HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / ext4 / crypto.c
blobf240cef8b3265a38b218bdf0e8b8306a7d1587f0
1 /*
2 * linux/fs/ext4/crypto.c
4 * Copyright (C) 2015, Google, Inc.
6 * This contains encryption functions for ext4
8 * Written by Michael Halcrow, 2014.
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
15 * This has not yet undergone a rigorous security audit.
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <keys/user-type.h>
24 #include <keys/encrypted-type.h>
25 #include <linux/crypto.h>
26 #include <linux/ecryptfs.h>
27 #include <linux/gfp.h>
28 #include <linux/kernel.h>
29 #include <linux/key.h>
30 #include <linux/list.h>
31 #include <linux/mempool.h>
32 #include <linux/module.h>
33 #include <linux/mutex.h>
34 #include <linux/random.h>
35 #include <linux/scatterlist.h>
36 #include <linux/spinlock_types.h>
37 #include <linux/namei.h>
39 #include "ext4_extents.h"
40 #include "xattr.h"
42 /* Encryption added and removed here! (L: */
44 static unsigned int num_prealloc_crypto_pages = 32;
45 static unsigned int num_prealloc_crypto_ctxs = 128;
47 module_param(num_prealloc_crypto_pages, uint, 0444);
48 MODULE_PARM_DESC(num_prealloc_crypto_pages,
49 "Number of crypto pages to preallocate");
50 module_param(num_prealloc_crypto_ctxs, uint, 0444);
51 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
52 "Number of crypto contexts to preallocate");
54 static mempool_t *ext4_bounce_page_pool;
56 static LIST_HEAD(ext4_free_crypto_ctxs);
57 static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
59 static struct kmem_cache *ext4_crypto_ctx_cachep;
60 struct kmem_cache *ext4_crypt_info_cachep;
62 /**
63 * ext4_release_crypto_ctx() - Releases an encryption context
64 * @ctx: The encryption context to release.
66 * If the encryption context was allocated from the pre-allocated pool, returns
67 * it to that pool. Else, frees it.
69 * If there's a bounce page in the context, this frees that.
71 void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
73 unsigned long flags;
75 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
76 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
77 ctx->w.bounce_page = NULL;
78 ctx->w.control_page = NULL;
79 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
80 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
81 } else {
82 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
83 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
84 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
88 /**
89 * ext4_get_crypto_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
92 * Allocates and initializes an encryption context.
94 * Return: An allocated and initialized encryption context on success; error
95 * value or NULL otherwise.
97 struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
98 gfp_t gfp_flags)
100 struct ext4_crypto_ctx *ctx = NULL;
101 int res = 0;
102 unsigned long flags;
103 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
105 if (ci == NULL)
106 return ERR_PTR(-ENOKEY);
109 * We first try getting the ctx from a free list because in
110 * the common case the ctx will have an allocated and
111 * initialized crypto tfm, so it's probably a worthwhile
112 * optimization. For the bounce page, we first try getting it
113 * from the kernel allocator because that's just about as fast
114 * as getting it from a list and because a cache of free pages
115 * should generally be a "last resort" option for a filesystem
116 * to be able to do its job.
118 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
119 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
120 struct ext4_crypto_ctx, free_list);
121 if (ctx)
122 list_del(&ctx->free_list);
123 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
124 if (!ctx) {
125 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
126 if (!ctx) {
127 res = -ENOMEM;
128 goto out;
130 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
131 } else {
132 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
134 ctx->flags &= ~EXT4_WRITE_PATH_FL;
136 out:
137 if (res) {
138 if (!IS_ERR_OR_NULL(ctx))
139 ext4_release_crypto_ctx(ctx);
140 ctx = ERR_PTR(res);
142 return ctx;
145 struct workqueue_struct *ext4_read_workqueue;
146 static DEFINE_MUTEX(crypto_init);
149 * ext4_exit_crypto() - Shutdown the ext4 encryption system
151 void ext4_exit_crypto(void)
153 struct ext4_crypto_ctx *pos, *n;
155 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
156 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
157 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
158 if (ext4_bounce_page_pool)
159 mempool_destroy(ext4_bounce_page_pool);
160 ext4_bounce_page_pool = NULL;
161 if (ext4_read_workqueue)
162 destroy_workqueue(ext4_read_workqueue);
163 ext4_read_workqueue = NULL;
164 if (ext4_crypto_ctx_cachep)
165 kmem_cache_destroy(ext4_crypto_ctx_cachep);
166 ext4_crypto_ctx_cachep = NULL;
167 if (ext4_crypt_info_cachep)
168 kmem_cache_destroy(ext4_crypt_info_cachep);
169 ext4_crypt_info_cachep = NULL;
173 * ext4_init_crypto() - Set up for ext4 encryption.
175 * We only call this when we start accessing encrypted files, since it
176 * results in memory getting allocated that wouldn't otherwise be used.
178 * Return: Zero on success, non-zero otherwise.
180 int ext4_init_crypto(void)
182 int i, res = -ENOMEM;
184 mutex_lock(&crypto_init);
185 if (ext4_read_workqueue)
186 goto already_initialized;
187 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
188 if (!ext4_read_workqueue)
189 goto fail;
191 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
192 SLAB_RECLAIM_ACCOUNT);
193 if (!ext4_crypto_ctx_cachep)
194 goto fail;
196 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
197 SLAB_RECLAIM_ACCOUNT);
198 if (!ext4_crypt_info_cachep)
199 goto fail;
201 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
202 struct ext4_crypto_ctx *ctx;
204 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
205 if (!ctx) {
206 res = -ENOMEM;
207 goto fail;
209 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
212 ext4_bounce_page_pool =
213 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
214 if (!ext4_bounce_page_pool) {
215 res = -ENOMEM;
216 goto fail;
218 already_initialized:
219 mutex_unlock(&crypto_init);
220 return 0;
221 fail:
222 ext4_exit_crypto();
223 mutex_unlock(&crypto_init);
224 return res;
227 void ext4_restore_control_page(struct page *data_page)
229 struct ext4_crypto_ctx *ctx =
230 (struct ext4_crypto_ctx *)page_private(data_page);
232 set_page_private(data_page, (unsigned long)NULL);
233 ClearPagePrivate(data_page);
234 unlock_page(data_page);
235 ext4_release_crypto_ctx(ctx);
239 * ext4_crypt_complete() - The completion callback for page encryption
240 * @req: The asynchronous encryption request context
241 * @res: The result of the encryption operation
243 static void ext4_crypt_complete(struct crypto_async_request *req, int res)
245 struct ext4_completion_result *ecr = req->data;
247 if (res == -EINPROGRESS)
248 return;
249 ecr->res = res;
250 complete(&ecr->completion);
253 typedef enum {
254 EXT4_DECRYPT = 0,
255 EXT4_ENCRYPT,
256 } ext4_direction_t;
258 static int ext4_page_crypto(struct inode *inode,
259 ext4_direction_t rw,
260 pgoff_t index,
261 struct page *src_page,
262 struct page *dest_page,
263 gfp_t gfp_flags)
266 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
267 struct ablkcipher_request *req = NULL;
268 DECLARE_EXT4_COMPLETION_RESULT(ecr);
269 struct scatterlist dst, src;
270 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
271 struct crypto_ablkcipher *tfm = ci->ci_ctfm;
272 int res = 0;
274 req = ablkcipher_request_alloc(tfm, gfp_flags);
275 if (!req) {
276 printk_ratelimited(KERN_ERR
277 "%s: crypto_request_alloc() failed\n",
278 __func__);
279 return -ENOMEM;
281 ablkcipher_request_set_callback(
282 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
283 ext4_crypt_complete, &ecr);
285 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
286 memcpy(xts_tweak, &index, sizeof(index));
287 memset(&xts_tweak[sizeof(index)], 0,
288 EXT4_XTS_TWEAK_SIZE - sizeof(index));
290 sg_init_table(&dst, 1);
291 sg_set_page(&dst, dest_page, PAGE_CACHE_SIZE, 0);
292 sg_init_table(&src, 1);
293 sg_set_page(&src, src_page, PAGE_CACHE_SIZE, 0);
294 ablkcipher_request_set_crypt(req, &src, &dst, PAGE_CACHE_SIZE,
295 xts_tweak);
296 if (rw == EXT4_DECRYPT)
297 res = crypto_ablkcipher_decrypt(req);
298 else
299 res = crypto_ablkcipher_encrypt(req);
300 if (res == -EINPROGRESS || res == -EBUSY) {
301 wait_for_completion(&ecr.completion);
302 res = ecr.res;
304 ablkcipher_request_free(req);
305 if (res) {
306 printk_ratelimited(
307 KERN_ERR
308 "%s: crypto_ablkcipher_encrypt() returned %d\n",
309 __func__, res);
310 return res;
312 return 0;
315 static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
316 gfp_t gfp_flags)
318 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
319 if (ctx->w.bounce_page == NULL)
320 return ERR_PTR(-ENOMEM);
321 ctx->flags |= EXT4_WRITE_PATH_FL;
322 return ctx->w.bounce_page;
326 * ext4_encrypt() - Encrypts a page
327 * @inode: The inode for which the encryption should take place
328 * @plaintext_page: The page to encrypt. Must be locked.
330 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
331 * encryption context.
333 * Called on the page write path. The caller must call
334 * ext4_restore_control_page() on the returned ciphertext page to
335 * release the bounce buffer and the encryption context.
337 * Return: An allocated page with the encrypted content on success. Else, an
338 * error value or NULL.
340 struct page *ext4_encrypt(struct inode *inode,
341 struct page *plaintext_page,
342 gfp_t gfp_flags)
344 struct ext4_crypto_ctx *ctx;
345 struct page *ciphertext_page = NULL;
346 int err;
348 BUG_ON(!PageLocked(plaintext_page));
350 ctx = ext4_get_crypto_ctx(inode, gfp_flags);
351 if (IS_ERR(ctx))
352 return (struct page *) ctx;
354 /* The encryption operation will require a bounce page. */
355 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
356 if (IS_ERR(ciphertext_page))
357 goto errout;
358 ctx->w.control_page = plaintext_page;
359 err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
360 plaintext_page, ciphertext_page, gfp_flags);
361 if (err) {
362 ciphertext_page = ERR_PTR(err);
363 errout:
364 ext4_release_crypto_ctx(ctx);
365 return ciphertext_page;
367 SetPagePrivate(ciphertext_page);
368 set_page_private(ciphertext_page, (unsigned long)ctx);
369 lock_page(ciphertext_page);
370 return ciphertext_page;
374 * ext4_decrypt() - Decrypts a page in-place
375 * @ctx: The encryption context.
376 * @page: The page to decrypt. Must be locked.
378 * Decrypts page in-place using the ctx encryption context.
380 * Called from the read completion callback.
382 * Return: Zero on success, non-zero otherwise.
384 int ext4_decrypt(struct page *page)
386 BUG_ON(!PageLocked(page));
388 return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
389 page->index, page, page, GFP_NOFS);
392 int ext4_encrypted_zeroout(struct inode *inode, struct ext4_extent *ex)
394 struct ext4_crypto_ctx *ctx;
395 struct page *ciphertext_page = NULL;
396 struct bio *bio;
397 ext4_lblk_t lblk = le32_to_cpu(ex->ee_block);
398 ext4_fsblk_t pblk = ext4_ext_pblock(ex);
399 unsigned int len = ext4_ext_get_actual_len(ex);
400 int ret, err = 0;
402 #if 0
403 ext4_msg(inode->i_sb, KERN_CRIT,
404 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
405 (unsigned long) inode->i_ino, lblk, len);
406 #endif
408 BUG_ON(inode->i_sb->s_blocksize != PAGE_CACHE_SIZE);
410 ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
411 if (IS_ERR(ctx))
412 return PTR_ERR(ctx);
414 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
415 if (IS_ERR(ciphertext_page)) {
416 err = PTR_ERR(ciphertext_page);
417 goto errout;
420 while (len--) {
421 err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
422 ZERO_PAGE(0), ciphertext_page,
423 GFP_NOFS);
424 if (err)
425 goto errout;
427 bio = bio_alloc(GFP_NOWAIT, 1);
428 if (!bio) {
429 err = -ENOMEM;
430 goto errout;
432 bio->bi_bdev = inode->i_sb->s_bdev;
433 bio->bi_iter.bi_sector =
434 pblk << (inode->i_sb->s_blocksize_bits - 9);
435 ret = bio_add_page(bio, ciphertext_page,
436 inode->i_sb->s_blocksize, 0);
437 if (ret != inode->i_sb->s_blocksize) {
438 /* should never happen! */
439 ext4_msg(inode->i_sb, KERN_ERR,
440 "bio_add_page failed: %d", ret);
441 WARN_ON(1);
442 bio_put(bio);
443 err = -EIO;
444 goto errout;
446 err = submit_bio_wait(WRITE, bio);
447 if ((err == 0) && bio->bi_error)
448 err = -EIO;
449 bio_put(bio);
450 if (err)
451 goto errout;
452 lblk++; pblk++;
454 err = 0;
455 errout:
456 ext4_release_crypto_ctx(ctx);
457 return err;
460 bool ext4_valid_contents_enc_mode(uint32_t mode)
462 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
466 * ext4_validate_encryption_key_size() - Validate the encryption key size
467 * @mode: The key mode.
468 * @size: The key size to validate.
470 * Return: The validated key size for @mode. Zero if invalid.
472 uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
474 if (size == ext4_encryption_key_size(mode))
475 return size;
476 return 0;
480 * Validate dentries for encrypted directories to make sure we aren't
481 * potentially caching stale data after a key has been added or
482 * removed.
484 static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
486 struct dentry *dir;
487 struct ext4_crypt_info *ci;
488 int dir_has_key, cached_with_key;
490 if (flags & LOOKUP_RCU)
491 return -ECHILD;
493 dir = dget_parent(dentry);
494 if (!ext4_encrypted_inode(d_inode(dir))) {
495 dput(dir);
496 return 0;
498 ci = EXT4_I(d_inode(dir))->i_crypt_info;
500 /* this should eventually be an flag in d_flags */
501 cached_with_key = dentry->d_fsdata != NULL;
502 dir_has_key = (ci != NULL);
503 dput(dir);
506 * If the dentry was cached without the key, and it is a
507 * negative dentry, it might be a valid name. We can't check
508 * if the key has since been made available due to locking
509 * reasons, so we fail the validation so ext4_lookup() can do
510 * this check.
512 * We also fail the validation if the dentry was created with
513 * the key present, but we no longer have the key, or vice versa.
515 if ((!cached_with_key && d_is_negative(dentry)) ||
516 (!cached_with_key && dir_has_key) ||
517 (cached_with_key && !dir_has_key)) {
518 #if 0 /* Revalidation debug */
519 char buf[80];
520 char *cp = simple_dname(dentry, buf, sizeof(buf));
522 if (IS_ERR(cp))
523 cp = (char *) "???";
524 pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
525 cached_with_key, d_is_negative(dentry),
526 dir_has_key);
527 #endif
528 return 0;
530 return 1;
533 const struct dentry_operations ext4_encrypted_d_ops = {
534 .d_revalidate = ext4_d_revalidate,