4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
65 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable
= 0;
72 static LIST_HEAD(formats
);
73 static DEFINE_RWLOCK(binfmt_lock
);
75 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 if (WARN_ON(!fmt
->load_binary
))
80 write_lock(&binfmt_lock
);
81 insert
? list_add(&fmt
->lh
, &formats
) :
82 list_add_tail(&fmt
->lh
, &formats
);
83 write_unlock(&binfmt_lock
);
86 EXPORT_SYMBOL(__register_binfmt
);
88 void unregister_binfmt(struct linux_binfmt
* fmt
)
90 write_lock(&binfmt_lock
);
92 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(unregister_binfmt
);
97 static inline void put_binfmt(struct linux_binfmt
* fmt
)
99 module_put(fmt
->module
);
102 bool path_noexec(const struct path
*path
)
104 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
105 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
117 struct linux_binfmt
*fmt
;
119 struct filename
*tmp
= getname(library
);
120 int error
= PTR_ERR(tmp
);
121 static const struct open_flags uselib_flags
= {
122 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
123 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
124 .intent
= LOOKUP_OPEN
,
125 .lookup_flags
= LOOKUP_FOLLOW
,
131 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
133 error
= PTR_ERR(file
);
138 if (!S_ISREG(file_inode(file
)->i_mode
))
142 if (path_noexec(&file
->f_path
))
149 read_lock(&binfmt_lock
);
150 list_for_each_entry(fmt
, &formats
, lh
) {
151 if (!fmt
->load_shlib
)
153 if (!try_module_get(fmt
->module
))
155 read_unlock(&binfmt_lock
);
156 error
= fmt
->load_shlib(file
);
157 read_lock(&binfmt_lock
);
159 if (error
!= -ENOEXEC
)
162 read_unlock(&binfmt_lock
);
168 #endif /* #ifdef CONFIG_USELIB */
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
179 struct mm_struct
*mm
= current
->mm
;
180 long diff
= (long)(pages
- bprm
->vma_pages
);
185 bprm
->vma_pages
= pages
;
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
194 unsigned int gup_flags
= FOLL_FORCE
;
196 #ifdef CONFIG_STACK_GROWSUP
198 ret
= expand_downwards(bprm
->vma
, pos
);
205 gup_flags
|= FOLL_WRITE
;
207 ret
= get_user_pages(current
, bprm
->mm
, pos
, 1, gup_flags
,
213 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
214 unsigned long ptr_size
, limit
;
217 * Since the stack will hold pointers to the strings, we
218 * must account for them as well.
220 * The size calculation is the entire vma while each arg page is
221 * built, so each time we get here it's calculating how far it
222 * is currently (rather than each call being just the newly
223 * added size from the arg page). As a result, we need to
224 * always add the entire size of the pointers, so that on the
225 * last call to get_arg_page() we'll actually have the entire
228 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
229 if (ptr_size
> ULONG_MAX
- size
)
233 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
236 * We've historically supported up to 32 pages (ARG_MAX)
237 * of argument strings even with small stacks
243 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
244 * (whichever is smaller) for the argv+env strings.
246 * - the remaining binfmt code will not run out of stack space,
247 * - the program will have a reasonable amount of stack left
250 limit
= _STK_LIM
/ 4 * 3;
251 limit
= min(limit
, rlimit(RLIMIT_STACK
) / 4);
263 static void put_arg_page(struct page
*page
)
268 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
272 static void free_arg_pages(struct linux_binprm
*bprm
)
276 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
279 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
282 static int __bprm_mm_init(struct linux_binprm
*bprm
)
285 struct vm_area_struct
*vma
= NULL
;
286 struct mm_struct
*mm
= bprm
->mm
;
288 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
292 down_write(&mm
->mmap_sem
);
296 * Place the stack at the largest stack address the architecture
297 * supports. Later, we'll move this to an appropriate place. We don't
298 * use STACK_TOP because that can depend on attributes which aren't
301 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
302 vma
->vm_end
= STACK_TOP_MAX
;
303 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
304 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
305 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
306 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
308 err
= insert_vm_struct(mm
, vma
);
312 mm
->stack_vm
= mm
->total_vm
= 1;
313 arch_bprm_mm_init(mm
, vma
);
314 up_write(&mm
->mmap_sem
);
315 bprm
->p
= vma
->vm_end
- sizeof(void *);
318 up_write(&mm
->mmap_sem
);
320 kmem_cache_free(vm_area_cachep
, vma
);
324 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
326 return len
<= MAX_ARG_STRLEN
;
331 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
335 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
340 page
= bprm
->page
[pos
/ PAGE_SIZE
];
341 if (!page
&& write
) {
342 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
345 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
351 static void put_arg_page(struct page
*page
)
355 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
358 __free_page(bprm
->page
[i
]);
359 bprm
->page
[i
] = NULL
;
363 static void free_arg_pages(struct linux_binprm
*bprm
)
367 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
368 free_arg_page(bprm
, i
);
371 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
376 static int __bprm_mm_init(struct linux_binprm
*bprm
)
378 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
382 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
384 return len
<= bprm
->p
;
387 #endif /* CONFIG_MMU */
390 * Create a new mm_struct and populate it with a temporary stack
391 * vm_area_struct. We don't have enough context at this point to set the stack
392 * flags, permissions, and offset, so we use temporary values. We'll update
393 * them later in setup_arg_pages().
395 static int bprm_mm_init(struct linux_binprm
*bprm
)
398 struct mm_struct
*mm
= NULL
;
400 bprm
->mm
= mm
= mm_alloc();
405 err
= __bprm_mm_init(bprm
);
420 struct user_arg_ptr
{
425 const char __user
*const __user
*native
;
427 const compat_uptr_t __user
*compat
;
432 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
434 const char __user
*native
;
437 if (unlikely(argv
.is_compat
)) {
438 compat_uptr_t compat
;
440 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
441 return ERR_PTR(-EFAULT
);
443 return compat_ptr(compat
);
447 if (get_user(native
, argv
.ptr
.native
+ nr
))
448 return ERR_PTR(-EFAULT
);
454 * count() counts the number of strings in array ARGV.
456 static int count(struct user_arg_ptr argv
, int max
)
460 if (argv
.ptr
.native
!= NULL
) {
462 const char __user
*p
= get_user_arg_ptr(argv
, i
);
474 if (fatal_signal_pending(current
))
475 return -ERESTARTNOHAND
;
483 * 'copy_strings()' copies argument/environment strings from the old
484 * processes's memory to the new process's stack. The call to get_user_pages()
485 * ensures the destination page is created and not swapped out.
487 static int copy_strings(int argc
, struct user_arg_ptr argv
,
488 struct linux_binprm
*bprm
)
490 struct page
*kmapped_page
= NULL
;
492 unsigned long kpos
= 0;
496 const char __user
*str
;
501 str
= get_user_arg_ptr(argv
, argc
);
505 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
510 if (!valid_arg_len(bprm
, len
))
513 /* We're going to work our way backwords. */
519 int offset
, bytes_to_copy
;
521 if (fatal_signal_pending(current
)) {
522 ret
= -ERESTARTNOHAND
;
527 offset
= pos
% PAGE_SIZE
;
531 bytes_to_copy
= offset
;
532 if (bytes_to_copy
> len
)
535 offset
-= bytes_to_copy
;
536 pos
-= bytes_to_copy
;
537 str
-= bytes_to_copy
;
538 len
-= bytes_to_copy
;
540 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
543 page
= get_arg_page(bprm
, pos
, 1);
550 flush_kernel_dcache_page(kmapped_page
);
551 kunmap(kmapped_page
);
552 put_arg_page(kmapped_page
);
555 kaddr
= kmap(kmapped_page
);
556 kpos
= pos
& PAGE_MASK
;
557 flush_arg_page(bprm
, kpos
, kmapped_page
);
559 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
568 flush_kernel_dcache_page(kmapped_page
);
569 kunmap(kmapped_page
);
570 put_arg_page(kmapped_page
);
576 * Like copy_strings, but get argv and its values from kernel memory.
578 int copy_strings_kernel(int argc
, const char *const *__argv
,
579 struct linux_binprm
*bprm
)
582 mm_segment_t oldfs
= get_fs();
583 struct user_arg_ptr argv
= {
584 .ptr
.native
= (const char __user
*const __user
*)__argv
,
588 r
= copy_strings(argc
, argv
, bprm
);
593 EXPORT_SYMBOL(copy_strings_kernel
);
598 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
599 * the binfmt code determines where the new stack should reside, we shift it to
600 * its final location. The process proceeds as follows:
602 * 1) Use shift to calculate the new vma endpoints.
603 * 2) Extend vma to cover both the old and new ranges. This ensures the
604 * arguments passed to subsequent functions are consistent.
605 * 3) Move vma's page tables to the new range.
606 * 4) Free up any cleared pgd range.
607 * 5) Shrink the vma to cover only the new range.
609 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
611 struct mm_struct
*mm
= vma
->vm_mm
;
612 unsigned long old_start
= vma
->vm_start
;
613 unsigned long old_end
= vma
->vm_end
;
614 unsigned long length
= old_end
- old_start
;
615 unsigned long new_start
= old_start
- shift
;
616 unsigned long new_end
= old_end
- shift
;
617 struct mmu_gather tlb
;
619 BUG_ON(new_start
> new_end
);
622 * ensure there are no vmas between where we want to go
625 if (vma
!= find_vma(mm
, new_start
))
629 * cover the whole range: [new_start, old_end)
631 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
635 * move the page tables downwards, on failure we rely on
636 * process cleanup to remove whatever mess we made.
638 if (length
!= move_page_tables(vma
, old_start
,
639 vma
, new_start
, length
, false))
643 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
644 if (new_end
> old_start
) {
646 * when the old and new regions overlap clear from new_end.
648 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
649 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
652 * otherwise, clean from old_start; this is done to not touch
653 * the address space in [new_end, old_start) some architectures
654 * have constraints on va-space that make this illegal (IA64) -
655 * for the others its just a little faster.
657 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
658 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
660 tlb_finish_mmu(&tlb
, old_start
, old_end
);
663 * Shrink the vma to just the new range. Always succeeds.
665 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
671 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
672 * the stack is optionally relocated, and some extra space is added.
674 int setup_arg_pages(struct linux_binprm
*bprm
,
675 unsigned long stack_top
,
676 int executable_stack
)
679 unsigned long stack_shift
;
680 struct mm_struct
*mm
= current
->mm
;
681 struct vm_area_struct
*vma
= bprm
->vma
;
682 struct vm_area_struct
*prev
= NULL
;
683 unsigned long vm_flags
;
684 unsigned long stack_base
;
685 unsigned long stack_size
;
686 unsigned long stack_expand
;
687 unsigned long rlim_stack
;
689 #ifdef CONFIG_STACK_GROWSUP
690 /* Limit stack size */
691 stack_base
= rlimit_max(RLIMIT_STACK
);
692 if (stack_base
> STACK_SIZE_MAX
)
693 stack_base
= STACK_SIZE_MAX
;
695 /* Add space for stack randomization. */
696 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
698 /* Make sure we didn't let the argument array grow too large. */
699 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
702 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
704 stack_shift
= vma
->vm_start
- stack_base
;
705 mm
->arg_start
= bprm
->p
- stack_shift
;
706 bprm
->p
= vma
->vm_end
- stack_shift
;
708 stack_top
= arch_align_stack(stack_top
);
709 stack_top
= PAGE_ALIGN(stack_top
);
711 if (unlikely(stack_top
< mmap_min_addr
) ||
712 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
715 stack_shift
= vma
->vm_end
- stack_top
;
717 bprm
->p
-= stack_shift
;
718 mm
->arg_start
= bprm
->p
;
722 bprm
->loader
-= stack_shift
;
723 bprm
->exec
-= stack_shift
;
725 down_write(&mm
->mmap_sem
);
726 vm_flags
= VM_STACK_FLAGS
;
729 * Adjust stack execute permissions; explicitly enable for
730 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
731 * (arch default) otherwise.
733 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
735 else if (executable_stack
== EXSTACK_DISABLE_X
)
736 vm_flags
&= ~VM_EXEC
;
737 vm_flags
|= mm
->def_flags
;
738 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
740 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
746 /* Move stack pages down in memory. */
748 ret
= shift_arg_pages(vma
, stack_shift
);
753 /* mprotect_fixup is overkill to remove the temporary stack flags */
754 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
756 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
757 stack_size
= vma
->vm_end
- vma
->vm_start
;
759 * Align this down to a page boundary as expand_stack
762 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
763 #ifdef CONFIG_STACK_GROWSUP
764 if (stack_size
+ stack_expand
> rlim_stack
)
765 stack_base
= vma
->vm_start
+ rlim_stack
;
767 stack_base
= vma
->vm_end
+ stack_expand
;
769 if (stack_size
+ stack_expand
> rlim_stack
)
770 stack_base
= vma
->vm_end
- rlim_stack
;
772 stack_base
= vma
->vm_start
- stack_expand
;
774 current
->mm
->start_stack
= bprm
->p
;
775 ret
= expand_stack(vma
, stack_base
);
780 up_write(&mm
->mmap_sem
);
783 EXPORT_SYMBOL(setup_arg_pages
);
785 #endif /* CONFIG_MMU */
787 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
791 struct open_flags open_exec_flags
= {
792 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
793 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
794 .intent
= LOOKUP_OPEN
,
795 .lookup_flags
= LOOKUP_FOLLOW
,
798 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
799 return ERR_PTR(-EINVAL
);
800 if (flags
& AT_SYMLINK_NOFOLLOW
)
801 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
802 if (flags
& AT_EMPTY_PATH
)
803 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
805 file
= do_filp_open(fd
, name
, &open_exec_flags
);
810 if (!S_ISREG(file_inode(file
)->i_mode
))
813 if (path_noexec(&file
->f_path
))
816 err
= deny_write_access(file
);
820 if (name
->name
[0] != '\0')
831 struct file
*open_exec(const char *name
)
833 struct filename
*filename
= getname_kernel(name
);
834 struct file
*f
= ERR_CAST(filename
);
836 if (!IS_ERR(filename
)) {
837 f
= do_open_execat(AT_FDCWD
, filename
, 0);
842 EXPORT_SYMBOL(open_exec
);
844 int kernel_read(struct file
*file
, loff_t offset
,
845 char *addr
, unsigned long count
)
853 /* The cast to a user pointer is valid due to the set_fs() */
854 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
859 EXPORT_SYMBOL(kernel_read
);
861 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
863 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
865 flush_icache_range(addr
, addr
+ len
);
868 EXPORT_SYMBOL(read_code
);
870 static int exec_mmap(struct mm_struct
*mm
)
872 struct task_struct
*tsk
;
873 struct mm_struct
*old_mm
, *active_mm
;
875 /* Notify parent that we're no longer interested in the old VM */
877 old_mm
= current
->mm
;
878 mm_release(tsk
, old_mm
);
883 * Make sure that if there is a core dump in progress
884 * for the old mm, we get out and die instead of going
885 * through with the exec. We must hold mmap_sem around
886 * checking core_state and changing tsk->mm.
888 down_read(&old_mm
->mmap_sem
);
889 if (unlikely(old_mm
->core_state
)) {
890 up_read(&old_mm
->mmap_sem
);
895 active_mm
= tsk
->active_mm
;
898 activate_mm(active_mm
, mm
);
899 tsk
->mm
->vmacache_seqnum
= 0;
903 up_read(&old_mm
->mmap_sem
);
904 BUG_ON(active_mm
!= old_mm
);
905 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
906 mm_update_next_owner(old_mm
);
915 * This function makes sure the current process has its own signal table,
916 * so that flush_signal_handlers can later reset the handlers without
917 * disturbing other processes. (Other processes might share the signal
918 * table via the CLONE_SIGHAND option to clone().)
920 static int de_thread(struct task_struct
*tsk
)
922 struct signal_struct
*sig
= tsk
->signal
;
923 struct sighand_struct
*oldsighand
= tsk
->sighand
;
924 spinlock_t
*lock
= &oldsighand
->siglock
;
926 if (thread_group_empty(tsk
))
927 goto no_thread_group
;
930 * Kill all other threads in the thread group.
933 if (signal_group_exit(sig
)) {
935 * Another group action in progress, just
936 * return so that the signal is processed.
938 spin_unlock_irq(lock
);
942 sig
->group_exit_task
= tsk
;
943 sig
->notify_count
= zap_other_threads(tsk
);
944 if (!thread_group_leader(tsk
))
947 while (sig
->notify_count
) {
948 __set_current_state(TASK_KILLABLE
);
949 spin_unlock_irq(lock
);
951 if (unlikely(__fatal_signal_pending(tsk
)))
955 spin_unlock_irq(lock
);
958 * At this point all other threads have exited, all we have to
959 * do is to wait for the thread group leader to become inactive,
960 * and to assume its PID:
962 if (!thread_group_leader(tsk
)) {
963 struct task_struct
*leader
= tsk
->group_leader
;
966 threadgroup_change_begin(tsk
);
967 write_lock_irq(&tasklist_lock
);
969 * Do this under tasklist_lock to ensure that
970 * exit_notify() can't miss ->group_exit_task
972 sig
->notify_count
= -1;
973 if (likely(leader
->exit_state
))
975 __set_current_state(TASK_KILLABLE
);
976 write_unlock_irq(&tasklist_lock
);
977 threadgroup_change_end(tsk
);
979 if (unlikely(__fatal_signal_pending(tsk
)))
984 * The only record we have of the real-time age of a
985 * process, regardless of execs it's done, is start_time.
986 * All the past CPU time is accumulated in signal_struct
987 * from sister threads now dead. But in this non-leader
988 * exec, nothing survives from the original leader thread,
989 * whose birth marks the true age of this process now.
990 * When we take on its identity by switching to its PID, we
991 * also take its birthdate (always earlier than our own).
993 tsk
->start_time
= leader
->start_time
;
994 tsk
->real_start_time
= leader
->real_start_time
;
996 BUG_ON(!same_thread_group(leader
, tsk
));
997 BUG_ON(has_group_leader_pid(tsk
));
999 * An exec() starts a new thread group with the
1000 * TGID of the previous thread group. Rehash the
1001 * two threads with a switched PID, and release
1002 * the former thread group leader:
1005 /* Become a process group leader with the old leader's pid.
1006 * The old leader becomes a thread of the this thread group.
1007 * Note: The old leader also uses this pid until release_task
1008 * is called. Odd but simple and correct.
1010 tsk
->pid
= leader
->pid
;
1011 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1012 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1013 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1015 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1016 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1018 tsk
->group_leader
= tsk
;
1019 leader
->group_leader
= tsk
;
1021 tsk
->exit_signal
= SIGCHLD
;
1022 leader
->exit_signal
= -1;
1024 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1025 leader
->exit_state
= EXIT_DEAD
;
1028 * We are going to release_task()->ptrace_unlink() silently,
1029 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1030 * the tracer wont't block again waiting for this thread.
1032 if (unlikely(leader
->ptrace
))
1033 __wake_up_parent(leader
, leader
->parent
);
1034 write_unlock_irq(&tasklist_lock
);
1035 threadgroup_change_end(tsk
);
1037 release_task(leader
);
1040 sig
->group_exit_task
= NULL
;
1041 sig
->notify_count
= 0;
1044 /* we have changed execution domain */
1045 tsk
->exit_signal
= SIGCHLD
;
1048 flush_itimer_signals();
1050 if (atomic_read(&oldsighand
->count
) != 1) {
1051 struct sighand_struct
*newsighand
;
1053 * This ->sighand is shared with the CLONE_SIGHAND
1054 * but not CLONE_THREAD task, switch to the new one.
1056 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1060 atomic_set(&newsighand
->count
, 1);
1061 memcpy(newsighand
->action
, oldsighand
->action
,
1062 sizeof(newsighand
->action
));
1064 write_lock_irq(&tasklist_lock
);
1065 spin_lock(&oldsighand
->siglock
);
1066 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1067 spin_unlock(&oldsighand
->siglock
);
1068 write_unlock_irq(&tasklist_lock
);
1070 __cleanup_sighand(oldsighand
);
1073 BUG_ON(!thread_group_leader(tsk
));
1077 /* protects against exit_notify() and __exit_signal() */
1078 read_lock(&tasklist_lock
);
1079 sig
->group_exit_task
= NULL
;
1080 sig
->notify_count
= 0;
1081 read_unlock(&tasklist_lock
);
1085 char *__get_task_comm(char *buf
, size_t buf_size
, struct task_struct
*tsk
)
1088 strncpy(buf
, tsk
->comm
, buf_size
);
1092 EXPORT_SYMBOL_GPL(__get_task_comm
);
1095 * These functions flushes out all traces of the currently running executable
1096 * so that a new one can be started
1099 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1102 trace_task_rename(tsk
, buf
);
1103 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1105 perf_event_comm(tsk
, exec
);
1108 int flush_old_exec(struct linux_binprm
* bprm
)
1113 * Make sure we have a private signal table and that
1114 * we are unassociated from the previous thread group.
1116 retval
= de_thread(current
);
1121 * Must be called _before_ exec_mmap() as bprm->mm is
1122 * not visibile until then. This also enables the update
1125 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1127 would_dump(bprm
, bprm
->file
);
1130 * Release all of the old mmap stuff
1132 acct_arg_size(bprm
, 0);
1133 retval
= exec_mmap(bprm
->mm
);
1137 bprm
->mm
= NULL
; /* We're using it now */
1140 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1141 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1143 current
->personality
&= ~bprm
->per_clear
;
1146 * We have to apply CLOEXEC before we change whether the process is
1147 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1148 * trying to access the should-be-closed file descriptors of a process
1149 * undergoing exec(2).
1151 do_close_on_exec(current
->files
);
1157 EXPORT_SYMBOL(flush_old_exec
);
1159 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1161 struct inode
*inode
= file_inode(file
);
1162 if (inode_permission(inode
, MAY_READ
) < 0) {
1163 struct user_namespace
*old
, *user_ns
;
1164 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1166 /* Ensure mm->user_ns contains the executable */
1167 user_ns
= old
= bprm
->mm
->user_ns
;
1168 while ((user_ns
!= &init_user_ns
) &&
1169 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1170 user_ns
= user_ns
->parent
;
1172 if (old
!= user_ns
) {
1173 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1178 EXPORT_SYMBOL(would_dump
);
1180 void setup_new_exec(struct linux_binprm
* bprm
)
1182 arch_pick_mmap_layout(current
->mm
);
1184 /* This is the point of no return */
1185 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1187 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1188 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1190 set_dumpable(current
->mm
, suid_dumpable
);
1193 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1195 /* Set the new mm task size. We have to do that late because it may
1196 * depend on TIF_32BIT which is only updated in flush_thread() on
1197 * some architectures like powerpc
1199 current
->mm
->task_size
= TASK_SIZE
;
1201 /* install the new credentials */
1202 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1203 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1204 current
->pdeath_signal
= 0;
1206 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1207 set_dumpable(current
->mm
, suid_dumpable
);
1210 /* An exec changes our domain. We are no longer part of the thread
1212 WRITE_ONCE(current
->self_exec_id
, current
->self_exec_id
+ 1);
1213 flush_signal_handlers(current
, 0);
1215 EXPORT_SYMBOL(setup_new_exec
);
1218 * Prepare credentials and lock ->cred_guard_mutex.
1219 * install_exec_creds() commits the new creds and drops the lock.
1220 * Or, if exec fails before, free_bprm() should release ->cred and
1223 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1225 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1226 return -ERESTARTNOINTR
;
1228 bprm
->cred
= prepare_exec_creds();
1229 if (likely(bprm
->cred
))
1232 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1236 static void free_bprm(struct linux_binprm
*bprm
)
1238 free_arg_pages(bprm
);
1240 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1241 abort_creds(bprm
->cred
);
1244 allow_write_access(bprm
->file
);
1247 /* If a binfmt changed the interp, free it. */
1248 if (bprm
->interp
!= bprm
->filename
)
1249 kfree(bprm
->interp
);
1253 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1255 /* If a binfmt changed the interp, free it first. */
1256 if (bprm
->interp
!= bprm
->filename
)
1257 kfree(bprm
->interp
);
1258 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1263 EXPORT_SYMBOL(bprm_change_interp
);
1266 * install the new credentials for this executable
1268 void install_exec_creds(struct linux_binprm
*bprm
)
1270 security_bprm_committing_creds(bprm
);
1272 commit_creds(bprm
->cred
);
1276 * Disable monitoring for regular users
1277 * when executing setuid binaries. Must
1278 * wait until new credentials are committed
1279 * by commit_creds() above
1281 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1282 perf_event_exit_task(current
);
1284 * cred_guard_mutex must be held at least to this point to prevent
1285 * ptrace_attach() from altering our determination of the task's
1286 * credentials; any time after this it may be unlocked.
1288 security_bprm_committed_creds(bprm
);
1289 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1291 EXPORT_SYMBOL(install_exec_creds
);
1294 * determine how safe it is to execute the proposed program
1295 * - the caller must hold ->cred_guard_mutex to protect against
1296 * PTRACE_ATTACH or seccomp thread-sync
1298 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1300 struct task_struct
*p
= current
, *t
;
1304 if (ptracer_capable(p
, current_user_ns()))
1305 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1307 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1311 * This isn't strictly necessary, but it makes it harder for LSMs to
1314 if (task_no_new_privs(current
))
1315 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1319 spin_lock(&p
->fs
->lock
);
1321 while_each_thread(p
, t
) {
1327 if (p
->fs
->users
> n_fs
)
1328 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1331 spin_unlock(&p
->fs
->lock
);
1334 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1336 struct inode
*inode
;
1341 /* clear any previous set[ug]id data from a previous binary */
1342 bprm
->cred
->euid
= current_euid();
1343 bprm
->cred
->egid
= current_egid();
1345 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
1348 if (task_no_new_privs(current
))
1351 inode
= file_inode(bprm
->file
);
1352 mode
= READ_ONCE(inode
->i_mode
);
1353 if (!(mode
& (S_ISUID
|S_ISGID
)))
1356 /* Be careful if suid/sgid is set */
1357 mutex_lock(&inode
->i_mutex
);
1359 /* reload atomically mode/uid/gid now that lock held */
1360 mode
= inode
->i_mode
;
1363 mutex_unlock(&inode
->i_mutex
);
1365 /* We ignore suid/sgid if there are no mappings for them in the ns */
1366 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1367 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1370 if (mode
& S_ISUID
) {
1371 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1372 bprm
->cred
->euid
= uid
;
1375 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1376 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1377 bprm
->cred
->egid
= gid
;
1382 * Fill the binprm structure from the inode.
1383 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1385 * This may be called multiple times for binary chains (scripts for example).
1387 int prepare_binprm(struct linux_binprm
*bprm
)
1391 bprm_fill_uid(bprm
);
1393 /* fill in binprm security blob */
1394 retval
= security_bprm_set_creds(bprm
);
1397 bprm
->cred_prepared
= 1;
1399 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1400 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1403 EXPORT_SYMBOL(prepare_binprm
);
1406 * Arguments are '\0' separated strings found at the location bprm->p
1407 * points to; chop off the first by relocating brpm->p to right after
1408 * the first '\0' encountered.
1410 int remove_arg_zero(struct linux_binprm
*bprm
)
1413 unsigned long offset
;
1421 offset
= bprm
->p
& ~PAGE_MASK
;
1422 page
= get_arg_page(bprm
, bprm
->p
, 0);
1427 kaddr
= kmap_atomic(page
);
1429 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1430 offset
++, bprm
->p
++)
1433 kunmap_atomic(kaddr
);
1436 if (offset
== PAGE_SIZE
)
1437 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1438 } while (offset
== PAGE_SIZE
);
1447 EXPORT_SYMBOL(remove_arg_zero
);
1449 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1451 * cycle the list of binary formats handler, until one recognizes the image
1453 int search_binary_handler(struct linux_binprm
*bprm
)
1455 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1456 struct linux_binfmt
*fmt
;
1459 /* This allows 4 levels of binfmt rewrites before failing hard. */
1460 if (bprm
->recursion_depth
> 5)
1463 retval
= security_bprm_check(bprm
);
1469 read_lock(&binfmt_lock
);
1470 list_for_each_entry(fmt
, &formats
, lh
) {
1471 if (!try_module_get(fmt
->module
))
1473 read_unlock(&binfmt_lock
);
1474 bprm
->recursion_depth
++;
1475 retval
= fmt
->load_binary(bprm
);
1476 read_lock(&binfmt_lock
);
1478 bprm
->recursion_depth
--;
1479 if (retval
< 0 && !bprm
->mm
) {
1480 /* we got to flush_old_exec() and failed after it */
1481 read_unlock(&binfmt_lock
);
1482 force_sigsegv(SIGSEGV
, current
);
1485 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1486 read_unlock(&binfmt_lock
);
1490 read_unlock(&binfmt_lock
);
1493 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1494 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1496 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1504 EXPORT_SYMBOL(search_binary_handler
);
1506 static int exec_binprm(struct linux_binprm
*bprm
)
1508 pid_t old_pid
, old_vpid
;
1511 /* Need to fetch pid before load_binary changes it */
1512 old_pid
= current
->pid
;
1514 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1517 ret
= search_binary_handler(bprm
);
1520 trace_sched_process_exec(current
, old_pid
, bprm
);
1521 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1522 proc_exec_connector(current
);
1529 * sys_execve() executes a new program.
1531 static int do_execveat_common(int fd
, struct filename
*filename
,
1532 struct user_arg_ptr argv
,
1533 struct user_arg_ptr envp
,
1536 char *pathbuf
= NULL
;
1537 struct linux_binprm
*bprm
;
1539 struct files_struct
*displaced
;
1542 if (IS_ERR(filename
))
1543 return PTR_ERR(filename
);
1546 * We move the actual failure in case of RLIMIT_NPROC excess from
1547 * set*uid() to execve() because too many poorly written programs
1548 * don't check setuid() return code. Here we additionally recheck
1549 * whether NPROC limit is still exceeded.
1551 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1552 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1557 /* We're below the limit (still or again), so we don't want to make
1558 * further execve() calls fail. */
1559 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1561 retval
= unshare_files(&displaced
);
1566 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1570 retval
= prepare_bprm_creds(bprm
);
1574 check_unsafe_exec(bprm
);
1575 current
->in_execve
= 1;
1577 file
= do_open_execat(fd
, filename
, flags
);
1578 retval
= PTR_ERR(file
);
1585 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1586 bprm
->filename
= filename
->name
;
1588 if (filename
->name
[0] == '\0')
1589 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d", fd
);
1591 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d/%s",
1592 fd
, filename
->name
);
1598 * Record that a name derived from an O_CLOEXEC fd will be
1599 * inaccessible after exec. Relies on having exclusive access to
1600 * current->files (due to unshare_files above).
1602 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1603 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1604 bprm
->filename
= pathbuf
;
1606 bprm
->interp
= bprm
->filename
;
1608 retval
= bprm_mm_init(bprm
);
1612 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1613 if ((retval
= bprm
->argc
) < 0)
1616 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1617 if ((retval
= bprm
->envc
) < 0)
1620 retval
= prepare_binprm(bprm
);
1624 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1628 bprm
->exec
= bprm
->p
;
1629 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1633 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1637 retval
= exec_binprm(bprm
);
1641 /* execve succeeded */
1642 current
->fs
->in_exec
= 0;
1643 current
->in_execve
= 0;
1644 acct_update_integrals(current
);
1645 task_numa_free(current
, false);
1650 put_files_struct(displaced
);
1655 acct_arg_size(bprm
, 0);
1660 current
->fs
->in_exec
= 0;
1661 current
->in_execve
= 0;
1669 reset_files_struct(displaced
);
1675 int do_execve(struct filename
*filename
,
1676 const char __user
*const __user
*__argv
,
1677 const char __user
*const __user
*__envp
)
1679 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1680 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1681 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1684 int do_execveat(int fd
, struct filename
*filename
,
1685 const char __user
*const __user
*__argv
,
1686 const char __user
*const __user
*__envp
,
1689 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1690 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1692 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1695 #ifdef CONFIG_COMPAT
1696 static int compat_do_execve(struct filename
*filename
,
1697 const compat_uptr_t __user
*__argv
,
1698 const compat_uptr_t __user
*__envp
)
1700 struct user_arg_ptr argv
= {
1702 .ptr
.compat
= __argv
,
1704 struct user_arg_ptr envp
= {
1706 .ptr
.compat
= __envp
,
1708 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1711 static int compat_do_execveat(int fd
, struct filename
*filename
,
1712 const compat_uptr_t __user
*__argv
,
1713 const compat_uptr_t __user
*__envp
,
1716 struct user_arg_ptr argv
= {
1718 .ptr
.compat
= __argv
,
1720 struct user_arg_ptr envp
= {
1722 .ptr
.compat
= __envp
,
1724 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1728 void set_binfmt(struct linux_binfmt
*new)
1730 struct mm_struct
*mm
= current
->mm
;
1733 module_put(mm
->binfmt
->module
);
1737 __module_get(new->module
);
1739 EXPORT_SYMBOL(set_binfmt
);
1742 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1744 void set_dumpable(struct mm_struct
*mm
, int value
)
1746 unsigned long old
, new;
1748 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1752 old
= ACCESS_ONCE(mm
->flags
);
1753 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1754 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1757 SYSCALL_DEFINE3(execve
,
1758 const char __user
*, filename
,
1759 const char __user
*const __user
*, argv
,
1760 const char __user
*const __user
*, envp
)
1762 return do_execve(getname(filename
), argv
, envp
);
1765 SYSCALL_DEFINE5(execveat
,
1766 int, fd
, const char __user
*, filename
,
1767 const char __user
*const __user
*, argv
,
1768 const char __user
*const __user
*, envp
,
1771 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1773 return do_execveat(fd
,
1774 getname_flags(filename
, lookup_flags
, NULL
),
1778 #ifdef CONFIG_COMPAT
1779 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1780 const compat_uptr_t __user
*, argv
,
1781 const compat_uptr_t __user
*, envp
)
1783 return compat_do_execve(getname(filename
), argv
, envp
);
1786 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1787 const char __user
*, filename
,
1788 const compat_uptr_t __user
*, argv
,
1789 const compat_uptr_t __user
*, envp
,
1792 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1794 return compat_do_execveat(fd
,
1795 getname_flags(filename
, lookup_flags
, NULL
),