2 * linux/fs/ext4/crypto.c
4 * Copyright (C) 2015, Google, Inc.
6 * This contains encryption functions for ext4
8 * Written by Michael Halcrow, 2014.
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
15 * This has not yet undergone a rigorous security audit.
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
37 #include <linux/namei.h>
39 #include "ext4_extents.h"
42 /* Encryption added and removed here! (L: */
44 static unsigned int num_prealloc_crypto_pages
= 32;
45 static unsigned int num_prealloc_crypto_ctxs
= 128;
47 module_param(num_prealloc_crypto_pages
, uint
, 0444);
48 MODULE_PARM_DESC(num_prealloc_crypto_pages
,
49 "Number of crypto pages to preallocate");
50 module_param(num_prealloc_crypto_ctxs
, uint
, 0444);
51 MODULE_PARM_DESC(num_prealloc_crypto_ctxs
,
52 "Number of crypto contexts to preallocate");
54 static mempool_t
*ext4_bounce_page_pool
;
56 static LIST_HEAD(ext4_free_crypto_ctxs
);
57 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock
);
59 static struct kmem_cache
*ext4_crypto_ctx_cachep
;
60 struct kmem_cache
*ext4_crypt_info_cachep
;
63 * ext4_release_crypto_ctx() - Releases an encryption context
64 * @ctx: The encryption context to release.
66 * If the encryption context was allocated from the pre-allocated pool, returns
67 * it to that pool. Else, frees it.
69 * If there's a bounce page in the context, this frees that.
71 void ext4_release_crypto_ctx(struct ext4_crypto_ctx
*ctx
)
75 if (ctx
->flags
& EXT4_WRITE_PATH_FL
&& ctx
->w
.bounce_page
)
76 mempool_free(ctx
->w
.bounce_page
, ext4_bounce_page_pool
);
77 ctx
->w
.bounce_page
= NULL
;
78 ctx
->w
.control_page
= NULL
;
79 if (ctx
->flags
& EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
) {
80 kmem_cache_free(ext4_crypto_ctx_cachep
, ctx
);
82 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
83 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
84 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
89 * ext4_get_crypto_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
92 * Allocates and initializes an encryption context.
94 * Return: An allocated and initialized encryption context on success; error
95 * value or NULL otherwise.
97 struct ext4_crypto_ctx
*ext4_get_crypto_ctx(struct inode
*inode
,
100 struct ext4_crypto_ctx
*ctx
= NULL
;
103 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
106 return ERR_PTR(-ENOKEY
);
109 * We first try getting the ctx from a free list because in
110 * the common case the ctx will have an allocated and
111 * initialized crypto tfm, so it's probably a worthwhile
112 * optimization. For the bounce page, we first try getting it
113 * from the kernel allocator because that's just about as fast
114 * as getting it from a list and because a cache of free pages
115 * should generally be a "last resort" option for a filesystem
116 * to be able to do its job.
118 spin_lock_irqsave(&ext4_crypto_ctx_lock
, flags
);
119 ctx
= list_first_entry_or_null(&ext4_free_crypto_ctxs
,
120 struct ext4_crypto_ctx
, free_list
);
122 list_del(&ctx
->free_list
);
123 spin_unlock_irqrestore(&ext4_crypto_ctx_lock
, flags
);
125 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, gfp_flags
);
130 ctx
->flags
|= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
132 ctx
->flags
&= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL
;
134 ctx
->flags
&= ~EXT4_WRITE_PATH_FL
;
138 if (!IS_ERR_OR_NULL(ctx
))
139 ext4_release_crypto_ctx(ctx
);
145 struct workqueue_struct
*ext4_read_workqueue
;
146 static DEFINE_MUTEX(crypto_init
);
149 * ext4_exit_crypto() - Shutdown the ext4 encryption system
151 void ext4_exit_crypto(void)
153 struct ext4_crypto_ctx
*pos
, *n
;
155 list_for_each_entry_safe(pos
, n
, &ext4_free_crypto_ctxs
, free_list
)
156 kmem_cache_free(ext4_crypto_ctx_cachep
, pos
);
157 INIT_LIST_HEAD(&ext4_free_crypto_ctxs
);
158 if (ext4_bounce_page_pool
)
159 mempool_destroy(ext4_bounce_page_pool
);
160 ext4_bounce_page_pool
= NULL
;
161 if (ext4_read_workqueue
)
162 destroy_workqueue(ext4_read_workqueue
);
163 ext4_read_workqueue
= NULL
;
164 if (ext4_crypto_ctx_cachep
)
165 kmem_cache_destroy(ext4_crypto_ctx_cachep
);
166 ext4_crypto_ctx_cachep
= NULL
;
167 if (ext4_crypt_info_cachep
)
168 kmem_cache_destroy(ext4_crypt_info_cachep
);
169 ext4_crypt_info_cachep
= NULL
;
173 * ext4_init_crypto() - Set up for ext4 encryption.
175 * We only call this when we start accessing encrypted files, since it
176 * results in memory getting allocated that wouldn't otherwise be used.
178 * Return: Zero on success, non-zero otherwise.
180 int ext4_init_crypto(void)
182 int i
, res
= -ENOMEM
;
184 mutex_lock(&crypto_init
);
185 if (ext4_read_workqueue
)
186 goto already_initialized
;
187 ext4_read_workqueue
= alloc_workqueue("ext4_crypto", WQ_HIGHPRI
, 0);
188 if (!ext4_read_workqueue
)
191 ext4_crypto_ctx_cachep
= KMEM_CACHE(ext4_crypto_ctx
,
192 SLAB_RECLAIM_ACCOUNT
);
193 if (!ext4_crypto_ctx_cachep
)
196 ext4_crypt_info_cachep
= KMEM_CACHE(ext4_crypt_info
,
197 SLAB_RECLAIM_ACCOUNT
);
198 if (!ext4_crypt_info_cachep
)
201 for (i
= 0; i
< num_prealloc_crypto_ctxs
; i
++) {
202 struct ext4_crypto_ctx
*ctx
;
204 ctx
= kmem_cache_zalloc(ext4_crypto_ctx_cachep
, GFP_NOFS
);
209 list_add(&ctx
->free_list
, &ext4_free_crypto_ctxs
);
212 ext4_bounce_page_pool
=
213 mempool_create_page_pool(num_prealloc_crypto_pages
, 0);
214 if (!ext4_bounce_page_pool
) {
219 mutex_unlock(&crypto_init
);
223 mutex_unlock(&crypto_init
);
227 void ext4_restore_control_page(struct page
*data_page
)
229 struct ext4_crypto_ctx
*ctx
=
230 (struct ext4_crypto_ctx
*)page_private(data_page
);
232 set_page_private(data_page
, (unsigned long)NULL
);
233 ClearPagePrivate(data_page
);
234 unlock_page(data_page
);
235 ext4_release_crypto_ctx(ctx
);
239 * ext4_crypt_complete() - The completion callback for page encryption
240 * @req: The asynchronous encryption request context
241 * @res: The result of the encryption operation
243 static void ext4_crypt_complete(struct crypto_async_request
*req
, int res
)
245 struct ext4_completion_result
*ecr
= req
->data
;
247 if (res
== -EINPROGRESS
)
250 complete(&ecr
->completion
);
258 static int ext4_page_crypto(struct inode
*inode
,
261 struct page
*src_page
,
262 struct page
*dest_page
,
266 u8 xts_tweak
[EXT4_XTS_TWEAK_SIZE
];
267 struct ablkcipher_request
*req
= NULL
;
268 DECLARE_EXT4_COMPLETION_RESULT(ecr
);
269 struct scatterlist dst
, src
;
270 struct ext4_crypt_info
*ci
= EXT4_I(inode
)->i_crypt_info
;
271 struct crypto_ablkcipher
*tfm
= ci
->ci_ctfm
;
274 req
= ablkcipher_request_alloc(tfm
, gfp_flags
);
276 printk_ratelimited(KERN_ERR
277 "%s: crypto_request_alloc() failed\n",
281 ablkcipher_request_set_callback(
282 req
, CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
283 ext4_crypt_complete
, &ecr
);
285 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE
< sizeof(index
));
286 memcpy(xts_tweak
, &index
, sizeof(index
));
287 memset(&xts_tweak
[sizeof(index
)], 0,
288 EXT4_XTS_TWEAK_SIZE
- sizeof(index
));
290 sg_init_table(&dst
, 1);
291 sg_set_page(&dst
, dest_page
, PAGE_CACHE_SIZE
, 0);
292 sg_init_table(&src
, 1);
293 sg_set_page(&src
, src_page
, PAGE_CACHE_SIZE
, 0);
294 ablkcipher_request_set_crypt(req
, &src
, &dst
, PAGE_CACHE_SIZE
,
296 if (rw
== EXT4_DECRYPT
)
297 res
= crypto_ablkcipher_decrypt(req
);
299 res
= crypto_ablkcipher_encrypt(req
);
300 if (res
== -EINPROGRESS
|| res
== -EBUSY
) {
301 wait_for_completion(&ecr
.completion
);
304 ablkcipher_request_free(req
);
308 "%s: crypto_ablkcipher_encrypt() returned %d\n",
315 static struct page
*alloc_bounce_page(struct ext4_crypto_ctx
*ctx
,
318 ctx
->w
.bounce_page
= mempool_alloc(ext4_bounce_page_pool
, gfp_flags
);
319 if (ctx
->w
.bounce_page
== NULL
)
320 return ERR_PTR(-ENOMEM
);
321 ctx
->flags
|= EXT4_WRITE_PATH_FL
;
322 return ctx
->w
.bounce_page
;
326 * ext4_encrypt() - Encrypts a page
327 * @inode: The inode for which the encryption should take place
328 * @plaintext_page: The page to encrypt. Must be locked.
330 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
331 * encryption context.
333 * Called on the page write path. The caller must call
334 * ext4_restore_control_page() on the returned ciphertext page to
335 * release the bounce buffer and the encryption context.
337 * Return: An allocated page with the encrypted content on success. Else, an
338 * error value or NULL.
340 struct page
*ext4_encrypt(struct inode
*inode
,
341 struct page
*plaintext_page
,
344 struct ext4_crypto_ctx
*ctx
;
345 struct page
*ciphertext_page
= NULL
;
348 BUG_ON(!PageLocked(plaintext_page
));
350 ctx
= ext4_get_crypto_ctx(inode
, gfp_flags
);
352 return (struct page
*) ctx
;
354 /* The encryption operation will require a bounce page. */
355 ciphertext_page
= alloc_bounce_page(ctx
, gfp_flags
);
356 if (IS_ERR(ciphertext_page
))
358 ctx
->w
.control_page
= plaintext_page
;
359 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, plaintext_page
->index
,
360 plaintext_page
, ciphertext_page
, gfp_flags
);
362 ciphertext_page
= ERR_PTR(err
);
364 ext4_release_crypto_ctx(ctx
);
365 return ciphertext_page
;
367 SetPagePrivate(ciphertext_page
);
368 set_page_private(ciphertext_page
, (unsigned long)ctx
);
369 lock_page(ciphertext_page
);
370 return ciphertext_page
;
374 * ext4_decrypt() - Decrypts a page in-place
375 * @ctx: The encryption context.
376 * @page: The page to decrypt. Must be locked.
378 * Decrypts page in-place using the ctx encryption context.
380 * Called from the read completion callback.
382 * Return: Zero on success, non-zero otherwise.
384 int ext4_decrypt(struct page
*page
)
386 BUG_ON(!PageLocked(page
));
388 return ext4_page_crypto(page
->mapping
->host
, EXT4_DECRYPT
,
389 page
->index
, page
, page
, GFP_NOFS
);
392 int ext4_encrypted_zeroout(struct inode
*inode
, struct ext4_extent
*ex
)
394 struct ext4_crypto_ctx
*ctx
;
395 struct page
*ciphertext_page
= NULL
;
397 ext4_lblk_t lblk
= le32_to_cpu(ex
->ee_block
);
398 ext4_fsblk_t pblk
= ext4_ext_pblock(ex
);
399 unsigned int len
= ext4_ext_get_actual_len(ex
);
403 ext4_msg(inode
->i_sb
, KERN_CRIT
,
404 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
405 (unsigned long) inode
->i_ino
, lblk
, len
);
408 BUG_ON(inode
->i_sb
->s_blocksize
!= PAGE_CACHE_SIZE
);
410 ctx
= ext4_get_crypto_ctx(inode
, GFP_NOFS
);
414 ciphertext_page
= alloc_bounce_page(ctx
, GFP_NOWAIT
);
415 if (IS_ERR(ciphertext_page
)) {
416 err
= PTR_ERR(ciphertext_page
);
421 err
= ext4_page_crypto(inode
, EXT4_ENCRYPT
, lblk
,
422 ZERO_PAGE(0), ciphertext_page
,
427 bio
= bio_alloc(GFP_NOWAIT
, 1);
432 bio
->bi_bdev
= inode
->i_sb
->s_bdev
;
433 bio
->bi_iter
.bi_sector
=
434 pblk
<< (inode
->i_sb
->s_blocksize_bits
- 9);
435 ret
= bio_add_page(bio
, ciphertext_page
,
436 inode
->i_sb
->s_blocksize
, 0);
437 if (ret
!= inode
->i_sb
->s_blocksize
) {
438 /* should never happen! */
439 ext4_msg(inode
->i_sb
, KERN_ERR
,
440 "bio_add_page failed: %d", ret
);
446 err
= submit_bio_wait(WRITE
, bio
);
447 if ((err
== 0) && bio
->bi_error
)
456 ext4_release_crypto_ctx(ctx
);
460 bool ext4_valid_contents_enc_mode(uint32_t mode
)
462 return (mode
== EXT4_ENCRYPTION_MODE_AES_256_XTS
);
466 * ext4_validate_encryption_key_size() - Validate the encryption key size
467 * @mode: The key mode.
468 * @size: The key size to validate.
470 * Return: The validated key size for @mode. Zero if invalid.
472 uint32_t ext4_validate_encryption_key_size(uint32_t mode
, uint32_t size
)
474 if (size
== ext4_encryption_key_size(mode
))
480 * Validate dentries for encrypted directories to make sure we aren't
481 * potentially caching stale data after a key has been added or
484 static int ext4_d_revalidate(struct dentry
*dentry
, unsigned int flags
)
487 struct ext4_crypt_info
*ci
;
488 int dir_has_key
, cached_with_key
;
490 if (flags
& LOOKUP_RCU
)
493 dir
= dget_parent(dentry
);
494 if (!ext4_encrypted_inode(d_inode(dir
))) {
498 ci
= EXT4_I(d_inode(dir
))->i_crypt_info
;
500 /* this should eventually be an flag in d_flags */
501 cached_with_key
= dentry
->d_fsdata
!= NULL
;
502 dir_has_key
= (ci
!= NULL
);
506 * If the dentry was cached without the key, and it is a
507 * negative dentry, it might be a valid name. We can't check
508 * if the key has since been made available due to locking
509 * reasons, so we fail the validation so ext4_lookup() can do
512 * We also fail the validation if the dentry was created with
513 * the key present, but we no longer have the key, or vice versa.
515 if ((!cached_with_key
&& d_is_negative(dentry
)) ||
516 (!cached_with_key
&& dir_has_key
) ||
517 (cached_with_key
&& !dir_has_key
)) {
518 #if 0 /* Revalidation debug */
520 char *cp
= simple_dname(dentry
, buf
, sizeof(buf
));
524 pr_err("revalidate: %s %p %d %d %d\n", cp
, dentry
->d_fsdata
,
525 cached_with_key
, d_is_negative(dentry
),
533 const struct dentry_operations ext4_encrypted_d_ops
= {
534 .d_revalidate
= ext4_d_revalidate
,