release_path(path
);
1709 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1710 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1712 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1713 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1722 if (IS_ERR_OR_NULL(dst_di
)) {
1723 /* we need a sequence number to insert, so we only
1724 * do inserts for the BTRFS_DIR_INDEX_KEY types
1726 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1731 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1732 /* the existing item matches the logged item */
1733 if (found_key
.objectid
== log_key
.objectid
&&
1734 found_key
.type
== log_key
.type
&&
1735 found_key
.offset
== log_key
.offset
&&
1736 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1737 update_size
= false;
1742 * don't drop the conflicting directory entry if the inode
1743 * for the new entry doesn't exist
1748 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1752 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1755 btrfs_release_path(path
);
1756 if (!ret
&& update_size
) {
1757 btrfs_i_size_write(dir
, dir
->i_size
+ name_len
* 2);
1758 ret
= btrfs_update_inode(trans
, root
, dir
);
1762 if (!ret
&& name_added
)
1767 if (name_in_log_ref(root
->log_root
, name
, name_len
,
1768 key
->objectid
, log_key
.objectid
)) {
1769 /* The dentry will be added later. */
1771 update_size
= false;
1774 btrfs_release_path(path
);
1775 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1776 name
, name_len
, &log_key
);
1777 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1781 update_size
= false;
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1792 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1793 struct btrfs_root
*root
,
1794 struct btrfs_path
*path
,
1795 struct extent_buffer
*eb
, int slot
,
1796 struct btrfs_key
*key
)
1799 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1800 struct btrfs_dir_item
*di
;
1803 unsigned long ptr_end
;
1804 struct btrfs_path
*fixup_path
= NULL
;
1806 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1807 ptr_end
= ptr
+ item_size
;
1808 while (ptr
< ptr_end
) {
1809 di
= (struct btrfs_dir_item
*)ptr
;
1810 if (verify_dir_item(root
, eb
, di
))
1812 name_len
= btrfs_dir_name_len(eb
, di
);
1813 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1816 ptr
= (unsigned long)(di
+ 1);
1820 * If this entry refers to a non-directory (directories can not
1821 * have a link count > 1) and it was added in the transaction
1822 * that was not committed, make sure we fixup the link count of
1823 * the inode it the entry points to. Otherwise something like
1824 * the following would result in a directory pointing to an
1825 * inode with a wrong link that does not account for this dir
1833 * ln testdir/bar testdir/bar_link
1834 * ln testdir/foo testdir/foo_link
1835 * xfs_io -c "fsync" testdir/bar
1839 * mount fs, log replay happens
1841 * File foo would remain with a link count of 1 when it has two
1842 * entries pointing to it in the directory testdir. This would
1843 * make it impossible to ever delete the parent directory has
1844 * it would result in stale dentries that can never be deleted.
1846 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
1847 struct btrfs_key di_key
;
1850 fixup_path
= btrfs_alloc_path();
1857 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1858 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
1865 btrfs_free_path(fixup_path
);
1870 * directory replay has two parts. There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for. During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1880 static noinline
int find_dir_range(struct btrfs_root
*root
,
1881 struct btrfs_path
*path
,
1882 u64 dirid
, int key_type
,
1883 u64
*start_ret
, u64
*end_ret
)
1885 struct btrfs_key key
;
1887 struct btrfs_dir_log_item
*item
;
1891 if (*start_ret
== (u64
)-1)
1894 key
.objectid
= dirid
;
1895 key
.type
= key_type
;
1896 key
.offset
= *start_ret
;
1898 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1902 if (path
->slots
[0] == 0)
1907 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1909 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1913 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1914 struct btrfs_dir_log_item
);
1915 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1917 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1919 *start_ret
= key
.offset
;
1920 *end_ret
= found_end
;
1925 /* check the next slot in the tree to see if it is a valid item */
1926 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1928 if (path
->slots
[0] >= nritems
) {
1929 ret
= btrfs_next_leaf(root
, path
);
1934 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1936 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1940 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1941 struct btrfs_dir_log_item
);
1942 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1943 *start_ret
= key
.offset
;
1944 *end_ret
= found_end
;
1947 btrfs_release_path(path
);
1952 * this looks for a given directory item in the log. If the directory
1953 * item is not in the log, the item is removed and the inode it points
1956 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1957 struct btrfs_root
*root
,
1958 struct btrfs_root
*log
,
1959 struct btrfs_path
*path
,
1960 struct btrfs_path
*log_path
,
1962 struct btrfs_key
*dir_key
)
1965 struct extent_buffer
*eb
;
1968 struct btrfs_dir_item
*di
;
1969 struct btrfs_dir_item
*log_di
;
1972 unsigned long ptr_end
;
1974 struct inode
*inode
;
1975 struct btrfs_key location
;
1978 eb
= path
->nodes
[0];
1979 slot
= path
->slots
[0];
1980 item_size
= btrfs_item_size_nr(eb
, slot
);
1981 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1982 ptr_end
= ptr
+ item_size
;
1983 while (ptr
< ptr_end
) {
1984 di
= (struct btrfs_dir_item
*)ptr
;
1985 if (verify_dir_item(root
, eb
, di
)) {
1990 name_len
= btrfs_dir_name_len(eb
, di
);
1991 name
= kmalloc(name_len
, GFP_NOFS
);
1996 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1999 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2000 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2003 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2004 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2010 if (!log_di
|| (IS_ERR(log_di
) && PTR_ERR(log_di
) == -ENOENT
)) {
2011 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2012 btrfs_release_path(path
);
2013 btrfs_release_path(log_path
);
2014 inode
= read_one_inode(root
, location
.objectid
);
2020 ret
= link_to_fixup_dir(trans
, root
,
2021 path
, location
.objectid
);
2029 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
2032 ret
= btrfs_run_delayed_items(trans
, root
);
2038 /* there might still be more names under this key
2039 * check and repeat if required
2041 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2047 } else if (IS_ERR(log_di
)) {
2049 return PTR_ERR(log_di
);
2051 btrfs_release_path(log_path
);
2054 ptr
= (unsigned long)(di
+ 1);
2059 btrfs_release_path(path
);
2060 btrfs_release_path(log_path
);
2064 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2065 struct btrfs_root
*root
,
2066 struct btrfs_root
*log
,
2067 struct btrfs_path
*path
,
2070 struct btrfs_key search_key
;
2071 struct btrfs_path
*log_path
;
2076 log_path
= btrfs_alloc_path();
2080 search_key
.objectid
= ino
;
2081 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2082 search_key
.offset
= 0;
2084 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2088 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2089 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2090 struct btrfs_key key
;
2091 struct btrfs_dir_item
*di
;
2092 struct btrfs_dir_item
*log_di
;
2096 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2097 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2102 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2103 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2105 while (cur
< total_size
) {
2106 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2107 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2108 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2111 name
= kmalloc(name_len
, GFP_NOFS
);
2116 read_extent_buffer(path
->nodes
[0], name
,
2117 (unsigned long)(di
+ 1), name_len
);
2119 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2121 btrfs_release_path(log_path
);
2123 /* Doesn't exist in log tree, so delete it. */
2124 btrfs_release_path(path
);
2125 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2126 name
, name_len
, -1);
2133 ret
= btrfs_delete_one_dir_name(trans
, root
,
2137 btrfs_release_path(path
);
2142 if (IS_ERR(log_di
)) {
2143 ret
= PTR_ERR(log_di
);
2147 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2150 ret
= btrfs_next_leaf(root
, path
);
2156 btrfs_free_path(log_path
);
2157 btrfs_release_path(path
);
2163 * deletion replay happens before we copy any new directory items
2164 * out of the log or out of backreferences from inodes. It
2165 * scans the log to find ranges of keys that log is authoritative for,
2166 * and then scans the directory to find items in those ranges that are
2167 * not present in the log.
2169 * Anything we don't find in the log is unlinked and removed from the
2172 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2173 struct btrfs_root
*root
,
2174 struct btrfs_root
*log
,
2175 struct btrfs_path
*path
,
2176 u64 dirid
, int del_all
)
2180 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2182 struct btrfs_key dir_key
;
2183 struct btrfs_key found_key
;
2184 struct btrfs_path
*log_path
;
2187 dir_key
.objectid
= dirid
;
2188 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2189 log_path
= btrfs_alloc_path();
2193 dir
= read_one_inode(root
, dirid
);
2194 /* it isn't an error if the inode isn't there, that can happen
2195 * because we replay the deletes before we copy in the inode item
2199 btrfs_free_path(log_path
);
2207 range_end
= (u64
)-1;
2209 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2210 &range_start
, &range_end
);
2215 dir_key
.offset
= range_start
;
2218 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2223 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2224 if (path
->slots
[0] >= nritems
) {
2225 ret
= btrfs_next_leaf(root
, path
);
2231 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2233 if (found_key
.objectid
!= dirid
||
2234 found_key
.type
!= dir_key
.type
)
2237 if (found_key
.offset
> range_end
)
2240 ret
= check_item_in_log(trans
, root
, log
, path
,
2245 if (found_key
.offset
== (u64
)-1)
2247 dir_key
.offset
= found_key
.offset
+ 1;
2249 btrfs_release_path(path
);
2250 if (range_end
== (u64
)-1)
2252 range_start
= range_end
+ 1;
2257 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2258 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2259 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2260 btrfs_release_path(path
);
2264 btrfs_release_path(path
);
2265 btrfs_free_path(log_path
);
2271 * the process_func used to replay items from the log tree. This
2272 * gets called in two different stages. The first stage just looks
2273 * for inodes and makes sure they are all copied into the subvolume.
2275 * The second stage copies all the other item types from the log into
2276 * the subvolume. The two stage approach is slower, but gets rid of
2277 * lots of complexity around inodes referencing other inodes that exist
2278 * only in the log (references come from either directory items or inode
2281 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2282 struct walk_control
*wc
, u64 gen
)
2285 struct btrfs_path
*path
;
2286 struct btrfs_root
*root
= wc
->replay_dest
;
2287 struct btrfs_key key
;
2292 ret
= btrfs_read_buffer(eb
, gen
);
2296 level
= btrfs_header_level(eb
);
2301 path
= btrfs_alloc_path();
2305 nritems
= btrfs_header_nritems(eb
);
2306 for (i
= 0; i
< nritems
; i
++) {
2307 btrfs_item_key_to_cpu(eb
, &key
, i
);
2309 /* inode keys are done during the first stage */
2310 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2311 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2312 struct btrfs_inode_item
*inode_item
;
2315 inode_item
= btrfs_item_ptr(eb
, i
,
2316 struct btrfs_inode_item
);
2317 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2318 path
, key
.objectid
);
2321 mode
= btrfs_inode_mode(eb
, inode_item
);
2322 if (S_ISDIR(mode
)) {
2323 ret
= replay_dir_deletes(wc
->trans
,
2324 root
, log
, path
, key
.objectid
, 0);
2328 ret
= overwrite_item(wc
->trans
, root
, path
,
2333 /* for regular files, make sure corresponding
2334 * orhpan item exist. extents past the new EOF
2335 * will be truncated later by orphan cleanup.
2337 if (S_ISREG(mode
)) {
2338 ret
= insert_orphan_item(wc
->trans
, root
,
2344 ret
= link_to_fixup_dir(wc
->trans
, root
,
2345 path
, key
.objectid
);
2350 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2351 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2352 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2358 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2361 /* these keys are simply copied */
2362 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2363 ret
= overwrite_item(wc
->trans
, root
, path
,
2367 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2368 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2369 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2371 if (ret
&& ret
!= -ENOENT
)
2374 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2375 ret
= replay_one_extent(wc
->trans
, root
, path
,
2379 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2380 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2386 btrfs_free_path(path
);
2390 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2391 struct btrfs_root
*root
,
2392 struct btrfs_path
*path
, int *level
,
2393 struct walk_control
*wc
)
2398 struct extent_buffer
*next
;
2399 struct extent_buffer
*cur
;
2400 struct extent_buffer
*parent
;
2404 WARN_ON(*level
< 0);
2405 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2407 while (*level
> 0) {
2408 WARN_ON(*level
< 0);
2409 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2410 cur
= path
->nodes
[*level
];
2412 WARN_ON(btrfs_header_level(cur
) != *level
);
2414 if (path
->slots
[*level
] >=
2415 btrfs_header_nritems(cur
))
2418 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2419 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2420 blocksize
= root
->nodesize
;
2422 parent
= path
->nodes
[*level
];
2423 root_owner
= btrfs_header_owner(parent
);
2425 next
= btrfs_find_create_tree_block(root
, bytenr
);
2430 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2432 free_extent_buffer(next
);
2436 path
->slots
[*level
]++;
2438 ret
= btrfs_read_buffer(next
, ptr_gen
);
2440 free_extent_buffer(next
);
2445 btrfs_tree_lock(next
);
2446 btrfs_set_lock_blocking(next
);
2447 clean_tree_block(trans
, root
->fs_info
,
2449 btrfs_wait_tree_block_writeback(next
);
2450 btrfs_tree_unlock(next
);
2452 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2453 clear_extent_buffer_dirty(next
);
2456 WARN_ON(root_owner
!=
2457 BTRFS_TREE_LOG_OBJECTID
);
2458 ret
= btrfs_free_and_pin_reserved_extent(root
,
2461 free_extent_buffer(next
);
2465 free_extent_buffer(next
);
2468 ret
= btrfs_read_buffer(next
, ptr_gen
);
2470 free_extent_buffer(next
);
2474 WARN_ON(*level
<= 0);
2475 if (path
->nodes
[*level
-1])
2476 free_extent_buffer(path
->nodes
[*level
-1]);
2477 path
->nodes
[*level
-1] = next
;
2478 *level
= btrfs_header_level(next
);
2479 path
->slots
[*level
] = 0;
2482 WARN_ON(*level
< 0);
2483 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2485 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2491 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2492 struct btrfs_root
*root
,
2493 struct btrfs_path
*path
, int *level
,
2494 struct walk_control
*wc
)
2501 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2502 slot
= path
->slots
[i
];
2503 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2506 WARN_ON(*level
== 0);
2509 struct extent_buffer
*parent
;
2510 if (path
->nodes
[*level
] == root
->node
)
2511 parent
= path
->nodes
[*level
];
2513 parent
= path
->nodes
[*level
+ 1];
2515 root_owner
= btrfs_header_owner(parent
);
2516 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2517 btrfs_header_generation(path
->nodes
[*level
]));
2522 struct extent_buffer
*next
;
2524 next
= path
->nodes
[*level
];
2527 btrfs_tree_lock(next
);
2528 btrfs_set_lock_blocking(next
);
2529 clean_tree_block(trans
, root
->fs_info
,
2531 btrfs_wait_tree_block_writeback(next
);
2532 btrfs_tree_unlock(next
);
2534 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2535 clear_extent_buffer_dirty(next
);
2538 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2539 ret
= btrfs_free_and_pin_reserved_extent(root
,
2540 path
->nodes
[*level
]->start
,
2541 path
->nodes
[*level
]->len
);
2545 free_extent_buffer(path
->nodes
[*level
]);
2546 path
->nodes
[*level
] = NULL
;
2554 * drop the reference count on the tree rooted at 'snap'. This traverses
2555 * the tree freeing any blocks that have a ref count of zero after being
2558 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2559 struct btrfs_root
*log
, struct walk_control
*wc
)
2564 struct btrfs_path
*path
;
2567 path
= btrfs_alloc_path();
2571 level
= btrfs_header_level(log
->node
);
2573 path
->nodes
[level
] = log
->node
;
2574 extent_buffer_get(log
->node
);
2575 path
->slots
[level
] = 0;
2578 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2586 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2595 /* was the root node processed? if not, catch it here */
2596 if (path
->nodes
[orig_level
]) {
2597 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2598 btrfs_header_generation(path
->nodes
[orig_level
]));
2602 struct extent_buffer
*next
;
2604 next
= path
->nodes
[orig_level
];
2607 btrfs_tree_lock(next
);
2608 btrfs_set_lock_blocking(next
);
2609 clean_tree_block(trans
, log
->fs_info
, next
);
2610 btrfs_wait_tree_block_writeback(next
);
2611 btrfs_tree_unlock(next
);
2613 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2614 clear_extent_buffer_dirty(next
);
2617 WARN_ON(log
->root_key
.objectid
!=
2618 BTRFS_TREE_LOG_OBJECTID
);
2619 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2627 btrfs_free_path(path
);
2632 * helper function to update the item for a given subvolumes log root
2633 * in the tree of log roots
2635 static int update_log_root(struct btrfs_trans_handle
*trans
,
2636 struct btrfs_root
*log
)
2640 if (log
->log_transid
== 1) {
2641 /* insert root item on the first sync */
2642 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2643 &log
->root_key
, &log
->root_item
);
2645 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2646 &log
->root_key
, &log
->root_item
);
2651 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2654 int index
= transid
% 2;
2657 * we only allow two pending log transactions at a time,
2658 * so we know that if ours is more than 2 older than the
2659 * current transaction, we're done
2662 prepare_to_wait(&root
->log_commit_wait
[index
],
2663 &wait
, TASK_UNINTERRUPTIBLE
);
2664 mutex_unlock(&root
->log_mutex
);
2666 if (root
->log_transid_committed
< transid
&&
2667 atomic_read(&root
->log_commit
[index
]))
2670 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2671 mutex_lock(&root
->log_mutex
);
2672 } while (root
->log_transid_committed
< transid
&&
2673 atomic_read(&root
->log_commit
[index
]));
2676 static void wait_for_writer(struct btrfs_root
*root
)
2680 while (atomic_read(&root
->log_writers
)) {
2681 prepare_to_wait(&root
->log_writer_wait
,
2682 &wait
, TASK_UNINTERRUPTIBLE
);
2683 mutex_unlock(&root
->log_mutex
);
2684 if (atomic_read(&root
->log_writers
))
2686 finish_wait(&root
->log_writer_wait
, &wait
);
2687 mutex_lock(&root
->log_mutex
);
2691 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2692 struct btrfs_log_ctx
*ctx
)
2697 mutex_lock(&root
->log_mutex
);
2698 list_del_init(&ctx
->list
);
2699 mutex_unlock(&root
->log_mutex
);
2703 * Invoked in log mutex context, or be sure there is no other task which
2704 * can access the list.
2706 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2707 int index
, int error
)
2709 struct btrfs_log_ctx
*ctx
;
2710 struct btrfs_log_ctx
*safe
;
2712 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2713 list_del_init(&ctx
->list
);
2714 ctx
->log_ret
= error
;
2717 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
2721 * btrfs_sync_log does sends a given tree log down to the disk and
2722 * updates the super blocks to record it. When this call is done,
2723 * you know that any inodes previously logged are safely on disk only
2726 * Any other return value means you need to call btrfs_commit_transaction.
2727 * Some of the edge cases for fsyncing directories that have had unlinks
2728 * or renames done in the past mean that sometimes the only safe
2729 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2730 * that has happened.
2732 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2733 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2739 struct btrfs_root
*log
= root
->log_root
;
2740 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2741 int log_transid
= 0;
2742 struct btrfs_log_ctx root_log_ctx
;
2743 struct blk_plug plug
;
2745 mutex_lock(&root
->log_mutex
);
2746 log_transid
= ctx
->log_transid
;
2747 if (root
->log_transid_committed
>= log_transid
) {
2748 mutex_unlock(&root
->log_mutex
);
2749 return ctx
->log_ret
;
2752 index1
= log_transid
% 2;
2753 if (atomic_read(&root
->log_commit
[index1
])) {
2754 wait_log_commit(root
, log_transid
);
2755 mutex_unlock(&root
->log_mutex
);
2756 return ctx
->log_ret
;
2758 ASSERT(log_transid
== root
->log_transid
);
2759 atomic_set(&root
->log_commit
[index1
], 1);
2761 /* wait for previous tree log sync to complete */
2762 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2763 wait_log_commit(root
, log_transid
- 1);
2766 int batch
= atomic_read(&root
->log_batch
);
2767 /* when we're on an ssd, just kick the log commit out */
2768 if (!btrfs_test_opt(root
, SSD
) &&
2769 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2770 mutex_unlock(&root
->log_mutex
);
2771 schedule_timeout_uninterruptible(1);
2772 mutex_lock(&root
->log_mutex
);
2774 wait_for_writer(root
);
2775 if (batch
== atomic_read(&root
->log_batch
))
2779 /* bail out if we need to do a full commit */
2780 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2782 btrfs_free_logged_extents(log
, log_transid
);
2783 mutex_unlock(&root
->log_mutex
);
2787 if (log_transid
% 2 == 0)
2788 mark
= EXTENT_DIRTY
;
2792 /* we start IO on all the marked extents here, but we don't actually
2793 * wait for them until later.
2795 blk_start_plug(&plug
);
2796 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2798 blk_finish_plug(&plug
);
2799 btrfs_abort_transaction(trans
, root
, ret
);
2800 btrfs_free_logged_extents(log
, log_transid
);
2801 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2802 mutex_unlock(&root
->log_mutex
);
2806 btrfs_set_root_node(&log
->root_item
, log
->node
);
2808 root
->log_transid
++;
2809 log
->log_transid
= root
->log_transid
;
2810 root
->log_start_pid
= 0;
2812 * Update or create log root item under the root's log_mutex to prevent
2813 * races with concurrent log syncs that can lead to failure to update
2814 * log root item because it was not created yet.
2816 ret
= update_log_root(trans
, log
);
2818 * IO has been started, blocks of the log tree have WRITTEN flag set
2819 * in their headers. new modifications of the log will be written to
2820 * new positions. so it's safe to allow log writers to go in.
2822 mutex_unlock(&root
->log_mutex
);
2824 btrfs_init_log_ctx(&root_log_ctx
);
2826 mutex_lock(&log_root_tree
->log_mutex
);
2827 atomic_inc(&log_root_tree
->log_batch
);
2828 atomic_inc(&log_root_tree
->log_writers
);
2830 index2
= log_root_tree
->log_transid
% 2;
2831 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
2832 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
2834 mutex_unlock(&log_root_tree
->log_mutex
);
2836 mutex_lock(&log_root_tree
->log_mutex
);
2837 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2839 * Implicit memory barrier after atomic_dec_and_test
2841 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2842 wake_up(&log_root_tree
->log_writer_wait
);
2846 if (!list_empty(&root_log_ctx
.list
))
2847 list_del_init(&root_log_ctx
.list
);
2849 blk_finish_plug(&plug
);
2850 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2852 if (ret
!= -ENOSPC
) {
2853 btrfs_abort_transaction(trans
, root
, ret
);
2854 mutex_unlock(&log_root_tree
->log_mutex
);
2857 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2858 btrfs_free_logged_extents(log
, log_transid
);
2859 mutex_unlock(&log_root_tree
->log_mutex
);
2864 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
2865 blk_finish_plug(&plug
);
2866 list_del_init(&root_log_ctx
.list
);
2867 mutex_unlock(&log_root_tree
->log_mutex
);
2868 ret
= root_log_ctx
.log_ret
;
2872 index2
= root_log_ctx
.log_transid
% 2;
2873 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2874 blk_finish_plug(&plug
);
2875 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
,
2877 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2878 wait_log_commit(log_root_tree
,
2879 root_log_ctx
.log_transid
);
2880 mutex_unlock(&log_root_tree
->log_mutex
);
2882 ret
= root_log_ctx
.log_ret
;
2885 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
2886 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2888 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2889 wait_log_commit(log_root_tree
,
2890 root_log_ctx
.log_transid
- 1);
2893 wait_for_writer(log_root_tree
);
2896 * now that we've moved on to the tree of log tree roots,
2897 * check the full commit flag again
2899 if (btrfs_need_log_full_commit(root
->fs_info
, trans
)) {
2900 blk_finish_plug(&plug
);
2901 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2902 btrfs_free_logged_extents(log
, log_transid
);
2903 mutex_unlock(&log_root_tree
->log_mutex
);
2905 goto out_wake_log_root
;
2908 ret
= btrfs_write_marked_extents(log_root_tree
,
2909 &log_root_tree
->dirty_log_pages
,
2910 EXTENT_DIRTY
| EXTENT_NEW
);
2911 blk_finish_plug(&plug
);
2913 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2914 btrfs_abort_transaction(trans
, root
, ret
);
2915 btrfs_free_logged_extents(log
, log_transid
);
2916 mutex_unlock(&log_root_tree
->log_mutex
);
2917 goto out_wake_log_root
;
2919 ret
= btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2921 ret
= btrfs_wait_marked_extents(log_root_tree
,
2922 &log_root_tree
->dirty_log_pages
,
2923 EXTENT_NEW
| EXTENT_DIRTY
);
2925 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2926 btrfs_free_logged_extents(log
, log_transid
);
2927 mutex_unlock(&log_root_tree
->log_mutex
);
2928 goto out_wake_log_root
;
2930 btrfs_wait_logged_extents(trans
, log
, log_transid
);
2932 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2933 log_root_tree
->node
->start
);
2934 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2935 btrfs_header_level(log_root_tree
->node
));
2937 log_root_tree
->log_transid
++;
2938 mutex_unlock(&log_root_tree
->log_mutex
);
2941 * nobody else is going to jump in and write the the ctree
2942 * super here because the log_commit atomic below is protecting
2943 * us. We must be called with a transaction handle pinning
2944 * the running transaction open, so a full commit can't hop
2945 * in and cause problems either.
2947 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2949 btrfs_set_log_full_commit(root
->fs_info
, trans
);
2950 btrfs_abort_transaction(trans
, root
, ret
);
2951 goto out_wake_log_root
;
2954 mutex_lock(&root
->log_mutex
);
2955 if (root
->last_log_commit
< log_transid
)
2956 root
->last_log_commit
= log_transid
;
2957 mutex_unlock(&root
->log_mutex
);
2960 mutex_lock(&log_root_tree
->log_mutex
);
2961 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
2963 log_root_tree
->log_transid_committed
++;
2964 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2965 mutex_unlock(&log_root_tree
->log_mutex
);
2968 * The barrier before waitqueue_active is needed so all the updates
2969 * above are seen by the woken threads. It might not be necessary, but
2970 * proving that seems to be hard.
2973 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2974 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2976 mutex_lock(&root
->log_mutex
);
2977 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
2978 root
->log_transid_committed
++;
2979 atomic_set(&root
->log_commit
[index1
], 0);
2980 mutex_unlock(&root
->log_mutex
);
2983 * The barrier before waitqueue_active is needed so all the updates
2984 * above are seen by the woken threads. It might not be necessary, but
2985 * proving that seems to be hard.
2988 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2989 wake_up(&root
->log_commit_wait
[index1
]);
2993 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2994 struct btrfs_root
*log
)
2999 struct walk_control wc
= {
3001 .process_func
= process_one_buffer
3004 ret
= walk_log_tree(trans
, log
, &wc
);
3005 /* I don't think this can happen but just in case */
3007 btrfs_abort_transaction(trans
, log
, ret
);
3010 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
3011 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
3016 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
3017 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
3021 * We may have short-circuited the log tree with the full commit logic
3022 * and left ordered extents on our list, so clear these out to keep us
3023 * from leaking inodes and memory.
3025 btrfs_free_logged_extents(log
, 0);
3026 btrfs_free_logged_extents(log
, 1);
3028 free_extent_buffer(log
->node
);
3033 * free all the extents used by the tree log. This should be called
3034 * at commit time of the full transaction
3036 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3038 if (root
->log_root
) {
3039 free_log_tree(trans
, root
->log_root
);
3040 root
->log_root
= NULL
;
3045 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3046 struct btrfs_fs_info
*fs_info
)
3048 if (fs_info
->log_root_tree
) {
3049 free_log_tree(trans
, fs_info
->log_root_tree
);
3050 fs_info
->log_root_tree
= NULL
;
3056 * If both a file and directory are logged, and unlinks or renames are
3057 * mixed in, we have a few interesting corners:
3059 * create file X in dir Y
3060 * link file X to X.link in dir Y
3062 * unlink file X but leave X.link
3065 * After a crash we would expect only X.link to exist. But file X
3066 * didn't get fsync'd again so the log has back refs for X and X.link.
3068 * We solve this by removing directory entries and inode backrefs from the
3069 * log when a file that was logged in the current transaction is
3070 * unlinked. Any later fsync will include the updated log entries, and
3071 * we'll be able to reconstruct the proper directory items from backrefs.
3073 * This optimizations allows us to avoid relogging the entire inode
3074 * or the entire directory.
3076 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3077 struct btrfs_root
*root
,
3078 const char *name
, int name_len
,
3079 struct inode
*dir
, u64 index
)
3081 struct btrfs_root
*log
;
3082 struct btrfs_dir_item
*di
;
3083 struct btrfs_path
*path
;
3087 u64 dir_ino
= btrfs_ino(dir
);
3089 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
3092 ret
= join_running_log_trans(root
);
3096 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
3098 log
= root
->log_root
;
3099 path
= btrfs_alloc_path();
3105 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3106 name
, name_len
, -1);
3112 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3113 bytes_del
+= name_len
;
3119 btrfs_release_path(path
);
3120 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3121 index
, name
, name_len
, -1);
3127 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3128 bytes_del
+= name_len
;
3135 /* update the directory size in the log to reflect the names
3139 struct btrfs_key key
;
3141 key
.objectid
= dir_ino
;
3143 key
.type
= BTRFS_INODE_ITEM_KEY
;
3144 btrfs_release_path(path
);
3146 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3152 struct btrfs_inode_item
*item
;
3155 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3156 struct btrfs_inode_item
);
3157 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3158 if (i_size
> bytes_del
)
3159 i_size
-= bytes_del
;
3162 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3163 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3166 btrfs_release_path(path
);
3169 btrfs_free_path(path
);
3171 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
3172 if (err
== -ENOSPC
) {
3173 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3175 } else if (err
< 0 && err
!= -ENOENT
) {
3176 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3177 btrfs_abort_transaction(trans
, root
, err
);
3180 btrfs_end_log_trans(root
);
3185 /* see comments for btrfs_del_dir_entries_in_log */
3186 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3187 struct btrfs_root
*root
,
3188 const char *name
, int name_len
,
3189 struct inode
*inode
, u64 dirid
)
3191 struct btrfs_root
*log
;
3195 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
3198 ret
= join_running_log_trans(root
);
3201 log
= root
->log_root
;
3202 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3204 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3206 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3207 if (ret
== -ENOSPC
) {
3208 btrfs_set_log_full_commit(root
->fs_info
, trans
);
3210 } else if (ret
< 0 && ret
!= -ENOENT
)
3211 btrfs_abort_transaction(trans
, root
, ret
);
3212 btrfs_end_log_trans(root
);
3218 * creates a range item in the log for 'dirid'. first_offset and
3219 * last_offset tell us which parts of the key space the log should
3220 * be considered authoritative for.
3222 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3223 struct btrfs_root
*log
,
3224 struct btrfs_path
*path
,
3225 int key_type
, u64 dirid
,
3226 u64 first_offset
, u64 last_offset
)
3229 struct btrfs_key key
;
3230 struct btrfs_dir_log_item
*item
;
3232 key
.objectid
= dirid
;
3233 key
.offset
= first_offset
;
3234 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3235 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3237 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3238 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3242 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3243 struct btrfs_dir_log_item
);
3244 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3245 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3246 btrfs_release_path(path
);
3251 * log all the items included in the current transaction for a given
3252 * directory. This also creates the range items in the log tree required
3253 * to replay anything deleted before the fsync
3255 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3256 struct btrfs_root
*root
, struct inode
*inode
,
3257 struct btrfs_path
*path
,
3258 struct btrfs_path
*dst_path
, int key_type
,
3259 struct btrfs_log_ctx
*ctx
,
3260 u64 min_offset
, u64
*last_offset_ret
)
3262 struct btrfs_key min_key
;
3263 struct btrfs_root
*log
= root
->log_root
;
3264 struct extent_buffer
*src
;
3269 u64 first_offset
= min_offset
;
3270 u64 last_offset
= (u64
)-1;
3271 u64 ino
= btrfs_ino(inode
);
3273 log
= root
->log_root
;
3275 min_key
.objectid
= ino
;
3276 min_key
.type
= key_type
;
3277 min_key
.offset
= min_offset
;
3279 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3282 * we didn't find anything from this transaction, see if there
3283 * is anything at all
3285 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3286 min_key
.objectid
= ino
;
3287 min_key
.type
= key_type
;
3288 min_key
.offset
= (u64
)-1;
3289 btrfs_release_path(path
);
3290 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3292 btrfs_release_path(path
);
3295 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3297 /* if ret == 0 there are items for this type,
3298 * create a range to tell us the last key of this type.
3299 * otherwise, there are no items in this directory after
3300 * *min_offset, and we create a range to indicate that.
3303 struct btrfs_key tmp
;
3304 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3306 if (key_type
== tmp
.type
)
3307 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3312 /* go backward to find any previous key */
3313 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3315 struct btrfs_key tmp
;
3316 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3317 if (key_type
== tmp
.type
) {
3318 first_offset
= tmp
.offset
;
3319 ret
= overwrite_item(trans
, log
, dst_path
,
3320 path
->nodes
[0], path
->slots
[0],
3328 btrfs_release_path(path
);
3331 * Find the first key from this transaction again. See the note for
3332 * log_new_dir_dentries, if we're logging a directory recursively we
3333 * won't be holding its i_mutex, which means we can modify the directory
3334 * while we're logging it. If we remove an entry between our first
3335 * search and this search we'll not find the key again and can just
3338 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3343 * we have a block from this transaction, log every item in it
3344 * from our directory
3347 struct btrfs_key tmp
;
3348 src
= path
->nodes
[0];
3349 nritems
= btrfs_header_nritems(src
);
3350 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3351 struct btrfs_dir_item
*di
;
3353 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3355 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3357 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3365 * We must make sure that when we log a directory entry,
3366 * the corresponding inode, after log replay, has a
3367 * matching link count. For example:
3373 * xfs_io -c "fsync" mydir
3375 * <mount fs and log replay>
3377 * Would result in a fsync log that when replayed, our
3378 * file inode would have a link count of 1, but we get
3379 * two directory entries pointing to the same inode.
3380 * After removing one of the names, it would not be
3381 * possible to remove the other name, which resulted
3382 * always in stale file handle errors, and would not
3383 * be possible to rmdir the parent directory, since
3384 * its i_size could never decrement to the value
3385 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3387 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3388 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3390 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3391 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3392 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3393 ctx
->log_new_dentries
= true;
3395 path
->slots
[0] = nritems
;
3398 * look ahead to the next item and see if it is also
3399 * from this directory and from this transaction
3401 ret
= btrfs_next_leaf(root
, path
);
3404 last_offset
= (u64
)-1;
3409 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3410 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3411 last_offset
= (u64
)-1;
3414 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3415 ret
= overwrite_item(trans
, log
, dst_path
,
3416 path
->nodes
[0], path
->slots
[0],
3421 last_offset
= tmp
.offset
;
3426 btrfs_release_path(path
);
3427 btrfs_release_path(dst_path
);
3430 *last_offset_ret
= last_offset
;
3432 * insert the log range keys to indicate where the log
3435 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3436 ino
, first_offset
, last_offset
);
3444 * logging directories is very similar to logging inodes, We find all the items
3445 * from the current transaction and write them to the log.
3447 * The recovery code scans the directory in the subvolume, and if it finds a
3448 * key in the range logged that is not present in the log tree, then it means
3449 * that dir entry was unlinked during the transaction.
3451 * In order for that scan to work, we must include one key smaller than
3452 * the smallest logged by this transaction and one key larger than the largest
3453 * key logged by this transaction.
3455 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3456 struct btrfs_root
*root
, struct inode
*inode
,
3457 struct btrfs_path
*path
,
3458 struct btrfs_path
*dst_path
,
3459 struct btrfs_log_ctx
*ctx
)
3464 int key_type
= BTRFS_DIR_ITEM_KEY
;
3470 ret
= log_dir_items(trans
, root
, inode
, path
,
3471 dst_path
, key_type
, ctx
, min_key
,
3475 if (max_key
== (u64
)-1)
3477 min_key
= max_key
+ 1;
3480 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3481 key_type
= BTRFS_DIR_INDEX_KEY
;
3488 * a helper function to drop items from the log before we relog an
3489 * inode. max_key_type indicates the highest item type to remove.
3490 * This cannot be run for file data extents because it does not
3491 * free the extents they point to.
3493 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3494 struct btrfs_root
*log
,
3495 struct btrfs_path
*path
,
3496 u64 objectid
, int max_key_type
)
3499 struct btrfs_key key
;
3500 struct btrfs_key found_key
;
3503 key
.objectid
= objectid
;
3504 key
.type
= max_key_type
;
3505 key
.offset
= (u64
)-1;
3508 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3509 BUG_ON(ret
== 0); /* Logic error */
3513 if (path
->slots
[0] == 0)
3517 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3520 if (found_key
.objectid
!= objectid
)
3523 found_key
.offset
= 0;
3525 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3528 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3529 path
->slots
[0] - start_slot
+ 1);
3531 * If start slot isn't 0 then we don't need to re-search, we've
3532 * found the last guy with the objectid in this tree.
3534 if (ret
|| start_slot
!= 0)
3536 btrfs_release_path(path
);
3538 btrfs_release_path(path
);
3544 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3545 struct extent_buffer
*leaf
,
3546 struct btrfs_inode_item
*item
,
3547 struct inode
*inode
, int log_inode_only
,
3550 struct btrfs_map_token token
;
3552 btrfs_init_map_token(&token
);
3554 if (log_inode_only
) {
3555 /* set the generation to zero so the recover code
3556 * can tell the difference between an logging
3557 * just to say 'this inode exists' and a logging
3558 * to say 'update this inode with these values'
3560 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3561 btrfs_set_token_inode_size(leaf
, item
, logged_isize
, &token
);
3563 btrfs_set_token_inode_generation(leaf
, item
,
3564 BTRFS_I(inode
)->generation
,
3566 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3569 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3570 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3571 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3572 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3574 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3575 inode
->i_atime
.tv_sec
, &token
);
3576 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3577 inode
->i_atime
.tv_nsec
, &token
);
3579 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3580 inode
->i_mtime
.tv_sec
, &token
);
3581 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3582 inode
->i_mtime
.tv_nsec
, &token
);
3584 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3585 inode
->i_ctime
.tv_sec
, &token
);
3586 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3587 inode
->i_ctime
.tv_nsec
, &token
);
3589 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3592 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3593 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3594 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3595 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3596 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3599 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3600 struct btrfs_root
*log
, struct btrfs_path
*path
,
3601 struct inode
*inode
)
3603 struct btrfs_inode_item
*inode_item
;
3606 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3607 &BTRFS_I(inode
)->location
,
3608 sizeof(*inode_item
));
3609 if (ret
&& ret
!= -EEXIST
)
3611 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3612 struct btrfs_inode_item
);
3613 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0, 0);
3614 btrfs_release_path(path
);
3618 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3619 struct inode
*inode
,
3620 struct btrfs_path
*dst_path
,
3621 struct btrfs_path
*src_path
, u64
*last_extent
,
3622 int start_slot
, int nr
, int inode_only
,
3625 unsigned long src_offset
;
3626 unsigned long dst_offset
;
3627 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3628 struct btrfs_file_extent_item
*extent
;
3629 struct btrfs_inode_item
*inode_item
;
3630 struct extent_buffer
*src
= src_path
->nodes
[0];
3631 struct btrfs_key first_key
, last_key
, key
;
3633 struct btrfs_key
*ins_keys
;
3637 struct list_head ordered_sums
;
3638 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3639 bool has_extents
= false;
3640 bool need_find_last_extent
= true;
3643 INIT_LIST_HEAD(&ordered_sums
);
3645 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3646 nr
* sizeof(u32
), GFP_NOFS
);
3650 first_key
.objectid
= (u64
)-1;
3652 ins_sizes
= (u32
*)ins_data
;
3653 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3655 for (i
= 0; i
< nr
; i
++) {
3656 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3657 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3659 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3660 ins_keys
, ins_sizes
, nr
);
3666 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3667 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3668 dst_path
->slots
[0]);
3670 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3672 if ((i
== (nr
- 1)))
3673 last_key
= ins_keys
[i
];
3675 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3676 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3678 struct btrfs_inode_item
);
3679 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3680 inode
, inode_only
== LOG_INODE_EXISTS
,
3683 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3684 src_offset
, ins_sizes
[i
]);
3688 * We set need_find_last_extent here in case we know we were
3689 * processing other items and then walk into the first extent in
3690 * the inode. If we don't hit an extent then nothing changes,
3691 * we'll do the last search the next time around.
3693 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
) {
3695 if (first_key
.objectid
== (u64
)-1)
3696 first_key
= ins_keys
[i
];
3698 need_find_last_extent
= false;
3701 /* take a reference on file data extents so that truncates
3702 * or deletes of this inode don't have to relog the inode
3705 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
3708 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3709 struct btrfs_file_extent_item
);
3711 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3714 found_type
= btrfs_file_extent_type(src
, extent
);
3715 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3717 ds
= btrfs_file_extent_disk_bytenr(src
,
3719 /* ds == 0 is a hole */
3723 dl
= btrfs_file_extent_disk_num_bytes(src
,
3725 cs
= btrfs_file_extent_offset(src
, extent
);
3726 cl
= btrfs_file_extent_num_bytes(src
,
3728 if (btrfs_file_extent_compression(src
,
3734 ret
= btrfs_lookup_csums_range(
3735 log
->fs_info
->csum_root
,
3736 ds
+ cs
, ds
+ cs
+ cl
- 1,
3744 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3745 btrfs_release_path(dst_path
);
3749 * we have to do this after the loop above to avoid changing the
3750 * log tree while trying to change the log tree.
3752 while (!list_empty(&ordered_sums
)) {
3753 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3754 struct btrfs_ordered_sum
,
3757 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3758 list_del(&sums
->list
);
3765 if (need_find_last_extent
&& *last_extent
== first_key
.offset
) {
3767 * We don't have any leafs between our current one and the one
3768 * we processed before that can have file extent items for our
3769 * inode (and have a generation number smaller than our current
3772 need_find_last_extent
= false;
3776 * Because we use btrfs_search_forward we could skip leaves that were
3777 * not modified and then assume *last_extent is valid when it really
3778 * isn't. So back up to the previous leaf and read the end of the last
3779 * extent before we go and fill in holes.
3781 if (need_find_last_extent
) {
3784 ret
= btrfs_prev_leaf(BTRFS_I(inode
)->root
, src_path
);
3789 if (src_path
->slots
[0])
3790 src_path
->slots
[0]--;
3791 src
= src_path
->nodes
[0];
3792 btrfs_item_key_to_cpu(src
, &key
, src_path
->slots
[0]);
3793 if (key
.objectid
!= btrfs_ino(inode
) ||
3794 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3796 extent
= btrfs_item_ptr(src
, src_path
->slots
[0],
3797 struct btrfs_file_extent_item
);
3798 if (btrfs_file_extent_type(src
, extent
) ==
3799 BTRFS_FILE_EXTENT_INLINE
) {
3800 len
= btrfs_file_extent_inline_len(src
,
3803 *last_extent
= ALIGN(key
.offset
+ len
,
3806 len
= btrfs_file_extent_num_bytes(src
, extent
);
3807 *last_extent
= key
.offset
+ len
;
3811 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3812 * things could have happened
3814 * 1) A merge could have happened, so we could currently be on a leaf
3815 * that holds what we were copying in the first place.
3816 * 2) A split could have happened, and now not all of the items we want
3817 * are on the same leaf.
3819 * So we need to adjust how we search for holes, we need to drop the
3820 * path and re-search for the first extent key we found, and then walk
3821 * forward until we hit the last one we copied.
3823 if (need_find_last_extent
) {
3824 /* btrfs_prev_leaf could return 1 without releasing the path */
3825 btrfs_release_path(src_path
);
3826 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &first_key
,
3831 src
= src_path
->nodes
[0];
3832 i
= src_path
->slots
[0];
3838 * Ok so here we need to go through and fill in any holes we may have
3839 * to make sure that holes are punched for those areas in case they had
3840 * extents previously.
3846 if (i
>= btrfs_header_nritems(src_path
->nodes
[0])) {
3847 ret
= btrfs_next_leaf(BTRFS_I(inode
)->root
, src_path
);
3851 src
= src_path
->nodes
[0];
3853 need_find_last_extent
= true;
3856 btrfs_item_key_to_cpu(src
, &key
, i
);
3857 if (!btrfs_comp_cpu_keys(&key
, &last_key
))
3859 if (key
.objectid
!= btrfs_ino(inode
) ||
3860 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
3864 extent
= btrfs_item_ptr(src
, i
, struct btrfs_file_extent_item
);
3865 if (btrfs_file_extent_type(src
, extent
) ==
3866 BTRFS_FILE_EXTENT_INLINE
) {
3867 len
= btrfs_file_extent_inline_len(src
, i
, extent
);
3868 extent_end
= ALIGN(key
.offset
+ len
, log
->sectorsize
);
3870 len
= btrfs_file_extent_num_bytes(src
, extent
);
3871 extent_end
= key
.offset
+ len
;
3875 if (*last_extent
== key
.offset
) {
3876 *last_extent
= extent_end
;
3879 offset
= *last_extent
;
3880 len
= key
.offset
- *last_extent
;
3881 ret
= btrfs_insert_file_extent(trans
, log
, btrfs_ino(inode
),
3882 offset
, 0, 0, len
, 0, len
, 0,
3886 *last_extent
= extent_end
;
3889 * Need to let the callers know we dropped the path so they should
3892 if (!ret
&& need_find_last_extent
)
3897 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3899 struct extent_map
*em1
, *em2
;
3901 em1
= list_entry(a
, struct extent_map
, list
);
3902 em2
= list_entry(b
, struct extent_map
, list
);
3904 if (em1
->start
< em2
->start
)
3906 else if (em1
->start
> em2
->start
)
3911 static int wait_ordered_extents(struct btrfs_trans_handle
*trans
,
3912 struct inode
*inode
,
3913 struct btrfs_root
*root
,
3914 const struct extent_map
*em
,
3915 const struct list_head
*logged_list
,
3916 bool *ordered_io_error
)
3918 struct btrfs_ordered_extent
*ordered
;
3919 struct btrfs_root
*log
= root
->log_root
;
3920 u64 mod_start
= em
->mod_start
;
3921 u64 mod_len
= em
->mod_len
;
3922 const bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3925 LIST_HEAD(ordered_sums
);
3928 *ordered_io_error
= false;
3930 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
3931 em
->block_start
== EXTENT_MAP_HOLE
)
3935 * Wait far any ordered extent that covers our extent map. If it
3936 * finishes without an error, first check and see if our csums are on
3937 * our outstanding ordered extents.
3939 list_for_each_entry(ordered
, logged_list
, log_list
) {
3940 struct btrfs_ordered_sum
*sum
;
3945 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3946 mod_start
+ mod_len
<= ordered
->file_offset
)
3949 if (!test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) &&
3950 !test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
) &&
3951 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
)) {
3952 const u64 start
= ordered
->file_offset
;
3953 const u64 end
= ordered
->file_offset
+ ordered
->len
- 1;
3955 WARN_ON(ordered
->inode
!= inode
);
3956 filemap_fdatawrite_range(inode
->i_mapping
, start
, end
);
3959 wait_event(ordered
->wait
,
3960 (test_bit(BTRFS_ORDERED_IO_DONE
, &ordered
->flags
) ||
3961 test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)));
3963 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered
->flags
)) {
3965 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3966 * i_mapping flags, so that the next fsync won't get
3967 * an outdated io error too.
3969 btrfs_inode_check_errors(inode
);
3970 *ordered_io_error
= true;
3974 * We are going to copy all the csums on this ordered extent, so
3975 * go ahead and adjust mod_start and mod_len in case this
3976 * ordered extent has already been logged.
3978 if (ordered
->file_offset
> mod_start
) {
3979 if (ordered
->file_offset
+ ordered
->len
>=
3980 mod_start
+ mod_len
)
3981 mod_len
= ordered
->file_offset
- mod_start
;
3983 * If we have this case
3985 * |--------- logged extent ---------|
3986 * |----- ordered extent ----|
3988 * Just don't mess with mod_start and mod_len, we'll
3989 * just end up logging more csums than we need and it
3993 if (ordered
->file_offset
+ ordered
->len
<
3994 mod_start
+ mod_len
) {
3995 mod_len
= (mod_start
+ mod_len
) -
3996 (ordered
->file_offset
+ ordered
->len
);
3997 mod_start
= ordered
->file_offset
+
4008 * To keep us from looping for the above case of an ordered
4009 * extent that falls inside of the logged extent.
4011 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
4015 list_for_each_entry(sum
, &ordered
->list
, list
) {
4016 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
4022 if (*ordered_io_error
|| !mod_len
|| ret
|| skip_csum
)
4025 if (em
->compress_type
) {
4027 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4029 csum_offset
= mod_start
- em
->start
;
4033 /* block start is already adjusted for the file extent offset. */
4034 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
4035 em
->block_start
+ csum_offset
,
4036 em
->block_start
+ csum_offset
+
4037 csum_len
- 1, &ordered_sums
, 0);
4041 while (!list_empty(&ordered_sums
)) {
4042 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4043 struct btrfs_ordered_sum
,
4046 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
4047 list_del(&sums
->list
);
4054 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4055 struct inode
*inode
, struct btrfs_root
*root
,
4056 const struct extent_map
*em
,
4057 struct btrfs_path
*path
,
4058 const struct list_head
*logged_list
,
4059 struct btrfs_log_ctx
*ctx
)
4061 struct btrfs_root
*log
= root
->log_root
;
4062 struct btrfs_file_extent_item
*fi
;
4063 struct extent_buffer
*leaf
;
4064 struct btrfs_map_token token
;
4065 struct btrfs_key key
;
4066 u64 extent_offset
= em
->start
- em
->orig_start
;
4069 int extent_inserted
= 0;
4070 bool ordered_io_err
= false;
4072 ret
= wait_ordered_extents(trans
, inode
, root
, em
, logged_list
,
4077 if (ordered_io_err
) {
4082 btrfs_init_map_token(&token
);
4084 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
4085 em
->start
+ em
->len
, NULL
, 0, 1,
4086 sizeof(*fi
), &extent_inserted
);
4090 if (!extent_inserted
) {
4091 key
.objectid
= btrfs_ino(inode
);
4092 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4093 key
.offset
= em
->start
;
4095 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4100 leaf
= path
->nodes
[0];
4101 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4102 struct btrfs_file_extent_item
);
4104 btrfs_set_token_file_extent_generation(leaf
, fi
, trans
->transid
,
4106 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4107 btrfs_set_token_file_extent_type(leaf
, fi
,
4108 BTRFS_FILE_EXTENT_PREALLOC
,
4111 btrfs_set_token_file_extent_type(leaf
, fi
,
4112 BTRFS_FILE_EXTENT_REG
,
4115 block_len
= max(em
->block_len
, em
->orig_block_len
);
4116 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4117 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4120 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4122 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4123 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
4125 extent_offset
, &token
);
4126 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
4129 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
4130 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
4134 btrfs_set_token_file_extent_offset(leaf
, fi
, extent_offset
, &token
);
4135 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
4136 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
4137 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
4139 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
4140 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
4141 btrfs_mark_buffer_dirty(leaf
);
4143 btrfs_release_path(path
);
4148 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4149 struct btrfs_root
*root
,
4150 struct inode
*inode
,
4151 struct btrfs_path
*path
,
4152 struct list_head
*logged_list
,
4153 struct btrfs_log_ctx
*ctx
)
4155 struct extent_map
*em
, *n
;
4156 struct list_head extents
;
4157 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
4162 INIT_LIST_HEAD(&extents
);
4164 write_lock(&tree
->lock
);
4165 test_gen
= root
->fs_info
->last_trans_committed
;
4167 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4168 list_del_init(&em
->list
);
4171 * Just an arbitrary number, this can be really CPU intensive
4172 * once we start getting a lot of extents, and really once we
4173 * have a bunch of extents we just want to commit since it will
4176 if (++num
> 32768) {
4177 list_del_init(&tree
->modified_extents
);
4182 if (em
->generation
<= test_gen
)
4184 /* Need a ref to keep it from getting evicted from cache */
4185 atomic_inc(&em
->refs
);
4186 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4187 list_add_tail(&em
->list
, &extents
);
4191 list_sort(NULL
, &extents
, extent_cmp
);
4194 while (!list_empty(&extents
)) {
4195 em
= list_entry(extents
.next
, struct extent_map
, list
);
4197 list_del_init(&em
->list
);
4200 * If we had an error we just need to delete everybody from our
4204 clear_em_logging(tree
, em
);
4205 free_extent_map(em
);
4209 write_unlock(&tree
->lock
);
4211 ret
= log_one_extent(trans
, inode
, root
, em
, path
, logged_list
,
4213 write_lock(&tree
->lock
);
4214 clear_em_logging(tree
, em
);
4215 free_extent_map(em
);
4217 WARN_ON(!list_empty(&extents
));
4218 write_unlock(&tree
->lock
);
4220 btrfs_release_path(path
);
4224 static int logged_inode_size(struct btrfs_root
*log
, struct inode
*inode
,
4225 struct btrfs_path
*path
, u64
*size_ret
)
4227 struct btrfs_key key
;
4230 key
.objectid
= btrfs_ino(inode
);
4231 key
.type
= BTRFS_INODE_ITEM_KEY
;
4234 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4237 } else if (ret
> 0) {
4240 struct btrfs_inode_item
*item
;
4242 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4243 struct btrfs_inode_item
);
4244 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4247 btrfs_release_path(path
);
4252 * At the moment we always log all xattrs. This is to figure out at log replay
4253 * time which xattrs must have their deletion replayed. If a xattr is missing
4254 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4255 * because if a xattr is deleted, the inode is fsynced and a power failure
4256 * happens, causing the log to be replayed the next time the fs is mounted,
4257 * we want the xattr to not exist anymore (same behaviour as other filesystems
4258 * with a journal, ext3/4, xfs, f2fs, etc).
4260 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4261 struct btrfs_root
*root
,
4262 struct inode
*inode
,
4263 struct btrfs_path
*path
,
4264 struct btrfs_path
*dst_path
)
4267 struct btrfs_key key
;
4268 const u64 ino
= btrfs_ino(inode
);
4273 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4276 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4281 int slot
= path
->slots
[0];
4282 struct extent_buffer
*leaf
= path
->nodes
[0];
4283 int nritems
= btrfs_header_nritems(leaf
);
4285 if (slot
>= nritems
) {
4287 u64 last_extent
= 0;
4289 ret
= copy_items(trans
, inode
, dst_path
, path
,
4290 &last_extent
, start_slot
,
4292 /* can't be 1, extent items aren't processed */
4298 ret
= btrfs_next_leaf(root
, path
);
4306 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4307 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4317 u64 last_extent
= 0;
4319 ret
= copy_items(trans
, inode
, dst_path
, path
,
4320 &last_extent
, start_slot
,
4322 /* can't be 1, extent items aren't processed */
4332 * If the no holes feature is enabled we need to make sure any hole between the
4333 * last extent and the i_size of our inode is explicitly marked in the log. This
4334 * is to make sure that doing something like:
4336 * 1) create file with 128Kb of data
4337 * 2) truncate file to 64Kb
4338 * 3) truncate file to 256Kb
4340 * 5) <crash/power failure>
4341 * 6) mount fs and trigger log replay
4343 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4344 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4345 * file correspond to a hole. The presence of explicit holes in a log tree is
4346 * what guarantees that log replay will remove/adjust file extent items in the
4349 * Here we do not need to care about holes between extents, that is already done
4350 * by copy_items(). We also only need to do this in the full sync path, where we
4351 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4352 * lookup the list of modified extent maps and if any represents a hole, we
4353 * insert a corresponding extent representing a hole in the log tree.
4355 static int btrfs_log_trailing_hole(struct btrfs_trans_handle
*trans
,
4356 struct btrfs_root
*root
,
4357 struct inode
*inode
,
4358 struct btrfs_path
*path
)
4361 struct btrfs_key key
;
4364 struct extent_buffer
*leaf
;
4365 struct btrfs_root
*log
= root
->log_root
;
4366 const u64 ino
= btrfs_ino(inode
);
4367 const u64 i_size
= i_size_read(inode
);
4369 if (!btrfs_fs_incompat(root
->fs_info
, NO_HOLES
))
4373 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4374 key
.offset
= (u64
)-1;
4376 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4381 ASSERT(path
->slots
[0] > 0);
4383 leaf
= path
->nodes
[0];
4384 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4386 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
4387 /* inode does not have any extents */
4391 struct btrfs_file_extent_item
*extent
;
4395 * If there's an extent beyond i_size, an explicit hole was
4396 * already inserted by copy_items().
4398 if (key
.offset
>= i_size
)
4401 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
4402 struct btrfs_file_extent_item
);
4404 if (btrfs_file_extent_type(leaf
, extent
) ==
4405 BTRFS_FILE_EXTENT_INLINE
)
4408 len
= btrfs_file_extent_num_bytes(leaf
, extent
);
4409 /* Last extent goes beyond i_size, no need to log a hole. */
4410 if (key
.offset
+ len
> i_size
)
4412 hole_start
= key
.offset
+ len
;
4413 hole_size
= i_size
- hole_start
;
4415 btrfs_release_path(path
);
4417 /* Last extent ends at i_size. */
4421 hole_size
= ALIGN(hole_size
, root
->sectorsize
);
4422 ret
= btrfs_insert_file_extent(trans
, log
, ino
, hole_start
, 0, 0,
4423 hole_size
, 0, hole_size
, 0, 0, 0);
4428 * When we are logging a new inode X, check if it doesn't have a reference that
4429 * matches the reference from some other inode Y created in a past transaction
4430 * and that was renamed in the current transaction. If we don't do this, then at
4431 * log replay time we can lose inode Y (and all its files if it's a directory):
4434 * echo "hello world" > /mnt/x/foobar
4437 * mkdir /mnt/x # or touch /mnt/x
4438 * xfs_io -c fsync /mnt/x
4440 * mount fs, trigger log replay
4442 * After the log replay procedure, we would lose the first directory and all its
4443 * files (file foobar).
4444 * For the case where inode Y is not a directory we simply end up losing it:
4446 * echo "123" > /mnt/foo
4448 * mv /mnt/foo /mnt/bar
4449 * echo "abc" > /mnt/foo
4450 * xfs_io -c fsync /mnt/foo
4453 * We also need this for cases where a snapshot entry is replaced by some other
4454 * entry (file or directory) otherwise we end up with an unreplayable log due to
4455 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4456 * if it were a regular entry:
4459 * btrfs subvolume snapshot /mnt /mnt/x/snap
4460 * btrfs subvolume delete /mnt/x/snap
4463 * fsync /mnt/x or fsync some new file inside it
4466 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4467 * the same transaction.
4469 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4471 const struct btrfs_key
*key
,
4472 struct inode
*inode
)
4475 struct btrfs_path
*search_path
;
4478 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4480 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4482 search_path
= btrfs_alloc_path();
4485 search_path
->search_commit_root
= 1;
4486 search_path
->skip_locking
= 1;
4488 while (cur_offset
< item_size
) {
4492 unsigned long name_ptr
;
4493 struct btrfs_dir_item
*di
;
4495 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4496 struct btrfs_inode_ref
*iref
;
4498 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4499 parent
= key
->offset
;
4500 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4501 name_ptr
= (unsigned long)(iref
+ 1);
4502 this_len
= sizeof(*iref
) + this_name_len
;
4504 struct btrfs_inode_extref
*extref
;
4506 extref
= (struct btrfs_inode_extref
*)(ptr
+
4508 parent
= btrfs_inode_extref_parent(eb
, extref
);
4509 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4510 name_ptr
= (unsigned long)&extref
->name
;
4511 this_len
= sizeof(*extref
) + this_name_len
;
4514 if (this_name_len
> name_len
) {
4517 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4522 name_len
= this_name_len
;
4526 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4527 di
= btrfs_lookup_dir_item(NULL
, BTRFS_I(inode
)->root
,
4528 search_path
, parent
,
4529 name
, this_name_len
, 0);
4530 if (di
&& !IS_ERR(di
)) {
4533 } else if (IS_ERR(di
)) {
4537 btrfs_release_path(search_path
);
4539 cur_offset
+= this_len
;
4543 btrfs_free_path(search_path
);
4548 /* log a single inode in the tree log.
4549 * At least one parent directory for this inode must exist in the tree
4550 * or be logged already.
4552 * Any items from this inode changed by the current transaction are copied
4553 * to the log tree. An extra reference is taken on any extents in this
4554 * file, allowing us to avoid a whole pile of corner cases around logging
4555 * blocks that have been removed from the tree.
4557 * See LOG_INODE_ALL and related defines for a description of what inode_only
4560 * This handles both files and directories.
4562 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
4563 struct btrfs_root
*root
, struct inode
*inode
,
4567 struct btrfs_log_ctx
*ctx
)
4569 struct btrfs_path
*path
;
4570 struct btrfs_path
*dst_path
;
4571 struct btrfs_key min_key
;
4572 struct btrfs_key max_key
;
4573 struct btrfs_root
*log
= root
->log_root
;
4574 struct extent_buffer
*src
= NULL
;
4575 LIST_HEAD(logged_list
);
4576 u64 last_extent
= 0;
4580 int ins_start_slot
= 0;
4582 bool fast_search
= false;
4583 u64 ino
= btrfs_ino(inode
);
4584 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4585 u64 logged_isize
= 0;
4586 bool need_log_inode_item
= true;
4587 bool xattrs_logged
= false;
4589 path
= btrfs_alloc_path();
4592 dst_path
= btrfs_alloc_path();
4594 btrfs_free_path(path
);
4598 min_key
.objectid
= ino
;
4599 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
4602 max_key
.objectid
= ino
;
4605 /* today the code can only do partial logging of directories */
4606 if (S_ISDIR(inode
->i_mode
) ||
4607 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4608 &BTRFS_I(inode
)->runtime_flags
) &&
4609 inode_only
== LOG_INODE_EXISTS
))
4610 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4612 max_key
.type
= (u8
)-1;
4613 max_key
.offset
= (u64
)-1;
4616 * Only run delayed items if we are a dir or a new file.
4617 * Otherwise commit the delayed inode only, which is needed in
4618 * order for the log replay code to mark inodes for link count
4619 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4621 if (S_ISDIR(inode
->i_mode
) ||
4622 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
)
4623 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
4625 ret
= btrfs_commit_inode_delayed_inode(inode
);
4628 btrfs_free_path(path
);
4629 btrfs_free_path(dst_path
);
4633 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
4635 btrfs_get_logged_extents(inode
, &logged_list
, start
, end
);
4638 * a brute force approach to making sure we get the most uptodate
4639 * copies of everything.
4641 if (S_ISDIR(inode
->i_mode
)) {
4642 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
4644 if (inode_only
== LOG_INODE_EXISTS
)
4645 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
4646 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
4648 if (inode_only
== LOG_INODE_EXISTS
) {
4650 * Make sure the new inode item we write to the log has
4651 * the same isize as the current one (if it exists).
4652 * This is necessary to prevent data loss after log
4653 * replay, and also to prevent doing a wrong expanding
4654 * truncate - for e.g. create file, write 4K into offset
4655 * 0, fsync, write 4K into offset 4096, add hard link,
4656 * fsync some other file (to sync log), power fail - if
4657 * we use the inode's current i_size, after log replay
4658 * we get a 8Kb file, with the last 4Kb extent as a hole
4659 * (zeroes), as if an expanding truncate happened,
4660 * instead of getting a file of 4Kb only.
4662 err
= logged_inode_size(log
, inode
, path
,
4667 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4668 &BTRFS_I(inode
)->runtime_flags
)) {
4669 if (inode_only
== LOG_INODE_EXISTS
) {
4670 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4671 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4674 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4675 &BTRFS_I(inode
)->runtime_flags
);
4676 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4677 &BTRFS_I(inode
)->runtime_flags
);
4679 ret
= btrfs_truncate_inode_items(trans
,
4685 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
4686 &BTRFS_I(inode
)->runtime_flags
) ||
4687 inode_only
== LOG_INODE_EXISTS
) {
4688 if (inode_only
== LOG_INODE_ALL
)
4690 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
4691 ret
= drop_objectid_items(trans
, log
, path
, ino
,
4694 if (inode_only
== LOG_INODE_ALL
)
4707 ret
= btrfs_search_forward(root
, &min_key
,
4708 path
, trans
->transid
);
4712 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4713 if (min_key
.objectid
!= ino
)
4715 if (min_key
.type
> max_key
.type
)
4718 if (min_key
.type
== BTRFS_INODE_ITEM_KEY
)
4719 need_log_inode_item
= false;
4721 if ((min_key
.type
== BTRFS_INODE_REF_KEY
||
4722 min_key
.type
== BTRFS_INODE_EXTREF_KEY
) &&
4723 BTRFS_I(inode
)->generation
== trans
->transid
) {
4724 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
4730 } else if (ret
> 0) {
4732 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4737 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4738 if (min_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
4741 ret
= copy_items(trans
, inode
, dst_path
, path
,
4742 &last_extent
, ins_start_slot
,
4743 ins_nr
, inode_only
, logged_isize
);
4750 btrfs_release_path(path
);
4756 src
= path
->nodes
[0];
4757 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
4760 } else if (!ins_nr
) {
4761 ins_start_slot
= path
->slots
[0];
4766 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4767 ins_start_slot
, ins_nr
, inode_only
,
4775 btrfs_release_path(path
);
4779 ins_start_slot
= path
->slots
[0];
4782 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4784 if (path
->slots
[0] < nritems
) {
4785 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
4790 ret
= copy_items(trans
, inode
, dst_path
, path
,
4791 &last_extent
, ins_start_slot
,
4792 ins_nr
, inode_only
, logged_isize
);
4800 btrfs_release_path(path
);
4802 if (min_key
.offset
< (u64
)-1) {
4804 } else if (min_key
.type
< max_key
.type
) {
4812 ret
= copy_items(trans
, inode
, dst_path
, path
, &last_extent
,
4813 ins_start_slot
, ins_nr
, inode_only
,
4823 btrfs_release_path(path
);
4824 btrfs_release_path(dst_path
);
4825 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
4828 xattrs_logged
= true;
4829 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
4830 btrfs_release_path(path
);
4831 btrfs_release_path(dst_path
);
4832 err
= btrfs_log_trailing_hole(trans
, root
, inode
, path
);
4837 btrfs_release_path(path
);
4838 btrfs_release_path(dst_path
);
4839 if (need_log_inode_item
) {
4840 err
= log_inode_item(trans
, log
, dst_path
, inode
);
4841 if (!err
&& !xattrs_logged
) {
4842 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
4844 btrfs_release_path(path
);
4851 * Some ordered extents started by fsync might have completed
4852 * before we collected the ordered extents in logged_list, which
4853 * means they're gone, not in our logged_list nor in the inode's
4854 * ordered tree. We want the application/user space to know an
4855 * error happened while attempting to persist file data so that
4856 * it can take proper action. If such error happened, we leave
4857 * without writing to the log tree and the fsync must report the
4858 * file data write error and not commit the current transaction.
4860 err
= btrfs_inode_check_errors(inode
);
4865 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
4871 } else if (inode_only
== LOG_INODE_ALL
) {
4872 struct extent_map
*em
, *n
;
4874 write_lock(&em_tree
->lock
);
4876 * We can't just remove every em if we're called for a ranged
4877 * fsync - that is, one that doesn't cover the whole possible
4878 * file range (0 to LLONG_MAX). This is because we can have
4879 * em's that fall outside the range we're logging and therefore
4880 * their ordered operations haven't completed yet
4881 * (btrfs_finish_ordered_io() not invoked yet). This means we
4882 * didn't get their respective file extent item in the fs/subvol
4883 * tree yet, and need to let the next fast fsync (one which
4884 * consults the list of modified extent maps) find the em so
4885 * that it logs a matching file extent item and waits for the
4886 * respective ordered operation to complete (if it's still
4889 * Removing every em outside the range we're logging would make
4890 * the next fast fsync not log their matching file extent items,
4891 * therefore making us lose data after a log replay.
4893 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
4895 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
4897 if (em
->mod_start
>= start
&& mod_end
<= end
)
4898 list_del_init(&em
->list
);
4900 write_unlock(&em_tree
->lock
);
4903 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
4904 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
4912 spin_lock(&BTRFS_I(inode
)->lock
);
4913 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4914 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
4915 spin_unlock(&BTRFS_I(inode
)->lock
);
4918 btrfs_put_logged_extents(&logged_list
);
4920 btrfs_submit_logged_extents(&logged_list
, log
);
4921 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
4923 btrfs_free_path(path
);
4924 btrfs_free_path(dst_path
);
4929 * follow the dentry parent pointers up the chain and see if any
4930 * of the directories in it require a full commit before they can
4931 * be logged. Returns zero if nothing special needs to be done or 1 if
4932 * a full commit is required.
4934 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
4935 struct inode
*inode
,
4936 struct dentry
*parent
,
4937 struct super_block
*sb
,
4941 struct btrfs_root
*root
;
4942 struct dentry
*old_parent
= NULL
;
4943 struct inode
*orig_inode
= inode
;
4946 * for regular files, if its inode is already on disk, we don't
4947 * have to worry about the parents at all. This is because
4948 * we can use the last_unlink_trans field to record renames
4949 * and other fun in this file.
4951 if (S_ISREG(inode
->i_mode
) &&
4952 BTRFS_I(inode
)->generation
<= last_committed
&&
4953 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
4956 if (!S_ISDIR(inode
->i_mode
)) {
4957 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4959 inode
= d_inode(parent
);
4964 * If we are logging a directory then we start with our inode,
4965 * not our parents inode, so we need to skipp setting the
4966 * logged_trans so that further down in the log code we don't
4967 * think this inode has already been logged.
4969 if (inode
!= orig_inode
)
4970 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
4973 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
4974 root
= BTRFS_I(inode
)->root
;
4977 * make sure any commits to the log are forced
4978 * to be full commits
4980 btrfs_set_log_full_commit(root
->fs_info
, trans
);
4985 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
4988 if (IS_ROOT(parent
))
4991 parent
= dget_parent(parent
);
4993 old_parent
= parent
;
4994 inode
= d_inode(parent
);
5002 struct btrfs_dir_list
{
5004 struct list_head list
;
5008 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5009 * details about the why it is needed.
5010 * This is a recursive operation - if an existing dentry corresponds to a
5011 * directory, that directory's new entries are logged too (same behaviour as
5012 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5013 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5014 * complains about the following circular lock dependency / possible deadlock:
5018 * lock(&type->i_mutex_dir_key#3/2);
5019 * lock(sb_internal#2);
5020 * lock(&type->i_mutex_dir_key#3/2);
5021 * lock(&sb->s_type->i_mutex_key#14);
5023 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5024 * sb_start_intwrite() in btrfs_start_transaction().
5025 * Not locking i_mutex of the inodes is still safe because:
5027 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5028 * that while logging the inode new references (names) are added or removed
5029 * from the inode, leaving the logged inode item with a link count that does
5030 * not match the number of logged inode reference items. This is fine because
5031 * at log replay time we compute the real number of links and correct the
5032 * link count in the inode item (see replay_one_buffer() and
5033 * link_to_fixup_dir());
5035 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5036 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5037 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5038 * has a size that doesn't match the sum of the lengths of all the logged
5039 * names. This does not result in a problem because if a dir_item key is
5040 * logged but its matching dir_index key is not logged, at log replay time we
5041 * don't use it to replay the respective name (see replay_one_name()). On the
5042 * other hand if only the dir_index key ends up being logged, the respective
5043 * name is added to the fs/subvol tree with both the dir_item and dir_index
5044 * keys created (see replay_one_name()).
5045 * The directory's inode item with a wrong i_size is not a problem as well,
5046 * since we don't use it at log replay time to set the i_size in the inode
5047 * item of the fs/subvol tree (see overwrite_item()).
5049 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5050 struct btrfs_root
*root
,
5051 struct inode
*start_inode
,
5052 struct btrfs_log_ctx
*ctx
)
5054 struct btrfs_root
*log
= root
->log_root
;
5055 struct btrfs_path
*path
;
5056 LIST_HEAD(dir_list
);
5057 struct btrfs_dir_list
*dir_elem
;
5060 path
= btrfs_alloc_path();
5064 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5066 btrfs_free_path(path
);
5069 dir_elem
->ino
= btrfs_ino(start_inode
);
5070 list_add_tail(&dir_elem
->list
, &dir_list
);
5072 while (!list_empty(&dir_list
)) {
5073 struct extent_buffer
*leaf
;
5074 struct btrfs_key min_key
;
5078 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5081 goto next_dir_inode
;
5083 min_key
.objectid
= dir_elem
->ino
;
5084 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5087 btrfs_release_path(path
);
5088 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5090 goto next_dir_inode
;
5091 } else if (ret
> 0) {
5093 goto next_dir_inode
;
5097 leaf
= path
->nodes
[0];
5098 nritems
= btrfs_header_nritems(leaf
);
5099 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5100 struct btrfs_dir_item
*di
;
5101 struct btrfs_key di_key
;
5102 struct inode
*di_inode
;
5103 struct btrfs_dir_list
*new_dir_elem
;
5104 int log_mode
= LOG_INODE_EXISTS
;
5107 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5108 if (min_key
.objectid
!= dir_elem
->ino
||
5109 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5110 goto next_dir_inode
;
5112 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5113 type
= btrfs_dir_type(leaf
, di
);
5114 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5115 type
!= BTRFS_FT_DIR
)
5117 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5118 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5121 di_inode
= btrfs_iget(root
->fs_info
->sb
, &di_key
,
5123 if (IS_ERR(di_inode
)) {
5124 ret
= PTR_ERR(di_inode
);
5125 goto next_dir_inode
;
5128 if (btrfs_inode_in_log(di_inode
, trans
->transid
)) {
5129 btrfs_add_delayed_iput(di_inode
);
5133 ctx
->log_new_dentries
= false;
5134 if (type
== BTRFS_FT_DIR
)
5135 log_mode
= LOG_INODE_ALL
;
5136 btrfs_release_path(path
);
5137 ret
= btrfs_log_inode(trans
, root
, di_inode
,
5138 log_mode
, 0, LLONG_MAX
, ctx
);
5139 btrfs_add_delayed_iput(di_inode
);
5141 goto next_dir_inode
;
5142 if (ctx
->log_new_dentries
) {
5143 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5145 if (!new_dir_elem
) {
5147 goto next_dir_inode
;
5149 new_dir_elem
->ino
= di_key
.objectid
;
5150 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5155 ret
= btrfs_next_leaf(log
, path
);
5157 goto next_dir_inode
;
5158 } else if (ret
> 0) {
5160 goto next_dir_inode
;
5164 if (min_key
.offset
< (u64
)-1) {
5169 list_del(&dir_elem
->list
);
5173 btrfs_free_path(path
);
5177 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5178 struct inode
*inode
,
5179 struct btrfs_log_ctx
*ctx
)
5182 struct btrfs_path
*path
;
5183 struct btrfs_key key
;
5184 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5185 const u64 ino
= btrfs_ino(inode
);
5187 path
= btrfs_alloc_path();
5190 path
->skip_locking
= 1;
5191 path
->search_commit_root
= 1;
5194 key
.type
= BTRFS_INODE_REF_KEY
;
5196 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5201 struct extent_buffer
*leaf
= path
->nodes
[0];
5202 int slot
= path
->slots
[0];
5207 if (slot
>= btrfs_header_nritems(leaf
)) {
5208 ret
= btrfs_next_leaf(root
, path
);
5216 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5217 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5218 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5221 item_size
= btrfs_item_size_nr(leaf
, slot
);
5222 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5223 while (cur_offset
< item_size
) {
5224 struct btrfs_key inode_key
;
5225 struct inode
*dir_inode
;
5227 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5228 inode_key
.offset
= 0;
5230 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5231 struct btrfs_inode_extref
*extref
;
5233 extref
= (struct btrfs_inode_extref
*)
5235 inode_key
.objectid
= btrfs_inode_extref_parent(
5237 cur_offset
+= sizeof(*extref
);
5238 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5241 inode_key
.objectid
= key
.offset
;
5242 cur_offset
= item_size
;
5245 dir_inode
= btrfs_iget(root
->fs_info
->sb
, &inode_key
,
5248 * If the parent inode was deleted, return an error to
5249 * fallback to a transaction commit. This is to prevent
5250 * getting an inode that was moved from one parent A to
5251 * a parent B, got its former parent A deleted and then
5252 * it got fsync'ed, from existing at both parents after
5253 * a log replay (and the old parent still existing).
5260 * mv /mnt/B/bar /mnt/A/bar
5261 * mv -T /mnt/A /mnt/B
5265 * If we ignore the old parent B which got deleted,
5266 * after a log replay we would have file bar linked
5267 * at both parents and the old parent B would still
5270 if (IS_ERR(dir_inode
)) {
5271 ret
= PTR_ERR(dir_inode
);
5275 ret
= btrfs_log_inode(trans
, root
, dir_inode
,
5276 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5277 btrfs_add_delayed_iput(dir_inode
);
5285 btrfs_free_path(path
);
5290 * helper function around btrfs_log_inode to make sure newly created
5291 * parent directories also end up in the log. A minimal inode and backref
5292 * only logging is done of any parent directories that are older than
5293 * the last committed transaction
5295 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5296 struct btrfs_root
*root
, struct inode
*inode
,
5297 struct dentry
*parent
,
5301 struct btrfs_log_ctx
*ctx
)
5303 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
5304 struct super_block
*sb
;
5305 struct dentry
*old_parent
= NULL
;
5307 u64 last_committed
= root
->fs_info
->last_trans_committed
;
5308 bool log_dentries
= false;
5309 struct inode
*orig_inode
= inode
;
5313 if (btrfs_test_opt(root
, NOTREELOG
)) {
5319 * The prev transaction commit doesn't complete, we need do
5320 * full commit by ourselves.
5322 if (root
->fs_info
->last_trans_log_full_commit
>
5323 root
->fs_info
->last_trans_committed
) {
5328 if (root
!= BTRFS_I(inode
)->root
||
5329 btrfs_root_refs(&root
->root_item
) == 0) {
5334 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
5335 sb
, last_committed
);
5339 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
5340 ret
= BTRFS_NO_LOG_SYNC
;
5344 ret
= start_log_trans(trans
, root
, ctx
);
5348 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
5353 * for regular files, if its inode is already on disk, we don't
5354 * have to worry about the parents at all. This is because
5355 * we can use the last_unlink_trans field to record renames
5356 * and other fun in this file.
5358 if (S_ISREG(inode
->i_mode
) &&
5359 BTRFS_I(inode
)->generation
<= last_committed
&&
5360 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
5365 if (S_ISDIR(inode
->i_mode
) && ctx
&& ctx
->log_new_dentries
)
5366 log_dentries
= true;
5369 * On unlink we must make sure all our current and old parent directores
5370 * inodes are fully logged. This is to prevent leaving dangling
5371 * directory index entries in directories that were our parents but are
5372 * not anymore. Not doing this results in old parent directory being
5373 * impossible to delete after log replay (rmdir will always fail with
5374 * error -ENOTEMPTY).
5380 * ln testdir/foo testdir/bar
5382 * unlink testdir/bar
5383 * xfs_io -c fsync testdir/foo
5385 * mount fs, triggers log replay
5387 * If we don't log the parent directory (testdir), after log replay the
5388 * directory still has an entry pointing to the file inode using the bar
5389 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5390 * the file inode has a link count of 1.
5396 * ln foo testdir/foo2
5397 * ln foo testdir/foo3
5399 * unlink testdir/foo3
5400 * xfs_io -c fsync foo
5402 * mount fs, triggers log replay
5404 * Similar as the first example, after log replay the parent directory
5405 * testdir still has an entry pointing to the inode file with name foo3
5406 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5407 * and has a link count of 2.
5409 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
5410 ret
= btrfs_log_all_parents(trans
, orig_inode
, ctx
);
5416 if (!parent
|| d_really_is_negative(parent
) || sb
!= d_inode(parent
)->i_sb
)
5419 inode
= d_inode(parent
);
5420 if (root
!= BTRFS_I(inode
)->root
)
5423 if (BTRFS_I(inode
)->generation
> last_committed
) {
5424 ret
= btrfs_log_inode(trans
, root
, inode
,
5430 if (IS_ROOT(parent
))
5433 parent
= dget_parent(parent
);
5435 old_parent
= parent
;
5438 ret
= log_new_dir_dentries(trans
, root
, orig_inode
, ctx
);
5444 btrfs_set_log_full_commit(root
->fs_info
, trans
);
5449 btrfs_remove_log_ctx(root
, ctx
);
5450 btrfs_end_log_trans(root
);
5456 * it is not safe to log dentry if the chunk root has added new
5457 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5458 * If this returns 1, you must commit the transaction to safely get your
5461 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
5462 struct btrfs_root
*root
, struct dentry
*dentry
,
5465 struct btrfs_log_ctx
*ctx
)
5467 struct dentry
*parent
= dget_parent(dentry
);
5470 ret
= btrfs_log_inode_parent(trans
, root
, d_inode(dentry
), parent
,
5471 start
, end
, 0, ctx
);
5478 * should be called during mount to recover any replay any log trees
5481 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
5484 struct btrfs_path
*path
;
5485 struct btrfs_trans_handle
*trans
;
5486 struct btrfs_key key
;
5487 struct btrfs_key found_key
;
5488 struct btrfs_key tmp_key
;
5489 struct btrfs_root
*log
;
5490 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
5491 struct walk_control wc
= {
5492 .process_func
= process_one_buffer
,
5496 path
= btrfs_alloc_path();
5500 fs_info
->log_root_recovering
= 1;
5502 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
5503 if (IS_ERR(trans
)) {
5504 ret
= PTR_ERR(trans
);
5511 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
5513 btrfs_std_error(fs_info
, ret
, "Failed to pin buffers while "
5514 "recovering log root tree.");
5519 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
5520 key
.offset
= (u64
)-1;
5521 key
.type
= BTRFS_ROOT_ITEM_KEY
;
5524 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
5527 btrfs_std_error(fs_info
, ret
,
5528 "Couldn't find tree log root.");
5532 if (path
->slots
[0] == 0)
5536 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
5538 btrfs_release_path(path
);
5539 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
5542 log
= btrfs_read_fs_root(log_root_tree
, &found_key
);
5545 btrfs_std_error(fs_info
, ret
,
5546 "Couldn't read tree log root.");
5550 tmp_key
.objectid
= found_key
.offset
;
5551 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
5552 tmp_key
.offset
= (u64
)-1;
5554 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
5555 if (IS_ERR(wc
.replay_dest
)) {
5556 ret
= PTR_ERR(wc
.replay_dest
);
5557 free_extent_buffer(log
->node
);
5558 free_extent_buffer(log
->commit_root
);
5560 btrfs_std_error(fs_info
, ret
, "Couldn't read target root "
5561 "for tree log recovery.");
5565 wc
.replay_dest
->log_root
= log
;
5566 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
5567 ret
= walk_log_tree(trans
, log
, &wc
);
5569 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5570 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
5574 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
5575 struct btrfs_root
*root
= wc
.replay_dest
;
5577 btrfs_release_path(path
);
5580 * We have just replayed everything, and the highest
5581 * objectid of fs roots probably has changed in case
5582 * some inode_item's got replayed.
5584 * root->objectid_mutex is not acquired as log replay
5585 * could only happen during mount.
5587 ret
= btrfs_find_highest_objectid(root
,
5588 &root
->highest_objectid
);
5591 key
.offset
= found_key
.offset
- 1;
5592 wc
.replay_dest
->log_root
= NULL
;
5593 free_extent_buffer(log
->node
);
5594 free_extent_buffer(log
->commit_root
);
5600 if (found_key
.offset
== 0)
5603 btrfs_release_path(path
);
5605 /* step one is to pin it all, step two is to replay just inodes */
5608 wc
.process_func
= replay_one_buffer
;
5609 wc
.stage
= LOG_WALK_REPLAY_INODES
;
5612 /* step three is to replay everything */
5613 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
5618 btrfs_free_path(path
);
5620 /* step 4: commit the transaction, which also unpins the blocks */
5621 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
5625 free_extent_buffer(log_root_tree
->node
);
5626 log_root_tree
->log_root
= NULL
;
5627 fs_info
->log_root_recovering
= 0;
5628 kfree(log_root_tree
);
5633 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
5634 btrfs_free_path(path
);
5639 * there are some corner cases where we want to force a full
5640 * commit instead of allowing a directory to be logged.
5642 * They revolve around files there were unlinked from the directory, and
5643 * this function updates the parent directory so that a full commit is
5644 * properly done if it is fsync'd later after the unlinks are done.
5646 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
5647 struct inode
*dir
, struct inode
*inode
,
5651 * when we're logging a file, if it hasn't been renamed
5652 * or unlinked, and its inode is fully committed on disk,
5653 * we don't have to worry about walking up the directory chain
5654 * to log its parents.
5656 * So, we use the last_unlink_trans field to put this transid
5657 * into the file. When the file is logged we check it and
5658 * don't log the parents if the file is fully on disk.
5660 if (S_ISREG(inode
->i_mode
))
5661 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5664 * if this directory was already logged any new
5665 * names for this file/dir will get recorded
5668 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
5672 * if the inode we're about to unlink was logged,
5673 * the log will be properly updated for any new names
5675 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
5679 * when renaming files across directories, if the directory
5680 * there we're unlinking from gets fsync'd later on, there's
5681 * no way to find the destination directory later and fsync it
5682 * properly. So, we have to be conservative and force commits
5683 * so the new name gets discovered.
5688 /* we can safely do the unlink without any special recording */
5692 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5704 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
5707 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
5711 * Call this after adding a new name for a file and it will properly
5712 * update the log to reflect the new name.
5714 * It will return zero if all goes well, and it will return 1 if a
5715 * full transaction commit is required.
5717 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
5718 struct inode
*inode
, struct inode
*old_dir
,
5719 struct dentry
*parent
)
5721 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
5724 * this will force the logging code to walk the dentry chain
5727 if (S_ISREG(inode
->i_mode
))
5728 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
5731 * if this inode hasn't been logged and directory we're renaming it
5732 * from hasn't been logged, we don't need to log it
5734 if (BTRFS_I(inode
)->logged_trans
<=
5735 root
->fs_info
->last_trans_committed
&&
5736 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
5737 root
->fs_info
->last_trans_committed
))
5740 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 0,
5741 LLONG_MAX
, 1, NULL
);