HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob881601691bd4ae0fdc1841674ac8c515183db756
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
46 #include <trace/events/ext4.h>
48 #define MPAGE_DA_EXTENT_TAIL 0x01
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u32 csum;
55 __u16 dummy_csum = 0;
56 int offset = offsetof(struct ext4_inode, i_checksum_lo);
57 unsigned int csum_size = sizeof(dummy_csum);
59 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61 offset += csum_size;
62 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63 EXT4_GOOD_OLD_INODE_SIZE - offset);
65 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66 offset = offsetof(struct ext4_inode, i_checksum_hi);
67 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68 EXT4_GOOD_OLD_INODE_SIZE,
69 offset - EXT4_GOOD_OLD_INODE_SIZE);
70 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72 csum_size);
73 offset += csum_size;
75 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76 EXT4_INODE_SIZE(inode->i_sb) - offset);
79 return csum;
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83 struct ext4_inode_info *ei)
85 __u32 provided, calculated;
87 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88 cpu_to_le32(EXT4_OS_LINUX) ||
89 !ext4_has_metadata_csum(inode->i_sb))
90 return 1;
92 provided = le16_to_cpu(raw->i_checksum_lo);
93 calculated = ext4_inode_csum(inode, raw, ei);
94 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97 else
98 calculated &= 0xFFFF;
100 return provided == calculated;
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104 struct ext4_inode_info *ei)
106 __u32 csum;
108 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109 cpu_to_le32(EXT4_OS_LINUX) ||
110 !ext4_has_metadata_csum(inode->i_sb))
111 return;
113 csum = ext4_inode_csum(inode, raw, ei);
114 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121 loff_t new_size)
123 trace_ext4_begin_ordered_truncate(inode, new_size);
125 * If jinode is zero, then we never opened the file for
126 * writing, so there's no need to call
127 * jbd2_journal_begin_ordered_truncate() since there's no
128 * outstanding writes we need to flush.
130 if (!EXT4_I(inode)->jinode)
131 return 0;
132 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133 EXT4_I(inode)->jinode,
134 new_size);
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142 int pextents);
145 * Test whether an inode is a fast symlink.
147 int ext4_inode_is_fast_symlink(struct inode *inode)
149 int ea_blocks = EXT4_I(inode)->i_file_acl ?
150 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152 if (ext4_has_inline_data(inode))
153 return 0;
155 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 * Restart the transaction associated with *handle. This does a commit,
160 * so before we call here everything must be consistently dirtied against
161 * this transaction.
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164 int nblocks)
166 int ret;
169 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
170 * moment, get_block can be called only for blocks inside i_size since
171 * page cache has been already dropped and writes are blocked by
172 * i_mutex. So we can safely drop the i_data_sem here.
174 BUG_ON(EXT4_JOURNAL(inode) == NULL);
175 jbd_debug(2, "restarting handle %p\n", handle);
176 up_write(&EXT4_I(inode)->i_data_sem);
177 ret = ext4_journal_restart(handle, nblocks);
178 down_write(&EXT4_I(inode)->i_data_sem);
179 ext4_discard_preallocations(inode);
181 return ret;
185 * Called at the last iput() if i_nlink is zero.
187 void ext4_evict_inode(struct inode *inode)
189 handle_t *handle;
190 int err;
192 trace_ext4_evict_inode(inode);
194 if (inode->i_nlink) {
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
210 * Note that directories do not have this problem because they
211 * don't use page cache.
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219 jbd2_complete_transaction(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
222 truncate_inode_pages_final(&inode->i_data);
224 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
225 goto no_delete;
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
236 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
242 sb_start_intwrite(inode->i_sb);
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
245 if (IS_ERR(handle)) {
246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
252 ext4_orphan_del(NULL, inode);
253 sb_end_intwrite(inode->i_sb);
254 goto no_delete;
257 if (IS_SYNC(inode))
258 ext4_handle_sync(handle);
259 inode->i_size = 0;
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
262 ext4_warning(inode->i_sb,
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
266 if (inode->i_blocks)
267 ext4_truncate(inode);
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
275 if (!ext4_handle_has_enough_credits(handle, 3)) {
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
280 ext4_warning(inode->i_sb,
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
284 ext4_orphan_del(NULL, inode);
285 sb_end_intwrite(inode->i_sb);
286 goto no_delete;
291 * Kill off the orphan record which ext4_truncate created.
292 * AKPM: I think this can be inside the above `if'.
293 * Note that ext4_orphan_del() has to be able to cope with the
294 * deletion of a non-existent orphan - this is because we don't
295 * know if ext4_truncate() actually created an orphan record.
296 * (Well, we could do this if we need to, but heck - it works)
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
308 if (ext4_mark_inode_dirty(handle, inode))
309 /* If that failed, just do the required in-core inode clear. */
310 ext4_clear_inode(inode);
311 else
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
314 sb_end_intwrite(inode->i_sb);
315 return;
316 no_delete:
317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
320 #ifdef CONFIG_QUOTA
321 qsize_t *ext4_get_reserved_space(struct inode *inode)
323 return &EXT4_I(inode)->i_reserved_quota;
325 #endif
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
331 void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
335 struct ext4_inode_info *ei = EXT4_I(inode);
337 spin_lock(&ei->i_block_reservation_lock);
338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
339 if (unlikely(used > ei->i_reserved_data_blocks)) {
340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
341 "with only %d reserved data blocks",
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
357 else {
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
361 * not re-claim the quota for fallocated blocks.
363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
373 ext4_discard_preallocations(inode);
376 static int __check_block_validity(struct inode *inode, const char *func,
377 unsigned int line,
378 struct ext4_map_blocks *map)
380 if (ext4_has_feature_journal(inode->i_sb) &&
381 (inode->i_ino ==
382 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
383 return 0;
384 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
385 map->m_len)) {
386 ext4_error_inode(inode, func, line, map->m_pblk,
387 "lblock %lu mapped to illegal pblock %llu "
388 "(length %d)", (unsigned long) map->m_lblk,
389 map->m_pblk, map->m_len);
390 return -EFSCORRUPTED;
392 return 0;
395 #define check_block_validity(inode, map) \
396 __check_block_validity((inode), __func__, __LINE__, (map))
398 #ifdef ES_AGGRESSIVE_TEST
399 static void ext4_map_blocks_es_recheck(handle_t *handle,
400 struct inode *inode,
401 struct ext4_map_blocks *es_map,
402 struct ext4_map_blocks *map,
403 int flags)
405 int retval;
407 map->m_flags = 0;
409 * There is a race window that the result is not the same.
410 * e.g. xfstests #223 when dioread_nolock enables. The reason
411 * is that we lookup a block mapping in extent status tree with
412 * out taking i_data_sem. So at the time the unwritten extent
413 * could be converted.
415 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
416 down_read(&EXT4_I(inode)->i_data_sem);
417 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
418 retval = ext4_ext_map_blocks(handle, inode, map, flags &
419 EXT4_GET_BLOCKS_KEEP_SIZE);
420 } else {
421 retval = ext4_ind_map_blocks(handle, inode, map, flags &
422 EXT4_GET_BLOCKS_KEEP_SIZE);
424 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
425 up_read((&EXT4_I(inode)->i_data_sem));
428 * We don't check m_len because extent will be collpased in status
429 * tree. So the m_len might not equal.
431 if (es_map->m_lblk != map->m_lblk ||
432 es_map->m_flags != map->m_flags ||
433 es_map->m_pblk != map->m_pblk) {
434 printk("ES cache assertion failed for inode: %lu "
435 "es_cached ex [%d/%d/%llu/%x] != "
436 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
437 inode->i_ino, es_map->m_lblk, es_map->m_len,
438 es_map->m_pblk, es_map->m_flags, map->m_lblk,
439 map->m_len, map->m_pblk, map->m_flags,
440 retval, flags);
443 #endif /* ES_AGGRESSIVE_TEST */
446 * The ext4_map_blocks() function tries to look up the requested blocks,
447 * and returns if the blocks are already mapped.
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
455 * based files
457 * On success, it returns the number of blocks being mapped or allocated.
458 * if create==0 and the blocks are pre-allocated and unwritten block,
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
463 * that case, buffer head is unmapped
465 * It returns the error in case of allocation failure.
467 int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
470 struct extent_status es;
471 int retval;
472 int ret = 0;
473 #ifdef ES_AGGRESSIVE_TEST
474 struct ext4_map_blocks orig_map;
476 memcpy(&orig_map, map, sizeof(*map));
477 #endif
479 map->m_flags = 0;
480 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
481 "logical block %lu\n", inode->i_ino, flags, map->m_len,
482 (unsigned long) map->m_lblk);
485 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 if (unlikely(map->m_len > INT_MAX))
488 map->m_len = INT_MAX;
490 /* We can handle the block number less than EXT_MAX_BLOCKS */
491 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
492 return -EFSCORRUPTED;
494 /* Lookup extent status tree firstly */
495 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
496 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
497 map->m_pblk = ext4_es_pblock(&es) +
498 map->m_lblk - es.es_lblk;
499 map->m_flags |= ext4_es_is_written(&es) ?
500 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
501 retval = es.es_len - (map->m_lblk - es.es_lblk);
502 if (retval > map->m_len)
503 retval = map->m_len;
504 map->m_len = retval;
505 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
506 retval = 0;
507 } else {
508 BUG_ON(1);
510 #ifdef ES_AGGRESSIVE_TEST
511 ext4_map_blocks_es_recheck(handle, inode, map,
512 &orig_map, flags);
513 #endif
514 goto found;
518 * Try to see if we can get the block without requesting a new
519 * file system block.
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read(&EXT4_I(inode)->i_data_sem);
523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
526 } else {
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
530 if (retval > 0) {
531 unsigned int status;
533 if (unlikely(retval != map->m_len)) {
534 ext4_warning(inode->i_sb,
535 "ES len assertion failed for inode "
536 "%lu: retval %d != map->m_len %d",
537 inode->i_ino, retval, map->m_len);
538 WARN_ON(1);
541 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
542 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
543 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
544 !(status & EXTENT_STATUS_WRITTEN) &&
545 ext4_find_delalloc_range(inode, map->m_lblk,
546 map->m_lblk + map->m_len - 1))
547 status |= EXTENT_STATUS_DELAYED;
548 ret = ext4_es_insert_extent(inode, map->m_lblk,
549 map->m_len, map->m_pblk, status);
550 if (ret < 0)
551 retval = ret;
553 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
554 up_read((&EXT4_I(inode)->i_data_sem));
556 found:
557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
558 ret = check_block_validity(inode, map);
559 if (ret != 0)
560 return ret;
563 /* If it is only a block(s) look up */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
565 return retval;
568 * Returns if the blocks have already allocated
570 * Note that if blocks have been preallocated
571 * ext4_ext_get_block() returns the create = 0
572 * with buffer head unmapped.
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
576 * If we need to convert extent to unwritten
577 * we continue and do the actual work in
578 * ext4_ext_map_blocks()
580 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
581 return retval;
584 * Here we clear m_flags because after allocating an new extent,
585 * it will be set again.
587 map->m_flags &= ~EXT4_MAP_FLAGS;
590 * New blocks allocate and/or writing to unwritten extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_block()
593 * with create == 1 flag.
595 down_write(&EXT4_I(inode)->i_data_sem);
598 * We need to check for EXT4 here because migrate
599 * could have changed the inode type in between
601 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
602 retval = ext4_ext_map_blocks(handle, inode, map, flags);
603 } else {
604 retval = ext4_ind_map_blocks(handle, inode, map, flags);
606 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
608 * We allocated new blocks which will result in
609 * i_data's format changing. Force the migrate
610 * to fail by clearing migrate flags
612 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
616 * Update reserved blocks/metadata blocks after successful
617 * block allocation which had been deferred till now. We don't
618 * support fallocate for non extent files. So we can update
619 * reserve space here.
621 if ((retval > 0) &&
622 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
623 ext4_da_update_reserve_space(inode, retval, 1);
626 if (retval > 0) {
627 unsigned int status;
629 if (unlikely(retval != map->m_len)) {
630 ext4_warning(inode->i_sb,
631 "ES len assertion failed for inode "
632 "%lu: retval %d != map->m_len %d",
633 inode->i_ino, retval, map->m_len);
634 WARN_ON(1);
638 * If the extent has been zeroed out, we don't need to update
639 * extent status tree.
641 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
642 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
643 if (ext4_es_is_written(&es))
644 goto has_zeroout;
646 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
647 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
648 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
649 !(status & EXTENT_STATUS_WRITTEN) &&
650 ext4_find_delalloc_range(inode, map->m_lblk,
651 map->m_lblk + map->m_len - 1))
652 status |= EXTENT_STATUS_DELAYED;
653 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
654 map->m_pblk, status);
655 if (ret < 0)
656 retval = ret;
659 has_zeroout:
660 up_write((&EXT4_I(inode)->i_data_sem));
661 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
662 ret = check_block_validity(inode, map);
663 if (ret != 0)
664 return ret;
667 * Inodes with freshly allocated blocks where contents will be
668 * visible after transaction commit must be on transaction's
669 * ordered data list.
671 if (map->m_flags & EXT4_MAP_NEW &&
672 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
673 !IS_NOQUOTA(inode) &&
674 ext4_should_order_data(inode)) {
675 ret = ext4_jbd2_file_inode(handle, inode);
676 if (ret)
677 return ret;
680 return retval;
684 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
685 * we have to be careful as someone else may be manipulating b_state as well.
687 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
689 unsigned long old_state;
690 unsigned long new_state;
692 flags &= EXT4_MAP_FLAGS;
694 /* Dummy buffer_head? Set non-atomically. */
695 if (!bh->b_page) {
696 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
697 return;
700 * Someone else may be modifying b_state. Be careful! This is ugly but
701 * once we get rid of using bh as a container for mapping information
702 * to pass to / from get_block functions, this can go away.
704 do {
705 old_state = READ_ONCE(bh->b_state);
706 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
707 } while (unlikely(
708 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
711 /* Maximum number of blocks we map for direct IO at once. */
712 #define DIO_MAX_BLOCKS 4096
714 static int _ext4_get_block(struct inode *inode, sector_t iblock,
715 struct buffer_head *bh, int flags)
717 handle_t *handle = ext4_journal_current_handle();
718 struct ext4_map_blocks map;
719 int ret = 0, started = 0;
720 int dio_credits;
722 if (ext4_has_inline_data(inode))
723 return -ERANGE;
725 map.m_lblk = iblock;
726 map.m_len = bh->b_size >> inode->i_blkbits;
728 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
729 /* Direct IO write... */
730 if (map.m_len > DIO_MAX_BLOCKS)
731 map.m_len = DIO_MAX_BLOCKS;
732 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
733 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
734 dio_credits);
735 if (IS_ERR(handle)) {
736 ret = PTR_ERR(handle);
737 return ret;
739 started = 1;
742 ret = ext4_map_blocks(handle, inode, &map, flags);
743 if (ret > 0) {
744 ext4_io_end_t *io_end = ext4_inode_aio(inode);
746 map_bh(bh, inode->i_sb, map.m_pblk);
747 ext4_update_bh_state(bh, map.m_flags);
748 if (IS_DAX(inode) && buffer_unwritten(bh)) {
750 * dgc: I suspect unwritten conversion on ext4+DAX is
751 * fundamentally broken here when there are concurrent
752 * read/write in progress on this inode.
754 WARN_ON_ONCE(io_end);
755 bh->b_assoc_map = inode->i_mapping;
756 bh->b_private = (void *)(unsigned long)iblock;
758 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
759 set_buffer_defer_completion(bh);
760 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
761 ret = 0;
763 if (started)
764 ext4_journal_stop(handle);
765 return ret;
768 int ext4_get_block(struct inode *inode, sector_t iblock,
769 struct buffer_head *bh, int create)
771 return _ext4_get_block(inode, iblock, bh,
772 create ? EXT4_GET_BLOCKS_CREATE : 0);
776 * `handle' can be NULL if create is zero
778 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
779 ext4_lblk_t block, int map_flags)
781 struct ext4_map_blocks map;
782 struct buffer_head *bh;
783 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
784 int err;
786 J_ASSERT(handle != NULL || create == 0);
788 map.m_lblk = block;
789 map.m_len = 1;
790 err = ext4_map_blocks(handle, inode, &map, map_flags);
792 if (err == 0)
793 return create ? ERR_PTR(-ENOSPC) : NULL;
794 if (err < 0)
795 return ERR_PTR(err);
797 bh = sb_getblk(inode->i_sb, map.m_pblk);
798 if (unlikely(!bh))
799 return ERR_PTR(-ENOMEM);
800 if (map.m_flags & EXT4_MAP_NEW) {
801 J_ASSERT(create != 0);
802 J_ASSERT(handle != NULL);
805 * Now that we do not always journal data, we should
806 * keep in mind whether this should always journal the
807 * new buffer as metadata. For now, regular file
808 * writes use ext4_get_block instead, so it's not a
809 * problem.
811 lock_buffer(bh);
812 BUFFER_TRACE(bh, "call get_create_access");
813 err = ext4_journal_get_create_access(handle, bh);
814 if (unlikely(err)) {
815 unlock_buffer(bh);
816 goto errout;
818 if (!buffer_uptodate(bh)) {
819 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
820 set_buffer_uptodate(bh);
822 unlock_buffer(bh);
823 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
824 err = ext4_handle_dirty_metadata(handle, inode, bh);
825 if (unlikely(err))
826 goto errout;
827 } else
828 BUFFER_TRACE(bh, "not a new buffer");
829 return bh;
830 errout:
831 brelse(bh);
832 return ERR_PTR(err);
835 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
836 ext4_lblk_t block, int map_flags)
838 struct buffer_head *bh;
840 bh = ext4_getblk(handle, inode, block, map_flags);
841 if (IS_ERR(bh))
842 return bh;
843 if (!bh || buffer_uptodate(bh))
844 return bh;
845 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
846 wait_on_buffer(bh);
847 if (buffer_uptodate(bh))
848 return bh;
849 put_bh(bh);
850 return ERR_PTR(-EIO);
853 int ext4_walk_page_buffers(handle_t *handle,
854 struct buffer_head *head,
855 unsigned from,
856 unsigned to,
857 int *partial,
858 int (*fn)(handle_t *handle,
859 struct buffer_head *bh))
861 struct buffer_head *bh;
862 unsigned block_start, block_end;
863 unsigned blocksize = head->b_size;
864 int err, ret = 0;
865 struct buffer_head *next;
867 for (bh = head, block_start = 0;
868 ret == 0 && (bh != head || !block_start);
869 block_start = block_end, bh = next) {
870 next = bh->b_this_page;
871 block_end = block_start + blocksize;
872 if (block_end <= from || block_start >= to) {
873 if (partial && !buffer_uptodate(bh))
874 *partial = 1;
875 continue;
877 err = (*fn)(handle, bh);
878 if (!ret)
879 ret = err;
881 return ret;
885 * To preserve ordering, it is essential that the hole instantiation and
886 * the data write be encapsulated in a single transaction. We cannot
887 * close off a transaction and start a new one between the ext4_get_block()
888 * and the commit_write(). So doing the jbd2_journal_start at the start of
889 * prepare_write() is the right place.
891 * Also, this function can nest inside ext4_writepage(). In that case, we
892 * *know* that ext4_writepage() has generated enough buffer credits to do the
893 * whole page. So we won't block on the journal in that case, which is good,
894 * because the caller may be PF_MEMALLOC.
896 * By accident, ext4 can be reentered when a transaction is open via
897 * quota file writes. If we were to commit the transaction while thus
898 * reentered, there can be a deadlock - we would be holding a quota
899 * lock, and the commit would never complete if another thread had a
900 * transaction open and was blocking on the quota lock - a ranking
901 * violation.
903 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
904 * will _not_ run commit under these circumstances because handle->h_ref
905 * is elevated. We'll still have enough credits for the tiny quotafile
906 * write.
908 int do_journal_get_write_access(handle_t *handle,
909 struct buffer_head *bh)
911 int dirty = buffer_dirty(bh);
912 int ret;
914 if (!buffer_mapped(bh) || buffer_freed(bh))
915 return 0;
917 * __block_write_begin() could have dirtied some buffers. Clean
918 * the dirty bit as jbd2_journal_get_write_access() could complain
919 * otherwise about fs integrity issues. Setting of the dirty bit
920 * by __block_write_begin() isn't a real problem here as we clear
921 * the bit before releasing a page lock and thus writeback cannot
922 * ever write the buffer.
924 if (dirty)
925 clear_buffer_dirty(bh);
926 BUFFER_TRACE(bh, "get write access");
927 ret = ext4_journal_get_write_access(handle, bh);
928 if (!ret && dirty)
929 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
930 return ret;
933 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
934 struct buffer_head *bh_result, int create);
936 #ifdef CONFIG_EXT4_FS_ENCRYPTION
937 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
938 get_block_t *get_block)
940 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
941 unsigned to = from + len;
942 struct inode *inode = page->mapping->host;
943 unsigned block_start, block_end;
944 sector_t block;
945 int err = 0;
946 unsigned blocksize = inode->i_sb->s_blocksize;
947 unsigned bbits;
948 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
949 bool decrypt = false;
951 BUG_ON(!PageLocked(page));
952 BUG_ON(from > PAGE_CACHE_SIZE);
953 BUG_ON(to > PAGE_CACHE_SIZE);
954 BUG_ON(from > to);
956 if (!page_has_buffers(page))
957 create_empty_buffers(page, blocksize, 0);
958 head = page_buffers(page);
959 bbits = ilog2(blocksize);
960 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
962 for (bh = head, block_start = 0; bh != head || !block_start;
963 block++, block_start = block_end, bh = bh->b_this_page) {
964 block_end = block_start + blocksize;
965 if (block_end <= from || block_start >= to) {
966 if (PageUptodate(page)) {
967 if (!buffer_uptodate(bh))
968 set_buffer_uptodate(bh);
970 continue;
972 if (buffer_new(bh))
973 clear_buffer_new(bh);
974 if (!buffer_mapped(bh)) {
975 WARN_ON(bh->b_size != blocksize);
976 err = get_block(inode, block, bh, 1);
977 if (err)
978 break;
979 if (buffer_new(bh)) {
980 unmap_underlying_metadata(bh->b_bdev,
981 bh->b_blocknr);
982 if (PageUptodate(page)) {
983 clear_buffer_new(bh);
984 set_buffer_uptodate(bh);
985 mark_buffer_dirty(bh);
986 continue;
988 if (block_end > to || block_start < from)
989 zero_user_segments(page, to, block_end,
990 block_start, from);
991 continue;
994 if (PageUptodate(page)) {
995 if (!buffer_uptodate(bh))
996 set_buffer_uptodate(bh);
997 continue;
999 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1000 !buffer_unwritten(bh) &&
1001 (block_start < from || block_end > to)) {
1002 ll_rw_block(READ, 1, &bh);
1003 *wait_bh++ = bh;
1004 decrypt = ext4_encrypted_inode(inode) &&
1005 S_ISREG(inode->i_mode);
1009 * If we issued read requests, let them complete.
1011 while (wait_bh > wait) {
1012 wait_on_buffer(*--wait_bh);
1013 if (!buffer_uptodate(*wait_bh))
1014 err = -EIO;
1016 if (unlikely(err))
1017 page_zero_new_buffers(page, from, to);
1018 else if (decrypt)
1019 err = ext4_decrypt(page);
1020 return err;
1022 #endif
1024 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1025 loff_t pos, unsigned len, unsigned flags,
1026 struct page **pagep, void **fsdata)
1028 struct inode *inode = mapping->host;
1029 int ret, needed_blocks;
1030 handle_t *handle;
1031 int retries = 0;
1032 struct page *page;
1033 pgoff_t index;
1034 unsigned from, to;
1036 trace_ext4_write_begin(inode, pos, len, flags);
1038 * Reserve one block more for addition to orphan list in case
1039 * we allocate blocks but write fails for some reason
1041 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1042 index = pos >> PAGE_CACHE_SHIFT;
1043 from = pos & (PAGE_CACHE_SIZE - 1);
1044 to = from + len;
1046 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1047 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1048 flags, pagep);
1049 if (ret < 0)
1050 return ret;
1051 if (ret == 1)
1052 return 0;
1056 * grab_cache_page_write_begin() can take a long time if the
1057 * system is thrashing due to memory pressure, or if the page
1058 * is being written back. So grab it first before we start
1059 * the transaction handle. This also allows us to allocate
1060 * the page (if needed) without using GFP_NOFS.
1062 retry_grab:
1063 page = grab_cache_page_write_begin(mapping, index, flags);
1064 if (!page)
1065 return -ENOMEM;
1066 unlock_page(page);
1068 retry_journal:
1069 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1070 if (IS_ERR(handle)) {
1071 page_cache_release(page);
1072 return PTR_ERR(handle);
1075 lock_page(page);
1076 if (page->mapping != mapping) {
1077 /* The page got truncated from under us */
1078 unlock_page(page);
1079 page_cache_release(page);
1080 ext4_journal_stop(handle);
1081 goto retry_grab;
1083 /* In case writeback began while the page was unlocked */
1084 wait_for_stable_page(page);
1086 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1087 if (ext4_should_dioread_nolock(inode))
1088 ret = ext4_block_write_begin(page, pos, len,
1089 ext4_get_block_write);
1090 else
1091 ret = ext4_block_write_begin(page, pos, len,
1092 ext4_get_block);
1093 #else
1094 if (ext4_should_dioread_nolock(inode))
1095 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1096 else
1097 ret = __block_write_begin(page, pos, len, ext4_get_block);
1098 #endif
1099 if (!ret && ext4_should_journal_data(inode)) {
1100 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1101 from, to, NULL,
1102 do_journal_get_write_access);
1105 if (ret) {
1106 unlock_page(page);
1108 * __block_write_begin may have instantiated a few blocks
1109 * outside i_size. Trim these off again. Don't need
1110 * i_size_read because we hold i_mutex.
1112 * Add inode to orphan list in case we crash before
1113 * truncate finishes
1115 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1116 ext4_orphan_add(handle, inode);
1118 ext4_journal_stop(handle);
1119 if (pos + len > inode->i_size) {
1120 ext4_truncate_failed_write(inode);
1122 * If truncate failed early the inode might
1123 * still be on the orphan list; we need to
1124 * make sure the inode is removed from the
1125 * orphan list in that case.
1127 if (inode->i_nlink)
1128 ext4_orphan_del(NULL, inode);
1131 if (ret == -ENOSPC &&
1132 ext4_should_retry_alloc(inode->i_sb, &retries))
1133 goto retry_journal;
1134 page_cache_release(page);
1135 return ret;
1137 *pagep = page;
1138 return ret;
1141 /* For write_end() in data=journal mode */
1142 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1144 int ret;
1145 if (!buffer_mapped(bh) || buffer_freed(bh))
1146 return 0;
1147 set_buffer_uptodate(bh);
1148 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1149 clear_buffer_meta(bh);
1150 clear_buffer_prio(bh);
1151 return ret;
1155 * We need to pick up the new inode size which generic_commit_write gave us
1156 * `file' can be NULL - eg, when called from page_symlink().
1158 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1159 * buffers are managed internally.
1161 static int ext4_write_end(struct file *file,
1162 struct address_space *mapping,
1163 loff_t pos, unsigned len, unsigned copied,
1164 struct page *page, void *fsdata)
1166 handle_t *handle = ext4_journal_current_handle();
1167 struct inode *inode = mapping->host;
1168 loff_t old_size = inode->i_size;
1169 int ret = 0, ret2;
1170 int i_size_changed = 0;
1171 int inline_data = ext4_has_inline_data(inode);
1173 trace_ext4_write_end(inode, pos, len, copied);
1174 if (inline_data) {
1175 ret = ext4_write_inline_data_end(inode, pos, len,
1176 copied, page);
1177 if (ret < 0) {
1178 unlock_page(page);
1179 put_page(page);
1180 goto errout;
1182 copied = ret;
1183 } else
1184 copied = block_write_end(file, mapping, pos,
1185 len, copied, page, fsdata);
1187 * it's important to update i_size while still holding page lock:
1188 * page writeout could otherwise come in and zero beyond i_size.
1190 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1191 unlock_page(page);
1192 page_cache_release(page);
1194 if (old_size < pos)
1195 pagecache_isize_extended(inode, old_size, pos);
1197 * Don't mark the inode dirty under page lock. First, it unnecessarily
1198 * makes the holding time of page lock longer. Second, it forces lock
1199 * ordering of page lock and transaction start for journaling
1200 * filesystems.
1202 if (i_size_changed || inline_data)
1203 ext4_mark_inode_dirty(handle, inode);
1205 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1206 /* if we have allocated more blocks and copied
1207 * less. We will have blocks allocated outside
1208 * inode->i_size. So truncate them
1210 ext4_orphan_add(handle, inode);
1211 errout:
1212 ret2 = ext4_journal_stop(handle);
1213 if (!ret)
1214 ret = ret2;
1216 if (pos + len > inode->i_size) {
1217 ext4_truncate_failed_write(inode);
1219 * If truncate failed early the inode might still be
1220 * on the orphan list; we need to make sure the inode
1221 * is removed from the orphan list in that case.
1223 if (inode->i_nlink)
1224 ext4_orphan_del(NULL, inode);
1227 return ret ? ret : copied;
1231 * This is a private version of page_zero_new_buffers() which doesn't
1232 * set the buffer to be dirty, since in data=journalled mode we need
1233 * to call ext4_handle_dirty_metadata() instead.
1235 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1236 struct page *page,
1237 unsigned from, unsigned to)
1239 unsigned int block_start = 0, block_end;
1240 struct buffer_head *head, *bh;
1242 bh = head = page_buffers(page);
1243 do {
1244 block_end = block_start + bh->b_size;
1245 if (buffer_new(bh)) {
1246 if (block_end > from && block_start < to) {
1247 if (!PageUptodate(page)) {
1248 unsigned start, size;
1250 start = max(from, block_start);
1251 size = min(to, block_end) - start;
1253 zero_user(page, start, size);
1254 write_end_fn(handle, bh);
1256 clear_buffer_new(bh);
1259 block_start = block_end;
1260 bh = bh->b_this_page;
1261 } while (bh != head);
1264 static int ext4_journalled_write_end(struct file *file,
1265 struct address_space *mapping,
1266 loff_t pos, unsigned len, unsigned copied,
1267 struct page *page, void *fsdata)
1269 handle_t *handle = ext4_journal_current_handle();
1270 struct inode *inode = mapping->host;
1271 loff_t old_size = inode->i_size;
1272 int ret = 0, ret2;
1273 int partial = 0;
1274 unsigned from, to;
1275 int size_changed = 0;
1276 int inline_data = ext4_has_inline_data(inode);
1278 trace_ext4_journalled_write_end(inode, pos, len, copied);
1279 from = pos & (PAGE_CACHE_SIZE - 1);
1280 to = from + len;
1282 BUG_ON(!ext4_handle_valid(handle));
1284 if (inline_data) {
1285 ret = ext4_write_inline_data_end(inode, pos, len,
1286 copied, page);
1287 if (ret < 0) {
1288 unlock_page(page);
1289 put_page(page);
1290 goto errout;
1292 copied = ret;
1293 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1294 copied = 0;
1295 ext4_journalled_zero_new_buffers(handle, page, from, to);
1296 } else {
1297 if (unlikely(copied < len))
1298 ext4_journalled_zero_new_buffers(handle, page,
1299 from + copied, to);
1300 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1301 from + copied, &partial,
1302 write_end_fn);
1303 if (!partial)
1304 SetPageUptodate(page);
1306 size_changed = ext4_update_inode_size(inode, pos + copied);
1307 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1308 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1309 unlock_page(page);
1310 page_cache_release(page);
1312 if (old_size < pos)
1313 pagecache_isize_extended(inode, old_size, pos);
1315 if (size_changed || inline_data) {
1316 ret2 = ext4_mark_inode_dirty(handle, inode);
1317 if (!ret)
1318 ret = ret2;
1321 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1322 /* if we have allocated more blocks and copied
1323 * less. We will have blocks allocated outside
1324 * inode->i_size. So truncate them
1326 ext4_orphan_add(handle, inode);
1328 errout:
1329 ret2 = ext4_journal_stop(handle);
1330 if (!ret)
1331 ret = ret2;
1332 if (pos + len > inode->i_size) {
1333 ext4_truncate_failed_write(inode);
1335 * If truncate failed early the inode might still be
1336 * on the orphan list; we need to make sure the inode
1337 * is removed from the orphan list in that case.
1339 if (inode->i_nlink)
1340 ext4_orphan_del(NULL, inode);
1343 return ret ? ret : copied;
1347 * Reserve space for a single cluster
1349 static int ext4_da_reserve_space(struct inode *inode)
1351 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1352 struct ext4_inode_info *ei = EXT4_I(inode);
1353 int ret;
1356 * We will charge metadata quota at writeout time; this saves
1357 * us from metadata over-estimation, though we may go over by
1358 * a small amount in the end. Here we just reserve for data.
1360 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1361 if (ret)
1362 return ret;
1364 spin_lock(&ei->i_block_reservation_lock);
1365 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1366 spin_unlock(&ei->i_block_reservation_lock);
1367 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1368 return -ENOSPC;
1370 ei->i_reserved_data_blocks++;
1371 trace_ext4_da_reserve_space(inode);
1372 spin_unlock(&ei->i_block_reservation_lock);
1374 return 0; /* success */
1377 static void ext4_da_release_space(struct inode *inode, int to_free)
1379 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1380 struct ext4_inode_info *ei = EXT4_I(inode);
1382 if (!to_free)
1383 return; /* Nothing to release, exit */
1385 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1387 trace_ext4_da_release_space(inode, to_free);
1388 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1390 * if there aren't enough reserved blocks, then the
1391 * counter is messed up somewhere. Since this
1392 * function is called from invalidate page, it's
1393 * harmless to return without any action.
1395 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1396 "ino %lu, to_free %d with only %d reserved "
1397 "data blocks", inode->i_ino, to_free,
1398 ei->i_reserved_data_blocks);
1399 WARN_ON(1);
1400 to_free = ei->i_reserved_data_blocks;
1402 ei->i_reserved_data_blocks -= to_free;
1404 /* update fs dirty data blocks counter */
1405 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1407 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1409 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1412 static void ext4_da_page_release_reservation(struct page *page,
1413 unsigned int offset,
1414 unsigned int length)
1416 int to_release = 0, contiguous_blks = 0;
1417 struct buffer_head *head, *bh;
1418 unsigned int curr_off = 0;
1419 struct inode *inode = page->mapping->host;
1420 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1421 unsigned int stop = offset + length;
1422 int num_clusters;
1423 ext4_fsblk_t lblk;
1425 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1427 head = page_buffers(page);
1428 bh = head;
1429 do {
1430 unsigned int next_off = curr_off + bh->b_size;
1432 if (next_off > stop)
1433 break;
1435 if ((offset <= curr_off) && (buffer_delay(bh))) {
1436 to_release++;
1437 contiguous_blks++;
1438 clear_buffer_delay(bh);
1439 } else if (contiguous_blks) {
1440 lblk = page->index <<
1441 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1442 lblk += (curr_off >> inode->i_blkbits) -
1443 contiguous_blks;
1444 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1445 contiguous_blks = 0;
1447 curr_off = next_off;
1448 } while ((bh = bh->b_this_page) != head);
1450 if (contiguous_blks) {
1451 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1452 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1453 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1456 /* If we have released all the blocks belonging to a cluster, then we
1457 * need to release the reserved space for that cluster. */
1458 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1459 while (num_clusters > 0) {
1460 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1461 ((num_clusters - 1) << sbi->s_cluster_bits);
1462 if (sbi->s_cluster_ratio == 1 ||
1463 !ext4_find_delalloc_cluster(inode, lblk))
1464 ext4_da_release_space(inode, 1);
1466 num_clusters--;
1471 * Delayed allocation stuff
1474 struct mpage_da_data {
1475 struct inode *inode;
1476 struct writeback_control *wbc;
1478 pgoff_t first_page; /* The first page to write */
1479 pgoff_t next_page; /* Current page to examine */
1480 pgoff_t last_page; /* Last page to examine */
1482 * Extent to map - this can be after first_page because that can be
1483 * fully mapped. We somewhat abuse m_flags to store whether the extent
1484 * is delalloc or unwritten.
1486 struct ext4_map_blocks map;
1487 struct ext4_io_submit io_submit; /* IO submission data */
1490 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1491 bool invalidate)
1493 int nr_pages, i;
1494 pgoff_t index, end;
1495 struct pagevec pvec;
1496 struct inode *inode = mpd->inode;
1497 struct address_space *mapping = inode->i_mapping;
1499 /* This is necessary when next_page == 0. */
1500 if (mpd->first_page >= mpd->next_page)
1501 return;
1503 index = mpd->first_page;
1504 end = mpd->next_page - 1;
1505 if (invalidate) {
1506 ext4_lblk_t start, last;
1507 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1508 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1509 ext4_es_remove_extent(inode, start, last - start + 1);
1512 pagevec_init(&pvec, 0);
1513 while (index <= end) {
1514 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1515 if (nr_pages == 0)
1516 break;
1517 for (i = 0; i < nr_pages; i++) {
1518 struct page *page = pvec.pages[i];
1519 if (page->index > end)
1520 break;
1521 BUG_ON(!PageLocked(page));
1522 BUG_ON(PageWriteback(page));
1523 if (invalidate) {
1524 if (page_mapped(page))
1525 clear_page_dirty_for_io(page);
1526 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1527 ClearPageUptodate(page);
1529 unlock_page(page);
1531 index = pvec.pages[nr_pages - 1]->index + 1;
1532 pagevec_release(&pvec);
1536 static void ext4_print_free_blocks(struct inode *inode)
1538 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1539 struct super_block *sb = inode->i_sb;
1540 struct ext4_inode_info *ei = EXT4_I(inode);
1542 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1543 EXT4_C2B(EXT4_SB(inode->i_sb),
1544 ext4_count_free_clusters(sb)));
1545 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1546 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1547 (long long) EXT4_C2B(EXT4_SB(sb),
1548 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1549 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1550 (long long) EXT4_C2B(EXT4_SB(sb),
1551 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1552 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1553 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1554 ei->i_reserved_data_blocks);
1555 return;
1558 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1560 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1564 * This function is grabs code from the very beginning of
1565 * ext4_map_blocks, but assumes that the caller is from delayed write
1566 * time. This function looks up the requested blocks and sets the
1567 * buffer delay bit under the protection of i_data_sem.
1569 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1570 struct ext4_map_blocks *map,
1571 struct buffer_head *bh)
1573 struct extent_status es;
1574 int retval;
1575 sector_t invalid_block = ~((sector_t) 0xffff);
1576 #ifdef ES_AGGRESSIVE_TEST
1577 struct ext4_map_blocks orig_map;
1579 memcpy(&orig_map, map, sizeof(*map));
1580 #endif
1582 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1583 invalid_block = ~0;
1585 map->m_flags = 0;
1586 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1587 "logical block %lu\n", inode->i_ino, map->m_len,
1588 (unsigned long) map->m_lblk);
1590 /* Lookup extent status tree firstly */
1591 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1592 if (ext4_es_is_hole(&es)) {
1593 retval = 0;
1594 down_read(&EXT4_I(inode)->i_data_sem);
1595 goto add_delayed;
1599 * Delayed extent could be allocated by fallocate.
1600 * So we need to check it.
1602 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1603 map_bh(bh, inode->i_sb, invalid_block);
1604 set_buffer_new(bh);
1605 set_buffer_delay(bh);
1606 return 0;
1609 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1610 retval = es.es_len - (iblock - es.es_lblk);
1611 if (retval > map->m_len)
1612 retval = map->m_len;
1613 map->m_len = retval;
1614 if (ext4_es_is_written(&es))
1615 map->m_flags |= EXT4_MAP_MAPPED;
1616 else if (ext4_es_is_unwritten(&es))
1617 map->m_flags |= EXT4_MAP_UNWRITTEN;
1618 else
1619 BUG_ON(1);
1621 #ifdef ES_AGGRESSIVE_TEST
1622 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1623 #endif
1624 return retval;
1628 * Try to see if we can get the block without requesting a new
1629 * file system block.
1631 down_read(&EXT4_I(inode)->i_data_sem);
1632 if (ext4_has_inline_data(inode))
1633 retval = 0;
1634 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1635 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1636 else
1637 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1639 add_delayed:
1640 if (retval == 0) {
1641 int ret;
1643 * XXX: __block_prepare_write() unmaps passed block,
1644 * is it OK?
1647 * If the block was allocated from previously allocated cluster,
1648 * then we don't need to reserve it again. However we still need
1649 * to reserve metadata for every block we're going to write.
1651 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1652 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1653 ret = ext4_da_reserve_space(inode);
1654 if (ret) {
1655 /* not enough space to reserve */
1656 retval = ret;
1657 goto out_unlock;
1661 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1662 ~0, EXTENT_STATUS_DELAYED);
1663 if (ret) {
1664 retval = ret;
1665 goto out_unlock;
1668 map_bh(bh, inode->i_sb, invalid_block);
1669 set_buffer_new(bh);
1670 set_buffer_delay(bh);
1671 } else if (retval > 0) {
1672 int ret;
1673 unsigned int status;
1675 if (unlikely(retval != map->m_len)) {
1676 ext4_warning(inode->i_sb,
1677 "ES len assertion failed for inode "
1678 "%lu: retval %d != map->m_len %d",
1679 inode->i_ino, retval, map->m_len);
1680 WARN_ON(1);
1683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1685 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1686 map->m_pblk, status);
1687 if (ret != 0)
1688 retval = ret;
1691 out_unlock:
1692 up_read((&EXT4_I(inode)->i_data_sem));
1694 return retval;
1698 * This is a special get_block_t callback which is used by
1699 * ext4_da_write_begin(). It will either return mapped block or
1700 * reserve space for a single block.
1702 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1703 * We also have b_blocknr = -1 and b_bdev initialized properly
1705 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1706 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1707 * initialized properly.
1709 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1710 struct buffer_head *bh, int create)
1712 struct ext4_map_blocks map;
1713 int ret = 0;
1715 BUG_ON(create == 0);
1716 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1718 map.m_lblk = iblock;
1719 map.m_len = 1;
1722 * first, we need to know whether the block is allocated already
1723 * preallocated blocks are unmapped but should treated
1724 * the same as allocated blocks.
1726 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1727 if (ret <= 0)
1728 return ret;
1730 map_bh(bh, inode->i_sb, map.m_pblk);
1731 ext4_update_bh_state(bh, map.m_flags);
1733 if (buffer_unwritten(bh)) {
1734 /* A delayed write to unwritten bh should be marked
1735 * new and mapped. Mapped ensures that we don't do
1736 * get_block multiple times when we write to the same
1737 * offset and new ensures that we do proper zero out
1738 * for partial write.
1740 set_buffer_new(bh);
1741 set_buffer_mapped(bh);
1743 return 0;
1746 static int bget_one(handle_t *handle, struct buffer_head *bh)
1748 get_bh(bh);
1749 return 0;
1752 static int bput_one(handle_t *handle, struct buffer_head *bh)
1754 put_bh(bh);
1755 return 0;
1758 static int __ext4_journalled_writepage(struct page *page,
1759 unsigned int len)
1761 struct address_space *mapping = page->mapping;
1762 struct inode *inode = mapping->host;
1763 struct buffer_head *page_bufs = NULL;
1764 handle_t *handle = NULL;
1765 int ret = 0, err = 0;
1766 int inline_data = ext4_has_inline_data(inode);
1767 struct buffer_head *inode_bh = NULL;
1769 ClearPageChecked(page);
1771 if (inline_data) {
1772 BUG_ON(page->index != 0);
1773 BUG_ON(len > ext4_get_max_inline_size(inode));
1774 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1775 if (inode_bh == NULL)
1776 goto out;
1777 } else {
1778 page_bufs = page_buffers(page);
1779 if (!page_bufs) {
1780 BUG();
1781 goto out;
1783 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1784 NULL, bget_one);
1787 * We need to release the page lock before we start the
1788 * journal, so grab a reference so the page won't disappear
1789 * out from under us.
1791 get_page(page);
1792 unlock_page(page);
1794 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1795 ext4_writepage_trans_blocks(inode));
1796 if (IS_ERR(handle)) {
1797 ret = PTR_ERR(handle);
1798 put_page(page);
1799 goto out_no_pagelock;
1801 BUG_ON(!ext4_handle_valid(handle));
1803 lock_page(page);
1804 put_page(page);
1805 if (page->mapping != mapping) {
1806 /* The page got truncated from under us */
1807 ext4_journal_stop(handle);
1808 ret = 0;
1809 goto out;
1812 if (inline_data) {
1813 ret = ext4_mark_inode_dirty(handle, inode);
1814 } else {
1815 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1816 do_journal_get_write_access);
1818 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1819 write_end_fn);
1821 if (ret == 0)
1822 ret = err;
1823 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1824 err = ext4_journal_stop(handle);
1825 if (!ret)
1826 ret = err;
1828 if (!ext4_has_inline_data(inode))
1829 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1830 NULL, bput_one);
1831 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1832 out:
1833 unlock_page(page);
1834 out_no_pagelock:
1835 brelse(inode_bh);
1836 return ret;
1840 * Note that we don't need to start a transaction unless we're journaling data
1841 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1842 * need to file the inode to the transaction's list in ordered mode because if
1843 * we are writing back data added by write(), the inode is already there and if
1844 * we are writing back data modified via mmap(), no one guarantees in which
1845 * transaction the data will hit the disk. In case we are journaling data, we
1846 * cannot start transaction directly because transaction start ranks above page
1847 * lock so we have to do some magic.
1849 * This function can get called via...
1850 * - ext4_writepages after taking page lock (have journal handle)
1851 * - journal_submit_inode_data_buffers (no journal handle)
1852 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1853 * - grab_page_cache when doing write_begin (have journal handle)
1855 * We don't do any block allocation in this function. If we have page with
1856 * multiple blocks we need to write those buffer_heads that are mapped. This
1857 * is important for mmaped based write. So if we do with blocksize 1K
1858 * truncate(f, 1024);
1859 * a = mmap(f, 0, 4096);
1860 * a[0] = 'a';
1861 * truncate(f, 4096);
1862 * we have in the page first buffer_head mapped via page_mkwrite call back
1863 * but other buffer_heads would be unmapped but dirty (dirty done via the
1864 * do_wp_page). So writepage should write the first block. If we modify
1865 * the mmap area beyond 1024 we will again get a page_fault and the
1866 * page_mkwrite callback will do the block allocation and mark the
1867 * buffer_heads mapped.
1869 * We redirty the page if we have any buffer_heads that is either delay or
1870 * unwritten in the page.
1872 * We can get recursively called as show below.
1874 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1875 * ext4_writepage()
1877 * But since we don't do any block allocation we should not deadlock.
1878 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1880 static int ext4_writepage(struct page *page,
1881 struct writeback_control *wbc)
1883 int ret = 0;
1884 loff_t size;
1885 unsigned int len;
1886 struct buffer_head *page_bufs = NULL;
1887 struct inode *inode = page->mapping->host;
1888 struct ext4_io_submit io_submit;
1889 bool keep_towrite = false;
1891 trace_ext4_writepage(page);
1892 size = i_size_read(inode);
1893 if (page->index == size >> PAGE_CACHE_SHIFT)
1894 len = size & ~PAGE_CACHE_MASK;
1895 else
1896 len = PAGE_CACHE_SIZE;
1898 page_bufs = page_buffers(page);
1900 * We cannot do block allocation or other extent handling in this
1901 * function. If there are buffers needing that, we have to redirty
1902 * the page. But we may reach here when we do a journal commit via
1903 * journal_submit_inode_data_buffers() and in that case we must write
1904 * allocated buffers to achieve data=ordered mode guarantees.
1906 * Also, if there is only one buffer per page (the fs block
1907 * size == the page size), if one buffer needs block
1908 * allocation or needs to modify the extent tree to clear the
1909 * unwritten flag, we know that the page can't be written at
1910 * all, so we might as well refuse the write immediately.
1911 * Unfortunately if the block size != page size, we can't as
1912 * easily detect this case using ext4_walk_page_buffers(), but
1913 * for the extremely common case, this is an optimization that
1914 * skips a useless round trip through ext4_bio_write_page().
1916 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1917 ext4_bh_delay_or_unwritten)) {
1918 redirty_page_for_writepage(wbc, page);
1919 if ((current->flags & PF_MEMALLOC) ||
1920 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
1922 * For memory cleaning there's no point in writing only
1923 * some buffers. So just bail out. Warn if we came here
1924 * from direct reclaim.
1926 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1927 == PF_MEMALLOC);
1928 unlock_page(page);
1929 return 0;
1931 keep_towrite = true;
1934 if (PageChecked(page) && ext4_should_journal_data(inode))
1936 * It's mmapped pagecache. Add buffers and journal it. There
1937 * doesn't seem much point in redirtying the page here.
1939 return __ext4_journalled_writepage(page, len);
1941 ext4_io_submit_init(&io_submit, wbc);
1942 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1943 if (!io_submit.io_end) {
1944 redirty_page_for_writepage(wbc, page);
1945 unlock_page(page);
1946 return -ENOMEM;
1948 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1949 ext4_io_submit(&io_submit);
1950 /* Drop io_end reference we got from init */
1951 ext4_put_io_end_defer(io_submit.io_end);
1952 return ret;
1955 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1957 int len;
1958 loff_t size;
1959 int err;
1961 BUG_ON(page->index != mpd->first_page);
1962 clear_page_dirty_for_io(page);
1964 * We have to be very careful here! Nothing protects writeback path
1965 * against i_size changes and the page can be writeably mapped into
1966 * page tables. So an application can be growing i_size and writing
1967 * data through mmap while writeback runs. clear_page_dirty_for_io()
1968 * write-protects our page in page tables and the page cannot get
1969 * written to again until we release page lock. So only after
1970 * clear_page_dirty_for_io() we are safe to sample i_size for
1971 * ext4_bio_write_page() to zero-out tail of the written page. We rely
1972 * on the barrier provided by TestClearPageDirty in
1973 * clear_page_dirty_for_io() to make sure i_size is really sampled only
1974 * after page tables are updated.
1976 size = i_size_read(mpd->inode);
1977 if (page->index == size >> PAGE_SHIFT)
1978 len = size & ~PAGE_MASK;
1979 else
1980 len = PAGE_SIZE;
1981 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1982 if (!err)
1983 mpd->wbc->nr_to_write--;
1984 mpd->first_page++;
1986 return err;
1989 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1992 * mballoc gives us at most this number of blocks...
1993 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1994 * The rest of mballoc seems to handle chunks up to full group size.
1996 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1999 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2001 * @mpd - extent of blocks
2002 * @lblk - logical number of the block in the file
2003 * @bh - buffer head we want to add to the extent
2005 * The function is used to collect contig. blocks in the same state. If the
2006 * buffer doesn't require mapping for writeback and we haven't started the
2007 * extent of buffers to map yet, the function returns 'true' immediately - the
2008 * caller can write the buffer right away. Otherwise the function returns true
2009 * if the block has been added to the extent, false if the block couldn't be
2010 * added.
2012 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2013 struct buffer_head *bh)
2015 struct ext4_map_blocks *map = &mpd->map;
2017 /* Buffer that doesn't need mapping for writeback? */
2018 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2019 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2020 /* So far no extent to map => we write the buffer right away */
2021 if (map->m_len == 0)
2022 return true;
2023 return false;
2026 /* First block in the extent? */
2027 if (map->m_len == 0) {
2028 map->m_lblk = lblk;
2029 map->m_len = 1;
2030 map->m_flags = bh->b_state & BH_FLAGS;
2031 return true;
2034 /* Don't go larger than mballoc is willing to allocate */
2035 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2036 return false;
2038 /* Can we merge the block to our big extent? */
2039 if (lblk == map->m_lblk + map->m_len &&
2040 (bh->b_state & BH_FLAGS) == map->m_flags) {
2041 map->m_len++;
2042 return true;
2044 return false;
2048 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2050 * @mpd - extent of blocks for mapping
2051 * @head - the first buffer in the page
2052 * @bh - buffer we should start processing from
2053 * @lblk - logical number of the block in the file corresponding to @bh
2055 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2056 * the page for IO if all buffers in this page were mapped and there's no
2057 * accumulated extent of buffers to map or add buffers in the page to the
2058 * extent of buffers to map. The function returns 1 if the caller can continue
2059 * by processing the next page, 0 if it should stop adding buffers to the
2060 * extent to map because we cannot extend it anymore. It can also return value
2061 * < 0 in case of error during IO submission.
2063 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2064 struct buffer_head *head,
2065 struct buffer_head *bh,
2066 ext4_lblk_t lblk)
2068 struct inode *inode = mpd->inode;
2069 int err;
2070 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2071 >> inode->i_blkbits;
2073 do {
2074 BUG_ON(buffer_locked(bh));
2076 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2077 /* Found extent to map? */
2078 if (mpd->map.m_len)
2079 return 0;
2080 /* Everything mapped so far and we hit EOF */
2081 break;
2083 } while (lblk++, (bh = bh->b_this_page) != head);
2084 /* So far everything mapped? Submit the page for IO. */
2085 if (mpd->map.m_len == 0) {
2086 err = mpage_submit_page(mpd, head->b_page);
2087 if (err < 0)
2088 return err;
2090 return lblk < blocks;
2094 * mpage_map_buffers - update buffers corresponding to changed extent and
2095 * submit fully mapped pages for IO
2097 * @mpd - description of extent to map, on return next extent to map
2099 * Scan buffers corresponding to changed extent (we expect corresponding pages
2100 * to be already locked) and update buffer state according to new extent state.
2101 * We map delalloc buffers to their physical location, clear unwritten bits,
2102 * and mark buffers as uninit when we perform writes to unwritten extents
2103 * and do extent conversion after IO is finished. If the last page is not fully
2104 * mapped, we update @map to the next extent in the last page that needs
2105 * mapping. Otherwise we submit the page for IO.
2107 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2109 struct pagevec pvec;
2110 int nr_pages, i;
2111 struct inode *inode = mpd->inode;
2112 struct buffer_head *head, *bh;
2113 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2114 pgoff_t start, end;
2115 ext4_lblk_t lblk;
2116 sector_t pblock;
2117 int err;
2119 start = mpd->map.m_lblk >> bpp_bits;
2120 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2121 lblk = start << bpp_bits;
2122 pblock = mpd->map.m_pblk;
2124 pagevec_init(&pvec, 0);
2125 while (start <= end) {
2126 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2127 PAGEVEC_SIZE);
2128 if (nr_pages == 0)
2129 break;
2130 for (i = 0; i < nr_pages; i++) {
2131 struct page *page = pvec.pages[i];
2133 if (page->index > end)
2134 break;
2135 /* Up to 'end' pages must be contiguous */
2136 BUG_ON(page->index != start);
2137 bh = head = page_buffers(page);
2138 do {
2139 if (lblk < mpd->map.m_lblk)
2140 continue;
2141 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2143 * Buffer after end of mapped extent.
2144 * Find next buffer in the page to map.
2146 mpd->map.m_len = 0;
2147 mpd->map.m_flags = 0;
2149 * FIXME: If dioread_nolock supports
2150 * blocksize < pagesize, we need to make
2151 * sure we add size mapped so far to
2152 * io_end->size as the following call
2153 * can submit the page for IO.
2155 err = mpage_process_page_bufs(mpd, head,
2156 bh, lblk);
2157 pagevec_release(&pvec);
2158 if (err > 0)
2159 err = 0;
2160 return err;
2162 if (buffer_delay(bh)) {
2163 clear_buffer_delay(bh);
2164 bh->b_blocknr = pblock++;
2166 clear_buffer_unwritten(bh);
2167 } while (lblk++, (bh = bh->b_this_page) != head);
2170 * FIXME: This is going to break if dioread_nolock
2171 * supports blocksize < pagesize as we will try to
2172 * convert potentially unmapped parts of inode.
2174 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2175 /* Page fully mapped - let IO run! */
2176 err = mpage_submit_page(mpd, page);
2177 if (err < 0) {
2178 pagevec_release(&pvec);
2179 return err;
2181 start++;
2183 pagevec_release(&pvec);
2185 /* Extent fully mapped and matches with page boundary. We are done. */
2186 mpd->map.m_len = 0;
2187 mpd->map.m_flags = 0;
2188 return 0;
2191 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2193 struct inode *inode = mpd->inode;
2194 struct ext4_map_blocks *map = &mpd->map;
2195 int get_blocks_flags;
2196 int err, dioread_nolock;
2198 trace_ext4_da_write_pages_extent(inode, map);
2200 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2201 * to convert an unwritten extent to be initialized (in the case
2202 * where we have written into one or more preallocated blocks). It is
2203 * possible that we're going to need more metadata blocks than
2204 * previously reserved. However we must not fail because we're in
2205 * writeback and there is nothing we can do about it so it might result
2206 * in data loss. So use reserved blocks to allocate metadata if
2207 * possible.
2209 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2210 * the blocks in question are delalloc blocks. This indicates
2211 * that the blocks and quotas has already been checked when
2212 * the data was copied into the page cache.
2214 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2215 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2216 dioread_nolock = ext4_should_dioread_nolock(inode);
2217 if (dioread_nolock)
2218 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2219 if (map->m_flags & (1 << BH_Delay))
2220 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2222 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2223 if (err < 0)
2224 return err;
2225 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2226 if (!mpd->io_submit.io_end->handle &&
2227 ext4_handle_valid(handle)) {
2228 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2229 handle->h_rsv_handle = NULL;
2231 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2234 BUG_ON(map->m_len == 0);
2235 if (map->m_flags & EXT4_MAP_NEW) {
2236 struct block_device *bdev = inode->i_sb->s_bdev;
2237 int i;
2239 for (i = 0; i < map->m_len; i++)
2240 unmap_underlying_metadata(bdev, map->m_pblk + i);
2242 return 0;
2246 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2247 * mpd->len and submit pages underlying it for IO
2249 * @handle - handle for journal operations
2250 * @mpd - extent to map
2251 * @give_up_on_write - we set this to true iff there is a fatal error and there
2252 * is no hope of writing the data. The caller should discard
2253 * dirty pages to avoid infinite loops.
2255 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2256 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2257 * them to initialized or split the described range from larger unwritten
2258 * extent. Note that we need not map all the described range since allocation
2259 * can return less blocks or the range is covered by more unwritten extents. We
2260 * cannot map more because we are limited by reserved transaction credits. On
2261 * the other hand we always make sure that the last touched page is fully
2262 * mapped so that it can be written out (and thus forward progress is
2263 * guaranteed). After mapping we submit all mapped pages for IO.
2265 static int mpage_map_and_submit_extent(handle_t *handle,
2266 struct mpage_da_data *mpd,
2267 bool *give_up_on_write)
2269 struct inode *inode = mpd->inode;
2270 struct ext4_map_blocks *map = &mpd->map;
2271 int err;
2272 loff_t disksize;
2273 int progress = 0;
2275 mpd->io_submit.io_end->offset =
2276 ((loff_t)map->m_lblk) << inode->i_blkbits;
2277 do {
2278 err = mpage_map_one_extent(handle, mpd);
2279 if (err < 0) {
2280 struct super_block *sb = inode->i_sb;
2282 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2283 goto invalidate_dirty_pages;
2285 * Let the uper layers retry transient errors.
2286 * In the case of ENOSPC, if ext4_count_free_blocks()
2287 * is non-zero, a commit should free up blocks.
2289 if ((err == -ENOMEM) ||
2290 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2291 if (progress)
2292 goto update_disksize;
2293 return err;
2295 ext4_msg(sb, KERN_CRIT,
2296 "Delayed block allocation failed for "
2297 "inode %lu at logical offset %llu with"
2298 " max blocks %u with error %d",
2299 inode->i_ino,
2300 (unsigned long long)map->m_lblk,
2301 (unsigned)map->m_len, -err);
2302 ext4_msg(sb, KERN_CRIT,
2303 "This should not happen!! Data will "
2304 "be lost\n");
2305 if (err == -ENOSPC)
2306 ext4_print_free_blocks(inode);
2307 invalidate_dirty_pages:
2308 *give_up_on_write = true;
2309 return err;
2311 progress = 1;
2313 * Update buffer state, submit mapped pages, and get us new
2314 * extent to map
2316 err = mpage_map_and_submit_buffers(mpd);
2317 if (err < 0)
2318 goto update_disksize;
2319 } while (map->m_len);
2321 update_disksize:
2323 * Update on-disk size after IO is submitted. Races with
2324 * truncate are avoided by checking i_size under i_data_sem.
2326 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2327 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2328 int err2;
2329 loff_t i_size;
2331 down_write(&EXT4_I(inode)->i_data_sem);
2332 i_size = i_size_read(inode);
2333 if (disksize > i_size)
2334 disksize = i_size;
2335 if (disksize > EXT4_I(inode)->i_disksize)
2336 EXT4_I(inode)->i_disksize = disksize;
2337 err2 = ext4_mark_inode_dirty(handle, inode);
2338 up_write(&EXT4_I(inode)->i_data_sem);
2339 if (err2)
2340 ext4_error(inode->i_sb,
2341 "Failed to mark inode %lu dirty",
2342 inode->i_ino);
2343 if (!err)
2344 err = err2;
2346 return err;
2350 * Calculate the total number of credits to reserve for one writepages
2351 * iteration. This is called from ext4_writepages(). We map an extent of
2352 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2353 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2354 * bpp - 1 blocks in bpp different extents.
2356 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2358 int bpp = ext4_journal_blocks_per_page(inode);
2360 return ext4_meta_trans_blocks(inode,
2361 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2365 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2366 * and underlying extent to map
2368 * @mpd - where to look for pages
2370 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2371 * IO immediately. When we find a page which isn't mapped we start accumulating
2372 * extent of buffers underlying these pages that needs mapping (formed by
2373 * either delayed or unwritten buffers). We also lock the pages containing
2374 * these buffers. The extent found is returned in @mpd structure (starting at
2375 * mpd->lblk with length mpd->len blocks).
2377 * Note that this function can attach bios to one io_end structure which are
2378 * neither logically nor physically contiguous. Although it may seem as an
2379 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2380 * case as we need to track IO to all buffers underlying a page in one io_end.
2382 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2384 struct address_space *mapping = mpd->inode->i_mapping;
2385 struct pagevec pvec;
2386 unsigned int nr_pages;
2387 long left = mpd->wbc->nr_to_write;
2388 pgoff_t index = mpd->first_page;
2389 pgoff_t end = mpd->last_page;
2390 int tag;
2391 int i, err = 0;
2392 int blkbits = mpd->inode->i_blkbits;
2393 ext4_lblk_t lblk;
2394 struct buffer_head *head;
2396 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2397 tag = PAGECACHE_TAG_TOWRITE;
2398 else
2399 tag = PAGECACHE_TAG_DIRTY;
2401 pagevec_init(&pvec, 0);
2402 mpd->map.m_len = 0;
2403 mpd->next_page = index;
2404 while (index <= end) {
2405 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2406 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2407 if (nr_pages == 0)
2408 goto out;
2410 for (i = 0; i < nr_pages; i++) {
2411 struct page *page = pvec.pages[i];
2414 * At this point, the page may be truncated or
2415 * invalidated (changing page->mapping to NULL), or
2416 * even swizzled back from swapper_space to tmpfs file
2417 * mapping. However, page->index will not change
2418 * because we have a reference on the page.
2420 if (page->index > end)
2421 goto out;
2424 * Accumulated enough dirty pages? This doesn't apply
2425 * to WB_SYNC_ALL mode. For integrity sync we have to
2426 * keep going because someone may be concurrently
2427 * dirtying pages, and we might have synced a lot of
2428 * newly appeared dirty pages, but have not synced all
2429 * of the old dirty pages.
2431 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2432 goto out;
2434 /* If we can't merge this page, we are done. */
2435 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2436 goto out;
2438 lock_page(page);
2440 * If the page is no longer dirty, or its mapping no
2441 * longer corresponds to inode we are writing (which
2442 * means it has been truncated or invalidated), or the
2443 * page is already under writeback and we are not doing
2444 * a data integrity writeback, skip the page
2446 if (!PageDirty(page) ||
2447 (PageWriteback(page) &&
2448 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2449 unlikely(page->mapping != mapping)) {
2450 unlock_page(page);
2451 continue;
2454 wait_on_page_writeback(page);
2455 BUG_ON(PageWriteback(page));
2457 if (mpd->map.m_len == 0)
2458 mpd->first_page = page->index;
2459 mpd->next_page = page->index + 1;
2460 /* Add all dirty buffers to mpd */
2461 lblk = ((ext4_lblk_t)page->index) <<
2462 (PAGE_CACHE_SHIFT - blkbits);
2463 head = page_buffers(page);
2464 err = mpage_process_page_bufs(mpd, head, head, lblk);
2465 if (err <= 0)
2466 goto out;
2467 err = 0;
2468 left--;
2470 pagevec_release(&pvec);
2471 cond_resched();
2473 return 0;
2474 out:
2475 pagevec_release(&pvec);
2476 return err;
2479 static int __writepage(struct page *page, struct writeback_control *wbc,
2480 void *data)
2482 struct address_space *mapping = data;
2483 int ret = ext4_writepage(page, wbc);
2484 mapping_set_error(mapping, ret);
2485 return ret;
2488 static int ext4_writepages(struct address_space *mapping,
2489 struct writeback_control *wbc)
2491 pgoff_t writeback_index = 0;
2492 long nr_to_write = wbc->nr_to_write;
2493 int range_whole = 0;
2494 int cycled = 1;
2495 handle_t *handle = NULL;
2496 struct mpage_da_data mpd;
2497 struct inode *inode = mapping->host;
2498 int needed_blocks, rsv_blocks = 0, ret = 0;
2499 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2500 bool done;
2501 struct blk_plug plug;
2502 bool give_up_on_write = false;
2504 trace_ext4_writepages(inode, wbc);
2507 * No pages to write? This is mainly a kludge to avoid starting
2508 * a transaction for special inodes like journal inode on last iput()
2509 * because that could violate lock ordering on umount
2511 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2512 goto out_writepages;
2514 if (ext4_should_journal_data(inode)) {
2515 struct blk_plug plug;
2517 blk_start_plug(&plug);
2518 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2519 blk_finish_plug(&plug);
2520 goto out_writepages;
2524 * If the filesystem has aborted, it is read-only, so return
2525 * right away instead of dumping stack traces later on that
2526 * will obscure the real source of the problem. We test
2527 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2528 * the latter could be true if the filesystem is mounted
2529 * read-only, and in that case, ext4_writepages should
2530 * *never* be called, so if that ever happens, we would want
2531 * the stack trace.
2533 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2534 ret = -EROFS;
2535 goto out_writepages;
2538 if (ext4_should_dioread_nolock(inode)) {
2540 * We may need to convert up to one extent per block in
2541 * the page and we may dirty the inode.
2543 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2547 * If we have inline data and arrive here, it means that
2548 * we will soon create the block for the 1st page, so
2549 * we'd better clear the inline data here.
2551 if (ext4_has_inline_data(inode)) {
2552 /* Just inode will be modified... */
2553 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2554 if (IS_ERR(handle)) {
2555 ret = PTR_ERR(handle);
2556 goto out_writepages;
2558 BUG_ON(ext4_test_inode_state(inode,
2559 EXT4_STATE_MAY_INLINE_DATA));
2560 ext4_destroy_inline_data(handle, inode);
2561 ext4_journal_stop(handle);
2564 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2565 range_whole = 1;
2567 if (wbc->range_cyclic) {
2568 writeback_index = mapping->writeback_index;
2569 if (writeback_index)
2570 cycled = 0;
2571 mpd.first_page = writeback_index;
2572 mpd.last_page = -1;
2573 } else {
2574 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2575 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2578 mpd.inode = inode;
2579 mpd.wbc = wbc;
2580 ext4_io_submit_init(&mpd.io_submit, wbc);
2581 retry:
2582 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2583 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2584 done = false;
2585 blk_start_plug(&plug);
2586 while (!done && mpd.first_page <= mpd.last_page) {
2587 /* For each extent of pages we use new io_end */
2588 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2589 if (!mpd.io_submit.io_end) {
2590 ret = -ENOMEM;
2591 break;
2595 * We have two constraints: We find one extent to map and we
2596 * must always write out whole page (makes a difference when
2597 * blocksize < pagesize) so that we don't block on IO when we
2598 * try to write out the rest of the page. Journalled mode is
2599 * not supported by delalloc.
2601 BUG_ON(ext4_should_journal_data(inode));
2602 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2604 /* start a new transaction */
2605 handle = ext4_journal_start_with_reserve(inode,
2606 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2607 if (IS_ERR(handle)) {
2608 ret = PTR_ERR(handle);
2609 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2610 "%ld pages, ino %lu; err %d", __func__,
2611 wbc->nr_to_write, inode->i_ino, ret);
2612 /* Release allocated io_end */
2613 ext4_put_io_end(mpd.io_submit.io_end);
2614 break;
2617 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2618 ret = mpage_prepare_extent_to_map(&mpd);
2619 if (!ret) {
2620 if (mpd.map.m_len)
2621 ret = mpage_map_and_submit_extent(handle, &mpd,
2622 &give_up_on_write);
2623 else {
2625 * We scanned the whole range (or exhausted
2626 * nr_to_write), submitted what was mapped and
2627 * didn't find anything needing mapping. We are
2628 * done.
2630 done = true;
2634 * Caution: If the handle is synchronous,
2635 * ext4_journal_stop() can wait for transaction commit
2636 * to finish which may depend on writeback of pages to
2637 * complete or on page lock to be released. In that
2638 * case, we have to wait until after after we have
2639 * submitted all the IO, released page locks we hold,
2640 * and dropped io_end reference (for extent conversion
2641 * to be able to complete) before stopping the handle.
2643 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2644 ext4_journal_stop(handle);
2645 handle = NULL;
2647 /* Submit prepared bio */
2648 ext4_io_submit(&mpd.io_submit);
2649 /* Unlock pages we didn't use */
2650 mpage_release_unused_pages(&mpd, give_up_on_write);
2652 * Drop our io_end reference we got from init. We have
2653 * to be careful and use deferred io_end finishing if
2654 * we are still holding the transaction as we can
2655 * release the last reference to io_end which may end
2656 * up doing unwritten extent conversion.
2658 if (handle) {
2659 ext4_put_io_end_defer(mpd.io_submit.io_end);
2660 ext4_journal_stop(handle);
2661 } else
2662 ext4_put_io_end(mpd.io_submit.io_end);
2664 if (ret == -ENOSPC && sbi->s_journal) {
2666 * Commit the transaction which would
2667 * free blocks released in the transaction
2668 * and try again
2670 jbd2_journal_force_commit_nested(sbi->s_journal);
2671 ret = 0;
2672 continue;
2674 /* Fatal error - ENOMEM, EIO... */
2675 if (ret)
2676 break;
2678 blk_finish_plug(&plug);
2679 if (!ret && !cycled && wbc->nr_to_write > 0) {
2680 cycled = 1;
2681 mpd.last_page = writeback_index - 1;
2682 mpd.first_page = 0;
2683 goto retry;
2686 /* Update index */
2687 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2689 * Set the writeback_index so that range_cyclic
2690 * mode will write it back later
2692 mapping->writeback_index = mpd.first_page;
2694 out_writepages:
2695 trace_ext4_writepages_result(inode, wbc, ret,
2696 nr_to_write - wbc->nr_to_write);
2697 return ret;
2700 static int ext4_nonda_switch(struct super_block *sb)
2702 s64 free_clusters, dirty_clusters;
2703 struct ext4_sb_info *sbi = EXT4_SB(sb);
2706 * switch to non delalloc mode if we are running low
2707 * on free block. The free block accounting via percpu
2708 * counters can get slightly wrong with percpu_counter_batch getting
2709 * accumulated on each CPU without updating global counters
2710 * Delalloc need an accurate free block accounting. So switch
2711 * to non delalloc when we are near to error range.
2713 free_clusters =
2714 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2715 dirty_clusters =
2716 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2718 * Start pushing delalloc when 1/2 of free blocks are dirty.
2720 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2721 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2723 if (2 * free_clusters < 3 * dirty_clusters ||
2724 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2726 * free block count is less than 150% of dirty blocks
2727 * or free blocks is less than watermark
2729 return 1;
2731 return 0;
2734 /* We always reserve for an inode update; the superblock could be there too */
2735 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2737 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2738 return 1;
2740 if (pos + len <= 0x7fffffffULL)
2741 return 1;
2743 /* We might need to update the superblock to set LARGE_FILE */
2744 return 2;
2747 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2748 loff_t pos, unsigned len, unsigned flags,
2749 struct page **pagep, void **fsdata)
2751 int ret, retries = 0;
2752 struct page *page;
2753 pgoff_t index;
2754 struct inode *inode = mapping->host;
2755 handle_t *handle;
2757 index = pos >> PAGE_CACHE_SHIFT;
2759 if (ext4_nonda_switch(inode->i_sb)) {
2760 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2761 return ext4_write_begin(file, mapping, pos,
2762 len, flags, pagep, fsdata);
2764 *fsdata = (void *)0;
2765 trace_ext4_da_write_begin(inode, pos, len, flags);
2767 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2768 ret = ext4_da_write_inline_data_begin(mapping, inode,
2769 pos, len, flags,
2770 pagep, fsdata);
2771 if (ret < 0)
2772 return ret;
2773 if (ret == 1)
2774 return 0;
2778 * grab_cache_page_write_begin() can take a long time if the
2779 * system is thrashing due to memory pressure, or if the page
2780 * is being written back. So grab it first before we start
2781 * the transaction handle. This also allows us to allocate
2782 * the page (if needed) without using GFP_NOFS.
2784 retry_grab:
2785 page = grab_cache_page_write_begin(mapping, index, flags);
2786 if (!page)
2787 return -ENOMEM;
2788 unlock_page(page);
2791 * With delayed allocation, we don't log the i_disksize update
2792 * if there is delayed block allocation. But we still need
2793 * to journalling the i_disksize update if writes to the end
2794 * of file which has an already mapped buffer.
2796 retry_journal:
2797 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2798 ext4_da_write_credits(inode, pos, len));
2799 if (IS_ERR(handle)) {
2800 page_cache_release(page);
2801 return PTR_ERR(handle);
2804 lock_page(page);
2805 if (page->mapping != mapping) {
2806 /* The page got truncated from under us */
2807 unlock_page(page);
2808 page_cache_release(page);
2809 ext4_journal_stop(handle);
2810 goto retry_grab;
2812 /* In case writeback began while the page was unlocked */
2813 wait_for_stable_page(page);
2815 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2816 ret = ext4_block_write_begin(page, pos, len,
2817 ext4_da_get_block_prep);
2818 #else
2819 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2820 #endif
2821 if (ret < 0) {
2822 unlock_page(page);
2823 ext4_journal_stop(handle);
2825 * block_write_begin may have instantiated a few blocks
2826 * outside i_size. Trim these off again. Don't need
2827 * i_size_read because we hold i_mutex.
2829 if (pos + len > inode->i_size)
2830 ext4_truncate_failed_write(inode);
2832 if (ret == -ENOSPC &&
2833 ext4_should_retry_alloc(inode->i_sb, &retries))
2834 goto retry_journal;
2836 page_cache_release(page);
2837 return ret;
2840 *pagep = page;
2841 return ret;
2845 * Check if we should update i_disksize
2846 * when write to the end of file but not require block allocation
2848 static int ext4_da_should_update_i_disksize(struct page *page,
2849 unsigned long offset)
2851 struct buffer_head *bh;
2852 struct inode *inode = page->mapping->host;
2853 unsigned int idx;
2854 int i;
2856 bh = page_buffers(page);
2857 idx = offset >> inode->i_blkbits;
2859 for (i = 0; i < idx; i++)
2860 bh = bh->b_this_page;
2862 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2863 return 0;
2864 return 1;
2867 static int ext4_da_write_end(struct file *file,
2868 struct address_space *mapping,
2869 loff_t pos, unsigned len, unsigned copied,
2870 struct page *page, void *fsdata)
2872 struct inode *inode = mapping->host;
2873 int ret = 0, ret2;
2874 handle_t *handle = ext4_journal_current_handle();
2875 loff_t new_i_size;
2876 unsigned long start, end;
2877 int write_mode = (int)(unsigned long)fsdata;
2879 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2880 return ext4_write_end(file, mapping, pos,
2881 len, copied, page, fsdata);
2883 trace_ext4_da_write_end(inode, pos, len, copied);
2884 start = pos & (PAGE_CACHE_SIZE - 1);
2885 end = start + copied - 1;
2888 * generic_write_end() will run mark_inode_dirty() if i_size
2889 * changes. So let's piggyback the i_disksize mark_inode_dirty
2890 * into that.
2892 new_i_size = pos + copied;
2893 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2894 if (ext4_has_inline_data(inode) ||
2895 ext4_da_should_update_i_disksize(page, end)) {
2896 ext4_update_i_disksize(inode, new_i_size);
2897 /* We need to mark inode dirty even if
2898 * new_i_size is less that inode->i_size
2899 * bu greater than i_disksize.(hint delalloc)
2901 ext4_mark_inode_dirty(handle, inode);
2905 if (write_mode != CONVERT_INLINE_DATA &&
2906 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2907 ext4_has_inline_data(inode))
2908 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2909 page);
2910 else
2911 ret2 = generic_write_end(file, mapping, pos, len, copied,
2912 page, fsdata);
2914 copied = ret2;
2915 if (ret2 < 0)
2916 ret = ret2;
2917 ret2 = ext4_journal_stop(handle);
2918 if (!ret)
2919 ret = ret2;
2921 return ret ? ret : copied;
2924 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2925 unsigned int length)
2928 * Drop reserved blocks
2930 BUG_ON(!PageLocked(page));
2931 if (!page_has_buffers(page))
2932 goto out;
2934 ext4_da_page_release_reservation(page, offset, length);
2936 out:
2937 ext4_invalidatepage(page, offset, length);
2939 return;
2943 * Force all delayed allocation blocks to be allocated for a given inode.
2945 int ext4_alloc_da_blocks(struct inode *inode)
2947 trace_ext4_alloc_da_blocks(inode);
2949 if (!EXT4_I(inode)->i_reserved_data_blocks)
2950 return 0;
2953 * We do something simple for now. The filemap_flush() will
2954 * also start triggering a write of the data blocks, which is
2955 * not strictly speaking necessary (and for users of
2956 * laptop_mode, not even desirable). However, to do otherwise
2957 * would require replicating code paths in:
2959 * ext4_writepages() ->
2960 * write_cache_pages() ---> (via passed in callback function)
2961 * __mpage_da_writepage() -->
2962 * mpage_add_bh_to_extent()
2963 * mpage_da_map_blocks()
2965 * The problem is that write_cache_pages(), located in
2966 * mm/page-writeback.c, marks pages clean in preparation for
2967 * doing I/O, which is not desirable if we're not planning on
2968 * doing I/O at all.
2970 * We could call write_cache_pages(), and then redirty all of
2971 * the pages by calling redirty_page_for_writepage() but that
2972 * would be ugly in the extreme. So instead we would need to
2973 * replicate parts of the code in the above functions,
2974 * simplifying them because we wouldn't actually intend to
2975 * write out the pages, but rather only collect contiguous
2976 * logical block extents, call the multi-block allocator, and
2977 * then update the buffer heads with the block allocations.
2979 * For now, though, we'll cheat by calling filemap_flush(),
2980 * which will map the blocks, and start the I/O, but not
2981 * actually wait for the I/O to complete.
2983 return filemap_flush(inode->i_mapping);
2987 * bmap() is special. It gets used by applications such as lilo and by
2988 * the swapper to find the on-disk block of a specific piece of data.
2990 * Naturally, this is dangerous if the block concerned is still in the
2991 * journal. If somebody makes a swapfile on an ext4 data-journaling
2992 * filesystem and enables swap, then they may get a nasty shock when the
2993 * data getting swapped to that swapfile suddenly gets overwritten by
2994 * the original zero's written out previously to the journal and
2995 * awaiting writeback in the kernel's buffer cache.
2997 * So, if we see any bmap calls here on a modified, data-journaled file,
2998 * take extra steps to flush any blocks which might be in the cache.
3000 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3002 struct inode *inode = mapping->host;
3003 journal_t *journal;
3004 int err;
3007 * We can get here for an inline file via the FIBMAP ioctl
3009 if (ext4_has_inline_data(inode))
3010 return 0;
3012 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3013 test_opt(inode->i_sb, DELALLOC)) {
3015 * With delalloc we want to sync the file
3016 * so that we can make sure we allocate
3017 * blocks for file
3019 filemap_write_and_wait(mapping);
3022 if (EXT4_JOURNAL(inode) &&
3023 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3025 * This is a REALLY heavyweight approach, but the use of
3026 * bmap on dirty files is expected to be extremely rare:
3027 * only if we run lilo or swapon on a freshly made file
3028 * do we expect this to happen.
3030 * (bmap requires CAP_SYS_RAWIO so this does not
3031 * represent an unprivileged user DOS attack --- we'd be
3032 * in trouble if mortal users could trigger this path at
3033 * will.)
3035 * NB. EXT4_STATE_JDATA is not set on files other than
3036 * regular files. If somebody wants to bmap a directory
3037 * or symlink and gets confused because the buffer
3038 * hasn't yet been flushed to disk, they deserve
3039 * everything they get.
3042 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3043 journal = EXT4_JOURNAL(inode);
3044 jbd2_journal_lock_updates(journal);
3045 err = jbd2_journal_flush(journal);
3046 jbd2_journal_unlock_updates(journal);
3048 if (err)
3049 return 0;
3052 return generic_block_bmap(mapping, block, ext4_get_block);
3055 static int ext4_readpage(struct file *file, struct page *page)
3057 int ret = -EAGAIN;
3058 struct inode *inode = page->mapping->host;
3060 trace_ext4_readpage(page);
3062 if (ext4_has_inline_data(inode))
3063 ret = ext4_readpage_inline(inode, page);
3065 if (ret == -EAGAIN)
3066 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3068 return ret;
3071 static int
3072 ext4_readpages(struct file *file, struct address_space *mapping,
3073 struct list_head *pages, unsigned nr_pages)
3075 struct inode *inode = mapping->host;
3077 /* If the file has inline data, no need to do readpages. */
3078 if (ext4_has_inline_data(inode))
3079 return 0;
3081 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3084 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3085 unsigned int length)
3087 trace_ext4_invalidatepage(page, offset, length);
3089 /* No journalling happens on data buffers when this function is used */
3090 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3092 block_invalidatepage(page, offset, length);
3095 static int __ext4_journalled_invalidatepage(struct page *page,
3096 unsigned int offset,
3097 unsigned int length)
3099 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3101 trace_ext4_journalled_invalidatepage(page, offset, length);
3104 * If it's a full truncate we just forget about the pending dirtying
3106 if (offset == 0 && length == PAGE_CACHE_SIZE)
3107 ClearPageChecked(page);
3109 return jbd2_journal_invalidatepage(journal, page, offset, length);
3112 /* Wrapper for aops... */
3113 static void ext4_journalled_invalidatepage(struct page *page,
3114 unsigned int offset,
3115 unsigned int length)
3117 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3120 static int ext4_releasepage(struct page *page, gfp_t wait)
3122 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3124 trace_ext4_releasepage(page);
3126 /* Page has dirty journalled data -> cannot release */
3127 if (PageChecked(page))
3128 return 0;
3129 if (journal)
3130 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3131 else
3132 return try_to_free_buffers(page);
3136 * ext4_get_block used when preparing for a DIO write or buffer write.
3137 * We allocate an uinitialized extent if blocks haven't been allocated.
3138 * The extent will be converted to initialized after the IO is complete.
3140 int ext4_get_block_write(struct inode *inode, sector_t iblock,
3141 struct buffer_head *bh_result, int create)
3143 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3144 inode->i_ino, create);
3145 return _ext4_get_block(inode, iblock, bh_result,
3146 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3149 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3150 struct buffer_head *bh_result, int create)
3152 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3153 inode->i_ino, create);
3154 return _ext4_get_block(inode, iblock, bh_result,
3155 EXT4_GET_BLOCKS_NO_LOCK);
3158 int ext4_get_block_dax(struct inode *inode, sector_t iblock,
3159 struct buffer_head *bh_result, int create)
3161 int flags = EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_UNWRIT_EXT;
3162 if (create)
3163 flags |= EXT4_GET_BLOCKS_CREATE;
3164 ext4_debug("ext4_get_block_dax: inode %lu, create flag %d\n",
3165 inode->i_ino, create);
3166 return _ext4_get_block(inode, iblock, bh_result, flags);
3169 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3170 ssize_t size, void *private)
3172 ext4_io_end_t *io_end = iocb->private;
3174 /* if not async direct IO just return */
3175 if (!io_end)
3176 return;
3178 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3179 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3180 iocb->private, io_end->inode->i_ino, iocb, offset,
3181 size);
3183 iocb->private = NULL;
3184 io_end->offset = offset;
3185 io_end->size = size;
3186 ext4_put_io_end(io_end);
3190 * For ext4 extent files, ext4 will do direct-io write to holes,
3191 * preallocated extents, and those write extend the file, no need to
3192 * fall back to buffered IO.
3194 * For holes, we fallocate those blocks, mark them as unwritten
3195 * If those blocks were preallocated, we mark sure they are split, but
3196 * still keep the range to write as unwritten.
3198 * The unwritten extents will be converted to written when DIO is completed.
3199 * For async direct IO, since the IO may still pending when return, we
3200 * set up an end_io call back function, which will do the conversion
3201 * when async direct IO completed.
3203 * If the O_DIRECT write will extend the file then add this inode to the
3204 * orphan list. So recovery will truncate it back to the original size
3205 * if the machine crashes during the write.
3208 static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3209 loff_t offset)
3211 struct file *file = iocb->ki_filp;
3212 struct inode *inode = file->f_mapping->host;
3213 ssize_t ret;
3214 size_t count = iov_iter_count(iter);
3215 int overwrite = 0;
3216 get_block_t *get_block_func = NULL;
3217 int dio_flags = 0;
3218 loff_t final_size = offset + count;
3219 ext4_io_end_t *io_end = NULL;
3221 /* Use the old path for reads and writes beyond i_size. */
3222 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3223 return ext4_ind_direct_IO(iocb, iter, offset);
3225 BUG_ON(iocb->private == NULL);
3228 * Make all waiters for direct IO properly wait also for extent
3229 * conversion. This also disallows race between truncate() and
3230 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3232 if (iov_iter_rw(iter) == WRITE)
3233 inode_dio_begin(inode);
3235 /* If we do a overwrite dio, i_mutex locking can be released */
3236 overwrite = *((int *)iocb->private);
3238 if (overwrite) {
3239 down_read(&EXT4_I(inode)->i_data_sem);
3240 mutex_unlock(&inode->i_mutex);
3244 * We could direct write to holes and fallocate.
3246 * Allocated blocks to fill the hole are marked as
3247 * unwritten to prevent parallel buffered read to expose
3248 * the stale data before DIO complete the data IO.
3250 * As to previously fallocated extents, ext4 get_block will
3251 * just simply mark the buffer mapped but still keep the
3252 * extents unwritten.
3254 * For non AIO case, we will convert those unwritten extents
3255 * to written after return back from blockdev_direct_IO.
3257 * For async DIO, the conversion needs to be deferred when the
3258 * IO is completed. The ext4 end_io callback function will be
3259 * called to take care of the conversion work. Here for async
3260 * case, we allocate an io_end structure to hook to the iocb.
3262 iocb->private = NULL;
3263 if (overwrite) {
3264 get_block_func = ext4_get_block_write_nolock;
3265 } else {
3266 ext4_inode_aio_set(inode, NULL);
3267 if (!is_sync_kiocb(iocb)) {
3268 io_end = ext4_init_io_end(inode, GFP_NOFS);
3269 if (!io_end) {
3270 ret = -ENOMEM;
3271 goto retake_lock;
3274 * Grab reference for DIO. Will be dropped in
3275 * ext4_end_io_dio()
3277 iocb->private = ext4_get_io_end(io_end);
3279 * we save the io structure for current async direct
3280 * IO, so that later ext4_map_blocks() could flag the
3281 * io structure whether there is a unwritten extents
3282 * needs to be converted when IO is completed.
3284 ext4_inode_aio_set(inode, io_end);
3286 get_block_func = ext4_get_block_write;
3287 dio_flags = DIO_LOCKING;
3289 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3290 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3291 #endif
3292 if (IS_DAX(inode))
3293 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3294 ext4_end_io_dio, dio_flags);
3295 else
3296 ret = __blockdev_direct_IO(iocb, inode,
3297 inode->i_sb->s_bdev, iter, offset,
3298 get_block_func,
3299 ext4_end_io_dio, NULL, dio_flags);
3302 * Put our reference to io_end. This can free the io_end structure e.g.
3303 * in sync IO case or in case of error. It can even perform extent
3304 * conversion if all bios we submitted finished before we got here.
3305 * Note that in that case iocb->private can be already set to NULL
3306 * here.
3308 if (io_end) {
3309 ext4_inode_aio_set(inode, NULL);
3310 ext4_put_io_end(io_end);
3312 * When no IO was submitted ext4_end_io_dio() was not
3313 * called so we have to put iocb's reference.
3315 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3316 WARN_ON(iocb->private != io_end);
3317 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3318 ext4_put_io_end(io_end);
3319 iocb->private = NULL;
3322 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3323 EXT4_STATE_DIO_UNWRITTEN)) {
3324 int err;
3326 * for non AIO case, since the IO is already
3327 * completed, we could do the conversion right here
3329 err = ext4_convert_unwritten_extents(NULL, inode,
3330 offset, ret);
3331 if (err < 0)
3332 ret = err;
3333 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3336 retake_lock:
3337 if (iov_iter_rw(iter) == WRITE)
3338 inode_dio_end(inode);
3339 /* take i_mutex locking again if we do a ovewrite dio */
3340 if (overwrite) {
3341 up_read(&EXT4_I(inode)->i_data_sem);
3342 mutex_lock(&inode->i_mutex);
3345 return ret;
3348 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3349 loff_t offset)
3351 struct file *file = iocb->ki_filp;
3352 struct inode *inode = file->f_mapping->host;
3353 size_t count = iov_iter_count(iter);
3354 ssize_t ret;
3356 if (iov_iter_rw(iter) == READ) {
3357 loff_t size = i_size_read(inode);
3359 if (offset >= size)
3360 return 0;
3363 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3364 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3365 return 0;
3366 #endif
3369 * If we are doing data journalling we don't support O_DIRECT
3371 if (ext4_should_journal_data(inode))
3372 return 0;
3374 /* Let buffer I/O handle the inline data case. */
3375 if (ext4_has_inline_data(inode))
3376 return 0;
3378 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3379 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3380 ret = ext4_ext_direct_IO(iocb, iter, offset);
3381 else
3382 ret = ext4_ind_direct_IO(iocb, iter, offset);
3383 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3384 return ret;
3388 * Pages can be marked dirty completely asynchronously from ext4's journalling
3389 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3390 * much here because ->set_page_dirty is called under VFS locks. The page is
3391 * not necessarily locked.
3393 * We cannot just dirty the page and leave attached buffers clean, because the
3394 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3395 * or jbddirty because all the journalling code will explode.
3397 * So what we do is to mark the page "pending dirty" and next time writepage
3398 * is called, propagate that into the buffers appropriately.
3400 static int ext4_journalled_set_page_dirty(struct page *page)
3402 SetPageChecked(page);
3403 return __set_page_dirty_nobuffers(page);
3406 static const struct address_space_operations ext4_aops = {
3407 .readpage = ext4_readpage,
3408 .readpages = ext4_readpages,
3409 .writepage = ext4_writepage,
3410 .writepages = ext4_writepages,
3411 .write_begin = ext4_write_begin,
3412 .write_end = ext4_write_end,
3413 .bmap = ext4_bmap,
3414 .invalidatepage = ext4_invalidatepage,
3415 .releasepage = ext4_releasepage,
3416 .direct_IO = ext4_direct_IO,
3417 .migratepage = buffer_migrate_page,
3418 .is_partially_uptodate = block_is_partially_uptodate,
3419 .error_remove_page = generic_error_remove_page,
3422 static const struct address_space_operations ext4_journalled_aops = {
3423 .readpage = ext4_readpage,
3424 .readpages = ext4_readpages,
3425 .writepage = ext4_writepage,
3426 .writepages = ext4_writepages,
3427 .write_begin = ext4_write_begin,
3428 .write_end = ext4_journalled_write_end,
3429 .set_page_dirty = ext4_journalled_set_page_dirty,
3430 .bmap = ext4_bmap,
3431 .invalidatepage = ext4_journalled_invalidatepage,
3432 .releasepage = ext4_releasepage,
3433 .direct_IO = ext4_direct_IO,
3434 .is_partially_uptodate = block_is_partially_uptodate,
3435 .error_remove_page = generic_error_remove_page,
3438 static const struct address_space_operations ext4_da_aops = {
3439 .readpage = ext4_readpage,
3440 .readpages = ext4_readpages,
3441 .writepage = ext4_writepage,
3442 .writepages = ext4_writepages,
3443 .write_begin = ext4_da_write_begin,
3444 .write_end = ext4_da_write_end,
3445 .bmap = ext4_bmap,
3446 .invalidatepage = ext4_da_invalidatepage,
3447 .releasepage = ext4_releasepage,
3448 .direct_IO = ext4_direct_IO,
3449 .migratepage = buffer_migrate_page,
3450 .is_partially_uptodate = block_is_partially_uptodate,
3451 .error_remove_page = generic_error_remove_page,
3454 void ext4_set_aops(struct inode *inode)
3456 switch (ext4_inode_journal_mode(inode)) {
3457 case EXT4_INODE_ORDERED_DATA_MODE:
3458 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3459 break;
3460 case EXT4_INODE_WRITEBACK_DATA_MODE:
3461 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3462 break;
3463 case EXT4_INODE_JOURNAL_DATA_MODE:
3464 inode->i_mapping->a_ops = &ext4_journalled_aops;
3465 return;
3466 default:
3467 BUG();
3469 if (test_opt(inode->i_sb, DELALLOC))
3470 inode->i_mapping->a_ops = &ext4_da_aops;
3471 else
3472 inode->i_mapping->a_ops = &ext4_aops;
3475 static int __ext4_block_zero_page_range(handle_t *handle,
3476 struct address_space *mapping, loff_t from, loff_t length)
3478 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3479 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3480 unsigned blocksize, pos;
3481 ext4_lblk_t iblock;
3482 struct inode *inode = mapping->host;
3483 struct buffer_head *bh;
3484 struct page *page;
3485 int err = 0;
3487 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3488 mapping_gfp_constraint(mapping, ~__GFP_FS));
3489 if (!page)
3490 return -ENOMEM;
3492 blocksize = inode->i_sb->s_blocksize;
3494 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3496 if (!page_has_buffers(page))
3497 create_empty_buffers(page, blocksize, 0);
3499 /* Find the buffer that contains "offset" */
3500 bh = page_buffers(page);
3501 pos = blocksize;
3502 while (offset >= pos) {
3503 bh = bh->b_this_page;
3504 iblock++;
3505 pos += blocksize;
3507 if (buffer_freed(bh)) {
3508 BUFFER_TRACE(bh, "freed: skip");
3509 goto unlock;
3511 if (!buffer_mapped(bh)) {
3512 BUFFER_TRACE(bh, "unmapped");
3513 ext4_get_block(inode, iblock, bh, 0);
3514 /* unmapped? It's a hole - nothing to do */
3515 if (!buffer_mapped(bh)) {
3516 BUFFER_TRACE(bh, "still unmapped");
3517 goto unlock;
3521 /* Ok, it's mapped. Make sure it's up-to-date */
3522 if (PageUptodate(page))
3523 set_buffer_uptodate(bh);
3525 if (!buffer_uptodate(bh)) {
3526 err = -EIO;
3527 ll_rw_block(READ, 1, &bh);
3528 wait_on_buffer(bh);
3529 /* Uhhuh. Read error. Complain and punt. */
3530 if (!buffer_uptodate(bh))
3531 goto unlock;
3532 if (S_ISREG(inode->i_mode) &&
3533 ext4_encrypted_inode(inode)) {
3534 /* We expect the key to be set. */
3535 BUG_ON(!ext4_has_encryption_key(inode));
3536 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3537 WARN_ON_ONCE(ext4_decrypt(page));
3540 if (ext4_should_journal_data(inode)) {
3541 BUFFER_TRACE(bh, "get write access");
3542 err = ext4_journal_get_write_access(handle, bh);
3543 if (err)
3544 goto unlock;
3546 zero_user(page, offset, length);
3547 BUFFER_TRACE(bh, "zeroed end of block");
3549 if (ext4_should_journal_data(inode)) {
3550 err = ext4_handle_dirty_metadata(handle, inode, bh);
3551 } else {
3552 err = 0;
3553 mark_buffer_dirty(bh);
3554 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3555 err = ext4_jbd2_file_inode(handle, inode);
3558 unlock:
3559 unlock_page(page);
3560 page_cache_release(page);
3561 return err;
3565 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3566 * starting from file offset 'from'. The range to be zero'd must
3567 * be contained with in one block. If the specified range exceeds
3568 * the end of the block it will be shortened to end of the block
3569 * that cooresponds to 'from'
3571 static int ext4_block_zero_page_range(handle_t *handle,
3572 struct address_space *mapping, loff_t from, loff_t length)
3574 struct inode *inode = mapping->host;
3575 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3576 unsigned blocksize = inode->i_sb->s_blocksize;
3577 unsigned max = blocksize - (offset & (blocksize - 1));
3580 * correct length if it does not fall between
3581 * 'from' and the end of the block
3583 if (length > max || length < 0)
3584 length = max;
3586 if (IS_DAX(inode))
3587 return dax_zero_page_range(inode, from, length, ext4_get_block);
3588 return __ext4_block_zero_page_range(handle, mapping, from, length);
3592 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3593 * up to the end of the block which corresponds to `from'.
3594 * This required during truncate. We need to physically zero the tail end
3595 * of that block so it doesn't yield old data if the file is later grown.
3597 static int ext4_block_truncate_page(handle_t *handle,
3598 struct address_space *mapping, loff_t from)
3600 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3601 unsigned length;
3602 unsigned blocksize;
3603 struct inode *inode = mapping->host;
3605 /* If we are processing an encrypted inode during orphan list handling */
3606 if (ext4_encrypted_inode(inode) && !ext4_has_encryption_key(inode))
3607 return 0;
3609 blocksize = inode->i_sb->s_blocksize;
3610 length = blocksize - (offset & (blocksize - 1));
3612 return ext4_block_zero_page_range(handle, mapping, from, length);
3615 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3616 loff_t lstart, loff_t length)
3618 struct super_block *sb = inode->i_sb;
3619 struct address_space *mapping = inode->i_mapping;
3620 unsigned partial_start, partial_end;
3621 ext4_fsblk_t start, end;
3622 loff_t byte_end = (lstart + length - 1);
3623 int err = 0;
3625 partial_start = lstart & (sb->s_blocksize - 1);
3626 partial_end = byte_end & (sb->s_blocksize - 1);
3628 start = lstart >> sb->s_blocksize_bits;
3629 end = byte_end >> sb->s_blocksize_bits;
3631 /* Handle partial zero within the single block */
3632 if (start == end &&
3633 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3634 err = ext4_block_zero_page_range(handle, mapping,
3635 lstart, length);
3636 return err;
3638 /* Handle partial zero out on the start of the range */
3639 if (partial_start) {
3640 err = ext4_block_zero_page_range(handle, mapping,
3641 lstart, sb->s_blocksize);
3642 if (err)
3643 return err;
3645 /* Handle partial zero out on the end of the range */
3646 if (partial_end != sb->s_blocksize - 1)
3647 err = ext4_block_zero_page_range(handle, mapping,
3648 byte_end - partial_end,
3649 partial_end + 1);
3650 return err;
3653 int ext4_can_truncate(struct inode *inode)
3655 if (S_ISREG(inode->i_mode))
3656 return 1;
3657 if (S_ISDIR(inode->i_mode))
3658 return 1;
3659 if (S_ISLNK(inode->i_mode))
3660 return !ext4_inode_is_fast_symlink(inode);
3661 return 0;
3665 * We have to make sure i_disksize gets properly updated before we truncate
3666 * page cache due to hole punching or zero range. Otherwise i_disksize update
3667 * can get lost as it may have been postponed to submission of writeback but
3668 * that will never happen after we truncate page cache.
3670 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3671 loff_t len)
3673 handle_t *handle;
3674 loff_t size = i_size_read(inode);
3676 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3677 if (offset > size || offset + len < size)
3678 return 0;
3680 if (EXT4_I(inode)->i_disksize >= size)
3681 return 0;
3683 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3684 if (IS_ERR(handle))
3685 return PTR_ERR(handle);
3686 ext4_update_i_disksize(inode, size);
3687 ext4_mark_inode_dirty(handle, inode);
3688 ext4_journal_stop(handle);
3690 return 0;
3694 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3695 * associated with the given offset and length
3697 * @inode: File inode
3698 * @offset: The offset where the hole will begin
3699 * @len: The length of the hole
3701 * Returns: 0 on success or negative on failure
3704 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3706 struct super_block *sb = inode->i_sb;
3707 ext4_lblk_t first_block, stop_block;
3708 struct address_space *mapping = inode->i_mapping;
3709 loff_t first_block_offset, last_block_offset;
3710 handle_t *handle;
3711 unsigned int credits;
3712 int ret = 0;
3714 if (!S_ISREG(inode->i_mode))
3715 return -EOPNOTSUPP;
3717 trace_ext4_punch_hole(inode, offset, length, 0);
3719 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3720 if (ext4_has_inline_data(inode)) {
3721 down_write(&EXT4_I(inode)->i_mmap_sem);
3722 ret = ext4_convert_inline_data(inode);
3723 up_write(&EXT4_I(inode)->i_mmap_sem);
3724 if (ret)
3725 return ret;
3729 * Write out all dirty pages to avoid race conditions
3730 * Then release them.
3732 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3733 ret = filemap_write_and_wait_range(mapping, offset,
3734 offset + length - 1);
3735 if (ret)
3736 return ret;
3739 mutex_lock(&inode->i_mutex);
3741 /* No need to punch hole beyond i_size */
3742 if (offset >= inode->i_size)
3743 goto out_mutex;
3746 * If the hole extends beyond i_size, set the hole
3747 * to end after the page that contains i_size
3749 if (offset + length > inode->i_size) {
3750 length = inode->i_size +
3751 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3752 offset;
3755 if (offset & (sb->s_blocksize - 1) ||
3756 (offset + length) & (sb->s_blocksize - 1)) {
3758 * Attach jinode to inode for jbd2 if we do any zeroing of
3759 * partial block
3761 ret = ext4_inode_attach_jinode(inode);
3762 if (ret < 0)
3763 goto out_mutex;
3767 /* Wait all existing dio workers, newcomers will block on i_mutex */
3768 ext4_inode_block_unlocked_dio(inode);
3769 inode_dio_wait(inode);
3772 * Prevent page faults from reinstantiating pages we have released from
3773 * page cache.
3775 down_write(&EXT4_I(inode)->i_mmap_sem);
3776 first_block_offset = round_up(offset, sb->s_blocksize);
3777 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3779 /* Now release the pages and zero block aligned part of pages*/
3780 if (last_block_offset > first_block_offset) {
3781 ret = ext4_update_disksize_before_punch(inode, offset, length);
3782 if (ret)
3783 goto out_dio;
3784 truncate_pagecache_range(inode, first_block_offset,
3785 last_block_offset);
3788 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3789 credits = ext4_writepage_trans_blocks(inode);
3790 else
3791 credits = ext4_blocks_for_truncate(inode);
3792 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3793 if (IS_ERR(handle)) {
3794 ret = PTR_ERR(handle);
3795 ext4_std_error(sb, ret);
3796 goto out_dio;
3799 ret = ext4_zero_partial_blocks(handle, inode, offset,
3800 length);
3801 if (ret)
3802 goto out_stop;
3804 first_block = (offset + sb->s_blocksize - 1) >>
3805 EXT4_BLOCK_SIZE_BITS(sb);
3806 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3808 /* If there are blocks to remove, do it */
3809 if (stop_block > first_block) {
3811 down_write(&EXT4_I(inode)->i_data_sem);
3812 ext4_discard_preallocations(inode);
3814 ret = ext4_es_remove_extent(inode, first_block,
3815 stop_block - first_block);
3816 if (ret) {
3817 up_write(&EXT4_I(inode)->i_data_sem);
3818 goto out_stop;
3821 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822 ret = ext4_ext_remove_space(inode, first_block,
3823 stop_block - 1);
3824 else
3825 ret = ext4_ind_remove_space(handle, inode, first_block,
3826 stop_block);
3828 up_write(&EXT4_I(inode)->i_data_sem);
3830 if (IS_SYNC(inode))
3831 ext4_handle_sync(handle);
3833 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3834 ext4_mark_inode_dirty(handle, inode);
3835 if (ret >= 0)
3836 ext4_update_inode_fsync_trans(handle, inode, 1);
3837 out_stop:
3838 ext4_journal_stop(handle);
3839 out_dio:
3840 up_write(&EXT4_I(inode)->i_mmap_sem);
3841 ext4_inode_resume_unlocked_dio(inode);
3842 out_mutex:
3843 mutex_unlock(&inode->i_mutex);
3844 return ret;
3847 int ext4_inode_attach_jinode(struct inode *inode)
3849 struct ext4_inode_info *ei = EXT4_I(inode);
3850 struct jbd2_inode *jinode;
3852 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3853 return 0;
3855 jinode = jbd2_alloc_inode(GFP_KERNEL);
3856 spin_lock(&inode->i_lock);
3857 if (!ei->jinode) {
3858 if (!jinode) {
3859 spin_unlock(&inode->i_lock);
3860 return -ENOMEM;
3862 ei->jinode = jinode;
3863 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3864 jinode = NULL;
3866 spin_unlock(&inode->i_lock);
3867 if (unlikely(jinode != NULL))
3868 jbd2_free_inode(jinode);
3869 return 0;
3873 * ext4_truncate()
3875 * We block out ext4_get_block() block instantiations across the entire
3876 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3877 * simultaneously on behalf of the same inode.
3879 * As we work through the truncate and commit bits of it to the journal there
3880 * is one core, guiding principle: the file's tree must always be consistent on
3881 * disk. We must be able to restart the truncate after a crash.
3883 * The file's tree may be transiently inconsistent in memory (although it
3884 * probably isn't), but whenever we close off and commit a journal transaction,
3885 * the contents of (the filesystem + the journal) must be consistent and
3886 * restartable. It's pretty simple, really: bottom up, right to left (although
3887 * left-to-right works OK too).
3889 * Note that at recovery time, journal replay occurs *before* the restart of
3890 * truncate against the orphan inode list.
3892 * The committed inode has the new, desired i_size (which is the same as
3893 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3894 * that this inode's truncate did not complete and it will again call
3895 * ext4_truncate() to have another go. So there will be instantiated blocks
3896 * to the right of the truncation point in a crashed ext4 filesystem. But
3897 * that's fine - as long as they are linked from the inode, the post-crash
3898 * ext4_truncate() run will find them and release them.
3900 void ext4_truncate(struct inode *inode)
3902 struct ext4_inode_info *ei = EXT4_I(inode);
3903 unsigned int credits;
3904 handle_t *handle;
3905 struct address_space *mapping = inode->i_mapping;
3908 * There is a possibility that we're either freeing the inode
3909 * or it's a completely new inode. In those cases we might not
3910 * have i_mutex locked because it's not necessary.
3912 if (!(inode->i_state & (I_NEW|I_FREEING)))
3913 WARN_ON(!mutex_is_locked(&inode->i_mutex));
3914 trace_ext4_truncate_enter(inode);
3916 if (!ext4_can_truncate(inode))
3917 return;
3919 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3921 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3922 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3924 if (ext4_has_inline_data(inode)) {
3925 int has_inline = 1;
3927 ext4_inline_data_truncate(inode, &has_inline);
3928 if (has_inline)
3929 return;
3932 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3933 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3934 if (ext4_inode_attach_jinode(inode) < 0)
3935 return;
3938 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3939 credits = ext4_writepage_trans_blocks(inode);
3940 else
3941 credits = ext4_blocks_for_truncate(inode);
3943 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3944 if (IS_ERR(handle)) {
3945 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3946 return;
3949 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3950 ext4_block_truncate_page(handle, mapping, inode->i_size);
3953 * We add the inode to the orphan list, so that if this
3954 * truncate spans multiple transactions, and we crash, we will
3955 * resume the truncate when the filesystem recovers. It also
3956 * marks the inode dirty, to catch the new size.
3958 * Implication: the file must always be in a sane, consistent
3959 * truncatable state while each transaction commits.
3961 if (ext4_orphan_add(handle, inode))
3962 goto out_stop;
3964 down_write(&EXT4_I(inode)->i_data_sem);
3966 ext4_discard_preallocations(inode);
3968 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3969 ext4_ext_truncate(handle, inode);
3970 else
3971 ext4_ind_truncate(handle, inode);
3973 up_write(&ei->i_data_sem);
3975 if (IS_SYNC(inode))
3976 ext4_handle_sync(handle);
3978 out_stop:
3980 * If this was a simple ftruncate() and the file will remain alive,
3981 * then we need to clear up the orphan record which we created above.
3982 * However, if this was a real unlink then we were called by
3983 * ext4_evict_inode(), and we allow that function to clean up the
3984 * orphan info for us.
3986 if (inode->i_nlink)
3987 ext4_orphan_del(handle, inode);
3989 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3990 ext4_mark_inode_dirty(handle, inode);
3991 ext4_journal_stop(handle);
3993 trace_ext4_truncate_exit(inode);
3997 * ext4_get_inode_loc returns with an extra refcount against the inode's
3998 * underlying buffer_head on success. If 'in_mem' is true, we have all
3999 * data in memory that is needed to recreate the on-disk version of this
4000 * inode.
4002 static int __ext4_get_inode_loc(struct inode *inode,
4003 struct ext4_iloc *iloc, int in_mem)
4005 struct ext4_group_desc *gdp;
4006 struct buffer_head *bh;
4007 struct super_block *sb = inode->i_sb;
4008 ext4_fsblk_t block;
4009 int inodes_per_block, inode_offset;
4011 iloc->bh = NULL;
4012 if (inode->i_ino < EXT4_ROOT_INO ||
4013 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4014 return -EFSCORRUPTED;
4016 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4017 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4018 if (!gdp)
4019 return -EIO;
4022 * Figure out the offset within the block group inode table
4024 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4025 inode_offset = ((inode->i_ino - 1) %
4026 EXT4_INODES_PER_GROUP(sb));
4027 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4028 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4030 bh = sb_getblk(sb, block);
4031 if (unlikely(!bh))
4032 return -ENOMEM;
4033 if (!buffer_uptodate(bh)) {
4034 lock_buffer(bh);
4037 * If the buffer has the write error flag, we have failed
4038 * to write out another inode in the same block. In this
4039 * case, we don't have to read the block because we may
4040 * read the old inode data successfully.
4042 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4043 set_buffer_uptodate(bh);
4045 if (buffer_uptodate(bh)) {
4046 /* someone brought it uptodate while we waited */
4047 unlock_buffer(bh);
4048 goto has_buffer;
4052 * If we have all information of the inode in memory and this
4053 * is the only valid inode in the block, we need not read the
4054 * block.
4056 if (in_mem) {
4057 struct buffer_head *bitmap_bh;
4058 int i, start;
4060 start = inode_offset & ~(inodes_per_block - 1);
4062 /* Is the inode bitmap in cache? */
4063 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4064 if (unlikely(!bitmap_bh))
4065 goto make_io;
4068 * If the inode bitmap isn't in cache then the
4069 * optimisation may end up performing two reads instead
4070 * of one, so skip it.
4072 if (!buffer_uptodate(bitmap_bh)) {
4073 brelse(bitmap_bh);
4074 goto make_io;
4076 for (i = start; i < start + inodes_per_block; i++) {
4077 if (i == inode_offset)
4078 continue;
4079 if (ext4_test_bit(i, bitmap_bh->b_data))
4080 break;
4082 brelse(bitmap_bh);
4083 if (i == start + inodes_per_block) {
4084 /* all other inodes are free, so skip I/O */
4085 memset(bh->b_data, 0, bh->b_size);
4086 set_buffer_uptodate(bh);
4087 unlock_buffer(bh);
4088 goto has_buffer;
4092 make_io:
4094 * If we need to do any I/O, try to pre-readahead extra
4095 * blocks from the inode table.
4097 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4098 ext4_fsblk_t b, end, table;
4099 unsigned num;
4100 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4102 table = ext4_inode_table(sb, gdp);
4103 /* s_inode_readahead_blks is always a power of 2 */
4104 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4105 if (table > b)
4106 b = table;
4107 end = b + ra_blks;
4108 num = EXT4_INODES_PER_GROUP(sb);
4109 if (ext4_has_group_desc_csum(sb))
4110 num -= ext4_itable_unused_count(sb, gdp);
4111 table += num / inodes_per_block;
4112 if (end > table)
4113 end = table;
4114 while (b <= end)
4115 sb_breadahead(sb, b++);
4119 * There are other valid inodes in the buffer, this inode
4120 * has in-inode xattrs, or we don't have this inode in memory.
4121 * Read the block from disk.
4123 trace_ext4_load_inode(inode);
4124 get_bh(bh);
4125 bh->b_end_io = end_buffer_read_sync;
4126 submit_bh(READ | REQ_META | REQ_PRIO, bh);
4127 wait_on_buffer(bh);
4128 if (!buffer_uptodate(bh)) {
4129 EXT4_ERROR_INODE_BLOCK(inode, block,
4130 "unable to read itable block");
4131 brelse(bh);
4132 return -EIO;
4135 has_buffer:
4136 iloc->bh = bh;
4137 return 0;
4140 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4142 /* We have all inode data except xattrs in memory here. */
4143 return __ext4_get_inode_loc(inode, iloc,
4144 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4147 void ext4_set_inode_flags(struct inode *inode)
4149 unsigned int flags = EXT4_I(inode)->i_flags;
4150 unsigned int new_fl = 0;
4152 if (flags & EXT4_SYNC_FL)
4153 new_fl |= S_SYNC;
4154 if (flags & EXT4_APPEND_FL)
4155 new_fl |= S_APPEND;
4156 if (flags & EXT4_IMMUTABLE_FL)
4157 new_fl |= S_IMMUTABLE;
4158 if (flags & EXT4_NOATIME_FL)
4159 new_fl |= S_NOATIME;
4160 if (flags & EXT4_DIRSYNC_FL)
4161 new_fl |= S_DIRSYNC;
4162 if (test_opt(inode->i_sb, DAX))
4163 new_fl |= S_DAX;
4164 inode_set_flags(inode, new_fl,
4165 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4168 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4169 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4171 unsigned int vfs_fl;
4172 unsigned long old_fl, new_fl;
4174 do {
4175 vfs_fl = ei->vfs_inode.i_flags;
4176 old_fl = ei->i_flags;
4177 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4178 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4179 EXT4_DIRSYNC_FL);
4180 if (vfs_fl & S_SYNC)
4181 new_fl |= EXT4_SYNC_FL;
4182 if (vfs_fl & S_APPEND)
4183 new_fl |= EXT4_APPEND_FL;
4184 if (vfs_fl & S_IMMUTABLE)
4185 new_fl |= EXT4_IMMUTABLE_FL;
4186 if (vfs_fl & S_NOATIME)
4187 new_fl |= EXT4_NOATIME_FL;
4188 if (vfs_fl & S_DIRSYNC)
4189 new_fl |= EXT4_DIRSYNC_FL;
4190 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4193 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4194 struct ext4_inode_info *ei)
4196 blkcnt_t i_blocks ;
4197 struct inode *inode = &(ei->vfs_inode);
4198 struct super_block *sb = inode->i_sb;
4200 if (ext4_has_feature_huge_file(sb)) {
4201 /* we are using combined 48 bit field */
4202 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4203 le32_to_cpu(raw_inode->i_blocks_lo);
4204 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4205 /* i_blocks represent file system block size */
4206 return i_blocks << (inode->i_blkbits - 9);
4207 } else {
4208 return i_blocks;
4210 } else {
4211 return le32_to_cpu(raw_inode->i_blocks_lo);
4215 static inline void ext4_iget_extra_inode(struct inode *inode,
4216 struct ext4_inode *raw_inode,
4217 struct ext4_inode_info *ei)
4219 __le32 *magic = (void *)raw_inode +
4220 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4221 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4222 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4223 ext4_find_inline_data_nolock(inode);
4224 } else
4225 EXT4_I(inode)->i_inline_off = 0;
4228 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4229 ext4_iget_flags flags, const char *function,
4230 unsigned int line)
4232 struct ext4_iloc iloc;
4233 struct ext4_inode *raw_inode;
4234 struct ext4_inode_info *ei;
4235 struct inode *inode;
4236 journal_t *journal = EXT4_SB(sb)->s_journal;
4237 long ret;
4238 loff_t size;
4239 int block;
4240 uid_t i_uid;
4241 gid_t i_gid;
4243 if ((!(flags & EXT4_IGET_SPECIAL) &&
4244 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4245 (ino < EXT4_ROOT_INO) ||
4246 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4247 if (flags & EXT4_IGET_HANDLE)
4248 return ERR_PTR(-ESTALE);
4249 __ext4_error(sb, function, line,
4250 "inode #%lu: comm %s: iget: illegal inode #",
4251 ino, current->comm);
4252 return ERR_PTR(-EFSCORRUPTED);
4255 inode = iget_locked(sb, ino);
4256 if (!inode)
4257 return ERR_PTR(-ENOMEM);
4258 if (!(inode->i_state & I_NEW))
4259 return inode;
4261 ei = EXT4_I(inode);
4262 iloc.bh = NULL;
4264 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4265 if (ret < 0)
4266 goto bad_inode;
4267 raw_inode = ext4_raw_inode(&iloc);
4269 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4270 ext4_error_inode(inode, function, line, 0,
4271 "iget: root inode unallocated");
4272 ret = -EFSCORRUPTED;
4273 goto bad_inode;
4276 if ((flags & EXT4_IGET_HANDLE) &&
4277 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4278 ret = -ESTALE;
4279 goto bad_inode;
4282 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4283 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4284 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4285 EXT4_INODE_SIZE(inode->i_sb)) {
4286 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4287 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4288 EXT4_INODE_SIZE(inode->i_sb));
4289 ret = -EFSCORRUPTED;
4290 goto bad_inode;
4292 } else
4293 ei->i_extra_isize = 0;
4295 /* Precompute checksum seed for inode metadata */
4296 if (ext4_has_metadata_csum(sb)) {
4297 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4298 __u32 csum;
4299 __le32 inum = cpu_to_le32(inode->i_ino);
4300 __le32 gen = raw_inode->i_generation;
4301 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4302 sizeof(inum));
4303 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4304 sizeof(gen));
4307 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4308 ext4_error_inode(inode, function, line, 0,
4309 "iget: checksum invalid");
4310 ret = -EFSBADCRC;
4311 goto bad_inode;
4314 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4315 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4316 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4317 if (!(test_opt(inode->i_sb, NO_UID32))) {
4318 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4319 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4321 i_uid_write(inode, i_uid);
4322 i_gid_write(inode, i_gid);
4323 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4325 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4326 ei->i_inline_off = 0;
4327 ei->i_dir_start_lookup = 0;
4328 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4329 /* We now have enough fields to check if the inode was active or not.
4330 * This is needed because nfsd might try to access dead inodes
4331 * the test is that same one that e2fsck uses
4332 * NeilBrown 1999oct15
4334 if (inode->i_nlink == 0) {
4335 if ((inode->i_mode == 0 ||
4336 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4337 ino != EXT4_BOOT_LOADER_INO) {
4338 /* this inode is deleted */
4339 ret = -ESTALE;
4340 goto bad_inode;
4342 /* The only unlinked inodes we let through here have
4343 * valid i_mode and are being read by the orphan
4344 * recovery code: that's fine, we're about to complete
4345 * the process of deleting those.
4346 * OR it is the EXT4_BOOT_LOADER_INO which is
4347 * not initialized on a new filesystem. */
4349 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4350 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4351 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4352 if (ext4_has_feature_64bit(sb))
4353 ei->i_file_acl |=
4354 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4355 inode->i_size = ext4_isize(raw_inode);
4356 if ((size = i_size_read(inode)) < 0) {
4357 ext4_error_inode(inode, function, line, 0,
4358 "iget: bad i_size value: %lld", size);
4359 ret = -EFSCORRUPTED;
4360 goto bad_inode;
4363 * If dir_index is not enabled but there's dir with INDEX flag set,
4364 * we'd normally treat htree data as empty space. But with metadata
4365 * checksumming that corrupts checksums so forbid that.
4367 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4368 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4369 EXT4_ERROR_INODE(inode,
4370 "iget: Dir with htree data on filesystem without dir_index feature.");
4371 ret = -EFSCORRUPTED;
4372 goto bad_inode;
4374 ei->i_disksize = inode->i_size;
4375 #ifdef CONFIG_QUOTA
4376 ei->i_reserved_quota = 0;
4377 #endif
4378 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4379 ei->i_block_group = iloc.block_group;
4380 ei->i_last_alloc_group = ~0;
4382 * NOTE! The in-memory inode i_data array is in little-endian order
4383 * even on big-endian machines: we do NOT byteswap the block numbers!
4385 for (block = 0; block < EXT4_N_BLOCKS; block++)
4386 ei->i_data[block] = raw_inode->i_block[block];
4387 INIT_LIST_HEAD(&ei->i_orphan);
4390 * Set transaction id's of transactions that have to be committed
4391 * to finish f[data]sync. We set them to currently running transaction
4392 * as we cannot be sure that the inode or some of its metadata isn't
4393 * part of the transaction - the inode could have been reclaimed and
4394 * now it is reread from disk.
4396 if (journal) {
4397 transaction_t *transaction;
4398 tid_t tid;
4400 read_lock(&journal->j_state_lock);
4401 if (journal->j_running_transaction)
4402 transaction = journal->j_running_transaction;
4403 else
4404 transaction = journal->j_committing_transaction;
4405 if (transaction)
4406 tid = transaction->t_tid;
4407 else
4408 tid = journal->j_commit_sequence;
4409 read_unlock(&journal->j_state_lock);
4410 ei->i_sync_tid = tid;
4411 ei->i_datasync_tid = tid;
4414 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4415 if (ei->i_extra_isize == 0) {
4416 /* The extra space is currently unused. Use it. */
4417 ei->i_extra_isize = sizeof(struct ext4_inode) -
4418 EXT4_GOOD_OLD_INODE_SIZE;
4419 } else {
4420 ext4_iget_extra_inode(inode, raw_inode, ei);
4424 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4425 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4426 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4427 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4429 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4430 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4431 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4432 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4433 inode->i_version |=
4434 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4438 ret = 0;
4439 if (ei->i_file_acl &&
4440 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4441 ext4_error_inode(inode, function, line, 0,
4442 "iget: bad extended attribute block %llu",
4443 ei->i_file_acl);
4444 ret = -EFSCORRUPTED;
4445 goto bad_inode;
4446 } else if (!ext4_has_inline_data(inode)) {
4447 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4448 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4449 (S_ISLNK(inode->i_mode) &&
4450 !ext4_inode_is_fast_symlink(inode))))
4451 /* Validate extent which is part of inode */
4452 ret = ext4_ext_check_inode(inode);
4453 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4454 (S_ISLNK(inode->i_mode) &&
4455 !ext4_inode_is_fast_symlink(inode))) {
4456 /* Validate block references which are part of inode */
4457 ret = ext4_ind_check_inode(inode);
4460 if (ret)
4461 goto bad_inode;
4463 if (S_ISREG(inode->i_mode)) {
4464 inode->i_op = &ext4_file_inode_operations;
4465 inode->i_fop = &ext4_file_operations;
4466 ext4_set_aops(inode);
4467 } else if (S_ISDIR(inode->i_mode)) {
4468 inode->i_op = &ext4_dir_inode_operations;
4469 inode->i_fop = &ext4_dir_operations;
4470 } else if (S_ISLNK(inode->i_mode)) {
4471 if (ext4_encrypted_inode(inode)) {
4472 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4473 ext4_set_aops(inode);
4474 } else if (ext4_inode_is_fast_symlink(inode)) {
4475 inode->i_link = (char *)ei->i_data;
4476 inode->i_op = &ext4_fast_symlink_inode_operations;
4477 nd_terminate_link(ei->i_data, inode->i_size,
4478 sizeof(ei->i_data) - 1);
4479 } else {
4480 inode->i_op = &ext4_symlink_inode_operations;
4481 ext4_set_aops(inode);
4483 inode_nohighmem(inode);
4484 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4485 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4486 inode->i_op = &ext4_special_inode_operations;
4487 if (raw_inode->i_block[0])
4488 init_special_inode(inode, inode->i_mode,
4489 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4490 else
4491 init_special_inode(inode, inode->i_mode,
4492 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4493 } else if (ino == EXT4_BOOT_LOADER_INO) {
4494 make_bad_inode(inode);
4495 } else {
4496 ret = -EFSCORRUPTED;
4497 ext4_error_inode(inode, function, line, 0,
4498 "iget: bogus i_mode (%o)", inode->i_mode);
4499 goto bad_inode;
4501 brelse(iloc.bh);
4502 ext4_set_inode_flags(inode);
4503 unlock_new_inode(inode);
4504 return inode;
4506 bad_inode:
4507 brelse(iloc.bh);
4508 iget_failed(inode);
4509 return ERR_PTR(ret);
4512 static int ext4_inode_blocks_set(handle_t *handle,
4513 struct ext4_inode *raw_inode,
4514 struct ext4_inode_info *ei)
4516 struct inode *inode = &(ei->vfs_inode);
4517 u64 i_blocks = READ_ONCE(inode->i_blocks);
4518 struct super_block *sb = inode->i_sb;
4520 if (i_blocks <= ~0U) {
4522 * i_blocks can be represented in a 32 bit variable
4523 * as multiple of 512 bytes
4525 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4526 raw_inode->i_blocks_high = 0;
4527 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4528 return 0;
4530 if (!ext4_has_feature_huge_file(sb))
4531 return -EFBIG;
4533 if (i_blocks <= 0xffffffffffffULL) {
4535 * i_blocks can be represented in a 48 bit variable
4536 * as multiple of 512 bytes
4538 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4539 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4540 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4541 } else {
4542 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4543 /* i_block is stored in file system block size */
4544 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4545 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4546 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4548 return 0;
4551 struct other_inode {
4552 unsigned long orig_ino;
4553 struct ext4_inode *raw_inode;
4556 static int other_inode_match(struct inode * inode, unsigned long ino,
4557 void *data)
4559 struct other_inode *oi = (struct other_inode *) data;
4561 if ((inode->i_ino != ino) ||
4562 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4563 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4564 ((inode->i_state & I_DIRTY_TIME) == 0))
4565 return 0;
4566 spin_lock(&inode->i_lock);
4567 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4568 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4569 (inode->i_state & I_DIRTY_TIME)) {
4570 struct ext4_inode_info *ei = EXT4_I(inode);
4572 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4573 spin_unlock(&inode->i_lock);
4575 spin_lock(&ei->i_raw_lock);
4576 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4577 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4578 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4579 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4580 spin_unlock(&ei->i_raw_lock);
4581 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4582 return -1;
4584 spin_unlock(&inode->i_lock);
4585 return -1;
4589 * Opportunistically update the other time fields for other inodes in
4590 * the same inode table block.
4592 static void ext4_update_other_inodes_time(struct super_block *sb,
4593 unsigned long orig_ino, char *buf)
4595 struct other_inode oi;
4596 unsigned long ino;
4597 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4598 int inode_size = EXT4_INODE_SIZE(sb);
4600 oi.orig_ino = orig_ino;
4602 * Calculate the first inode in the inode table block. Inode
4603 * numbers are one-based. That is, the first inode in a block
4604 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4606 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4607 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4608 if (ino == orig_ino)
4609 continue;
4610 oi.raw_inode = (struct ext4_inode *) buf;
4611 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4616 * Post the struct inode info into an on-disk inode location in the
4617 * buffer-cache. This gobbles the caller's reference to the
4618 * buffer_head in the inode location struct.
4620 * The caller must have write access to iloc->bh.
4622 static int ext4_do_update_inode(handle_t *handle,
4623 struct inode *inode,
4624 struct ext4_iloc *iloc)
4626 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4627 struct ext4_inode_info *ei = EXT4_I(inode);
4628 struct buffer_head *bh = iloc->bh;
4629 struct super_block *sb = inode->i_sb;
4630 int err = 0, rc, block;
4631 int need_datasync = 0, set_large_file = 0;
4632 uid_t i_uid;
4633 gid_t i_gid;
4635 spin_lock(&ei->i_raw_lock);
4637 /* For fields not tracked in the in-memory inode,
4638 * initialise them to zero for new inodes. */
4639 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4640 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4642 ext4_get_inode_flags(ei);
4643 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4644 i_uid = i_uid_read(inode);
4645 i_gid = i_gid_read(inode);
4646 if (!(test_opt(inode->i_sb, NO_UID32))) {
4647 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4648 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4650 * Fix up interoperability with old kernels. Otherwise, old inodes get
4651 * re-used with the upper 16 bits of the uid/gid intact
4653 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4654 raw_inode->i_uid_high = 0;
4655 raw_inode->i_gid_high = 0;
4656 } else {
4657 raw_inode->i_uid_high =
4658 cpu_to_le16(high_16_bits(i_uid));
4659 raw_inode->i_gid_high =
4660 cpu_to_le16(high_16_bits(i_gid));
4662 } else {
4663 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4664 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4665 raw_inode->i_uid_high = 0;
4666 raw_inode->i_gid_high = 0;
4668 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4670 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4671 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4672 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4673 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4675 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4676 if (err) {
4677 spin_unlock(&ei->i_raw_lock);
4678 goto out_brelse;
4680 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4681 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4682 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4683 raw_inode->i_file_acl_high =
4684 cpu_to_le16(ei->i_file_acl >> 32);
4685 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4686 if (ei->i_disksize != ext4_isize(raw_inode)) {
4687 ext4_isize_set(raw_inode, ei->i_disksize);
4688 need_datasync = 1;
4690 if (ei->i_disksize > 0x7fffffffULL) {
4691 if (!ext4_has_feature_large_file(sb) ||
4692 EXT4_SB(sb)->s_es->s_rev_level ==
4693 cpu_to_le32(EXT4_GOOD_OLD_REV))
4694 set_large_file = 1;
4696 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4698 if (old_valid_dev(inode->i_rdev)) {
4699 raw_inode->i_block[0] =
4700 cpu_to_le32(old_encode_dev(inode->i_rdev));
4701 raw_inode->i_block[1] = 0;
4702 } else {
4703 raw_inode->i_block[0] = 0;
4704 raw_inode->i_block[1] =
4705 cpu_to_le32(new_encode_dev(inode->i_rdev));
4706 raw_inode->i_block[2] = 0;
4708 } else if (!ext4_has_inline_data(inode)) {
4709 for (block = 0; block < EXT4_N_BLOCKS; block++)
4710 raw_inode->i_block[block] = ei->i_data[block];
4713 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4714 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4715 if (ei->i_extra_isize) {
4716 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4717 raw_inode->i_version_hi =
4718 cpu_to_le32(inode->i_version >> 32);
4719 raw_inode->i_extra_isize =
4720 cpu_to_le16(ei->i_extra_isize);
4723 ext4_inode_csum_set(inode, raw_inode, ei);
4724 spin_unlock(&ei->i_raw_lock);
4725 if (inode->i_sb->s_flags & MS_LAZYTIME)
4726 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4727 bh->b_data);
4729 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4730 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4731 if (!err)
4732 err = rc;
4733 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4734 if (set_large_file) {
4735 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4736 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4737 if (err)
4738 goto out_brelse;
4739 ext4_update_dynamic_rev(sb);
4740 ext4_set_feature_large_file(sb);
4741 ext4_handle_sync(handle);
4742 err = ext4_handle_dirty_super(handle, sb);
4744 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4745 out_brelse:
4746 brelse(bh);
4747 ext4_std_error(inode->i_sb, err);
4748 return err;
4752 * ext4_write_inode()
4754 * We are called from a few places:
4756 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4757 * Here, there will be no transaction running. We wait for any running
4758 * transaction to commit.
4760 * - Within flush work (sys_sync(), kupdate and such).
4761 * We wait on commit, if told to.
4763 * - Within iput_final() -> write_inode_now()
4764 * We wait on commit, if told to.
4766 * In all cases it is actually safe for us to return without doing anything,
4767 * because the inode has been copied into a raw inode buffer in
4768 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4769 * writeback.
4771 * Note that we are absolutely dependent upon all inode dirtiers doing the
4772 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4773 * which we are interested.
4775 * It would be a bug for them to not do this. The code:
4777 * mark_inode_dirty(inode)
4778 * stuff();
4779 * inode->i_size = expr;
4781 * is in error because write_inode() could occur while `stuff()' is running,
4782 * and the new i_size will be lost. Plus the inode will no longer be on the
4783 * superblock's dirty inode list.
4785 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4787 int err;
4789 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4790 return 0;
4792 if (EXT4_SB(inode->i_sb)->s_journal) {
4793 if (ext4_journal_current_handle()) {
4794 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4795 dump_stack();
4796 return -EIO;
4800 * No need to force transaction in WB_SYNC_NONE mode. Also
4801 * ext4_sync_fs() will force the commit after everything is
4802 * written.
4804 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4805 return 0;
4807 err = ext4_force_commit(inode->i_sb);
4808 } else {
4809 struct ext4_iloc iloc;
4811 err = __ext4_get_inode_loc(inode, &iloc, 0);
4812 if (err)
4813 return err;
4815 * sync(2) will flush the whole buffer cache. No need to do
4816 * it here separately for each inode.
4818 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4819 sync_dirty_buffer(iloc.bh);
4820 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4821 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4822 "IO error syncing inode");
4823 err = -EIO;
4825 brelse(iloc.bh);
4827 return err;
4831 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4832 * buffers that are attached to a page stradding i_size and are undergoing
4833 * commit. In that case we have to wait for commit to finish and try again.
4835 static void ext4_wait_for_tail_page_commit(struct inode *inode)
4837 struct page *page;
4838 unsigned offset;
4839 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4840 tid_t commit_tid = 0;
4841 int ret;
4843 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4845 * All buffers in the last page remain valid? Then there's nothing to
4846 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4847 * blocksize case
4849 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4850 return;
4851 while (1) {
4852 page = find_lock_page(inode->i_mapping,
4853 inode->i_size >> PAGE_CACHE_SHIFT);
4854 if (!page)
4855 return;
4856 ret = __ext4_journalled_invalidatepage(page, offset,
4857 PAGE_CACHE_SIZE - offset);
4858 unlock_page(page);
4859 page_cache_release(page);
4860 if (ret != -EBUSY)
4861 return;
4862 commit_tid = 0;
4863 read_lock(&journal->j_state_lock);
4864 if (journal->j_committing_transaction)
4865 commit_tid = journal->j_committing_transaction->t_tid;
4866 read_unlock(&journal->j_state_lock);
4867 if (commit_tid)
4868 jbd2_log_wait_commit(journal, commit_tid);
4873 * ext4_setattr()
4875 * Called from notify_change.
4877 * We want to trap VFS attempts to truncate the file as soon as
4878 * possible. In particular, we want to make sure that when the VFS
4879 * shrinks i_size, we put the inode on the orphan list and modify
4880 * i_disksize immediately, so that during the subsequent flushing of
4881 * dirty pages and freeing of disk blocks, we can guarantee that any
4882 * commit will leave the blocks being flushed in an unused state on
4883 * disk. (On recovery, the inode will get truncated and the blocks will
4884 * be freed, so we have a strong guarantee that no future commit will
4885 * leave these blocks visible to the user.)
4887 * Another thing we have to assure is that if we are in ordered mode
4888 * and inode is still attached to the committing transaction, we must
4889 * we start writeout of all the dirty pages which are being truncated.
4890 * This way we are sure that all the data written in the previous
4891 * transaction are already on disk (truncate waits for pages under
4892 * writeback).
4894 * Called with inode->i_mutex down.
4896 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4898 struct inode *inode = d_inode(dentry);
4899 int error, rc = 0;
4900 int orphan = 0;
4901 const unsigned int ia_valid = attr->ia_valid;
4903 error = inode_change_ok(inode, attr);
4904 if (error)
4905 return error;
4907 if (is_quota_modification(inode, attr)) {
4908 error = dquot_initialize(inode);
4909 if (error)
4910 return error;
4912 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4913 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4914 handle_t *handle;
4916 /* (user+group)*(old+new) structure, inode write (sb,
4917 * inode block, ? - but truncate inode update has it) */
4918 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4919 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4920 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4921 if (IS_ERR(handle)) {
4922 error = PTR_ERR(handle);
4923 goto err_out;
4925 error = dquot_transfer(inode, attr);
4926 if (error) {
4927 ext4_journal_stop(handle);
4928 return error;
4930 /* Update corresponding info in inode so that everything is in
4931 * one transaction */
4932 if (attr->ia_valid & ATTR_UID)
4933 inode->i_uid = attr->ia_uid;
4934 if (attr->ia_valid & ATTR_GID)
4935 inode->i_gid = attr->ia_gid;
4936 error = ext4_mark_inode_dirty(handle, inode);
4937 ext4_journal_stop(handle);
4940 if (attr->ia_valid & ATTR_SIZE) {
4941 handle_t *handle;
4942 loff_t oldsize = inode->i_size;
4943 int shrink = (attr->ia_size <= inode->i_size);
4945 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4948 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4949 return -EFBIG;
4951 if (!S_ISREG(inode->i_mode))
4952 return -EINVAL;
4954 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4955 inode_inc_iversion(inode);
4957 if (ext4_should_order_data(inode) &&
4958 (attr->ia_size < inode->i_size)) {
4959 error = ext4_begin_ordered_truncate(inode,
4960 attr->ia_size);
4961 if (error)
4962 goto err_out;
4964 if (attr->ia_size != inode->i_size) {
4965 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4966 if (IS_ERR(handle)) {
4967 error = PTR_ERR(handle);
4968 goto err_out;
4970 if (ext4_handle_valid(handle) && shrink) {
4971 error = ext4_orphan_add(handle, inode);
4972 orphan = 1;
4975 * Update c/mtime on truncate up, ext4_truncate() will
4976 * update c/mtime in shrink case below
4978 if (!shrink) {
4979 inode->i_mtime = ext4_current_time(inode);
4980 inode->i_ctime = inode->i_mtime;
4982 down_write(&EXT4_I(inode)->i_data_sem);
4983 EXT4_I(inode)->i_disksize = attr->ia_size;
4984 rc = ext4_mark_inode_dirty(handle, inode);
4985 if (!error)
4986 error = rc;
4988 * We have to update i_size under i_data_sem together
4989 * with i_disksize to avoid races with writeback code
4990 * running ext4_wb_update_i_disksize().
4992 if (!error)
4993 i_size_write(inode, attr->ia_size);
4994 up_write(&EXT4_I(inode)->i_data_sem);
4995 ext4_journal_stop(handle);
4996 if (error) {
4997 if (orphan && inode->i_nlink)
4998 ext4_orphan_del(NULL, inode);
4999 goto err_out;
5002 if (!shrink)
5003 pagecache_isize_extended(inode, oldsize, inode->i_size);
5006 * Blocks are going to be removed from the inode. Wait
5007 * for dio in flight. Temporarily disable
5008 * dioread_nolock to prevent livelock.
5010 if (orphan) {
5011 if (!ext4_should_journal_data(inode)) {
5012 ext4_inode_block_unlocked_dio(inode);
5013 inode_dio_wait(inode);
5014 ext4_inode_resume_unlocked_dio(inode);
5015 } else
5016 ext4_wait_for_tail_page_commit(inode);
5018 down_write(&EXT4_I(inode)->i_mmap_sem);
5020 * Truncate pagecache after we've waited for commit
5021 * in data=journal mode to make pages freeable.
5023 truncate_pagecache(inode, inode->i_size);
5024 if (shrink)
5025 ext4_truncate(inode);
5026 up_write(&EXT4_I(inode)->i_mmap_sem);
5029 if (!rc) {
5030 setattr_copy(inode, attr);
5031 mark_inode_dirty(inode);
5035 * If the call to ext4_truncate failed to get a transaction handle at
5036 * all, we need to clean up the in-core orphan list manually.
5038 if (orphan && inode->i_nlink)
5039 ext4_orphan_del(NULL, inode);
5041 if (!rc && (ia_valid & ATTR_MODE))
5042 rc = posix_acl_chmod(inode, inode->i_mode);
5044 err_out:
5045 ext4_std_error(inode->i_sb, error);
5046 if (!error)
5047 error = rc;
5048 return error;
5051 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5052 struct kstat *stat)
5054 struct inode *inode;
5055 unsigned long long delalloc_blocks;
5057 inode = d_inode(dentry);
5058 generic_fillattr(inode, stat);
5061 * If there is inline data in the inode, the inode will normally not
5062 * have data blocks allocated (it may have an external xattr block).
5063 * Report at least one sector for such files, so tools like tar, rsync,
5064 * others doen't incorrectly think the file is completely sparse.
5066 if (unlikely(ext4_has_inline_data(inode)))
5067 stat->blocks += (stat->size + 511) >> 9;
5070 * We can't update i_blocks if the block allocation is delayed
5071 * otherwise in the case of system crash before the real block
5072 * allocation is done, we will have i_blocks inconsistent with
5073 * on-disk file blocks.
5074 * We always keep i_blocks updated together with real
5075 * allocation. But to not confuse with user, stat
5076 * will return the blocks that include the delayed allocation
5077 * blocks for this file.
5079 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5080 EXT4_I(inode)->i_reserved_data_blocks);
5081 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5082 return 0;
5085 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5086 int pextents)
5088 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5089 return ext4_ind_trans_blocks(inode, lblocks);
5090 return ext4_ext_index_trans_blocks(inode, pextents);
5094 * Account for index blocks, block groups bitmaps and block group
5095 * descriptor blocks if modify datablocks and index blocks
5096 * worse case, the indexs blocks spread over different block groups
5098 * If datablocks are discontiguous, they are possible to spread over
5099 * different block groups too. If they are contiguous, with flexbg,
5100 * they could still across block group boundary.
5102 * Also account for superblock, inode, quota and xattr blocks
5104 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5105 int pextents)
5107 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5108 int gdpblocks;
5109 int idxblocks;
5110 int ret = 0;
5113 * How many index blocks need to touch to map @lblocks logical blocks
5114 * to @pextents physical extents?
5116 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5118 ret = idxblocks;
5121 * Now let's see how many group bitmaps and group descriptors need
5122 * to account
5124 groups = idxblocks + pextents;
5125 gdpblocks = groups;
5126 if (groups > ngroups)
5127 groups = ngroups;
5128 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5129 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5131 /* bitmaps and block group descriptor blocks */
5132 ret += groups + gdpblocks;
5134 /* Blocks for super block, inode, quota and xattr blocks */
5135 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5137 return ret;
5141 * Calculate the total number of credits to reserve to fit
5142 * the modification of a single pages into a single transaction,
5143 * which may include multiple chunks of block allocations.
5145 * This could be called via ext4_write_begin()
5147 * We need to consider the worse case, when
5148 * one new block per extent.
5150 int ext4_writepage_trans_blocks(struct inode *inode)
5152 int bpp = ext4_journal_blocks_per_page(inode);
5153 int ret;
5155 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5157 /* Account for data blocks for journalled mode */
5158 if (ext4_should_journal_data(inode))
5159 ret += bpp;
5160 return ret;
5164 * Calculate the journal credits for a chunk of data modification.
5166 * This is called from DIO, fallocate or whoever calling
5167 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5169 * journal buffers for data blocks are not included here, as DIO
5170 * and fallocate do no need to journal data buffers.
5172 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5174 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5178 * The caller must have previously called ext4_reserve_inode_write().
5179 * Give this, we know that the caller already has write access to iloc->bh.
5181 int ext4_mark_iloc_dirty(handle_t *handle,
5182 struct inode *inode, struct ext4_iloc *iloc)
5184 int err = 0;
5186 if (IS_I_VERSION(inode))
5187 inode_inc_iversion(inode);
5189 /* the do_update_inode consumes one bh->b_count */
5190 get_bh(iloc->bh);
5192 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5193 err = ext4_do_update_inode(handle, inode, iloc);
5194 put_bh(iloc->bh);
5195 return err;
5199 * On success, We end up with an outstanding reference count against
5200 * iloc->bh. This _must_ be cleaned up later.
5204 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5205 struct ext4_iloc *iloc)
5207 int err;
5209 err = ext4_get_inode_loc(inode, iloc);
5210 if (!err) {
5211 BUFFER_TRACE(iloc->bh, "get_write_access");
5212 err = ext4_journal_get_write_access(handle, iloc->bh);
5213 if (err) {
5214 brelse(iloc->bh);
5215 iloc->bh = NULL;
5218 ext4_std_error(inode->i_sb, err);
5219 return err;
5223 * Expand an inode by new_extra_isize bytes.
5224 * Returns 0 on success or negative error number on failure.
5226 static int ext4_expand_extra_isize(struct inode *inode,
5227 unsigned int new_extra_isize,
5228 struct ext4_iloc iloc,
5229 handle_t *handle)
5231 struct ext4_inode *raw_inode;
5232 struct ext4_xattr_ibody_header *header;
5233 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5234 struct ext4_inode_info *ei = EXT4_I(inode);
5236 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5237 return 0;
5239 /* this was checked at iget time, but double check for good measure */
5240 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5241 (ei->i_extra_isize & 3)) {
5242 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5243 ei->i_extra_isize,
5244 EXT4_INODE_SIZE(inode->i_sb));
5245 return -EFSCORRUPTED;
5247 if ((new_extra_isize < ei->i_extra_isize) ||
5248 (new_extra_isize < 4) ||
5249 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5250 return -EINVAL; /* Should never happen */
5252 raw_inode = ext4_raw_inode(&iloc);
5254 header = IHDR(inode, raw_inode);
5256 /* No extended attributes present */
5257 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5258 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5259 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5260 EXT4_I(inode)->i_extra_isize, 0,
5261 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5262 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5263 return 0;
5266 /* try to expand with EAs present */
5267 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5268 raw_inode, handle);
5272 * What we do here is to mark the in-core inode as clean with respect to inode
5273 * dirtiness (it may still be data-dirty).
5274 * This means that the in-core inode may be reaped by prune_icache
5275 * without having to perform any I/O. This is a very good thing,
5276 * because *any* task may call prune_icache - even ones which
5277 * have a transaction open against a different journal.
5279 * Is this cheating? Not really. Sure, we haven't written the
5280 * inode out, but prune_icache isn't a user-visible syncing function.
5281 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5282 * we start and wait on commits.
5284 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5286 struct ext4_iloc iloc;
5287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5288 static unsigned int mnt_count;
5289 int err, ret;
5291 might_sleep();
5292 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5293 err = ext4_reserve_inode_write(handle, inode, &iloc);
5294 if (err)
5295 return err;
5296 if (ext4_handle_valid(handle) &&
5297 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5298 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5300 * We need extra buffer credits since we may write into EA block
5301 * with this same handle. If journal_extend fails, then it will
5302 * only result in a minor loss of functionality for that inode.
5303 * If this is felt to be critical, then e2fsck should be run to
5304 * force a large enough s_min_extra_isize.
5306 if ((jbd2_journal_extend(handle,
5307 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5308 ret = ext4_expand_extra_isize(inode,
5309 sbi->s_want_extra_isize,
5310 iloc, handle);
5311 if (ret) {
5312 if (mnt_count !=
5313 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5314 ext4_warning(inode->i_sb,
5315 "Unable to expand inode %lu. Delete"
5316 " some EAs or run e2fsck.",
5317 inode->i_ino);
5318 mnt_count =
5319 le16_to_cpu(sbi->s_es->s_mnt_count);
5324 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5328 * ext4_dirty_inode() is called from __mark_inode_dirty()
5330 * We're really interested in the case where a file is being extended.
5331 * i_size has been changed by generic_commit_write() and we thus need
5332 * to include the updated inode in the current transaction.
5334 * Also, dquot_alloc_block() will always dirty the inode when blocks
5335 * are allocated to the file.
5337 * If the inode is marked synchronous, we don't honour that here - doing
5338 * so would cause a commit on atime updates, which we don't bother doing.
5339 * We handle synchronous inodes at the highest possible level.
5341 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5342 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5343 * to copy into the on-disk inode structure are the timestamp files.
5345 void ext4_dirty_inode(struct inode *inode, int flags)
5347 handle_t *handle;
5349 if (flags == I_DIRTY_TIME)
5350 return;
5351 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5352 if (IS_ERR(handle))
5353 goto out;
5355 ext4_mark_inode_dirty(handle, inode);
5357 ext4_journal_stop(handle);
5358 out:
5359 return;
5362 #if 0
5364 * Bind an inode's backing buffer_head into this transaction, to prevent
5365 * it from being flushed to disk early. Unlike
5366 * ext4_reserve_inode_write, this leaves behind no bh reference and
5367 * returns no iloc structure, so the caller needs to repeat the iloc
5368 * lookup to mark the inode dirty later.
5370 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5372 struct ext4_iloc iloc;
5374 int err = 0;
5375 if (handle) {
5376 err = ext4_get_inode_loc(inode, &iloc);
5377 if (!err) {
5378 BUFFER_TRACE(iloc.bh, "get_write_access");
5379 err = jbd2_journal_get_write_access(handle, iloc.bh);
5380 if (!err)
5381 err = ext4_handle_dirty_metadata(handle,
5382 NULL,
5383 iloc.bh);
5384 brelse(iloc.bh);
5387 ext4_std_error(inode->i_sb, err);
5388 return err;
5390 #endif
5392 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5394 journal_t *journal;
5395 handle_t *handle;
5396 int err;
5399 * We have to be very careful here: changing a data block's
5400 * journaling status dynamically is dangerous. If we write a
5401 * data block to the journal, change the status and then delete
5402 * that block, we risk forgetting to revoke the old log record
5403 * from the journal and so a subsequent replay can corrupt data.
5404 * So, first we make sure that the journal is empty and that
5405 * nobody is changing anything.
5408 journal = EXT4_JOURNAL(inode);
5409 if (!journal)
5410 return 0;
5411 if (is_journal_aborted(journal))
5412 return -EROFS;
5413 /* We have to allocate physical blocks for delalloc blocks
5414 * before flushing journal. otherwise delalloc blocks can not
5415 * be allocated any more. even more truncate on delalloc blocks
5416 * could trigger BUG by flushing delalloc blocks in journal.
5417 * There is no delalloc block in non-journal data mode.
5419 if (val && test_opt(inode->i_sb, DELALLOC)) {
5420 err = ext4_alloc_da_blocks(inode);
5421 if (err < 0)
5422 return err;
5425 /* Wait for all existing dio workers */
5426 ext4_inode_block_unlocked_dio(inode);
5427 inode_dio_wait(inode);
5429 jbd2_journal_lock_updates(journal);
5432 * OK, there are no updates running now, and all cached data is
5433 * synced to disk. We are now in a completely consistent state
5434 * which doesn't have anything in the journal, and we know that
5435 * no filesystem updates are running, so it is safe to modify
5436 * the inode's in-core data-journaling state flag now.
5439 if (val)
5440 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5441 else {
5442 err = jbd2_journal_flush(journal);
5443 if (err < 0) {
5444 jbd2_journal_unlock_updates(journal);
5445 ext4_inode_resume_unlocked_dio(inode);
5446 return err;
5448 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5450 ext4_set_aops(inode);
5452 jbd2_journal_unlock_updates(journal);
5453 ext4_inode_resume_unlocked_dio(inode);
5455 /* Finally we can mark the inode as dirty. */
5457 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5458 if (IS_ERR(handle))
5459 return PTR_ERR(handle);
5461 err = ext4_mark_inode_dirty(handle, inode);
5462 ext4_handle_sync(handle);
5463 ext4_journal_stop(handle);
5464 ext4_std_error(inode->i_sb, err);
5466 return err;
5469 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5471 return !buffer_mapped(bh);
5474 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5476 struct page *page = vmf->page;
5477 loff_t size;
5478 unsigned long len;
5479 int ret;
5480 struct file *file = vma->vm_file;
5481 struct inode *inode = file_inode(file);
5482 struct address_space *mapping = inode->i_mapping;
5483 handle_t *handle;
5484 get_block_t *get_block;
5485 int retries = 0;
5487 sb_start_pagefault(inode->i_sb);
5488 file_update_time(vma->vm_file);
5490 down_read(&EXT4_I(inode)->i_mmap_sem);
5492 ret = ext4_convert_inline_data(inode);
5493 if (ret)
5494 goto out_ret;
5496 /* Delalloc case is easy... */
5497 if (test_opt(inode->i_sb, DELALLOC) &&
5498 !ext4_should_journal_data(inode) &&
5499 !ext4_nonda_switch(inode->i_sb)) {
5500 do {
5501 ret = block_page_mkwrite(vma, vmf,
5502 ext4_da_get_block_prep);
5503 } while (ret == -ENOSPC &&
5504 ext4_should_retry_alloc(inode->i_sb, &retries));
5505 goto out_ret;
5508 lock_page(page);
5509 size = i_size_read(inode);
5510 /* Page got truncated from under us? */
5511 if (page->mapping != mapping || page_offset(page) > size) {
5512 unlock_page(page);
5513 ret = VM_FAULT_NOPAGE;
5514 goto out;
5517 if (page->index == size >> PAGE_CACHE_SHIFT)
5518 len = size & ~PAGE_CACHE_MASK;
5519 else
5520 len = PAGE_CACHE_SIZE;
5522 * Return if we have all the buffers mapped. This avoids the need to do
5523 * journal_start/journal_stop which can block and take a long time
5525 if (page_has_buffers(page)) {
5526 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5527 0, len, NULL,
5528 ext4_bh_unmapped)) {
5529 /* Wait so that we don't change page under IO */
5530 wait_for_stable_page(page);
5531 ret = VM_FAULT_LOCKED;
5532 goto out;
5535 unlock_page(page);
5536 /* OK, we need to fill the hole... */
5537 if (ext4_should_dioread_nolock(inode))
5538 get_block = ext4_get_block_write;
5539 else
5540 get_block = ext4_get_block;
5541 retry_alloc:
5542 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5543 ext4_writepage_trans_blocks(inode));
5544 if (IS_ERR(handle)) {
5545 ret = VM_FAULT_SIGBUS;
5546 goto out;
5548 ret = block_page_mkwrite(vma, vmf, get_block);
5549 if (!ret && ext4_should_journal_data(inode)) {
5550 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5551 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5552 unlock_page(page);
5553 ret = VM_FAULT_SIGBUS;
5554 ext4_journal_stop(handle);
5555 goto out;
5557 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5559 ext4_journal_stop(handle);
5560 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5561 goto retry_alloc;
5562 out_ret:
5563 ret = block_page_mkwrite_return(ret);
5564 out:
5565 up_read(&EXT4_I(inode)->i_mmap_sem);
5566 sb_end_pagefault(inode->i_sb);
5567 return ret;
5570 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5572 struct inode *inode = file_inode(vma->vm_file);
5573 int err;
5575 down_read(&EXT4_I(inode)->i_mmap_sem);
5576 err = filemap_fault(vma, vmf);
5577 up_read(&EXT4_I(inode)->i_mmap_sem);
5579 return err;