HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / eventpoll.c
blobb8959d0d4c723c7d6b7d4df45ad574cfca0ebe87
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
47 * LOCKING:
48 * There are three level of locking required by epoll :
50 * 1) epmutex (mutex)
51 * 2) ep->mtx (mutex)
52 * 3) ep->lock (spinlock)
54 * The acquire order is the one listed above, from 1 to 3.
55 * We need a spinlock (ep->lock) because we manipulate objects
56 * from inside the poll callback, that might be triggered from
57 * a wake_up() that in turn might be called from IRQ context.
58 * So we can't sleep inside the poll callback and hence we need
59 * a spinlock. During the event transfer loop (from kernel to
60 * user space) we could end up sleeping due a copy_to_user(), so
61 * we need a lock that will allow us to sleep. This lock is a
62 * mutex (ep->mtx). It is acquired during the event transfer loop,
63 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
64 * Then we also need a global mutex to serialize eventpoll_release_file()
65 * and ep_free().
66 * This mutex is acquired by ep_free() during the epoll file
67 * cleanup path and it is also acquired by eventpoll_release_file()
68 * if a file has been pushed inside an epoll set and it is then
69 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
70 * It is also acquired when inserting an epoll fd onto another epoll
71 * fd. We do this so that we walk the epoll tree and ensure that this
72 * insertion does not create a cycle of epoll file descriptors, which
73 * could lead to deadlock. We need a global mutex to prevent two
74 * simultaneous inserts (A into B and B into A) from racing and
75 * constructing a cycle without either insert observing that it is
76 * going to.
77 * It is necessary to acquire multiple "ep->mtx"es at once in the
78 * case when one epoll fd is added to another. In this case, we
79 * always acquire the locks in the order of nesting (i.e. after
80 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
81 * before e2->mtx). Since we disallow cycles of epoll file
82 * descriptors, this ensures that the mutexes are well-ordered. In
83 * order to communicate this nesting to lockdep, when walking a tree
84 * of epoll file descriptors, we use the current recursion depth as
85 * the lockdep subkey.
86 * It is possible to drop the "ep->mtx" and to use the global
87 * mutex "epmutex" (together with "ep->lock") to have it working,
88 * but having "ep->mtx" will make the interface more scalable.
89 * Events that require holding "epmutex" are very rare, while for
90 * normal operations the epoll private "ep->mtx" will guarantee
91 * a better scalability.
94 /* Epoll private bits inside the event mask */
95 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET)
97 /* Maximum number of nesting allowed inside epoll sets */
98 #define EP_MAX_NESTS 4
100 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
102 #define EP_UNACTIVE_PTR ((void *) -1L)
104 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
106 struct epoll_filefd {
107 struct file *file;
108 int fd;
109 } __packed;
112 * Structure used to track possible nested calls, for too deep recursions
113 * and loop cycles.
115 struct nested_call_node {
116 struct list_head llink;
117 void *cookie;
118 void *ctx;
122 * This structure is used as collector for nested calls, to check for
123 * maximum recursion dept and loop cycles.
125 struct nested_calls {
126 struct list_head tasks_call_list;
127 spinlock_t lock;
131 * Each file descriptor added to the eventpoll interface will
132 * have an entry of this type linked to the "rbr" RB tree.
133 * Avoid increasing the size of this struct, there can be many thousands
134 * of these on a server and we do not want this to take another cache line.
136 struct epitem {
137 union {
138 /* RB tree node links this structure to the eventpoll RB tree */
139 struct rb_node rbn;
140 /* Used to free the struct epitem */
141 struct rcu_head rcu;
144 /* List header used to link this structure to the eventpoll ready list */
145 struct list_head rdllink;
148 * Works together "struct eventpoll"->ovflist in keeping the
149 * single linked chain of items.
151 struct epitem *next;
153 /* The file descriptor information this item refers to */
154 struct epoll_filefd ffd;
156 /* Number of active wait queue attached to poll operations */
157 int nwait;
159 /* List containing poll wait queues */
160 struct list_head pwqlist;
162 /* The "container" of this item */
163 struct eventpoll *ep;
165 /* List header used to link this item to the "struct file" items list */
166 struct list_head fllink;
168 /* wakeup_source used when EPOLLWAKEUP is set */
169 struct wakeup_source __rcu *ws;
171 /* The structure that describe the interested events and the source fd */
172 struct epoll_event event;
176 * This structure is stored inside the "private_data" member of the file
177 * structure and represents the main data structure for the eventpoll
178 * interface.
180 struct eventpoll {
181 /* Protect the access to this structure */
182 spinlock_t lock;
185 * This mutex is used to ensure that files are not removed
186 * while epoll is using them. This is held during the event
187 * collection loop, the file cleanup path, the epoll file exit
188 * code and the ctl operations.
190 struct mutex mtx;
192 /* Wait queue used by sys_epoll_wait() */
193 wait_queue_head_t wq;
195 /* Wait queue used by file->poll() */
196 wait_queue_head_t poll_wait;
198 /* List of ready file descriptors */
199 struct list_head rdllist;
201 /* RB tree root used to store monitored fd structs */
202 struct rb_root rbr;
205 * This is a single linked list that chains all the "struct epitem" that
206 * happened while transferring ready events to userspace w/out
207 * holding ->lock.
209 struct epitem *ovflist;
211 /* wakeup_source used when ep_scan_ready_list is running */
212 struct wakeup_source *ws;
214 /* The user that created the eventpoll descriptor */
215 struct user_struct *user;
217 struct file *file;
219 /* used to optimize loop detection check */
220 int visited;
221 struct list_head visited_list_link;
224 /* Wait structure used by the poll hooks */
225 struct eppoll_entry {
226 /* List header used to link this structure to the "struct epitem" */
227 struct list_head llink;
229 /* The "base" pointer is set to the container "struct epitem" */
230 struct epitem *base;
233 * Wait queue item that will be linked to the target file wait
234 * queue head.
236 wait_queue_t wait;
238 /* The wait queue head that linked the "wait" wait queue item */
239 wait_queue_head_t *whead;
242 /* Wrapper struct used by poll queueing */
243 struct ep_pqueue {
244 poll_table pt;
245 struct epitem *epi;
248 /* Used by the ep_send_events() function as callback private data */
249 struct ep_send_events_data {
250 int maxevents;
251 struct epoll_event __user *events;
255 * Configuration options available inside /proc/sys/fs/epoll/
257 /* Maximum number of epoll watched descriptors, per user */
258 static long max_user_watches __read_mostly;
261 * This mutex is used to serialize ep_free() and eventpoll_release_file().
263 static DEFINE_MUTEX(epmutex);
265 /* Used to check for epoll file descriptor inclusion loops */
266 static struct nested_calls poll_loop_ncalls;
268 /* Used for safe wake up implementation */
269 static struct nested_calls poll_safewake_ncalls;
271 /* Used to call file's f_op->poll() under the nested calls boundaries */
272 static struct nested_calls poll_readywalk_ncalls;
274 /* Slab cache used to allocate "struct epitem" */
275 static struct kmem_cache *epi_cache __read_mostly;
277 /* Slab cache used to allocate "struct eppoll_entry" */
278 static struct kmem_cache *pwq_cache __read_mostly;
280 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
281 static LIST_HEAD(visited_list);
284 * List of files with newly added links, where we may need to limit the number
285 * of emanating paths. Protected by the epmutex.
287 static LIST_HEAD(tfile_check_list);
289 #ifdef CONFIG_SYSCTL
291 #include <linux/sysctl.h>
293 static long zero;
294 static long long_max = LONG_MAX;
296 struct ctl_table epoll_table[] = {
298 .procname = "max_user_watches",
299 .data = &max_user_watches,
300 .maxlen = sizeof(max_user_watches),
301 .mode = 0644,
302 .proc_handler = proc_doulongvec_minmax,
303 .extra1 = &zero,
304 .extra2 = &long_max,
308 #endif /* CONFIG_SYSCTL */
310 static const struct file_operations eventpoll_fops;
312 static inline int is_file_epoll(struct file *f)
314 return f->f_op == &eventpoll_fops;
317 /* Setup the structure that is used as key for the RB tree */
318 static inline void ep_set_ffd(struct epoll_filefd *ffd,
319 struct file *file, int fd)
321 ffd->file = file;
322 ffd->fd = fd;
325 /* Compare RB tree keys */
326 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
327 struct epoll_filefd *p2)
329 return (p1->file > p2->file ? +1:
330 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
333 /* Tells us if the item is currently linked */
334 static inline int ep_is_linked(struct list_head *p)
336 return !list_empty(p);
339 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_t *p)
341 return container_of(p, struct eppoll_entry, wait);
344 /* Get the "struct epitem" from a wait queue pointer */
345 static inline struct epitem *ep_item_from_wait(wait_queue_t *p)
347 return container_of(p, struct eppoll_entry, wait)->base;
350 /* Get the "struct epitem" from an epoll queue wrapper */
351 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
353 return container_of(p, struct ep_pqueue, pt)->epi;
356 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
357 static inline int ep_op_has_event(int op)
359 return op != EPOLL_CTL_DEL;
362 /* Initialize the poll safe wake up structure */
363 static void ep_nested_calls_init(struct nested_calls *ncalls)
365 INIT_LIST_HEAD(&ncalls->tasks_call_list);
366 spin_lock_init(&ncalls->lock);
370 * ep_events_available - Checks if ready events might be available.
372 * @ep: Pointer to the eventpoll context.
374 * Returns: Returns a value different than zero if ready events are available,
375 * or zero otherwise.
377 static inline int ep_events_available(struct eventpoll *ep)
379 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
383 * ep_call_nested - Perform a bound (possibly) nested call, by checking
384 * that the recursion limit is not exceeded, and that
385 * the same nested call (by the meaning of same cookie) is
386 * no re-entered.
388 * @ncalls: Pointer to the nested_calls structure to be used for this call.
389 * @max_nests: Maximum number of allowed nesting calls.
390 * @nproc: Nested call core function pointer.
391 * @priv: Opaque data to be passed to the @nproc callback.
392 * @cookie: Cookie to be used to identify this nested call.
393 * @ctx: This instance context.
395 * Returns: Returns the code returned by the @nproc callback, or -1 if
396 * the maximum recursion limit has been exceeded.
398 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
399 int (*nproc)(void *, void *, int), void *priv,
400 void *cookie, void *ctx)
402 int error, call_nests = 0;
403 unsigned long flags;
404 struct list_head *lsthead = &ncalls->tasks_call_list;
405 struct nested_call_node *tncur;
406 struct nested_call_node tnode;
408 spin_lock_irqsave(&ncalls->lock, flags);
411 * Try to see if the current task is already inside this wakeup call.
412 * We use a list here, since the population inside this set is always
413 * very much limited.
415 list_for_each_entry(tncur, lsthead, llink) {
416 if (tncur->ctx == ctx &&
417 (tncur->cookie == cookie || ++call_nests > max_nests)) {
419 * Ops ... loop detected or maximum nest level reached.
420 * We abort this wake by breaking the cycle itself.
422 error = -1;
423 goto out_unlock;
427 /* Add the current task and cookie to the list */
428 tnode.ctx = ctx;
429 tnode.cookie = cookie;
430 list_add(&tnode.llink, lsthead);
432 spin_unlock_irqrestore(&ncalls->lock, flags);
434 /* Call the nested function */
435 error = (*nproc)(priv, cookie, call_nests);
437 /* Remove the current task from the list */
438 spin_lock_irqsave(&ncalls->lock, flags);
439 list_del(&tnode.llink);
440 out_unlock:
441 spin_unlock_irqrestore(&ncalls->lock, flags);
443 return error;
447 * As described in commit 0ccf831cb lockdep: annotate epoll
448 * the use of wait queues used by epoll is done in a very controlled
449 * manner. Wake ups can nest inside each other, but are never done
450 * with the same locking. For example:
452 * dfd = socket(...);
453 * efd1 = epoll_create();
454 * efd2 = epoll_create();
455 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
456 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
458 * When a packet arrives to the device underneath "dfd", the net code will
459 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
460 * callback wakeup entry on that queue, and the wake_up() performed by the
461 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
462 * (efd1) notices that it may have some event ready, so it needs to wake up
463 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
464 * that ends up in another wake_up(), after having checked about the
465 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
466 * avoid stack blasting.
468 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
469 * this special case of epoll.
471 #ifdef CONFIG_DEBUG_LOCK_ALLOC
472 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
473 unsigned long events, int subclass)
475 unsigned long flags;
477 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
478 wake_up_locked_poll(wqueue, events);
479 spin_unlock_irqrestore(&wqueue->lock, flags);
481 #else
482 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
483 unsigned long events, int subclass)
485 wake_up_poll(wqueue, events);
487 #endif
489 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
491 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
492 1 + call_nests);
493 return 0;
497 * Perform a safe wake up of the poll wait list. The problem is that
498 * with the new callback'd wake up system, it is possible that the
499 * poll callback is reentered from inside the call to wake_up() done
500 * on the poll wait queue head. The rule is that we cannot reenter the
501 * wake up code from the same task more than EP_MAX_NESTS times,
502 * and we cannot reenter the same wait queue head at all. This will
503 * enable to have a hierarchy of epoll file descriptor of no more than
504 * EP_MAX_NESTS deep.
506 static void ep_poll_safewake(wait_queue_head_t *wq)
508 int this_cpu = get_cpu();
510 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
511 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
513 put_cpu();
516 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
518 wait_queue_head_t *whead;
520 rcu_read_lock();
522 * If it is cleared by POLLFREE, it should be rcu-safe.
523 * If we read NULL we need a barrier paired with
524 * smp_store_release() in ep_poll_callback(), otherwise
525 * we rely on whead->lock.
527 whead = smp_load_acquire(&pwq->whead);
528 if (whead)
529 remove_wait_queue(whead, &pwq->wait);
530 rcu_read_unlock();
534 * This function unregisters poll callbacks from the associated file
535 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
536 * ep_free).
538 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
540 struct list_head *lsthead = &epi->pwqlist;
541 struct eppoll_entry *pwq;
543 while (!list_empty(lsthead)) {
544 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
546 list_del(&pwq->llink);
547 ep_remove_wait_queue(pwq);
548 kmem_cache_free(pwq_cache, pwq);
552 /* call only when ep->mtx is held */
553 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
555 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
558 /* call only when ep->mtx is held */
559 static inline void ep_pm_stay_awake(struct epitem *epi)
561 struct wakeup_source *ws = ep_wakeup_source(epi);
563 if (ws)
564 __pm_stay_awake(ws);
567 static inline bool ep_has_wakeup_source(struct epitem *epi)
569 return rcu_access_pointer(epi->ws) ? true : false;
572 /* call when ep->mtx cannot be held (ep_poll_callback) */
573 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
575 struct wakeup_source *ws;
577 rcu_read_lock();
578 ws = rcu_dereference(epi->ws);
579 if (ws)
580 __pm_stay_awake(ws);
581 rcu_read_unlock();
585 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
586 * the scan code, to call f_op->poll(). Also allows for
587 * O(NumReady) performance.
589 * @ep: Pointer to the epoll private data structure.
590 * @sproc: Pointer to the scan callback.
591 * @priv: Private opaque data passed to the @sproc callback.
592 * @depth: The current depth of recursive f_op->poll calls.
593 * @ep_locked: caller already holds ep->mtx
595 * Returns: The same integer error code returned by the @sproc callback.
597 static int ep_scan_ready_list(struct eventpoll *ep,
598 int (*sproc)(struct eventpoll *,
599 struct list_head *, void *),
600 void *priv, int depth, bool ep_locked)
602 int error, pwake = 0;
603 unsigned long flags;
604 struct epitem *epi, *nepi;
605 LIST_HEAD(txlist);
608 * We need to lock this because we could be hit by
609 * eventpoll_release_file() and epoll_ctl().
612 if (!ep_locked)
613 mutex_lock_nested(&ep->mtx, depth);
616 * Steal the ready list, and re-init the original one to the
617 * empty list. Also, set ep->ovflist to NULL so that events
618 * happening while looping w/out locks, are not lost. We cannot
619 * have the poll callback to queue directly on ep->rdllist,
620 * because we want the "sproc" callback to be able to do it
621 * in a lockless way.
623 spin_lock_irqsave(&ep->lock, flags);
624 list_splice_init(&ep->rdllist, &txlist);
625 ep->ovflist = NULL;
626 spin_unlock_irqrestore(&ep->lock, flags);
629 * Now call the callback function.
631 error = (*sproc)(ep, &txlist, priv);
633 spin_lock_irqsave(&ep->lock, flags);
635 * During the time we spent inside the "sproc" callback, some
636 * other events might have been queued by the poll callback.
637 * We re-insert them inside the main ready-list here.
639 for (nepi = ep->ovflist; (epi = nepi) != NULL;
640 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
642 * We need to check if the item is already in the list.
643 * During the "sproc" callback execution time, items are
644 * queued into ->ovflist but the "txlist" might already
645 * contain them, and the list_splice() below takes care of them.
647 if (!ep_is_linked(&epi->rdllink)) {
648 list_add_tail(&epi->rdllink, &ep->rdllist);
649 ep_pm_stay_awake(epi);
653 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
654 * releasing the lock, events will be queued in the normal way inside
655 * ep->rdllist.
657 ep->ovflist = EP_UNACTIVE_PTR;
660 * Quickly re-inject items left on "txlist".
662 list_splice(&txlist, &ep->rdllist);
663 __pm_relax(ep->ws);
665 if (!list_empty(&ep->rdllist)) {
667 * Wake up (if active) both the eventpoll wait list and
668 * the ->poll() wait list (delayed after we release the lock).
670 if (waitqueue_active(&ep->wq))
671 wake_up_locked(&ep->wq);
672 if (waitqueue_active(&ep->poll_wait))
673 pwake++;
675 spin_unlock_irqrestore(&ep->lock, flags);
677 if (!ep_locked)
678 mutex_unlock(&ep->mtx);
680 /* We have to call this outside the lock */
681 if (pwake)
682 ep_poll_safewake(&ep->poll_wait);
684 return error;
687 static void epi_rcu_free(struct rcu_head *head)
689 struct epitem *epi = container_of(head, struct epitem, rcu);
690 kmem_cache_free(epi_cache, epi);
694 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
695 * all the associated resources. Must be called with "mtx" held.
697 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
699 unsigned long flags;
700 struct file *file = epi->ffd.file;
703 * Removes poll wait queue hooks. We _have_ to do this without holding
704 * the "ep->lock" otherwise a deadlock might occur. This because of the
705 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
706 * queue head lock when unregistering the wait queue. The wakeup callback
707 * will run by holding the wait queue head lock and will call our callback
708 * that will try to get "ep->lock".
710 ep_unregister_pollwait(ep, epi);
712 /* Remove the current item from the list of epoll hooks */
713 spin_lock(&file->f_lock);
714 list_del_rcu(&epi->fllink);
715 spin_unlock(&file->f_lock);
717 rb_erase(&epi->rbn, &ep->rbr);
719 spin_lock_irqsave(&ep->lock, flags);
720 if (ep_is_linked(&epi->rdllink))
721 list_del_init(&epi->rdllink);
722 spin_unlock_irqrestore(&ep->lock, flags);
724 wakeup_source_unregister(ep_wakeup_source(epi));
726 * At this point it is safe to free the eventpoll item. Use the union
727 * field epi->rcu, since we are trying to minimize the size of
728 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
729 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
730 * use of the rbn field.
732 call_rcu(&epi->rcu, epi_rcu_free);
734 atomic_long_dec(&ep->user->epoll_watches);
736 return 0;
739 static void ep_free(struct eventpoll *ep)
741 struct rb_node *rbp;
742 struct epitem *epi;
744 /* We need to release all tasks waiting for these file */
745 if (waitqueue_active(&ep->poll_wait))
746 ep_poll_safewake(&ep->poll_wait);
749 * We need to lock this because we could be hit by
750 * eventpoll_release_file() while we're freeing the "struct eventpoll".
751 * We do not need to hold "ep->mtx" here because the epoll file
752 * is on the way to be removed and no one has references to it
753 * anymore. The only hit might come from eventpoll_release_file() but
754 * holding "epmutex" is sufficient here.
756 mutex_lock(&epmutex);
759 * Walks through the whole tree by unregistering poll callbacks.
761 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
762 epi = rb_entry(rbp, struct epitem, rbn);
764 ep_unregister_pollwait(ep, epi);
765 cond_resched();
769 * Walks through the whole tree by freeing each "struct epitem". At this
770 * point we are sure no poll callbacks will be lingering around, and also by
771 * holding "epmutex" we can be sure that no file cleanup code will hit
772 * us during this operation. So we can avoid the lock on "ep->lock".
773 * We do not need to lock ep->mtx, either, we only do it to prevent
774 * a lockdep warning.
776 mutex_lock(&ep->mtx);
777 while ((rbp = rb_first(&ep->rbr)) != NULL) {
778 epi = rb_entry(rbp, struct epitem, rbn);
779 ep_remove(ep, epi);
780 cond_resched();
782 mutex_unlock(&ep->mtx);
784 mutex_unlock(&epmutex);
785 mutex_destroy(&ep->mtx);
786 free_uid(ep->user);
787 wakeup_source_unregister(ep->ws);
788 kfree(ep);
791 static int ep_eventpoll_release(struct inode *inode, struct file *file)
793 struct eventpoll *ep = file->private_data;
795 if (ep)
796 ep_free(ep);
798 return 0;
801 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
803 pt->_key = epi->event.events;
805 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
808 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
809 void *priv)
811 struct epitem *epi, *tmp;
812 poll_table pt;
814 init_poll_funcptr(&pt, NULL);
816 list_for_each_entry_safe(epi, tmp, head, rdllink) {
817 if (ep_item_poll(epi, &pt))
818 return POLLIN | POLLRDNORM;
819 else {
821 * Item has been dropped into the ready list by the poll
822 * callback, but it's not actually ready, as far as
823 * caller requested events goes. We can remove it here.
825 __pm_relax(ep_wakeup_source(epi));
826 list_del_init(&epi->rdllink);
830 return 0;
833 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
834 poll_table *pt);
836 struct readyevents_arg {
837 struct eventpoll *ep;
838 bool locked;
841 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
843 struct readyevents_arg *arg = priv;
845 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
846 call_nests + 1, arg->locked);
849 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
851 int pollflags;
852 struct eventpoll *ep = file->private_data;
853 struct readyevents_arg arg;
856 * During ep_insert() we already hold the ep->mtx for the tfile.
857 * Prevent re-aquisition.
859 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
860 arg.ep = ep;
862 /* Insert inside our poll wait queue */
863 poll_wait(file, &ep->poll_wait, wait);
866 * Proceed to find out if wanted events are really available inside
867 * the ready list. This need to be done under ep_call_nested()
868 * supervision, since the call to f_op->poll() done on listed files
869 * could re-enter here.
871 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
872 ep_poll_readyevents_proc, &arg, ep, current);
874 return pollflags != -1 ? pollflags : 0;
877 #ifdef CONFIG_PROC_FS
878 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
880 struct eventpoll *ep = f->private_data;
881 struct rb_node *rbp;
883 mutex_lock(&ep->mtx);
884 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
885 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
887 seq_printf(m, "tfd: %8d events: %8x data: %16llx\n",
888 epi->ffd.fd, epi->event.events,
889 (long long)epi->event.data);
890 if (seq_has_overflowed(m))
891 break;
893 mutex_unlock(&ep->mtx);
895 #endif
897 /* File callbacks that implement the eventpoll file behaviour */
898 static const struct file_operations eventpoll_fops = {
899 #ifdef CONFIG_PROC_FS
900 .show_fdinfo = ep_show_fdinfo,
901 #endif
902 .release = ep_eventpoll_release,
903 .poll = ep_eventpoll_poll,
904 .llseek = noop_llseek,
908 * This is called from eventpoll_release() to unlink files from the eventpoll
909 * interface. We need to have this facility to cleanup correctly files that are
910 * closed without being removed from the eventpoll interface.
912 void eventpoll_release_file(struct file *file)
914 struct eventpoll *ep;
915 struct epitem *epi, *next;
918 * We don't want to get "file->f_lock" because it is not
919 * necessary. It is not necessary because we're in the "struct file"
920 * cleanup path, and this means that no one is using this file anymore.
921 * So, for example, epoll_ctl() cannot hit here since if we reach this
922 * point, the file counter already went to zero and fget() would fail.
923 * The only hit might come from ep_free() but by holding the mutex
924 * will correctly serialize the operation. We do need to acquire
925 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
926 * from anywhere but ep_free().
928 * Besides, ep_remove() acquires the lock, so we can't hold it here.
930 mutex_lock(&epmutex);
931 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
932 ep = epi->ep;
933 mutex_lock_nested(&ep->mtx, 0);
934 ep_remove(ep, epi);
935 mutex_unlock(&ep->mtx);
937 mutex_unlock(&epmutex);
940 static int ep_alloc(struct eventpoll **pep)
942 int error;
943 struct user_struct *user;
944 struct eventpoll *ep;
946 user = get_current_user();
947 error = -ENOMEM;
948 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
949 if (unlikely(!ep))
950 goto free_uid;
952 spin_lock_init(&ep->lock);
953 mutex_init(&ep->mtx);
954 init_waitqueue_head(&ep->wq);
955 init_waitqueue_head(&ep->poll_wait);
956 INIT_LIST_HEAD(&ep->rdllist);
957 ep->rbr = RB_ROOT;
958 ep->ovflist = EP_UNACTIVE_PTR;
959 ep->user = user;
961 *pep = ep;
963 return 0;
965 free_uid:
966 free_uid(user);
967 return error;
971 * Search the file inside the eventpoll tree. The RB tree operations
972 * are protected by the "mtx" mutex, and ep_find() must be called with
973 * "mtx" held.
975 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
977 int kcmp;
978 struct rb_node *rbp;
979 struct epitem *epi, *epir = NULL;
980 struct epoll_filefd ffd;
982 ep_set_ffd(&ffd, file, fd);
983 for (rbp = ep->rbr.rb_node; rbp; ) {
984 epi = rb_entry(rbp, struct epitem, rbn);
985 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
986 if (kcmp > 0)
987 rbp = rbp->rb_right;
988 else if (kcmp < 0)
989 rbp = rbp->rb_left;
990 else {
991 epir = epi;
992 break;
996 return epir;
1000 * This is the callback that is passed to the wait queue wakeup
1001 * mechanism. It is called by the stored file descriptors when they
1002 * have events to report.
1004 static int ep_poll_callback(wait_queue_t *wait, unsigned mode, int sync, void *key)
1006 int pwake = 0;
1007 unsigned long flags;
1008 struct epitem *epi = ep_item_from_wait(wait);
1009 struct eventpoll *ep = epi->ep;
1011 spin_lock_irqsave(&ep->lock, flags);
1014 * If the event mask does not contain any poll(2) event, we consider the
1015 * descriptor to be disabled. This condition is likely the effect of the
1016 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1017 * until the next EPOLL_CTL_MOD will be issued.
1019 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1020 goto out_unlock;
1023 * Check the events coming with the callback. At this stage, not
1024 * every device reports the events in the "key" parameter of the
1025 * callback. We need to be able to handle both cases here, hence the
1026 * test for "key" != NULL before the event match test.
1028 if (key && !((unsigned long) key & epi->event.events))
1029 goto out_unlock;
1032 * If we are transferring events to userspace, we can hold no locks
1033 * (because we're accessing user memory, and because of linux f_op->poll()
1034 * semantics). All the events that happen during that period of time are
1035 * chained in ep->ovflist and requeued later on.
1037 if (ep->ovflist != EP_UNACTIVE_PTR) {
1038 if (epi->next == EP_UNACTIVE_PTR) {
1039 epi->next = ep->ovflist;
1040 ep->ovflist = epi;
1041 if (epi->ws) {
1043 * Activate ep->ws since epi->ws may get
1044 * deactivated at any time.
1046 __pm_stay_awake(ep->ws);
1050 goto out_unlock;
1053 /* If this file is already in the ready list we exit soon */
1054 if (!ep_is_linked(&epi->rdllink)) {
1055 list_add_tail(&epi->rdllink, &ep->rdllist);
1056 ep_pm_stay_awake_rcu(epi);
1060 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1061 * wait list.
1063 if (waitqueue_active(&ep->wq))
1064 wake_up_locked(&ep->wq);
1065 if (waitqueue_active(&ep->poll_wait))
1066 pwake++;
1068 out_unlock:
1069 spin_unlock_irqrestore(&ep->lock, flags);
1071 /* We have to call this outside the lock */
1072 if (pwake)
1073 ep_poll_safewake(&ep->poll_wait);
1076 if ((unsigned long)key & POLLFREE) {
1078 * If we race with ep_remove_wait_queue() it can miss
1079 * ->whead = NULL and do another remove_wait_queue() after
1080 * us, so we can't use __remove_wait_queue().
1082 list_del_init(&wait->task_list);
1084 * ->whead != NULL protects us from the race with ep_free()
1085 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1086 * held by the caller. Once we nullify it, nothing protects
1087 * ep/epi or even wait.
1089 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1092 return 1;
1096 * This is the callback that is used to add our wait queue to the
1097 * target file wakeup lists.
1099 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1100 poll_table *pt)
1102 struct epitem *epi = ep_item_from_epqueue(pt);
1103 struct eppoll_entry *pwq;
1105 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1106 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1107 pwq->whead = whead;
1108 pwq->base = epi;
1109 add_wait_queue(whead, &pwq->wait);
1110 list_add_tail(&pwq->llink, &epi->pwqlist);
1111 epi->nwait++;
1112 } else {
1113 /* We have to signal that an error occurred */
1114 epi->nwait = -1;
1118 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1120 int kcmp;
1121 struct rb_node **p = &ep->rbr.rb_node, *parent = NULL;
1122 struct epitem *epic;
1124 while (*p) {
1125 parent = *p;
1126 epic = rb_entry(parent, struct epitem, rbn);
1127 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1128 if (kcmp > 0)
1129 p = &parent->rb_right;
1130 else
1131 p = &parent->rb_left;
1133 rb_link_node(&epi->rbn, parent, p);
1134 rb_insert_color(&epi->rbn, &ep->rbr);
1139 #define PATH_ARR_SIZE 5
1141 * These are the number paths of length 1 to 5, that we are allowing to emanate
1142 * from a single file of interest. For example, we allow 1000 paths of length
1143 * 1, to emanate from each file of interest. This essentially represents the
1144 * potential wakeup paths, which need to be limited in order to avoid massive
1145 * uncontrolled wakeup storms. The common use case should be a single ep which
1146 * is connected to n file sources. In this case each file source has 1 path
1147 * of length 1. Thus, the numbers below should be more than sufficient. These
1148 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1149 * and delete can't add additional paths. Protected by the epmutex.
1151 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1152 static int path_count[PATH_ARR_SIZE];
1154 static int path_count_inc(int nests)
1156 /* Allow an arbitrary number of depth 1 paths */
1157 if (nests == 0)
1158 return 0;
1160 if (++path_count[nests] > path_limits[nests])
1161 return -1;
1162 return 0;
1165 static void path_count_init(void)
1167 int i;
1169 for (i = 0; i < PATH_ARR_SIZE; i++)
1170 path_count[i] = 0;
1173 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1175 int error = 0;
1176 struct file *file = priv;
1177 struct file *child_file;
1178 struct epitem *epi;
1180 /* CTL_DEL can remove links here, but that can't increase our count */
1181 rcu_read_lock();
1182 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1183 child_file = epi->ep->file;
1184 if (is_file_epoll(child_file)) {
1185 if (list_empty(&child_file->f_ep_links)) {
1186 if (path_count_inc(call_nests)) {
1187 error = -1;
1188 break;
1190 } else {
1191 error = ep_call_nested(&poll_loop_ncalls,
1192 EP_MAX_NESTS,
1193 reverse_path_check_proc,
1194 child_file, child_file,
1195 current);
1197 if (error != 0)
1198 break;
1199 } else {
1200 printk(KERN_ERR "reverse_path_check_proc: "
1201 "file is not an ep!\n");
1204 rcu_read_unlock();
1205 return error;
1209 * reverse_path_check - The tfile_check_list is list of file *, which have
1210 * links that are proposed to be newly added. We need to
1211 * make sure that those added links don't add too many
1212 * paths such that we will spend all our time waking up
1213 * eventpoll objects.
1215 * Returns: Returns zero if the proposed links don't create too many paths,
1216 * -1 otherwise.
1218 static int reverse_path_check(void)
1220 int error = 0;
1221 struct file *current_file;
1223 /* let's call this for all tfiles */
1224 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1225 path_count_init();
1226 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1227 reverse_path_check_proc, current_file,
1228 current_file, current);
1229 if (error)
1230 break;
1232 return error;
1235 static int ep_create_wakeup_source(struct epitem *epi)
1237 const char *name;
1238 struct wakeup_source *ws;
1240 if (!epi->ep->ws) {
1241 epi->ep->ws = wakeup_source_register("eventpoll");
1242 if (!epi->ep->ws)
1243 return -ENOMEM;
1246 name = epi->ffd.file->f_path.dentry->d_name.name;
1247 ws = wakeup_source_register(name);
1249 if (!ws)
1250 return -ENOMEM;
1251 rcu_assign_pointer(epi->ws, ws);
1253 return 0;
1256 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1257 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1259 struct wakeup_source *ws = ep_wakeup_source(epi);
1261 RCU_INIT_POINTER(epi->ws, NULL);
1264 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1265 * used internally by wakeup_source_remove, too (called by
1266 * wakeup_source_unregister), so we cannot use call_rcu
1268 synchronize_rcu();
1269 wakeup_source_unregister(ws);
1273 * Must be called with "mtx" held.
1275 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1276 struct file *tfile, int fd, int full_check)
1278 int error, revents, pwake = 0;
1279 unsigned long flags;
1280 long user_watches;
1281 struct epitem *epi;
1282 struct ep_pqueue epq;
1284 user_watches = atomic_long_read(&ep->user->epoll_watches);
1285 if (unlikely(user_watches >= max_user_watches))
1286 return -ENOSPC;
1287 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1288 return -ENOMEM;
1290 /* Item initialization follow here ... */
1291 INIT_LIST_HEAD(&epi->rdllink);
1292 INIT_LIST_HEAD(&epi->fllink);
1293 INIT_LIST_HEAD(&epi->pwqlist);
1294 epi->ep = ep;
1295 ep_set_ffd(&epi->ffd, tfile, fd);
1296 epi->event = *event;
1297 epi->nwait = 0;
1298 epi->next = EP_UNACTIVE_PTR;
1299 if (epi->event.events & EPOLLWAKEUP) {
1300 error = ep_create_wakeup_source(epi);
1301 if (error)
1302 goto error_create_wakeup_source;
1303 } else {
1304 RCU_INIT_POINTER(epi->ws, NULL);
1307 /* Initialize the poll table using the queue callback */
1308 epq.epi = epi;
1309 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1312 * Attach the item to the poll hooks and get current event bits.
1313 * We can safely use the file* here because its usage count has
1314 * been increased by the caller of this function. Note that after
1315 * this operation completes, the poll callback can start hitting
1316 * the new item.
1318 revents = ep_item_poll(epi, &epq.pt);
1321 * We have to check if something went wrong during the poll wait queue
1322 * install process. Namely an allocation for a wait queue failed due
1323 * high memory pressure.
1325 error = -ENOMEM;
1326 if (epi->nwait < 0)
1327 goto error_unregister;
1329 /* Add the current item to the list of active epoll hook for this file */
1330 spin_lock(&tfile->f_lock);
1331 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1332 spin_unlock(&tfile->f_lock);
1335 * Add the current item to the RB tree. All RB tree operations are
1336 * protected by "mtx", and ep_insert() is called with "mtx" held.
1338 ep_rbtree_insert(ep, epi);
1340 /* now check if we've created too many backpaths */
1341 error = -EINVAL;
1342 if (full_check && reverse_path_check())
1343 goto error_remove_epi;
1345 /* We have to drop the new item inside our item list to keep track of it */
1346 spin_lock_irqsave(&ep->lock, flags);
1348 /* If the file is already "ready" we drop it inside the ready list */
1349 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1350 list_add_tail(&epi->rdllink, &ep->rdllist);
1351 ep_pm_stay_awake(epi);
1353 /* Notify waiting tasks that events are available */
1354 if (waitqueue_active(&ep->wq))
1355 wake_up_locked(&ep->wq);
1356 if (waitqueue_active(&ep->poll_wait))
1357 pwake++;
1360 spin_unlock_irqrestore(&ep->lock, flags);
1362 atomic_long_inc(&ep->user->epoll_watches);
1364 /* We have to call this outside the lock */
1365 if (pwake)
1366 ep_poll_safewake(&ep->poll_wait);
1368 return 0;
1370 error_remove_epi:
1371 spin_lock(&tfile->f_lock);
1372 list_del_rcu(&epi->fllink);
1373 spin_unlock(&tfile->f_lock);
1375 rb_erase(&epi->rbn, &ep->rbr);
1377 error_unregister:
1378 ep_unregister_pollwait(ep, epi);
1381 * We need to do this because an event could have been arrived on some
1382 * allocated wait queue. Note that we don't care about the ep->ovflist
1383 * list, since that is used/cleaned only inside a section bound by "mtx".
1384 * And ep_insert() is called with "mtx" held.
1386 spin_lock_irqsave(&ep->lock, flags);
1387 if (ep_is_linked(&epi->rdllink))
1388 list_del_init(&epi->rdllink);
1389 spin_unlock_irqrestore(&ep->lock, flags);
1391 wakeup_source_unregister(ep_wakeup_source(epi));
1393 error_create_wakeup_source:
1394 kmem_cache_free(epi_cache, epi);
1396 return error;
1400 * Modify the interest event mask by dropping an event if the new mask
1401 * has a match in the current file status. Must be called with "mtx" held.
1403 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1405 int pwake = 0;
1406 unsigned int revents;
1407 poll_table pt;
1409 init_poll_funcptr(&pt, NULL);
1412 * Set the new event interest mask before calling f_op->poll();
1413 * otherwise we might miss an event that happens between the
1414 * f_op->poll() call and the new event set registering.
1416 epi->event.events = event->events; /* need barrier below */
1417 epi->event.data = event->data; /* protected by mtx */
1418 if (epi->event.events & EPOLLWAKEUP) {
1419 if (!ep_has_wakeup_source(epi))
1420 ep_create_wakeup_source(epi);
1421 } else if (ep_has_wakeup_source(epi)) {
1422 ep_destroy_wakeup_source(epi);
1426 * The following barrier has two effects:
1428 * 1) Flush epi changes above to other CPUs. This ensures
1429 * we do not miss events from ep_poll_callback if an
1430 * event occurs immediately after we call f_op->poll().
1431 * We need this because we did not take ep->lock while
1432 * changing epi above (but ep_poll_callback does take
1433 * ep->lock).
1435 * 2) We also need to ensure we do not miss _past_ events
1436 * when calling f_op->poll(). This barrier also
1437 * pairs with the barrier in wq_has_sleeper (see
1438 * comments for wq_has_sleeper).
1440 * This barrier will now guarantee ep_poll_callback or f_op->poll
1441 * (or both) will notice the readiness of an item.
1443 smp_mb();
1446 * Get current event bits. We can safely use the file* here because
1447 * its usage count has been increased by the caller of this function.
1449 revents = ep_item_poll(epi, &pt);
1452 * If the item is "hot" and it is not registered inside the ready
1453 * list, push it inside.
1455 if (revents & event->events) {
1456 spin_lock_irq(&ep->lock);
1457 if (!ep_is_linked(&epi->rdllink)) {
1458 list_add_tail(&epi->rdllink, &ep->rdllist);
1459 ep_pm_stay_awake(epi);
1461 /* Notify waiting tasks that events are available */
1462 if (waitqueue_active(&ep->wq))
1463 wake_up_locked(&ep->wq);
1464 if (waitqueue_active(&ep->poll_wait))
1465 pwake++;
1467 spin_unlock_irq(&ep->lock);
1470 /* We have to call this outside the lock */
1471 if (pwake)
1472 ep_poll_safewake(&ep->poll_wait);
1474 return 0;
1477 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1478 void *priv)
1480 struct ep_send_events_data *esed = priv;
1481 int eventcnt;
1482 unsigned int revents;
1483 struct epitem *epi;
1484 struct epoll_event __user *uevent;
1485 struct wakeup_source *ws;
1486 poll_table pt;
1488 init_poll_funcptr(&pt, NULL);
1491 * We can loop without lock because we are passed a task private list.
1492 * Items cannot vanish during the loop because ep_scan_ready_list() is
1493 * holding "mtx" during this call.
1495 for (eventcnt = 0, uevent = esed->events;
1496 !list_empty(head) && eventcnt < esed->maxevents;) {
1497 epi = list_first_entry(head, struct epitem, rdllink);
1500 * Activate ep->ws before deactivating epi->ws to prevent
1501 * triggering auto-suspend here (in case we reactive epi->ws
1502 * below).
1504 * This could be rearranged to delay the deactivation of epi->ws
1505 * instead, but then epi->ws would temporarily be out of sync
1506 * with ep_is_linked().
1508 ws = ep_wakeup_source(epi);
1509 if (ws) {
1510 if (ws->active)
1511 __pm_stay_awake(ep->ws);
1512 __pm_relax(ws);
1515 list_del_init(&epi->rdllink);
1517 revents = ep_item_poll(epi, &pt);
1520 * If the event mask intersect the caller-requested one,
1521 * deliver the event to userspace. Again, ep_scan_ready_list()
1522 * is holding "mtx", so no operations coming from userspace
1523 * can change the item.
1525 if (revents) {
1526 if (__put_user(revents, &uevent->events) ||
1527 __put_user(epi->event.data, &uevent->data)) {
1528 list_add(&epi->rdllink, head);
1529 ep_pm_stay_awake(epi);
1530 return eventcnt ? eventcnt : -EFAULT;
1532 eventcnt++;
1533 uevent++;
1534 if (epi->event.events & EPOLLONESHOT)
1535 epi->event.events &= EP_PRIVATE_BITS;
1536 else if (!(epi->event.events & EPOLLET)) {
1538 * If this file has been added with Level
1539 * Trigger mode, we need to insert back inside
1540 * the ready list, so that the next call to
1541 * epoll_wait() will check again the events
1542 * availability. At this point, no one can insert
1543 * into ep->rdllist besides us. The epoll_ctl()
1544 * callers are locked out by
1545 * ep_scan_ready_list() holding "mtx" and the
1546 * poll callback will queue them in ep->ovflist.
1548 list_add_tail(&epi->rdllink, &ep->rdllist);
1549 ep_pm_stay_awake(epi);
1554 return eventcnt;
1557 static int ep_send_events(struct eventpoll *ep,
1558 struct epoll_event __user *events, int maxevents)
1560 struct ep_send_events_data esed;
1562 esed.maxevents = maxevents;
1563 esed.events = events;
1565 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1568 static inline struct timespec ep_set_mstimeout(long ms)
1570 struct timespec now, ts = {
1571 .tv_sec = ms / MSEC_PER_SEC,
1572 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1575 ktime_get_ts(&now);
1576 return timespec_add_safe(now, ts);
1580 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1581 * event buffer.
1583 * @ep: Pointer to the eventpoll context.
1584 * @events: Pointer to the userspace buffer where the ready events should be
1585 * stored.
1586 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1587 * @timeout: Maximum timeout for the ready events fetch operation, in
1588 * milliseconds. If the @timeout is zero, the function will not block,
1589 * while if the @timeout is less than zero, the function will block
1590 * until at least one event has been retrieved (or an error
1591 * occurred).
1593 * Returns: Returns the number of ready events which have been fetched, or an
1594 * error code, in case of error.
1596 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1597 int maxevents, long timeout)
1599 int res = 0, eavail, timed_out = 0;
1600 unsigned long flags;
1601 long slack = 0;
1602 wait_queue_t wait;
1603 ktime_t expires, *to = NULL;
1605 if (timeout > 0) {
1606 struct timespec end_time = ep_set_mstimeout(timeout);
1608 slack = select_estimate_accuracy(&end_time);
1609 to = &expires;
1610 *to = timespec_to_ktime(end_time);
1611 } else if (timeout == 0) {
1613 * Avoid the unnecessary trip to the wait queue loop, if the
1614 * caller specified a non blocking operation.
1616 timed_out = 1;
1617 spin_lock_irqsave(&ep->lock, flags);
1618 goto check_events;
1621 fetch_events:
1622 spin_lock_irqsave(&ep->lock, flags);
1624 if (!ep_events_available(ep)) {
1626 * We don't have any available event to return to the caller.
1627 * We need to sleep here, and we will be wake up by
1628 * ep_poll_callback() when events will become available.
1630 init_waitqueue_entry(&wait, current);
1631 __add_wait_queue_exclusive(&ep->wq, &wait);
1633 for (;;) {
1635 * We don't want to sleep if the ep_poll_callback() sends us
1636 * a wakeup in between. That's why we set the task state
1637 * to TASK_INTERRUPTIBLE before doing the checks.
1639 set_current_state(TASK_INTERRUPTIBLE);
1640 if (ep_events_available(ep) || timed_out)
1641 break;
1642 if (signal_pending(current)) {
1643 res = -EINTR;
1644 break;
1647 spin_unlock_irqrestore(&ep->lock, flags);
1648 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1649 timed_out = 1;
1651 spin_lock_irqsave(&ep->lock, flags);
1654 __remove_wait_queue(&ep->wq, &wait);
1655 __set_current_state(TASK_RUNNING);
1657 check_events:
1658 /* Is it worth to try to dig for events ? */
1659 eavail = ep_events_available(ep);
1661 spin_unlock_irqrestore(&ep->lock, flags);
1664 * Try to transfer events to user space. In case we get 0 events and
1665 * there's still timeout left over, we go trying again in search of
1666 * more luck.
1668 if (!res && eavail &&
1669 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1670 goto fetch_events;
1672 return res;
1676 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1677 * API, to verify that adding an epoll file inside another
1678 * epoll structure, does not violate the constraints, in
1679 * terms of closed loops, or too deep chains (which can
1680 * result in excessive stack usage).
1682 * @priv: Pointer to the epoll file to be currently checked.
1683 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1684 * data structure pointer.
1685 * @call_nests: Current dept of the @ep_call_nested() call stack.
1687 * Returns: Returns zero if adding the epoll @file inside current epoll
1688 * structure @ep does not violate the constraints, or -1 otherwise.
1690 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1692 int error = 0;
1693 struct file *file = priv;
1694 struct eventpoll *ep = file->private_data;
1695 struct eventpoll *ep_tovisit;
1696 struct rb_node *rbp;
1697 struct epitem *epi;
1699 mutex_lock_nested(&ep->mtx, call_nests + 1);
1700 ep->visited = 1;
1701 list_add(&ep->visited_list_link, &visited_list);
1702 for (rbp = rb_first(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1703 epi = rb_entry(rbp, struct epitem, rbn);
1704 if (unlikely(is_file_epoll(epi->ffd.file))) {
1705 ep_tovisit = epi->ffd.file->private_data;
1706 if (ep_tovisit->visited)
1707 continue;
1708 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1709 ep_loop_check_proc, epi->ffd.file,
1710 ep_tovisit, current);
1711 if (error != 0)
1712 break;
1713 } else {
1715 * If we've reached a file that is not associated with
1716 * an ep, then we need to check if the newly added
1717 * links are going to add too many wakeup paths. We do
1718 * this by adding it to the tfile_check_list, if it's
1719 * not already there, and calling reverse_path_check()
1720 * during ep_insert().
1722 if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1723 get_file(epi->ffd.file);
1724 list_add(&epi->ffd.file->f_tfile_llink,
1725 &tfile_check_list);
1729 mutex_unlock(&ep->mtx);
1731 return error;
1735 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1736 * another epoll file (represented by @ep) does not create
1737 * closed loops or too deep chains.
1739 * @ep: Pointer to the epoll private data structure.
1740 * @file: Pointer to the epoll file to be checked.
1742 * Returns: Returns zero if adding the epoll @file inside current epoll
1743 * structure @ep does not violate the constraints, or -1 otherwise.
1745 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1747 int ret;
1748 struct eventpoll *ep_cur, *ep_next;
1750 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1751 ep_loop_check_proc, file, ep, current);
1752 /* clear visited list */
1753 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1754 visited_list_link) {
1755 ep_cur->visited = 0;
1756 list_del(&ep_cur->visited_list_link);
1758 return ret;
1761 static void clear_tfile_check_list(void)
1763 struct file *file;
1765 /* first clear the tfile_check_list */
1766 while (!list_empty(&tfile_check_list)) {
1767 file = list_first_entry(&tfile_check_list, struct file,
1768 f_tfile_llink);
1769 list_del_init(&file->f_tfile_llink);
1770 fput(file);
1772 INIT_LIST_HEAD(&tfile_check_list);
1776 * Open an eventpoll file descriptor.
1778 SYSCALL_DEFINE1(epoll_create1, int, flags)
1780 int error, fd;
1781 struct eventpoll *ep = NULL;
1782 struct file *file;
1784 /* Check the EPOLL_* constant for consistency. */
1785 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1787 if (flags & ~EPOLL_CLOEXEC)
1788 return -EINVAL;
1790 * Create the internal data structure ("struct eventpoll").
1792 error = ep_alloc(&ep);
1793 if (error < 0)
1794 return error;
1796 * Creates all the items needed to setup an eventpoll file. That is,
1797 * a file structure and a free file descriptor.
1799 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1800 if (fd < 0) {
1801 error = fd;
1802 goto out_free_ep;
1804 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1805 O_RDWR | (flags & O_CLOEXEC));
1806 if (IS_ERR(file)) {
1807 error = PTR_ERR(file);
1808 goto out_free_fd;
1810 ep->file = file;
1811 fd_install(fd, file);
1812 return fd;
1814 out_free_fd:
1815 put_unused_fd(fd);
1816 out_free_ep:
1817 ep_free(ep);
1818 return error;
1821 SYSCALL_DEFINE1(epoll_create, int, size)
1823 if (size <= 0)
1824 return -EINVAL;
1826 return sys_epoll_create1(0);
1830 * The following function implements the controller interface for
1831 * the eventpoll file that enables the insertion/removal/change of
1832 * file descriptors inside the interest set.
1834 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1835 struct epoll_event __user *, event)
1837 int error;
1838 int full_check = 0;
1839 struct fd f, tf;
1840 struct eventpoll *ep;
1841 struct epitem *epi;
1842 struct epoll_event epds;
1843 struct eventpoll *tep = NULL;
1845 error = -EFAULT;
1846 if (ep_op_has_event(op) &&
1847 copy_from_user(&epds, event, sizeof(struct epoll_event)))
1848 goto error_return;
1850 error = -EBADF;
1851 f = fdget(epfd);
1852 if (!f.file)
1853 goto error_return;
1855 /* Get the "struct file *" for the target file */
1856 tf = fdget(fd);
1857 if (!tf.file)
1858 goto error_fput;
1860 /* The target file descriptor must support poll */
1861 error = -EPERM;
1862 if (!tf.file->f_op->poll)
1863 goto error_tgt_fput;
1865 /* Check if EPOLLWAKEUP is allowed */
1866 if (ep_op_has_event(op))
1867 ep_take_care_of_epollwakeup(&epds);
1870 * We have to check that the file structure underneath the file descriptor
1871 * the user passed to us _is_ an eventpoll file. And also we do not permit
1872 * adding an epoll file descriptor inside itself.
1874 error = -EINVAL;
1875 if (f.file == tf.file || !is_file_epoll(f.file))
1876 goto error_tgt_fput;
1879 * At this point it is safe to assume that the "private_data" contains
1880 * our own data structure.
1882 ep = f.file->private_data;
1885 * When we insert an epoll file descriptor, inside another epoll file
1886 * descriptor, there is the change of creating closed loops, which are
1887 * better be handled here, than in more critical paths. While we are
1888 * checking for loops we also determine the list of files reachable
1889 * and hang them on the tfile_check_list, so we can check that we
1890 * haven't created too many possible wakeup paths.
1892 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
1893 * the epoll file descriptor is attaching directly to a wakeup source,
1894 * unless the epoll file descriptor is nested. The purpose of taking the
1895 * 'epmutex' on add is to prevent complex toplogies such as loops and
1896 * deep wakeup paths from forming in parallel through multiple
1897 * EPOLL_CTL_ADD operations.
1899 mutex_lock_nested(&ep->mtx, 0);
1900 if (op == EPOLL_CTL_ADD) {
1901 if (!list_empty(&f.file->f_ep_links) ||
1902 is_file_epoll(tf.file)) {
1903 full_check = 1;
1904 mutex_unlock(&ep->mtx);
1905 mutex_lock(&epmutex);
1906 if (is_file_epoll(tf.file)) {
1907 error = -ELOOP;
1908 if (ep_loop_check(ep, tf.file) != 0)
1909 goto error_tgt_fput;
1910 } else {
1911 get_file(tf.file);
1912 list_add(&tf.file->f_tfile_llink,
1913 &tfile_check_list);
1915 mutex_lock_nested(&ep->mtx, 0);
1916 if (is_file_epoll(tf.file)) {
1917 tep = tf.file->private_data;
1918 mutex_lock_nested(&tep->mtx, 1);
1924 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
1925 * above, we can be sure to be able to use the item looked up by
1926 * ep_find() till we release the mutex.
1928 epi = ep_find(ep, tf.file, fd);
1930 error = -EINVAL;
1931 switch (op) {
1932 case EPOLL_CTL_ADD:
1933 if (!epi) {
1934 epds.events |= POLLERR | POLLHUP;
1935 error = ep_insert(ep, &epds, tf.file, fd, full_check);
1936 } else
1937 error = -EEXIST;
1938 break;
1939 case EPOLL_CTL_DEL:
1940 if (epi)
1941 error = ep_remove(ep, epi);
1942 else
1943 error = -ENOENT;
1944 break;
1945 case EPOLL_CTL_MOD:
1946 if (epi) {
1947 epds.events |= POLLERR | POLLHUP;
1948 error = ep_modify(ep, epi, &epds);
1949 } else
1950 error = -ENOENT;
1951 break;
1953 if (tep != NULL)
1954 mutex_unlock(&tep->mtx);
1955 mutex_unlock(&ep->mtx);
1957 error_tgt_fput:
1958 if (full_check) {
1959 clear_tfile_check_list();
1960 mutex_unlock(&epmutex);
1963 fdput(tf);
1964 error_fput:
1965 fdput(f);
1966 error_return:
1968 return error;
1972 * Implement the event wait interface for the eventpoll file. It is the kernel
1973 * part of the user space epoll_wait(2).
1975 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
1976 int, maxevents, int, timeout)
1978 int error;
1979 struct fd f;
1980 struct eventpoll *ep;
1982 /* The maximum number of event must be greater than zero */
1983 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
1984 return -EINVAL;
1986 /* Verify that the area passed by the user is writeable */
1987 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
1988 return -EFAULT;
1990 /* Get the "struct file *" for the eventpoll file */
1991 f = fdget(epfd);
1992 if (!f.file)
1993 return -EBADF;
1996 * We have to check that the file structure underneath the fd
1997 * the user passed to us _is_ an eventpoll file.
1999 error = -EINVAL;
2000 if (!is_file_epoll(f.file))
2001 goto error_fput;
2004 * At this point it is safe to assume that the "private_data" contains
2005 * our own data structure.
2007 ep = f.file->private_data;
2009 /* Time to fish for events ... */
2010 error = ep_poll(ep, events, maxevents, timeout);
2012 error_fput:
2013 fdput(f);
2014 return error;
2018 * Implement the event wait interface for the eventpoll file. It is the kernel
2019 * part of the user space epoll_pwait(2).
2021 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2022 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2023 size_t, sigsetsize)
2025 int error;
2026 sigset_t ksigmask, sigsaved;
2029 * If the caller wants a certain signal mask to be set during the wait,
2030 * we apply it here.
2032 if (sigmask) {
2033 if (sigsetsize != sizeof(sigset_t))
2034 return -EINVAL;
2035 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2036 return -EFAULT;
2037 sigsaved = current->blocked;
2038 set_current_blocked(&ksigmask);
2041 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2044 * If we changed the signal mask, we need to restore the original one.
2045 * In case we've got a signal while waiting, we do not restore the
2046 * signal mask yet, and we allow do_signal() to deliver the signal on
2047 * the way back to userspace, before the signal mask is restored.
2049 if (sigmask) {
2050 if (error == -EINTR) {
2051 memcpy(&current->saved_sigmask, &sigsaved,
2052 sizeof(sigsaved));
2053 set_restore_sigmask();
2054 } else
2055 set_current_blocked(&sigsaved);
2058 return error;
2061 #ifdef CONFIG_COMPAT
2062 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2063 struct epoll_event __user *, events,
2064 int, maxevents, int, timeout,
2065 const compat_sigset_t __user *, sigmask,
2066 compat_size_t, sigsetsize)
2068 long err;
2069 compat_sigset_t csigmask;
2070 sigset_t ksigmask, sigsaved;
2073 * If the caller wants a certain signal mask to be set during the wait,
2074 * we apply it here.
2076 if (sigmask) {
2077 if (sigsetsize != sizeof(compat_sigset_t))
2078 return -EINVAL;
2079 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2080 return -EFAULT;
2081 sigset_from_compat(&ksigmask, &csigmask);
2082 sigsaved = current->blocked;
2083 set_current_blocked(&ksigmask);
2086 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2089 * If we changed the signal mask, we need to restore the original one.
2090 * In case we've got a signal while waiting, we do not restore the
2091 * signal mask yet, and we allow do_signal() to deliver the signal on
2092 * the way back to userspace, before the signal mask is restored.
2094 if (sigmask) {
2095 if (err == -EINTR) {
2096 memcpy(&current->saved_sigmask, &sigsaved,
2097 sizeof(sigsaved));
2098 set_restore_sigmask();
2099 } else
2100 set_current_blocked(&sigsaved);
2103 return err;
2105 #endif
2107 static int __init eventpoll_init(void)
2109 struct sysinfo si;
2111 si_meminfo(&si);
2113 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2115 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2116 EP_ITEM_COST;
2117 BUG_ON(max_user_watches < 0);
2120 * Initialize the structure used to perform epoll file descriptor
2121 * inclusion loops checks.
2123 ep_nested_calls_init(&poll_loop_ncalls);
2125 /* Initialize the structure used to perform safe poll wait head wake ups */
2126 ep_nested_calls_init(&poll_safewake_ncalls);
2128 /* Initialize the structure used to perform file's f_op->poll() calls */
2129 ep_nested_calls_init(&poll_readywalk_ncalls);
2132 * We can have many thousands of epitems, so prevent this from
2133 * using an extra cache line on 64-bit (and smaller) CPUs
2135 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2137 /* Allocates slab cache used to allocate "struct epitem" items */
2138 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2139 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2141 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2142 pwq_cache = kmem_cache_create("eventpoll_pwq",
2143 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2145 return 0;
2147 fs_initcall(eventpoll_init);