HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / ext4 / ialloc.c
blob3753a8a05a2e452aac4074e01c7994ec1353cfcf
1 /*
2 * linux/fs/ext4/ialloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
15 #include <linux/time.h>
16 #include <linux/fs.h>
17 #include <linux/stat.h>
18 #include <linux/string.h>
19 #include <linux/quotaops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/random.h>
22 #include <linux/bitops.h>
23 #include <linux/blkdev.h>
24 #include <asm/byteorder.h>
26 #include "ext4.h"
27 #include "ext4_jbd2.h"
28 #include "xattr.h"
29 #include "acl.h"
31 #include <trace/events/ext4.h>
34 * ialloc.c contains the inodes allocation and deallocation routines
38 * The free inodes are managed by bitmaps. A file system contains several
39 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
40 * block for inodes, N blocks for the inode table and data blocks.
42 * The file system contains group descriptors which are located after the
43 * super block. Each descriptor contains the number of the bitmap block and
44 * the free blocks count in the block.
48 * To avoid calling the atomic setbit hundreds or thousands of times, we only
49 * need to use it within a single byte (to ensure we get endianness right).
50 * We can use memset for the rest of the bitmap as there are no other users.
52 void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54 int i;
56 if (start_bit >= end_bit)
57 return;
59 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
60 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
61 ext4_set_bit(i, bitmap);
62 if (i < end_bit)
63 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
66 void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
68 if (uptodate) {
69 set_buffer_uptodate(bh);
70 set_bitmap_uptodate(bh);
72 unlock_buffer(bh);
73 put_bh(bh);
76 static int ext4_validate_inode_bitmap(struct super_block *sb,
77 struct ext4_group_desc *desc,
78 ext4_group_t block_group,
79 struct buffer_head *bh)
81 ext4_fsblk_t blk;
82 struct ext4_group_info *grp = ext4_get_group_info(sb, block_group);
83 struct ext4_sb_info *sbi = EXT4_SB(sb);
85 if (buffer_verified(bh))
86 return 0;
87 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp))
88 return -EFSCORRUPTED;
90 ext4_lock_group(sb, block_group);
91 if (buffer_verified(bh))
92 goto verified;
93 blk = ext4_inode_bitmap(sb, desc);
94 if (!ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
95 EXT4_INODES_PER_GROUP(sb) / 8)) {
96 ext4_unlock_group(sb, block_group);
97 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
98 "inode_bitmap = %llu", block_group, blk);
99 grp = ext4_get_group_info(sb, block_group);
100 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
101 int count;
102 count = ext4_free_inodes_count(sb, desc);
103 percpu_counter_sub(&sbi->s_freeinodes_counter,
104 count);
106 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
107 return -EFSBADCRC;
109 set_buffer_verified(bh);
110 verified:
111 ext4_unlock_group(sb, block_group);
112 return 0;
116 * Read the inode allocation bitmap for a given block_group, reading
117 * into the specified slot in the superblock's bitmap cache.
119 * Return buffer_head of bitmap on success or NULL.
121 static struct buffer_head *
122 ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124 struct ext4_group_desc *desc;
125 struct ext4_sb_info *sbi = EXT4_SB(sb);
126 struct buffer_head *bh = NULL;
127 ext4_fsblk_t bitmap_blk;
128 int err;
130 desc = ext4_get_group_desc(sb, block_group, NULL);
131 if (!desc)
132 return ERR_PTR(-EFSCORRUPTED);
134 bitmap_blk = ext4_inode_bitmap(sb, desc);
135 if ((bitmap_blk <= le32_to_cpu(sbi->s_es->s_first_data_block)) ||
136 (bitmap_blk >= ext4_blocks_count(sbi->s_es))) {
137 ext4_error(sb, "Invalid inode bitmap blk %llu in "
138 "block_group %u", bitmap_blk, block_group);
139 return ERR_PTR(-EFSCORRUPTED);
141 bh = sb_getblk(sb, bitmap_blk);
142 if (unlikely(!bh)) {
143 ext4_error(sb, "Cannot read inode bitmap - "
144 "block_group = %u, inode_bitmap = %llu",
145 block_group, bitmap_blk);
146 return ERR_PTR(-EIO);
148 if (bitmap_uptodate(bh))
149 goto verify;
151 lock_buffer(bh);
152 if (bitmap_uptodate(bh)) {
153 unlock_buffer(bh);
154 goto verify;
157 ext4_lock_group(sb, block_group);
158 if (ext4_has_group_desc_csum(sb) &&
159 (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT))) {
160 if (block_group == 0) {
161 ext4_unlock_group(sb, block_group);
162 unlock_buffer(bh);
163 ext4_error(sb, "Inode bitmap for bg 0 marked "
164 "uninitialized");
165 err = -EFSCORRUPTED;
166 goto out;
168 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
169 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb),
170 sb->s_blocksize * 8, bh->b_data);
171 set_bitmap_uptodate(bh);
172 set_buffer_uptodate(bh);
173 set_buffer_verified(bh);
174 ext4_unlock_group(sb, block_group);
175 unlock_buffer(bh);
176 return bh;
178 ext4_unlock_group(sb, block_group);
180 if (buffer_uptodate(bh)) {
182 * if not uninit if bh is uptodate,
183 * bitmap is also uptodate
185 set_bitmap_uptodate(bh);
186 unlock_buffer(bh);
187 goto verify;
190 * submit the buffer_head for reading
192 trace_ext4_load_inode_bitmap(sb, block_group);
193 bh->b_end_io = ext4_end_bitmap_read;
194 get_bh(bh);
195 submit_bh(READ | REQ_META | REQ_PRIO, bh);
196 wait_on_buffer(bh);
197 if (!buffer_uptodate(bh)) {
198 put_bh(bh);
199 ext4_error(sb, "Cannot read inode bitmap - "
200 "block_group = %u, inode_bitmap = %llu",
201 block_group, bitmap_blk);
202 return ERR_PTR(-EIO);
205 verify:
206 err = ext4_validate_inode_bitmap(sb, desc, block_group, bh);
207 if (err)
208 goto out;
209 return bh;
210 out:
211 put_bh(bh);
212 return ERR_PTR(err);
216 * NOTE! When we get the inode, we're the only people
217 * that have access to it, and as such there are no
218 * race conditions we have to worry about. The inode
219 * is not on the hash-lists, and it cannot be reached
220 * through the filesystem because the directory entry
221 * has been deleted earlier.
223 * HOWEVER: we must make sure that we get no aliases,
224 * which means that we have to call "clear_inode()"
225 * _before_ we mark the inode not in use in the inode
226 * bitmaps. Otherwise a newly created file might use
227 * the same inode number (not actually the same pointer
228 * though), and then we'd have two inodes sharing the
229 * same inode number and space on the harddisk.
231 void ext4_free_inode(handle_t *handle, struct inode *inode)
233 struct super_block *sb = inode->i_sb;
234 int is_directory;
235 unsigned long ino;
236 struct buffer_head *bitmap_bh = NULL;
237 struct buffer_head *bh2;
238 ext4_group_t block_group;
239 unsigned long bit;
240 struct ext4_group_desc *gdp;
241 struct ext4_super_block *es;
242 struct ext4_sb_info *sbi;
243 int fatal = 0, err, count, cleared;
244 struct ext4_group_info *grp;
246 if (!sb) {
247 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
248 "nonexistent device\n", __func__, __LINE__);
249 return;
251 if (atomic_read(&inode->i_count) > 1) {
252 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
253 __func__, __LINE__, inode->i_ino,
254 atomic_read(&inode->i_count));
255 return;
257 if (inode->i_nlink) {
258 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
259 __func__, __LINE__, inode->i_ino, inode->i_nlink);
260 return;
262 sbi = EXT4_SB(sb);
264 ino = inode->i_ino;
265 ext4_debug("freeing inode %lu\n", ino);
266 trace_ext4_free_inode(inode);
269 * Note: we must free any quota before locking the superblock,
270 * as writing the quota to disk may need the lock as well.
272 dquot_initialize(inode);
273 ext4_xattr_delete_inode(handle, inode);
274 dquot_free_inode(inode);
275 dquot_drop(inode);
277 is_directory = S_ISDIR(inode->i_mode);
279 /* Do this BEFORE marking the inode not in use or returning an error */
280 ext4_clear_inode(inode);
282 es = EXT4_SB(sb)->s_es;
283 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
284 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
285 goto error_return;
287 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
288 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
289 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
290 /* Don't bother if the inode bitmap is corrupt. */
291 grp = ext4_get_group_info(sb, block_group);
292 if (IS_ERR(bitmap_bh)) {
293 fatal = PTR_ERR(bitmap_bh);
294 bitmap_bh = NULL;
295 goto error_return;
297 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp))) {
298 fatal = -EFSCORRUPTED;
299 goto error_return;
302 BUFFER_TRACE(bitmap_bh, "get_write_access");
303 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
304 if (fatal)
305 goto error_return;
307 fatal = -ESRCH;
308 gdp = ext4_get_group_desc(sb, block_group, &bh2);
309 if (gdp) {
310 BUFFER_TRACE(bh2, "get_write_access");
311 fatal = ext4_journal_get_write_access(handle, bh2);
313 ext4_lock_group(sb, block_group);
314 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
315 if (fatal || !cleared) {
316 ext4_unlock_group(sb, block_group);
317 goto out;
320 count = ext4_free_inodes_count(sb, gdp) + 1;
321 ext4_free_inodes_set(sb, gdp, count);
322 if (is_directory) {
323 count = ext4_used_dirs_count(sb, gdp) - 1;
324 ext4_used_dirs_set(sb, gdp, count);
325 percpu_counter_dec(&sbi->s_dirs_counter);
327 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
328 EXT4_INODES_PER_GROUP(sb) / 8);
329 ext4_group_desc_csum_set(sb, block_group, gdp);
330 ext4_unlock_group(sb, block_group);
332 percpu_counter_inc(&sbi->s_freeinodes_counter);
333 if (sbi->s_log_groups_per_flex) {
334 struct flex_groups *fg;
336 fg = sbi_array_rcu_deref(sbi, s_flex_groups,
337 ext4_flex_group(sbi, block_group));
338 atomic_inc(&fg->free_inodes);
339 if (is_directory)
340 atomic_dec(&fg->used_dirs);
342 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
343 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
344 out:
345 if (cleared) {
346 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
347 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
348 if (!fatal)
349 fatal = err;
350 } else {
351 ext4_error(sb, "bit already cleared for inode %lu", ino);
352 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
353 int count;
354 count = ext4_free_inodes_count(sb, gdp);
355 percpu_counter_sub(&sbi->s_freeinodes_counter,
356 count);
358 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
361 error_return:
362 brelse(bitmap_bh);
363 ext4_std_error(sb, fatal);
366 struct orlov_stats {
367 __u64 free_clusters;
368 __u32 free_inodes;
369 __u32 used_dirs;
373 * Helper function for Orlov's allocator; returns critical information
374 * for a particular block group or flex_bg. If flex_size is 1, then g
375 * is a block group number; otherwise it is flex_bg number.
377 static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
378 int flex_size, struct orlov_stats *stats)
380 struct ext4_group_desc *desc;
382 if (flex_size > 1) {
383 struct flex_groups *fg = sbi_array_rcu_deref(EXT4_SB(sb),
384 s_flex_groups, g);
385 stats->free_inodes = atomic_read(&fg->free_inodes);
386 stats->free_clusters = atomic64_read(&fg->free_clusters);
387 stats->used_dirs = atomic_read(&fg->used_dirs);
388 return;
391 desc = ext4_get_group_desc(sb, g, NULL);
392 if (desc) {
393 stats->free_inodes = ext4_free_inodes_count(sb, desc);
394 stats->free_clusters = ext4_free_group_clusters(sb, desc);
395 stats->used_dirs = ext4_used_dirs_count(sb, desc);
396 } else {
397 stats->free_inodes = 0;
398 stats->free_clusters = 0;
399 stats->used_dirs = 0;
404 * Orlov's allocator for directories.
406 * We always try to spread first-level directories.
408 * If there are blockgroups with both free inodes and free blocks counts
409 * not worse than average we return one with smallest directory count.
410 * Otherwise we simply return a random group.
412 * For the rest rules look so:
414 * It's OK to put directory into a group unless
415 * it has too many directories already (max_dirs) or
416 * it has too few free inodes left (min_inodes) or
417 * it has too few free blocks left (min_blocks) or
418 * Parent's group is preferred, if it doesn't satisfy these
419 * conditions we search cyclically through the rest. If none
420 * of the groups look good we just look for a group with more
421 * free inodes than average (starting at parent's group).
424 static int find_group_orlov(struct super_block *sb, struct inode *parent,
425 ext4_group_t *group, umode_t mode,
426 const struct qstr *qstr)
428 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
429 struct ext4_sb_info *sbi = EXT4_SB(sb);
430 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
431 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
432 unsigned int freei, avefreei, grp_free;
433 ext4_fsblk_t freeb, avefreec;
434 unsigned int ndirs;
435 int max_dirs, min_inodes;
436 ext4_grpblk_t min_clusters;
437 ext4_group_t i, grp, g, ngroups;
438 struct ext4_group_desc *desc;
439 struct orlov_stats stats;
440 int flex_size = ext4_flex_bg_size(sbi);
441 struct dx_hash_info hinfo;
443 ngroups = real_ngroups;
444 if (flex_size > 1) {
445 ngroups = (real_ngroups + flex_size - 1) >>
446 sbi->s_log_groups_per_flex;
447 parent_group >>= sbi->s_log_groups_per_flex;
450 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
451 avefreei = freei / ngroups;
452 freeb = EXT4_C2B(sbi,
453 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
454 avefreec = freeb;
455 do_div(avefreec, ngroups);
456 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
458 if (S_ISDIR(mode) &&
459 ((parent == d_inode(sb->s_root)) ||
460 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
461 int best_ndir = inodes_per_group;
462 int ret = -1;
464 if (qstr) {
465 hinfo.hash_version = DX_HASH_HALF_MD4;
466 hinfo.seed = sbi->s_hash_seed;
467 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
468 grp = hinfo.hash;
469 } else
470 grp = prandom_u32();
471 parent_group = (unsigned)grp % ngroups;
472 for (i = 0; i < ngroups; i++) {
473 g = (parent_group + i) % ngroups;
474 get_orlov_stats(sb, g, flex_size, &stats);
475 if (!stats.free_inodes)
476 continue;
477 if (stats.used_dirs >= best_ndir)
478 continue;
479 if (stats.free_inodes < avefreei)
480 continue;
481 if (stats.free_clusters < avefreec)
482 continue;
483 grp = g;
484 ret = 0;
485 best_ndir = stats.used_dirs;
487 if (ret)
488 goto fallback;
489 found_flex_bg:
490 if (flex_size == 1) {
491 *group = grp;
492 return 0;
496 * We pack inodes at the beginning of the flexgroup's
497 * inode tables. Block allocation decisions will do
498 * something similar, although regular files will
499 * start at 2nd block group of the flexgroup. See
500 * ext4_ext_find_goal() and ext4_find_near().
502 grp *= flex_size;
503 for (i = 0; i < flex_size; i++) {
504 if (grp+i >= real_ngroups)
505 break;
506 desc = ext4_get_group_desc(sb, grp+i, NULL);
507 if (desc && ext4_free_inodes_count(sb, desc)) {
508 *group = grp+i;
509 return 0;
512 goto fallback;
515 max_dirs = ndirs / ngroups + inodes_per_group / 16;
516 min_inodes = avefreei - inodes_per_group*flex_size / 4;
517 if (min_inodes < 1)
518 min_inodes = 1;
519 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
522 * Start looking in the flex group where we last allocated an
523 * inode for this parent directory
525 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
526 parent_group = EXT4_I(parent)->i_last_alloc_group;
527 if (flex_size > 1)
528 parent_group >>= sbi->s_log_groups_per_flex;
531 for (i = 0; i < ngroups; i++) {
532 grp = (parent_group + i) % ngroups;
533 get_orlov_stats(sb, grp, flex_size, &stats);
534 if (stats.used_dirs >= max_dirs)
535 continue;
536 if (stats.free_inodes < min_inodes)
537 continue;
538 if (stats.free_clusters < min_clusters)
539 continue;
540 goto found_flex_bg;
543 fallback:
544 ngroups = real_ngroups;
545 avefreei = freei / ngroups;
546 fallback_retry:
547 parent_group = EXT4_I(parent)->i_block_group;
548 for (i = 0; i < ngroups; i++) {
549 grp = (parent_group + i) % ngroups;
550 desc = ext4_get_group_desc(sb, grp, NULL);
551 if (desc) {
552 grp_free = ext4_free_inodes_count(sb, desc);
553 if (grp_free && grp_free >= avefreei) {
554 *group = grp;
555 return 0;
560 if (avefreei) {
562 * The free-inodes counter is approximate, and for really small
563 * filesystems the above test can fail to find any blockgroups
565 avefreei = 0;
566 goto fallback_retry;
569 return -1;
572 static int find_group_other(struct super_block *sb, struct inode *parent,
573 ext4_group_t *group, umode_t mode)
575 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
576 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
577 struct ext4_group_desc *desc;
578 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
581 * Try to place the inode is the same flex group as its
582 * parent. If we can't find space, use the Orlov algorithm to
583 * find another flex group, and store that information in the
584 * parent directory's inode information so that use that flex
585 * group for future allocations.
587 if (flex_size > 1) {
588 int retry = 0;
590 try_again:
591 parent_group &= ~(flex_size-1);
592 last = parent_group + flex_size;
593 if (last > ngroups)
594 last = ngroups;
595 for (i = parent_group; i < last; i++) {
596 desc = ext4_get_group_desc(sb, i, NULL);
597 if (desc && ext4_free_inodes_count(sb, desc)) {
598 *group = i;
599 return 0;
602 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
603 retry = 1;
604 parent_group = EXT4_I(parent)->i_last_alloc_group;
605 goto try_again;
608 * If this didn't work, use the Orlov search algorithm
609 * to find a new flex group; we pass in the mode to
610 * avoid the topdir algorithms.
612 *group = parent_group + flex_size;
613 if (*group > ngroups)
614 *group = 0;
615 return find_group_orlov(sb, parent, group, mode, NULL);
619 * Try to place the inode in its parent directory
621 *group = parent_group;
622 desc = ext4_get_group_desc(sb, *group, NULL);
623 if (desc && ext4_free_inodes_count(sb, desc) &&
624 ext4_free_group_clusters(sb, desc))
625 return 0;
628 * We're going to place this inode in a different blockgroup from its
629 * parent. We want to cause files in a common directory to all land in
630 * the same blockgroup. But we want files which are in a different
631 * directory which shares a blockgroup with our parent to land in a
632 * different blockgroup.
634 * So add our directory's i_ino into the starting point for the hash.
636 *group = (*group + parent->i_ino) % ngroups;
639 * Use a quadratic hash to find a group with a free inode and some free
640 * blocks.
642 for (i = 1; i < ngroups; i <<= 1) {
643 *group += i;
644 if (*group >= ngroups)
645 *group -= ngroups;
646 desc = ext4_get_group_desc(sb, *group, NULL);
647 if (desc && ext4_free_inodes_count(sb, desc) &&
648 ext4_free_group_clusters(sb, desc))
649 return 0;
653 * That failed: try linear search for a free inode, even if that group
654 * has no free blocks.
656 *group = parent_group;
657 for (i = 0; i < ngroups; i++) {
658 if (++*group >= ngroups)
659 *group = 0;
660 desc = ext4_get_group_desc(sb, *group, NULL);
661 if (desc && ext4_free_inodes_count(sb, desc))
662 return 0;
665 return -1;
669 * In no journal mode, if an inode has recently been deleted, we want
670 * to avoid reusing it until we're reasonably sure the inode table
671 * block has been written back to disk. (Yes, these values are
672 * somewhat arbitrary...)
674 #define RECENTCY_MIN 5
675 #define RECENTCY_DIRTY 30
677 static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
679 struct ext4_group_desc *gdp;
680 struct ext4_inode *raw_inode;
681 struct buffer_head *bh;
682 unsigned long dtime, now;
683 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
684 int offset, ret = 0, recentcy = RECENTCY_MIN;
686 gdp = ext4_get_group_desc(sb, group, NULL);
687 if (unlikely(!gdp))
688 return 0;
690 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
691 (ino / inodes_per_block));
692 if (unlikely(!bh) || !buffer_uptodate(bh))
694 * If the block is not in the buffer cache, then it
695 * must have been written out.
697 goto out;
699 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
700 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
701 dtime = le32_to_cpu(raw_inode->i_dtime);
702 now = get_seconds();
703 if (buffer_dirty(bh))
704 recentcy += RECENTCY_DIRTY;
706 if (dtime && (dtime < now) && (now < dtime + recentcy))
707 ret = 1;
708 out:
709 brelse(bh);
710 return ret;
714 * There are two policies for allocating an inode. If the new inode is
715 * a directory, then a forward search is made for a block group with both
716 * free space and a low directory-to-inode ratio; if that fails, then of
717 * the groups with above-average free space, that group with the fewest
718 * directories already is chosen.
720 * For other inodes, search forward from the parent directory's block
721 * group to find a free inode.
723 struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
724 umode_t mode, const struct qstr *qstr,
725 __u32 goal, uid_t *owner, int handle_type,
726 unsigned int line_no, int nblocks)
728 struct super_block *sb;
729 struct buffer_head *inode_bitmap_bh = NULL;
730 struct buffer_head *group_desc_bh;
731 ext4_group_t ngroups, group = 0;
732 unsigned long ino = 0;
733 struct inode *inode;
734 struct ext4_group_desc *gdp = NULL;
735 struct ext4_inode_info *ei;
736 struct ext4_sb_info *sbi;
737 int ret2, err;
738 struct inode *ret;
739 ext4_group_t i;
740 ext4_group_t flex_group;
741 struct ext4_group_info *grp;
742 int encrypt = 0;
744 /* Cannot create files in a deleted directory */
745 if (!dir || !dir->i_nlink)
746 return ERR_PTR(-EPERM);
748 if ((ext4_encrypted_inode(dir) ||
749 DUMMY_ENCRYPTION_ENABLED(EXT4_SB(dir->i_sb))) &&
750 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
751 err = ext4_get_encryption_info(dir);
752 if (err)
753 return ERR_PTR(err);
754 if (ext4_encryption_info(dir) == NULL)
755 return ERR_PTR(-EPERM);
756 if (!handle)
757 nblocks += EXT4_DATA_TRANS_BLOCKS(dir->i_sb);
758 encrypt = 1;
761 sb = dir->i_sb;
762 ngroups = ext4_get_groups_count(sb);
763 trace_ext4_request_inode(dir, mode);
764 inode = new_inode(sb);
765 if (!inode)
766 return ERR_PTR(-ENOMEM);
767 ei = EXT4_I(inode);
768 sbi = EXT4_SB(sb);
771 * Initalize owners and quota early so that we don't have to account
772 * for quota initialization worst case in standard inode creating
773 * transaction
775 if (owner) {
776 inode->i_mode = mode;
777 i_uid_write(inode, owner[0]);
778 i_gid_write(inode, owner[1]);
779 } else if (test_opt(sb, GRPID)) {
780 inode->i_mode = mode;
781 inode->i_uid = current_fsuid();
782 inode->i_gid = dir->i_gid;
783 } else
784 inode_init_owner(inode, dir, mode);
785 err = dquot_initialize(inode);
786 if (err)
787 goto out;
789 if (!goal)
790 goal = sbi->s_inode_goal;
792 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
793 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
794 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
795 ret2 = 0;
796 goto got_group;
799 if (S_ISDIR(mode))
800 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
801 else
802 ret2 = find_group_other(sb, dir, &group, mode);
804 got_group:
805 EXT4_I(dir)->i_last_alloc_group = group;
806 err = -ENOSPC;
807 if (ret2 == -1)
808 goto out;
811 * Normally we will only go through one pass of this loop,
812 * unless we get unlucky and it turns out the group we selected
813 * had its last inode grabbed by someone else.
815 for (i = 0; i < ngroups; i++, ino = 0) {
816 err = -EIO;
818 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
819 if (!gdp)
820 goto out;
823 * Check free inodes count before loading bitmap.
825 if (ext4_free_inodes_count(sb, gdp) == 0) {
826 if (++group == ngroups)
827 group = 0;
828 continue;
831 grp = ext4_get_group_info(sb, group);
832 /* Skip groups with already-known suspicious inode tables */
833 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
834 if (++group == ngroups)
835 group = 0;
836 continue;
839 brelse(inode_bitmap_bh);
840 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
841 /* Skip groups with suspicious inode tables */
842 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) ||
843 IS_ERR(inode_bitmap_bh)) {
844 inode_bitmap_bh = NULL;
845 if (++group == ngroups)
846 group = 0;
847 continue;
850 repeat_in_this_group:
851 ino = ext4_find_next_zero_bit((unsigned long *)
852 inode_bitmap_bh->b_data,
853 EXT4_INODES_PER_GROUP(sb), ino);
854 if (ino >= EXT4_INODES_PER_GROUP(sb))
855 goto next_group;
856 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
857 ext4_error(sb, "reserved inode found cleared - "
858 "inode=%lu", ino + 1);
859 continue;
861 if ((EXT4_SB(sb)->s_journal == NULL) &&
862 recently_deleted(sb, group, ino)) {
863 ino++;
864 goto next_inode;
866 if (!handle) {
867 BUG_ON(nblocks <= 0);
868 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
869 handle_type, nblocks,
871 if (IS_ERR(handle)) {
872 err = PTR_ERR(handle);
873 ext4_std_error(sb, err);
874 goto out;
877 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
878 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
879 if (err) {
880 ext4_std_error(sb, err);
881 goto out;
883 ext4_lock_group(sb, group);
884 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
885 ext4_unlock_group(sb, group);
886 ino++; /* the inode bitmap is zero-based */
887 if (!ret2)
888 goto got; /* we grabbed the inode! */
889 next_inode:
890 if (ino < EXT4_INODES_PER_GROUP(sb))
891 goto repeat_in_this_group;
892 next_group:
893 if (++group == ngroups)
894 group = 0;
896 err = -ENOSPC;
897 goto out;
899 got:
900 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
901 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
902 if (err) {
903 ext4_std_error(sb, err);
904 goto out;
907 BUFFER_TRACE(group_desc_bh, "get_write_access");
908 err = ext4_journal_get_write_access(handle, group_desc_bh);
909 if (err) {
910 ext4_std_error(sb, err);
911 goto out;
914 /* We may have to initialize the block bitmap if it isn't already */
915 if (ext4_has_group_desc_csum(sb) &&
916 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
917 struct buffer_head *block_bitmap_bh;
919 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
920 if (IS_ERR(block_bitmap_bh)) {
921 err = PTR_ERR(block_bitmap_bh);
922 goto out;
924 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
925 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
926 if (err) {
927 brelse(block_bitmap_bh);
928 ext4_std_error(sb, err);
929 goto out;
932 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
933 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
935 /* recheck and clear flag under lock if we still need to */
936 ext4_lock_group(sb, group);
937 if (ext4_has_group_desc_csum(sb) &&
938 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
939 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
940 ext4_free_group_clusters_set(sb, gdp,
941 ext4_free_clusters_after_init(sb, group, gdp));
942 ext4_block_bitmap_csum_set(sb, group, gdp,
943 block_bitmap_bh);
944 ext4_group_desc_csum_set(sb, group, gdp);
946 ext4_unlock_group(sb, group);
947 brelse(block_bitmap_bh);
949 if (err) {
950 ext4_std_error(sb, err);
951 goto out;
955 /* Update the relevant bg descriptor fields */
956 if (ext4_has_group_desc_csum(sb)) {
957 int free;
958 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
960 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
961 ext4_lock_group(sb, group); /* while we modify the bg desc */
962 free = EXT4_INODES_PER_GROUP(sb) -
963 ext4_itable_unused_count(sb, gdp);
964 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
965 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
966 free = 0;
969 * Check the relative inode number against the last used
970 * relative inode number in this group. if it is greater
971 * we need to update the bg_itable_unused count
973 if (ino > free)
974 ext4_itable_unused_set(sb, gdp,
975 (EXT4_INODES_PER_GROUP(sb) - ino));
976 up_read(&grp->alloc_sem);
977 } else {
978 ext4_lock_group(sb, group);
981 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
982 if (S_ISDIR(mode)) {
983 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
984 if (sbi->s_log_groups_per_flex) {
985 ext4_group_t f = ext4_flex_group(sbi, group);
987 atomic_inc(&sbi_array_rcu_deref(sbi, s_flex_groups,
988 f)->used_dirs);
991 if (ext4_has_group_desc_csum(sb)) {
992 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
993 EXT4_INODES_PER_GROUP(sb) / 8);
994 ext4_group_desc_csum_set(sb, group, gdp);
996 ext4_unlock_group(sb, group);
998 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
999 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
1000 if (err) {
1001 ext4_std_error(sb, err);
1002 goto out;
1005 percpu_counter_dec(&sbi->s_freeinodes_counter);
1006 if (S_ISDIR(mode))
1007 percpu_counter_inc(&sbi->s_dirs_counter);
1009 if (sbi->s_log_groups_per_flex) {
1010 flex_group = ext4_flex_group(sbi, group);
1011 atomic_dec(&sbi_array_rcu_deref(sbi, s_flex_groups,
1012 flex_group)->free_inodes);
1015 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
1016 /* This is the optimal IO size (for stat), not the fs block size */
1017 inode->i_blocks = 0;
1018 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
1019 ext4_current_time(inode);
1021 memset(ei->i_data, 0, sizeof(ei->i_data));
1022 ei->i_dir_start_lookup = 0;
1023 ei->i_disksize = 0;
1025 /* Don't inherit extent flag from directory, amongst others. */
1026 ei->i_flags =
1027 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
1028 ei->i_file_acl = 0;
1029 ei->i_dtime = 0;
1030 ei->i_block_group = group;
1031 ei->i_last_alloc_group = ~0;
1033 ext4_set_inode_flags(inode);
1034 if (IS_DIRSYNC(inode))
1035 ext4_handle_sync(handle);
1036 if (insert_inode_locked(inode) < 0) {
1038 * Likely a bitmap corruption causing inode to be allocated
1039 * twice.
1041 err = -EIO;
1042 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1043 inode->i_ino);
1044 goto out;
1046 spin_lock(&sbi->s_next_gen_lock);
1047 inode->i_generation = sbi->s_next_generation++;
1048 spin_unlock(&sbi->s_next_gen_lock);
1050 /* Precompute checksum seed for inode metadata */
1051 if (ext4_has_metadata_csum(sb)) {
1052 __u32 csum;
1053 __le32 inum = cpu_to_le32(inode->i_ino);
1054 __le32 gen = cpu_to_le32(inode->i_generation);
1055 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1056 sizeof(inum));
1057 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1058 sizeof(gen));
1061 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1062 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1064 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1065 ei->i_inline_off = 0;
1066 if (ext4_has_feature_inline_data(sb))
1067 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1068 ret = inode;
1069 err = dquot_alloc_inode(inode);
1070 if (err)
1071 goto fail_drop;
1073 err = ext4_init_acl(handle, inode, dir);
1074 if (err)
1075 goto fail_free_drop;
1077 err = ext4_init_security(handle, inode, dir, qstr);
1078 if (err)
1079 goto fail_free_drop;
1081 if (ext4_has_feature_extents(sb)) {
1082 /* set extent flag only for directory, file and normal symlink*/
1083 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1084 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1085 ext4_ext_tree_init(handle, inode);
1089 if (ext4_handle_valid(handle)) {
1090 ei->i_sync_tid = handle->h_transaction->t_tid;
1091 ei->i_datasync_tid = handle->h_transaction->t_tid;
1094 if (encrypt) {
1095 err = ext4_inherit_context(dir, inode);
1096 if (err)
1097 goto fail_free_drop;
1100 err = ext4_mark_inode_dirty(handle, inode);
1101 if (err) {
1102 ext4_std_error(sb, err);
1103 goto fail_free_drop;
1106 ext4_debug("allocating inode %lu\n", inode->i_ino);
1107 trace_ext4_allocate_inode(inode, dir, mode);
1108 brelse(inode_bitmap_bh);
1109 return ret;
1111 fail_free_drop:
1112 dquot_free_inode(inode);
1113 fail_drop:
1114 clear_nlink(inode);
1115 unlock_new_inode(inode);
1116 out:
1117 dquot_drop(inode);
1118 inode->i_flags |= S_NOQUOTA;
1119 iput(inode);
1120 brelse(inode_bitmap_bh);
1121 return ERR_PTR(err);
1124 /* Verify that we are loading a valid orphan from disk */
1125 struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1127 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1128 ext4_group_t block_group;
1129 int bit;
1130 struct buffer_head *bitmap_bh = NULL;
1131 struct inode *inode = NULL;
1132 int err = -EFSCORRUPTED;
1134 if (ino < EXT4_FIRST_INO(sb) || ino > max_ino)
1135 goto bad_orphan;
1137 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1138 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1139 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1140 if (IS_ERR(bitmap_bh)) {
1141 ext4_error(sb, "inode bitmap error %ld for orphan %lu",
1142 ino, PTR_ERR(bitmap_bh));
1143 return (struct inode *) bitmap_bh;
1146 /* Having the inode bit set should be a 100% indicator that this
1147 * is a valid orphan (no e2fsck run on fs). Orphans also include
1148 * inodes that were being truncated, so we can't check i_nlink==0.
1150 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1151 goto bad_orphan;
1153 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1154 if (IS_ERR(inode)) {
1155 err = PTR_ERR(inode);
1156 ext4_error(sb, "couldn't read orphan inode %lu (err %d)",
1157 ino, err);
1158 return inode;
1162 * If the orphans has i_nlinks > 0 then it should be able to
1163 * be truncated, otherwise it won't be removed from the orphan
1164 * list during processing and an infinite loop will result.
1165 * Similarly, it must not be a bad inode.
1167 if ((inode->i_nlink && !ext4_can_truncate(inode)) ||
1168 is_bad_inode(inode))
1169 goto bad_orphan;
1171 if (NEXT_ORPHAN(inode) > max_ino)
1172 goto bad_orphan;
1173 brelse(bitmap_bh);
1174 return inode;
1176 bad_orphan:
1177 ext4_error(sb, "bad orphan inode %lu", ino);
1178 if (bitmap_bh)
1179 printk(KERN_ERR "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1180 bit, (unsigned long long)bitmap_bh->b_blocknr,
1181 ext4_test_bit(bit, bitmap_bh->b_data));
1182 if (inode) {
1183 printk(KERN_ERR "is_bad_inode(inode)=%d\n",
1184 is_bad_inode(inode));
1185 printk(KERN_ERR "NEXT_ORPHAN(inode)=%u\n",
1186 NEXT_ORPHAN(inode));
1187 printk(KERN_ERR "max_ino=%lu\n", max_ino);
1188 printk(KERN_ERR "i_nlink=%u\n", inode->i_nlink);
1189 /* Avoid freeing blocks if we got a bad deleted inode */
1190 if (inode->i_nlink == 0)
1191 inode->i_blocks = 0;
1192 iput(inode);
1194 brelse(bitmap_bh);
1195 return ERR_PTR(err);
1198 unsigned long ext4_count_free_inodes(struct super_block *sb)
1200 unsigned long desc_count;
1201 struct ext4_group_desc *gdp;
1202 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1203 #ifdef EXT4FS_DEBUG
1204 struct ext4_super_block *es;
1205 unsigned long bitmap_count, x;
1206 struct buffer_head *bitmap_bh = NULL;
1208 es = EXT4_SB(sb)->s_es;
1209 desc_count = 0;
1210 bitmap_count = 0;
1211 gdp = NULL;
1212 for (i = 0; i < ngroups; i++) {
1213 gdp = ext4_get_group_desc(sb, i, NULL);
1214 if (!gdp)
1215 continue;
1216 desc_count += ext4_free_inodes_count(sb, gdp);
1217 brelse(bitmap_bh);
1218 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1219 if (IS_ERR(bitmap_bh)) {
1220 bitmap_bh = NULL;
1221 continue;
1224 x = ext4_count_free(bitmap_bh->b_data,
1225 EXT4_INODES_PER_GROUP(sb) / 8);
1226 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1227 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1228 bitmap_count += x;
1230 brelse(bitmap_bh);
1231 printk(KERN_DEBUG "ext4_count_free_inodes: "
1232 "stored = %u, computed = %lu, %lu\n",
1233 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1234 return desc_count;
1235 #else
1236 desc_count = 0;
1237 for (i = 0; i < ngroups; i++) {
1238 gdp = ext4_get_group_desc(sb, i, NULL);
1239 if (!gdp)
1240 continue;
1241 desc_count += ext4_free_inodes_count(sb, gdp);
1242 cond_resched();
1244 return desc_count;
1245 #endif
1248 /* Called at mount-time, super-block is locked */
1249 unsigned long ext4_count_dirs(struct super_block * sb)
1251 unsigned long count = 0;
1252 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1254 for (i = 0; i < ngroups; i++) {
1255 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1256 if (!gdp)
1257 continue;
1258 count += ext4_used_dirs_count(sb, gdp);
1260 return count;
1264 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1265 * inode table. Must be called without any spinlock held. The only place
1266 * where it is called from on active part of filesystem is ext4lazyinit
1267 * thread, so we do not need any special locks, however we have to prevent
1268 * inode allocation from the current group, so we take alloc_sem lock, to
1269 * block ext4_new_inode() until we are finished.
1271 int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1272 int barrier)
1274 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1275 struct ext4_sb_info *sbi = EXT4_SB(sb);
1276 struct ext4_group_desc *gdp = NULL;
1277 struct buffer_head *group_desc_bh;
1278 handle_t *handle;
1279 ext4_fsblk_t blk;
1280 int num, ret = 0, used_blks = 0;
1282 /* This should not happen, but just to be sure check this */
1283 if (sb->s_flags & MS_RDONLY) {
1284 ret = 1;
1285 goto out;
1288 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1289 if (!gdp)
1290 goto out;
1293 * We do not need to lock this, because we are the only one
1294 * handling this flag.
1296 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1297 goto out;
1299 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1300 if (IS_ERR(handle)) {
1301 ret = PTR_ERR(handle);
1302 goto out;
1305 down_write(&grp->alloc_sem);
1307 * If inode bitmap was already initialized there may be some
1308 * used inodes so we need to skip blocks with used inodes in
1309 * inode table.
1311 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1312 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1313 ext4_itable_unused_count(sb, gdp)),
1314 sbi->s_inodes_per_block);
1316 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group) ||
1317 ((group == 0) && ((EXT4_INODES_PER_GROUP(sb) -
1318 ext4_itable_unused_count(sb, gdp)) <
1319 EXT4_FIRST_INO(sb)))) {
1320 ext4_error(sb, "Something is wrong with group %u: "
1321 "used itable blocks: %d; "
1322 "itable unused count: %u",
1323 group, used_blks,
1324 ext4_itable_unused_count(sb, gdp));
1325 ret = 1;
1326 goto err_out;
1329 blk = ext4_inode_table(sb, gdp) + used_blks;
1330 num = sbi->s_itb_per_group - used_blks;
1332 BUFFER_TRACE(group_desc_bh, "get_write_access");
1333 ret = ext4_journal_get_write_access(handle,
1334 group_desc_bh);
1335 if (ret)
1336 goto err_out;
1339 * Skip zeroout if the inode table is full. But we set the ZEROED
1340 * flag anyway, because obviously, when it is full it does not need
1341 * further zeroing.
1343 if (unlikely(num == 0))
1344 goto skip_zeroout;
1346 ext4_debug("going to zero out inode table in group %d\n",
1347 group);
1348 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1349 if (ret < 0)
1350 goto err_out;
1351 if (barrier)
1352 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1354 skip_zeroout:
1355 ext4_lock_group(sb, group);
1356 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1357 ext4_group_desc_csum_set(sb, group, gdp);
1358 ext4_unlock_group(sb, group);
1360 BUFFER_TRACE(group_desc_bh,
1361 "call ext4_handle_dirty_metadata");
1362 ret = ext4_handle_dirty_metadata(handle, NULL,
1363 group_desc_bh);
1365 err_out:
1366 up_write(&grp->alloc_sem);
1367 ext4_journal_stop(handle);
1368 out:
1369 return ret;