HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
blob8f0f91de436d5c14b0e1cda59d5dbde531c230df
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
29 #include "inode-map.h"
31 /* magic values for the inode_only field in btrfs_log_inode:
33 * LOG_INODE_ALL means to log everything
34 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 * during log replay
37 #define LOG_INODE_ALL 0
38 #define LOG_INODE_EXISTS 1
41 * directory trouble cases
43 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
44 * log, we must force a full commit before doing an fsync of the directory
45 * where the unlink was done.
46 * ---> record transid of last unlink/rename per directory
48 * mkdir foo/some_dir
49 * normal commit
50 * rename foo/some_dir foo2/some_dir
51 * mkdir foo/some_dir
52 * fsync foo/some_dir/some_file
54 * The fsync above will unlink the original some_dir without recording
55 * it in its new location (foo2). After a crash, some_dir will be gone
56 * unless the fsync of some_file forces a full commit
58 * 2) we must log any new names for any file or dir that is in the fsync
59 * log. ---> check inode while renaming/linking.
61 * 2a) we must log any new names for any file or dir during rename
62 * when the directory they are being removed from was logged.
63 * ---> check inode and old parent dir during rename
65 * 2a is actually the more important variant. With the extra logging
66 * a crash might unlink the old name without recreating the new one
68 * 3) after a crash, we must go through any directories with a link count
69 * of zero and redo the rm -rf
71 * mkdir f1/foo
72 * normal commit
73 * rm -rf f1/foo
74 * fsync(f1)
76 * The directory f1 was fully removed from the FS, but fsync was never
77 * called on f1, only its parent dir. After a crash the rm -rf must
78 * be replayed. This must be able to recurse down the entire
79 * directory tree. The inode link count fixup code takes care of the
80 * ugly details.
84 * stages for the tree walking. The first
85 * stage (0) is to only pin down the blocks we find
86 * the second stage (1) is to make sure that all the inodes
87 * we find in the log are created in the subvolume.
89 * The last stage is to deal with directories and links and extents
90 * and all the other fun semantics
92 #define LOG_WALK_PIN_ONLY 0
93 #define LOG_WALK_REPLAY_INODES 1
94 #define LOG_WALK_REPLAY_DIR_INDEX 2
95 #define LOG_WALK_REPLAY_ALL 3
97 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode,
99 int inode_only,
100 const loff_t start,
101 const loff_t end,
102 struct btrfs_log_ctx *ctx);
103 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root,
105 struct btrfs_path *path, u64 objectid);
106 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
107 struct btrfs_root *root,
108 struct btrfs_root *log,
109 struct btrfs_path *path,
110 u64 dirid, int del_all);
113 * tree logging is a special write ahead log used to make sure that
114 * fsyncs and O_SYNCs can happen without doing full tree commits.
116 * Full tree commits are expensive because they require commonly
117 * modified blocks to be recowed, creating many dirty pages in the
118 * extent tree an 4x-6x higher write load than ext3.
120 * Instead of doing a tree commit on every fsync, we use the
121 * key ranges and transaction ids to find items for a given file or directory
122 * that have changed in this transaction. Those items are copied into
123 * a special tree (one per subvolume root), that tree is written to disk
124 * and then the fsync is considered complete.
126 * After a crash, items are copied out of the log-tree back into the
127 * subvolume tree. Any file data extents found are recorded in the extent
128 * allocation tree, and the log-tree freed.
130 * The log tree is read three times, once to pin down all the extents it is
131 * using in ram and once, once to create all the inodes logged in the tree
132 * and once to do all the other items.
136 * start a sub transaction and setup the log tree
137 * this increments the log tree writer count to make the people
138 * syncing the tree wait for us to finish
140 static int start_log_trans(struct btrfs_trans_handle *trans,
141 struct btrfs_root *root,
142 struct btrfs_log_ctx *ctx)
144 int ret = 0;
146 mutex_lock(&root->log_mutex);
148 if (root->log_root) {
149 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
150 ret = -EAGAIN;
151 goto out;
154 if (!root->log_start_pid) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
156 root->log_start_pid = current->pid;
157 } else if (root->log_start_pid != current->pid) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
160 } else {
161 mutex_lock(&root->fs_info->tree_log_mutex);
162 if (!root->fs_info->log_root_tree)
163 ret = btrfs_init_log_root_tree(trans, root->fs_info);
164 mutex_unlock(&root->fs_info->tree_log_mutex);
165 if (ret)
166 goto out;
168 ret = btrfs_add_log_tree(trans, root);
169 if (ret)
170 goto out;
172 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
173 root->log_start_pid = current->pid;
176 atomic_inc(&root->log_batch);
177 atomic_inc(&root->log_writers);
178 if (ctx) {
179 int index = root->log_transid % 2;
180 list_add_tail(&ctx->list, &root->log_ctxs[index]);
181 ctx->log_transid = root->log_transid;
184 out:
185 mutex_unlock(&root->log_mutex);
186 return ret;
190 * returns 0 if there was a log transaction running and we were able
191 * to join, or returns -ENOENT if there were not transactions
192 * in progress
194 static int join_running_log_trans(struct btrfs_root *root)
196 int ret = -ENOENT;
198 smp_mb();
199 if (!root->log_root)
200 return -ENOENT;
202 mutex_lock(&root->log_mutex);
203 if (root->log_root) {
204 ret = 0;
205 atomic_inc(&root->log_writers);
207 mutex_unlock(&root->log_mutex);
208 return ret;
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
216 int btrfs_pin_log_trans(struct btrfs_root *root)
218 int ret = -ENOENT;
220 mutex_lock(&root->log_mutex);
221 atomic_inc(&root->log_writers);
222 mutex_unlock(&root->log_mutex);
223 return ret;
227 * indicate we're done making changes to the log tree
228 * and wake up anyone waiting to do a sync
230 void btrfs_end_log_trans(struct btrfs_root *root)
232 if (atomic_dec_and_test(&root->log_writers)) {
234 * Implicit memory barrier after atomic_dec_and_test
236 if (waitqueue_active(&root->log_writer_wait))
237 wake_up(&root->log_writer_wait);
243 * the walk control struct is used to pass state down the chain when
244 * processing the log tree. The stage field tells us which part
245 * of the log tree processing we are currently doing. The others
246 * are state fields used for that specific part
248 struct walk_control {
249 /* should we free the extent on disk when done? This is used
250 * at transaction commit time while freeing a log tree
252 int free;
254 /* should we write out the extent buffer? This is used
255 * while flushing the log tree to disk during a sync
257 int write;
259 /* should we wait for the extent buffer io to finish? Also used
260 * while flushing the log tree to disk for a sync
262 int wait;
264 /* pin only walk, we record which extents on disk belong to the
265 * log trees
267 int pin;
269 /* what stage of the replay code we're currently in */
270 int stage;
272 /* the root we are currently replaying */
273 struct btrfs_root *replay_dest;
275 /* the trans handle for the current replay */
276 struct btrfs_trans_handle *trans;
278 /* the function that gets used to process blocks we find in the
279 * tree. Note the extent_buffer might not be up to date when it is
280 * passed in, and it must be checked or read if you need the data
281 * inside it
283 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
284 struct walk_control *wc, u64 gen);
288 * process_func used to pin down extents, write them or wait on them
290 static int process_one_buffer(struct btrfs_root *log,
291 struct extent_buffer *eb,
292 struct walk_control *wc, u64 gen)
294 int ret = 0;
297 * If this fs is mixed then we need to be able to process the leaves to
298 * pin down any logged extents, so we have to read the block.
300 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
301 ret = btrfs_read_buffer(eb, gen);
302 if (ret)
303 return ret;
306 if (wc->pin)
307 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
308 eb->start, eb->len);
310 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
311 if (wc->pin && btrfs_header_level(eb) == 0)
312 ret = btrfs_exclude_logged_extents(log, eb);
313 if (wc->write)
314 btrfs_write_tree_block(eb);
315 if (wc->wait)
316 btrfs_wait_tree_block_writeback(eb);
318 return ret;
322 * Item overwrite used by replay and tree logging. eb, slot and key all refer
323 * to the src data we are copying out.
325 * root is the tree we are copying into, and path is a scratch
326 * path for use in this function (it should be released on entry and
327 * will be released on exit).
329 * If the key is already in the destination tree the existing item is
330 * overwritten. If the existing item isn't big enough, it is extended.
331 * If it is too large, it is truncated.
333 * If the key isn't in the destination yet, a new item is inserted.
335 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root,
337 struct btrfs_path *path,
338 struct extent_buffer *eb, int slot,
339 struct btrfs_key *key)
341 int ret;
342 u32 item_size;
343 u64 saved_i_size = 0;
344 int save_old_i_size = 0;
345 unsigned long src_ptr;
346 unsigned long dst_ptr;
347 int overwrite_root = 0;
348 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
350 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
351 overwrite_root = 1;
353 item_size = btrfs_item_size_nr(eb, slot);
354 src_ptr = btrfs_item_ptr_offset(eb, slot);
356 /* look for the key in the destination tree */
357 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
358 if (ret < 0)
359 return ret;
361 if (ret == 0) {
362 char *src_copy;
363 char *dst_copy;
364 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
365 path->slots[0]);
366 if (dst_size != item_size)
367 goto insert;
369 if (item_size == 0) {
370 btrfs_release_path(path);
371 return 0;
373 dst_copy = kmalloc(item_size, GFP_NOFS);
374 src_copy = kmalloc(item_size, GFP_NOFS);
375 if (!dst_copy || !src_copy) {
376 btrfs_release_path(path);
377 kfree(dst_copy);
378 kfree(src_copy);
379 return -ENOMEM;
382 read_extent_buffer(eb, src_copy, src_ptr, item_size);
384 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
385 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
386 item_size);
387 ret = memcmp(dst_copy, src_copy, item_size);
389 kfree(dst_copy);
390 kfree(src_copy);
392 * they have the same contents, just return, this saves
393 * us from cowing blocks in the destination tree and doing
394 * extra writes that may not have been done by a previous
395 * sync
397 if (ret == 0) {
398 btrfs_release_path(path);
399 return 0;
403 * We need to load the old nbytes into the inode so when we
404 * replay the extents we've logged we get the right nbytes.
406 if (inode_item) {
407 struct btrfs_inode_item *item;
408 u64 nbytes;
409 u32 mode;
411 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
412 struct btrfs_inode_item);
413 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
414 item = btrfs_item_ptr(eb, slot,
415 struct btrfs_inode_item);
416 btrfs_set_inode_nbytes(eb, item, nbytes);
419 * If this is a directory we need to reset the i_size to
420 * 0 so that we can set it up properly when replaying
421 * the rest of the items in this log.
423 mode = btrfs_inode_mode(eb, item);
424 if (S_ISDIR(mode))
425 btrfs_set_inode_size(eb, item, 0);
427 } else if (inode_item) {
428 struct btrfs_inode_item *item;
429 u32 mode;
432 * New inode, set nbytes to 0 so that the nbytes comes out
433 * properly when we replay the extents.
435 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
436 btrfs_set_inode_nbytes(eb, item, 0);
439 * If this is a directory we need to reset the i_size to 0 so
440 * that we can set it up properly when replaying the rest of
441 * the items in this log.
443 mode = btrfs_inode_mode(eb, item);
444 if (S_ISDIR(mode))
445 btrfs_set_inode_size(eb, item, 0);
447 insert:
448 btrfs_release_path(path);
449 /* try to insert the key into the destination tree */
450 path->skip_release_on_error = 1;
451 ret = btrfs_insert_empty_item(trans, root, path,
452 key, item_size);
453 path->skip_release_on_error = 0;
455 /* make sure any existing item is the correct size */
456 if (ret == -EEXIST || ret == -EOVERFLOW) {
457 u32 found_size;
458 found_size = btrfs_item_size_nr(path->nodes[0],
459 path->slots[0]);
460 if (found_size > item_size)
461 btrfs_truncate_item(root, path, item_size, 1);
462 else if (found_size < item_size)
463 btrfs_extend_item(root, path,
464 item_size - found_size);
465 } else if (ret) {
466 return ret;
468 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
469 path->slots[0]);
471 /* don't overwrite an existing inode if the generation number
472 * was logged as zero. This is done when the tree logging code
473 * is just logging an inode to make sure it exists after recovery.
475 * Also, don't overwrite i_size on directories during replay.
476 * log replay inserts and removes directory items based on the
477 * state of the tree found in the subvolume, and i_size is modified
478 * as it goes
480 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
481 struct btrfs_inode_item *src_item;
482 struct btrfs_inode_item *dst_item;
484 src_item = (struct btrfs_inode_item *)src_ptr;
485 dst_item = (struct btrfs_inode_item *)dst_ptr;
487 if (btrfs_inode_generation(eb, src_item) == 0) {
488 struct extent_buffer *dst_eb = path->nodes[0];
489 const u64 ino_size = btrfs_inode_size(eb, src_item);
492 * For regular files an ino_size == 0 is used only when
493 * logging that an inode exists, as part of a directory
494 * fsync, and the inode wasn't fsynced before. In this
495 * case don't set the size of the inode in the fs/subvol
496 * tree, otherwise we would be throwing valid data away.
498 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
499 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
500 ino_size != 0) {
501 struct btrfs_map_token token;
503 btrfs_init_map_token(&token);
504 btrfs_set_token_inode_size(dst_eb, dst_item,
505 ino_size, &token);
507 goto no_copy;
510 if (overwrite_root &&
511 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
512 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
513 save_old_i_size = 1;
514 saved_i_size = btrfs_inode_size(path->nodes[0],
515 dst_item);
519 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
520 src_ptr, item_size);
522 if (save_old_i_size) {
523 struct btrfs_inode_item *dst_item;
524 dst_item = (struct btrfs_inode_item *)dst_ptr;
525 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
528 /* make sure the generation is filled in */
529 if (key->type == BTRFS_INODE_ITEM_KEY) {
530 struct btrfs_inode_item *dst_item;
531 dst_item = (struct btrfs_inode_item *)dst_ptr;
532 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
533 btrfs_set_inode_generation(path->nodes[0], dst_item,
534 trans->transid);
537 no_copy:
538 btrfs_mark_buffer_dirty(path->nodes[0]);
539 btrfs_release_path(path);
540 return 0;
544 * simple helper to read an inode off the disk from a given root
545 * This can only be called for subvolume roots and not for the log
547 static noinline struct inode *read_one_inode(struct btrfs_root *root,
548 u64 objectid)
550 struct btrfs_key key;
551 struct inode *inode;
553 key.objectid = objectid;
554 key.type = BTRFS_INODE_ITEM_KEY;
555 key.offset = 0;
556 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
557 if (IS_ERR(inode)) {
558 inode = NULL;
559 } else if (is_bad_inode(inode)) {
560 iput(inode);
561 inode = NULL;
563 return inode;
566 /* replays a single extent in 'eb' at 'slot' with 'key' into the
567 * subvolume 'root'. path is released on entry and should be released
568 * on exit.
570 * extents in the log tree have not been allocated out of the extent
571 * tree yet. So, this completes the allocation, taking a reference
572 * as required if the extent already exists or creating a new extent
573 * if it isn't in the extent allocation tree yet.
575 * The extent is inserted into the file, dropping any existing extents
576 * from the file that overlap the new one.
578 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
579 struct btrfs_root *root,
580 struct btrfs_path *path,
581 struct extent_buffer *eb, int slot,
582 struct btrfs_key *key)
584 int found_type;
585 u64 extent_end;
586 u64 start = key->offset;
587 u64 nbytes = 0;
588 struct btrfs_file_extent_item *item;
589 struct inode *inode = NULL;
590 unsigned long size;
591 int ret = 0;
593 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
594 found_type = btrfs_file_extent_type(eb, item);
596 if (found_type == BTRFS_FILE_EXTENT_REG ||
597 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
598 nbytes = btrfs_file_extent_num_bytes(eb, item);
599 extent_end = start + nbytes;
602 * We don't add to the inodes nbytes if we are prealloc or a
603 * hole.
605 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
606 nbytes = 0;
607 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
608 size = btrfs_file_extent_inline_len(eb, slot, item);
609 nbytes = btrfs_file_extent_ram_bytes(eb, item);
610 extent_end = ALIGN(start + size, root->sectorsize);
611 } else {
612 ret = 0;
613 goto out;
616 inode = read_one_inode(root, key->objectid);
617 if (!inode) {
618 ret = -EIO;
619 goto out;
623 * first check to see if we already have this extent in the
624 * file. This must be done before the btrfs_drop_extents run
625 * so we don't try to drop this extent.
627 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
628 start, 0);
630 if (ret == 0 &&
631 (found_type == BTRFS_FILE_EXTENT_REG ||
632 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
633 struct btrfs_file_extent_item cmp1;
634 struct btrfs_file_extent_item cmp2;
635 struct btrfs_file_extent_item *existing;
636 struct extent_buffer *leaf;
638 leaf = path->nodes[0];
639 existing = btrfs_item_ptr(leaf, path->slots[0],
640 struct btrfs_file_extent_item);
642 read_extent_buffer(eb, &cmp1, (unsigned long)item,
643 sizeof(cmp1));
644 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
645 sizeof(cmp2));
648 * we already have a pointer to this exact extent,
649 * we don't have to do anything
651 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
652 btrfs_release_path(path);
653 goto out;
656 btrfs_release_path(path);
658 /* drop any overlapping extents */
659 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
660 if (ret)
661 goto out;
663 if (found_type == BTRFS_FILE_EXTENT_REG ||
664 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
665 u64 offset;
666 unsigned long dest_offset;
667 struct btrfs_key ins;
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
671 if (ret)
672 goto out;
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
681 offset = key->offset - btrfs_file_extent_offset(eb, item);
683 if (ins.objectid > 0) {
684 u64 csum_start;
685 u64 csum_end;
686 LIST_HEAD(ordered_sums);
688 * is this extent already allocated in the extent
689 * allocation tree? If so, just add a reference
691 ret = btrfs_lookup_data_extent(root, ins.objectid,
692 ins.offset);
693 if (ret == 0) {
694 ret = btrfs_inc_extent_ref(trans, root,
695 ins.objectid, ins.offset,
696 0, root->root_key.objectid,
697 key->objectid, offset);
698 if (ret)
699 goto out;
700 } else {
702 * insert the extent pointer in the extent
703 * allocation tree
705 ret = btrfs_alloc_logged_file_extent(trans,
706 root, root->root_key.objectid,
707 key->objectid, offset, &ins);
708 if (ret)
709 goto out;
711 btrfs_release_path(path);
713 if (btrfs_file_extent_compression(eb, item)) {
714 csum_start = ins.objectid;
715 csum_end = csum_start + ins.offset;
716 } else {
717 csum_start = ins.objectid +
718 btrfs_file_extent_offset(eb, item);
719 csum_end = csum_start +
720 btrfs_file_extent_num_bytes(eb, item);
723 ret = btrfs_lookup_csums_range(root->log_root,
724 csum_start, csum_end - 1,
725 &ordered_sums, 0);
726 if (ret)
727 goto out;
729 * Now delete all existing cums in the csum root that
730 * cover our range. We do this because we can have an
731 * extent that is completely referenced by one file
732 * extent item and partially referenced by another
733 * file extent item (like after using the clone or
734 * extent_same ioctls). In this case if we end up doing
735 * the replay of the one that partially references the
736 * extent first, and we do not do the csum deletion
737 * below, we can get 2 csum items in the csum tree that
738 * overlap each other. For example, imagine our log has
739 * the two following file extent items:
741 * key (257 EXTENT_DATA 409600)
742 * extent data disk byte 12845056 nr 102400
743 * extent data offset 20480 nr 20480 ram 102400
745 * key (257 EXTENT_DATA 819200)
746 * extent data disk byte 12845056 nr 102400
747 * extent data offset 0 nr 102400 ram 102400
749 * Where the second one fully references the 100K extent
750 * that starts at disk byte 12845056, and the log tree
751 * has a single csum item that covers the entire range
752 * of the extent:
754 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
756 * After the first file extent item is replayed, the
757 * csum tree gets the following csum item:
759 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
761 * Which covers the 20K sub-range starting at offset 20K
762 * of our extent. Now when we replay the second file
763 * extent item, if we do not delete existing csum items
764 * that cover any of its blocks, we end up getting two
765 * csum items in our csum tree that overlap each other:
767 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
770 * Which is a problem, because after this anyone trying
771 * to lookup up for the checksum of any block of our
772 * extent starting at an offset of 40K or higher, will
773 * end up looking at the second csum item only, which
774 * does not contain the checksum for any block starting
775 * at offset 40K or higher of our extent.
777 while (!list_empty(&ordered_sums)) {
778 struct btrfs_ordered_sum *sums;
779 sums = list_entry(ordered_sums.next,
780 struct btrfs_ordered_sum,
781 list);
782 if (!ret)
783 ret = btrfs_del_csums(trans,
784 root->fs_info->csum_root,
785 sums->bytenr,
786 sums->len);
787 if (!ret)
788 ret = btrfs_csum_file_blocks(trans,
789 root->fs_info->csum_root,
790 sums);
791 list_del(&sums->list);
792 kfree(sums);
794 if (ret)
795 goto out;
796 } else {
797 btrfs_release_path(path);
799 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
800 /* inline extents are easy, we just overwrite them */
801 ret = overwrite_item(trans, root, path, eb, slot, key);
802 if (ret)
803 goto out;
806 inode_add_bytes(inode, nbytes);
807 ret = btrfs_update_inode(trans, root, inode);
808 out:
809 if (inode)
810 iput(inode);
811 return ret;
815 * when cleaning up conflicts between the directory names in the
816 * subvolume, directory names in the log and directory names in the
817 * inode back references, we may have to unlink inodes from directories.
819 * This is a helper function to do the unlink of a specific directory
820 * item
822 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
823 struct btrfs_root *root,
824 struct btrfs_path *path,
825 struct inode *dir,
826 struct btrfs_dir_item *di)
828 struct inode *inode;
829 char *name;
830 int name_len;
831 struct extent_buffer *leaf;
832 struct btrfs_key location;
833 int ret;
835 leaf = path->nodes[0];
837 btrfs_dir_item_key_to_cpu(leaf, di, &location);
838 name_len = btrfs_dir_name_len(leaf, di);
839 name = kmalloc(name_len, GFP_NOFS);
840 if (!name)
841 return -ENOMEM;
843 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
844 btrfs_release_path(path);
846 inode = read_one_inode(root, location.objectid);
847 if (!inode) {
848 ret = -EIO;
849 goto out;
852 ret = link_to_fixup_dir(trans, root, path, location.objectid);
853 if (ret)
854 goto out;
856 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
857 if (ret)
858 goto out;
859 else
860 ret = btrfs_run_delayed_items(trans, root);
861 out:
862 kfree(name);
863 iput(inode);
864 return ret;
868 * helper function to see if a given name and sequence number found
869 * in an inode back reference are already in a directory and correctly
870 * point to this inode
872 static noinline int inode_in_dir(struct btrfs_root *root,
873 struct btrfs_path *path,
874 u64 dirid, u64 objectid, u64 index,
875 const char *name, int name_len)
877 struct btrfs_dir_item *di;
878 struct btrfs_key location;
879 int match = 0;
881 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
882 index, name, name_len, 0);
883 if (di && !IS_ERR(di)) {
884 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
885 if (location.objectid != objectid)
886 goto out;
887 } else
888 goto out;
889 btrfs_release_path(path);
891 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
892 if (di && !IS_ERR(di)) {
893 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
894 if (location.objectid != objectid)
895 goto out;
896 } else
897 goto out;
898 match = 1;
899 out:
900 btrfs_release_path(path);
901 return match;
905 * helper function to check a log tree for a named back reference in
906 * an inode. This is used to decide if a back reference that is
907 * found in the subvolume conflicts with what we find in the log.
909 * inode backreferences may have multiple refs in a single item,
910 * during replay we process one reference at a time, and we don't
911 * want to delete valid links to a file from the subvolume if that
912 * link is also in the log.
914 static noinline int backref_in_log(struct btrfs_root *log,
915 struct btrfs_key *key,
916 u64 ref_objectid,
917 const char *name, int namelen)
919 struct btrfs_path *path;
920 struct btrfs_inode_ref *ref;
921 unsigned long ptr;
922 unsigned long ptr_end;
923 unsigned long name_ptr;
924 int found_name_len;
925 int item_size;
926 int ret;
927 int match = 0;
929 path = btrfs_alloc_path();
930 if (!path)
931 return -ENOMEM;
933 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
934 if (ret != 0)
935 goto out;
937 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
939 if (key->type == BTRFS_INODE_EXTREF_KEY) {
940 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
941 name, namelen, NULL))
942 match = 1;
944 goto out;
947 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
948 ptr_end = ptr + item_size;
949 while (ptr < ptr_end) {
950 ref = (struct btrfs_inode_ref *)ptr;
951 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
952 if (found_name_len == namelen) {
953 name_ptr = (unsigned long)(ref + 1);
954 ret = memcmp_extent_buffer(path->nodes[0], name,
955 name_ptr, namelen);
956 if (ret == 0) {
957 match = 1;
958 goto out;
961 ptr = (unsigned long)(ref + 1) + found_name_len;
963 out:
964 btrfs_free_path(path);
965 return match;
968 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_root *log_root,
972 struct inode *dir, struct inode *inode,
973 struct extent_buffer *eb,
974 u64 inode_objectid, u64 parent_objectid,
975 u64 ref_index, char *name, int namelen,
976 int *search_done)
978 int ret;
979 char *victim_name;
980 int victim_name_len;
981 struct extent_buffer *leaf;
982 struct btrfs_dir_item *di;
983 struct btrfs_key search_key;
984 struct btrfs_inode_extref *extref;
986 again:
987 /* Search old style refs */
988 search_key.objectid = inode_objectid;
989 search_key.type = BTRFS_INODE_REF_KEY;
990 search_key.offset = parent_objectid;
991 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
992 if (ret == 0) {
993 struct btrfs_inode_ref *victim_ref;
994 unsigned long ptr;
995 unsigned long ptr_end;
997 leaf = path->nodes[0];
999 /* are we trying to overwrite a back ref for the root directory
1000 * if so, just jump out, we're done
1002 if (search_key.objectid == search_key.offset)
1003 return 1;
1005 /* check all the names in this back reference to see
1006 * if they are in the log. if so, we allow them to stay
1007 * otherwise they must be unlinked as a conflict
1009 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1010 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1011 while (ptr < ptr_end) {
1012 victim_ref = (struct btrfs_inode_ref *)ptr;
1013 victim_name_len = btrfs_inode_ref_name_len(leaf,
1014 victim_ref);
1015 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1016 if (!victim_name)
1017 return -ENOMEM;
1019 read_extent_buffer(leaf, victim_name,
1020 (unsigned long)(victim_ref + 1),
1021 victim_name_len);
1023 if (!backref_in_log(log_root, &search_key,
1024 parent_objectid,
1025 victim_name,
1026 victim_name_len)) {
1027 inc_nlink(inode);
1028 btrfs_release_path(path);
1030 ret = btrfs_unlink_inode(trans, root, dir,
1031 inode, victim_name,
1032 victim_name_len);
1033 kfree(victim_name);
1034 if (ret)
1035 return ret;
1036 ret = btrfs_run_delayed_items(trans, root);
1037 if (ret)
1038 return ret;
1039 *search_done = 1;
1040 goto again;
1042 kfree(victim_name);
1044 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1048 * NOTE: we have searched root tree and checked the
1049 * coresponding ref, it does not need to check again.
1051 *search_done = 1;
1053 btrfs_release_path(path);
1055 /* Same search but for extended refs */
1056 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1057 inode_objectid, parent_objectid, 0,
1059 if (!IS_ERR_OR_NULL(extref)) {
1060 u32 item_size;
1061 u32 cur_offset = 0;
1062 unsigned long base;
1063 struct inode *victim_parent;
1065 leaf = path->nodes[0];
1067 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1068 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1070 while (cur_offset < item_size) {
1071 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1073 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1075 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1076 goto next;
1078 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1079 if (!victim_name)
1080 return -ENOMEM;
1081 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1082 victim_name_len);
1084 search_key.objectid = inode_objectid;
1085 search_key.type = BTRFS_INODE_EXTREF_KEY;
1086 search_key.offset = btrfs_extref_hash(parent_objectid,
1087 victim_name,
1088 victim_name_len);
1089 ret = 0;
1090 if (!backref_in_log(log_root, &search_key,
1091 parent_objectid, victim_name,
1092 victim_name_len)) {
1093 ret = -ENOENT;
1094 victim_parent = read_one_inode(root,
1095 parent_objectid);
1096 if (victim_parent) {
1097 inc_nlink(inode);
1098 btrfs_release_path(path);
1100 ret = btrfs_unlink_inode(trans, root,
1101 victim_parent,
1102 inode,
1103 victim_name,
1104 victim_name_len);
1105 if (!ret)
1106 ret = btrfs_run_delayed_items(
1107 trans, root);
1109 iput(victim_parent);
1110 kfree(victim_name);
1111 if (ret)
1112 return ret;
1113 *search_done = 1;
1114 goto again;
1116 kfree(victim_name);
1117 if (ret)
1118 return ret;
1119 next:
1120 cur_offset += victim_name_len + sizeof(*extref);
1122 *search_done = 1;
1124 btrfs_release_path(path);
1126 /* look for a conflicting sequence number */
1127 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1128 ref_index, name, namelen, 0);
1129 if (di && !IS_ERR(di)) {
1130 ret = drop_one_dir_item(trans, root, path, dir, di);
1131 if (ret)
1132 return ret;
1134 btrfs_release_path(path);
1136 /* look for a conflicing name */
1137 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1138 name, namelen, 0);
1139 if (di && !IS_ERR(di)) {
1140 ret = drop_one_dir_item(trans, root, path, dir, di);
1141 if (ret)
1142 return ret;
1144 btrfs_release_path(path);
1146 return 0;
1149 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1150 u32 *namelen, char **name, u64 *index,
1151 u64 *parent_objectid)
1153 struct btrfs_inode_extref *extref;
1155 extref = (struct btrfs_inode_extref *)ref_ptr;
1157 *namelen = btrfs_inode_extref_name_len(eb, extref);
1158 *name = kmalloc(*namelen, GFP_NOFS);
1159 if (*name == NULL)
1160 return -ENOMEM;
1162 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1163 *namelen);
1165 *index = btrfs_inode_extref_index(eb, extref);
1166 if (parent_objectid)
1167 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1169 return 0;
1172 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1173 u32 *namelen, char **name, u64 *index)
1175 struct btrfs_inode_ref *ref;
1177 ref = (struct btrfs_inode_ref *)ref_ptr;
1179 *namelen = btrfs_inode_ref_name_len(eb, ref);
1180 *name = kmalloc(*namelen, GFP_NOFS);
1181 if (*name == NULL)
1182 return -ENOMEM;
1184 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1186 *index = btrfs_inode_ref_index(eb, ref);
1188 return 0;
1192 * replay one inode back reference item found in the log tree.
1193 * eb, slot and key refer to the buffer and key found in the log tree.
1194 * root is the destination we are replaying into, and path is for temp
1195 * use by this function. (it should be released on return).
1197 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1198 struct btrfs_root *root,
1199 struct btrfs_root *log,
1200 struct btrfs_path *path,
1201 struct extent_buffer *eb, int slot,
1202 struct btrfs_key *key)
1204 struct inode *dir = NULL;
1205 struct inode *inode = NULL;
1206 unsigned long ref_ptr;
1207 unsigned long ref_end;
1208 char *name = NULL;
1209 int namelen;
1210 int ret;
1211 int search_done = 0;
1212 int log_ref_ver = 0;
1213 u64 parent_objectid;
1214 u64 inode_objectid;
1215 u64 ref_index = 0;
1216 int ref_struct_size;
1218 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1219 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1221 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1222 struct btrfs_inode_extref *r;
1224 ref_struct_size = sizeof(struct btrfs_inode_extref);
1225 log_ref_ver = 1;
1226 r = (struct btrfs_inode_extref *)ref_ptr;
1227 parent_objectid = btrfs_inode_extref_parent(eb, r);
1228 } else {
1229 ref_struct_size = sizeof(struct btrfs_inode_ref);
1230 parent_objectid = key->offset;
1232 inode_objectid = key->objectid;
1235 * it is possible that we didn't log all the parent directories
1236 * for a given inode. If we don't find the dir, just don't
1237 * copy the back ref in. The link count fixup code will take
1238 * care of the rest
1240 dir = read_one_inode(root, parent_objectid);
1241 if (!dir) {
1242 ret = -ENOENT;
1243 goto out;
1246 inode = read_one_inode(root, inode_objectid);
1247 if (!inode) {
1248 ret = -EIO;
1249 goto out;
1252 while (ref_ptr < ref_end) {
1253 if (log_ref_ver) {
1254 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1255 &ref_index, &parent_objectid);
1257 * parent object can change from one array
1258 * item to another.
1260 if (!dir)
1261 dir = read_one_inode(root, parent_objectid);
1262 if (!dir) {
1263 ret = -ENOENT;
1264 goto out;
1266 } else {
1267 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1268 &ref_index);
1270 if (ret)
1271 goto out;
1273 /* if we already have a perfect match, we're done */
1274 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1275 ref_index, name, namelen)) {
1277 * look for a conflicting back reference in the
1278 * metadata. if we find one we have to unlink that name
1279 * of the file before we add our new link. Later on, we
1280 * overwrite any existing back reference, and we don't
1281 * want to create dangling pointers in the directory.
1284 if (!search_done) {
1285 ret = __add_inode_ref(trans, root, path, log,
1286 dir, inode, eb,
1287 inode_objectid,
1288 parent_objectid,
1289 ref_index, name, namelen,
1290 &search_done);
1291 if (ret) {
1292 if (ret == 1)
1293 ret = 0;
1294 goto out;
1298 /* insert our name */
1299 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1300 0, ref_index);
1301 if (ret)
1302 goto out;
1304 btrfs_update_inode(trans, root, inode);
1307 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1308 kfree(name);
1309 name = NULL;
1310 if (log_ref_ver) {
1311 iput(dir);
1312 dir = NULL;
1316 /* finally write the back reference in the inode */
1317 ret = overwrite_item(trans, root, path, eb, slot, key);
1318 out:
1319 btrfs_release_path(path);
1320 kfree(name);
1321 iput(dir);
1322 iput(inode);
1323 return ret;
1326 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1327 struct btrfs_root *root, u64 ino)
1329 int ret;
1331 ret = btrfs_insert_orphan_item(trans, root, ino);
1332 if (ret == -EEXIST)
1333 ret = 0;
1335 return ret;
1338 static int count_inode_extrefs(struct btrfs_root *root,
1339 struct inode *inode, struct btrfs_path *path)
1341 int ret = 0;
1342 int name_len;
1343 unsigned int nlink = 0;
1344 u32 item_size;
1345 u32 cur_offset = 0;
1346 u64 inode_objectid = btrfs_ino(inode);
1347 u64 offset = 0;
1348 unsigned long ptr;
1349 struct btrfs_inode_extref *extref;
1350 struct extent_buffer *leaf;
1352 while (1) {
1353 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1354 &extref, &offset);
1355 if (ret)
1356 break;
1358 leaf = path->nodes[0];
1359 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1360 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1361 cur_offset = 0;
1363 while (cur_offset < item_size) {
1364 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1365 name_len = btrfs_inode_extref_name_len(leaf, extref);
1367 nlink++;
1369 cur_offset += name_len + sizeof(*extref);
1372 offset++;
1373 btrfs_release_path(path);
1375 btrfs_release_path(path);
1377 if (ret < 0 && ret != -ENOENT)
1378 return ret;
1379 return nlink;
1382 static int count_inode_refs(struct btrfs_root *root,
1383 struct inode *inode, struct btrfs_path *path)
1385 int ret;
1386 struct btrfs_key key;
1387 unsigned int nlink = 0;
1388 unsigned long ptr;
1389 unsigned long ptr_end;
1390 int name_len;
1391 u64 ino = btrfs_ino(inode);
1393 key.objectid = ino;
1394 key.type = BTRFS_INODE_REF_KEY;
1395 key.offset = (u64)-1;
1397 while (1) {
1398 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1399 if (ret < 0)
1400 break;
1401 if (ret > 0) {
1402 if (path->slots[0] == 0)
1403 break;
1404 path->slots[0]--;
1406 process_slot:
1407 btrfs_item_key_to_cpu(path->nodes[0], &key,
1408 path->slots[0]);
1409 if (key.objectid != ino ||
1410 key.type != BTRFS_INODE_REF_KEY)
1411 break;
1412 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1413 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1414 path->slots[0]);
1415 while (ptr < ptr_end) {
1416 struct btrfs_inode_ref *ref;
1418 ref = (struct btrfs_inode_ref *)ptr;
1419 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1420 ref);
1421 ptr = (unsigned long)(ref + 1) + name_len;
1422 nlink++;
1425 if (key.offset == 0)
1426 break;
1427 if (path->slots[0] > 0) {
1428 path->slots[0]--;
1429 goto process_slot;
1431 key.offset--;
1432 btrfs_release_path(path);
1434 btrfs_release_path(path);
1436 return nlink;
1440 * There are a few corners where the link count of the file can't
1441 * be properly maintained during replay. So, instead of adding
1442 * lots of complexity to the log code, we just scan the backrefs
1443 * for any file that has been through replay.
1445 * The scan will update the link count on the inode to reflect the
1446 * number of back refs found. If it goes down to zero, the iput
1447 * will free the inode.
1449 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct inode *inode)
1453 struct btrfs_path *path;
1454 int ret;
1455 u64 nlink = 0;
1456 u64 ino = btrfs_ino(inode);
1458 path = btrfs_alloc_path();
1459 if (!path)
1460 return -ENOMEM;
1462 ret = count_inode_refs(root, inode, path);
1463 if (ret < 0)
1464 goto out;
1466 nlink = ret;
1468 ret = count_inode_extrefs(root, inode, path);
1469 if (ret < 0)
1470 goto out;
1472 nlink += ret;
1474 ret = 0;
1476 if (nlink != inode->i_nlink) {
1477 set_nlink(inode, nlink);
1478 btrfs_update_inode(trans, root, inode);
1480 BTRFS_I(inode)->index_cnt = (u64)-1;
1482 if (inode->i_nlink == 0) {
1483 if (S_ISDIR(inode->i_mode)) {
1484 ret = replay_dir_deletes(trans, root, NULL, path,
1485 ino, 1);
1486 if (ret)
1487 goto out;
1489 ret = insert_orphan_item(trans, root, ino);
1492 out:
1493 btrfs_free_path(path);
1494 return ret;
1497 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1498 struct btrfs_root *root,
1499 struct btrfs_path *path)
1501 int ret;
1502 struct btrfs_key key;
1503 struct inode *inode;
1505 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1506 key.type = BTRFS_ORPHAN_ITEM_KEY;
1507 key.offset = (u64)-1;
1508 while (1) {
1509 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1510 if (ret < 0)
1511 break;
1513 if (ret == 1) {
1514 if (path->slots[0] == 0)
1515 break;
1516 path->slots[0]--;
1519 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1520 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1521 key.type != BTRFS_ORPHAN_ITEM_KEY)
1522 break;
1524 ret = btrfs_del_item(trans, root, path);
1525 if (ret)
1526 goto out;
1528 btrfs_release_path(path);
1529 inode = read_one_inode(root, key.offset);
1530 if (!inode)
1531 return -EIO;
1533 ret = fixup_inode_link_count(trans, root, inode);
1534 iput(inode);
1535 if (ret)
1536 goto out;
1539 * fixup on a directory may create new entries,
1540 * make sure we always look for the highset possible
1541 * offset
1543 key.offset = (u64)-1;
1545 ret = 0;
1546 out:
1547 btrfs_release_path(path);
1548 return ret;
1553 * record a given inode in the fixup dir so we can check its link
1554 * count when replay is done. The link count is incremented here
1555 * so the inode won't go away until we check it
1557 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 u64 objectid)
1562 struct btrfs_key key;
1563 int ret = 0;
1564 struct inode *inode;
1566 inode = read_one_inode(root, objectid);
1567 if (!inode)
1568 return -EIO;
1570 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1571 key.type = BTRFS_ORPHAN_ITEM_KEY;
1572 key.offset = objectid;
1574 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1576 btrfs_release_path(path);
1577 if (ret == 0) {
1578 if (!inode->i_nlink)
1579 set_nlink(inode, 1);
1580 else
1581 inc_nlink(inode);
1582 ret = btrfs_update_inode(trans, root, inode);
1583 } else if (ret == -EEXIST) {
1584 ret = 0;
1585 } else {
1586 BUG(); /* Logic Error */
1588 iput(inode);
1590 return ret;
1594 * when replaying the log for a directory, we only insert names
1595 * for inodes that actually exist. This means an fsync on a directory
1596 * does not implicitly fsync all the new files in it
1598 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 u64 dirid, u64 index,
1601 char *name, int name_len,
1602 struct btrfs_key *location)
1604 struct inode *inode;
1605 struct inode *dir;
1606 int ret;
1608 inode = read_one_inode(root, location->objectid);
1609 if (!inode)
1610 return -ENOENT;
1612 dir = read_one_inode(root, dirid);
1613 if (!dir) {
1614 iput(inode);
1615 return -EIO;
1618 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1620 /* FIXME, put inode into FIXUP list */
1622 iput(inode);
1623 iput(dir);
1624 return ret;
1628 * Return true if an inode reference exists in the log for the given name,
1629 * inode and parent inode.
1631 static bool name_in_log_ref(struct btrfs_root *log_root,
1632 const char *name, const int name_len,
1633 const u64 dirid, const u64 ino)
1635 struct btrfs_key search_key;
1637 search_key.objectid = ino;
1638 search_key.type = BTRFS_INODE_REF_KEY;
1639 search_key.offset = dirid;
1640 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1641 return true;
1643 search_key.type = BTRFS_INODE_EXTREF_KEY;
1644 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1645 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1646 return true;
1648 return false;
1652 * take a single entry in a log directory item and replay it into
1653 * the subvolume.
1655 * if a conflicting item exists in the subdirectory already,
1656 * the inode it points to is unlinked and put into the link count
1657 * fix up tree.
1659 * If a name from the log points to a file or directory that does
1660 * not exist in the FS, it is skipped. fsyncs on directories
1661 * do not force down inodes inside that directory, just changes to the
1662 * names or unlinks in a directory.
1664 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1665 * non-existing inode) and 1 if the name was replayed.
1667 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1668 struct btrfs_root *root,
1669 struct btrfs_path *path,
1670 struct extent_buffer *eb,
1671 struct btrfs_dir_item *di,
1672 struct btrfs_key *key)
1674 char *name;
1675 int name_len;
1676 struct btrfs_dir_item *dst_di;
1677 struct btrfs_key found_key;
1678 struct btrfs_key log_key;
1679 struct inode *dir;
1680 u8 log_type;
1681 int exists;
1682 int ret = 0;
1683 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1684 bool name_added = false;
1686 dir = read_one_inode(root, key->objectid);
1687 if (!dir)
1688 return -EIO;
1690 name_len = btrfs_dir_name_len(eb, di);
1691 name = kmalloc(name_len, GFP_NOFS);
1692 if (!name) {
1693 ret = -ENOMEM;
1694 goto out;
1697 log_type = btrfs_dir_type(eb, di);
1698 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1699 name_len);
1701 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1702 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1703 if (exists == 0)
1704 exists = 1;
1705 else
1706 exists = 0;
1707 btrfs_release_path(path);
1709 if (key->type == BTRFS_DIR_ITEM_KEY) {
1710 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1711 name, name_len, 1);
1712 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1713 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1714 key->objectid,
1715 key->offset, name,
1716 name_len, 1);
1717 } else {
1718 /* Corruption */
1719 ret = -EINVAL;
1720 goto out;
1722 if (IS_ERR_OR_NULL(dst_di)) {
1723 /* we need a sequence number to insert, so we only
1724 * do inserts for the BTRFS_DIR_INDEX_KEY types
1726 if (key->type != BTRFS_DIR_INDEX_KEY)
1727 goto out;
1728 goto insert;
1731 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1732 /* the existing item matches the logged item */
1733 if (found_key.objectid == log_key.objectid &&
1734 found_key.type == log_key.type &&
1735 found_key.offset == log_key.offset &&
1736 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1737 update_size = false;
1738 goto out;
1742 * don't drop the conflicting directory entry if the inode
1743 * for the new entry doesn't exist
1745 if (!exists)
1746 goto out;
1748 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1749 if (ret)
1750 goto out;
1752 if (key->type == BTRFS_DIR_INDEX_KEY)
1753 goto insert;
1754 out:
1755 btrfs_release_path(path);
1756 if (!ret && update_size) {
1757 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1758 ret = btrfs_update_inode(trans, root, dir);
1760 kfree(name);
1761 iput(dir);
1762 if (!ret && name_added)
1763 ret = 1;
1764 return ret;
1766 insert:
1767 if (name_in_log_ref(root->log_root, name, name_len,
1768 key->objectid, log_key.objectid)) {
1769 /* The dentry will be added later. */
1770 ret = 0;
1771 update_size = false;
1772 goto out;
1774 btrfs_release_path(path);
1775 ret = insert_one_name(trans, root, key->objectid, key->offset,
1776 name, name_len, &log_key);
1777 if (ret && ret != -ENOENT && ret != -EEXIST)
1778 goto out;
1779 if (!ret)
1780 name_added = true;
1781 update_size = false;
1782 ret = 0;
1783 goto out;
1787 * find all the names in a directory item and reconcile them into
1788 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1789 * one name in a directory item, but the same code gets used for
1790 * both directory index types
1792 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1793 struct btrfs_root *root,
1794 struct btrfs_path *path,
1795 struct extent_buffer *eb, int slot,
1796 struct btrfs_key *key)
1798 int ret = 0;
1799 u32 item_size = btrfs_item_size_nr(eb, slot);
1800 struct btrfs_dir_item *di;
1801 int name_len;
1802 unsigned long ptr;
1803 unsigned long ptr_end;
1804 struct btrfs_path *fixup_path = NULL;
1806 ptr = btrfs_item_ptr_offset(eb, slot);
1807 ptr_end = ptr + item_size;
1808 while (ptr < ptr_end) {
1809 di = (struct btrfs_dir_item *)ptr;
1810 if (verify_dir_item(root, eb, di))
1811 return -EIO;
1812 name_len = btrfs_dir_name_len(eb, di);
1813 ret = replay_one_name(trans, root, path, eb, di, key);
1814 if (ret < 0)
1815 break;
1816 ptr = (unsigned long)(di + 1);
1817 ptr += name_len;
1820 * If this entry refers to a non-directory (directories can not
1821 * have a link count > 1) and it was added in the transaction
1822 * that was not committed, make sure we fixup the link count of
1823 * the inode it the entry points to. Otherwise something like
1824 * the following would result in a directory pointing to an
1825 * inode with a wrong link that does not account for this dir
1826 * entry:
1828 * mkdir testdir
1829 * touch testdir/foo
1830 * touch testdir/bar
1831 * sync
1833 * ln testdir/bar testdir/bar_link
1834 * ln testdir/foo testdir/foo_link
1835 * xfs_io -c "fsync" testdir/bar
1837 * <power failure>
1839 * mount fs, log replay happens
1841 * File foo would remain with a link count of 1 when it has two
1842 * entries pointing to it in the directory testdir. This would
1843 * make it impossible to ever delete the parent directory has
1844 * it would result in stale dentries that can never be deleted.
1846 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1847 struct btrfs_key di_key;
1849 if (!fixup_path) {
1850 fixup_path = btrfs_alloc_path();
1851 if (!fixup_path) {
1852 ret = -ENOMEM;
1853 break;
1857 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1858 ret = link_to_fixup_dir(trans, root, fixup_path,
1859 di_key.objectid);
1860 if (ret)
1861 break;
1863 ret = 0;
1865 btrfs_free_path(fixup_path);
1866 return ret;
1870 * directory replay has two parts. There are the standard directory
1871 * items in the log copied from the subvolume, and range items
1872 * created in the log while the subvolume was logged.
1874 * The range items tell us which parts of the key space the log
1875 * is authoritative for. During replay, if a key in the subvolume
1876 * directory is in a logged range item, but not actually in the log
1877 * that means it was deleted from the directory before the fsync
1878 * and should be removed.
1880 static noinline int find_dir_range(struct btrfs_root *root,
1881 struct btrfs_path *path,
1882 u64 dirid, int key_type,
1883 u64 *start_ret, u64 *end_ret)
1885 struct btrfs_key key;
1886 u64 found_end;
1887 struct btrfs_dir_log_item *item;
1888 int ret;
1889 int nritems;
1891 if (*start_ret == (u64)-1)
1892 return 1;
1894 key.objectid = dirid;
1895 key.type = key_type;
1896 key.offset = *start_ret;
1898 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1899 if (ret < 0)
1900 goto out;
1901 if (ret > 0) {
1902 if (path->slots[0] == 0)
1903 goto out;
1904 path->slots[0]--;
1906 if (ret != 0)
1907 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1909 if (key.type != key_type || key.objectid != dirid) {
1910 ret = 1;
1911 goto next;
1913 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1914 struct btrfs_dir_log_item);
1915 found_end = btrfs_dir_log_end(path->nodes[0], item);
1917 if (*start_ret >= key.offset && *start_ret <= found_end) {
1918 ret = 0;
1919 *start_ret = key.offset;
1920 *end_ret = found_end;
1921 goto out;
1923 ret = 1;
1924 next:
1925 /* check the next slot in the tree to see if it is a valid item */
1926 nritems = btrfs_header_nritems(path->nodes[0]);
1927 path->slots[0]++;
1928 if (path->slots[0] >= nritems) {
1929 ret = btrfs_next_leaf(root, path);
1930 if (ret)
1931 goto out;
1934 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1936 if (key.type != key_type || key.objectid != dirid) {
1937 ret = 1;
1938 goto out;
1940 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1941 struct btrfs_dir_log_item);
1942 found_end = btrfs_dir_log_end(path->nodes[0], item);
1943 *start_ret = key.offset;
1944 *end_ret = found_end;
1945 ret = 0;
1946 out:
1947 btrfs_release_path(path);
1948 return ret;
1952 * this looks for a given directory item in the log. If the directory
1953 * item is not in the log, the item is removed and the inode it points
1954 * to is unlinked
1956 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1957 struct btrfs_root *root,
1958 struct btrfs_root *log,
1959 struct btrfs_path *path,
1960 struct btrfs_path *log_path,
1961 struct inode *dir,
1962 struct btrfs_key *dir_key)
1964 int ret;
1965 struct extent_buffer *eb;
1966 int slot;
1967 u32 item_size;
1968 struct btrfs_dir_item *di;
1969 struct btrfs_dir_item *log_di;
1970 int name_len;
1971 unsigned long ptr;
1972 unsigned long ptr_end;
1973 char *name;
1974 struct inode *inode;
1975 struct btrfs_key location;
1977 again:
1978 eb = path->nodes[0];
1979 slot = path->slots[0];
1980 item_size = btrfs_item_size_nr(eb, slot);
1981 ptr = btrfs_item_ptr_offset(eb, slot);
1982 ptr_end = ptr + item_size;
1983 while (ptr < ptr_end) {
1984 di = (struct btrfs_dir_item *)ptr;
1985 if (verify_dir_item(root, eb, di)) {
1986 ret = -EIO;
1987 goto out;
1990 name_len = btrfs_dir_name_len(eb, di);
1991 name = kmalloc(name_len, GFP_NOFS);
1992 if (!name) {
1993 ret = -ENOMEM;
1994 goto out;
1996 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1997 name_len);
1998 log_di = NULL;
1999 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2000 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2001 dir_key->objectid,
2002 name, name_len, 0);
2003 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2004 log_di = btrfs_lookup_dir_index_item(trans, log,
2005 log_path,
2006 dir_key->objectid,
2007 dir_key->offset,
2008 name, name_len, 0);
2010 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2011 btrfs_dir_item_key_to_cpu(eb, di, &location);
2012 btrfs_release_path(path);
2013 btrfs_release_path(log_path);
2014 inode = read_one_inode(root, location.objectid);
2015 if (!inode) {
2016 kfree(name);
2017 return -EIO;
2020 ret = link_to_fixup_dir(trans, root,
2021 path, location.objectid);
2022 if (ret) {
2023 kfree(name);
2024 iput(inode);
2025 goto out;
2028 inc_nlink(inode);
2029 ret = btrfs_unlink_inode(trans, root, dir, inode,
2030 name, name_len);
2031 if (!ret)
2032 ret = btrfs_run_delayed_items(trans, root);
2033 kfree(name);
2034 iput(inode);
2035 if (ret)
2036 goto out;
2038 /* there might still be more names under this key
2039 * check and repeat if required
2041 ret = btrfs_search_slot(NULL, root, dir_key, path,
2042 0, 0);
2043 if (ret == 0)
2044 goto again;
2045 ret = 0;
2046 goto out;
2047 } else if (IS_ERR(log_di)) {
2048 kfree(name);
2049 return PTR_ERR(log_di);
2051 btrfs_release_path(log_path);
2052 kfree(name);
2054 ptr = (unsigned long)(di + 1);
2055 ptr += name_len;
2057 ret = 0;
2058 out:
2059 btrfs_release_path(path);
2060 btrfs_release_path(log_path);
2061 return ret;
2064 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2065 struct btrfs_root *root,
2066 struct btrfs_root *log,
2067 struct btrfs_path *path,
2068 const u64 ino)
2070 struct btrfs_key search_key;
2071 struct btrfs_path *log_path;
2072 int i;
2073 int nritems;
2074 int ret;
2076 log_path = btrfs_alloc_path();
2077 if (!log_path)
2078 return -ENOMEM;
2080 search_key.objectid = ino;
2081 search_key.type = BTRFS_XATTR_ITEM_KEY;
2082 search_key.offset = 0;
2083 again:
2084 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2085 if (ret < 0)
2086 goto out;
2087 process_leaf:
2088 nritems = btrfs_header_nritems(path->nodes[0]);
2089 for (i = path->slots[0]; i < nritems; i++) {
2090 struct btrfs_key key;
2091 struct btrfs_dir_item *di;
2092 struct btrfs_dir_item *log_di;
2093 u32 total_size;
2094 u32 cur;
2096 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2097 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2098 ret = 0;
2099 goto out;
2102 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2103 total_size = btrfs_item_size_nr(path->nodes[0], i);
2104 cur = 0;
2105 while (cur < total_size) {
2106 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2107 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2108 u32 this_len = sizeof(*di) + name_len + data_len;
2109 char *name;
2111 name = kmalloc(name_len, GFP_NOFS);
2112 if (!name) {
2113 ret = -ENOMEM;
2114 goto out;
2116 read_extent_buffer(path->nodes[0], name,
2117 (unsigned long)(di + 1), name_len);
2119 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2120 name, name_len, 0);
2121 btrfs_release_path(log_path);
2122 if (!log_di) {
2123 /* Doesn't exist in log tree, so delete it. */
2124 btrfs_release_path(path);
2125 di = btrfs_lookup_xattr(trans, root, path, ino,
2126 name, name_len, -1);
2127 kfree(name);
2128 if (IS_ERR(di)) {
2129 ret = PTR_ERR(di);
2130 goto out;
2132 ASSERT(di);
2133 ret = btrfs_delete_one_dir_name(trans, root,
2134 path, di);
2135 if (ret)
2136 goto out;
2137 btrfs_release_path(path);
2138 search_key = key;
2139 goto again;
2141 kfree(name);
2142 if (IS_ERR(log_di)) {
2143 ret = PTR_ERR(log_di);
2144 goto out;
2146 cur += this_len;
2147 di = (struct btrfs_dir_item *)((char *)di + this_len);
2150 ret = btrfs_next_leaf(root, path);
2151 if (ret > 0)
2152 ret = 0;
2153 else if (ret == 0)
2154 goto process_leaf;
2155 out:
2156 btrfs_free_path(log_path);
2157 btrfs_release_path(path);
2158 return ret;
2163 * deletion replay happens before we copy any new directory items
2164 * out of the log or out of backreferences from inodes. It
2165 * scans the log to find ranges of keys that log is authoritative for,
2166 * and then scans the directory to find items in those ranges that are
2167 * not present in the log.
2169 * Anything we don't find in the log is unlinked and removed from the
2170 * directory.
2172 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2173 struct btrfs_root *root,
2174 struct btrfs_root *log,
2175 struct btrfs_path *path,
2176 u64 dirid, int del_all)
2178 u64 range_start;
2179 u64 range_end;
2180 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2181 int ret = 0;
2182 struct btrfs_key dir_key;
2183 struct btrfs_key found_key;
2184 struct btrfs_path *log_path;
2185 struct inode *dir;
2187 dir_key.objectid = dirid;
2188 dir_key.type = BTRFS_DIR_ITEM_KEY;
2189 log_path = btrfs_alloc_path();
2190 if (!log_path)
2191 return -ENOMEM;
2193 dir = read_one_inode(root, dirid);
2194 /* it isn't an error if the inode isn't there, that can happen
2195 * because we replay the deletes before we copy in the inode item
2196 * from the log
2198 if (!dir) {
2199 btrfs_free_path(log_path);
2200 return 0;
2202 again:
2203 range_start = 0;
2204 range_end = 0;
2205 while (1) {
2206 if (del_all)
2207 range_end = (u64)-1;
2208 else {
2209 ret = find_dir_range(log, path, dirid, key_type,
2210 &range_start, &range_end);
2211 if (ret != 0)
2212 break;
2215 dir_key.offset = range_start;
2216 while (1) {
2217 int nritems;
2218 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2219 0, 0);
2220 if (ret < 0)
2221 goto out;
2223 nritems = btrfs_header_nritems(path->nodes[0]);
2224 if (path->slots[0] >= nritems) {
2225 ret = btrfs_next_leaf(root, path);
2226 if (ret == 1)
2227 break;
2228 else if (ret < 0)
2229 goto out;
2231 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2232 path->slots[0]);
2233 if (found_key.objectid != dirid ||
2234 found_key.type != dir_key.type)
2235 goto next_type;
2237 if (found_key.offset > range_end)
2238 break;
2240 ret = check_item_in_log(trans, root, log, path,
2241 log_path, dir,
2242 &found_key);
2243 if (ret)
2244 goto out;
2245 if (found_key.offset == (u64)-1)
2246 break;
2247 dir_key.offset = found_key.offset + 1;
2249 btrfs_release_path(path);
2250 if (range_end == (u64)-1)
2251 break;
2252 range_start = range_end + 1;
2255 next_type:
2256 ret = 0;
2257 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2258 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2259 dir_key.type = BTRFS_DIR_INDEX_KEY;
2260 btrfs_release_path(path);
2261 goto again;
2263 out:
2264 btrfs_release_path(path);
2265 btrfs_free_path(log_path);
2266 iput(dir);
2267 return ret;
2271 * the process_func used to replay items from the log tree. This
2272 * gets called in two different stages. The first stage just looks
2273 * for inodes and makes sure they are all copied into the subvolume.
2275 * The second stage copies all the other item types from the log into
2276 * the subvolume. The two stage approach is slower, but gets rid of
2277 * lots of complexity around inodes referencing other inodes that exist
2278 * only in the log (references come from either directory items or inode
2279 * back refs).
2281 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2282 struct walk_control *wc, u64 gen)
2284 int nritems;
2285 struct btrfs_path *path;
2286 struct btrfs_root *root = wc->replay_dest;
2287 struct btrfs_key key;
2288 int level;
2289 int i;
2290 int ret;
2292 ret = btrfs_read_buffer(eb, gen);
2293 if (ret)
2294 return ret;
2296 level = btrfs_header_level(eb);
2298 if (level != 0)
2299 return 0;
2301 path = btrfs_alloc_path();
2302 if (!path)
2303 return -ENOMEM;
2305 nritems = btrfs_header_nritems(eb);
2306 for (i = 0; i < nritems; i++) {
2307 btrfs_item_key_to_cpu(eb, &key, i);
2309 /* inode keys are done during the first stage */
2310 if (key.type == BTRFS_INODE_ITEM_KEY &&
2311 wc->stage == LOG_WALK_REPLAY_INODES) {
2312 struct btrfs_inode_item *inode_item;
2313 u32 mode;
2315 inode_item = btrfs_item_ptr(eb, i,
2316 struct btrfs_inode_item);
2317 ret = replay_xattr_deletes(wc->trans, root, log,
2318 path, key.objectid);
2319 if (ret)
2320 break;
2321 mode = btrfs_inode_mode(eb, inode_item);
2322 if (S_ISDIR(mode)) {
2323 ret = replay_dir_deletes(wc->trans,
2324 root, log, path, key.objectid, 0);
2325 if (ret)
2326 break;
2328 ret = overwrite_item(wc->trans, root, path,
2329 eb, i, &key);
2330 if (ret)
2331 break;
2333 /* for regular files, make sure corresponding
2334 * orhpan item exist. extents past the new EOF
2335 * will be truncated later by orphan cleanup.
2337 if (S_ISREG(mode)) {
2338 ret = insert_orphan_item(wc->trans, root,
2339 key.objectid);
2340 if (ret)
2341 break;
2344 ret = link_to_fixup_dir(wc->trans, root,
2345 path, key.objectid);
2346 if (ret)
2347 break;
2350 if (key.type == BTRFS_DIR_INDEX_KEY &&
2351 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2352 ret = replay_one_dir_item(wc->trans, root, path,
2353 eb, i, &key);
2354 if (ret)
2355 break;
2358 if (wc->stage < LOG_WALK_REPLAY_ALL)
2359 continue;
2361 /* these keys are simply copied */
2362 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2363 ret = overwrite_item(wc->trans, root, path,
2364 eb, i, &key);
2365 if (ret)
2366 break;
2367 } else if (key.type == BTRFS_INODE_REF_KEY ||
2368 key.type == BTRFS_INODE_EXTREF_KEY) {
2369 ret = add_inode_ref(wc->trans, root, log, path,
2370 eb, i, &key);
2371 if (ret && ret != -ENOENT)
2372 break;
2373 ret = 0;
2374 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2375 ret = replay_one_extent(wc->trans, root, path,
2376 eb, i, &key);
2377 if (ret)
2378 break;
2379 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2380 ret = replay_one_dir_item(wc->trans, root, path,
2381 eb, i, &key);
2382 if (ret)
2383 break;
2386 btrfs_free_path(path);
2387 return ret;
2390 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2391 struct btrfs_root *root,
2392 struct btrfs_path *path, int *level,
2393 struct walk_control *wc)
2395 u64 root_owner;
2396 u64 bytenr;
2397 u64 ptr_gen;
2398 struct extent_buffer *next;
2399 struct extent_buffer *cur;
2400 struct extent_buffer *parent;
2401 u32 blocksize;
2402 int ret = 0;
2404 WARN_ON(*level < 0);
2405 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2407 while (*level > 0) {
2408 WARN_ON(*level < 0);
2409 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2410 cur = path->nodes[*level];
2412 WARN_ON(btrfs_header_level(cur) != *level);
2414 if (path->slots[*level] >=
2415 btrfs_header_nritems(cur))
2416 break;
2418 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2419 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2420 blocksize = root->nodesize;
2422 parent = path->nodes[*level];
2423 root_owner = btrfs_header_owner(parent);
2425 next = btrfs_find_create_tree_block(root, bytenr);
2426 if (!next)
2427 return -ENOMEM;
2429 if (*level == 1) {
2430 ret = wc->process_func(root, next, wc, ptr_gen);
2431 if (ret) {
2432 free_extent_buffer(next);
2433 return ret;
2436 path->slots[*level]++;
2437 if (wc->free) {
2438 ret = btrfs_read_buffer(next, ptr_gen);
2439 if (ret) {
2440 free_extent_buffer(next);
2441 return ret;
2444 if (trans) {
2445 btrfs_tree_lock(next);
2446 btrfs_set_lock_blocking(next);
2447 clean_tree_block(trans, root->fs_info,
2448 next);
2449 btrfs_wait_tree_block_writeback(next);
2450 btrfs_tree_unlock(next);
2451 } else {
2452 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2453 clear_extent_buffer_dirty(next);
2456 WARN_ON(root_owner !=
2457 BTRFS_TREE_LOG_OBJECTID);
2458 ret = btrfs_free_and_pin_reserved_extent(root,
2459 bytenr, blocksize);
2460 if (ret) {
2461 free_extent_buffer(next);
2462 return ret;
2465 free_extent_buffer(next);
2466 continue;
2468 ret = btrfs_read_buffer(next, ptr_gen);
2469 if (ret) {
2470 free_extent_buffer(next);
2471 return ret;
2474 WARN_ON(*level <= 0);
2475 if (path->nodes[*level-1])
2476 free_extent_buffer(path->nodes[*level-1]);
2477 path->nodes[*level-1] = next;
2478 *level = btrfs_header_level(next);
2479 path->slots[*level] = 0;
2480 cond_resched();
2482 WARN_ON(*level < 0);
2483 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2485 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2487 cond_resched();
2488 return 0;
2491 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2492 struct btrfs_root *root,
2493 struct btrfs_path *path, int *level,
2494 struct walk_control *wc)
2496 u64 root_owner;
2497 int i;
2498 int slot;
2499 int ret;
2501 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2502 slot = path->slots[i];
2503 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2504 path->slots[i]++;
2505 *level = i;
2506 WARN_ON(*level == 0);
2507 return 0;
2508 } else {
2509 struct extent_buffer *parent;
2510 if (path->nodes[*level] == root->node)
2511 parent = path->nodes[*level];
2512 else
2513 parent = path->nodes[*level + 1];
2515 root_owner = btrfs_header_owner(parent);
2516 ret = wc->process_func(root, path->nodes[*level], wc,
2517 btrfs_header_generation(path->nodes[*level]));
2518 if (ret)
2519 return ret;
2521 if (wc->free) {
2522 struct extent_buffer *next;
2524 next = path->nodes[*level];
2526 if (trans) {
2527 btrfs_tree_lock(next);
2528 btrfs_set_lock_blocking(next);
2529 clean_tree_block(trans, root->fs_info,
2530 next);
2531 btrfs_wait_tree_block_writeback(next);
2532 btrfs_tree_unlock(next);
2533 } else {
2534 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2535 clear_extent_buffer_dirty(next);
2538 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2539 ret = btrfs_free_and_pin_reserved_extent(root,
2540 path->nodes[*level]->start,
2541 path->nodes[*level]->len);
2542 if (ret)
2543 return ret;
2545 free_extent_buffer(path->nodes[*level]);
2546 path->nodes[*level] = NULL;
2547 *level = i + 1;
2550 return 1;
2554 * drop the reference count on the tree rooted at 'snap'. This traverses
2555 * the tree freeing any blocks that have a ref count of zero after being
2556 * decremented.
2558 static int walk_log_tree(struct btrfs_trans_handle *trans,
2559 struct btrfs_root *log, struct walk_control *wc)
2561 int ret = 0;
2562 int wret;
2563 int level;
2564 struct btrfs_path *path;
2565 int orig_level;
2567 path = btrfs_alloc_path();
2568 if (!path)
2569 return -ENOMEM;
2571 level = btrfs_header_level(log->node);
2572 orig_level = level;
2573 path->nodes[level] = log->node;
2574 extent_buffer_get(log->node);
2575 path->slots[level] = 0;
2577 while (1) {
2578 wret = walk_down_log_tree(trans, log, path, &level, wc);
2579 if (wret > 0)
2580 break;
2581 if (wret < 0) {
2582 ret = wret;
2583 goto out;
2586 wret = walk_up_log_tree(trans, log, path, &level, wc);
2587 if (wret > 0)
2588 break;
2589 if (wret < 0) {
2590 ret = wret;
2591 goto out;
2595 /* was the root node processed? if not, catch it here */
2596 if (path->nodes[orig_level]) {
2597 ret = wc->process_func(log, path->nodes[orig_level], wc,
2598 btrfs_header_generation(path->nodes[orig_level]));
2599 if (ret)
2600 goto out;
2601 if (wc->free) {
2602 struct extent_buffer *next;
2604 next = path->nodes[orig_level];
2606 if (trans) {
2607 btrfs_tree_lock(next);
2608 btrfs_set_lock_blocking(next);
2609 clean_tree_block(trans, log->fs_info, next);
2610 btrfs_wait_tree_block_writeback(next);
2611 btrfs_tree_unlock(next);
2612 } else {
2613 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2614 clear_extent_buffer_dirty(next);
2617 WARN_ON(log->root_key.objectid !=
2618 BTRFS_TREE_LOG_OBJECTID);
2619 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2620 next->len);
2621 if (ret)
2622 goto out;
2626 out:
2627 btrfs_free_path(path);
2628 return ret;
2632 * helper function to update the item for a given subvolumes log root
2633 * in the tree of log roots
2635 static int update_log_root(struct btrfs_trans_handle *trans,
2636 struct btrfs_root *log)
2638 int ret;
2640 if (log->log_transid == 1) {
2641 /* insert root item on the first sync */
2642 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2643 &log->root_key, &log->root_item);
2644 } else {
2645 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2646 &log->root_key, &log->root_item);
2648 return ret;
2651 static void wait_log_commit(struct btrfs_root *root, int transid)
2653 DEFINE_WAIT(wait);
2654 int index = transid % 2;
2657 * we only allow two pending log transactions at a time,
2658 * so we know that if ours is more than 2 older than the
2659 * current transaction, we're done
2661 do {
2662 prepare_to_wait(&root->log_commit_wait[index],
2663 &wait, TASK_UNINTERRUPTIBLE);
2664 mutex_unlock(&root->log_mutex);
2666 if (root->log_transid_committed < transid &&
2667 atomic_read(&root->log_commit[index]))
2668 schedule();
2670 finish_wait(&root->log_commit_wait[index], &wait);
2671 mutex_lock(&root->log_mutex);
2672 } while (root->log_transid_committed < transid &&
2673 atomic_read(&root->log_commit[index]));
2676 static void wait_for_writer(struct btrfs_root *root)
2678 DEFINE_WAIT(wait);
2680 while (atomic_read(&root->log_writers)) {
2681 prepare_to_wait(&root->log_writer_wait,
2682 &wait, TASK_UNINTERRUPTIBLE);
2683 mutex_unlock(&root->log_mutex);
2684 if (atomic_read(&root->log_writers))
2685 schedule();
2686 finish_wait(&root->log_writer_wait, &wait);
2687 mutex_lock(&root->log_mutex);
2691 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2692 struct btrfs_log_ctx *ctx)
2694 if (!ctx)
2695 return;
2697 mutex_lock(&root->log_mutex);
2698 list_del_init(&ctx->list);
2699 mutex_unlock(&root->log_mutex);
2703 * Invoked in log mutex context, or be sure there is no other task which
2704 * can access the list.
2706 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2707 int index, int error)
2709 struct btrfs_log_ctx *ctx;
2710 struct btrfs_log_ctx *safe;
2712 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2713 list_del_init(&ctx->list);
2714 ctx->log_ret = error;
2717 INIT_LIST_HEAD(&root->log_ctxs[index]);
2721 * btrfs_sync_log does sends a given tree log down to the disk and
2722 * updates the super blocks to record it. When this call is done,
2723 * you know that any inodes previously logged are safely on disk only
2724 * if it returns 0.
2726 * Any other return value means you need to call btrfs_commit_transaction.
2727 * Some of the edge cases for fsyncing directories that have had unlinks
2728 * or renames done in the past mean that sometimes the only safe
2729 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2730 * that has happened.
2732 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2733 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2735 int index1;
2736 int index2;
2737 int mark;
2738 int ret;
2739 struct btrfs_root *log = root->log_root;
2740 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2741 int log_transid = 0;
2742 struct btrfs_log_ctx root_log_ctx;
2743 struct blk_plug plug;
2745 mutex_lock(&root->log_mutex);
2746 log_transid = ctx->log_transid;
2747 if (root->log_transid_committed >= log_transid) {
2748 mutex_unlock(&root->log_mutex);
2749 return ctx->log_ret;
2752 index1 = log_transid % 2;
2753 if (atomic_read(&root->log_commit[index1])) {
2754 wait_log_commit(root, log_transid);
2755 mutex_unlock(&root->log_mutex);
2756 return ctx->log_ret;
2758 ASSERT(log_transid == root->log_transid);
2759 atomic_set(&root->log_commit[index1], 1);
2761 /* wait for previous tree log sync to complete */
2762 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2763 wait_log_commit(root, log_transid - 1);
2765 while (1) {
2766 int batch = atomic_read(&root->log_batch);
2767 /* when we're on an ssd, just kick the log commit out */
2768 if (!btrfs_test_opt(root, SSD) &&
2769 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2770 mutex_unlock(&root->log_mutex);
2771 schedule_timeout_uninterruptible(1);
2772 mutex_lock(&root->log_mutex);
2774 wait_for_writer(root);
2775 if (batch == atomic_read(&root->log_batch))
2776 break;
2779 /* bail out if we need to do a full commit */
2780 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2781 ret = -EAGAIN;
2782 btrfs_free_logged_extents(log, log_transid);
2783 mutex_unlock(&root->log_mutex);
2784 goto out;
2787 if (log_transid % 2 == 0)
2788 mark = EXTENT_DIRTY;
2789 else
2790 mark = EXTENT_NEW;
2792 /* we start IO on all the marked extents here, but we don't actually
2793 * wait for them until later.
2795 blk_start_plug(&plug);
2796 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2797 if (ret) {
2798 blk_finish_plug(&plug);
2799 btrfs_abort_transaction(trans, root, ret);
2800 btrfs_free_logged_extents(log, log_transid);
2801 btrfs_set_log_full_commit(root->fs_info, trans);
2802 mutex_unlock(&root->log_mutex);
2803 goto out;
2806 btrfs_set_root_node(&log->root_item, log->node);
2808 root->log_transid++;
2809 log->log_transid = root->log_transid;
2810 root->log_start_pid = 0;
2812 * Update or create log root item under the root's log_mutex to prevent
2813 * races with concurrent log syncs that can lead to failure to update
2814 * log root item because it was not created yet.
2816 ret = update_log_root(trans, log);
2818 * IO has been started, blocks of the log tree have WRITTEN flag set
2819 * in their headers. new modifications of the log will be written to
2820 * new positions. so it's safe to allow log writers to go in.
2822 mutex_unlock(&root->log_mutex);
2824 btrfs_init_log_ctx(&root_log_ctx);
2826 mutex_lock(&log_root_tree->log_mutex);
2827 atomic_inc(&log_root_tree->log_batch);
2828 atomic_inc(&log_root_tree->log_writers);
2830 index2 = log_root_tree->log_transid % 2;
2831 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2832 root_log_ctx.log_transid = log_root_tree->log_transid;
2834 mutex_unlock(&log_root_tree->log_mutex);
2836 mutex_lock(&log_root_tree->log_mutex);
2837 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2839 * Implicit memory barrier after atomic_dec_and_test
2841 if (waitqueue_active(&log_root_tree->log_writer_wait))
2842 wake_up(&log_root_tree->log_writer_wait);
2845 if (ret) {
2846 if (!list_empty(&root_log_ctx.list))
2847 list_del_init(&root_log_ctx.list);
2849 blk_finish_plug(&plug);
2850 btrfs_set_log_full_commit(root->fs_info, trans);
2852 if (ret != -ENOSPC) {
2853 btrfs_abort_transaction(trans, root, ret);
2854 mutex_unlock(&log_root_tree->log_mutex);
2855 goto out;
2857 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2858 btrfs_free_logged_extents(log, log_transid);
2859 mutex_unlock(&log_root_tree->log_mutex);
2860 ret = -EAGAIN;
2861 goto out;
2864 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2865 blk_finish_plug(&plug);
2866 list_del_init(&root_log_ctx.list);
2867 mutex_unlock(&log_root_tree->log_mutex);
2868 ret = root_log_ctx.log_ret;
2869 goto out;
2872 index2 = root_log_ctx.log_transid % 2;
2873 if (atomic_read(&log_root_tree->log_commit[index2])) {
2874 blk_finish_plug(&plug);
2875 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2876 mark);
2877 btrfs_wait_logged_extents(trans, log, log_transid);
2878 wait_log_commit(log_root_tree,
2879 root_log_ctx.log_transid);
2880 mutex_unlock(&log_root_tree->log_mutex);
2881 if (!ret)
2882 ret = root_log_ctx.log_ret;
2883 goto out;
2885 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2886 atomic_set(&log_root_tree->log_commit[index2], 1);
2888 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2889 wait_log_commit(log_root_tree,
2890 root_log_ctx.log_transid - 1);
2893 wait_for_writer(log_root_tree);
2896 * now that we've moved on to the tree of log tree roots,
2897 * check the full commit flag again
2899 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2900 blk_finish_plug(&plug);
2901 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2902 btrfs_free_logged_extents(log, log_transid);
2903 mutex_unlock(&log_root_tree->log_mutex);
2904 ret = -EAGAIN;
2905 goto out_wake_log_root;
2908 ret = btrfs_write_marked_extents(log_root_tree,
2909 &log_root_tree->dirty_log_pages,
2910 EXTENT_DIRTY | EXTENT_NEW);
2911 blk_finish_plug(&plug);
2912 if (ret) {
2913 btrfs_set_log_full_commit(root->fs_info, trans);
2914 btrfs_abort_transaction(trans, root, ret);
2915 btrfs_free_logged_extents(log, log_transid);
2916 mutex_unlock(&log_root_tree->log_mutex);
2917 goto out_wake_log_root;
2919 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2920 if (!ret)
2921 ret = btrfs_wait_marked_extents(log_root_tree,
2922 &log_root_tree->dirty_log_pages,
2923 EXTENT_NEW | EXTENT_DIRTY);
2924 if (ret) {
2925 btrfs_set_log_full_commit(root->fs_info, trans);
2926 btrfs_free_logged_extents(log, log_transid);
2927 mutex_unlock(&log_root_tree->log_mutex);
2928 goto out_wake_log_root;
2930 btrfs_wait_logged_extents(trans, log, log_transid);
2932 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2933 log_root_tree->node->start);
2934 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2935 btrfs_header_level(log_root_tree->node));
2937 log_root_tree->log_transid++;
2938 mutex_unlock(&log_root_tree->log_mutex);
2941 * nobody else is going to jump in and write the the ctree
2942 * super here because the log_commit atomic below is protecting
2943 * us. We must be called with a transaction handle pinning
2944 * the running transaction open, so a full commit can't hop
2945 * in and cause problems either.
2947 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2948 if (ret) {
2949 btrfs_set_log_full_commit(root->fs_info, trans);
2950 btrfs_abort_transaction(trans, root, ret);
2951 goto out_wake_log_root;
2954 mutex_lock(&root->log_mutex);
2955 if (root->last_log_commit < log_transid)
2956 root->last_log_commit = log_transid;
2957 mutex_unlock(&root->log_mutex);
2959 out_wake_log_root:
2960 mutex_lock(&log_root_tree->log_mutex);
2961 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2963 log_root_tree->log_transid_committed++;
2964 atomic_set(&log_root_tree->log_commit[index2], 0);
2965 mutex_unlock(&log_root_tree->log_mutex);
2968 * The barrier before waitqueue_active is needed so all the updates
2969 * above are seen by the woken threads. It might not be necessary, but
2970 * proving that seems to be hard.
2972 smp_mb();
2973 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2974 wake_up(&log_root_tree->log_commit_wait[index2]);
2975 out:
2976 mutex_lock(&root->log_mutex);
2977 btrfs_remove_all_log_ctxs(root, index1, ret);
2978 root->log_transid_committed++;
2979 atomic_set(&root->log_commit[index1], 0);
2980 mutex_unlock(&root->log_mutex);
2983 * The barrier before waitqueue_active is needed so all the updates
2984 * above are seen by the woken threads. It might not be necessary, but
2985 * proving that seems to be hard.
2987 smp_mb();
2988 if (waitqueue_active(&root->log_commit_wait[index1]))
2989 wake_up(&root->log_commit_wait[index1]);
2990 return ret;
2993 static void free_log_tree(struct btrfs_trans_handle *trans,
2994 struct btrfs_root *log)
2996 int ret;
2997 u64 start;
2998 u64 end;
2999 struct walk_control wc = {
3000 .free = 1,
3001 .process_func = process_one_buffer
3004 ret = walk_log_tree(trans, log, &wc);
3005 /* I don't think this can happen but just in case */
3006 if (ret)
3007 btrfs_abort_transaction(trans, log, ret);
3009 while (1) {
3010 ret = find_first_extent_bit(&log->dirty_log_pages,
3011 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
3012 NULL);
3013 if (ret)
3014 break;
3016 clear_extent_bits(&log->dirty_log_pages, start, end,
3017 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
3021 * We may have short-circuited the log tree with the full commit logic
3022 * and left ordered extents on our list, so clear these out to keep us
3023 * from leaking inodes and memory.
3025 btrfs_free_logged_extents(log, 0);
3026 btrfs_free_logged_extents(log, 1);
3028 free_extent_buffer(log->node);
3029 kfree(log);
3033 * free all the extents used by the tree log. This should be called
3034 * at commit time of the full transaction
3036 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3038 if (root->log_root) {
3039 free_log_tree(trans, root->log_root);
3040 root->log_root = NULL;
3042 return 0;
3045 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3046 struct btrfs_fs_info *fs_info)
3048 if (fs_info->log_root_tree) {
3049 free_log_tree(trans, fs_info->log_root_tree);
3050 fs_info->log_root_tree = NULL;
3052 return 0;
3056 * If both a file and directory are logged, and unlinks or renames are
3057 * mixed in, we have a few interesting corners:
3059 * create file X in dir Y
3060 * link file X to X.link in dir Y
3061 * fsync file X
3062 * unlink file X but leave X.link
3063 * fsync dir Y
3065 * After a crash we would expect only X.link to exist. But file X
3066 * didn't get fsync'd again so the log has back refs for X and X.link.
3068 * We solve this by removing directory entries and inode backrefs from the
3069 * log when a file that was logged in the current transaction is
3070 * unlinked. Any later fsync will include the updated log entries, and
3071 * we'll be able to reconstruct the proper directory items from backrefs.
3073 * This optimizations allows us to avoid relogging the entire inode
3074 * or the entire directory.
3076 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3077 struct btrfs_root *root,
3078 const char *name, int name_len,
3079 struct inode *dir, u64 index)
3081 struct btrfs_root *log;
3082 struct btrfs_dir_item *di;
3083 struct btrfs_path *path;
3084 int ret;
3085 int err = 0;
3086 int bytes_del = 0;
3087 u64 dir_ino = btrfs_ino(dir);
3089 if (BTRFS_I(dir)->logged_trans < trans->transid)
3090 return 0;
3092 ret = join_running_log_trans(root);
3093 if (ret)
3094 return 0;
3096 mutex_lock(&BTRFS_I(dir)->log_mutex);
3098 log = root->log_root;
3099 path = btrfs_alloc_path();
3100 if (!path) {
3101 err = -ENOMEM;
3102 goto out_unlock;
3105 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3106 name, name_len, -1);
3107 if (IS_ERR(di)) {
3108 err = PTR_ERR(di);
3109 goto fail;
3111 if (di) {
3112 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3113 bytes_del += name_len;
3114 if (ret) {
3115 err = ret;
3116 goto fail;
3119 btrfs_release_path(path);
3120 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3121 index, name, name_len, -1);
3122 if (IS_ERR(di)) {
3123 err = PTR_ERR(di);
3124 goto fail;
3126 if (di) {
3127 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3128 bytes_del += name_len;
3129 if (ret) {
3130 err = ret;
3131 goto fail;
3135 /* update the directory size in the log to reflect the names
3136 * we have removed
3138 if (bytes_del) {
3139 struct btrfs_key key;
3141 key.objectid = dir_ino;
3142 key.offset = 0;
3143 key.type = BTRFS_INODE_ITEM_KEY;
3144 btrfs_release_path(path);
3146 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3147 if (ret < 0) {
3148 err = ret;
3149 goto fail;
3151 if (ret == 0) {
3152 struct btrfs_inode_item *item;
3153 u64 i_size;
3155 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3156 struct btrfs_inode_item);
3157 i_size = btrfs_inode_size(path->nodes[0], item);
3158 if (i_size > bytes_del)
3159 i_size -= bytes_del;
3160 else
3161 i_size = 0;
3162 btrfs_set_inode_size(path->nodes[0], item, i_size);
3163 btrfs_mark_buffer_dirty(path->nodes[0]);
3164 } else
3165 ret = 0;
3166 btrfs_release_path(path);
3168 fail:
3169 btrfs_free_path(path);
3170 out_unlock:
3171 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3172 if (err == -ENOSPC) {
3173 btrfs_set_log_full_commit(root->fs_info, trans);
3174 err = 0;
3175 } else if (err < 0 && err != -ENOENT) {
3176 /* ENOENT can be returned if the entry hasn't been fsynced yet */
3177 btrfs_abort_transaction(trans, root, err);
3180 btrfs_end_log_trans(root);
3182 return err;
3185 /* see comments for btrfs_del_dir_entries_in_log */
3186 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3187 struct btrfs_root *root,
3188 const char *name, int name_len,
3189 struct inode *inode, u64 dirid)
3191 struct btrfs_root *log;
3192 u64 index;
3193 int ret;
3195 if (BTRFS_I(inode)->logged_trans < trans->transid)
3196 return 0;
3198 ret = join_running_log_trans(root);
3199 if (ret)
3200 return 0;
3201 log = root->log_root;
3202 mutex_lock(&BTRFS_I(inode)->log_mutex);
3204 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3205 dirid, &index);
3206 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3207 if (ret == -ENOSPC) {
3208 btrfs_set_log_full_commit(root->fs_info, trans);
3209 ret = 0;
3210 } else if (ret < 0 && ret != -ENOENT)
3211 btrfs_abort_transaction(trans, root, ret);
3212 btrfs_end_log_trans(root);
3214 return ret;
3218 * creates a range item in the log for 'dirid'. first_offset and
3219 * last_offset tell us which parts of the key space the log should
3220 * be considered authoritative for.
3222 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *log,
3224 struct btrfs_path *path,
3225 int key_type, u64 dirid,
3226 u64 first_offset, u64 last_offset)
3228 int ret;
3229 struct btrfs_key key;
3230 struct btrfs_dir_log_item *item;
3232 key.objectid = dirid;
3233 key.offset = first_offset;
3234 if (key_type == BTRFS_DIR_ITEM_KEY)
3235 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3236 else
3237 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3238 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3239 if (ret)
3240 return ret;
3242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3243 struct btrfs_dir_log_item);
3244 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3245 btrfs_mark_buffer_dirty(path->nodes[0]);
3246 btrfs_release_path(path);
3247 return 0;
3251 * log all the items included in the current transaction for a given
3252 * directory. This also creates the range items in the log tree required
3253 * to replay anything deleted before the fsync
3255 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3256 struct btrfs_root *root, struct inode *inode,
3257 struct btrfs_path *path,
3258 struct btrfs_path *dst_path, int key_type,
3259 struct btrfs_log_ctx *ctx,
3260 u64 min_offset, u64 *last_offset_ret)
3262 struct btrfs_key min_key;
3263 struct btrfs_root *log = root->log_root;
3264 struct extent_buffer *src;
3265 int err = 0;
3266 int ret;
3267 int i;
3268 int nritems;
3269 u64 first_offset = min_offset;
3270 u64 last_offset = (u64)-1;
3271 u64 ino = btrfs_ino(inode);
3273 log = root->log_root;
3275 min_key.objectid = ino;
3276 min_key.type = key_type;
3277 min_key.offset = min_offset;
3279 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3282 * we didn't find anything from this transaction, see if there
3283 * is anything at all
3285 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3286 min_key.objectid = ino;
3287 min_key.type = key_type;
3288 min_key.offset = (u64)-1;
3289 btrfs_release_path(path);
3290 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3291 if (ret < 0) {
3292 btrfs_release_path(path);
3293 return ret;
3295 ret = btrfs_previous_item(root, path, ino, key_type);
3297 /* if ret == 0 there are items for this type,
3298 * create a range to tell us the last key of this type.
3299 * otherwise, there are no items in this directory after
3300 * *min_offset, and we create a range to indicate that.
3302 if (ret == 0) {
3303 struct btrfs_key tmp;
3304 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3305 path->slots[0]);
3306 if (key_type == tmp.type)
3307 first_offset = max(min_offset, tmp.offset) + 1;
3309 goto done;
3312 /* go backward to find any previous key */
3313 ret = btrfs_previous_item(root, path, ino, key_type);
3314 if (ret == 0) {
3315 struct btrfs_key tmp;
3316 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3317 if (key_type == tmp.type) {
3318 first_offset = tmp.offset;
3319 ret = overwrite_item(trans, log, dst_path,
3320 path->nodes[0], path->slots[0],
3321 &tmp);
3322 if (ret) {
3323 err = ret;
3324 goto done;
3328 btrfs_release_path(path);
3331 * Find the first key from this transaction again. See the note for
3332 * log_new_dir_dentries, if we're logging a directory recursively we
3333 * won't be holding its i_mutex, which means we can modify the directory
3334 * while we're logging it. If we remove an entry between our first
3335 * search and this search we'll not find the key again and can just
3336 * bail.
3338 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3339 if (ret != 0)
3340 goto done;
3343 * we have a block from this transaction, log every item in it
3344 * from our directory
3346 while (1) {
3347 struct btrfs_key tmp;
3348 src = path->nodes[0];
3349 nritems = btrfs_header_nritems(src);
3350 for (i = path->slots[0]; i < nritems; i++) {
3351 struct btrfs_dir_item *di;
3353 btrfs_item_key_to_cpu(src, &min_key, i);
3355 if (min_key.objectid != ino || min_key.type != key_type)
3356 goto done;
3357 ret = overwrite_item(trans, log, dst_path, src, i,
3358 &min_key);
3359 if (ret) {
3360 err = ret;
3361 goto done;
3365 * We must make sure that when we log a directory entry,
3366 * the corresponding inode, after log replay, has a
3367 * matching link count. For example:
3369 * touch foo
3370 * mkdir mydir
3371 * sync
3372 * ln foo mydir/bar
3373 * xfs_io -c "fsync" mydir
3374 * <crash>
3375 * <mount fs and log replay>
3377 * Would result in a fsync log that when replayed, our
3378 * file inode would have a link count of 1, but we get
3379 * two directory entries pointing to the same inode.
3380 * After removing one of the names, it would not be
3381 * possible to remove the other name, which resulted
3382 * always in stale file handle errors, and would not
3383 * be possible to rmdir the parent directory, since
3384 * its i_size could never decrement to the value
3385 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3387 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3388 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3389 if (ctx &&
3390 (btrfs_dir_transid(src, di) == trans->transid ||
3391 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3392 tmp.type != BTRFS_ROOT_ITEM_KEY)
3393 ctx->log_new_dentries = true;
3395 path->slots[0] = nritems;
3398 * look ahead to the next item and see if it is also
3399 * from this directory and from this transaction
3401 ret = btrfs_next_leaf(root, path);
3402 if (ret) {
3403 if (ret == 1)
3404 last_offset = (u64)-1;
3405 else
3406 err = ret;
3407 goto done;
3409 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3410 if (tmp.objectid != ino || tmp.type != key_type) {
3411 last_offset = (u64)-1;
3412 goto done;
3414 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3415 ret = overwrite_item(trans, log, dst_path,
3416 path->nodes[0], path->slots[0],
3417 &tmp);
3418 if (ret)
3419 err = ret;
3420 else
3421 last_offset = tmp.offset;
3422 goto done;
3425 done:
3426 btrfs_release_path(path);
3427 btrfs_release_path(dst_path);
3429 if (err == 0) {
3430 *last_offset_ret = last_offset;
3432 * insert the log range keys to indicate where the log
3433 * is valid
3435 ret = insert_dir_log_key(trans, log, path, key_type,
3436 ino, first_offset, last_offset);
3437 if (ret)
3438 err = ret;
3440 return err;
3444 * logging directories is very similar to logging inodes, We find all the items
3445 * from the current transaction and write them to the log.
3447 * The recovery code scans the directory in the subvolume, and if it finds a
3448 * key in the range logged that is not present in the log tree, then it means
3449 * that dir entry was unlinked during the transaction.
3451 * In order for that scan to work, we must include one key smaller than
3452 * the smallest logged by this transaction and one key larger than the largest
3453 * key logged by this transaction.
3455 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3456 struct btrfs_root *root, struct inode *inode,
3457 struct btrfs_path *path,
3458 struct btrfs_path *dst_path,
3459 struct btrfs_log_ctx *ctx)
3461 u64 min_key;
3462 u64 max_key;
3463 int ret;
3464 int key_type = BTRFS_DIR_ITEM_KEY;
3466 again:
3467 min_key = 0;
3468 max_key = 0;
3469 while (1) {
3470 ret = log_dir_items(trans, root, inode, path,
3471 dst_path, key_type, ctx, min_key,
3472 &max_key);
3473 if (ret)
3474 return ret;
3475 if (max_key == (u64)-1)
3476 break;
3477 min_key = max_key + 1;
3480 if (key_type == BTRFS_DIR_ITEM_KEY) {
3481 key_type = BTRFS_DIR_INDEX_KEY;
3482 goto again;
3484 return 0;
3488 * a helper function to drop items from the log before we relog an
3489 * inode. max_key_type indicates the highest item type to remove.
3490 * This cannot be run for file data extents because it does not
3491 * free the extents they point to.
3493 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3494 struct btrfs_root *log,
3495 struct btrfs_path *path,
3496 u64 objectid, int max_key_type)
3498 int ret;
3499 struct btrfs_key key;
3500 struct btrfs_key found_key;
3501 int start_slot;
3503 key.objectid = objectid;
3504 key.type = max_key_type;
3505 key.offset = (u64)-1;
3507 while (1) {
3508 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3509 BUG_ON(ret == 0); /* Logic error */
3510 if (ret < 0)
3511 break;
3513 if (path->slots[0] == 0)
3514 break;
3516 path->slots[0]--;
3517 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3518 path->slots[0]);
3520 if (found_key.objectid != objectid)
3521 break;
3523 found_key.offset = 0;
3524 found_key.type = 0;
3525 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3526 &start_slot);
3528 ret = btrfs_del_items(trans, log, path, start_slot,
3529 path->slots[0] - start_slot + 1);
3531 * If start slot isn't 0 then we don't need to re-search, we've
3532 * found the last guy with the objectid in this tree.
3534 if (ret || start_slot != 0)
3535 break;
3536 btrfs_release_path(path);
3538 btrfs_release_path(path);
3539 if (ret > 0)
3540 ret = 0;
3541 return ret;
3544 static void fill_inode_item(struct btrfs_trans_handle *trans,
3545 struct extent_buffer *leaf,
3546 struct btrfs_inode_item *item,
3547 struct inode *inode, int log_inode_only,
3548 u64 logged_isize)
3550 struct btrfs_map_token token;
3552 btrfs_init_map_token(&token);
3554 if (log_inode_only) {
3555 /* set the generation to zero so the recover code
3556 * can tell the difference between an logging
3557 * just to say 'this inode exists' and a logging
3558 * to say 'update this inode with these values'
3560 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3561 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3562 } else {
3563 btrfs_set_token_inode_generation(leaf, item,
3564 BTRFS_I(inode)->generation,
3565 &token);
3566 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3569 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3570 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3571 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3572 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3574 btrfs_set_token_timespec_sec(leaf, &item->atime,
3575 inode->i_atime.tv_sec, &token);
3576 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3577 inode->i_atime.tv_nsec, &token);
3579 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3580 inode->i_mtime.tv_sec, &token);
3581 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3582 inode->i_mtime.tv_nsec, &token);
3584 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3585 inode->i_ctime.tv_sec, &token);
3586 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3587 inode->i_ctime.tv_nsec, &token);
3589 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3590 &token);
3592 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3593 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3594 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3595 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3596 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3599 static int log_inode_item(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *log, struct btrfs_path *path,
3601 struct inode *inode)
3603 struct btrfs_inode_item *inode_item;
3604 int ret;
3606 ret = btrfs_insert_empty_item(trans, log, path,
3607 &BTRFS_I(inode)->location,
3608 sizeof(*inode_item));
3609 if (ret && ret != -EEXIST)
3610 return ret;
3611 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3612 struct btrfs_inode_item);
3613 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3614 btrfs_release_path(path);
3615 return 0;
3618 static noinline int copy_items(struct btrfs_trans_handle *trans,
3619 struct inode *inode,
3620 struct btrfs_path *dst_path,
3621 struct btrfs_path *src_path, u64 *last_extent,
3622 int start_slot, int nr, int inode_only,
3623 u64 logged_isize)
3625 unsigned long src_offset;
3626 unsigned long dst_offset;
3627 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3628 struct btrfs_file_extent_item *extent;
3629 struct btrfs_inode_item *inode_item;
3630 struct extent_buffer *src = src_path->nodes[0];
3631 struct btrfs_key first_key, last_key, key;
3632 int ret;
3633 struct btrfs_key *ins_keys;
3634 u32 *ins_sizes;
3635 char *ins_data;
3636 int i;
3637 struct list_head ordered_sums;
3638 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3639 bool has_extents = false;
3640 bool need_find_last_extent = true;
3641 bool done = false;
3643 INIT_LIST_HEAD(&ordered_sums);
3645 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3646 nr * sizeof(u32), GFP_NOFS);
3647 if (!ins_data)
3648 return -ENOMEM;
3650 first_key.objectid = (u64)-1;
3652 ins_sizes = (u32 *)ins_data;
3653 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3655 for (i = 0; i < nr; i++) {
3656 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3657 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3659 ret = btrfs_insert_empty_items(trans, log, dst_path,
3660 ins_keys, ins_sizes, nr);
3661 if (ret) {
3662 kfree(ins_data);
3663 return ret;
3666 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3667 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3668 dst_path->slots[0]);
3670 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3672 if ((i == (nr - 1)))
3673 last_key = ins_keys[i];
3675 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3676 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3677 dst_path->slots[0],
3678 struct btrfs_inode_item);
3679 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3680 inode, inode_only == LOG_INODE_EXISTS,
3681 logged_isize);
3682 } else {
3683 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3684 src_offset, ins_sizes[i]);
3688 * We set need_find_last_extent here in case we know we were
3689 * processing other items and then walk into the first extent in
3690 * the inode. If we don't hit an extent then nothing changes,
3691 * we'll do the last search the next time around.
3693 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3694 has_extents = true;
3695 if (first_key.objectid == (u64)-1)
3696 first_key = ins_keys[i];
3697 } else {
3698 need_find_last_extent = false;
3701 /* take a reference on file data extents so that truncates
3702 * or deletes of this inode don't have to relog the inode
3703 * again
3705 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3706 !skip_csum) {
3707 int found_type;
3708 extent = btrfs_item_ptr(src, start_slot + i,
3709 struct btrfs_file_extent_item);
3711 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3712 continue;
3714 found_type = btrfs_file_extent_type(src, extent);
3715 if (found_type == BTRFS_FILE_EXTENT_REG) {
3716 u64 ds, dl, cs, cl;
3717 ds = btrfs_file_extent_disk_bytenr(src,
3718 extent);
3719 /* ds == 0 is a hole */
3720 if (ds == 0)
3721 continue;
3723 dl = btrfs_file_extent_disk_num_bytes(src,
3724 extent);
3725 cs = btrfs_file_extent_offset(src, extent);
3726 cl = btrfs_file_extent_num_bytes(src,
3727 extent);
3728 if (btrfs_file_extent_compression(src,
3729 extent)) {
3730 cs = 0;
3731 cl = dl;
3734 ret = btrfs_lookup_csums_range(
3735 log->fs_info->csum_root,
3736 ds + cs, ds + cs + cl - 1,
3737 &ordered_sums, 0);
3738 if (ret)
3739 break;
3744 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3745 btrfs_release_path(dst_path);
3746 kfree(ins_data);
3749 * we have to do this after the loop above to avoid changing the
3750 * log tree while trying to change the log tree.
3752 while (!list_empty(&ordered_sums)) {
3753 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3754 struct btrfs_ordered_sum,
3755 list);
3756 if (!ret)
3757 ret = btrfs_csum_file_blocks(trans, log, sums);
3758 list_del(&sums->list);
3759 kfree(sums);
3762 if (!has_extents)
3763 return ret;
3765 if (need_find_last_extent && *last_extent == first_key.offset) {
3767 * We don't have any leafs between our current one and the one
3768 * we processed before that can have file extent items for our
3769 * inode (and have a generation number smaller than our current
3770 * transaction id).
3772 need_find_last_extent = false;
3776 * Because we use btrfs_search_forward we could skip leaves that were
3777 * not modified and then assume *last_extent is valid when it really
3778 * isn't. So back up to the previous leaf and read the end of the last
3779 * extent before we go and fill in holes.
3781 if (need_find_last_extent) {
3782 u64 len;
3784 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3785 if (ret < 0)
3786 return ret;
3787 if (ret)
3788 goto fill_holes;
3789 if (src_path->slots[0])
3790 src_path->slots[0]--;
3791 src = src_path->nodes[0];
3792 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3793 if (key.objectid != btrfs_ino(inode) ||
3794 key.type != BTRFS_EXTENT_DATA_KEY)
3795 goto fill_holes;
3796 extent = btrfs_item_ptr(src, src_path->slots[0],
3797 struct btrfs_file_extent_item);
3798 if (btrfs_file_extent_type(src, extent) ==
3799 BTRFS_FILE_EXTENT_INLINE) {
3800 len = btrfs_file_extent_inline_len(src,
3801 src_path->slots[0],
3802 extent);
3803 *last_extent = ALIGN(key.offset + len,
3804 log->sectorsize);
3805 } else {
3806 len = btrfs_file_extent_num_bytes(src, extent);
3807 *last_extent = key.offset + len;
3810 fill_holes:
3811 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3812 * things could have happened
3814 * 1) A merge could have happened, so we could currently be on a leaf
3815 * that holds what we were copying in the first place.
3816 * 2) A split could have happened, and now not all of the items we want
3817 * are on the same leaf.
3819 * So we need to adjust how we search for holes, we need to drop the
3820 * path and re-search for the first extent key we found, and then walk
3821 * forward until we hit the last one we copied.
3823 if (need_find_last_extent) {
3824 /* btrfs_prev_leaf could return 1 without releasing the path */
3825 btrfs_release_path(src_path);
3826 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3827 src_path, 0, 0);
3828 if (ret < 0)
3829 return ret;
3830 ASSERT(ret == 0);
3831 src = src_path->nodes[0];
3832 i = src_path->slots[0];
3833 } else {
3834 i = start_slot;
3838 * Ok so here we need to go through and fill in any holes we may have
3839 * to make sure that holes are punched for those areas in case they had
3840 * extents previously.
3842 while (!done) {
3843 u64 offset, len;
3844 u64 extent_end;
3846 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3847 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3848 if (ret < 0)
3849 return ret;
3850 ASSERT(ret == 0);
3851 src = src_path->nodes[0];
3852 i = 0;
3853 need_find_last_extent = true;
3856 btrfs_item_key_to_cpu(src, &key, i);
3857 if (!btrfs_comp_cpu_keys(&key, &last_key))
3858 done = true;
3859 if (key.objectid != btrfs_ino(inode) ||
3860 key.type != BTRFS_EXTENT_DATA_KEY) {
3861 i++;
3862 continue;
3864 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3865 if (btrfs_file_extent_type(src, extent) ==
3866 BTRFS_FILE_EXTENT_INLINE) {
3867 len = btrfs_file_extent_inline_len(src, i, extent);
3868 extent_end = ALIGN(key.offset + len, log->sectorsize);
3869 } else {
3870 len = btrfs_file_extent_num_bytes(src, extent);
3871 extent_end = key.offset + len;
3873 i++;
3875 if (*last_extent == key.offset) {
3876 *last_extent = extent_end;
3877 continue;
3879 offset = *last_extent;
3880 len = key.offset - *last_extent;
3881 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3882 offset, 0, 0, len, 0, len, 0,
3883 0, 0);
3884 if (ret)
3885 break;
3886 *last_extent = extent_end;
3889 * Need to let the callers know we dropped the path so they should
3890 * re-search.
3892 if (!ret && need_find_last_extent)
3893 ret = 1;
3894 return ret;
3897 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3899 struct extent_map *em1, *em2;
3901 em1 = list_entry(a, struct extent_map, list);
3902 em2 = list_entry(b, struct extent_map, list);
3904 if (em1->start < em2->start)
3905 return -1;
3906 else if (em1->start > em2->start)
3907 return 1;
3908 return 0;
3911 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3912 struct inode *inode,
3913 struct btrfs_root *root,
3914 const struct extent_map *em,
3915 const struct list_head *logged_list,
3916 bool *ordered_io_error)
3918 struct btrfs_ordered_extent *ordered;
3919 struct btrfs_root *log = root->log_root;
3920 u64 mod_start = em->mod_start;
3921 u64 mod_len = em->mod_len;
3922 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3923 u64 csum_offset;
3924 u64 csum_len;
3925 LIST_HEAD(ordered_sums);
3926 int ret = 0;
3928 *ordered_io_error = false;
3930 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3931 em->block_start == EXTENT_MAP_HOLE)
3932 return 0;
3935 * Wait far any ordered extent that covers our extent map. If it
3936 * finishes without an error, first check and see if our csums are on
3937 * our outstanding ordered extents.
3939 list_for_each_entry(ordered, logged_list, log_list) {
3940 struct btrfs_ordered_sum *sum;
3942 if (!mod_len)
3943 break;
3945 if (ordered->file_offset + ordered->len <= mod_start ||
3946 mod_start + mod_len <= ordered->file_offset)
3947 continue;
3949 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3950 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3951 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3952 const u64 start = ordered->file_offset;
3953 const u64 end = ordered->file_offset + ordered->len - 1;
3955 WARN_ON(ordered->inode != inode);
3956 filemap_fdatawrite_range(inode->i_mapping, start, end);
3959 wait_event(ordered->wait,
3960 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3961 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3963 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3965 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3966 * i_mapping flags, so that the next fsync won't get
3967 * an outdated io error too.
3969 btrfs_inode_check_errors(inode);
3970 *ordered_io_error = true;
3971 break;
3974 * We are going to copy all the csums on this ordered extent, so
3975 * go ahead and adjust mod_start and mod_len in case this
3976 * ordered extent has already been logged.
3978 if (ordered->file_offset > mod_start) {
3979 if (ordered->file_offset + ordered->len >=
3980 mod_start + mod_len)
3981 mod_len = ordered->file_offset - mod_start;
3983 * If we have this case
3985 * |--------- logged extent ---------|
3986 * |----- ordered extent ----|
3988 * Just don't mess with mod_start and mod_len, we'll
3989 * just end up logging more csums than we need and it
3990 * will be ok.
3992 } else {
3993 if (ordered->file_offset + ordered->len <
3994 mod_start + mod_len) {
3995 mod_len = (mod_start + mod_len) -
3996 (ordered->file_offset + ordered->len);
3997 mod_start = ordered->file_offset +
3998 ordered->len;
3999 } else {
4000 mod_len = 0;
4004 if (skip_csum)
4005 continue;
4008 * To keep us from looping for the above case of an ordered
4009 * extent that falls inside of the logged extent.
4011 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4012 &ordered->flags))
4013 continue;
4015 list_for_each_entry(sum, &ordered->list, list) {
4016 ret = btrfs_csum_file_blocks(trans, log, sum);
4017 if (ret)
4018 break;
4022 if (*ordered_io_error || !mod_len || ret || skip_csum)
4023 return ret;
4025 if (em->compress_type) {
4026 csum_offset = 0;
4027 csum_len = max(em->block_len, em->orig_block_len);
4028 } else {
4029 csum_offset = mod_start - em->start;
4030 csum_len = mod_len;
4033 /* block start is already adjusted for the file extent offset. */
4034 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4035 em->block_start + csum_offset,
4036 em->block_start + csum_offset +
4037 csum_len - 1, &ordered_sums, 0);
4038 if (ret)
4039 return ret;
4041 while (!list_empty(&ordered_sums)) {
4042 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4043 struct btrfs_ordered_sum,
4044 list);
4045 if (!ret)
4046 ret = btrfs_csum_file_blocks(trans, log, sums);
4047 list_del(&sums->list);
4048 kfree(sums);
4051 return ret;
4054 static int log_one_extent(struct btrfs_trans_handle *trans,
4055 struct inode *inode, struct btrfs_root *root,
4056 const struct extent_map *em,
4057 struct btrfs_path *path,
4058 const struct list_head *logged_list,
4059 struct btrfs_log_ctx *ctx)
4061 struct btrfs_root *log = root->log_root;
4062 struct btrfs_file_extent_item *fi;
4063 struct extent_buffer *leaf;
4064 struct btrfs_map_token token;
4065 struct btrfs_key key;
4066 u64 extent_offset = em->start - em->orig_start;
4067 u64 block_len;
4068 int ret;
4069 int extent_inserted = 0;
4070 bool ordered_io_err = false;
4072 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4073 &ordered_io_err);
4074 if (ret)
4075 return ret;
4077 if (ordered_io_err) {
4078 ctx->io_err = -EIO;
4079 return 0;
4082 btrfs_init_map_token(&token);
4084 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4085 em->start + em->len, NULL, 0, 1,
4086 sizeof(*fi), &extent_inserted);
4087 if (ret)
4088 return ret;
4090 if (!extent_inserted) {
4091 key.objectid = btrfs_ino(inode);
4092 key.type = BTRFS_EXTENT_DATA_KEY;
4093 key.offset = em->start;
4095 ret = btrfs_insert_empty_item(trans, log, path, &key,
4096 sizeof(*fi));
4097 if (ret)
4098 return ret;
4100 leaf = path->nodes[0];
4101 fi = btrfs_item_ptr(leaf, path->slots[0],
4102 struct btrfs_file_extent_item);
4104 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4105 &token);
4106 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4107 btrfs_set_token_file_extent_type(leaf, fi,
4108 BTRFS_FILE_EXTENT_PREALLOC,
4109 &token);
4110 else
4111 btrfs_set_token_file_extent_type(leaf, fi,
4112 BTRFS_FILE_EXTENT_REG,
4113 &token);
4115 block_len = max(em->block_len, em->orig_block_len);
4116 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4117 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4118 em->block_start,
4119 &token);
4120 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4121 &token);
4122 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4123 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4124 em->block_start -
4125 extent_offset, &token);
4126 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4127 &token);
4128 } else {
4129 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4130 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4131 &token);
4134 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4135 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4136 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4137 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4138 &token);
4139 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4140 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4141 btrfs_mark_buffer_dirty(leaf);
4143 btrfs_release_path(path);
4145 return ret;
4148 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4149 struct btrfs_root *root,
4150 struct inode *inode,
4151 struct btrfs_path *path,
4152 struct list_head *logged_list,
4153 struct btrfs_log_ctx *ctx)
4155 struct extent_map *em, *n;
4156 struct list_head extents;
4157 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4158 u64 test_gen;
4159 int ret = 0;
4160 int num = 0;
4162 INIT_LIST_HEAD(&extents);
4164 write_lock(&tree->lock);
4165 test_gen = root->fs_info->last_trans_committed;
4167 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4168 list_del_init(&em->list);
4171 * Just an arbitrary number, this can be really CPU intensive
4172 * once we start getting a lot of extents, and really once we
4173 * have a bunch of extents we just want to commit since it will
4174 * be faster.
4176 if (++num > 32768) {
4177 list_del_init(&tree->modified_extents);
4178 ret = -EFBIG;
4179 goto process;
4182 if (em->generation <= test_gen)
4183 continue;
4184 /* Need a ref to keep it from getting evicted from cache */
4185 atomic_inc(&em->refs);
4186 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4187 list_add_tail(&em->list, &extents);
4188 num++;
4191 list_sort(NULL, &extents, extent_cmp);
4193 process:
4194 while (!list_empty(&extents)) {
4195 em = list_entry(extents.next, struct extent_map, list);
4197 list_del_init(&em->list);
4200 * If we had an error we just need to delete everybody from our
4201 * private list.
4203 if (ret) {
4204 clear_em_logging(tree, em);
4205 free_extent_map(em);
4206 continue;
4209 write_unlock(&tree->lock);
4211 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4212 ctx);
4213 write_lock(&tree->lock);
4214 clear_em_logging(tree, em);
4215 free_extent_map(em);
4217 WARN_ON(!list_empty(&extents));
4218 write_unlock(&tree->lock);
4220 btrfs_release_path(path);
4221 return ret;
4224 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4225 struct btrfs_path *path, u64 *size_ret)
4227 struct btrfs_key key;
4228 int ret;
4230 key.objectid = btrfs_ino(inode);
4231 key.type = BTRFS_INODE_ITEM_KEY;
4232 key.offset = 0;
4234 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4235 if (ret < 0) {
4236 return ret;
4237 } else if (ret > 0) {
4238 *size_ret = 0;
4239 } else {
4240 struct btrfs_inode_item *item;
4242 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4243 struct btrfs_inode_item);
4244 *size_ret = btrfs_inode_size(path->nodes[0], item);
4247 btrfs_release_path(path);
4248 return 0;
4252 * At the moment we always log all xattrs. This is to figure out at log replay
4253 * time which xattrs must have their deletion replayed. If a xattr is missing
4254 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4255 * because if a xattr is deleted, the inode is fsynced and a power failure
4256 * happens, causing the log to be replayed the next time the fs is mounted,
4257 * we want the xattr to not exist anymore (same behaviour as other filesystems
4258 * with a journal, ext3/4, xfs, f2fs, etc).
4260 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4261 struct btrfs_root *root,
4262 struct inode *inode,
4263 struct btrfs_path *path,
4264 struct btrfs_path *dst_path)
4266 int ret;
4267 struct btrfs_key key;
4268 const u64 ino = btrfs_ino(inode);
4269 int ins_nr = 0;
4270 int start_slot = 0;
4272 key.objectid = ino;
4273 key.type = BTRFS_XATTR_ITEM_KEY;
4274 key.offset = 0;
4276 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4277 if (ret < 0)
4278 return ret;
4280 while (true) {
4281 int slot = path->slots[0];
4282 struct extent_buffer *leaf = path->nodes[0];
4283 int nritems = btrfs_header_nritems(leaf);
4285 if (slot >= nritems) {
4286 if (ins_nr > 0) {
4287 u64 last_extent = 0;
4289 ret = copy_items(trans, inode, dst_path, path,
4290 &last_extent, start_slot,
4291 ins_nr, 1, 0);
4292 /* can't be 1, extent items aren't processed */
4293 ASSERT(ret <= 0);
4294 if (ret < 0)
4295 return ret;
4296 ins_nr = 0;
4298 ret = btrfs_next_leaf(root, path);
4299 if (ret < 0)
4300 return ret;
4301 else if (ret > 0)
4302 break;
4303 continue;
4306 btrfs_item_key_to_cpu(leaf, &key, slot);
4307 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4308 break;
4310 if (ins_nr == 0)
4311 start_slot = slot;
4312 ins_nr++;
4313 path->slots[0]++;
4314 cond_resched();
4316 if (ins_nr > 0) {
4317 u64 last_extent = 0;
4319 ret = copy_items(trans, inode, dst_path, path,
4320 &last_extent, start_slot,
4321 ins_nr, 1, 0);
4322 /* can't be 1, extent items aren't processed */
4323 ASSERT(ret <= 0);
4324 if (ret < 0)
4325 return ret;
4328 return 0;
4332 * If the no holes feature is enabled we need to make sure any hole between the
4333 * last extent and the i_size of our inode is explicitly marked in the log. This
4334 * is to make sure that doing something like:
4336 * 1) create file with 128Kb of data
4337 * 2) truncate file to 64Kb
4338 * 3) truncate file to 256Kb
4339 * 4) fsync file
4340 * 5) <crash/power failure>
4341 * 6) mount fs and trigger log replay
4343 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4344 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4345 * file correspond to a hole. The presence of explicit holes in a log tree is
4346 * what guarantees that log replay will remove/adjust file extent items in the
4347 * fs/subvol tree.
4349 * Here we do not need to care about holes between extents, that is already done
4350 * by copy_items(). We also only need to do this in the full sync path, where we
4351 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4352 * lookup the list of modified extent maps and if any represents a hole, we
4353 * insert a corresponding extent representing a hole in the log tree.
4355 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4356 struct btrfs_root *root,
4357 struct inode *inode,
4358 struct btrfs_path *path)
4360 int ret;
4361 struct btrfs_key key;
4362 u64 hole_start;
4363 u64 hole_size;
4364 struct extent_buffer *leaf;
4365 struct btrfs_root *log = root->log_root;
4366 const u64 ino = btrfs_ino(inode);
4367 const u64 i_size = i_size_read(inode);
4369 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4370 return 0;
4372 key.objectid = ino;
4373 key.type = BTRFS_EXTENT_DATA_KEY;
4374 key.offset = (u64)-1;
4376 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4377 ASSERT(ret != 0);
4378 if (ret < 0)
4379 return ret;
4381 ASSERT(path->slots[0] > 0);
4382 path->slots[0]--;
4383 leaf = path->nodes[0];
4384 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4386 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4387 /* inode does not have any extents */
4388 hole_start = 0;
4389 hole_size = i_size;
4390 } else {
4391 struct btrfs_file_extent_item *extent;
4392 u64 len;
4395 * If there's an extent beyond i_size, an explicit hole was
4396 * already inserted by copy_items().
4398 if (key.offset >= i_size)
4399 return 0;
4401 extent = btrfs_item_ptr(leaf, path->slots[0],
4402 struct btrfs_file_extent_item);
4404 if (btrfs_file_extent_type(leaf, extent) ==
4405 BTRFS_FILE_EXTENT_INLINE)
4406 return 0;
4408 len = btrfs_file_extent_num_bytes(leaf, extent);
4409 /* Last extent goes beyond i_size, no need to log a hole. */
4410 if (key.offset + len > i_size)
4411 return 0;
4412 hole_start = key.offset + len;
4413 hole_size = i_size - hole_start;
4415 btrfs_release_path(path);
4417 /* Last extent ends at i_size. */
4418 if (hole_size == 0)
4419 return 0;
4421 hole_size = ALIGN(hole_size, root->sectorsize);
4422 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4423 hole_size, 0, hole_size, 0, 0, 0);
4424 return ret;
4428 * When we are logging a new inode X, check if it doesn't have a reference that
4429 * matches the reference from some other inode Y created in a past transaction
4430 * and that was renamed in the current transaction. If we don't do this, then at
4431 * log replay time we can lose inode Y (and all its files if it's a directory):
4433 * mkdir /mnt/x
4434 * echo "hello world" > /mnt/x/foobar
4435 * sync
4436 * mv /mnt/x /mnt/y
4437 * mkdir /mnt/x # or touch /mnt/x
4438 * xfs_io -c fsync /mnt/x
4439 * <power fail>
4440 * mount fs, trigger log replay
4442 * After the log replay procedure, we would lose the first directory and all its
4443 * files (file foobar).
4444 * For the case where inode Y is not a directory we simply end up losing it:
4446 * echo "123" > /mnt/foo
4447 * sync
4448 * mv /mnt/foo /mnt/bar
4449 * echo "abc" > /mnt/foo
4450 * xfs_io -c fsync /mnt/foo
4451 * <power fail>
4453 * We also need this for cases where a snapshot entry is replaced by some other
4454 * entry (file or directory) otherwise we end up with an unreplayable log due to
4455 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4456 * if it were a regular entry:
4458 * mkdir /mnt/x
4459 * btrfs subvolume snapshot /mnt /mnt/x/snap
4460 * btrfs subvolume delete /mnt/x/snap
4461 * rmdir /mnt/x
4462 * mkdir /mnt/x
4463 * fsync /mnt/x or fsync some new file inside it
4464 * <power fail>
4466 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4467 * the same transaction.
4469 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4470 const int slot,
4471 const struct btrfs_key *key,
4472 struct inode *inode)
4474 int ret;
4475 struct btrfs_path *search_path;
4476 char *name = NULL;
4477 u32 name_len = 0;
4478 u32 item_size = btrfs_item_size_nr(eb, slot);
4479 u32 cur_offset = 0;
4480 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4482 search_path = btrfs_alloc_path();
4483 if (!search_path)
4484 return -ENOMEM;
4485 search_path->search_commit_root = 1;
4486 search_path->skip_locking = 1;
4488 while (cur_offset < item_size) {
4489 u64 parent;
4490 u32 this_name_len;
4491 u32 this_len;
4492 unsigned long name_ptr;
4493 struct btrfs_dir_item *di;
4495 if (key->type == BTRFS_INODE_REF_KEY) {
4496 struct btrfs_inode_ref *iref;
4498 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4499 parent = key->offset;
4500 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4501 name_ptr = (unsigned long)(iref + 1);
4502 this_len = sizeof(*iref) + this_name_len;
4503 } else {
4504 struct btrfs_inode_extref *extref;
4506 extref = (struct btrfs_inode_extref *)(ptr +
4507 cur_offset);
4508 parent = btrfs_inode_extref_parent(eb, extref);
4509 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4510 name_ptr = (unsigned long)&extref->name;
4511 this_len = sizeof(*extref) + this_name_len;
4514 if (this_name_len > name_len) {
4515 char *new_name;
4517 new_name = krealloc(name, this_name_len, GFP_NOFS);
4518 if (!new_name) {
4519 ret = -ENOMEM;
4520 goto out;
4522 name_len = this_name_len;
4523 name = new_name;
4526 read_extent_buffer(eb, name, name_ptr, this_name_len);
4527 di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
4528 search_path, parent,
4529 name, this_name_len, 0);
4530 if (di && !IS_ERR(di)) {
4531 ret = 1;
4532 goto out;
4533 } else if (IS_ERR(di)) {
4534 ret = PTR_ERR(di);
4535 goto out;
4537 btrfs_release_path(search_path);
4539 cur_offset += this_len;
4541 ret = 0;
4542 out:
4543 btrfs_free_path(search_path);
4544 kfree(name);
4545 return ret;
4548 /* log a single inode in the tree log.
4549 * At least one parent directory for this inode must exist in the tree
4550 * or be logged already.
4552 * Any items from this inode changed by the current transaction are copied
4553 * to the log tree. An extra reference is taken on any extents in this
4554 * file, allowing us to avoid a whole pile of corner cases around logging
4555 * blocks that have been removed from the tree.
4557 * See LOG_INODE_ALL and related defines for a description of what inode_only
4558 * does.
4560 * This handles both files and directories.
4562 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4563 struct btrfs_root *root, struct inode *inode,
4564 int inode_only,
4565 const loff_t start,
4566 const loff_t end,
4567 struct btrfs_log_ctx *ctx)
4569 struct btrfs_path *path;
4570 struct btrfs_path *dst_path;
4571 struct btrfs_key min_key;
4572 struct btrfs_key max_key;
4573 struct btrfs_root *log = root->log_root;
4574 struct extent_buffer *src = NULL;
4575 LIST_HEAD(logged_list);
4576 u64 last_extent = 0;
4577 int err = 0;
4578 int ret;
4579 int nritems;
4580 int ins_start_slot = 0;
4581 int ins_nr;
4582 bool fast_search = false;
4583 u64 ino = btrfs_ino(inode);
4584 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4585 u64 logged_isize = 0;
4586 bool need_log_inode_item = true;
4587 bool xattrs_logged = false;
4589 path = btrfs_alloc_path();
4590 if (!path)
4591 return -ENOMEM;
4592 dst_path = btrfs_alloc_path();
4593 if (!dst_path) {
4594 btrfs_free_path(path);
4595 return -ENOMEM;
4598 min_key.objectid = ino;
4599 min_key.type = BTRFS_INODE_ITEM_KEY;
4600 min_key.offset = 0;
4602 max_key.objectid = ino;
4605 /* today the code can only do partial logging of directories */
4606 if (S_ISDIR(inode->i_mode) ||
4607 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4608 &BTRFS_I(inode)->runtime_flags) &&
4609 inode_only == LOG_INODE_EXISTS))
4610 max_key.type = BTRFS_XATTR_ITEM_KEY;
4611 else
4612 max_key.type = (u8)-1;
4613 max_key.offset = (u64)-1;
4616 * Only run delayed items if we are a dir or a new file.
4617 * Otherwise commit the delayed inode only, which is needed in
4618 * order for the log replay code to mark inodes for link count
4619 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4621 if (S_ISDIR(inode->i_mode) ||
4622 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4623 ret = btrfs_commit_inode_delayed_items(trans, inode);
4624 else
4625 ret = btrfs_commit_inode_delayed_inode(inode);
4627 if (ret) {
4628 btrfs_free_path(path);
4629 btrfs_free_path(dst_path);
4630 return ret;
4633 mutex_lock(&BTRFS_I(inode)->log_mutex);
4635 btrfs_get_logged_extents(inode, &logged_list, start, end);
4638 * a brute force approach to making sure we get the most uptodate
4639 * copies of everything.
4641 if (S_ISDIR(inode->i_mode)) {
4642 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4644 if (inode_only == LOG_INODE_EXISTS)
4645 max_key_type = BTRFS_XATTR_ITEM_KEY;
4646 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4647 } else {
4648 if (inode_only == LOG_INODE_EXISTS) {
4650 * Make sure the new inode item we write to the log has
4651 * the same isize as the current one (if it exists).
4652 * This is necessary to prevent data loss after log
4653 * replay, and also to prevent doing a wrong expanding
4654 * truncate - for e.g. create file, write 4K into offset
4655 * 0, fsync, write 4K into offset 4096, add hard link,
4656 * fsync some other file (to sync log), power fail - if
4657 * we use the inode's current i_size, after log replay
4658 * we get a 8Kb file, with the last 4Kb extent as a hole
4659 * (zeroes), as if an expanding truncate happened,
4660 * instead of getting a file of 4Kb only.
4662 err = logged_inode_size(log, inode, path,
4663 &logged_isize);
4664 if (err)
4665 goto out_unlock;
4667 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4668 &BTRFS_I(inode)->runtime_flags)) {
4669 if (inode_only == LOG_INODE_EXISTS) {
4670 max_key.type = BTRFS_XATTR_ITEM_KEY;
4671 ret = drop_objectid_items(trans, log, path, ino,
4672 max_key.type);
4673 } else {
4674 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4675 &BTRFS_I(inode)->runtime_flags);
4676 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4677 &BTRFS_I(inode)->runtime_flags);
4678 while(1) {
4679 ret = btrfs_truncate_inode_items(trans,
4680 log, inode, 0, 0);
4681 if (ret != -EAGAIN)
4682 break;
4685 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4686 &BTRFS_I(inode)->runtime_flags) ||
4687 inode_only == LOG_INODE_EXISTS) {
4688 if (inode_only == LOG_INODE_ALL)
4689 fast_search = true;
4690 max_key.type = BTRFS_XATTR_ITEM_KEY;
4691 ret = drop_objectid_items(trans, log, path, ino,
4692 max_key.type);
4693 } else {
4694 if (inode_only == LOG_INODE_ALL)
4695 fast_search = true;
4696 goto log_extents;
4700 if (ret) {
4701 err = ret;
4702 goto out_unlock;
4705 while (1) {
4706 ins_nr = 0;
4707 ret = btrfs_search_forward(root, &min_key,
4708 path, trans->transid);
4709 if (ret != 0)
4710 break;
4711 again:
4712 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4713 if (min_key.objectid != ino)
4714 break;
4715 if (min_key.type > max_key.type)
4716 break;
4718 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4719 need_log_inode_item = false;
4721 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4722 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
4723 BTRFS_I(inode)->generation == trans->transid) {
4724 ret = btrfs_check_ref_name_override(path->nodes[0],
4725 path->slots[0],
4726 &min_key, inode);
4727 if (ret < 0) {
4728 err = ret;
4729 goto out_unlock;
4730 } else if (ret > 0) {
4731 err = 1;
4732 btrfs_set_log_full_commit(root->fs_info, trans);
4733 goto out_unlock;
4737 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4738 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4739 if (ins_nr == 0)
4740 goto next_slot;
4741 ret = copy_items(trans, inode, dst_path, path,
4742 &last_extent, ins_start_slot,
4743 ins_nr, inode_only, logged_isize);
4744 if (ret < 0) {
4745 err = ret;
4746 goto out_unlock;
4748 ins_nr = 0;
4749 if (ret) {
4750 btrfs_release_path(path);
4751 continue;
4753 goto next_slot;
4756 src = path->nodes[0];
4757 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4758 ins_nr++;
4759 goto next_slot;
4760 } else if (!ins_nr) {
4761 ins_start_slot = path->slots[0];
4762 ins_nr = 1;
4763 goto next_slot;
4766 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4767 ins_start_slot, ins_nr, inode_only,
4768 logged_isize);
4769 if (ret < 0) {
4770 err = ret;
4771 goto out_unlock;
4773 if (ret) {
4774 ins_nr = 0;
4775 btrfs_release_path(path);
4776 continue;
4778 ins_nr = 1;
4779 ins_start_slot = path->slots[0];
4780 next_slot:
4782 nritems = btrfs_header_nritems(path->nodes[0]);
4783 path->slots[0]++;
4784 if (path->slots[0] < nritems) {
4785 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4786 path->slots[0]);
4787 goto again;
4789 if (ins_nr) {
4790 ret = copy_items(trans, inode, dst_path, path,
4791 &last_extent, ins_start_slot,
4792 ins_nr, inode_only, logged_isize);
4793 if (ret < 0) {
4794 err = ret;
4795 goto out_unlock;
4797 ret = 0;
4798 ins_nr = 0;
4800 btrfs_release_path(path);
4802 if (min_key.offset < (u64)-1) {
4803 min_key.offset++;
4804 } else if (min_key.type < max_key.type) {
4805 min_key.type++;
4806 min_key.offset = 0;
4807 } else {
4808 break;
4811 if (ins_nr) {
4812 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4813 ins_start_slot, ins_nr, inode_only,
4814 logged_isize);
4815 if (ret < 0) {
4816 err = ret;
4817 goto out_unlock;
4819 ret = 0;
4820 ins_nr = 0;
4823 btrfs_release_path(path);
4824 btrfs_release_path(dst_path);
4825 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4826 if (err)
4827 goto out_unlock;
4828 xattrs_logged = true;
4829 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4830 btrfs_release_path(path);
4831 btrfs_release_path(dst_path);
4832 err = btrfs_log_trailing_hole(trans, root, inode, path);
4833 if (err)
4834 goto out_unlock;
4836 log_extents:
4837 btrfs_release_path(path);
4838 btrfs_release_path(dst_path);
4839 if (need_log_inode_item) {
4840 err = log_inode_item(trans, log, dst_path, inode);
4841 if (!err && !xattrs_logged) {
4842 err = btrfs_log_all_xattrs(trans, root, inode, path,
4843 dst_path);
4844 btrfs_release_path(path);
4846 if (err)
4847 goto out_unlock;
4849 if (fast_search) {
4851 * Some ordered extents started by fsync might have completed
4852 * before we collected the ordered extents in logged_list, which
4853 * means they're gone, not in our logged_list nor in the inode's
4854 * ordered tree. We want the application/user space to know an
4855 * error happened while attempting to persist file data so that
4856 * it can take proper action. If such error happened, we leave
4857 * without writing to the log tree and the fsync must report the
4858 * file data write error and not commit the current transaction.
4860 err = btrfs_inode_check_errors(inode);
4861 if (err) {
4862 ctx->io_err = err;
4863 goto out_unlock;
4865 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4866 &logged_list, ctx);
4867 if (ret) {
4868 err = ret;
4869 goto out_unlock;
4871 } else if (inode_only == LOG_INODE_ALL) {
4872 struct extent_map *em, *n;
4874 write_lock(&em_tree->lock);
4876 * We can't just remove every em if we're called for a ranged
4877 * fsync - that is, one that doesn't cover the whole possible
4878 * file range (0 to LLONG_MAX). This is because we can have
4879 * em's that fall outside the range we're logging and therefore
4880 * their ordered operations haven't completed yet
4881 * (btrfs_finish_ordered_io() not invoked yet). This means we
4882 * didn't get their respective file extent item in the fs/subvol
4883 * tree yet, and need to let the next fast fsync (one which
4884 * consults the list of modified extent maps) find the em so
4885 * that it logs a matching file extent item and waits for the
4886 * respective ordered operation to complete (if it's still
4887 * running).
4889 * Removing every em outside the range we're logging would make
4890 * the next fast fsync not log their matching file extent items,
4891 * therefore making us lose data after a log replay.
4893 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4894 list) {
4895 const u64 mod_end = em->mod_start + em->mod_len - 1;
4897 if (em->mod_start >= start && mod_end <= end)
4898 list_del_init(&em->list);
4900 write_unlock(&em_tree->lock);
4903 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4904 ret = log_directory_changes(trans, root, inode, path, dst_path,
4905 ctx);
4906 if (ret) {
4907 err = ret;
4908 goto out_unlock;
4912 spin_lock(&BTRFS_I(inode)->lock);
4913 BTRFS_I(inode)->logged_trans = trans->transid;
4914 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4915 spin_unlock(&BTRFS_I(inode)->lock);
4916 out_unlock:
4917 if (unlikely(err))
4918 btrfs_put_logged_extents(&logged_list);
4919 else
4920 btrfs_submit_logged_extents(&logged_list, log);
4921 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4923 btrfs_free_path(path);
4924 btrfs_free_path(dst_path);
4925 return err;
4929 * follow the dentry parent pointers up the chain and see if any
4930 * of the directories in it require a full commit before they can
4931 * be logged. Returns zero if nothing special needs to be done or 1 if
4932 * a full commit is required.
4934 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4935 struct inode *inode,
4936 struct dentry *parent,
4937 struct super_block *sb,
4938 u64 last_committed)
4940 int ret = 0;
4941 struct btrfs_root *root;
4942 struct dentry *old_parent = NULL;
4943 struct inode *orig_inode = inode;
4946 * for regular files, if its inode is already on disk, we don't
4947 * have to worry about the parents at all. This is because
4948 * we can use the last_unlink_trans field to record renames
4949 * and other fun in this file.
4951 if (S_ISREG(inode->i_mode) &&
4952 BTRFS_I(inode)->generation <= last_committed &&
4953 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4954 goto out;
4956 if (!S_ISDIR(inode->i_mode)) {
4957 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4958 goto out;
4959 inode = d_inode(parent);
4962 while (1) {
4964 * If we are logging a directory then we start with our inode,
4965 * not our parents inode, so we need to skipp setting the
4966 * logged_trans so that further down in the log code we don't
4967 * think this inode has already been logged.
4969 if (inode != orig_inode)
4970 BTRFS_I(inode)->logged_trans = trans->transid;
4971 smp_mb();
4973 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4974 root = BTRFS_I(inode)->root;
4977 * make sure any commits to the log are forced
4978 * to be full commits
4980 btrfs_set_log_full_commit(root->fs_info, trans);
4981 ret = 1;
4982 break;
4985 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4986 break;
4988 if (IS_ROOT(parent))
4989 break;
4991 parent = dget_parent(parent);
4992 dput(old_parent);
4993 old_parent = parent;
4994 inode = d_inode(parent);
4997 dput(old_parent);
4998 out:
4999 return ret;
5002 struct btrfs_dir_list {
5003 u64 ino;
5004 struct list_head list;
5008 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5009 * details about the why it is needed.
5010 * This is a recursive operation - if an existing dentry corresponds to a
5011 * directory, that directory's new entries are logged too (same behaviour as
5012 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5013 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5014 * complains about the following circular lock dependency / possible deadlock:
5016 * CPU0 CPU1
5017 * ---- ----
5018 * lock(&type->i_mutex_dir_key#3/2);
5019 * lock(sb_internal#2);
5020 * lock(&type->i_mutex_dir_key#3/2);
5021 * lock(&sb->s_type->i_mutex_key#14);
5023 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5024 * sb_start_intwrite() in btrfs_start_transaction().
5025 * Not locking i_mutex of the inodes is still safe because:
5027 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5028 * that while logging the inode new references (names) are added or removed
5029 * from the inode, leaving the logged inode item with a link count that does
5030 * not match the number of logged inode reference items. This is fine because
5031 * at log replay time we compute the real number of links and correct the
5032 * link count in the inode item (see replay_one_buffer() and
5033 * link_to_fixup_dir());
5035 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5036 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5037 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5038 * has a size that doesn't match the sum of the lengths of all the logged
5039 * names. This does not result in a problem because if a dir_item key is
5040 * logged but its matching dir_index key is not logged, at log replay time we
5041 * don't use it to replay the respective name (see replay_one_name()). On the
5042 * other hand if only the dir_index key ends up being logged, the respective
5043 * name is added to the fs/subvol tree with both the dir_item and dir_index
5044 * keys created (see replay_one_name()).
5045 * The directory's inode item with a wrong i_size is not a problem as well,
5046 * since we don't use it at log replay time to set the i_size in the inode
5047 * item of the fs/subvol tree (see overwrite_item()).
5049 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5050 struct btrfs_root *root,
5051 struct inode *start_inode,
5052 struct btrfs_log_ctx *ctx)
5054 struct btrfs_root *log = root->log_root;
5055 struct btrfs_path *path;
5056 LIST_HEAD(dir_list);
5057 struct btrfs_dir_list *dir_elem;
5058 int ret = 0;
5060 path = btrfs_alloc_path();
5061 if (!path)
5062 return -ENOMEM;
5064 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5065 if (!dir_elem) {
5066 btrfs_free_path(path);
5067 return -ENOMEM;
5069 dir_elem->ino = btrfs_ino(start_inode);
5070 list_add_tail(&dir_elem->list, &dir_list);
5072 while (!list_empty(&dir_list)) {
5073 struct extent_buffer *leaf;
5074 struct btrfs_key min_key;
5075 int nritems;
5076 int i;
5078 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5079 list);
5080 if (ret)
5081 goto next_dir_inode;
5083 min_key.objectid = dir_elem->ino;
5084 min_key.type = BTRFS_DIR_ITEM_KEY;
5085 min_key.offset = 0;
5086 again:
5087 btrfs_release_path(path);
5088 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5089 if (ret < 0) {
5090 goto next_dir_inode;
5091 } else if (ret > 0) {
5092 ret = 0;
5093 goto next_dir_inode;
5096 process_leaf:
5097 leaf = path->nodes[0];
5098 nritems = btrfs_header_nritems(leaf);
5099 for (i = path->slots[0]; i < nritems; i++) {
5100 struct btrfs_dir_item *di;
5101 struct btrfs_key di_key;
5102 struct inode *di_inode;
5103 struct btrfs_dir_list *new_dir_elem;
5104 int log_mode = LOG_INODE_EXISTS;
5105 int type;
5107 btrfs_item_key_to_cpu(leaf, &min_key, i);
5108 if (min_key.objectid != dir_elem->ino ||
5109 min_key.type != BTRFS_DIR_ITEM_KEY)
5110 goto next_dir_inode;
5112 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5113 type = btrfs_dir_type(leaf, di);
5114 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5115 type != BTRFS_FT_DIR)
5116 continue;
5117 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5118 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5119 continue;
5121 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
5122 root, NULL);
5123 if (IS_ERR(di_inode)) {
5124 ret = PTR_ERR(di_inode);
5125 goto next_dir_inode;
5128 if (btrfs_inode_in_log(di_inode, trans->transid)) {
5129 btrfs_add_delayed_iput(di_inode);
5130 continue;
5133 ctx->log_new_dentries = false;
5134 if (type == BTRFS_FT_DIR)
5135 log_mode = LOG_INODE_ALL;
5136 btrfs_release_path(path);
5137 ret = btrfs_log_inode(trans, root, di_inode,
5138 log_mode, 0, LLONG_MAX, ctx);
5139 btrfs_add_delayed_iput(di_inode);
5140 if (ret)
5141 goto next_dir_inode;
5142 if (ctx->log_new_dentries) {
5143 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5144 GFP_NOFS);
5145 if (!new_dir_elem) {
5146 ret = -ENOMEM;
5147 goto next_dir_inode;
5149 new_dir_elem->ino = di_key.objectid;
5150 list_add_tail(&new_dir_elem->list, &dir_list);
5152 break;
5154 if (i == nritems) {
5155 ret = btrfs_next_leaf(log, path);
5156 if (ret < 0) {
5157 goto next_dir_inode;
5158 } else if (ret > 0) {
5159 ret = 0;
5160 goto next_dir_inode;
5162 goto process_leaf;
5164 if (min_key.offset < (u64)-1) {
5165 min_key.offset++;
5166 goto again;
5168 next_dir_inode:
5169 list_del(&dir_elem->list);
5170 kfree(dir_elem);
5173 btrfs_free_path(path);
5174 return ret;
5177 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5178 struct inode *inode,
5179 struct btrfs_log_ctx *ctx)
5181 int ret;
5182 struct btrfs_path *path;
5183 struct btrfs_key key;
5184 struct btrfs_root *root = BTRFS_I(inode)->root;
5185 const u64 ino = btrfs_ino(inode);
5187 path = btrfs_alloc_path();
5188 if (!path)
5189 return -ENOMEM;
5190 path->skip_locking = 1;
5191 path->search_commit_root = 1;
5193 key.objectid = ino;
5194 key.type = BTRFS_INODE_REF_KEY;
5195 key.offset = 0;
5196 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5197 if (ret < 0)
5198 goto out;
5200 while (true) {
5201 struct extent_buffer *leaf = path->nodes[0];
5202 int slot = path->slots[0];
5203 u32 cur_offset = 0;
5204 u32 item_size;
5205 unsigned long ptr;
5207 if (slot >= btrfs_header_nritems(leaf)) {
5208 ret = btrfs_next_leaf(root, path);
5209 if (ret < 0)
5210 goto out;
5211 else if (ret > 0)
5212 break;
5213 continue;
5216 btrfs_item_key_to_cpu(leaf, &key, slot);
5217 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5218 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5219 break;
5221 item_size = btrfs_item_size_nr(leaf, slot);
5222 ptr = btrfs_item_ptr_offset(leaf, slot);
5223 while (cur_offset < item_size) {
5224 struct btrfs_key inode_key;
5225 struct inode *dir_inode;
5227 inode_key.type = BTRFS_INODE_ITEM_KEY;
5228 inode_key.offset = 0;
5230 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5231 struct btrfs_inode_extref *extref;
5233 extref = (struct btrfs_inode_extref *)
5234 (ptr + cur_offset);
5235 inode_key.objectid = btrfs_inode_extref_parent(
5236 leaf, extref);
5237 cur_offset += sizeof(*extref);
5238 cur_offset += btrfs_inode_extref_name_len(leaf,
5239 extref);
5240 } else {
5241 inode_key.objectid = key.offset;
5242 cur_offset = item_size;
5245 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5246 root, NULL);
5248 * If the parent inode was deleted, return an error to
5249 * fallback to a transaction commit. This is to prevent
5250 * getting an inode that was moved from one parent A to
5251 * a parent B, got its former parent A deleted and then
5252 * it got fsync'ed, from existing at both parents after
5253 * a log replay (and the old parent still existing).
5254 * Example:
5256 * mkdir /mnt/A
5257 * mkdir /mnt/B
5258 * touch /mnt/B/bar
5259 * sync
5260 * mv /mnt/B/bar /mnt/A/bar
5261 * mv -T /mnt/A /mnt/B
5262 * fsync /mnt/B/bar
5263 * <power fail>
5265 * If we ignore the old parent B which got deleted,
5266 * after a log replay we would have file bar linked
5267 * at both parents and the old parent B would still
5268 * exist.
5270 if (IS_ERR(dir_inode)) {
5271 ret = PTR_ERR(dir_inode);
5272 goto out;
5275 ret = btrfs_log_inode(trans, root, dir_inode,
5276 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5277 btrfs_add_delayed_iput(dir_inode);
5278 if (ret)
5279 goto out;
5281 path->slots[0]++;
5283 ret = 0;
5284 out:
5285 btrfs_free_path(path);
5286 return ret;
5290 * helper function around btrfs_log_inode to make sure newly created
5291 * parent directories also end up in the log. A minimal inode and backref
5292 * only logging is done of any parent directories that are older than
5293 * the last committed transaction
5295 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5296 struct btrfs_root *root, struct inode *inode,
5297 struct dentry *parent,
5298 const loff_t start,
5299 const loff_t end,
5300 int exists_only,
5301 struct btrfs_log_ctx *ctx)
5303 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5304 struct super_block *sb;
5305 struct dentry *old_parent = NULL;
5306 int ret = 0;
5307 u64 last_committed = root->fs_info->last_trans_committed;
5308 bool log_dentries = false;
5309 struct inode *orig_inode = inode;
5311 sb = inode->i_sb;
5313 if (btrfs_test_opt(root, NOTREELOG)) {
5314 ret = 1;
5315 goto end_no_trans;
5319 * The prev transaction commit doesn't complete, we need do
5320 * full commit by ourselves.
5322 if (root->fs_info->last_trans_log_full_commit >
5323 root->fs_info->last_trans_committed) {
5324 ret = 1;
5325 goto end_no_trans;
5328 if (root != BTRFS_I(inode)->root ||
5329 btrfs_root_refs(&root->root_item) == 0) {
5330 ret = 1;
5331 goto end_no_trans;
5334 ret = check_parent_dirs_for_sync(trans, inode, parent,
5335 sb, last_committed);
5336 if (ret)
5337 goto end_no_trans;
5339 if (btrfs_inode_in_log(inode, trans->transid)) {
5340 ret = BTRFS_NO_LOG_SYNC;
5341 goto end_no_trans;
5344 ret = start_log_trans(trans, root, ctx);
5345 if (ret)
5346 goto end_no_trans;
5348 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5349 if (ret)
5350 goto end_trans;
5353 * for regular files, if its inode is already on disk, we don't
5354 * have to worry about the parents at all. This is because
5355 * we can use the last_unlink_trans field to record renames
5356 * and other fun in this file.
5358 if (S_ISREG(inode->i_mode) &&
5359 BTRFS_I(inode)->generation <= last_committed &&
5360 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5361 ret = 0;
5362 goto end_trans;
5365 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5366 log_dentries = true;
5369 * On unlink we must make sure all our current and old parent directores
5370 * inodes are fully logged. This is to prevent leaving dangling
5371 * directory index entries in directories that were our parents but are
5372 * not anymore. Not doing this results in old parent directory being
5373 * impossible to delete after log replay (rmdir will always fail with
5374 * error -ENOTEMPTY).
5376 * Example 1:
5378 * mkdir testdir
5379 * touch testdir/foo
5380 * ln testdir/foo testdir/bar
5381 * sync
5382 * unlink testdir/bar
5383 * xfs_io -c fsync testdir/foo
5384 * <power failure>
5385 * mount fs, triggers log replay
5387 * If we don't log the parent directory (testdir), after log replay the
5388 * directory still has an entry pointing to the file inode using the bar
5389 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5390 * the file inode has a link count of 1.
5392 * Example 2:
5394 * mkdir testdir
5395 * touch foo
5396 * ln foo testdir/foo2
5397 * ln foo testdir/foo3
5398 * sync
5399 * unlink testdir/foo3
5400 * xfs_io -c fsync foo
5401 * <power failure>
5402 * mount fs, triggers log replay
5404 * Similar as the first example, after log replay the parent directory
5405 * testdir still has an entry pointing to the inode file with name foo3
5406 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5407 * and has a link count of 2.
5409 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5410 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5411 if (ret)
5412 goto end_trans;
5415 while (1) {
5416 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5417 break;
5419 inode = d_inode(parent);
5420 if (root != BTRFS_I(inode)->root)
5421 break;
5423 if (BTRFS_I(inode)->generation > last_committed) {
5424 ret = btrfs_log_inode(trans, root, inode,
5425 LOG_INODE_EXISTS,
5426 0, LLONG_MAX, ctx);
5427 if (ret)
5428 goto end_trans;
5430 if (IS_ROOT(parent))
5431 break;
5433 parent = dget_parent(parent);
5434 dput(old_parent);
5435 old_parent = parent;
5437 if (log_dentries)
5438 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5439 else
5440 ret = 0;
5441 end_trans:
5442 dput(old_parent);
5443 if (ret < 0) {
5444 btrfs_set_log_full_commit(root->fs_info, trans);
5445 ret = 1;
5448 if (ret)
5449 btrfs_remove_log_ctx(root, ctx);
5450 btrfs_end_log_trans(root);
5451 end_no_trans:
5452 return ret;
5456 * it is not safe to log dentry if the chunk root has added new
5457 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5458 * If this returns 1, you must commit the transaction to safely get your
5459 * data on disk.
5461 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5462 struct btrfs_root *root, struct dentry *dentry,
5463 const loff_t start,
5464 const loff_t end,
5465 struct btrfs_log_ctx *ctx)
5467 struct dentry *parent = dget_parent(dentry);
5468 int ret;
5470 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5471 start, end, 0, ctx);
5472 dput(parent);
5474 return ret;
5478 * should be called during mount to recover any replay any log trees
5479 * from the FS
5481 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5483 int ret;
5484 struct btrfs_path *path;
5485 struct btrfs_trans_handle *trans;
5486 struct btrfs_key key;
5487 struct btrfs_key found_key;
5488 struct btrfs_key tmp_key;
5489 struct btrfs_root *log;
5490 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5491 struct walk_control wc = {
5492 .process_func = process_one_buffer,
5493 .stage = 0,
5496 path = btrfs_alloc_path();
5497 if (!path)
5498 return -ENOMEM;
5500 fs_info->log_root_recovering = 1;
5502 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5503 if (IS_ERR(trans)) {
5504 ret = PTR_ERR(trans);
5505 goto error;
5508 wc.trans = trans;
5509 wc.pin = 1;
5511 ret = walk_log_tree(trans, log_root_tree, &wc);
5512 if (ret) {
5513 btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
5514 "recovering log root tree.");
5515 goto error;
5518 again:
5519 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5520 key.offset = (u64)-1;
5521 key.type = BTRFS_ROOT_ITEM_KEY;
5523 while (1) {
5524 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5526 if (ret < 0) {
5527 btrfs_std_error(fs_info, ret,
5528 "Couldn't find tree log root.");
5529 goto error;
5531 if (ret > 0) {
5532 if (path->slots[0] == 0)
5533 break;
5534 path->slots[0]--;
5536 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5537 path->slots[0]);
5538 btrfs_release_path(path);
5539 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5540 break;
5542 log = btrfs_read_fs_root(log_root_tree, &found_key);
5543 if (IS_ERR(log)) {
5544 ret = PTR_ERR(log);
5545 btrfs_std_error(fs_info, ret,
5546 "Couldn't read tree log root.");
5547 goto error;
5550 tmp_key.objectid = found_key.offset;
5551 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5552 tmp_key.offset = (u64)-1;
5554 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5555 if (IS_ERR(wc.replay_dest)) {
5556 ret = PTR_ERR(wc.replay_dest);
5557 free_extent_buffer(log->node);
5558 free_extent_buffer(log->commit_root);
5559 kfree(log);
5560 btrfs_std_error(fs_info, ret, "Couldn't read target root "
5561 "for tree log recovery.");
5562 goto error;
5565 wc.replay_dest->log_root = log;
5566 btrfs_record_root_in_trans(trans, wc.replay_dest);
5567 ret = walk_log_tree(trans, log, &wc);
5569 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5570 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5571 path);
5574 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5575 struct btrfs_root *root = wc.replay_dest;
5577 btrfs_release_path(path);
5580 * We have just replayed everything, and the highest
5581 * objectid of fs roots probably has changed in case
5582 * some inode_item's got replayed.
5584 * root->objectid_mutex is not acquired as log replay
5585 * could only happen during mount.
5587 ret = btrfs_find_highest_objectid(root,
5588 &root->highest_objectid);
5591 key.offset = found_key.offset - 1;
5592 wc.replay_dest->log_root = NULL;
5593 free_extent_buffer(log->node);
5594 free_extent_buffer(log->commit_root);
5595 kfree(log);
5597 if (ret)
5598 goto error;
5600 if (found_key.offset == 0)
5601 break;
5603 btrfs_release_path(path);
5605 /* step one is to pin it all, step two is to replay just inodes */
5606 if (wc.pin) {
5607 wc.pin = 0;
5608 wc.process_func = replay_one_buffer;
5609 wc.stage = LOG_WALK_REPLAY_INODES;
5610 goto again;
5612 /* step three is to replay everything */
5613 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5614 wc.stage++;
5615 goto again;
5618 btrfs_free_path(path);
5620 /* step 4: commit the transaction, which also unpins the blocks */
5621 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5622 if (ret)
5623 return ret;
5625 free_extent_buffer(log_root_tree->node);
5626 log_root_tree->log_root = NULL;
5627 fs_info->log_root_recovering = 0;
5628 kfree(log_root_tree);
5630 return 0;
5631 error:
5632 if (wc.trans)
5633 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5634 btrfs_free_path(path);
5635 return ret;
5639 * there are some corner cases where we want to force a full
5640 * commit instead of allowing a directory to be logged.
5642 * They revolve around files there were unlinked from the directory, and
5643 * this function updates the parent directory so that a full commit is
5644 * properly done if it is fsync'd later after the unlinks are done.
5646 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5647 struct inode *dir, struct inode *inode,
5648 int for_rename)
5651 * when we're logging a file, if it hasn't been renamed
5652 * or unlinked, and its inode is fully committed on disk,
5653 * we don't have to worry about walking up the directory chain
5654 * to log its parents.
5656 * So, we use the last_unlink_trans field to put this transid
5657 * into the file. When the file is logged we check it and
5658 * don't log the parents if the file is fully on disk.
5660 if (S_ISREG(inode->i_mode))
5661 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5664 * if this directory was already logged any new
5665 * names for this file/dir will get recorded
5667 smp_mb();
5668 if (BTRFS_I(dir)->logged_trans == trans->transid)
5669 return;
5672 * if the inode we're about to unlink was logged,
5673 * the log will be properly updated for any new names
5675 if (BTRFS_I(inode)->logged_trans == trans->transid)
5676 return;
5679 * when renaming files across directories, if the directory
5680 * there we're unlinking from gets fsync'd later on, there's
5681 * no way to find the destination directory later and fsync it
5682 * properly. So, we have to be conservative and force commits
5683 * so the new name gets discovered.
5685 if (for_rename)
5686 goto record;
5688 /* we can safely do the unlink without any special recording */
5689 return;
5691 record:
5692 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5696 * Make sure that if someone attempts to fsync the parent directory of a deleted
5697 * snapshot, it ends up triggering a transaction commit. This is to guarantee
5698 * that after replaying the log tree of the parent directory's root we will not
5699 * see the snapshot anymore and at log replay time we will not see any log tree
5700 * corresponding to the deleted snapshot's root, which could lead to replaying
5701 * it after replaying the log tree of the parent directory (which would replay
5702 * the snapshot delete operation).
5704 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
5705 struct inode *dir)
5707 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5711 * Call this after adding a new name for a file and it will properly
5712 * update the log to reflect the new name.
5714 * It will return zero if all goes well, and it will return 1 if a
5715 * full transaction commit is required.
5717 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5718 struct inode *inode, struct inode *old_dir,
5719 struct dentry *parent)
5721 struct btrfs_root * root = BTRFS_I(inode)->root;
5724 * this will force the logging code to walk the dentry chain
5725 * up for the file
5727 if (S_ISREG(inode->i_mode))
5728 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5731 * if this inode hasn't been logged and directory we're renaming it
5732 * from hasn't been logged, we don't need to log it
5734 if (BTRFS_I(inode)->logged_trans <=
5735 root->fs_info->last_trans_committed &&
5736 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5737 root->fs_info->last_trans_committed))
5738 return 0;
5740 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5741 LLONG_MAX, 1, NULL);