4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*sit_entry_set_slab
;
30 static struct kmem_cache
*inmem_entry_slab
;
32 static unsigned long __reverse_ulong(unsigned char *str
)
34 unsigned long tmp
= 0;
35 int shift
= 24, idx
= 0;
37 #if BITS_PER_LONG == 64
41 tmp
|= (unsigned long)str
[idx
++] << shift
;
42 shift
-= BITS_PER_BYTE
;
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 static inline unsigned long __reverse_ffs(unsigned long word
)
55 #if BITS_PER_LONG == 64
56 if ((word
& 0xffffffff00000000UL
) == 0)
61 if ((word
& 0xffff0000) == 0)
66 if ((word
& 0xff00) == 0)
71 if ((word
& 0xf0) == 0)
76 if ((word
& 0xc) == 0)
81 if ((word
& 0x2) == 0)
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
91 * f2fs_set_bit(0, bitmap) => 1000 0000
92 * f2fs_set_bit(7, bitmap) => 0000 0001
94 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
95 unsigned long size
, unsigned long offset
)
97 const unsigned long *p
= addr
+ BIT_WORD(offset
);
98 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
105 offset
%= BITS_PER_LONG
;
109 tmp
= __reverse_ulong((unsigned char *)p
);
110 tmp
&= ~0UL >> offset
;
112 if (size
< BITS_PER_LONG
)
117 size
-= BITS_PER_LONG
;
118 result
+= BITS_PER_LONG
;
121 while (size
& ~(BITS_PER_LONG
-1)) {
122 tmp
= __reverse_ulong((unsigned char *)p
);
125 result
+= BITS_PER_LONG
;
126 size
-= BITS_PER_LONG
;
132 tmp
= __reverse_ulong((unsigned char *)p
);
134 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
135 if (!tmp
) /* Are any bits set? */
136 return result
+ size
; /* Nope. */
138 return result
+ __reverse_ffs(tmp
);
141 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
142 unsigned long size
, unsigned long offset
)
144 const unsigned long *p
= addr
+ BIT_WORD(offset
);
145 unsigned long result
= offset
& ~(BITS_PER_LONG
- 1);
152 offset
%= BITS_PER_LONG
;
156 tmp
= __reverse_ulong((unsigned char *)p
);
157 tmp
|= ~((~0UL << offset
) >> offset
);
159 if (size
< BITS_PER_LONG
)
164 size
-= BITS_PER_LONG
;
165 result
+= BITS_PER_LONG
;
168 while (size
& ~(BITS_PER_LONG
- 1)) {
169 tmp
= __reverse_ulong((unsigned char *)p
);
172 result
+= BITS_PER_LONG
;
173 size
-= BITS_PER_LONG
;
179 tmp
= __reverse_ulong((unsigned char *)p
);
181 tmp
|= ~(~0UL << (BITS_PER_LONG
- size
));
182 if (tmp
== ~0UL) /* Are any bits zero? */
183 return result
+ size
; /* Nope. */
185 return result
+ __reverse_ffz(tmp
);
188 void register_inmem_page(struct inode
*inode
, struct page
*page
)
190 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
191 struct inmem_pages
*new;
193 f2fs_trace_pid(page
);
195 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
196 SetPagePrivate(page
);
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
200 /* add atomic page indices to the list */
202 INIT_LIST_HEAD(&new->list
);
204 /* increase reference count with clean state */
205 mutex_lock(&fi
->inmem_lock
);
207 list_add_tail(&new->list
, &fi
->inmem_pages
);
208 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
209 mutex_unlock(&fi
->inmem_lock
);
211 trace_f2fs_register_inmem_page(page
, INMEM
);
214 int commit_inmem_pages(struct inode
*inode
, bool abort
)
216 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
217 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
218 struct inmem_pages
*cur
, *tmp
;
219 bool submit_bio
= false;
220 struct f2fs_io_info fio
= {
223 .rw
= WRITE_SYNC
| REQ_PRIO
,
224 .encrypted_page
= NULL
,
229 * The abort is true only when f2fs_evict_inode is called.
230 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
231 * that we don't need to call f2fs_balance_fs.
232 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
233 * inode becomes free by iget_locked in f2fs_iget.
236 f2fs_balance_fs(sbi
);
240 mutex_lock(&fi
->inmem_lock
);
241 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
242 lock_page(cur
->page
);
244 if (cur
->page
->mapping
== inode
->i_mapping
) {
245 set_page_dirty(cur
->page
);
246 f2fs_wait_on_page_writeback(cur
->page
, DATA
);
247 if (clear_page_dirty_for_io(cur
->page
))
248 inode_dec_dirty_pages(inode
);
249 trace_f2fs_commit_inmem_page(cur
->page
, INMEM
);
250 fio
.page
= cur
->page
;
251 err
= do_write_data_page(&fio
);
253 unlock_page(cur
->page
);
256 clear_cold_data(cur
->page
);
260 trace_f2fs_commit_inmem_page(cur
->page
, INMEM_DROP
);
262 set_page_private(cur
->page
, 0);
263 ClearPagePrivate(cur
->page
);
264 f2fs_put_page(cur
->page
, 1);
266 list_del(&cur
->list
);
267 kmem_cache_free(inmem_entry_slab
, cur
);
268 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
270 mutex_unlock(&fi
->inmem_lock
);
275 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
281 * This function balances dirty node and dentry pages.
282 * In addition, it controls garbage collection.
284 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
)
287 * We should do GC or end up with checkpoint, if there are so many dirty
288 * dir/node pages without enough free segments.
290 if (has_not_enough_free_secs(sbi
, 0)) {
291 mutex_lock(&sbi
->gc_mutex
);
296 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
298 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
301 /* try to shrink extent cache when there is no enough memory */
302 if (!available_free_memory(sbi
, EXTENT_CACHE
))
303 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
305 /* check the # of cached NAT entries */
306 if (!available_free_memory(sbi
, NAT_ENTRIES
))
307 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
309 if (!available_free_memory(sbi
, FREE_NIDS
))
310 try_to_free_nids(sbi
, NAT_ENTRY_PER_BLOCK
* FREE_NID_PAGES
);
312 /* checkpoint is the only way to shrink partial cached entries */
313 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
314 excess_prefree_segs(sbi
) ||
315 !available_free_memory(sbi
, INO_ENTRIES
) ||
316 jiffies
> sbi
->cp_expires
)
317 f2fs_sync_fs(sbi
->sb
, true);
320 static int issue_flush_thread(void *data
)
322 struct f2fs_sb_info
*sbi
= data
;
323 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
324 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
326 if (kthread_should_stop())
329 if (!llist_empty(&fcc
->issue_list
)) {
331 struct flush_cmd
*cmd
, *next
;
334 bio
= f2fs_bio_alloc(0);
336 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
337 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
339 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
340 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
342 llist_for_each_entry_safe(cmd
, next
,
343 fcc
->dispatch_list
, llnode
) {
345 complete(&cmd
->wait
);
348 fcc
->dispatch_list
= NULL
;
351 wait_event_interruptible(*q
,
352 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
356 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
358 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
359 struct flush_cmd cmd
;
361 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
362 test_opt(sbi
, FLUSH_MERGE
));
364 if (test_opt(sbi
, NOBARRIER
))
367 if (!test_opt(sbi
, FLUSH_MERGE
)) {
368 struct bio
*bio
= f2fs_bio_alloc(0);
371 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
372 ret
= submit_bio_wait(WRITE_FLUSH
, bio
);
377 init_completion(&cmd
.wait
);
379 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
381 if (!fcc
->dispatch_list
)
382 wake_up(&fcc
->flush_wait_queue
);
384 wait_for_completion(&cmd
.wait
);
389 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
391 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
392 struct flush_cmd_control
*fcc
;
395 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
398 init_waitqueue_head(&fcc
->flush_wait_queue
);
399 init_llist_head(&fcc
->issue_list
);
400 SM_I(sbi
)->cmd_control_info
= fcc
;
401 if (!test_opt(sbi
, FLUSH_MERGE
))
404 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
405 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
406 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
407 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
409 SM_I(sbi
)->cmd_control_info
= NULL
;
416 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
418 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
420 if (fcc
&& fcc
->f2fs_issue_flush
)
421 kthread_stop(fcc
->f2fs_issue_flush
);
423 SM_I(sbi
)->cmd_control_info
= NULL
;
426 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
427 enum dirty_type dirty_type
)
429 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
431 /* need not be added */
432 if (IS_CURSEG(sbi
, segno
))
435 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
436 dirty_i
->nr_dirty
[dirty_type
]++;
438 if (dirty_type
== DIRTY
) {
439 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
440 enum dirty_type t
= sentry
->type
;
442 if (unlikely(t
>= DIRTY
)) {
446 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
447 dirty_i
->nr_dirty
[t
]++;
451 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
452 enum dirty_type dirty_type
)
454 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
456 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
457 dirty_i
->nr_dirty
[dirty_type
]--;
459 if (dirty_type
== DIRTY
) {
460 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
461 enum dirty_type t
= sentry
->type
;
463 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
464 dirty_i
->nr_dirty
[t
]--;
466 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
467 clear_bit(GET_SECNO(sbi
, segno
),
468 dirty_i
->victim_secmap
);
473 * Should not occur error such as -ENOMEM.
474 * Adding dirty entry into seglist is not critical operation.
475 * If a given segment is one of current working segments, it won't be added.
477 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
479 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
480 unsigned short valid_blocks
;
482 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
485 mutex_lock(&dirty_i
->seglist_lock
);
487 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
489 if (valid_blocks
== 0) {
490 __locate_dirty_segment(sbi
, segno
, PRE
);
491 __remove_dirty_segment(sbi
, segno
, DIRTY
);
492 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
493 __locate_dirty_segment(sbi
, segno
, DIRTY
);
495 /* Recovery routine with SSR needs this */
496 __remove_dirty_segment(sbi
, segno
, DIRTY
);
499 mutex_unlock(&dirty_i
->seglist_lock
);
502 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
503 block_t blkstart
, block_t blklen
)
505 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
506 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
507 struct seg_entry
*se
;
511 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
512 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
513 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
515 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
518 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
519 return blkdev_issue_discard(sbi
->sb
->s_bdev
, start
, len
, GFP_NOFS
, 0);
522 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
523 struct cp_control
*cpc
, struct seg_entry
*se
,
524 unsigned int start
, unsigned int end
)
526 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
527 struct discard_entry
*new, *last
;
529 if (!list_empty(head
)) {
530 last
= list_last_entry(head
, struct discard_entry
, list
);
531 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
532 last
->blkaddr
+ last
->len
) {
533 last
->len
+= end
- start
;
538 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
539 INIT_LIST_HEAD(&new->list
);
540 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
541 new->len
= end
- start
;
542 list_add_tail(&new->list
, head
);
544 SM_I(sbi
)->nr_discards
+= end
- start
;
547 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
549 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
550 int max_blocks
= sbi
->blocks_per_seg
;
551 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
552 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
553 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
554 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
555 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
556 unsigned int start
= 0, end
= -1;
557 bool force
= (cpc
->reason
== CP_DISCARD
);
560 if (se
->valid_blocks
== max_blocks
)
564 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
565 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
569 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
570 for (i
= 0; i
< entries
; i
++)
571 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
572 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
574 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
575 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
576 if (start
>= max_blocks
)
579 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
580 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
584 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
586 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
587 struct discard_entry
*entry
, *this;
590 list_for_each_entry_safe(entry
, this, head
, list
) {
591 list_del(&entry
->list
);
592 kmem_cache_free(discard_entry_slab
, entry
);
597 * Should call clear_prefree_segments after checkpoint is done.
599 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
601 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
604 mutex_lock(&dirty_i
->seglist_lock
);
605 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
606 __set_test_and_free(sbi
, segno
);
607 mutex_unlock(&dirty_i
->seglist_lock
);
610 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
612 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
613 struct discard_entry
*entry
, *this;
614 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
615 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
616 unsigned int start
= 0, end
= -1;
618 mutex_lock(&dirty_i
->seglist_lock
);
622 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
623 if (start
>= MAIN_SEGS(sbi
))
625 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
628 for (i
= start
; i
< end
; i
++)
629 clear_bit(i
, prefree_map
);
631 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
633 if (!test_opt(sbi
, DISCARD
))
636 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
637 (end
- start
) << sbi
->log_blocks_per_seg
);
639 mutex_unlock(&dirty_i
->seglist_lock
);
641 /* send small discards */
642 list_for_each_entry_safe(entry
, this, head
, list
) {
643 if (cpc
->reason
== CP_DISCARD
&& entry
->len
< cpc
->trim_minlen
)
645 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
646 cpc
->trimmed
+= entry
->len
;
648 list_del(&entry
->list
);
649 SM_I(sbi
)->nr_discards
-= entry
->len
;
650 kmem_cache_free(discard_entry_slab
, entry
);
654 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
656 struct sit_info
*sit_i
= SIT_I(sbi
);
658 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
659 sit_i
->dirty_sentries
++;
666 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
667 unsigned int segno
, int modified
)
669 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
672 __mark_sit_entry_dirty(sbi
, segno
);
675 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
677 struct seg_entry
*se
;
678 unsigned int segno
, offset
;
679 long int new_vblocks
;
681 segno
= GET_SEGNO(sbi
, blkaddr
);
683 se
= get_seg_entry(sbi
, segno
);
684 new_vblocks
= se
->valid_blocks
+ del
;
685 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
687 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
688 (new_vblocks
> sbi
->blocks_per_seg
)));
690 se
->valid_blocks
= new_vblocks
;
691 se
->mtime
= get_mtime(sbi
);
692 SIT_I(sbi
)->max_mtime
= se
->mtime
;
694 /* Update valid block bitmap */
696 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
698 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
701 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
703 if (f2fs_test_and_clear_bit(offset
, se
->discard_map
))
706 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
707 se
->ckpt_valid_blocks
+= del
;
709 __mark_sit_entry_dirty(sbi
, segno
);
711 /* update total number of valid blocks to be written in ckpt area */
712 SIT_I(sbi
)->written_valid_blocks
+= del
;
714 if (sbi
->segs_per_sec
> 1)
715 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
718 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
720 update_sit_entry(sbi
, new, 1);
721 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
722 update_sit_entry(sbi
, old
, -1);
724 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
725 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
728 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
730 unsigned int segno
= GET_SEGNO(sbi
, addr
);
731 struct sit_info
*sit_i
= SIT_I(sbi
);
733 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
734 if (addr
== NEW_ADDR
)
737 /* add it into sit main buffer */
738 mutex_lock(&sit_i
->sentry_lock
);
740 update_sit_entry(sbi
, addr
, -1);
742 /* add it into dirty seglist */
743 locate_dirty_segment(sbi
, segno
);
745 mutex_unlock(&sit_i
->sentry_lock
);
748 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
750 struct sit_info
*sit_i
= SIT_I(sbi
);
751 unsigned int segno
, offset
;
752 struct seg_entry
*se
;
755 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
758 mutex_lock(&sit_i
->sentry_lock
);
760 segno
= GET_SEGNO(sbi
, blkaddr
);
761 se
= get_seg_entry(sbi
, segno
);
762 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
764 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
767 mutex_unlock(&sit_i
->sentry_lock
);
773 * This function should be resided under the curseg_mutex lock
775 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
776 struct f2fs_summary
*sum
)
778 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
779 void *addr
= curseg
->sum_blk
;
780 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
781 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
785 * Calculate the number of current summary pages for writing
787 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
789 int valid_sum_count
= 0;
792 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
793 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
794 valid_sum_count
+= sbi
->blocks_per_seg
;
797 valid_sum_count
+= le16_to_cpu(
798 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
800 valid_sum_count
+= curseg_blkoff(sbi
, i
);
804 sum_in_page
= (PAGE_CACHE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
805 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
806 if (valid_sum_count
<= sum_in_page
)
808 else if ((valid_sum_count
- sum_in_page
) <=
809 (PAGE_CACHE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
815 * Caller should put this summary page
817 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
819 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
822 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
824 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
825 void *dst
= page_address(page
);
828 memcpy(dst
, src
, PAGE_CACHE_SIZE
);
830 memset(dst
, 0, PAGE_CACHE_SIZE
);
831 set_page_dirty(page
);
832 f2fs_put_page(page
, 1);
835 static void write_sum_page(struct f2fs_sb_info
*sbi
,
836 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
838 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
841 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
843 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
844 unsigned int segno
= curseg
->segno
+ 1;
845 struct free_segmap_info
*free_i
= FREE_I(sbi
);
847 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
848 return !test_bit(segno
, free_i
->free_segmap
);
853 * Find a new segment from the free segments bitmap to right order
854 * This function should be returned with success, otherwise BUG
856 static void get_new_segment(struct f2fs_sb_info
*sbi
,
857 unsigned int *newseg
, bool new_sec
, int dir
)
859 struct free_segmap_info
*free_i
= FREE_I(sbi
);
860 unsigned int segno
, secno
, zoneno
;
861 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
862 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
863 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
864 unsigned int left_start
= hint
;
869 spin_lock(&free_i
->segmap_lock
);
871 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
872 segno
= find_next_zero_bit(free_i
->free_segmap
,
873 MAIN_SEGS(sbi
), *newseg
+ 1);
874 if (segno
- *newseg
< sbi
->segs_per_sec
-
875 (*newseg
% sbi
->segs_per_sec
))
879 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
880 if (secno
>= MAIN_SECS(sbi
)) {
881 if (dir
== ALLOC_RIGHT
) {
882 secno
= find_next_zero_bit(free_i
->free_secmap
,
884 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
887 left_start
= hint
- 1;
893 while (test_bit(left_start
, free_i
->free_secmap
)) {
894 if (left_start
> 0) {
898 left_start
= find_next_zero_bit(free_i
->free_secmap
,
900 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
906 segno
= secno
* sbi
->segs_per_sec
;
907 zoneno
= secno
/ sbi
->secs_per_zone
;
909 /* give up on finding another zone */
912 if (sbi
->secs_per_zone
== 1)
914 if (zoneno
== old_zoneno
)
916 if (dir
== ALLOC_LEFT
) {
917 if (!go_left
&& zoneno
+ 1 >= total_zones
)
919 if (go_left
&& zoneno
== 0)
922 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
923 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
926 if (i
< NR_CURSEG_TYPE
) {
927 /* zone is in user, try another */
929 hint
= zoneno
* sbi
->secs_per_zone
- 1;
930 else if (zoneno
+ 1 >= total_zones
)
933 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
935 goto find_other_zone
;
938 /* set it as dirty segment in free segmap */
939 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
940 __set_inuse(sbi
, segno
);
942 spin_unlock(&free_i
->segmap_lock
);
945 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
947 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
948 struct summary_footer
*sum_footer
;
950 curseg
->segno
= curseg
->next_segno
;
951 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
952 curseg
->next_blkoff
= 0;
953 curseg
->next_segno
= NULL_SEGNO
;
955 sum_footer
= &(curseg
->sum_blk
->footer
);
956 memset(sum_footer
, 0, sizeof(struct summary_footer
));
957 if (IS_DATASEG(type
))
958 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
959 if (IS_NODESEG(type
))
960 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
961 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
965 * Allocate a current working segment.
966 * This function always allocates a free segment in LFS manner.
968 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
970 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
971 unsigned int segno
= curseg
->segno
;
972 int dir
= ALLOC_LEFT
;
974 write_sum_page(sbi
, curseg
->sum_blk
,
975 GET_SUM_BLOCK(sbi
, segno
));
976 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
979 if (test_opt(sbi
, NOHEAP
))
982 get_new_segment(sbi
, &segno
, new_sec
, dir
);
983 curseg
->next_segno
= segno
;
984 reset_curseg(sbi
, type
, 1);
985 curseg
->alloc_type
= LFS
;
988 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
989 struct curseg_info
*seg
, block_t start
)
991 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
992 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
993 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
994 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
995 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
998 for (i
= 0; i
< entries
; i
++)
999 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1001 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1003 seg
->next_blkoff
= pos
;
1007 * If a segment is written by LFS manner, next block offset is just obtained
1008 * by increasing the current block offset. However, if a segment is written by
1009 * SSR manner, next block offset obtained by calling __next_free_blkoff
1011 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1012 struct curseg_info
*seg
)
1014 if (seg
->alloc_type
== SSR
)
1015 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1021 * This function always allocates a used segment(from dirty seglist) by SSR
1022 * manner, so it should recover the existing segment information of valid blocks
1024 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1026 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1027 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1028 unsigned int new_segno
= curseg
->next_segno
;
1029 struct f2fs_summary_block
*sum_node
;
1030 struct page
*sum_page
;
1032 write_sum_page(sbi
, curseg
->sum_blk
,
1033 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1034 __set_test_and_inuse(sbi
, new_segno
);
1036 mutex_lock(&dirty_i
->seglist_lock
);
1037 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1038 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1039 mutex_unlock(&dirty_i
->seglist_lock
);
1041 reset_curseg(sbi
, type
, 1);
1042 curseg
->alloc_type
= SSR
;
1043 __next_free_blkoff(sbi
, curseg
, 0);
1046 sum_page
= get_sum_page(sbi
, new_segno
);
1047 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1048 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1049 f2fs_put_page(sum_page
, 1);
1053 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1055 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1056 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1058 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0))
1059 return v_ops
->get_victim(sbi
,
1060 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1062 /* For data segments, let's do SSR more intensively */
1063 for (; type
>= CURSEG_HOT_DATA
; type
--)
1064 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1071 * flush out current segment and replace it with new segment
1072 * This function should be returned with success, otherwise BUG
1074 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1075 int type
, bool force
)
1077 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1080 new_curseg(sbi
, type
, true);
1081 else if (type
== CURSEG_WARM_NODE
)
1082 new_curseg(sbi
, type
, false);
1083 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1084 new_curseg(sbi
, type
, false);
1085 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1086 change_curseg(sbi
, type
, true);
1088 new_curseg(sbi
, type
, false);
1090 stat_inc_seg_type(sbi
, curseg
);
1093 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1095 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1096 unsigned int old_segno
;
1098 old_segno
= curseg
->segno
;
1099 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1100 locate_dirty_segment(sbi
, old_segno
);
1103 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1107 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1108 __allocate_new_segments(sbi
, i
);
1111 static const struct segment_allocation default_salloc_ops
= {
1112 .allocate_segment
= allocate_segment_by_default
,
1115 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1117 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1118 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1119 unsigned int start_segno
, end_segno
;
1120 struct cp_control cpc
;
1122 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1126 if (end
<= MAIN_BLKADDR(sbi
))
1129 /* start/end segment number in main_area */
1130 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1131 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1132 GET_SEGNO(sbi
, end
);
1133 cpc
.reason
= CP_DISCARD
;
1134 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1136 /* do checkpoint to issue discard commands safely */
1137 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1138 cpc
.trim_start
= start_segno
;
1140 if (sbi
->discard_blks
== 0)
1142 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1143 cpc
.trim_end
= end_segno
;
1145 cpc
.trim_end
= min_t(unsigned int,
1146 rounddown(start_segno
+
1147 BATCHED_TRIM_SEGMENTS(sbi
),
1148 sbi
->segs_per_sec
) - 1, end_segno
);
1150 mutex_lock(&sbi
->gc_mutex
);
1151 write_checkpoint(sbi
, &cpc
);
1152 mutex_unlock(&sbi
->gc_mutex
);
1155 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1159 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1161 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1162 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1167 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1170 return CURSEG_HOT_DATA
;
1172 return CURSEG_HOT_NODE
;
1175 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1177 if (p_type
== DATA
) {
1178 struct inode
*inode
= page
->mapping
->host
;
1180 if (S_ISDIR(inode
->i_mode
))
1181 return CURSEG_HOT_DATA
;
1183 return CURSEG_COLD_DATA
;
1185 if (IS_DNODE(page
) && is_cold_node(page
))
1186 return CURSEG_WARM_NODE
;
1188 return CURSEG_COLD_NODE
;
1192 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1194 if (p_type
== DATA
) {
1195 struct inode
*inode
= page
->mapping
->host
;
1197 if (S_ISDIR(inode
->i_mode
))
1198 return CURSEG_HOT_DATA
;
1199 else if (is_cold_data(page
) || file_is_cold(inode
))
1200 return CURSEG_COLD_DATA
;
1202 return CURSEG_WARM_DATA
;
1205 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1208 return CURSEG_COLD_NODE
;
1212 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1214 switch (F2FS_P_SB(page
)->active_logs
) {
1216 return __get_segment_type_2(page
, p_type
);
1218 return __get_segment_type_4(page
, p_type
);
1220 /* NR_CURSEG_TYPE(6) logs by default */
1221 f2fs_bug_on(F2FS_P_SB(page
),
1222 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1223 return __get_segment_type_6(page
, p_type
);
1226 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1227 block_t old_blkaddr
, block_t
*new_blkaddr
,
1228 struct f2fs_summary
*sum
, int type
)
1230 struct sit_info
*sit_i
= SIT_I(sbi
);
1231 struct curseg_info
*curseg
;
1232 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1234 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1236 curseg
= CURSEG_I(sbi
, type
);
1238 mutex_lock(&curseg
->curseg_mutex
);
1239 mutex_lock(&sit_i
->sentry_lock
);
1241 /* direct_io'ed data is aligned to the segment for better performance */
1242 if (direct_io
&& curseg
->next_blkoff
&&
1243 !has_not_enough_free_secs(sbi
, 0))
1244 __allocate_new_segments(sbi
, type
);
1246 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1249 * __add_sum_entry should be resided under the curseg_mutex
1250 * because, this function updates a summary entry in the
1251 * current summary block.
1253 __add_sum_entry(sbi
, type
, sum
);
1255 __refresh_next_blkoff(sbi
, curseg
);
1257 stat_inc_block_count(sbi
, curseg
);
1259 if (!__has_curseg_space(sbi
, type
))
1260 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1262 * SIT information should be updated before segment allocation,
1263 * since SSR needs latest valid block information.
1265 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1267 mutex_unlock(&sit_i
->sentry_lock
);
1269 if (page
&& IS_NODESEG(type
))
1270 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1272 mutex_unlock(&curseg
->curseg_mutex
);
1275 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1277 int type
= __get_segment_type(fio
->page
, fio
->type
);
1279 allocate_data_block(fio
->sbi
, fio
->page
, fio
->blk_addr
,
1280 &fio
->blk_addr
, sum
, type
);
1282 /* writeout dirty page into bdev */
1283 f2fs_submit_page_mbio(fio
);
1286 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1288 struct f2fs_io_info fio
= {
1291 .rw
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1292 .blk_addr
= page
->index
,
1294 .encrypted_page
= NULL
,
1297 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1298 fio
.rw
&= ~REQ_META
;
1300 set_page_writeback(page
);
1301 f2fs_submit_page_mbio(&fio
);
1304 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1306 struct f2fs_summary sum
;
1308 set_summary(&sum
, nid
, 0, 0);
1309 do_write_page(&sum
, fio
);
1312 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1314 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1315 struct f2fs_summary sum
;
1316 struct node_info ni
;
1318 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1319 get_node_info(sbi
, dn
->nid
, &ni
);
1320 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1321 do_write_page(&sum
, fio
);
1322 dn
->data_blkaddr
= fio
->blk_addr
;
1325 void rewrite_data_page(struct f2fs_io_info
*fio
)
1327 stat_inc_inplace_blocks(fio
->sbi
);
1328 f2fs_submit_page_mbio(fio
);
1331 static void __f2fs_replace_block(struct f2fs_sb_info
*sbi
,
1332 struct f2fs_summary
*sum
,
1333 block_t old_blkaddr
, block_t new_blkaddr
,
1334 bool recover_curseg
)
1336 struct sit_info
*sit_i
= SIT_I(sbi
);
1337 struct curseg_info
*curseg
;
1338 unsigned int segno
, old_cursegno
;
1339 struct seg_entry
*se
;
1341 unsigned short old_blkoff
;
1343 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1344 se
= get_seg_entry(sbi
, segno
);
1347 if (!recover_curseg
) {
1348 /* for recovery flow */
1349 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1350 if (old_blkaddr
== NULL_ADDR
)
1351 type
= CURSEG_COLD_DATA
;
1353 type
= CURSEG_WARM_DATA
;
1356 if (!IS_CURSEG(sbi
, segno
))
1357 type
= CURSEG_WARM_DATA
;
1360 curseg
= CURSEG_I(sbi
, type
);
1362 mutex_lock(&curseg
->curseg_mutex
);
1363 mutex_lock(&sit_i
->sentry_lock
);
1365 old_cursegno
= curseg
->segno
;
1366 old_blkoff
= curseg
->next_blkoff
;
1368 /* change the current segment */
1369 if (segno
!= curseg
->segno
) {
1370 curseg
->next_segno
= segno
;
1371 change_curseg(sbi
, type
, true);
1374 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1375 __add_sum_entry(sbi
, type
, sum
);
1377 if (!recover_curseg
)
1378 update_sit_entry(sbi
, new_blkaddr
, 1);
1379 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1380 update_sit_entry(sbi
, old_blkaddr
, -1);
1382 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1383 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1385 locate_dirty_segment(sbi
, old_cursegno
);
1387 if (recover_curseg
) {
1388 if (old_cursegno
!= curseg
->segno
) {
1389 curseg
->next_segno
= old_cursegno
;
1390 change_curseg(sbi
, type
, true);
1392 curseg
->next_blkoff
= old_blkoff
;
1395 mutex_unlock(&sit_i
->sentry_lock
);
1396 mutex_unlock(&curseg
->curseg_mutex
);
1399 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1400 block_t old_addr
, block_t new_addr
,
1401 unsigned char version
, bool recover_curseg
)
1403 struct f2fs_summary sum
;
1405 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1407 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
, recover_curseg
);
1409 dn
->data_blkaddr
= new_addr
;
1410 set_data_blkaddr(dn
);
1411 f2fs_update_extent_cache(dn
);
1414 static inline bool is_merged_page(struct f2fs_sb_info
*sbi
,
1415 struct page
*page
, enum page_type type
)
1417 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
1418 struct f2fs_bio_info
*io
= &sbi
->write_io
[btype
];
1419 struct bio_vec
*bvec
;
1420 struct page
*target
;
1423 down_read(&io
->io_rwsem
);
1425 up_read(&io
->io_rwsem
);
1429 bio_for_each_segment_all(bvec
, io
->bio
, i
) {
1431 if (bvec
->bv_page
->mapping
) {
1432 target
= bvec
->bv_page
;
1434 struct f2fs_crypto_ctx
*ctx
;
1436 /* encrypted page */
1437 ctx
= (struct f2fs_crypto_ctx
*)page_private(
1439 target
= ctx
->w
.control_page
;
1442 if (page
== target
) {
1443 up_read(&io
->io_rwsem
);
1448 up_read(&io
->io_rwsem
);
1452 void f2fs_wait_on_page_writeback(struct page
*page
,
1453 enum page_type type
)
1455 if (PageWriteback(page
)) {
1456 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1458 if (is_merged_page(sbi
, page
, type
))
1459 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
1460 wait_on_page_writeback(page
);
1464 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1469 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
1472 f2fs_bug_on(sbi
, blkaddr
== NULL_ADDR
);
1474 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1476 f2fs_wait_on_page_writeback(cpage
, DATA
);
1477 f2fs_put_page(cpage
, 1);
1481 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1483 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1484 struct curseg_info
*seg_i
;
1485 unsigned char *kaddr
;
1490 start
= start_sum_block(sbi
);
1492 page
= get_meta_page(sbi
, start
++);
1493 kaddr
= (unsigned char *)page_address(page
);
1495 /* Step 1: restore nat cache */
1496 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1497 memcpy(&seg_i
->sum_blk
->n_nats
, kaddr
, SUM_JOURNAL_SIZE
);
1499 /* Step 2: restore sit cache */
1500 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1501 memcpy(&seg_i
->sum_blk
->n_sits
, kaddr
+ SUM_JOURNAL_SIZE
,
1503 offset
= 2 * SUM_JOURNAL_SIZE
;
1505 /* Step 3: restore summary entries */
1506 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1507 unsigned short blk_off
;
1510 seg_i
= CURSEG_I(sbi
, i
);
1511 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1512 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1513 seg_i
->next_segno
= segno
;
1514 reset_curseg(sbi
, i
, 0);
1515 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1516 seg_i
->next_blkoff
= blk_off
;
1518 if (seg_i
->alloc_type
== SSR
)
1519 blk_off
= sbi
->blocks_per_seg
;
1521 for (j
= 0; j
< blk_off
; j
++) {
1522 struct f2fs_summary
*s
;
1523 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1524 seg_i
->sum_blk
->entries
[j
] = *s
;
1525 offset
+= SUMMARY_SIZE
;
1526 if (offset
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1530 f2fs_put_page(page
, 1);
1533 page
= get_meta_page(sbi
, start
++);
1534 kaddr
= (unsigned char *)page_address(page
);
1538 f2fs_put_page(page
, 1);
1542 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1544 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1545 struct f2fs_summary_block
*sum
;
1546 struct curseg_info
*curseg
;
1548 unsigned short blk_off
;
1549 unsigned int segno
= 0;
1550 block_t blk_addr
= 0;
1552 /* get segment number and block addr */
1553 if (IS_DATASEG(type
)) {
1554 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1555 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1557 if (__exist_node_summaries(sbi
))
1558 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1560 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1562 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1564 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1566 if (__exist_node_summaries(sbi
))
1567 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1568 type
- CURSEG_HOT_NODE
);
1570 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1573 new = get_meta_page(sbi
, blk_addr
);
1574 sum
= (struct f2fs_summary_block
*)page_address(new);
1576 if (IS_NODESEG(type
)) {
1577 if (__exist_node_summaries(sbi
)) {
1578 struct f2fs_summary
*ns
= &sum
->entries
[0];
1580 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1582 ns
->ofs_in_node
= 0;
1587 err
= restore_node_summary(sbi
, segno
, sum
);
1589 f2fs_put_page(new, 1);
1595 /* set uncompleted segment to curseg */
1596 curseg
= CURSEG_I(sbi
, type
);
1597 mutex_lock(&curseg
->curseg_mutex
);
1598 memcpy(curseg
->sum_blk
, sum
, PAGE_CACHE_SIZE
);
1599 curseg
->next_segno
= segno
;
1600 reset_curseg(sbi
, type
, 0);
1601 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1602 curseg
->next_blkoff
= blk_off
;
1603 mutex_unlock(&curseg
->curseg_mutex
);
1604 f2fs_put_page(new, 1);
1608 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1610 int type
= CURSEG_HOT_DATA
;
1613 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1614 int npages
= npages_for_summary_flush(sbi
, true);
1617 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1620 /* restore for compacted data summary */
1621 if (read_compacted_summaries(sbi
))
1623 type
= CURSEG_HOT_NODE
;
1626 if (__exist_node_summaries(sbi
))
1627 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1628 NR_CURSEG_TYPE
- type
, META_CP
, true);
1630 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1631 err
= read_normal_summaries(sbi
, type
);
1639 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1642 unsigned char *kaddr
;
1643 struct f2fs_summary
*summary
;
1644 struct curseg_info
*seg_i
;
1645 int written_size
= 0;
1648 page
= grab_meta_page(sbi
, blkaddr
++);
1649 kaddr
= (unsigned char *)page_address(page
);
1651 /* Step 1: write nat cache */
1652 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1653 memcpy(kaddr
, &seg_i
->sum_blk
->n_nats
, SUM_JOURNAL_SIZE
);
1654 written_size
+= SUM_JOURNAL_SIZE
;
1656 /* Step 2: write sit cache */
1657 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1658 memcpy(kaddr
+ written_size
, &seg_i
->sum_blk
->n_sits
,
1660 written_size
+= SUM_JOURNAL_SIZE
;
1662 /* Step 3: write summary entries */
1663 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1664 unsigned short blkoff
;
1665 seg_i
= CURSEG_I(sbi
, i
);
1666 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1667 blkoff
= sbi
->blocks_per_seg
;
1669 blkoff
= curseg_blkoff(sbi
, i
);
1671 for (j
= 0; j
< blkoff
; j
++) {
1673 page
= grab_meta_page(sbi
, blkaddr
++);
1674 kaddr
= (unsigned char *)page_address(page
);
1677 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1678 *summary
= seg_i
->sum_blk
->entries
[j
];
1679 written_size
+= SUMMARY_SIZE
;
1681 if (written_size
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1685 set_page_dirty(page
);
1686 f2fs_put_page(page
, 1);
1691 set_page_dirty(page
);
1692 f2fs_put_page(page
, 1);
1696 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1697 block_t blkaddr
, int type
)
1700 if (IS_DATASEG(type
))
1701 end
= type
+ NR_CURSEG_DATA_TYPE
;
1703 end
= type
+ NR_CURSEG_NODE_TYPE
;
1705 for (i
= type
; i
< end
; i
++) {
1706 struct curseg_info
*sum
= CURSEG_I(sbi
, i
);
1707 mutex_lock(&sum
->curseg_mutex
);
1708 write_sum_page(sbi
, sum
->sum_blk
, blkaddr
+ (i
- type
));
1709 mutex_unlock(&sum
->curseg_mutex
);
1713 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1715 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1716 write_compacted_summaries(sbi
, start_blk
);
1718 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1721 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1723 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1726 int lookup_journal_in_cursum(struct f2fs_summary_block
*sum
, int type
,
1727 unsigned int val
, int alloc
)
1731 if (type
== NAT_JOURNAL
) {
1732 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1733 if (le32_to_cpu(nid_in_journal(sum
, i
)) == val
)
1736 if (alloc
&& nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
)
1737 return update_nats_in_cursum(sum
, 1);
1738 } else if (type
== SIT_JOURNAL
) {
1739 for (i
= 0; i
< sits_in_cursum(sum
); i
++)
1740 if (le32_to_cpu(segno_in_journal(sum
, i
)) == val
)
1742 if (alloc
&& sits_in_cursum(sum
) < SIT_JOURNAL_ENTRIES
)
1743 return update_sits_in_cursum(sum
, 1);
1748 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1751 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1754 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1757 struct sit_info
*sit_i
= SIT_I(sbi
);
1758 struct page
*src_page
, *dst_page
;
1759 pgoff_t src_off
, dst_off
;
1760 void *src_addr
, *dst_addr
;
1762 src_off
= current_sit_addr(sbi
, start
);
1763 dst_off
= next_sit_addr(sbi
, src_off
);
1765 /* get current sit block page without lock */
1766 src_page
= get_meta_page(sbi
, src_off
);
1767 dst_page
= grab_meta_page(sbi
, dst_off
);
1768 f2fs_bug_on(sbi
, PageDirty(src_page
));
1770 src_addr
= page_address(src_page
);
1771 dst_addr
= page_address(dst_page
);
1772 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
1774 set_page_dirty(dst_page
);
1775 f2fs_put_page(src_page
, 1);
1777 set_to_next_sit(sit_i
, start
);
1782 static struct sit_entry_set
*grab_sit_entry_set(void)
1784 struct sit_entry_set
*ses
=
1785 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1788 INIT_LIST_HEAD(&ses
->set_list
);
1792 static void release_sit_entry_set(struct sit_entry_set
*ses
)
1794 list_del(&ses
->set_list
);
1795 kmem_cache_free(sit_entry_set_slab
, ses
);
1798 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
1799 struct list_head
*head
)
1801 struct sit_entry_set
*next
= ses
;
1803 if (list_is_last(&ses
->set_list
, head
))
1806 list_for_each_entry_continue(next
, head
, set_list
)
1807 if (ses
->entry_cnt
<= next
->entry_cnt
)
1810 list_move_tail(&ses
->set_list
, &next
->set_list
);
1813 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
1815 struct sit_entry_set
*ses
;
1816 unsigned int start_segno
= START_SEGNO(segno
);
1818 list_for_each_entry(ses
, head
, set_list
) {
1819 if (ses
->start_segno
== start_segno
) {
1821 adjust_sit_entry_set(ses
, head
);
1826 ses
= grab_sit_entry_set();
1828 ses
->start_segno
= start_segno
;
1830 list_add(&ses
->set_list
, head
);
1833 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
1835 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1836 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
1837 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
1840 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
1841 add_sit_entry(segno
, set_list
);
1844 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
1846 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1847 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1850 for (i
= sits_in_cursum(sum
) - 1; i
>= 0; i
--) {
1854 segno
= le32_to_cpu(segno_in_journal(sum
, i
));
1855 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
1858 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
1860 update_sits_in_cursum(sum
, -sits_in_cursum(sum
));
1864 * CP calls this function, which flushes SIT entries including sit_journal,
1865 * and moves prefree segs to free segs.
1867 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1869 struct sit_info
*sit_i
= SIT_I(sbi
);
1870 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1871 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1872 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1873 struct sit_entry_set
*ses
, *tmp
;
1874 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
1875 bool to_journal
= true;
1876 struct seg_entry
*se
;
1878 mutex_lock(&curseg
->curseg_mutex
);
1879 mutex_lock(&sit_i
->sentry_lock
);
1881 if (!sit_i
->dirty_sentries
)
1885 * add and account sit entries of dirty bitmap in sit entry
1888 add_sits_in_set(sbi
);
1891 * if there are no enough space in journal to store dirty sit
1892 * entries, remove all entries from journal and add and account
1893 * them in sit entry set.
1895 if (!__has_cursum_space(sum
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
1896 remove_sits_in_journal(sbi
);
1899 * there are two steps to flush sit entries:
1900 * #1, flush sit entries to journal in current cold data summary block.
1901 * #2, flush sit entries to sit page.
1903 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
1904 struct page
*page
= NULL
;
1905 struct f2fs_sit_block
*raw_sit
= NULL
;
1906 unsigned int start_segno
= ses
->start_segno
;
1907 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
1908 (unsigned long)MAIN_SEGS(sbi
));
1909 unsigned int segno
= start_segno
;
1912 !__has_cursum_space(sum
, ses
->entry_cnt
, SIT_JOURNAL
))
1916 page
= get_next_sit_page(sbi
, start_segno
);
1917 raw_sit
= page_address(page
);
1920 /* flush dirty sit entries in region of current sit set */
1921 for_each_set_bit_from(segno
, bitmap
, end
) {
1922 int offset
, sit_offset
;
1924 se
= get_seg_entry(sbi
, segno
);
1926 /* add discard candidates */
1927 if (cpc
->reason
!= CP_DISCARD
) {
1928 cpc
->trim_start
= segno
;
1929 add_discard_addrs(sbi
, cpc
);
1933 offset
= lookup_journal_in_cursum(sum
,
1934 SIT_JOURNAL
, segno
, 1);
1935 f2fs_bug_on(sbi
, offset
< 0);
1936 segno_in_journal(sum
, offset
) =
1938 seg_info_to_raw_sit(se
,
1939 &sit_in_journal(sum
, offset
));
1941 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
1942 seg_info_to_raw_sit(se
,
1943 &raw_sit
->entries
[sit_offset
]);
1946 __clear_bit(segno
, bitmap
);
1947 sit_i
->dirty_sentries
--;
1952 f2fs_put_page(page
, 1);
1954 f2fs_bug_on(sbi
, ses
->entry_cnt
);
1955 release_sit_entry_set(ses
);
1958 f2fs_bug_on(sbi
, !list_empty(head
));
1959 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
1961 if (cpc
->reason
== CP_DISCARD
) {
1962 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
1963 add_discard_addrs(sbi
, cpc
);
1965 mutex_unlock(&sit_i
->sentry_lock
);
1966 mutex_unlock(&curseg
->curseg_mutex
);
1968 set_prefree_as_free_segments(sbi
);
1971 static int build_sit_info(struct f2fs_sb_info
*sbi
)
1973 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1974 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1975 struct sit_info
*sit_i
;
1976 unsigned int sit_segs
, start
;
1977 char *src_bitmap
, *dst_bitmap
;
1978 unsigned int bitmap_size
;
1980 /* allocate memory for SIT information */
1981 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
1985 SM_I(sbi
)->sit_info
= sit_i
;
1987 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
1988 sizeof(struct seg_entry
), GFP_KERNEL
);
1989 if (!sit_i
->sentries
)
1992 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
1993 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
1994 if (!sit_i
->dirty_sentries_bitmap
)
1997 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
1998 sit_i
->sentries
[start
].cur_valid_map
1999 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2000 sit_i
->sentries
[start
].ckpt_valid_map
2001 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2002 sit_i
->sentries
[start
].discard_map
2003 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2004 if (!sit_i
->sentries
[start
].cur_valid_map
||
2005 !sit_i
->sentries
[start
].ckpt_valid_map
||
2006 !sit_i
->sentries
[start
].discard_map
)
2010 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2011 if (!sit_i
->tmp_map
)
2014 if (sbi
->segs_per_sec
> 1) {
2015 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2016 sizeof(struct sec_entry
), GFP_KERNEL
);
2017 if (!sit_i
->sec_entries
)
2021 /* get information related with SIT */
2022 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2024 /* setup SIT bitmap from ckeckpoint pack */
2025 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2026 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2028 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2032 /* init SIT information */
2033 sit_i
->s_ops
= &default_salloc_ops
;
2035 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2036 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2037 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2038 sit_i
->sit_bitmap
= dst_bitmap
;
2039 sit_i
->bitmap_size
= bitmap_size
;
2040 sit_i
->dirty_sentries
= 0;
2041 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2042 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2043 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2044 mutex_init(&sit_i
->sentry_lock
);
2048 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2050 struct free_segmap_info
*free_i
;
2051 unsigned int bitmap_size
, sec_bitmap_size
;
2053 /* allocate memory for free segmap information */
2054 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2058 SM_I(sbi
)->free_info
= free_i
;
2060 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2061 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2062 if (!free_i
->free_segmap
)
2065 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2066 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2067 if (!free_i
->free_secmap
)
2070 /* set all segments as dirty temporarily */
2071 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2072 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2074 /* init free segmap information */
2075 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2076 free_i
->free_segments
= 0;
2077 free_i
->free_sections
= 0;
2078 spin_lock_init(&free_i
->segmap_lock
);
2082 static int build_curseg(struct f2fs_sb_info
*sbi
)
2084 struct curseg_info
*array
;
2087 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2091 SM_I(sbi
)->curseg_array
= array
;
2093 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2094 mutex_init(&array
[i
].curseg_mutex
);
2095 array
[i
].sum_blk
= kzalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
2096 if (!array
[i
].sum_blk
)
2098 array
[i
].segno
= NULL_SEGNO
;
2099 array
[i
].next_blkoff
= 0;
2101 return restore_curseg_summaries(sbi
);
2104 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
2106 struct sit_info
*sit_i
= SIT_I(sbi
);
2107 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2108 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
2109 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2110 unsigned int i
, start
, end
;
2111 unsigned int readed
, start_blk
= 0;
2112 int nrpages
= MAX_BIO_BLOCKS(sbi
);
2116 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2118 start
= start_blk
* sit_i
->sents_per_block
;
2119 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2121 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2122 struct seg_entry
*se
= &sit_i
->sentries
[start
];
2123 struct f2fs_sit_block
*sit_blk
;
2124 struct f2fs_sit_entry sit
;
2127 page
= get_current_sit_page(sbi
, start
);
2128 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2129 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2130 f2fs_put_page(page
, 1);
2132 err
= check_block_count(sbi
, start
, &sit
);
2135 seg_info_from_raw_sit(se
, &sit
);
2137 /* build discard map only one time */
2138 memcpy(se
->discard_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
2139 sbi
->discard_blks
+= sbi
->blocks_per_seg
- se
->valid_blocks
;
2141 if (sbi
->segs_per_sec
> 1)
2142 get_sec_entry(sbi
, start
)->valid_blocks
+=
2145 start_blk
+= readed
;
2146 } while (start_blk
< sit_blk_cnt
);
2148 mutex_lock(&curseg
->curseg_mutex
);
2149 for (i
= 0; i
< sits_in_cursum(sum
); i
++) {
2150 struct f2fs_sit_entry sit
;
2151 struct seg_entry
*se
;
2152 unsigned int old_valid_blocks
;
2154 start
= le32_to_cpu(segno_in_journal(sum
, i
));
2155 if (start
>= MAIN_SEGS(sbi
)) {
2156 f2fs_msg(sbi
->sb
, KERN_ERR
,
2157 "Wrong journal entry on segno %u",
2159 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
2164 se
= &sit_i
->sentries
[start
];
2165 sit
= sit_in_journal(sum
, i
);
2167 old_valid_blocks
= se
->valid_blocks
;
2169 err
= check_block_count(sbi
, start
, &sit
);
2172 seg_info_from_raw_sit(se
, &sit
);
2174 memcpy(se
->discard_map
, se
->cur_valid_map
, SIT_VBLOCK_MAP_SIZE
);
2175 sbi
->discard_blks
+= old_valid_blocks
- se
->valid_blocks
;
2177 if (sbi
->segs_per_sec
> 1)
2178 get_sec_entry(sbi
, start
)->valid_blocks
+=
2179 se
->valid_blocks
- old_valid_blocks
;
2181 mutex_unlock(&curseg
->curseg_mutex
);
2185 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2190 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2191 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2192 if (!sentry
->valid_blocks
)
2193 __set_free(sbi
, start
);
2196 /* set use the current segments */
2197 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2198 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2199 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2203 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2205 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2206 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2207 unsigned int segno
= 0, offset
= 0;
2208 unsigned short valid_blocks
;
2211 /* find dirty segment based on free segmap */
2212 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2213 if (segno
>= MAIN_SEGS(sbi
))
2216 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2217 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2219 if (valid_blocks
> sbi
->blocks_per_seg
) {
2220 f2fs_bug_on(sbi
, 1);
2223 mutex_lock(&dirty_i
->seglist_lock
);
2224 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2225 mutex_unlock(&dirty_i
->seglist_lock
);
2229 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2231 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2232 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2234 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2235 if (!dirty_i
->victim_secmap
)
2240 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2242 struct dirty_seglist_info
*dirty_i
;
2243 unsigned int bitmap_size
, i
;
2245 /* allocate memory for dirty segments list information */
2246 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2250 SM_I(sbi
)->dirty_info
= dirty_i
;
2251 mutex_init(&dirty_i
->seglist_lock
);
2253 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2255 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2256 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2257 if (!dirty_i
->dirty_segmap
[i
])
2261 init_dirty_segmap(sbi
);
2262 return init_victim_secmap(sbi
);
2265 static int sanity_check_curseg(struct f2fs_sb_info
*sbi
)
2270 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
2271 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
2273 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
2274 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
2275 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->segno
);
2276 unsigned int blkofs
= curseg
->next_blkoff
;
2278 if (f2fs_test_bit(blkofs
, se
->cur_valid_map
))
2281 if (curseg
->alloc_type
== SSR
)
2284 for (blkofs
+= 1; blkofs
< sbi
->blocks_per_seg
; blkofs
++) {
2285 if (!f2fs_test_bit(blkofs
, se
->cur_valid_map
))
2288 f2fs_msg(sbi
->sb
, KERN_ERR
,
2289 "Current segment's next free block offset is "
2290 "inconsistent with bitmap, logtype:%u, "
2291 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
2292 i
, curseg
->segno
, curseg
->alloc_type
,
2293 curseg
->next_blkoff
, blkofs
);
2301 * Update min, max modified time for cost-benefit GC algorithm
2303 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2305 struct sit_info
*sit_i
= SIT_I(sbi
);
2308 mutex_lock(&sit_i
->sentry_lock
);
2310 sit_i
->min_mtime
= LLONG_MAX
;
2312 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2314 unsigned long long mtime
= 0;
2316 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2317 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2319 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2321 if (sit_i
->min_mtime
> mtime
)
2322 sit_i
->min_mtime
= mtime
;
2324 sit_i
->max_mtime
= get_mtime(sbi
);
2325 mutex_unlock(&sit_i
->sentry_lock
);
2328 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2330 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2331 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2332 struct f2fs_sm_info
*sm_info
;
2335 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2340 sbi
->sm_info
= sm_info
;
2341 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2342 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2343 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2344 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2345 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2346 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2347 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2348 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2349 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2350 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2351 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2352 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2354 INIT_LIST_HEAD(&sm_info
->discard_list
);
2355 sm_info
->nr_discards
= 0;
2356 sm_info
->max_discards
= 0;
2358 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2360 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2362 if (!f2fs_readonly(sbi
->sb
)) {
2363 err
= create_flush_cmd_control(sbi
);
2368 err
= build_sit_info(sbi
);
2371 err
= build_free_segmap(sbi
);
2374 err
= build_curseg(sbi
);
2378 /* reinit free segmap based on SIT */
2379 err
= build_sit_entries(sbi
);
2383 init_free_segmap(sbi
);
2384 err
= build_dirty_segmap(sbi
);
2388 err
= sanity_check_curseg(sbi
);
2392 init_min_max_mtime(sbi
);
2396 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2397 enum dirty_type dirty_type
)
2399 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2401 mutex_lock(&dirty_i
->seglist_lock
);
2402 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2403 dirty_i
->nr_dirty
[dirty_type
] = 0;
2404 mutex_unlock(&dirty_i
->seglist_lock
);
2407 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2409 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2410 kvfree(dirty_i
->victim_secmap
);
2413 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2415 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2421 /* discard pre-free/dirty segments list */
2422 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2423 discard_dirty_segmap(sbi
, i
);
2425 destroy_victim_secmap(sbi
);
2426 SM_I(sbi
)->dirty_info
= NULL
;
2430 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2432 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2437 SM_I(sbi
)->curseg_array
= NULL
;
2438 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2439 kfree(array
[i
].sum_blk
);
2443 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2445 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2448 SM_I(sbi
)->free_info
= NULL
;
2449 kvfree(free_i
->free_segmap
);
2450 kvfree(free_i
->free_secmap
);
2454 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2456 struct sit_info
*sit_i
= SIT_I(sbi
);
2462 if (sit_i
->sentries
) {
2463 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2464 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2465 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2466 kfree(sit_i
->sentries
[start
].discard_map
);
2469 kfree(sit_i
->tmp_map
);
2471 kvfree(sit_i
->sentries
);
2472 kvfree(sit_i
->sec_entries
);
2473 kvfree(sit_i
->dirty_sentries_bitmap
);
2475 SM_I(sbi
)->sit_info
= NULL
;
2476 kfree(sit_i
->sit_bitmap
);
2480 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2482 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2486 destroy_flush_cmd_control(sbi
);
2487 destroy_dirty_segmap(sbi
);
2488 destroy_curseg(sbi
);
2489 destroy_free_segmap(sbi
);
2490 destroy_sit_info(sbi
);
2491 sbi
->sm_info
= NULL
;
2495 int __init
create_segment_manager_caches(void)
2497 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2498 sizeof(struct discard_entry
));
2499 if (!discard_entry_slab
)
2502 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2503 sizeof(struct sit_entry_set
));
2504 if (!sit_entry_set_slab
)
2505 goto destory_discard_entry
;
2507 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2508 sizeof(struct inmem_pages
));
2509 if (!inmem_entry_slab
)
2510 goto destroy_sit_entry_set
;
2513 destroy_sit_entry_set
:
2514 kmem_cache_destroy(sit_entry_set_slab
);
2515 destory_discard_entry
:
2516 kmem_cache_destroy(discard_entry_slab
);
2521 void destroy_segment_manager_caches(void)
2523 kmem_cache_destroy(sit_entry_set_slab
);
2524 kmem_cache_destroy(discard_entry_slab
);
2525 kmem_cache_destroy(inmem_entry_slab
);