1 #include <linux/ceph/ceph_debug.h>
4 #include <linux/wait.h>
5 #include <linux/slab.h>
7 #include <linux/sched.h>
8 #include <linux/debugfs.h>
9 #include <linux/seq_file.h>
10 #include <linux/utsname.h>
11 #include <linux/ratelimit.h>
14 #include "mds_client.h"
16 #include <linux/ceph/ceph_features.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20 #include <linux/ceph/auth.h>
21 #include <linux/ceph/debugfs.h>
24 * A cluster of MDS (metadata server) daemons is responsible for
25 * managing the file system namespace (the directory hierarchy and
26 * inodes) and for coordinating shared access to storage. Metadata is
27 * partitioning hierarchically across a number of servers, and that
28 * partition varies over time as the cluster adjusts the distribution
29 * in order to balance load.
31 * The MDS client is primarily responsible to managing synchronous
32 * metadata requests for operations like open, unlink, and so forth.
33 * If there is a MDS failure, we find out about it when we (possibly
34 * request and) receive a new MDS map, and can resubmit affected
37 * For the most part, though, we take advantage of a lossless
38 * communications channel to the MDS, and do not need to worry about
39 * timing out or resubmitting requests.
41 * We maintain a stateful "session" with each MDS we interact with.
42 * Within each session, we sent periodic heartbeat messages to ensure
43 * any capabilities or leases we have been issues remain valid. If
44 * the session times out and goes stale, our leases and capabilities
45 * are no longer valid.
48 struct ceph_reconnect_state
{
50 struct ceph_pagelist
*pagelist
;
54 static void __wake_requests(struct ceph_mds_client
*mdsc
,
55 struct list_head
*head
);
57 static const struct ceph_connection_operations mds_con_ops
;
65 * parse individual inode info
67 static int parse_reply_info_in(void **p
, void *end
,
68 struct ceph_mds_reply_info_in
*info
,
74 *p
+= sizeof(struct ceph_mds_reply_inode
) +
75 sizeof(*info
->in
->fragtree
.splits
) *
76 le32_to_cpu(info
->in
->fragtree
.nsplits
);
78 ceph_decode_32_safe(p
, end
, info
->symlink_len
, bad
);
79 ceph_decode_need(p
, end
, info
->symlink_len
, bad
);
81 *p
+= info
->symlink_len
;
83 if (features
& CEPH_FEATURE_DIRLAYOUTHASH
)
84 ceph_decode_copy_safe(p
, end
, &info
->dir_layout
,
85 sizeof(info
->dir_layout
), bad
);
87 memset(&info
->dir_layout
, 0, sizeof(info
->dir_layout
));
89 ceph_decode_32_safe(p
, end
, info
->xattr_len
, bad
);
90 ceph_decode_need(p
, end
, info
->xattr_len
, bad
);
91 info
->xattr_data
= *p
;
92 *p
+= info
->xattr_len
;
94 if (features
& CEPH_FEATURE_MDS_INLINE_DATA
) {
95 ceph_decode_64_safe(p
, end
, info
->inline_version
, bad
);
96 ceph_decode_32_safe(p
, end
, info
->inline_len
, bad
);
97 ceph_decode_need(p
, end
, info
->inline_len
, bad
);
98 info
->inline_data
= *p
;
99 *p
+= info
->inline_len
;
101 info
->inline_version
= CEPH_INLINE_NONE
;
109 * parse a normal reply, which may contain a (dir+)dentry and/or a
112 static int parse_reply_info_trace(void **p
, void *end
,
113 struct ceph_mds_reply_info_parsed
*info
,
118 if (info
->head
->is_dentry
) {
119 err
= parse_reply_info_in(p
, end
, &info
->diri
, features
);
123 if (unlikely(*p
+ sizeof(*info
->dirfrag
) > end
))
126 *p
+= sizeof(*info
->dirfrag
) +
127 sizeof(u32
)*le32_to_cpu(info
->dirfrag
->ndist
);
128 if (unlikely(*p
> end
))
131 ceph_decode_32_safe(p
, end
, info
->dname_len
, bad
);
132 ceph_decode_need(p
, end
, info
->dname_len
, bad
);
134 *p
+= info
->dname_len
;
136 *p
+= sizeof(*info
->dlease
);
139 if (info
->head
->is_target
) {
140 err
= parse_reply_info_in(p
, end
, &info
->targeti
, features
);
145 if (unlikely(*p
!= end
))
152 pr_err("problem parsing mds trace %d\n", err
);
157 * parse readdir results
159 static int parse_reply_info_dir(void **p
, void *end
,
160 struct ceph_mds_reply_info_parsed
*info
,
167 if (*p
+ sizeof(*info
->dir_dir
) > end
)
169 *p
+= sizeof(*info
->dir_dir
) +
170 sizeof(u32
)*le32_to_cpu(info
->dir_dir
->ndist
);
174 ceph_decode_need(p
, end
, sizeof(num
) + 2, bad
);
175 num
= ceph_decode_32(p
);
176 info
->dir_end
= ceph_decode_8(p
);
177 info
->dir_complete
= ceph_decode_8(p
);
181 BUG_ON(!info
->dir_in
);
182 info
->dir_dname
= (void *)(info
->dir_in
+ num
);
183 info
->dir_dname_len
= (void *)(info
->dir_dname
+ num
);
184 info
->dir_dlease
= (void *)(info
->dir_dname_len
+ num
);
185 if ((unsigned long)(info
->dir_dlease
+ num
) >
186 (unsigned long)info
->dir_in
+ info
->dir_buf_size
) {
187 pr_err("dir contents are larger than expected\n");
195 ceph_decode_need(p
, end
, sizeof(u32
)*2, bad
);
196 info
->dir_dname_len
[i
] = ceph_decode_32(p
);
197 ceph_decode_need(p
, end
, info
->dir_dname_len
[i
], bad
);
198 info
->dir_dname
[i
] = *p
;
199 *p
+= info
->dir_dname_len
[i
];
200 dout("parsed dir dname '%.*s'\n", info
->dir_dname_len
[i
],
202 info
->dir_dlease
[i
] = *p
;
203 *p
+= sizeof(struct ceph_mds_reply_lease
);
206 err
= parse_reply_info_in(p
, end
, &info
->dir_in
[i
], features
);
221 pr_err("problem parsing dir contents %d\n", err
);
226 * parse fcntl F_GETLK results
228 static int parse_reply_info_filelock(void **p
, void *end
,
229 struct ceph_mds_reply_info_parsed
*info
,
232 if (*p
+ sizeof(*info
->filelock_reply
) > end
)
235 info
->filelock_reply
= *p
;
236 *p
+= sizeof(*info
->filelock_reply
);
238 if (unlikely(*p
!= end
))
247 * parse create results
249 static int parse_reply_info_create(void **p
, void *end
,
250 struct ceph_mds_reply_info_parsed
*info
,
253 if (features
& CEPH_FEATURE_REPLY_CREATE_INODE
) {
255 info
->has_create_ino
= false;
257 info
->has_create_ino
= true;
258 info
->ino
= ceph_decode_64(p
);
262 if (unlikely(*p
!= end
))
271 * parse extra results
273 static int parse_reply_info_extra(void **p
, void *end
,
274 struct ceph_mds_reply_info_parsed
*info
,
277 u32 op
= le32_to_cpu(info
->head
->op
);
279 if (op
== CEPH_MDS_OP_GETFILELOCK
)
280 return parse_reply_info_filelock(p
, end
, info
, features
);
281 else if (op
== CEPH_MDS_OP_READDIR
|| op
== CEPH_MDS_OP_LSSNAP
)
282 return parse_reply_info_dir(p
, end
, info
, features
);
283 else if (op
== CEPH_MDS_OP_CREATE
)
284 return parse_reply_info_create(p
, end
, info
, features
);
290 * parse entire mds reply
292 static int parse_reply_info(struct ceph_msg
*msg
,
293 struct ceph_mds_reply_info_parsed
*info
,
300 info
->head
= msg
->front
.iov_base
;
301 p
= msg
->front
.iov_base
+ sizeof(struct ceph_mds_reply_head
);
302 end
= p
+ msg
->front
.iov_len
- sizeof(struct ceph_mds_reply_head
);
305 ceph_decode_32_safe(&p
, end
, len
, bad
);
307 ceph_decode_need(&p
, end
, len
, bad
);
308 err
= parse_reply_info_trace(&p
, p
+len
, info
, features
);
314 ceph_decode_32_safe(&p
, end
, len
, bad
);
316 ceph_decode_need(&p
, end
, len
, bad
);
317 err
= parse_reply_info_extra(&p
, p
+len
, info
, features
);
323 ceph_decode_32_safe(&p
, end
, len
, bad
);
324 info
->snapblob_len
= len
;
335 pr_err("mds parse_reply err %d\n", err
);
339 static void destroy_reply_info(struct ceph_mds_reply_info_parsed
*info
)
343 free_pages((unsigned long)info
->dir_in
, get_order(info
->dir_buf_size
));
350 const char *ceph_session_state_name(int s
)
353 case CEPH_MDS_SESSION_NEW
: return "new";
354 case CEPH_MDS_SESSION_OPENING
: return "opening";
355 case CEPH_MDS_SESSION_OPEN
: return "open";
356 case CEPH_MDS_SESSION_HUNG
: return "hung";
357 case CEPH_MDS_SESSION_CLOSING
: return "closing";
358 case CEPH_MDS_SESSION_RESTARTING
: return "restarting";
359 case CEPH_MDS_SESSION_RECONNECTING
: return "reconnecting";
360 default: return "???";
364 static struct ceph_mds_session
*get_session(struct ceph_mds_session
*s
)
366 if (atomic_inc_not_zero(&s
->s_ref
)) {
367 dout("mdsc get_session %p %d -> %d\n", s
,
368 atomic_read(&s
->s_ref
)-1, atomic_read(&s
->s_ref
));
371 dout("mdsc get_session %p 0 -- FAIL", s
);
376 void ceph_put_mds_session(struct ceph_mds_session
*s
)
378 dout("mdsc put_session %p %d -> %d\n", s
,
379 atomic_read(&s
->s_ref
), atomic_read(&s
->s_ref
)-1);
380 if (atomic_dec_and_test(&s
->s_ref
)) {
381 if (s
->s_auth
.authorizer
)
382 ceph_auth_destroy_authorizer(
383 s
->s_mdsc
->fsc
->client
->monc
.auth
,
384 s
->s_auth
.authorizer
);
390 * called under mdsc->mutex
392 struct ceph_mds_session
*__ceph_lookup_mds_session(struct ceph_mds_client
*mdsc
,
395 struct ceph_mds_session
*session
;
397 if (mds
>= mdsc
->max_sessions
|| mdsc
->sessions
[mds
] == NULL
)
399 session
= mdsc
->sessions
[mds
];
400 dout("lookup_mds_session %p %d\n", session
,
401 atomic_read(&session
->s_ref
));
402 get_session(session
);
406 static bool __have_session(struct ceph_mds_client
*mdsc
, int mds
)
408 if (mds
>= mdsc
->max_sessions
)
410 return mdsc
->sessions
[mds
];
413 static int __verify_registered_session(struct ceph_mds_client
*mdsc
,
414 struct ceph_mds_session
*s
)
416 if (s
->s_mds
>= mdsc
->max_sessions
||
417 mdsc
->sessions
[s
->s_mds
] != s
)
423 * create+register a new session for given mds.
424 * called under mdsc->mutex.
426 static struct ceph_mds_session
*register_session(struct ceph_mds_client
*mdsc
,
429 struct ceph_mds_session
*s
;
431 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
432 return ERR_PTR(-EINVAL
);
434 s
= kzalloc(sizeof(*s
), GFP_NOFS
);
436 return ERR_PTR(-ENOMEM
);
439 s
->s_state
= CEPH_MDS_SESSION_NEW
;
442 mutex_init(&s
->s_mutex
);
444 ceph_con_init(&s
->s_con
, s
, &mds_con_ops
, &mdsc
->fsc
->client
->msgr
);
446 spin_lock_init(&s
->s_gen_ttl_lock
);
448 s
->s_cap_ttl
= jiffies
- 1;
450 spin_lock_init(&s
->s_cap_lock
);
451 s
->s_renew_requested
= 0;
453 INIT_LIST_HEAD(&s
->s_caps
);
456 atomic_set(&s
->s_ref
, 1);
457 INIT_LIST_HEAD(&s
->s_waiting
);
458 INIT_LIST_HEAD(&s
->s_unsafe
);
459 s
->s_num_cap_releases
= 0;
460 s
->s_cap_reconnect
= 0;
461 s
->s_cap_iterator
= NULL
;
462 INIT_LIST_HEAD(&s
->s_cap_releases
);
463 INIT_LIST_HEAD(&s
->s_cap_flushing
);
464 INIT_LIST_HEAD(&s
->s_cap_snaps_flushing
);
466 dout("register_session mds%d\n", mds
);
467 if (mds
>= mdsc
->max_sessions
) {
468 int newmax
= 1 << get_count_order(mds
+1);
469 struct ceph_mds_session
**sa
;
471 dout("register_session realloc to %d\n", newmax
);
472 sa
= kcalloc(newmax
, sizeof(void *), GFP_NOFS
);
475 if (mdsc
->sessions
) {
476 memcpy(sa
, mdsc
->sessions
,
477 mdsc
->max_sessions
* sizeof(void *));
478 kfree(mdsc
->sessions
);
481 mdsc
->max_sessions
= newmax
;
483 mdsc
->sessions
[mds
] = s
;
484 atomic_inc(&mdsc
->num_sessions
);
485 atomic_inc(&s
->s_ref
); /* one ref to sessions[], one to caller */
487 ceph_con_open(&s
->s_con
, CEPH_ENTITY_TYPE_MDS
, mds
,
488 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
494 return ERR_PTR(-ENOMEM
);
498 * called under mdsc->mutex
500 static void __unregister_session(struct ceph_mds_client
*mdsc
,
501 struct ceph_mds_session
*s
)
503 dout("__unregister_session mds%d %p\n", s
->s_mds
, s
);
504 BUG_ON(mdsc
->sessions
[s
->s_mds
] != s
);
505 mdsc
->sessions
[s
->s_mds
] = NULL
;
506 ceph_con_close(&s
->s_con
);
507 ceph_put_mds_session(s
);
508 atomic_dec(&mdsc
->num_sessions
);
512 * drop session refs in request.
514 * should be last request ref, or hold mdsc->mutex
516 static void put_request_session(struct ceph_mds_request
*req
)
518 if (req
->r_session
) {
519 ceph_put_mds_session(req
->r_session
);
520 req
->r_session
= NULL
;
524 void ceph_mdsc_release_request(struct kref
*kref
)
526 struct ceph_mds_request
*req
= container_of(kref
,
527 struct ceph_mds_request
,
529 destroy_reply_info(&req
->r_reply_info
);
531 ceph_msg_put(req
->r_request
);
533 ceph_msg_put(req
->r_reply
);
535 ceph_put_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
538 if (req
->r_locked_dir
)
539 ceph_put_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
540 iput(req
->r_target_inode
);
543 if (req
->r_old_dentry
)
544 dput(req
->r_old_dentry
);
545 if (req
->r_old_dentry_dir
) {
547 * track (and drop pins for) r_old_dentry_dir
548 * separately, since r_old_dentry's d_parent may have
549 * changed between the dir mutex being dropped and
550 * this request being freed.
552 ceph_put_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
554 iput(req
->r_old_dentry_dir
);
559 ceph_pagelist_release(req
->r_pagelist
);
560 put_request_session(req
);
561 ceph_unreserve_caps(req
->r_mdsc
, &req
->r_caps_reservation
);
566 * lookup session, bump ref if found.
568 * called under mdsc->mutex.
570 static struct ceph_mds_request
*__lookup_request(struct ceph_mds_client
*mdsc
,
573 struct ceph_mds_request
*req
;
574 struct rb_node
*n
= mdsc
->request_tree
.rb_node
;
577 req
= rb_entry(n
, struct ceph_mds_request
, r_node
);
578 if (tid
< req
->r_tid
)
580 else if (tid
> req
->r_tid
)
583 ceph_mdsc_get_request(req
);
590 static void __insert_request(struct ceph_mds_client
*mdsc
,
591 struct ceph_mds_request
*new)
593 struct rb_node
**p
= &mdsc
->request_tree
.rb_node
;
594 struct rb_node
*parent
= NULL
;
595 struct ceph_mds_request
*req
= NULL
;
599 req
= rb_entry(parent
, struct ceph_mds_request
, r_node
);
600 if (new->r_tid
< req
->r_tid
)
602 else if (new->r_tid
> req
->r_tid
)
608 rb_link_node(&new->r_node
, parent
, p
);
609 rb_insert_color(&new->r_node
, &mdsc
->request_tree
);
613 * Register an in-flight request, and assign a tid. Link to directory
614 * are modifying (if any).
616 * Called under mdsc->mutex.
618 static void __register_request(struct ceph_mds_client
*mdsc
,
619 struct ceph_mds_request
*req
,
622 req
->r_tid
= ++mdsc
->last_tid
;
624 ceph_reserve_caps(mdsc
, &req
->r_caps_reservation
,
626 dout("__register_request %p tid %lld\n", req
, req
->r_tid
);
627 ceph_mdsc_get_request(req
);
628 __insert_request(mdsc
, req
);
630 req
->r_uid
= current_fsuid();
631 req
->r_gid
= current_fsgid();
633 if (mdsc
->oldest_tid
== 0 && req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
)
634 mdsc
->oldest_tid
= req
->r_tid
;
638 req
->r_unsafe_dir
= dir
;
642 static void __unregister_request(struct ceph_mds_client
*mdsc
,
643 struct ceph_mds_request
*req
)
645 dout("__unregister_request %p tid %lld\n", req
, req
->r_tid
);
647 /* Never leave an unregistered request on an unsafe list! */
648 list_del_init(&req
->r_unsafe_item
);
650 if (req
->r_tid
== mdsc
->oldest_tid
) {
651 struct rb_node
*p
= rb_next(&req
->r_node
);
652 mdsc
->oldest_tid
= 0;
654 struct ceph_mds_request
*next_req
=
655 rb_entry(p
, struct ceph_mds_request
, r_node
);
656 if (next_req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
) {
657 mdsc
->oldest_tid
= next_req
->r_tid
;
664 rb_erase(&req
->r_node
, &mdsc
->request_tree
);
665 RB_CLEAR_NODE(&req
->r_node
);
667 if (req
->r_unsafe_dir
&& req
->r_got_unsafe
) {
668 struct ceph_inode_info
*ci
= ceph_inode(req
->r_unsafe_dir
);
669 spin_lock(&ci
->i_unsafe_lock
);
670 list_del_init(&req
->r_unsafe_dir_item
);
671 spin_unlock(&ci
->i_unsafe_lock
);
673 if (req
->r_target_inode
&& req
->r_got_unsafe
) {
674 struct ceph_inode_info
*ci
= ceph_inode(req
->r_target_inode
);
675 spin_lock(&ci
->i_unsafe_lock
);
676 list_del_init(&req
->r_unsafe_target_item
);
677 spin_unlock(&ci
->i_unsafe_lock
);
680 if (req
->r_unsafe_dir
) {
681 iput(req
->r_unsafe_dir
);
682 req
->r_unsafe_dir
= NULL
;
685 complete_all(&req
->r_safe_completion
);
687 ceph_mdsc_put_request(req
);
691 * Choose mds to send request to next. If there is a hint set in the
692 * request (e.g., due to a prior forward hint from the mds), use that.
693 * Otherwise, consult frag tree and/or caps to identify the
694 * appropriate mds. If all else fails, choose randomly.
696 * Called under mdsc->mutex.
698 static struct dentry
*get_nonsnap_parent(struct dentry
*dentry
)
701 * we don't need to worry about protecting the d_parent access
702 * here because we never renaming inside the snapped namespace
703 * except to resplice to another snapdir, and either the old or new
704 * result is a valid result.
706 while (!IS_ROOT(dentry
) && ceph_snap(d_inode(dentry
)) != CEPH_NOSNAP
)
707 dentry
= dentry
->d_parent
;
711 static int __choose_mds(struct ceph_mds_client
*mdsc
,
712 struct ceph_mds_request
*req
)
715 struct ceph_inode_info
*ci
;
716 struct ceph_cap
*cap
;
717 int mode
= req
->r_direct_mode
;
719 u32 hash
= req
->r_direct_hash
;
720 bool is_hash
= req
->r_direct_is_hash
;
723 * is there a specific mds we should try? ignore hint if we have
724 * no session and the mds is not up (active or recovering).
726 if (req
->r_resend_mds
>= 0 &&
727 (__have_session(mdsc
, req
->r_resend_mds
) ||
728 ceph_mdsmap_get_state(mdsc
->mdsmap
, req
->r_resend_mds
) > 0)) {
729 dout("choose_mds using resend_mds mds%d\n",
731 return req
->r_resend_mds
;
734 if (mode
== USE_RANDOM_MDS
)
739 inode
= req
->r_inode
;
740 } else if (req
->r_dentry
) {
741 /* ignore race with rename; old or new d_parent is okay */
742 struct dentry
*parent
= req
->r_dentry
->d_parent
;
743 struct inode
*dir
= d_inode(parent
);
745 if (dir
->i_sb
!= mdsc
->fsc
->sb
) {
747 inode
= d_inode(req
->r_dentry
);
748 } else if (ceph_snap(dir
) != CEPH_NOSNAP
) {
749 /* direct snapped/virtual snapdir requests
750 * based on parent dir inode */
751 struct dentry
*dn
= get_nonsnap_parent(parent
);
753 dout("__choose_mds using nonsnap parent %p\n", inode
);
756 inode
= d_inode(req
->r_dentry
);
757 if (!inode
|| mode
== USE_AUTH_MDS
) {
760 hash
= ceph_dentry_hash(dir
, req
->r_dentry
);
766 dout("__choose_mds %p is_hash=%d (%d) mode %d\n", inode
, (int)is_hash
,
770 ci
= ceph_inode(inode
);
772 if (is_hash
&& S_ISDIR(inode
->i_mode
)) {
773 struct ceph_inode_frag frag
;
776 ceph_choose_frag(ci
, hash
, &frag
, &found
);
778 if (mode
== USE_ANY_MDS
&& frag
.ndist
> 0) {
781 /* choose a random replica */
782 get_random_bytes(&r
, 1);
785 dout("choose_mds %p %llx.%llx "
786 "frag %u mds%d (%d/%d)\n",
787 inode
, ceph_vinop(inode
),
790 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
791 CEPH_MDS_STATE_ACTIVE
)
795 /* since this file/dir wasn't known to be
796 * replicated, then we want to look for the
797 * authoritative mds. */
800 /* choose auth mds */
802 dout("choose_mds %p %llx.%llx "
803 "frag %u mds%d (auth)\n",
804 inode
, ceph_vinop(inode
), frag
.frag
, mds
);
805 if (ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) >=
806 CEPH_MDS_STATE_ACTIVE
)
812 spin_lock(&ci
->i_ceph_lock
);
814 if (mode
== USE_AUTH_MDS
)
815 cap
= ci
->i_auth_cap
;
816 if (!cap
&& !RB_EMPTY_ROOT(&ci
->i_caps
))
817 cap
= rb_entry(rb_first(&ci
->i_caps
), struct ceph_cap
, ci_node
);
819 spin_unlock(&ci
->i_ceph_lock
);
822 mds
= cap
->session
->s_mds
;
823 dout("choose_mds %p %llx.%llx mds%d (%scap %p)\n",
824 inode
, ceph_vinop(inode
), mds
,
825 cap
== ci
->i_auth_cap
? "auth " : "", cap
);
826 spin_unlock(&ci
->i_ceph_lock
);
830 mds
= ceph_mdsmap_get_random_mds(mdsc
->mdsmap
);
831 dout("choose_mds chose random mds%d\n", mds
);
839 static struct ceph_msg
*create_session_msg(u32 op
, u64 seq
)
841 struct ceph_msg
*msg
;
842 struct ceph_mds_session_head
*h
;
844 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
), GFP_NOFS
,
847 pr_err("create_session_msg ENOMEM creating msg\n");
850 h
= msg
->front
.iov_base
;
851 h
->op
= cpu_to_le32(op
);
852 h
->seq
= cpu_to_le64(seq
);
858 * session message, specialization for CEPH_SESSION_REQUEST_OPEN
859 * to include additional client metadata fields.
861 static struct ceph_msg
*create_session_open_msg(struct ceph_mds_client
*mdsc
, u64 seq
)
863 struct ceph_msg
*msg
;
864 struct ceph_mds_session_head
*h
;
866 int metadata_bytes
= 0;
867 int metadata_key_count
= 0;
868 struct ceph_options
*opt
= mdsc
->fsc
->client
->options
;
871 const char* metadata
[][2] = {
872 {"hostname", utsname()->nodename
},
873 {"kernel_version", utsname()->release
},
874 {"entity_id", opt
->name
? opt
->name
: ""},
878 /* Calculate serialized length of metadata */
879 metadata_bytes
= 4; /* map length */
880 for (i
= 0; metadata
[i
][0] != NULL
; ++i
) {
881 metadata_bytes
+= 8 + strlen(metadata
[i
][0]) +
882 strlen(metadata
[i
][1]);
883 metadata_key_count
++;
886 /* Allocate the message */
887 msg
= ceph_msg_new(CEPH_MSG_CLIENT_SESSION
, sizeof(*h
) + metadata_bytes
,
890 pr_err("create_session_msg ENOMEM creating msg\n");
893 h
= msg
->front
.iov_base
;
894 h
->op
= cpu_to_le32(CEPH_SESSION_REQUEST_OPEN
);
895 h
->seq
= cpu_to_le64(seq
);
898 * Serialize client metadata into waiting buffer space, using
899 * the format that userspace expects for map<string, string>
901 * ClientSession messages with metadata are v2
903 msg
->hdr
.version
= cpu_to_le16(2);
904 msg
->hdr
.compat_version
= cpu_to_le16(1);
906 /* The write pointer, following the session_head structure */
907 p
= msg
->front
.iov_base
+ sizeof(*h
);
909 /* Number of entries in the map */
910 ceph_encode_32(&p
, metadata_key_count
);
912 /* Two length-prefixed strings for each entry in the map */
913 for (i
= 0; metadata
[i
][0] != NULL
; ++i
) {
914 size_t const key_len
= strlen(metadata
[i
][0]);
915 size_t const val_len
= strlen(metadata
[i
][1]);
917 ceph_encode_32(&p
, key_len
);
918 memcpy(p
, metadata
[i
][0], key_len
);
920 ceph_encode_32(&p
, val_len
);
921 memcpy(p
, metadata
[i
][1], val_len
);
929 * send session open request.
931 * called under mdsc->mutex
933 static int __open_session(struct ceph_mds_client
*mdsc
,
934 struct ceph_mds_session
*session
)
936 struct ceph_msg
*msg
;
938 int mds
= session
->s_mds
;
940 /* wait for mds to go active? */
941 mstate
= ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
);
942 dout("open_session to mds%d (%s)\n", mds
,
943 ceph_mds_state_name(mstate
));
944 session
->s_state
= CEPH_MDS_SESSION_OPENING
;
945 session
->s_renew_requested
= jiffies
;
947 /* send connect message */
948 msg
= create_session_open_msg(mdsc
, session
->s_seq
);
951 ceph_con_send(&session
->s_con
, msg
);
956 * open sessions for any export targets for the given mds
958 * called under mdsc->mutex
960 static struct ceph_mds_session
*
961 __open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
963 struct ceph_mds_session
*session
;
965 session
= __ceph_lookup_mds_session(mdsc
, target
);
967 session
= register_session(mdsc
, target
);
971 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
972 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
973 __open_session(mdsc
, session
);
978 struct ceph_mds_session
*
979 ceph_mdsc_open_export_target_session(struct ceph_mds_client
*mdsc
, int target
)
981 struct ceph_mds_session
*session
;
983 dout("open_export_target_session to mds%d\n", target
);
985 mutex_lock(&mdsc
->mutex
);
986 session
= __open_export_target_session(mdsc
, target
);
987 mutex_unlock(&mdsc
->mutex
);
992 static void __open_export_target_sessions(struct ceph_mds_client
*mdsc
,
993 struct ceph_mds_session
*session
)
995 struct ceph_mds_info
*mi
;
996 struct ceph_mds_session
*ts
;
997 int i
, mds
= session
->s_mds
;
999 if (mds
>= mdsc
->mdsmap
->m_max_mds
)
1002 mi
= &mdsc
->mdsmap
->m_info
[mds
];
1003 dout("open_export_target_sessions for mds%d (%d targets)\n",
1004 session
->s_mds
, mi
->num_export_targets
);
1006 for (i
= 0; i
< mi
->num_export_targets
; i
++) {
1007 ts
= __open_export_target_session(mdsc
, mi
->export_targets
[i
]);
1009 ceph_put_mds_session(ts
);
1013 void ceph_mdsc_open_export_target_sessions(struct ceph_mds_client
*mdsc
,
1014 struct ceph_mds_session
*session
)
1016 mutex_lock(&mdsc
->mutex
);
1017 __open_export_target_sessions(mdsc
, session
);
1018 mutex_unlock(&mdsc
->mutex
);
1025 /* caller holds s_cap_lock, we drop it */
1026 static void cleanup_cap_releases(struct ceph_mds_client
*mdsc
,
1027 struct ceph_mds_session
*session
)
1028 __releases(session
->s_cap_lock
)
1030 LIST_HEAD(tmp_list
);
1031 list_splice_init(&session
->s_cap_releases
, &tmp_list
);
1032 session
->s_num_cap_releases
= 0;
1033 spin_unlock(&session
->s_cap_lock
);
1035 dout("cleanup_cap_releases mds%d\n", session
->s_mds
);
1036 while (!list_empty(&tmp_list
)) {
1037 struct ceph_cap
*cap
;
1038 /* zero out the in-progress message */
1039 cap
= list_first_entry(&tmp_list
,
1040 struct ceph_cap
, session_caps
);
1041 list_del(&cap
->session_caps
);
1042 ceph_put_cap(mdsc
, cap
);
1046 static void cleanup_session_requests(struct ceph_mds_client
*mdsc
,
1047 struct ceph_mds_session
*session
)
1049 struct ceph_mds_request
*req
;
1052 dout("cleanup_session_requests mds%d\n", session
->s_mds
);
1053 mutex_lock(&mdsc
->mutex
);
1054 while (!list_empty(&session
->s_unsafe
)) {
1055 req
= list_first_entry(&session
->s_unsafe
,
1056 struct ceph_mds_request
, r_unsafe_item
);
1057 pr_warn_ratelimited(" dropping unsafe request %llu\n",
1059 __unregister_request(mdsc
, req
);
1061 /* zero r_attempts, so kick_requests() will re-send requests */
1062 p
= rb_first(&mdsc
->request_tree
);
1064 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
1066 if (req
->r_session
&&
1067 req
->r_session
->s_mds
== session
->s_mds
)
1068 req
->r_attempts
= 0;
1070 mutex_unlock(&mdsc
->mutex
);
1074 * Helper to safely iterate over all caps associated with a session, with
1075 * special care taken to handle a racing __ceph_remove_cap().
1077 * Caller must hold session s_mutex.
1079 static int iterate_session_caps(struct ceph_mds_session
*session
,
1080 int (*cb
)(struct inode
*, struct ceph_cap
*,
1083 struct list_head
*p
;
1084 struct ceph_cap
*cap
;
1085 struct inode
*inode
, *last_inode
= NULL
;
1086 struct ceph_cap
*old_cap
= NULL
;
1089 dout("iterate_session_caps %p mds%d\n", session
, session
->s_mds
);
1090 spin_lock(&session
->s_cap_lock
);
1091 p
= session
->s_caps
.next
;
1092 while (p
!= &session
->s_caps
) {
1093 cap
= list_entry(p
, struct ceph_cap
, session_caps
);
1094 inode
= igrab(&cap
->ci
->vfs_inode
);
1099 session
->s_cap_iterator
= cap
;
1100 spin_unlock(&session
->s_cap_lock
);
1107 ceph_put_cap(session
->s_mdsc
, old_cap
);
1111 ret
= cb(inode
, cap
, arg
);
1114 spin_lock(&session
->s_cap_lock
);
1116 if (cap
->ci
== NULL
) {
1117 dout("iterate_session_caps finishing cap %p removal\n",
1119 BUG_ON(cap
->session
!= session
);
1120 cap
->session
= NULL
;
1121 list_del_init(&cap
->session_caps
);
1122 session
->s_nr_caps
--;
1123 if (cap
->queue_release
) {
1124 list_add_tail(&cap
->session_caps
,
1125 &session
->s_cap_releases
);
1126 session
->s_num_cap_releases
++;
1128 old_cap
= cap
; /* put_cap it w/o locks held */
1136 session
->s_cap_iterator
= NULL
;
1137 spin_unlock(&session
->s_cap_lock
);
1141 ceph_put_cap(session
->s_mdsc
, old_cap
);
1146 static int remove_session_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1149 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1150 LIST_HEAD(to_remove
);
1153 dout("removing cap %p, ci is %p, inode is %p\n",
1154 cap
, ci
, &ci
->vfs_inode
);
1155 spin_lock(&ci
->i_ceph_lock
);
1156 __ceph_remove_cap(cap
, false);
1157 if (!ci
->i_auth_cap
) {
1158 struct ceph_cap_flush
*cf
;
1159 struct ceph_mds_client
*mdsc
=
1160 ceph_sb_to_client(inode
->i_sb
)->mdsc
;
1163 struct rb_node
*n
= rb_first(&ci
->i_cap_flush_tree
);
1166 cf
= rb_entry(n
, struct ceph_cap_flush
, i_node
);
1167 rb_erase(&cf
->i_node
, &ci
->i_cap_flush_tree
);
1168 list_add(&cf
->list
, &to_remove
);
1171 spin_lock(&mdsc
->cap_dirty_lock
);
1173 list_for_each_entry(cf
, &to_remove
, list
)
1174 rb_erase(&cf
->g_node
, &mdsc
->cap_flush_tree
);
1176 if (!list_empty(&ci
->i_dirty_item
)) {
1177 pr_warn_ratelimited(
1178 " dropping dirty %s state for %p %lld\n",
1179 ceph_cap_string(ci
->i_dirty_caps
),
1180 inode
, ceph_ino(inode
));
1181 ci
->i_dirty_caps
= 0;
1182 list_del_init(&ci
->i_dirty_item
);
1185 if (!list_empty(&ci
->i_flushing_item
)) {
1186 pr_warn_ratelimited(
1187 " dropping dirty+flushing %s state for %p %lld\n",
1188 ceph_cap_string(ci
->i_flushing_caps
),
1189 inode
, ceph_ino(inode
));
1190 ci
->i_flushing_caps
= 0;
1191 list_del_init(&ci
->i_flushing_item
);
1192 mdsc
->num_cap_flushing
--;
1195 spin_unlock(&mdsc
->cap_dirty_lock
);
1197 if (!ci
->i_dirty_caps
&& ci
->i_prealloc_cap_flush
) {
1198 list_add(&ci
->i_prealloc_cap_flush
->list
, &to_remove
);
1199 ci
->i_prealloc_cap_flush
= NULL
;
1203 ci
->i_wrbuffer_ref_head
== 0 &&
1204 ci
->i_wr_ref
== 0 &&
1205 ci
->i_dirty_caps
== 0 &&
1206 ci
->i_flushing_caps
== 0) {
1207 ceph_put_snap_context(ci
->i_head_snapc
);
1208 ci
->i_head_snapc
= NULL
;
1211 spin_unlock(&ci
->i_ceph_lock
);
1212 while (!list_empty(&to_remove
)) {
1213 struct ceph_cap_flush
*cf
;
1214 cf
= list_first_entry(&to_remove
,
1215 struct ceph_cap_flush
, list
);
1216 list_del(&cf
->list
);
1217 ceph_free_cap_flush(cf
);
1225 * caller must hold session s_mutex
1227 static void remove_session_caps(struct ceph_mds_session
*session
)
1229 dout("remove_session_caps on %p\n", session
);
1230 iterate_session_caps(session
, remove_session_caps_cb
, NULL
);
1232 spin_lock(&session
->s_cap_lock
);
1233 if (session
->s_nr_caps
> 0) {
1234 struct super_block
*sb
= session
->s_mdsc
->fsc
->sb
;
1235 struct inode
*inode
;
1236 struct ceph_cap
*cap
, *prev
= NULL
;
1237 struct ceph_vino vino
;
1239 * iterate_session_caps() skips inodes that are being
1240 * deleted, we need to wait until deletions are complete.
1241 * __wait_on_freeing_inode() is designed for the job,
1242 * but it is not exported, so use lookup inode function
1245 while (!list_empty(&session
->s_caps
)) {
1246 cap
= list_entry(session
->s_caps
.next
,
1247 struct ceph_cap
, session_caps
);
1251 vino
= cap
->ci
->i_vino
;
1252 spin_unlock(&session
->s_cap_lock
);
1254 inode
= ceph_find_inode(sb
, vino
);
1257 spin_lock(&session
->s_cap_lock
);
1261 // drop cap expires and unlock s_cap_lock
1262 cleanup_cap_releases(session
->s_mdsc
, session
);
1264 BUG_ON(session
->s_nr_caps
> 0);
1265 BUG_ON(!list_empty(&session
->s_cap_flushing
));
1269 * wake up any threads waiting on this session's caps. if the cap is
1270 * old (didn't get renewed on the client reconnect), remove it now.
1272 * caller must hold s_mutex.
1274 static int wake_up_session_cb(struct inode
*inode
, struct ceph_cap
*cap
,
1277 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1279 wake_up_all(&ci
->i_cap_wq
);
1281 spin_lock(&ci
->i_ceph_lock
);
1282 ci
->i_wanted_max_size
= 0;
1283 ci
->i_requested_max_size
= 0;
1284 spin_unlock(&ci
->i_ceph_lock
);
1289 static void wake_up_session_caps(struct ceph_mds_session
*session
,
1292 dout("wake_up_session_caps %p mds%d\n", session
, session
->s_mds
);
1293 iterate_session_caps(session
, wake_up_session_cb
,
1294 (void *)(unsigned long)reconnect
);
1298 * Send periodic message to MDS renewing all currently held caps. The
1299 * ack will reset the expiration for all caps from this session.
1301 * caller holds s_mutex
1303 static int send_renew_caps(struct ceph_mds_client
*mdsc
,
1304 struct ceph_mds_session
*session
)
1306 struct ceph_msg
*msg
;
1309 if (time_after_eq(jiffies
, session
->s_cap_ttl
) &&
1310 time_after_eq(session
->s_cap_ttl
, session
->s_renew_requested
))
1311 pr_info("mds%d caps stale\n", session
->s_mds
);
1312 session
->s_renew_requested
= jiffies
;
1314 /* do not try to renew caps until a recovering mds has reconnected
1315 * with its clients. */
1316 state
= ceph_mdsmap_get_state(mdsc
->mdsmap
, session
->s_mds
);
1317 if (state
< CEPH_MDS_STATE_RECONNECT
) {
1318 dout("send_renew_caps ignoring mds%d (%s)\n",
1319 session
->s_mds
, ceph_mds_state_name(state
));
1323 dout("send_renew_caps to mds%d (%s)\n", session
->s_mds
,
1324 ceph_mds_state_name(state
));
1325 msg
= create_session_msg(CEPH_SESSION_REQUEST_RENEWCAPS
,
1326 ++session
->s_renew_seq
);
1329 ceph_con_send(&session
->s_con
, msg
);
1333 static int send_flushmsg_ack(struct ceph_mds_client
*mdsc
,
1334 struct ceph_mds_session
*session
, u64 seq
)
1336 struct ceph_msg
*msg
;
1338 dout("send_flushmsg_ack to mds%d (%s)s seq %lld\n",
1339 session
->s_mds
, ceph_session_state_name(session
->s_state
), seq
);
1340 msg
= create_session_msg(CEPH_SESSION_FLUSHMSG_ACK
, seq
);
1343 ceph_con_send(&session
->s_con
, msg
);
1349 * Note new cap ttl, and any transition from stale -> not stale (fresh?).
1351 * Called under session->s_mutex
1353 static void renewed_caps(struct ceph_mds_client
*mdsc
,
1354 struct ceph_mds_session
*session
, int is_renew
)
1359 spin_lock(&session
->s_cap_lock
);
1360 was_stale
= is_renew
&& time_after_eq(jiffies
, session
->s_cap_ttl
);
1362 session
->s_cap_ttl
= session
->s_renew_requested
+
1363 mdsc
->mdsmap
->m_session_timeout
*HZ
;
1366 if (time_before(jiffies
, session
->s_cap_ttl
)) {
1367 pr_info("mds%d caps renewed\n", session
->s_mds
);
1370 pr_info("mds%d caps still stale\n", session
->s_mds
);
1373 dout("renewed_caps mds%d ttl now %lu, was %s, now %s\n",
1374 session
->s_mds
, session
->s_cap_ttl
, was_stale
? "stale" : "fresh",
1375 time_before(jiffies
, session
->s_cap_ttl
) ? "stale" : "fresh");
1376 spin_unlock(&session
->s_cap_lock
);
1379 wake_up_session_caps(session
, 0);
1383 * send a session close request
1385 static int request_close_session(struct ceph_mds_client
*mdsc
,
1386 struct ceph_mds_session
*session
)
1388 struct ceph_msg
*msg
;
1390 dout("request_close_session mds%d state %s seq %lld\n",
1391 session
->s_mds
, ceph_session_state_name(session
->s_state
),
1393 msg
= create_session_msg(CEPH_SESSION_REQUEST_CLOSE
, session
->s_seq
);
1396 ceph_con_send(&session
->s_con
, msg
);
1401 * Called with s_mutex held.
1403 static int __close_session(struct ceph_mds_client
*mdsc
,
1404 struct ceph_mds_session
*session
)
1406 if (session
->s_state
>= CEPH_MDS_SESSION_CLOSING
)
1408 session
->s_state
= CEPH_MDS_SESSION_CLOSING
;
1409 return request_close_session(mdsc
, session
);
1412 static bool drop_negative_children(struct dentry
*dentry
)
1414 struct dentry
*child
;
1415 bool all_negative
= true;
1417 if (!d_is_dir(dentry
))
1420 spin_lock(&dentry
->d_lock
);
1421 list_for_each_entry(child
, &dentry
->d_subdirs
, d_child
) {
1422 if (d_really_is_positive(child
)) {
1423 all_negative
= false;
1427 spin_unlock(&dentry
->d_lock
);
1430 shrink_dcache_parent(dentry
);
1432 return all_negative
;
1436 * Trim old(er) caps.
1438 * Because we can't cache an inode without one or more caps, we do
1439 * this indirectly: if a cap is unused, we prune its aliases, at which
1440 * point the inode will hopefully get dropped to.
1442 * Yes, this is a bit sloppy. Our only real goal here is to respond to
1443 * memory pressure from the MDS, though, so it needn't be perfect.
1445 static int trim_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
, void *arg
)
1447 struct ceph_mds_session
*session
= arg
;
1448 struct ceph_inode_info
*ci
= ceph_inode(inode
);
1449 int used
, wanted
, oissued
, mine
;
1451 if (session
->s_trim_caps
<= 0)
1454 spin_lock(&ci
->i_ceph_lock
);
1455 mine
= cap
->issued
| cap
->implemented
;
1456 used
= __ceph_caps_used(ci
);
1457 wanted
= __ceph_caps_file_wanted(ci
);
1458 oissued
= __ceph_caps_issued_other(ci
, cap
);
1460 dout("trim_caps_cb %p cap %p mine %s oissued %s used %s wanted %s\n",
1461 inode
, cap
, ceph_cap_string(mine
), ceph_cap_string(oissued
),
1462 ceph_cap_string(used
), ceph_cap_string(wanted
));
1463 if (cap
== ci
->i_auth_cap
) {
1464 if (ci
->i_dirty_caps
|| ci
->i_flushing_caps
||
1465 !list_empty(&ci
->i_cap_snaps
))
1467 if ((used
| wanted
) & CEPH_CAP_ANY_WR
)
1470 /* The inode has cached pages, but it's no longer used.
1471 * we can safely drop it */
1472 if (wanted
== 0 && used
== CEPH_CAP_FILE_CACHE
&&
1473 !(oissued
& CEPH_CAP_FILE_CACHE
)) {
1477 if ((used
| wanted
) & ~oissued
& mine
)
1478 goto out
; /* we need these caps */
1481 /* we aren't the only cap.. just remove us */
1482 __ceph_remove_cap(cap
, true);
1483 session
->s_trim_caps
--;
1485 struct dentry
*dentry
;
1486 /* try dropping referring dentries */
1487 spin_unlock(&ci
->i_ceph_lock
);
1488 dentry
= d_find_any_alias(inode
);
1489 if (dentry
&& drop_negative_children(dentry
)) {
1492 d_prune_aliases(inode
);
1493 count
= atomic_read(&inode
->i_count
);
1495 session
->s_trim_caps
--;
1496 dout("trim_caps_cb %p cap %p pruned, count now %d\n",
1505 spin_unlock(&ci
->i_ceph_lock
);
1510 * Trim session cap count down to some max number.
1512 static int trim_caps(struct ceph_mds_client
*mdsc
,
1513 struct ceph_mds_session
*session
,
1516 int trim_caps
= session
->s_nr_caps
- max_caps
;
1518 dout("trim_caps mds%d start: %d / %d, trim %d\n",
1519 session
->s_mds
, session
->s_nr_caps
, max_caps
, trim_caps
);
1520 if (trim_caps
> 0) {
1521 session
->s_trim_caps
= trim_caps
;
1522 iterate_session_caps(session
, trim_caps_cb
, session
);
1523 dout("trim_caps mds%d done: %d / %d, trimmed %d\n",
1524 session
->s_mds
, session
->s_nr_caps
, max_caps
,
1525 trim_caps
- session
->s_trim_caps
);
1526 session
->s_trim_caps
= 0;
1529 ceph_send_cap_releases(mdsc
, session
);
1533 static int check_capsnap_flush(struct ceph_inode_info
*ci
,
1537 spin_lock(&ci
->i_ceph_lock
);
1538 if (want_snap_seq
> 0 && !list_empty(&ci
->i_cap_snaps
)) {
1539 struct ceph_cap_snap
*capsnap
=
1540 list_first_entry(&ci
->i_cap_snaps
,
1541 struct ceph_cap_snap
, ci_item
);
1542 ret
= capsnap
->follows
>= want_snap_seq
;
1544 spin_unlock(&ci
->i_ceph_lock
);
1548 static int check_caps_flush(struct ceph_mds_client
*mdsc
,
1552 struct ceph_cap_flush
*cf
;
1555 spin_lock(&mdsc
->cap_dirty_lock
);
1556 n
= rb_first(&mdsc
->cap_flush_tree
);
1557 cf
= n
? rb_entry(n
, struct ceph_cap_flush
, g_node
) : NULL
;
1558 if (cf
&& cf
->tid
<= want_flush_tid
) {
1559 dout("check_caps_flush still flushing tid %llu <= %llu\n",
1560 cf
->tid
, want_flush_tid
);
1563 spin_unlock(&mdsc
->cap_dirty_lock
);
1568 * flush all dirty inode data to disk.
1570 * returns true if we've flushed through want_flush_tid
1572 static void wait_caps_flush(struct ceph_mds_client
*mdsc
,
1573 u64 want_flush_tid
, u64 want_snap_seq
)
1577 dout("check_caps_flush want %llu snap want %llu\n",
1578 want_flush_tid
, want_snap_seq
);
1579 mutex_lock(&mdsc
->mutex
);
1580 for (mds
= 0; mds
< mdsc
->max_sessions
; ) {
1581 struct ceph_mds_session
*session
= mdsc
->sessions
[mds
];
1582 struct inode
*inode
= NULL
;
1588 get_session(session
);
1589 mutex_unlock(&mdsc
->mutex
);
1591 mutex_lock(&session
->s_mutex
);
1592 if (!list_empty(&session
->s_cap_snaps_flushing
)) {
1593 struct ceph_cap_snap
*capsnap
=
1594 list_first_entry(&session
->s_cap_snaps_flushing
,
1595 struct ceph_cap_snap
,
1597 struct ceph_inode_info
*ci
= capsnap
->ci
;
1598 if (!check_capsnap_flush(ci
, want_snap_seq
)) {
1599 dout("check_cap_flush still flushing snap %p "
1600 "follows %lld <= %lld to mds%d\n",
1601 &ci
->vfs_inode
, capsnap
->follows
,
1602 want_snap_seq
, mds
);
1603 inode
= igrab(&ci
->vfs_inode
);
1606 mutex_unlock(&session
->s_mutex
);
1607 ceph_put_mds_session(session
);
1610 wait_event(mdsc
->cap_flushing_wq
,
1611 check_capsnap_flush(ceph_inode(inode
),
1618 mutex_lock(&mdsc
->mutex
);
1620 mutex_unlock(&mdsc
->mutex
);
1622 wait_event(mdsc
->cap_flushing_wq
,
1623 check_caps_flush(mdsc
, want_flush_tid
));
1625 dout("check_caps_flush ok, flushed thru %llu\n", want_flush_tid
);
1629 * called under s_mutex
1631 void ceph_send_cap_releases(struct ceph_mds_client
*mdsc
,
1632 struct ceph_mds_session
*session
)
1634 struct ceph_msg
*msg
= NULL
;
1635 struct ceph_mds_cap_release
*head
;
1636 struct ceph_mds_cap_item
*item
;
1637 struct ceph_cap
*cap
;
1638 LIST_HEAD(tmp_list
);
1639 int num_cap_releases
;
1641 spin_lock(&session
->s_cap_lock
);
1643 list_splice_init(&session
->s_cap_releases
, &tmp_list
);
1644 num_cap_releases
= session
->s_num_cap_releases
;
1645 session
->s_num_cap_releases
= 0;
1646 spin_unlock(&session
->s_cap_lock
);
1648 while (!list_empty(&tmp_list
)) {
1650 msg
= ceph_msg_new(CEPH_MSG_CLIENT_CAPRELEASE
,
1651 PAGE_CACHE_SIZE
, GFP_NOFS
, false);
1654 head
= msg
->front
.iov_base
;
1655 head
->num
= cpu_to_le32(0);
1656 msg
->front
.iov_len
= sizeof(*head
);
1658 cap
= list_first_entry(&tmp_list
, struct ceph_cap
,
1660 list_del(&cap
->session_caps
);
1663 head
= msg
->front
.iov_base
;
1664 le32_add_cpu(&head
->num
, 1);
1665 item
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
1666 item
->ino
= cpu_to_le64(cap
->cap_ino
);
1667 item
->cap_id
= cpu_to_le64(cap
->cap_id
);
1668 item
->migrate_seq
= cpu_to_le32(cap
->mseq
);
1669 item
->seq
= cpu_to_le32(cap
->issue_seq
);
1670 msg
->front
.iov_len
+= sizeof(*item
);
1672 ceph_put_cap(mdsc
, cap
);
1674 if (le32_to_cpu(head
->num
) == CEPH_CAPS_PER_RELEASE
) {
1675 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1676 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1677 ceph_con_send(&session
->s_con
, msg
);
1682 BUG_ON(num_cap_releases
!= 0);
1684 spin_lock(&session
->s_cap_lock
);
1685 if (!list_empty(&session
->s_cap_releases
))
1687 spin_unlock(&session
->s_cap_lock
);
1690 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
1691 dout("send_cap_releases mds%d %p\n", session
->s_mds
, msg
);
1692 ceph_con_send(&session
->s_con
, msg
);
1696 pr_err("send_cap_releases mds%d, failed to allocate message\n",
1698 spin_lock(&session
->s_cap_lock
);
1699 list_splice(&tmp_list
, &session
->s_cap_releases
);
1700 session
->s_num_cap_releases
+= num_cap_releases
;
1701 spin_unlock(&session
->s_cap_lock
);
1708 int ceph_alloc_readdir_reply_buffer(struct ceph_mds_request
*req
,
1711 struct ceph_inode_info
*ci
= ceph_inode(dir
);
1712 struct ceph_mds_reply_info_parsed
*rinfo
= &req
->r_reply_info
;
1713 struct ceph_mount_options
*opt
= req
->r_mdsc
->fsc
->mount_options
;
1714 size_t size
= sizeof(*rinfo
->dir_in
) + sizeof(*rinfo
->dir_dname_len
) +
1715 sizeof(*rinfo
->dir_dname
) + sizeof(*rinfo
->dir_dlease
);
1716 int order
, num_entries
;
1718 spin_lock(&ci
->i_ceph_lock
);
1719 num_entries
= ci
->i_files
+ ci
->i_subdirs
;
1720 spin_unlock(&ci
->i_ceph_lock
);
1721 num_entries
= max(num_entries
, 1);
1722 num_entries
= min(num_entries
, opt
->max_readdir
);
1724 order
= get_order(size
* num_entries
);
1725 while (order
>= 0) {
1726 rinfo
->dir_in
= (void*)__get_free_pages(GFP_KERNEL
|
1736 num_entries
= (PAGE_SIZE
<< order
) / size
;
1737 num_entries
= min(num_entries
, opt
->max_readdir
);
1739 rinfo
->dir_buf_size
= PAGE_SIZE
<< order
;
1740 req
->r_num_caps
= num_entries
+ 1;
1741 req
->r_args
.readdir
.max_entries
= cpu_to_le32(num_entries
);
1742 req
->r_args
.readdir
.max_bytes
= cpu_to_le32(opt
->max_readdir_bytes
);
1747 * Create an mds request.
1749 struct ceph_mds_request
*
1750 ceph_mdsc_create_request(struct ceph_mds_client
*mdsc
, int op
, int mode
)
1752 struct ceph_mds_request
*req
= kzalloc(sizeof(*req
), GFP_NOFS
);
1755 return ERR_PTR(-ENOMEM
);
1757 mutex_init(&req
->r_fill_mutex
);
1759 req
->r_started
= jiffies
;
1760 req
->r_resend_mds
= -1;
1761 INIT_LIST_HEAD(&req
->r_unsafe_dir_item
);
1762 INIT_LIST_HEAD(&req
->r_unsafe_target_item
);
1764 kref_init(&req
->r_kref
);
1765 INIT_LIST_HEAD(&req
->r_wait
);
1766 init_completion(&req
->r_completion
);
1767 init_completion(&req
->r_safe_completion
);
1768 INIT_LIST_HEAD(&req
->r_unsafe_item
);
1770 req
->r_stamp
= CURRENT_TIME
;
1773 req
->r_direct_mode
= mode
;
1778 * return oldest (lowest) request, tid in request tree, 0 if none.
1780 * called under mdsc->mutex.
1782 static struct ceph_mds_request
*__get_oldest_req(struct ceph_mds_client
*mdsc
)
1784 if (RB_EMPTY_ROOT(&mdsc
->request_tree
))
1786 return rb_entry(rb_first(&mdsc
->request_tree
),
1787 struct ceph_mds_request
, r_node
);
1790 static inline u64
__get_oldest_tid(struct ceph_mds_client
*mdsc
)
1792 return mdsc
->oldest_tid
;
1796 * Build a dentry's path. Allocate on heap; caller must kfree. Based
1797 * on build_path_from_dentry in fs/cifs/dir.c.
1799 * If @stop_on_nosnap, generate path relative to the first non-snapped
1802 * Encode hidden .snap dirs as a double /, i.e.
1803 * foo/.snap/bar -> foo//bar
1805 char *ceph_mdsc_build_path(struct dentry
*dentry
, int *plen
, u64
*base
,
1808 struct dentry
*temp
;
1814 return ERR_PTR(-EINVAL
);
1818 seq
= read_seqbegin(&rename_lock
);
1820 for (temp
= dentry
; !IS_ROOT(temp
);) {
1821 struct inode
*inode
= d_inode(temp
);
1822 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
)
1823 len
++; /* slash only */
1824 else if (stop_on_nosnap
&& inode
&&
1825 ceph_snap(inode
) == CEPH_NOSNAP
)
1828 len
+= 1 + temp
->d_name
.len
;
1829 temp
= temp
->d_parent
;
1833 len
--; /* no leading '/' */
1835 path
= kmalloc(len
+1, GFP_NOFS
);
1837 return ERR_PTR(-ENOMEM
);
1839 path
[pos
] = 0; /* trailing null */
1841 for (temp
= dentry
; !IS_ROOT(temp
) && pos
!= 0; ) {
1842 struct inode
*inode
;
1844 spin_lock(&temp
->d_lock
);
1845 inode
= d_inode(temp
);
1846 if (inode
&& ceph_snap(inode
) == CEPH_SNAPDIR
) {
1847 dout("build_path path+%d: %p SNAPDIR\n",
1849 } else if (stop_on_nosnap
&& inode
&&
1850 ceph_snap(inode
) == CEPH_NOSNAP
) {
1851 spin_unlock(&temp
->d_lock
);
1854 pos
-= temp
->d_name
.len
;
1856 spin_unlock(&temp
->d_lock
);
1859 strncpy(path
+ pos
, temp
->d_name
.name
,
1862 spin_unlock(&temp
->d_lock
);
1865 temp
= temp
->d_parent
;
1868 if (pos
!= 0 || read_seqretry(&rename_lock
, seq
)) {
1869 pr_err("build_path did not end path lookup where "
1870 "expected, namelen is %d, pos is %d\n", len
, pos
);
1871 /* presumably this is only possible if racing with a
1872 rename of one of the parent directories (we can not
1873 lock the dentries above us to prevent this, but
1874 retrying should be harmless) */
1879 *base
= ceph_ino(d_inode(temp
));
1881 dout("build_path on %p %d built %llx '%.*s'\n",
1882 dentry
, d_count(dentry
), *base
, len
, path
);
1886 static int build_dentry_path(struct dentry
*dentry
,
1887 const char **ppath
, int *ppathlen
, u64
*pino
,
1894 dir
= d_inode_rcu(dentry
->d_parent
);
1895 if (dir
&& ceph_snap(dir
) == CEPH_NOSNAP
) {
1896 *pino
= ceph_ino(dir
);
1898 *ppath
= dentry
->d_name
.name
;
1899 *ppathlen
= dentry
->d_name
.len
;
1903 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1905 return PTR_ERR(path
);
1911 static int build_inode_path(struct inode
*inode
,
1912 const char **ppath
, int *ppathlen
, u64
*pino
,
1915 struct dentry
*dentry
;
1918 if (ceph_snap(inode
) == CEPH_NOSNAP
) {
1919 *pino
= ceph_ino(inode
);
1923 dentry
= d_find_alias(inode
);
1924 path
= ceph_mdsc_build_path(dentry
, ppathlen
, pino
, 1);
1927 return PTR_ERR(path
);
1934 * request arguments may be specified via an inode *, a dentry *, or
1935 * an explicit ino+path.
1937 static int set_request_path_attr(struct inode
*rinode
, struct dentry
*rdentry
,
1938 const char *rpath
, u64 rino
,
1939 const char **ppath
, int *pathlen
,
1940 u64
*ino
, int *freepath
)
1945 r
= build_inode_path(rinode
, ppath
, pathlen
, ino
, freepath
);
1946 dout(" inode %p %llx.%llx\n", rinode
, ceph_ino(rinode
),
1948 } else if (rdentry
) {
1949 r
= build_dentry_path(rdentry
, ppath
, pathlen
, ino
, freepath
);
1950 dout(" dentry %p %llx/%.*s\n", rdentry
, *ino
, *pathlen
,
1952 } else if (rpath
|| rino
) {
1955 *pathlen
= rpath
? strlen(rpath
) : 0;
1956 dout(" path %.*s\n", *pathlen
, rpath
);
1963 * called under mdsc->mutex
1965 static struct ceph_msg
*create_request_message(struct ceph_mds_client
*mdsc
,
1966 struct ceph_mds_request
*req
,
1967 int mds
, bool drop_cap_releases
)
1969 struct ceph_msg
*msg
;
1970 struct ceph_mds_request_head
*head
;
1971 const char *path1
= NULL
;
1972 const char *path2
= NULL
;
1973 u64 ino1
= 0, ino2
= 0;
1974 int pathlen1
= 0, pathlen2
= 0;
1975 int freepath1
= 0, freepath2
= 0;
1981 ret
= set_request_path_attr(req
->r_inode
, req
->r_dentry
,
1982 req
->r_path1
, req
->r_ino1
.ino
,
1983 &path1
, &pathlen1
, &ino1
, &freepath1
);
1989 ret
= set_request_path_attr(NULL
, req
->r_old_dentry
,
1990 req
->r_path2
, req
->r_ino2
.ino
,
1991 &path2
, &pathlen2
, &ino2
, &freepath2
);
1997 len
= sizeof(*head
) +
1998 pathlen1
+ pathlen2
+ 2*(1 + sizeof(u32
) + sizeof(u64
)) +
1999 sizeof(struct ceph_timespec
);
2001 /* calculate (max) length for cap releases */
2002 len
+= sizeof(struct ceph_mds_request_release
) *
2003 (!!req
->r_inode_drop
+ !!req
->r_dentry_drop
+
2004 !!req
->r_old_inode_drop
+ !!req
->r_old_dentry_drop
);
2005 if (req
->r_dentry_drop
)
2006 len
+= req
->r_dentry
->d_name
.len
;
2007 if (req
->r_old_dentry_drop
)
2008 len
+= req
->r_old_dentry
->d_name
.len
;
2010 msg
= ceph_msg_new(CEPH_MSG_CLIENT_REQUEST
, len
, GFP_NOFS
, false);
2012 msg
= ERR_PTR(-ENOMEM
);
2016 msg
->hdr
.version
= cpu_to_le16(2);
2017 msg
->hdr
.tid
= cpu_to_le64(req
->r_tid
);
2019 head
= msg
->front
.iov_base
;
2020 p
= msg
->front
.iov_base
+ sizeof(*head
);
2021 end
= msg
->front
.iov_base
+ msg
->front
.iov_len
;
2023 head
->mdsmap_epoch
= cpu_to_le32(mdsc
->mdsmap
->m_epoch
);
2024 head
->op
= cpu_to_le32(req
->r_op
);
2025 head
->caller_uid
= cpu_to_le32(from_kuid(&init_user_ns
, req
->r_uid
));
2026 head
->caller_gid
= cpu_to_le32(from_kgid(&init_user_ns
, req
->r_gid
));
2027 head
->args
= req
->r_args
;
2029 ceph_encode_filepath(&p
, end
, ino1
, path1
);
2030 ceph_encode_filepath(&p
, end
, ino2
, path2
);
2032 /* make note of release offset, in case we need to replay */
2033 req
->r_request_release_offset
= p
- msg
->front
.iov_base
;
2037 if (req
->r_inode_drop
)
2038 releases
+= ceph_encode_inode_release(&p
,
2039 req
->r_inode
? req
->r_inode
: d_inode(req
->r_dentry
),
2040 mds
, req
->r_inode_drop
, req
->r_inode_unless
, 0);
2041 if (req
->r_dentry_drop
)
2042 releases
+= ceph_encode_dentry_release(&p
, req
->r_dentry
,
2043 mds
, req
->r_dentry_drop
, req
->r_dentry_unless
);
2044 if (req
->r_old_dentry_drop
)
2045 releases
+= ceph_encode_dentry_release(&p
, req
->r_old_dentry
,
2046 mds
, req
->r_old_dentry_drop
, req
->r_old_dentry_unless
);
2047 if (req
->r_old_inode_drop
)
2048 releases
+= ceph_encode_inode_release(&p
,
2049 d_inode(req
->r_old_dentry
),
2050 mds
, req
->r_old_inode_drop
, req
->r_old_inode_unless
, 0);
2052 if (drop_cap_releases
) {
2054 p
= msg
->front
.iov_base
+ req
->r_request_release_offset
;
2057 head
->num_releases
= cpu_to_le16(releases
);
2061 struct ceph_timespec ts
;
2062 ceph_encode_timespec(&ts
, &req
->r_stamp
);
2063 ceph_encode_copy(&p
, &ts
, sizeof(ts
));
2067 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
2068 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
2070 if (req
->r_pagelist
) {
2071 struct ceph_pagelist
*pagelist
= req
->r_pagelist
;
2072 atomic_inc(&pagelist
->refcnt
);
2073 ceph_msg_data_add_pagelist(msg
, pagelist
);
2074 msg
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
2076 msg
->hdr
.data_len
= 0;
2079 msg
->hdr
.data_off
= cpu_to_le16(0);
2083 kfree((char *)path2
);
2086 kfree((char *)path1
);
2092 * called under mdsc->mutex if error, under no mutex if
2095 static void complete_request(struct ceph_mds_client
*mdsc
,
2096 struct ceph_mds_request
*req
)
2098 if (req
->r_callback
)
2099 req
->r_callback(mdsc
, req
);
2101 complete_all(&req
->r_completion
);
2105 * called under mdsc->mutex
2107 static int __prepare_send_request(struct ceph_mds_client
*mdsc
,
2108 struct ceph_mds_request
*req
,
2109 int mds
, bool drop_cap_releases
)
2111 struct ceph_mds_request_head
*rhead
;
2112 struct ceph_msg
*msg
;
2117 struct ceph_cap
*cap
=
2118 ceph_get_cap_for_mds(ceph_inode(req
->r_inode
), mds
);
2121 req
->r_sent_on_mseq
= cap
->mseq
;
2123 req
->r_sent_on_mseq
= -1;
2125 dout("prepare_send_request %p tid %lld %s (attempt %d)\n", req
,
2126 req
->r_tid
, ceph_mds_op_name(req
->r_op
), req
->r_attempts
);
2128 if (req
->r_got_unsafe
) {
2131 * Replay. Do not regenerate message (and rebuild
2132 * paths, etc.); just use the original message.
2133 * Rebuilding paths will break for renames because
2134 * d_move mangles the src name.
2136 msg
= req
->r_request
;
2137 rhead
= msg
->front
.iov_base
;
2139 flags
= le32_to_cpu(rhead
->flags
);
2140 flags
|= CEPH_MDS_FLAG_REPLAY
;
2141 rhead
->flags
= cpu_to_le32(flags
);
2143 if (req
->r_target_inode
)
2144 rhead
->ino
= cpu_to_le64(ceph_ino(req
->r_target_inode
));
2146 rhead
->num_retry
= req
->r_attempts
- 1;
2148 /* remove cap/dentry releases from message */
2149 rhead
->num_releases
= 0;
2152 p
= msg
->front
.iov_base
+ req
->r_request_release_offset
;
2154 struct ceph_timespec ts
;
2155 ceph_encode_timespec(&ts
, &req
->r_stamp
);
2156 ceph_encode_copy(&p
, &ts
, sizeof(ts
));
2159 msg
->front
.iov_len
= p
- msg
->front
.iov_base
;
2160 msg
->hdr
.front_len
= cpu_to_le32(msg
->front
.iov_len
);
2164 if (req
->r_request
) {
2165 ceph_msg_put(req
->r_request
);
2166 req
->r_request
= NULL
;
2168 msg
= create_request_message(mdsc
, req
, mds
, drop_cap_releases
);
2170 req
->r_err
= PTR_ERR(msg
);
2171 return PTR_ERR(msg
);
2173 req
->r_request
= msg
;
2175 rhead
= msg
->front
.iov_base
;
2176 rhead
->oldest_client_tid
= cpu_to_le64(__get_oldest_tid(mdsc
));
2177 if (req
->r_got_unsafe
)
2178 flags
|= CEPH_MDS_FLAG_REPLAY
;
2179 if (req
->r_locked_dir
)
2180 flags
|= CEPH_MDS_FLAG_WANT_DENTRY
;
2181 rhead
->flags
= cpu_to_le32(flags
);
2182 rhead
->num_fwd
= req
->r_num_fwd
;
2183 rhead
->num_retry
= req
->r_attempts
- 1;
2186 dout(" r_locked_dir = %p\n", req
->r_locked_dir
);
2191 * send request, or put it on the appropriate wait list.
2193 static int __do_request(struct ceph_mds_client
*mdsc
,
2194 struct ceph_mds_request
*req
)
2196 struct ceph_mds_session
*session
= NULL
;
2200 if (req
->r_err
|| req
->r_got_result
) {
2202 __unregister_request(mdsc
, req
);
2206 if (req
->r_timeout
&&
2207 time_after_eq(jiffies
, req
->r_started
+ req
->r_timeout
)) {
2208 dout("do_request timed out\n");
2212 if (ACCESS_ONCE(mdsc
->fsc
->mount_state
) == CEPH_MOUNT_SHUTDOWN
) {
2213 dout("do_request forced umount\n");
2218 put_request_session(req
);
2220 mds
= __choose_mds(mdsc
, req
);
2222 ceph_mdsmap_get_state(mdsc
->mdsmap
, mds
) < CEPH_MDS_STATE_ACTIVE
) {
2223 dout("do_request no mds or not active, waiting for map\n");
2224 list_add(&req
->r_wait
, &mdsc
->waiting_for_map
);
2228 /* get, open session */
2229 session
= __ceph_lookup_mds_session(mdsc
, mds
);
2231 session
= register_session(mdsc
, mds
);
2232 if (IS_ERR(session
)) {
2233 err
= PTR_ERR(session
);
2237 req
->r_session
= get_session(session
);
2239 dout("do_request mds%d session %p state %s\n", mds
, session
,
2240 ceph_session_state_name(session
->s_state
));
2241 if (session
->s_state
!= CEPH_MDS_SESSION_OPEN
&&
2242 session
->s_state
!= CEPH_MDS_SESSION_HUNG
) {
2243 if (session
->s_state
== CEPH_MDS_SESSION_NEW
||
2244 session
->s_state
== CEPH_MDS_SESSION_CLOSING
)
2245 __open_session(mdsc
, session
);
2246 list_add(&req
->r_wait
, &session
->s_waiting
);
2251 req
->r_resend_mds
= -1; /* forget any previous mds hint */
2253 if (req
->r_request_started
== 0) /* note request start time */
2254 req
->r_request_started
= jiffies
;
2256 err
= __prepare_send_request(mdsc
, req
, mds
, false);
2258 ceph_msg_get(req
->r_request
);
2259 ceph_con_send(&session
->s_con
, req
->r_request
);
2263 ceph_put_mds_session(session
);
2266 dout("__do_request early error %d\n", err
);
2268 complete_request(mdsc
, req
);
2269 __unregister_request(mdsc
, req
);
2276 * called under mdsc->mutex
2278 static void __wake_requests(struct ceph_mds_client
*mdsc
,
2279 struct list_head
*head
)
2281 struct ceph_mds_request
*req
;
2282 LIST_HEAD(tmp_list
);
2284 list_splice_init(head
, &tmp_list
);
2286 while (!list_empty(&tmp_list
)) {
2287 req
= list_entry(tmp_list
.next
,
2288 struct ceph_mds_request
, r_wait
);
2289 list_del_init(&req
->r_wait
);
2290 dout(" wake request %p tid %llu\n", req
, req
->r_tid
);
2291 __do_request(mdsc
, req
);
2296 * Wake up threads with requests pending for @mds, so that they can
2297 * resubmit their requests to a possibly different mds.
2299 static void kick_requests(struct ceph_mds_client
*mdsc
, int mds
)
2301 struct ceph_mds_request
*req
;
2302 struct rb_node
*p
= rb_first(&mdsc
->request_tree
);
2304 dout("kick_requests mds%d\n", mds
);
2306 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
2308 if (req
->r_got_unsafe
)
2310 if (req
->r_attempts
> 0)
2311 continue; /* only new requests */
2312 if (req
->r_session
&&
2313 req
->r_session
->s_mds
== mds
) {
2314 dout(" kicking tid %llu\n", req
->r_tid
);
2315 list_del_init(&req
->r_wait
);
2316 __do_request(mdsc
, req
);
2321 void ceph_mdsc_submit_request(struct ceph_mds_client
*mdsc
,
2322 struct ceph_mds_request
*req
)
2324 dout("submit_request on %p\n", req
);
2325 mutex_lock(&mdsc
->mutex
);
2326 __register_request(mdsc
, req
, NULL
);
2327 __do_request(mdsc
, req
);
2328 mutex_unlock(&mdsc
->mutex
);
2332 * Synchrously perform an mds request. Take care of all of the
2333 * session setup, forwarding, retry details.
2335 int ceph_mdsc_do_request(struct ceph_mds_client
*mdsc
,
2337 struct ceph_mds_request
*req
)
2341 dout("do_request on %p\n", req
);
2343 /* take CAP_PIN refs for r_inode, r_locked_dir, r_old_dentry */
2345 ceph_get_cap_refs(ceph_inode(req
->r_inode
), CEPH_CAP_PIN
);
2346 if (req
->r_locked_dir
)
2347 ceph_get_cap_refs(ceph_inode(req
->r_locked_dir
), CEPH_CAP_PIN
);
2348 if (req
->r_old_dentry_dir
)
2349 ceph_get_cap_refs(ceph_inode(req
->r_old_dentry_dir
),
2353 mutex_lock(&mdsc
->mutex
);
2354 __register_request(mdsc
, req
, dir
);
2355 __do_request(mdsc
, req
);
2363 mutex_unlock(&mdsc
->mutex
);
2364 dout("do_request waiting\n");
2365 if (!req
->r_timeout
&& req
->r_wait_for_completion
) {
2366 err
= req
->r_wait_for_completion(mdsc
, req
);
2368 long timeleft
= wait_for_completion_killable_timeout(
2370 ceph_timeout_jiffies(req
->r_timeout
));
2374 err
= -EIO
; /* timed out */
2376 err
= timeleft
; /* killed */
2378 dout("do_request waited, got %d\n", err
);
2379 mutex_lock(&mdsc
->mutex
);
2381 /* only abort if we didn't race with a real reply */
2382 if (req
->r_got_result
) {
2383 err
= le32_to_cpu(req
->r_reply_info
.head
->result
);
2384 } else if (err
< 0) {
2385 dout("aborted request %lld with %d\n", req
->r_tid
, err
);
2388 * ensure we aren't running concurrently with
2389 * ceph_fill_trace or ceph_readdir_prepopulate, which
2390 * rely on locks (dir mutex) held by our caller.
2392 mutex_lock(&req
->r_fill_mutex
);
2394 req
->r_aborted
= true;
2395 mutex_unlock(&req
->r_fill_mutex
);
2397 if (req
->r_locked_dir
&&
2398 (req
->r_op
& CEPH_MDS_OP_WRITE
))
2399 ceph_invalidate_dir_request(req
);
2405 mutex_unlock(&mdsc
->mutex
);
2406 dout("do_request %p done, result %d\n", req
, err
);
2411 * Invalidate dir's completeness, dentry lease state on an aborted MDS
2412 * namespace request.
2414 void ceph_invalidate_dir_request(struct ceph_mds_request
*req
)
2416 struct inode
*inode
= req
->r_locked_dir
;
2418 dout("invalidate_dir_request %p (complete, lease(s))\n", inode
);
2420 ceph_dir_clear_complete(inode
);
2422 ceph_invalidate_dentry_lease(req
->r_dentry
);
2423 if (req
->r_old_dentry
)
2424 ceph_invalidate_dentry_lease(req
->r_old_dentry
);
2430 * We take the session mutex and parse and process the reply immediately.
2431 * This preserves the logical ordering of replies, capabilities, etc., sent
2432 * by the MDS as they are applied to our local cache.
2434 static void handle_reply(struct ceph_mds_session
*session
, struct ceph_msg
*msg
)
2436 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2437 struct ceph_mds_request
*req
;
2438 struct ceph_mds_reply_head
*head
= msg
->front
.iov_base
;
2439 struct ceph_mds_reply_info_parsed
*rinfo
; /* parsed reply info */
2440 struct ceph_snap_realm
*realm
;
2443 int mds
= session
->s_mds
;
2445 if (msg
->front
.iov_len
< sizeof(*head
)) {
2446 pr_err("mdsc_handle_reply got corrupt (short) reply\n");
2451 /* get request, session */
2452 tid
= le64_to_cpu(msg
->hdr
.tid
);
2453 mutex_lock(&mdsc
->mutex
);
2454 req
= __lookup_request(mdsc
, tid
);
2456 dout("handle_reply on unknown tid %llu\n", tid
);
2457 mutex_unlock(&mdsc
->mutex
);
2460 dout("handle_reply %p\n", req
);
2462 /* correct session? */
2463 if (req
->r_session
!= session
) {
2464 pr_err("mdsc_handle_reply got %llu on session mds%d"
2465 " not mds%d\n", tid
, session
->s_mds
,
2466 req
->r_session
? req
->r_session
->s_mds
: -1);
2467 mutex_unlock(&mdsc
->mutex
);
2472 if ((req
->r_got_unsafe
&& !head
->safe
) ||
2473 (req
->r_got_safe
&& head
->safe
)) {
2474 pr_warn("got a dup %s reply on %llu from mds%d\n",
2475 head
->safe
? "safe" : "unsafe", tid
, mds
);
2476 mutex_unlock(&mdsc
->mutex
);
2479 if (req
->r_got_safe
) {
2480 pr_warn("got unsafe after safe on %llu from mds%d\n",
2482 mutex_unlock(&mdsc
->mutex
);
2486 result
= le32_to_cpu(head
->result
);
2490 * if we're not talking to the authority, send to them
2491 * if the authority has changed while we weren't looking,
2492 * send to new authority
2493 * Otherwise we just have to return an ESTALE
2495 if (result
== -ESTALE
) {
2496 dout("got ESTALE on request %llu", req
->r_tid
);
2497 req
->r_resend_mds
= -1;
2498 if (req
->r_direct_mode
!= USE_AUTH_MDS
) {
2499 dout("not using auth, setting for that now");
2500 req
->r_direct_mode
= USE_AUTH_MDS
;
2501 __do_request(mdsc
, req
);
2502 mutex_unlock(&mdsc
->mutex
);
2505 int mds
= __choose_mds(mdsc
, req
);
2506 if (mds
>= 0 && mds
!= req
->r_session
->s_mds
) {
2507 dout("but auth changed, so resending");
2508 __do_request(mdsc
, req
);
2509 mutex_unlock(&mdsc
->mutex
);
2513 dout("have to return ESTALE on request %llu", req
->r_tid
);
2518 req
->r_got_safe
= true;
2519 __unregister_request(mdsc
, req
);
2521 if (req
->r_got_unsafe
) {
2523 * We already handled the unsafe response, now do the
2524 * cleanup. No need to examine the response; the MDS
2525 * doesn't include any result info in the safe
2526 * response. And even if it did, there is nothing
2527 * useful we could do with a revised return value.
2529 dout("got safe reply %llu, mds%d\n", tid
, mds
);
2531 /* last unsafe request during umount? */
2532 if (mdsc
->stopping
&& !__get_oldest_req(mdsc
))
2533 complete_all(&mdsc
->safe_umount_waiters
);
2534 mutex_unlock(&mdsc
->mutex
);
2538 req
->r_got_unsafe
= true;
2539 list_add_tail(&req
->r_unsafe_item
, &req
->r_session
->s_unsafe
);
2540 if (req
->r_unsafe_dir
) {
2541 struct ceph_inode_info
*ci
=
2542 ceph_inode(req
->r_unsafe_dir
);
2543 spin_lock(&ci
->i_unsafe_lock
);
2544 list_add_tail(&req
->r_unsafe_dir_item
,
2545 &ci
->i_unsafe_dirops
);
2546 spin_unlock(&ci
->i_unsafe_lock
);
2550 dout("handle_reply tid %lld result %d\n", tid
, result
);
2551 rinfo
= &req
->r_reply_info
;
2552 err
= parse_reply_info(msg
, rinfo
, session
->s_con
.peer_features
);
2553 mutex_unlock(&mdsc
->mutex
);
2555 mutex_lock(&session
->s_mutex
);
2557 pr_err("mdsc_handle_reply got corrupt reply mds%d(tid:%lld)\n", mds
, tid
);
2564 if (rinfo
->snapblob_len
) {
2565 down_write(&mdsc
->snap_rwsem
);
2566 ceph_update_snap_trace(mdsc
, rinfo
->snapblob
,
2567 rinfo
->snapblob
+ rinfo
->snapblob_len
,
2568 le32_to_cpu(head
->op
) == CEPH_MDS_OP_RMSNAP
,
2570 downgrade_write(&mdsc
->snap_rwsem
);
2572 down_read(&mdsc
->snap_rwsem
);
2575 /* insert trace into our cache */
2576 mutex_lock(&req
->r_fill_mutex
);
2577 err
= ceph_fill_trace(mdsc
->fsc
->sb
, req
, req
->r_session
);
2579 if (result
== 0 && (req
->r_op
== CEPH_MDS_OP_READDIR
||
2580 req
->r_op
== CEPH_MDS_OP_LSSNAP
))
2581 ceph_readdir_prepopulate(req
, req
->r_session
);
2582 ceph_unreserve_caps(mdsc
, &req
->r_caps_reservation
);
2584 mutex_unlock(&req
->r_fill_mutex
);
2586 up_read(&mdsc
->snap_rwsem
);
2588 ceph_put_snap_realm(mdsc
, realm
);
2590 if (err
== 0 && req
->r_got_unsafe
&& req
->r_target_inode
) {
2591 struct ceph_inode_info
*ci
= ceph_inode(req
->r_target_inode
);
2592 spin_lock(&ci
->i_unsafe_lock
);
2593 list_add_tail(&req
->r_unsafe_target_item
, &ci
->i_unsafe_iops
);
2594 spin_unlock(&ci
->i_unsafe_lock
);
2597 mutex_lock(&mdsc
->mutex
);
2598 if (!req
->r_aborted
) {
2602 req
->r_reply
= ceph_msg_get(msg
);
2603 req
->r_got_result
= true;
2606 dout("reply arrived after request %lld was aborted\n", tid
);
2608 mutex_unlock(&mdsc
->mutex
);
2610 mutex_unlock(&session
->s_mutex
);
2612 /* kick calling process */
2613 complete_request(mdsc
, req
);
2615 ceph_mdsc_put_request(req
);
2622 * handle mds notification that our request has been forwarded.
2624 static void handle_forward(struct ceph_mds_client
*mdsc
,
2625 struct ceph_mds_session
*session
,
2626 struct ceph_msg
*msg
)
2628 struct ceph_mds_request
*req
;
2629 u64 tid
= le64_to_cpu(msg
->hdr
.tid
);
2633 void *p
= msg
->front
.iov_base
;
2634 void *end
= p
+ msg
->front
.iov_len
;
2636 ceph_decode_need(&p
, end
, 2*sizeof(u32
), bad
);
2637 next_mds
= ceph_decode_32(&p
);
2638 fwd_seq
= ceph_decode_32(&p
);
2640 mutex_lock(&mdsc
->mutex
);
2641 req
= __lookup_request(mdsc
, tid
);
2643 dout("forward tid %llu to mds%d - req dne\n", tid
, next_mds
);
2644 goto out
; /* dup reply? */
2647 if (req
->r_aborted
) {
2648 dout("forward tid %llu aborted, unregistering\n", tid
);
2649 __unregister_request(mdsc
, req
);
2650 } else if (fwd_seq
<= req
->r_num_fwd
) {
2651 dout("forward tid %llu to mds%d - old seq %d <= %d\n",
2652 tid
, next_mds
, req
->r_num_fwd
, fwd_seq
);
2654 /* resend. forward race not possible; mds would drop */
2655 dout("forward tid %llu to mds%d (we resend)\n", tid
, next_mds
);
2657 BUG_ON(req
->r_got_result
);
2658 req
->r_attempts
= 0;
2659 req
->r_num_fwd
= fwd_seq
;
2660 req
->r_resend_mds
= next_mds
;
2661 put_request_session(req
);
2662 __do_request(mdsc
, req
);
2664 ceph_mdsc_put_request(req
);
2666 mutex_unlock(&mdsc
->mutex
);
2670 pr_err("mdsc_handle_forward decode error err=%d\n", err
);
2674 * handle a mds session control message
2676 static void handle_session(struct ceph_mds_session
*session
,
2677 struct ceph_msg
*msg
)
2679 struct ceph_mds_client
*mdsc
= session
->s_mdsc
;
2682 int mds
= session
->s_mds
;
2683 struct ceph_mds_session_head
*h
= msg
->front
.iov_base
;
2687 if (msg
->front
.iov_len
!= sizeof(*h
))
2689 op
= le32_to_cpu(h
->op
);
2690 seq
= le64_to_cpu(h
->seq
);
2692 mutex_lock(&mdsc
->mutex
);
2693 if (op
== CEPH_SESSION_CLOSE
)
2694 __unregister_session(mdsc
, session
);
2695 /* FIXME: this ttl calculation is generous */
2696 session
->s_ttl
= jiffies
+ HZ
*mdsc
->mdsmap
->m_session_autoclose
;
2697 mutex_unlock(&mdsc
->mutex
);
2699 mutex_lock(&session
->s_mutex
);
2701 dout("handle_session mds%d %s %p state %s seq %llu\n",
2702 mds
, ceph_session_op_name(op
), session
,
2703 ceph_session_state_name(session
->s_state
), seq
);
2705 if (session
->s_state
== CEPH_MDS_SESSION_HUNG
) {
2706 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2707 pr_info("mds%d came back\n", session
->s_mds
);
2711 case CEPH_SESSION_OPEN
:
2712 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2713 pr_info("mds%d reconnect success\n", session
->s_mds
);
2714 session
->s_state
= CEPH_MDS_SESSION_OPEN
;
2715 renewed_caps(mdsc
, session
, 0);
2718 __close_session(mdsc
, session
);
2721 case CEPH_SESSION_RENEWCAPS
:
2722 if (session
->s_renew_seq
== seq
)
2723 renewed_caps(mdsc
, session
, 1);
2726 case CEPH_SESSION_CLOSE
:
2727 if (session
->s_state
== CEPH_MDS_SESSION_RECONNECTING
)
2728 pr_info("mds%d reconnect denied\n", session
->s_mds
);
2729 cleanup_session_requests(mdsc
, session
);
2730 remove_session_caps(session
);
2731 wake
= 2; /* for good measure */
2732 wake_up_all(&mdsc
->session_close_wq
);
2735 case CEPH_SESSION_STALE
:
2736 pr_info("mds%d caps went stale, renewing\n",
2738 spin_lock(&session
->s_gen_ttl_lock
);
2739 session
->s_cap_gen
++;
2740 session
->s_cap_ttl
= jiffies
- 1;
2741 spin_unlock(&session
->s_gen_ttl_lock
);
2742 send_renew_caps(mdsc
, session
);
2745 case CEPH_SESSION_RECALL_STATE
:
2746 trim_caps(mdsc
, session
, le32_to_cpu(h
->max_caps
));
2749 case CEPH_SESSION_FLUSHMSG
:
2750 send_flushmsg_ack(mdsc
, session
, seq
);
2753 case CEPH_SESSION_FORCE_RO
:
2754 dout("force_session_readonly %p\n", session
);
2755 spin_lock(&session
->s_cap_lock
);
2756 session
->s_readonly
= true;
2757 spin_unlock(&session
->s_cap_lock
);
2758 wake_up_session_caps(session
, 0);
2762 pr_err("mdsc_handle_session bad op %d mds%d\n", op
, mds
);
2766 mutex_unlock(&session
->s_mutex
);
2768 mutex_lock(&mdsc
->mutex
);
2769 __wake_requests(mdsc
, &session
->s_waiting
);
2771 kick_requests(mdsc
, mds
);
2772 mutex_unlock(&mdsc
->mutex
);
2777 pr_err("mdsc_handle_session corrupt message mds%d len %d\n", mds
,
2778 (int)msg
->front
.iov_len
);
2785 * called under session->mutex.
2787 static void replay_unsafe_requests(struct ceph_mds_client
*mdsc
,
2788 struct ceph_mds_session
*session
)
2790 struct ceph_mds_request
*req
, *nreq
;
2794 dout("replay_unsafe_requests mds%d\n", session
->s_mds
);
2796 mutex_lock(&mdsc
->mutex
);
2797 list_for_each_entry_safe(req
, nreq
, &session
->s_unsafe
, r_unsafe_item
) {
2798 err
= __prepare_send_request(mdsc
, req
, session
->s_mds
, true);
2800 ceph_msg_get(req
->r_request
);
2801 ceph_con_send(&session
->s_con
, req
->r_request
);
2806 * also re-send old requests when MDS enters reconnect stage. So that MDS
2807 * can process completed request in clientreplay stage.
2809 p
= rb_first(&mdsc
->request_tree
);
2811 req
= rb_entry(p
, struct ceph_mds_request
, r_node
);
2813 if (req
->r_got_unsafe
)
2815 if (req
->r_attempts
== 0)
2816 continue; /* only old requests */
2817 if (req
->r_session
&&
2818 req
->r_session
->s_mds
== session
->s_mds
) {
2819 err
= __prepare_send_request(mdsc
, req
,
2820 session
->s_mds
, true);
2822 ceph_msg_get(req
->r_request
);
2823 ceph_con_send(&session
->s_con
, req
->r_request
);
2827 mutex_unlock(&mdsc
->mutex
);
2831 * Encode information about a cap for a reconnect with the MDS.
2833 static int encode_caps_cb(struct inode
*inode
, struct ceph_cap
*cap
,
2837 struct ceph_mds_cap_reconnect v2
;
2838 struct ceph_mds_cap_reconnect_v1 v1
;
2841 struct ceph_inode_info
*ci
;
2842 struct ceph_reconnect_state
*recon_state
= arg
;
2843 struct ceph_pagelist
*pagelist
= recon_state
->pagelist
;
2847 struct dentry
*dentry
;
2851 dout(" adding %p ino %llx.%llx cap %p %lld %s\n",
2852 inode
, ceph_vinop(inode
), cap
, cap
->cap_id
,
2853 ceph_cap_string(cap
->issued
));
2854 err
= ceph_pagelist_encode_64(pagelist
, ceph_ino(inode
));
2858 dentry
= d_find_alias(inode
);
2860 path
= ceph_mdsc_build_path(dentry
, &pathlen
, &pathbase
, 0);
2862 err
= PTR_ERR(path
);
2869 err
= ceph_pagelist_encode_string(pagelist
, path
, pathlen
);
2873 spin_lock(&ci
->i_ceph_lock
);
2874 cap
->seq
= 0; /* reset cap seq */
2875 cap
->issue_seq
= 0; /* and issue_seq */
2876 cap
->mseq
= 0; /* and migrate_seq */
2877 cap
->cap_gen
= cap
->session
->s_cap_gen
;
2879 if (recon_state
->flock
) {
2880 rec
.v2
.cap_id
= cpu_to_le64(cap
->cap_id
);
2881 rec
.v2
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2882 rec
.v2
.issued
= cpu_to_le32(cap
->issued
);
2883 rec
.v2
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2884 rec
.v2
.pathbase
= cpu_to_le64(pathbase
);
2885 rec
.v2
.flock_len
= 0;
2886 reclen
= sizeof(rec
.v2
);
2888 rec
.v1
.cap_id
= cpu_to_le64(cap
->cap_id
);
2889 rec
.v1
.wanted
= cpu_to_le32(__ceph_caps_wanted(ci
));
2890 rec
.v1
.issued
= cpu_to_le32(cap
->issued
);
2891 rec
.v1
.size
= cpu_to_le64(inode
->i_size
);
2892 ceph_encode_timespec(&rec
.v1
.mtime
, &inode
->i_mtime
);
2893 ceph_encode_timespec(&rec
.v1
.atime
, &inode
->i_atime
);
2894 rec
.v1
.snaprealm
= cpu_to_le64(ci
->i_snap_realm
->ino
);
2895 rec
.v1
.pathbase
= cpu_to_le64(pathbase
);
2896 reclen
= sizeof(rec
.v1
);
2898 spin_unlock(&ci
->i_ceph_lock
);
2900 if (recon_state
->flock
) {
2901 int num_fcntl_locks
, num_flock_locks
;
2902 struct ceph_filelock
*flocks
;
2905 ceph_count_locks(inode
, &num_fcntl_locks
, &num_flock_locks
);
2906 flocks
= kmalloc((num_fcntl_locks
+num_flock_locks
) *
2907 sizeof(struct ceph_filelock
), GFP_NOFS
);
2912 err
= ceph_encode_locks_to_buffer(inode
, flocks
,
2922 * number of encoded locks is stable, so copy to pagelist
2924 rec
.v2
.flock_len
= cpu_to_le32(2*sizeof(u32
) +
2925 (num_fcntl_locks
+num_flock_locks
) *
2926 sizeof(struct ceph_filelock
));
2927 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2929 err
= ceph_locks_to_pagelist(flocks
, pagelist
,
2934 err
= ceph_pagelist_append(pagelist
, &rec
, reclen
);
2937 recon_state
->nr_caps
++;
2947 * If an MDS fails and recovers, clients need to reconnect in order to
2948 * reestablish shared state. This includes all caps issued through
2949 * this session _and_ the snap_realm hierarchy. Because it's not
2950 * clear which snap realms the mds cares about, we send everything we
2951 * know about.. that ensures we'll then get any new info the
2952 * recovering MDS might have.
2954 * This is a relatively heavyweight operation, but it's rare.
2956 * called with mdsc->mutex held.
2958 static void send_mds_reconnect(struct ceph_mds_client
*mdsc
,
2959 struct ceph_mds_session
*session
)
2961 struct ceph_msg
*reply
;
2963 int mds
= session
->s_mds
;
2966 struct ceph_pagelist
*pagelist
;
2967 struct ceph_reconnect_state recon_state
;
2969 pr_info("mds%d reconnect start\n", mds
);
2971 pagelist
= kmalloc(sizeof(*pagelist
), GFP_NOFS
);
2973 goto fail_nopagelist
;
2974 ceph_pagelist_init(pagelist
);
2976 reply
= ceph_msg_new(CEPH_MSG_CLIENT_RECONNECT
, 0, GFP_NOFS
, false);
2980 mutex_lock(&session
->s_mutex
);
2981 session
->s_state
= CEPH_MDS_SESSION_RECONNECTING
;
2984 dout("session %p state %s\n", session
,
2985 ceph_session_state_name(session
->s_state
));
2987 spin_lock(&session
->s_gen_ttl_lock
);
2988 session
->s_cap_gen
++;
2989 spin_unlock(&session
->s_gen_ttl_lock
);
2991 spin_lock(&session
->s_cap_lock
);
2992 /* don't know if session is readonly */
2993 session
->s_readonly
= 0;
2995 * notify __ceph_remove_cap() that we are composing cap reconnect.
2996 * If a cap get released before being added to the cap reconnect,
2997 * __ceph_remove_cap() should skip queuing cap release.
2999 session
->s_cap_reconnect
= 1;
3000 /* drop old cap expires; we're about to reestablish that state */
3001 cleanup_cap_releases(mdsc
, session
);
3003 /* trim unused caps to reduce MDS's cache rejoin time */
3004 if (mdsc
->fsc
->sb
->s_root
)
3005 shrink_dcache_parent(mdsc
->fsc
->sb
->s_root
);
3007 ceph_con_close(&session
->s_con
);
3008 ceph_con_open(&session
->s_con
,
3009 CEPH_ENTITY_TYPE_MDS
, mds
,
3010 ceph_mdsmap_get_addr(mdsc
->mdsmap
, mds
));
3012 /* replay unsafe requests */
3013 replay_unsafe_requests(mdsc
, session
);
3015 down_read(&mdsc
->snap_rwsem
);
3017 /* traverse this session's caps */
3018 s_nr_caps
= session
->s_nr_caps
;
3019 err
= ceph_pagelist_encode_32(pagelist
, s_nr_caps
);
3023 recon_state
.nr_caps
= 0;
3024 recon_state
.pagelist
= pagelist
;
3025 recon_state
.flock
= session
->s_con
.peer_features
& CEPH_FEATURE_FLOCK
;
3026 err
= iterate_session_caps(session
, encode_caps_cb
, &recon_state
);
3030 spin_lock(&session
->s_cap_lock
);
3031 session
->s_cap_reconnect
= 0;
3032 spin_unlock(&session
->s_cap_lock
);
3035 * snaprealms. we provide mds with the ino, seq (version), and
3036 * parent for all of our realms. If the mds has any newer info,
3039 for (p
= rb_first(&mdsc
->snap_realms
); p
; p
= rb_next(p
)) {
3040 struct ceph_snap_realm
*realm
=
3041 rb_entry(p
, struct ceph_snap_realm
, node
);
3042 struct ceph_mds_snaprealm_reconnect sr_rec
;
3044 dout(" adding snap realm %llx seq %lld parent %llx\n",
3045 realm
->ino
, realm
->seq
, realm
->parent_ino
);
3046 sr_rec
.ino
= cpu_to_le64(realm
->ino
);
3047 sr_rec
.seq
= cpu_to_le64(realm
->seq
);
3048 sr_rec
.parent
= cpu_to_le64(realm
->parent_ino
);
3049 err
= ceph_pagelist_append(pagelist
, &sr_rec
, sizeof(sr_rec
));
3054 if (recon_state
.flock
)
3055 reply
->hdr
.version
= cpu_to_le16(2);
3057 /* raced with cap release? */
3058 if (s_nr_caps
!= recon_state
.nr_caps
) {
3059 struct page
*page
= list_first_entry(&pagelist
->head
,
3061 __le32
*addr
= kmap_atomic(page
);
3062 *addr
= cpu_to_le32(recon_state
.nr_caps
);
3063 kunmap_atomic(addr
);
3066 reply
->hdr
.data_len
= cpu_to_le32(pagelist
->length
);
3067 ceph_msg_data_add_pagelist(reply
, pagelist
);
3069 ceph_early_kick_flushing_caps(mdsc
, session
);
3071 ceph_con_send(&session
->s_con
, reply
);
3073 mutex_unlock(&session
->s_mutex
);
3075 mutex_lock(&mdsc
->mutex
);
3076 __wake_requests(mdsc
, &session
->s_waiting
);
3077 mutex_unlock(&mdsc
->mutex
);
3079 up_read(&mdsc
->snap_rwsem
);
3083 ceph_msg_put(reply
);
3084 up_read(&mdsc
->snap_rwsem
);
3085 mutex_unlock(&session
->s_mutex
);
3087 ceph_pagelist_release(pagelist
);
3089 pr_err("error %d preparing reconnect for mds%d\n", err
, mds
);
3095 * compare old and new mdsmaps, kicking requests
3096 * and closing out old connections as necessary
3098 * called under mdsc->mutex.
3100 static void check_new_map(struct ceph_mds_client
*mdsc
,
3101 struct ceph_mdsmap
*newmap
,
3102 struct ceph_mdsmap
*oldmap
)
3105 int oldstate
, newstate
;
3106 struct ceph_mds_session
*s
;
3108 dout("check_new_map new %u old %u\n",
3109 newmap
->m_epoch
, oldmap
->m_epoch
);
3111 for (i
= 0; i
< oldmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
3112 if (mdsc
->sessions
[i
] == NULL
)
3114 s
= mdsc
->sessions
[i
];
3115 oldstate
= ceph_mdsmap_get_state(oldmap
, i
);
3116 newstate
= ceph_mdsmap_get_state(newmap
, i
);
3118 dout("check_new_map mds%d state %s%s -> %s%s (session %s)\n",
3119 i
, ceph_mds_state_name(oldstate
),
3120 ceph_mdsmap_is_laggy(oldmap
, i
) ? " (laggy)" : "",
3121 ceph_mds_state_name(newstate
),
3122 ceph_mdsmap_is_laggy(newmap
, i
) ? " (laggy)" : "",
3123 ceph_session_state_name(s
->s_state
));
3125 if (i
>= newmap
->m_max_mds
||
3126 memcmp(ceph_mdsmap_get_addr(oldmap
, i
),
3127 ceph_mdsmap_get_addr(newmap
, i
),
3128 sizeof(struct ceph_entity_addr
))) {
3129 if (s
->s_state
== CEPH_MDS_SESSION_OPENING
) {
3130 /* the session never opened, just close it
3132 __wake_requests(mdsc
, &s
->s_waiting
);
3133 __unregister_session(mdsc
, s
);
3136 mutex_unlock(&mdsc
->mutex
);
3137 mutex_lock(&s
->s_mutex
);
3138 mutex_lock(&mdsc
->mutex
);
3139 ceph_con_close(&s
->s_con
);
3140 mutex_unlock(&s
->s_mutex
);
3141 s
->s_state
= CEPH_MDS_SESSION_RESTARTING
;
3143 } else if (oldstate
== newstate
) {
3144 continue; /* nothing new with this mds */
3150 if (s
->s_state
== CEPH_MDS_SESSION_RESTARTING
&&
3151 newstate
>= CEPH_MDS_STATE_RECONNECT
) {
3152 mutex_unlock(&mdsc
->mutex
);
3153 send_mds_reconnect(mdsc
, s
);
3154 mutex_lock(&mdsc
->mutex
);
3158 * kick request on any mds that has gone active.
3160 if (oldstate
< CEPH_MDS_STATE_ACTIVE
&&
3161 newstate
>= CEPH_MDS_STATE_ACTIVE
) {
3162 if (oldstate
!= CEPH_MDS_STATE_CREATING
&&
3163 oldstate
!= CEPH_MDS_STATE_STARTING
)
3164 pr_info("mds%d recovery completed\n", s
->s_mds
);
3165 kick_requests(mdsc
, i
);
3166 ceph_kick_flushing_caps(mdsc
, s
);
3167 wake_up_session_caps(s
, 1);
3171 for (i
= 0; i
< newmap
->m_max_mds
&& i
< mdsc
->max_sessions
; i
++) {
3172 s
= mdsc
->sessions
[i
];
3175 if (!ceph_mdsmap_is_laggy(newmap
, i
))
3177 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
3178 s
->s_state
== CEPH_MDS_SESSION_HUNG
||
3179 s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3180 dout(" connecting to export targets of laggy mds%d\n",
3182 __open_export_target_sessions(mdsc
, s
);
3194 * caller must hold session s_mutex, dentry->d_lock
3196 void __ceph_mdsc_drop_dentry_lease(struct dentry
*dentry
)
3198 struct ceph_dentry_info
*di
= ceph_dentry(dentry
);
3200 ceph_put_mds_session(di
->lease_session
);
3201 di
->lease_session
= NULL
;
3204 static void handle_lease(struct ceph_mds_client
*mdsc
,
3205 struct ceph_mds_session
*session
,
3206 struct ceph_msg
*msg
)
3208 struct super_block
*sb
= mdsc
->fsc
->sb
;
3209 struct inode
*inode
;
3210 struct dentry
*parent
, *dentry
;
3211 struct ceph_dentry_info
*di
;
3212 int mds
= session
->s_mds
;
3213 struct ceph_mds_lease
*h
= msg
->front
.iov_base
;
3215 struct ceph_vino vino
;
3219 dout("handle_lease from mds%d\n", mds
);
3222 if (msg
->front
.iov_len
< sizeof(*h
) + sizeof(u32
))
3224 vino
.ino
= le64_to_cpu(h
->ino
);
3225 vino
.snap
= CEPH_NOSNAP
;
3226 seq
= le32_to_cpu(h
->seq
);
3227 dname
.name
= (void *)h
+ sizeof(*h
) + sizeof(u32
);
3228 dname
.len
= msg
->front
.iov_len
- sizeof(*h
) - sizeof(u32
);
3229 if (dname
.len
!= get_unaligned_le32(h
+1))
3233 inode
= ceph_find_inode(sb
, vino
);
3234 dout("handle_lease %s, ino %llx %p %.*s\n",
3235 ceph_lease_op_name(h
->action
), vino
.ino
, inode
,
3236 dname
.len
, dname
.name
);
3238 mutex_lock(&session
->s_mutex
);
3241 if (inode
== NULL
) {
3242 dout("handle_lease no inode %llx\n", vino
.ino
);
3247 parent
= d_find_alias(inode
);
3249 dout("no parent dentry on inode %p\n", inode
);
3251 goto release
; /* hrm... */
3253 dname
.hash
= full_name_hash(dname
.name
, dname
.len
);
3254 dentry
= d_lookup(parent
, &dname
);
3259 spin_lock(&dentry
->d_lock
);
3260 di
= ceph_dentry(dentry
);
3261 switch (h
->action
) {
3262 case CEPH_MDS_LEASE_REVOKE
:
3263 if (di
->lease_session
== session
) {
3264 if (ceph_seq_cmp(di
->lease_seq
, seq
) > 0)
3265 h
->seq
= cpu_to_le32(di
->lease_seq
);
3266 __ceph_mdsc_drop_dentry_lease(dentry
);
3271 case CEPH_MDS_LEASE_RENEW
:
3272 if (di
->lease_session
== session
&&
3273 di
->lease_gen
== session
->s_cap_gen
&&
3274 di
->lease_renew_from
&&
3275 di
->lease_renew_after
== 0) {
3276 unsigned long duration
=
3277 msecs_to_jiffies(le32_to_cpu(h
->duration_ms
));
3279 di
->lease_seq
= seq
;
3280 dentry
->d_time
= di
->lease_renew_from
+ duration
;
3281 di
->lease_renew_after
= di
->lease_renew_from
+
3283 di
->lease_renew_from
= 0;
3287 spin_unlock(&dentry
->d_lock
);
3294 /* let's just reuse the same message */
3295 h
->action
= CEPH_MDS_LEASE_REVOKE_ACK
;
3297 ceph_con_send(&session
->s_con
, msg
);
3301 mutex_unlock(&session
->s_mutex
);
3305 pr_err("corrupt lease message\n");
3309 void ceph_mdsc_lease_send_msg(struct ceph_mds_session
*session
,
3310 struct inode
*inode
,
3311 struct dentry
*dentry
, char action
,
3314 struct ceph_msg
*msg
;
3315 struct ceph_mds_lease
*lease
;
3316 int len
= sizeof(*lease
) + sizeof(u32
);
3319 dout("lease_send_msg inode %p dentry %p %s to mds%d\n",
3320 inode
, dentry
, ceph_lease_op_name(action
), session
->s_mds
);
3321 dnamelen
= dentry
->d_name
.len
;
3324 msg
= ceph_msg_new(CEPH_MSG_CLIENT_LEASE
, len
, GFP_NOFS
, false);
3327 lease
= msg
->front
.iov_base
;
3328 lease
->action
= action
;
3329 lease
->ino
= cpu_to_le64(ceph_vino(inode
).ino
);
3330 lease
->first
= lease
->last
= cpu_to_le64(ceph_vino(inode
).snap
);
3331 lease
->seq
= cpu_to_le32(seq
);
3332 put_unaligned_le32(dnamelen
, lease
+ 1);
3333 memcpy((void *)(lease
+ 1) + 4, dentry
->d_name
.name
, dnamelen
);
3336 * if this is a preemptive lease RELEASE, no need to
3337 * flush request stream, since the actual request will
3340 msg
->more_to_follow
= (action
== CEPH_MDS_LEASE_RELEASE
);
3342 ceph_con_send(&session
->s_con
, msg
);
3346 * Preemptively release a lease we expect to invalidate anyway.
3347 * Pass @inode always, @dentry is optional.
3349 void ceph_mdsc_lease_release(struct ceph_mds_client
*mdsc
, struct inode
*inode
,
3350 struct dentry
*dentry
)
3352 struct ceph_dentry_info
*di
;
3353 struct ceph_mds_session
*session
;
3356 BUG_ON(inode
== NULL
);
3357 BUG_ON(dentry
== NULL
);
3359 /* is dentry lease valid? */
3360 spin_lock(&dentry
->d_lock
);
3361 di
= ceph_dentry(dentry
);
3362 if (!di
|| !di
->lease_session
||
3363 di
->lease_session
->s_mds
< 0 ||
3364 di
->lease_gen
!= di
->lease_session
->s_cap_gen
||
3365 !time_before(jiffies
, dentry
->d_time
)) {
3366 dout("lease_release inode %p dentry %p -- "
3369 spin_unlock(&dentry
->d_lock
);
3373 /* we do have a lease on this dentry; note mds and seq */
3374 session
= ceph_get_mds_session(di
->lease_session
);
3375 seq
= di
->lease_seq
;
3376 __ceph_mdsc_drop_dentry_lease(dentry
);
3377 spin_unlock(&dentry
->d_lock
);
3379 dout("lease_release inode %p dentry %p to mds%d\n",
3380 inode
, dentry
, session
->s_mds
);
3381 ceph_mdsc_lease_send_msg(session
, inode
, dentry
,
3382 CEPH_MDS_LEASE_RELEASE
, seq
);
3383 ceph_put_mds_session(session
);
3387 * drop all leases (and dentry refs) in preparation for umount
3389 static void drop_leases(struct ceph_mds_client
*mdsc
)
3393 dout("drop_leases\n");
3394 mutex_lock(&mdsc
->mutex
);
3395 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3396 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3399 mutex_unlock(&mdsc
->mutex
);
3400 mutex_lock(&s
->s_mutex
);
3401 mutex_unlock(&s
->s_mutex
);
3402 ceph_put_mds_session(s
);
3403 mutex_lock(&mdsc
->mutex
);
3405 mutex_unlock(&mdsc
->mutex
);
3411 * delayed work -- periodically trim expired leases, renew caps with mds
3413 static void schedule_delayed(struct ceph_mds_client
*mdsc
)
3416 unsigned hz
= round_jiffies_relative(HZ
* delay
);
3417 schedule_delayed_work(&mdsc
->delayed_work
, hz
);
3420 static void delayed_work(struct work_struct
*work
)
3423 struct ceph_mds_client
*mdsc
=
3424 container_of(work
, struct ceph_mds_client
, delayed_work
.work
);
3428 dout("mdsc delayed_work\n");
3429 ceph_check_delayed_caps(mdsc
);
3434 mutex_lock(&mdsc
->mutex
);
3435 renew_interval
= mdsc
->mdsmap
->m_session_timeout
>> 2;
3436 renew_caps
= time_after_eq(jiffies
, HZ
*renew_interval
+
3437 mdsc
->last_renew_caps
);
3439 mdsc
->last_renew_caps
= jiffies
;
3441 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3442 struct ceph_mds_session
*s
= __ceph_lookup_mds_session(mdsc
, i
);
3445 if (s
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3446 dout("resending session close request for mds%d\n",
3448 request_close_session(mdsc
, s
);
3449 ceph_put_mds_session(s
);
3452 if (s
->s_ttl
&& time_after(jiffies
, s
->s_ttl
)) {
3453 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
) {
3454 s
->s_state
= CEPH_MDS_SESSION_HUNG
;
3455 pr_info("mds%d hung\n", s
->s_mds
);
3458 if (s
->s_state
< CEPH_MDS_SESSION_OPEN
) {
3459 /* this mds is failed or recovering, just wait */
3460 ceph_put_mds_session(s
);
3463 mutex_unlock(&mdsc
->mutex
);
3465 mutex_lock(&s
->s_mutex
);
3467 send_renew_caps(mdsc
, s
);
3469 ceph_con_keepalive(&s
->s_con
);
3470 if (s
->s_state
== CEPH_MDS_SESSION_OPEN
||
3471 s
->s_state
== CEPH_MDS_SESSION_HUNG
)
3472 ceph_send_cap_releases(mdsc
, s
);
3473 mutex_unlock(&s
->s_mutex
);
3474 ceph_put_mds_session(s
);
3476 mutex_lock(&mdsc
->mutex
);
3478 mutex_unlock(&mdsc
->mutex
);
3480 schedule_delayed(mdsc
);
3483 int ceph_mdsc_init(struct ceph_fs_client
*fsc
)
3486 struct ceph_mds_client
*mdsc
;
3488 mdsc
= kzalloc(sizeof(struct ceph_mds_client
), GFP_NOFS
);
3493 mutex_init(&mdsc
->mutex
);
3494 mdsc
->mdsmap
= kzalloc(sizeof(*mdsc
->mdsmap
), GFP_NOFS
);
3495 if (mdsc
->mdsmap
== NULL
) {
3500 init_completion(&mdsc
->safe_umount_waiters
);
3501 init_waitqueue_head(&mdsc
->session_close_wq
);
3502 INIT_LIST_HEAD(&mdsc
->waiting_for_map
);
3503 mdsc
->sessions
= NULL
;
3504 atomic_set(&mdsc
->num_sessions
, 0);
3505 mdsc
->max_sessions
= 0;
3507 mdsc
->last_snap_seq
= 0;
3508 init_rwsem(&mdsc
->snap_rwsem
);
3509 mdsc
->snap_realms
= RB_ROOT
;
3510 INIT_LIST_HEAD(&mdsc
->snap_empty
);
3511 spin_lock_init(&mdsc
->snap_empty_lock
);
3513 mdsc
->oldest_tid
= 0;
3514 mdsc
->request_tree
= RB_ROOT
;
3515 INIT_DELAYED_WORK(&mdsc
->delayed_work
, delayed_work
);
3516 mdsc
->last_renew_caps
= jiffies
;
3517 INIT_LIST_HEAD(&mdsc
->cap_delay_list
);
3518 spin_lock_init(&mdsc
->cap_delay_lock
);
3519 INIT_LIST_HEAD(&mdsc
->snap_flush_list
);
3520 spin_lock_init(&mdsc
->snap_flush_lock
);
3521 mdsc
->last_cap_flush_tid
= 1;
3522 mdsc
->cap_flush_tree
= RB_ROOT
;
3523 INIT_LIST_HEAD(&mdsc
->cap_dirty
);
3524 INIT_LIST_HEAD(&mdsc
->cap_dirty_migrating
);
3525 mdsc
->num_cap_flushing
= 0;
3526 spin_lock_init(&mdsc
->cap_dirty_lock
);
3527 init_waitqueue_head(&mdsc
->cap_flushing_wq
);
3528 spin_lock_init(&mdsc
->dentry_lru_lock
);
3529 INIT_LIST_HEAD(&mdsc
->dentry_lru
);
3531 ceph_caps_init(mdsc
);
3532 ceph_adjust_min_caps(mdsc
, fsc
->min_caps
);
3534 init_rwsem(&mdsc
->pool_perm_rwsem
);
3535 mdsc
->pool_perm_tree
= RB_ROOT
;
3541 * Wait for safe replies on open mds requests. If we time out, drop
3542 * all requests from the tree to avoid dangling dentry refs.
3544 static void wait_requests(struct ceph_mds_client
*mdsc
)
3546 struct ceph_options
*opts
= mdsc
->fsc
->client
->options
;
3547 struct ceph_mds_request
*req
;
3549 mutex_lock(&mdsc
->mutex
);
3550 if (__get_oldest_req(mdsc
)) {
3551 mutex_unlock(&mdsc
->mutex
);
3553 dout("wait_requests waiting for requests\n");
3554 wait_for_completion_timeout(&mdsc
->safe_umount_waiters
,
3555 ceph_timeout_jiffies(opts
->mount_timeout
));
3557 /* tear down remaining requests */
3558 mutex_lock(&mdsc
->mutex
);
3559 while ((req
= __get_oldest_req(mdsc
))) {
3560 dout("wait_requests timed out on tid %llu\n",
3562 __unregister_request(mdsc
, req
);
3565 mutex_unlock(&mdsc
->mutex
);
3566 dout("wait_requests done\n");
3570 * called before mount is ro, and before dentries are torn down.
3571 * (hmm, does this still race with new lookups?)
3573 void ceph_mdsc_pre_umount(struct ceph_mds_client
*mdsc
)
3575 dout("pre_umount\n");
3579 ceph_flush_dirty_caps(mdsc
);
3580 wait_requests(mdsc
);
3583 * wait for reply handlers to drop their request refs and
3584 * their inode/dcache refs
3590 * wait for all write mds requests to flush.
3592 static void wait_unsafe_requests(struct ceph_mds_client
*mdsc
, u64 want_tid
)
3594 struct ceph_mds_request
*req
= NULL
, *nextreq
;
3597 mutex_lock(&mdsc
->mutex
);
3598 dout("wait_unsafe_requests want %lld\n", want_tid
);
3600 req
= __get_oldest_req(mdsc
);
3601 while (req
&& req
->r_tid
<= want_tid
) {
3602 /* find next request */
3603 n
= rb_next(&req
->r_node
);
3605 nextreq
= rb_entry(n
, struct ceph_mds_request
, r_node
);
3608 if (req
->r_op
!= CEPH_MDS_OP_SETFILELOCK
&&
3609 (req
->r_op
& CEPH_MDS_OP_WRITE
)) {
3611 ceph_mdsc_get_request(req
);
3613 ceph_mdsc_get_request(nextreq
);
3614 mutex_unlock(&mdsc
->mutex
);
3615 dout("wait_unsafe_requests wait on %llu (want %llu)\n",
3616 req
->r_tid
, want_tid
);
3617 wait_for_completion(&req
->r_safe_completion
);
3618 mutex_lock(&mdsc
->mutex
);
3619 ceph_mdsc_put_request(req
);
3621 break; /* next dne before, so we're done! */
3622 if (RB_EMPTY_NODE(&nextreq
->r_node
)) {
3623 /* next request was removed from tree */
3624 ceph_mdsc_put_request(nextreq
);
3627 ceph_mdsc_put_request(nextreq
); /* won't go away */
3631 mutex_unlock(&mdsc
->mutex
);
3632 dout("wait_unsafe_requests done\n");
3635 void ceph_mdsc_sync(struct ceph_mds_client
*mdsc
)
3637 u64 want_tid
, want_flush
, want_snap
;
3639 if (ACCESS_ONCE(mdsc
->fsc
->mount_state
) == CEPH_MOUNT_SHUTDOWN
)
3643 mutex_lock(&mdsc
->mutex
);
3644 want_tid
= mdsc
->last_tid
;
3645 mutex_unlock(&mdsc
->mutex
);
3647 ceph_flush_dirty_caps(mdsc
);
3648 spin_lock(&mdsc
->cap_dirty_lock
);
3649 want_flush
= mdsc
->last_cap_flush_tid
;
3650 spin_unlock(&mdsc
->cap_dirty_lock
);
3652 down_read(&mdsc
->snap_rwsem
);
3653 want_snap
= mdsc
->last_snap_seq
;
3654 up_read(&mdsc
->snap_rwsem
);
3656 dout("sync want tid %lld flush_seq %lld snap_seq %lld\n",
3657 want_tid
, want_flush
, want_snap
);
3659 wait_unsafe_requests(mdsc
, want_tid
);
3660 wait_caps_flush(mdsc
, want_flush
, want_snap
);
3664 * true if all sessions are closed, or we force unmount
3666 static bool done_closing_sessions(struct ceph_mds_client
*mdsc
)
3668 if (ACCESS_ONCE(mdsc
->fsc
->mount_state
) == CEPH_MOUNT_SHUTDOWN
)
3670 return atomic_read(&mdsc
->num_sessions
) == 0;
3674 * called after sb is ro.
3676 void ceph_mdsc_close_sessions(struct ceph_mds_client
*mdsc
)
3678 struct ceph_options
*opts
= mdsc
->fsc
->client
->options
;
3679 struct ceph_mds_session
*session
;
3682 dout("close_sessions\n");
3684 /* close sessions */
3685 mutex_lock(&mdsc
->mutex
);
3686 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3687 session
= __ceph_lookup_mds_session(mdsc
, i
);
3690 mutex_unlock(&mdsc
->mutex
);
3691 mutex_lock(&session
->s_mutex
);
3692 __close_session(mdsc
, session
);
3693 mutex_unlock(&session
->s_mutex
);
3694 ceph_put_mds_session(session
);
3695 mutex_lock(&mdsc
->mutex
);
3697 mutex_unlock(&mdsc
->mutex
);
3699 dout("waiting for sessions to close\n");
3700 wait_event_timeout(mdsc
->session_close_wq
, done_closing_sessions(mdsc
),
3701 ceph_timeout_jiffies(opts
->mount_timeout
));
3703 /* tear down remaining sessions */
3704 mutex_lock(&mdsc
->mutex
);
3705 for (i
= 0; i
< mdsc
->max_sessions
; i
++) {
3706 if (mdsc
->sessions
[i
]) {
3707 session
= get_session(mdsc
->sessions
[i
]);
3708 __unregister_session(mdsc
, session
);
3709 mutex_unlock(&mdsc
->mutex
);
3710 mutex_lock(&session
->s_mutex
);
3711 remove_session_caps(session
);
3712 mutex_unlock(&session
->s_mutex
);
3713 ceph_put_mds_session(session
);
3714 mutex_lock(&mdsc
->mutex
);
3717 WARN_ON(!list_empty(&mdsc
->cap_delay_list
));
3718 mutex_unlock(&mdsc
->mutex
);
3720 ceph_cleanup_empty_realms(mdsc
);
3722 cancel_delayed_work_sync(&mdsc
->delayed_work
); /* cancel timer */
3727 void ceph_mdsc_force_umount(struct ceph_mds_client
*mdsc
)
3729 struct ceph_mds_session
*session
;
3732 dout("force umount\n");
3734 mutex_lock(&mdsc
->mutex
);
3735 for (mds
= 0; mds
< mdsc
->max_sessions
; mds
++) {
3736 session
= __ceph_lookup_mds_session(mdsc
, mds
);
3739 mutex_unlock(&mdsc
->mutex
);
3740 mutex_lock(&session
->s_mutex
);
3741 __close_session(mdsc
, session
);
3742 if (session
->s_state
== CEPH_MDS_SESSION_CLOSING
) {
3743 cleanup_session_requests(mdsc
, session
);
3744 remove_session_caps(session
);
3746 mutex_unlock(&session
->s_mutex
);
3747 ceph_put_mds_session(session
);
3748 mutex_lock(&mdsc
->mutex
);
3749 kick_requests(mdsc
, mds
);
3751 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3752 mutex_unlock(&mdsc
->mutex
);
3755 static void ceph_mdsc_stop(struct ceph_mds_client
*mdsc
)
3759 * Make sure the delayed work stopped before releasing
3762 * Because the cancel_delayed_work_sync() will only
3763 * guarantee that the work finishes executing. But the
3764 * delayed work will re-arm itself again after that.
3766 flush_delayed_work(&mdsc
->delayed_work
);
3769 ceph_mdsmap_destroy(mdsc
->mdsmap
);
3770 kfree(mdsc
->sessions
);
3771 ceph_caps_finalize(mdsc
);
3772 ceph_pool_perm_destroy(mdsc
);
3775 void ceph_mdsc_destroy(struct ceph_fs_client
*fsc
)
3777 struct ceph_mds_client
*mdsc
= fsc
->mdsc
;
3779 dout("mdsc_destroy %p\n", mdsc
);
3780 ceph_mdsc_stop(mdsc
);
3782 /* flush out any connection work with references to us */
3787 dout("mdsc_destroy %p done\n", mdsc
);
3792 * handle mds map update.
3794 void ceph_mdsc_handle_map(struct ceph_mds_client
*mdsc
, struct ceph_msg
*msg
)
3798 void *p
= msg
->front
.iov_base
;
3799 void *end
= p
+ msg
->front
.iov_len
;
3800 struct ceph_mdsmap
*newmap
, *oldmap
;
3801 struct ceph_fsid fsid
;
3804 ceph_decode_need(&p
, end
, sizeof(fsid
)+2*sizeof(u32
), bad
);
3805 ceph_decode_copy(&p
, &fsid
, sizeof(fsid
));
3806 if (ceph_check_fsid(mdsc
->fsc
->client
, &fsid
) < 0)
3808 epoch
= ceph_decode_32(&p
);
3809 maplen
= ceph_decode_32(&p
);
3810 dout("handle_map epoch %u len %d\n", epoch
, (int)maplen
);
3812 /* do we need it? */
3813 ceph_monc_got_mdsmap(&mdsc
->fsc
->client
->monc
, epoch
);
3814 mutex_lock(&mdsc
->mutex
);
3815 if (mdsc
->mdsmap
&& epoch
<= mdsc
->mdsmap
->m_epoch
) {
3816 dout("handle_map epoch %u <= our %u\n",
3817 epoch
, mdsc
->mdsmap
->m_epoch
);
3818 mutex_unlock(&mdsc
->mutex
);
3822 newmap
= ceph_mdsmap_decode(&p
, end
);
3823 if (IS_ERR(newmap
)) {
3824 err
= PTR_ERR(newmap
);
3828 /* swap into place */
3830 oldmap
= mdsc
->mdsmap
;
3831 mdsc
->mdsmap
= newmap
;
3832 check_new_map(mdsc
, newmap
, oldmap
);
3833 ceph_mdsmap_destroy(oldmap
);
3835 mdsc
->mdsmap
= newmap
; /* first mds map */
3837 mdsc
->fsc
->sb
->s_maxbytes
= mdsc
->mdsmap
->m_max_file_size
;
3839 __wake_requests(mdsc
, &mdsc
->waiting_for_map
);
3841 mutex_unlock(&mdsc
->mutex
);
3842 schedule_delayed(mdsc
);
3846 mutex_unlock(&mdsc
->mutex
);
3848 pr_err("error decoding mdsmap %d\n", err
);
3852 static struct ceph_connection
*con_get(struct ceph_connection
*con
)
3854 struct ceph_mds_session
*s
= con
->private;
3856 if (get_session(s
)) {
3857 dout("mdsc con_get %p ok (%d)\n", s
, atomic_read(&s
->s_ref
));
3860 dout("mdsc con_get %p FAIL\n", s
);
3864 static void con_put(struct ceph_connection
*con
)
3866 struct ceph_mds_session
*s
= con
->private;
3868 dout("mdsc con_put %p (%d)\n", s
, atomic_read(&s
->s_ref
) - 1);
3869 ceph_put_mds_session(s
);
3873 * if the client is unresponsive for long enough, the mds will kill
3874 * the session entirely.
3876 static void peer_reset(struct ceph_connection
*con
)
3878 struct ceph_mds_session
*s
= con
->private;
3879 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3881 pr_warn("mds%d closed our session\n", s
->s_mds
);
3882 send_mds_reconnect(mdsc
, s
);
3885 static void dispatch(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3887 struct ceph_mds_session
*s
= con
->private;
3888 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3889 int type
= le16_to_cpu(msg
->hdr
.type
);
3891 mutex_lock(&mdsc
->mutex
);
3892 if (__verify_registered_session(mdsc
, s
) < 0) {
3893 mutex_unlock(&mdsc
->mutex
);
3896 mutex_unlock(&mdsc
->mutex
);
3899 case CEPH_MSG_MDS_MAP
:
3900 ceph_mdsc_handle_map(mdsc
, msg
);
3902 case CEPH_MSG_CLIENT_SESSION
:
3903 handle_session(s
, msg
);
3905 case CEPH_MSG_CLIENT_REPLY
:
3906 handle_reply(s
, msg
);
3908 case CEPH_MSG_CLIENT_REQUEST_FORWARD
:
3909 handle_forward(mdsc
, s
, msg
);
3911 case CEPH_MSG_CLIENT_CAPS
:
3912 ceph_handle_caps(s
, msg
);
3914 case CEPH_MSG_CLIENT_SNAP
:
3915 ceph_handle_snap(mdsc
, s
, msg
);
3917 case CEPH_MSG_CLIENT_LEASE
:
3918 handle_lease(mdsc
, s
, msg
);
3922 pr_err("received unknown message type %d %s\n", type
,
3923 ceph_msg_type_name(type
));
3934 * Note: returned pointer is the address of a structure that's
3935 * managed separately. Caller must *not* attempt to free it.
3937 static struct ceph_auth_handshake
*get_authorizer(struct ceph_connection
*con
,
3938 int *proto
, int force_new
)
3940 struct ceph_mds_session
*s
= con
->private;
3941 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3942 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3943 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
3945 if (force_new
&& auth
->authorizer
) {
3946 ceph_auth_destroy_authorizer(ac
, auth
->authorizer
);
3947 auth
->authorizer
= NULL
;
3949 if (!auth
->authorizer
) {
3950 int ret
= ceph_auth_create_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3953 return ERR_PTR(ret
);
3955 int ret
= ceph_auth_update_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
,
3958 return ERR_PTR(ret
);
3960 *proto
= ac
->protocol
;
3966 static int verify_authorizer_reply(struct ceph_connection
*con
, int len
)
3968 struct ceph_mds_session
*s
= con
->private;
3969 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3970 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3972 return ceph_auth_verify_authorizer_reply(ac
, s
->s_auth
.authorizer
, len
);
3975 static int invalidate_authorizer(struct ceph_connection
*con
)
3977 struct ceph_mds_session
*s
= con
->private;
3978 struct ceph_mds_client
*mdsc
= s
->s_mdsc
;
3979 struct ceph_auth_client
*ac
= mdsc
->fsc
->client
->monc
.auth
;
3981 ceph_auth_invalidate_authorizer(ac
, CEPH_ENTITY_TYPE_MDS
);
3983 return ceph_monc_validate_auth(&mdsc
->fsc
->client
->monc
);
3986 static struct ceph_msg
*mds_alloc_msg(struct ceph_connection
*con
,
3987 struct ceph_msg_header
*hdr
, int *skip
)
3989 struct ceph_msg
*msg
;
3990 int type
= (int) le16_to_cpu(hdr
->type
);
3991 int front_len
= (int) le32_to_cpu(hdr
->front_len
);
3997 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
, false);
3999 pr_err("unable to allocate msg type %d len %d\n",
4007 static int mds_sign_message(struct ceph_msg
*msg
)
4009 struct ceph_mds_session
*s
= msg
->con
->private;
4010 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
4012 return ceph_auth_sign_message(auth
, msg
);
4015 static int mds_check_message_signature(struct ceph_msg
*msg
)
4017 struct ceph_mds_session
*s
= msg
->con
->private;
4018 struct ceph_auth_handshake
*auth
= &s
->s_auth
;
4020 return ceph_auth_check_message_signature(auth
, msg
);
4023 static const struct ceph_connection_operations mds_con_ops
= {
4026 .dispatch
= dispatch
,
4027 .get_authorizer
= get_authorizer
,
4028 .verify_authorizer_reply
= verify_authorizer_reply
,
4029 .invalidate_authorizer
= invalidate_authorizer
,
4030 .peer_reset
= peer_reset
,
4031 .alloc_msg
= mds_alloc_msg
,
4032 .sign_message
= mds_sign_message
,
4033 .check_message_signature
= mds_check_message_signature
,