4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 enum writeback_sync_modes sync_mode
;
49 unsigned int tagged_writepages
:1;
50 unsigned int for_kupdate
:1;
51 unsigned int range_cyclic
:1;
52 unsigned int for_background
:1;
53 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int auto_free
:1; /* free on completion */
55 enum wb_reason reason
; /* why was writeback initiated? */
57 struct list_head list
; /* pending work list */
58 struct wb_completion
*done
; /* set if the caller waits */
62 * If one wants to wait for one or more wb_writeback_works, each work's
63 * ->done should be set to a wb_completion defined using the following
64 * macro. Once all work items are issued with wb_queue_work(), the caller
65 * can wait for the completion of all using wb_wait_for_completion(). Work
66 * items which are waited upon aren't freed automatically on completion.
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
69 struct wb_completion cmpl = { \
70 .cnt = ATOMIC_INIT(1), \
75 * If an inode is constantly having its pages dirtied, but then the
76 * updates stop dirtytime_expire_interval seconds in the past, it's
77 * possible for the worst case time between when an inode has its
78 * timestamps updated and when they finally get written out to be two
79 * dirtytime_expire_intervals. We set the default to 12 hours (in
80 * seconds), which means most of the time inodes will have their
81 * timestamps written to disk after 12 hours, but in the worst case a
82 * few inodes might not their timestamps updated for 24 hours.
84 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
86 static inline struct inode
*wb_inode(struct list_head
*head
)
88 return list_entry(head
, struct inode
, i_io_list
);
92 * Include the creation of the trace points after defining the
93 * wb_writeback_work structure and inline functions so that the definition
94 * remains local to this file.
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
101 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
103 if (wb_has_dirty_io(wb
)) {
106 set_bit(WB_has_dirty_io
, &wb
->state
);
107 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
108 atomic_long_add(wb
->avg_write_bandwidth
,
109 &wb
->bdi
->tot_write_bandwidth
);
114 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
116 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
117 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
118 clear_bit(WB_has_dirty_io
, &wb
->state
);
119 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
120 &wb
->bdi
->tot_write_bandwidth
) < 0);
125 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126 * @inode: inode to be moved
127 * @wb: target bdi_writeback
128 * @head: one of @wb->b_{dirty|io|more_io}
130 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131 * Returns %true if @inode is the first occupant of the !dirty_time IO
132 * lists; otherwise, %false.
134 static bool inode_io_list_move_locked(struct inode
*inode
,
135 struct bdi_writeback
*wb
,
136 struct list_head
*head
)
138 assert_spin_locked(&wb
->list_lock
);
140 list_move(&inode
->i_io_list
, head
);
142 /* dirty_time doesn't count as dirty_io until expiration */
143 if (head
!= &wb
->b_dirty_time
)
144 return wb_io_lists_populated(wb
);
146 wb_io_lists_depopulated(wb
);
151 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152 * @inode: inode to be removed
153 * @wb: bdi_writeback @inode is being removed from
155 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156 * clear %WB_has_dirty_io if all are empty afterwards.
158 static void inode_io_list_del_locked(struct inode
*inode
,
159 struct bdi_writeback
*wb
)
161 assert_spin_locked(&wb
->list_lock
);
162 assert_spin_locked(&inode
->i_lock
);
164 inode
->i_state
&= ~I_SYNC_QUEUED
;
165 list_del_init(&inode
->i_io_list
);
166 wb_io_lists_depopulated(wb
);
169 static void wb_wakeup(struct bdi_writeback
*wb
)
171 spin_lock_bh(&wb
->work_lock
);
172 if (test_bit(WB_registered
, &wb
->state
))
173 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
174 spin_unlock_bh(&wb
->work_lock
);
177 static void finish_writeback_work(struct bdi_writeback
*wb
,
178 struct wb_writeback_work
*work
)
180 struct wb_completion
*done
= work
->done
;
184 if (done
&& atomic_dec_and_test(&done
->cnt
))
185 wake_up_all(&wb
->bdi
->wb_waitq
);
188 static void wb_queue_work(struct bdi_writeback
*wb
,
189 struct wb_writeback_work
*work
)
191 trace_writeback_queue(wb
, work
);
194 atomic_inc(&work
->done
->cnt
);
196 spin_lock_bh(&wb
->work_lock
);
198 if (test_bit(WB_registered
, &wb
->state
)) {
199 list_add_tail(&work
->list
, &wb
->work_list
);
200 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
202 finish_writeback_work(wb
, work
);
204 spin_unlock_bh(&wb
->work_lock
);
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
218 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
219 struct wb_completion
*done
)
221 atomic_dec(&done
->cnt
); /* put down the initial count */
222 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
225 #ifdef CONFIG_CGROUP_WRITEBACK
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
241 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
242 static struct workqueue_struct
*isw_wq
;
244 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
246 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
247 struct bdi_writeback
*wb
= NULL
;
249 if (inode_cgwb_enabled(inode
)) {
250 struct cgroup_subsys_state
*memcg_css
;
253 memcg_css
= mem_cgroup_css_from_page(page
);
254 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css
= task_get_css(current
, memory_cgrp_id
);
258 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
270 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
273 EXPORT_SYMBOL_GPL(__inode_attach_wb
);
276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277 * @inode: inode of interest with i_lock held
279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
280 * held on entry and is released on return. The returned wb is guaranteed
281 * to stay @inode's associated wb until its list_lock is released.
283 static struct bdi_writeback
*
284 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
285 __releases(&inode
->i_lock
)
286 __acquires(&wb
->list_lock
)
289 struct bdi_writeback
*wb
= inode_to_wb(inode
);
292 * inode_to_wb() association is protected by both
293 * @inode->i_lock and @wb->list_lock but list_lock nests
294 * outside i_lock. Drop i_lock and verify that the
295 * association hasn't changed after acquiring list_lock.
298 spin_unlock(&inode
->i_lock
);
299 spin_lock(&wb
->list_lock
);
301 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302 if (likely(wb
== inode
->i_wb
)) {
303 wb_put(wb
); /* @inode already has ref */
307 spin_unlock(&wb
->list_lock
);
310 spin_lock(&inode
->i_lock
);
315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316 * @inode: inode of interest
318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
321 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
322 __acquires(&wb
->list_lock
)
324 spin_lock(&inode
->i_lock
);
325 return locked_inode_to_wb_and_lock_list(inode
);
328 struct inode_switch_wbs_context
{
330 struct bdi_writeback
*new_wb
;
332 struct rcu_head rcu_head
;
333 struct work_struct work
;
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
338 down_write(&bdi
->wb_switch_rwsem
);
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
)
343 up_write(&bdi
->wb_switch_rwsem
);
346 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
348 struct inode_switch_wbs_context
*isw
=
349 container_of(work
, struct inode_switch_wbs_context
, work
);
350 struct inode
*inode
= isw
->inode
;
351 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
352 struct address_space
*mapping
= inode
->i_mapping
;
353 struct bdi_writeback
*old_wb
= inode
->i_wb
;
354 struct bdi_writeback
*new_wb
= isw
->new_wb
;
355 struct radix_tree_iter iter
;
356 bool switched
= false;
360 * If @inode switches cgwb membership while sync_inodes_sb() is
361 * being issued, sync_inodes_sb() might miss it. Synchronize.
363 down_read(&bdi
->wb_switch_rwsem
);
366 * By the time control reaches here, RCU grace period has passed
367 * since I_WB_SWITCH assertion and all wb stat update transactions
368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 * synchronizing against mapping->tree_lock.
371 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
372 * gives us exclusion against all wb related operations on @inode
373 * including IO list manipulations and stat updates.
375 if (old_wb
< new_wb
) {
376 spin_lock(&old_wb
->list_lock
);
377 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
379 spin_lock(&new_wb
->list_lock
);
380 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
382 spin_lock(&inode
->i_lock
);
383 spin_lock_irq(&mapping
->tree_lock
);
386 * Once I_FREEING is visible under i_lock, the eviction path owns
387 * the inode and we shouldn't modify ->i_io_list.
389 if (unlikely(inode
->i_state
& I_FREEING
))
393 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
394 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 * pages actually under underwriteback.
397 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
398 PAGECACHE_TAG_DIRTY
) {
399 struct page
*page
= radix_tree_deref_slot_protected(slot
,
400 &mapping
->tree_lock
);
401 if (likely(page
) && PageDirty(page
)) {
402 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
403 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
407 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
408 PAGECACHE_TAG_WRITEBACK
) {
409 struct page
*page
= radix_tree_deref_slot_protected(slot
,
410 &mapping
->tree_lock
);
412 WARN_ON_ONCE(!PageWriteback(page
));
413 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
414 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
421 * Transfer to @new_wb's IO list if necessary. The specific list
422 * @inode was on is ignored and the inode is put on ->b_dirty which
423 * is always correct including from ->b_dirty_time. The transfer
424 * preserves @inode->dirtied_when ordering.
426 if (!list_empty(&inode
->i_io_list
)) {
429 inode_io_list_del_locked(inode
, old_wb
);
430 inode
->i_wb
= new_wb
;
431 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
432 if (time_after_eq(inode
->dirtied_when
,
435 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
437 inode
->i_wb
= new_wb
;
440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 inode
->i_wb_frn_winner
= 0;
442 inode
->i_wb_frn_avg_time
= 0;
443 inode
->i_wb_frn_history
= 0;
447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
452 spin_unlock_irq(&mapping
->tree_lock
);
453 spin_unlock(&inode
->i_lock
);
454 spin_unlock(&new_wb
->list_lock
);
455 spin_unlock(&old_wb
->list_lock
);
457 up_read(&bdi
->wb_switch_rwsem
);
468 atomic_dec(&isw_nr_in_flight
);
471 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
473 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
474 struct inode_switch_wbs_context
, rcu_head
);
476 /* needs to grab bh-unsafe locks, bounce to work item */
477 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
478 queue_work(isw_wq
, &isw
->work
);
482 * inode_switch_wbs - change the wb association of an inode
483 * @inode: target inode
484 * @new_wb_id: ID of the new wb
486 * Switch @inode's wb association to the wb identified by @new_wb_id. The
487 * switching is performed asynchronously and may fail silently.
489 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
491 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
492 struct cgroup_subsys_state
*memcg_css
;
493 struct inode_switch_wbs_context
*isw
;
495 /* noop if seems to be already in progress */
496 if (inode
->i_state
& I_WB_SWITCH
)
500 * Avoid starting new switches while sync_inodes_sb() is in
501 * progress. Otherwise, if the down_write protected issue path
502 * blocks heavily, we might end up starting a large number of
503 * switches which will block on the rwsem.
505 if (!down_read_trylock(&bdi
->wb_switch_rwsem
))
508 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
512 /* find and pin the new wb */
514 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
516 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
521 /* while holding I_WB_SWITCH, no one else can update the association */
522 spin_lock(&inode
->i_lock
);
523 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
) ||
524 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
525 inode_to_wb(inode
) == isw
->new_wb
) {
526 spin_unlock(&inode
->i_lock
);
529 inode
->i_state
|= I_WB_SWITCH
;
530 spin_unlock(&inode
->i_lock
);
536 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 * the RCU protected stat update paths to grab the mapping's
538 * tree_lock so that stat transfer can synchronize against them.
539 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
541 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
543 atomic_inc(&isw_nr_in_flight
);
552 up_read(&bdi
->wb_switch_rwsem
);
556 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
557 * @wbc: writeback_control of interest
558 * @inode: target inode
560 * @inode is locked and about to be written back under the control of @wbc.
561 * Record @inode's writeback context into @wbc and unlock the i_lock. On
562 * writeback completion, wbc_detach_inode() should be called. This is used
563 * to track the cgroup writeback context.
565 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
568 if (!inode_cgwb_enabled(inode
)) {
569 spin_unlock(&inode
->i_lock
);
573 wbc
->wb
= inode_to_wb(inode
);
576 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
577 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
578 wbc
->wb_tcand_id
= 0;
580 wbc
->wb_lcand_bytes
= 0;
581 wbc
->wb_tcand_bytes
= 0;
584 spin_unlock(&inode
->i_lock
);
587 * A dying wb indicates that either the blkcg associated with the
588 * memcg changed or the associated memcg is dying. In the first
589 * case, a replacement wb should already be available and we should
590 * refresh the wb immediately. In the second case, trying to
591 * refresh will keep failing.
593 if (unlikely(wb_dying(wbc
->wb
) && !css_is_dying(wbc
->wb
->memcg_css
)))
594 inode_switch_wbs(inode
, wbc
->wb_id
);
598 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
599 * @wbc: writeback_control of the just finished writeback
601 * To be called after a writeback attempt of an inode finishes and undoes
602 * wbc_attach_and_unlock_inode(). Can be called under any context.
604 * As concurrent write sharing of an inode is expected to be very rare and
605 * memcg only tracks page ownership on first-use basis severely confining
606 * the usefulness of such sharing, cgroup writeback tracks ownership
607 * per-inode. While the support for concurrent write sharing of an inode
608 * is deemed unnecessary, an inode being written to by different cgroups at
609 * different points in time is a lot more common, and, more importantly,
610 * charging only by first-use can too readily lead to grossly incorrect
611 * behaviors (single foreign page can lead to gigabytes of writeback to be
612 * incorrectly attributed).
614 * To resolve this issue, cgroup writeback detects the majority dirtier of
615 * an inode and transfers the ownership to it. To avoid unnnecessary
616 * oscillation, the detection mechanism keeps track of history and gives
617 * out the switch verdict only if the foreign usage pattern is stable over
618 * a certain amount of time and/or writeback attempts.
620 * On each writeback attempt, @wbc tries to detect the majority writer
621 * using Boyer-Moore majority vote algorithm. In addition to the byte
622 * count from the majority voting, it also counts the bytes written for the
623 * current wb and the last round's winner wb (max of last round's current
624 * wb, the winner from two rounds ago, and the last round's majority
625 * candidate). Keeping track of the historical winner helps the algorithm
626 * to semi-reliably detect the most active writer even when it's not the
629 * Once the winner of the round is determined, whether the winner is
630 * foreign or not and how much IO time the round consumed is recorded in
631 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
632 * over a certain threshold, the switch verdict is given.
634 void wbc_detach_inode(struct writeback_control
*wbc
)
636 struct bdi_writeback
*wb
= wbc
->wb
;
637 struct inode
*inode
= wbc
->inode
;
638 unsigned long avg_time
, max_bytes
, max_time
;
645 history
= inode
->i_wb_frn_history
;
646 avg_time
= inode
->i_wb_frn_avg_time
;
648 /* pick the winner of this round */
649 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
650 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
652 max_bytes
= wbc
->wb_bytes
;
653 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
654 max_id
= wbc
->wb_lcand_id
;
655 max_bytes
= wbc
->wb_lcand_bytes
;
657 max_id
= wbc
->wb_tcand_id
;
658 max_bytes
= wbc
->wb_tcand_bytes
;
662 * Calculate the amount of IO time the winner consumed and fold it
663 * into the running average kept per inode. If the consumed IO
664 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
665 * deciding whether to switch or not. This is to prevent one-off
666 * small dirtiers from skewing the verdict.
668 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
669 wb
->avg_write_bandwidth
);
671 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
672 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
674 avg_time
= max_time
; /* immediate catch up on first run */
676 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
680 * The switch verdict is reached if foreign wb's consume
681 * more than a certain proportion of IO time in a
682 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
683 * history mask where each bit represents one sixteenth of
684 * the period. Determine the number of slots to shift into
685 * history from @max_time.
687 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
688 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
690 if (wbc
->wb_id
!= max_id
)
691 history
|= (1U << slots
) - 1;
694 * Switch if the current wb isn't the consistent winner.
695 * If there are multiple closely competing dirtiers, the
696 * inode may switch across them repeatedly over time, which
697 * is okay. The main goal is avoiding keeping an inode on
698 * the wrong wb for an extended period of time.
700 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
701 inode_switch_wbs(inode
, max_id
);
705 * Multiple instances of this function may race to update the
706 * following fields but we don't mind occassional inaccuracies.
708 inode
->i_wb_frn_winner
= max_id
;
709 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
710 inode
->i_wb_frn_history
= history
;
717 * wbc_account_io - account IO issued during writeback
718 * @wbc: writeback_control of the writeback in progress
719 * @page: page being written out
720 * @bytes: number of bytes being written out
722 * @bytes from @page are about to written out during the writeback
723 * controlled by @wbc. Keep the book for foreign inode detection. See
724 * wbc_detach_inode().
726 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
732 * pageout() path doesn't attach @wbc to the inode being written
733 * out. This is intentional as we don't want the function to block
734 * behind a slow cgroup. Ultimately, we want pageout() to kick off
735 * regular writeback instead of writing things out itself.
741 id
= mem_cgroup_css_from_page(page
)->id
;
744 if (id
== wbc
->wb_id
) {
745 wbc
->wb_bytes
+= bytes
;
749 if (id
== wbc
->wb_lcand_id
)
750 wbc
->wb_lcand_bytes
+= bytes
;
752 /* Boyer-Moore majority vote algorithm */
753 if (!wbc
->wb_tcand_bytes
)
754 wbc
->wb_tcand_id
= id
;
755 if (id
== wbc
->wb_tcand_id
)
756 wbc
->wb_tcand_bytes
+= bytes
;
758 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
760 EXPORT_SYMBOL_GPL(wbc_account_io
);
763 * inode_congested - test whether an inode is congested
764 * @inode: inode to test for congestion (may be NULL)
765 * @cong_bits: mask of WB_[a]sync_congested bits to test
767 * Tests whether @inode is congested. @cong_bits is the mask of congestion
768 * bits to test and the return value is the mask of set bits.
770 * If cgroup writeback is enabled for @inode, the congestion state is
771 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
772 * associated with @inode is congested; otherwise, the root wb's congestion
775 * @inode is allowed to be NULL as this function is often called on
776 * mapping->host which is NULL for the swapper space.
778 int inode_congested(struct inode
*inode
, int cong_bits
)
781 * Once set, ->i_wb never becomes NULL while the inode is alive.
782 * Start transaction iff ->i_wb is visible.
784 if (inode
&& inode_to_wb_is_valid(inode
)) {
785 struct bdi_writeback
*wb
;
786 struct wb_lock_cookie lock_cookie
= {};
789 wb
= unlocked_inode_to_wb_begin(inode
, &lock_cookie
);
790 congested
= wb_congested(wb
, cong_bits
);
791 unlocked_inode_to_wb_end(inode
, &lock_cookie
);
795 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
797 EXPORT_SYMBOL_GPL(inode_congested
);
800 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
801 * @wb: target bdi_writeback to split @nr_pages to
802 * @nr_pages: number of pages to write for the whole bdi
804 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
805 * relation to the total write bandwidth of all wb's w/ dirty inodes on
808 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
810 unsigned long this_bw
= wb
->avg_write_bandwidth
;
811 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
813 if (nr_pages
== LONG_MAX
)
817 * This may be called on clean wb's and proportional distribution
818 * may not make sense, just use the original @nr_pages in those
819 * cases. In general, we wanna err on the side of writing more.
821 if (!tot_bw
|| this_bw
>= tot_bw
)
824 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
828 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
829 * @bdi: target backing_dev_info
830 * @base_work: wb_writeback_work to issue
831 * @skip_if_busy: skip wb's which already have writeback in progress
833 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
834 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
835 * distributed to the busy wbs according to each wb's proportion in the
836 * total active write bandwidth of @bdi.
838 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
839 struct wb_writeback_work
*base_work
,
842 struct bdi_writeback
*last_wb
= NULL
;
843 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
844 struct bdi_writeback
, bdi_node
);
849 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
850 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
851 struct wb_writeback_work fallback_work
;
852 struct wb_writeback_work
*work
;
860 /* SYNC_ALL writes out I_DIRTY_TIME too */
861 if (!wb_has_dirty_io(wb
) &&
862 (base_work
->sync_mode
== WB_SYNC_NONE
||
863 list_empty(&wb
->b_dirty_time
)))
865 if (skip_if_busy
&& writeback_in_progress(wb
))
868 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
870 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
873 work
->nr_pages
= nr_pages
;
875 wb_queue_work(wb
, work
);
879 /* alloc failed, execute synchronously using on-stack fallback */
880 work
= &fallback_work
;
882 work
->nr_pages
= nr_pages
;
884 work
->done
= &fallback_work_done
;
886 wb_queue_work(wb
, work
);
889 * Pin @wb so that it stays on @bdi->wb_list. This allows
890 * continuing iteration from @wb after dropping and
891 * regrabbing rcu read lock.
897 wb_wait_for_completion(bdi
, &fallback_work_done
);
907 * cgroup_writeback_umount - flush inode wb switches for umount
909 * This function is called when a super_block is about to be destroyed and
910 * flushes in-flight inode wb switches. An inode wb switch goes through
911 * RCU and then workqueue, so the two need to be flushed in order to ensure
912 * that all previously scheduled switches are finished. As wb switches are
913 * rare occurrences and synchronize_rcu() can take a while, perform
914 * flushing iff wb switches are in flight.
916 void cgroup_writeback_umount(void)
918 if (atomic_read(&isw_nr_in_flight
)) {
920 * Use rcu_barrier() to wait for all pending callbacks to
921 * ensure that all in-flight wb switches are in the workqueue.
924 flush_workqueue(isw_wq
);
928 static int __init
cgroup_writeback_init(void)
930 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
935 fs_initcall(cgroup_writeback_init
);
937 #else /* CONFIG_CGROUP_WRITEBACK */
939 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
940 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info
*bdi
) { }
942 static struct bdi_writeback
*
943 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
944 __releases(&inode
->i_lock
)
945 __acquires(&wb
->list_lock
)
947 struct bdi_writeback
*wb
= inode_to_wb(inode
);
949 spin_unlock(&inode
->i_lock
);
950 spin_lock(&wb
->list_lock
);
954 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
955 __acquires(&wb
->list_lock
)
957 struct bdi_writeback
*wb
= inode_to_wb(inode
);
959 spin_lock(&wb
->list_lock
);
963 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
968 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
969 struct wb_writeback_work
*base_work
,
974 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
975 base_work
->auto_free
= 0;
976 wb_queue_work(&bdi
->wb
, base_work
);
980 #endif /* CONFIG_CGROUP_WRITEBACK */
982 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
983 bool range_cyclic
, enum wb_reason reason
)
985 struct wb_writeback_work
*work
;
987 if (!wb_has_dirty_io(wb
))
991 * This is WB_SYNC_NONE writeback, so if allocation fails just
992 * wakeup the thread for old dirty data writeback
994 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
996 trace_writeback_nowork(wb
);
1001 work
->sync_mode
= WB_SYNC_NONE
;
1002 work
->nr_pages
= nr_pages
;
1003 work
->range_cyclic
= range_cyclic
;
1004 work
->reason
= reason
;
1005 work
->auto_free
= 1;
1007 wb_queue_work(wb
, work
);
1011 * wb_start_background_writeback - start background writeback
1012 * @wb: bdi_writback to write from
1015 * This makes sure WB_SYNC_NONE background writeback happens. When
1016 * this function returns, it is only guaranteed that for given wb
1017 * some IO is happening if we are over background dirty threshold.
1018 * Caller need not hold sb s_umount semaphore.
1020 void wb_start_background_writeback(struct bdi_writeback
*wb
)
1023 * We just wake up the flusher thread. It will perform background
1024 * writeback as soon as there is no other work to do.
1026 trace_writeback_wake_background(wb
);
1031 * Remove the inode from the writeback list it is on.
1033 void inode_io_list_del(struct inode
*inode
)
1035 struct bdi_writeback
*wb
;
1037 wb
= inode_to_wb_and_lock_list(inode
);
1038 spin_lock(&inode
->i_lock
);
1039 inode_io_list_del_locked(inode
, wb
);
1040 spin_unlock(&inode
->i_lock
);
1041 spin_unlock(&wb
->list_lock
);
1045 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1046 * furthest end of its superblock's dirty-inode list.
1048 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1049 * already the most-recently-dirtied inode on the b_dirty list. If that is
1050 * the case then the inode must have been redirtied while it was being written
1051 * out and we don't reset its dirtied_when.
1053 static void redirty_tail_locked(struct inode
*inode
, struct bdi_writeback
*wb
)
1055 assert_spin_locked(&inode
->i_lock
);
1057 if (!list_empty(&wb
->b_dirty
)) {
1060 tail
= wb_inode(wb
->b_dirty
.next
);
1061 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1062 inode
->dirtied_when
= jiffies
;
1064 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1065 inode
->i_state
&= ~I_SYNC_QUEUED
;
1068 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1070 spin_lock(&inode
->i_lock
);
1071 redirty_tail_locked(inode
, wb
);
1072 spin_unlock(&inode
->i_lock
);
1076 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1078 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1080 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1083 static void inode_sync_complete(struct inode
*inode
)
1085 inode
->i_state
&= ~I_SYNC
;
1086 /* If inode is clean an unused, put it into LRU now... */
1087 inode_add_lru(inode
);
1088 /* Waiters must see I_SYNC cleared before being woken up */
1090 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1093 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1095 bool ret
= time_after(inode
->dirtied_when
, t
);
1096 #ifndef CONFIG_64BIT
1098 * For inodes being constantly redirtied, dirtied_when can get stuck.
1099 * It _appears_ to be in the future, but is actually in distant past.
1100 * This test is necessary to prevent such wrapped-around relative times
1101 * from permanently stopping the whole bdi writeback.
1103 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1108 #define EXPIRE_DIRTY_ATIME 0x0001
1111 * Move expired (dirtied before dirtied_before) dirty inodes from
1112 * @delaying_queue to @dispatch_queue.
1114 static int move_expired_inodes(struct list_head
*delaying_queue
,
1115 struct list_head
*dispatch_queue
,
1116 int flags
, unsigned long dirtied_before
)
1119 struct list_head
*pos
, *node
;
1120 struct super_block
*sb
= NULL
;
1121 struct inode
*inode
;
1125 while (!list_empty(delaying_queue
)) {
1126 inode
= wb_inode(delaying_queue
->prev
);
1127 if (inode_dirtied_after(inode
, dirtied_before
))
1129 list_move(&inode
->i_io_list
, &tmp
);
1131 spin_lock(&inode
->i_lock
);
1132 if (flags
& EXPIRE_DIRTY_ATIME
)
1133 inode
->i_state
|= I_DIRTY_TIME_EXPIRED
;
1134 inode
->i_state
|= I_SYNC_QUEUED
;
1135 spin_unlock(&inode
->i_lock
);
1136 if (sb_is_blkdev_sb(inode
->i_sb
))
1138 if (sb
&& sb
!= inode
->i_sb
)
1143 /* just one sb in list, splice to dispatch_queue and we're done */
1145 list_splice(&tmp
, dispatch_queue
);
1149 /* Move inodes from one superblock together */
1150 while (!list_empty(&tmp
)) {
1151 sb
= wb_inode(tmp
.prev
)->i_sb
;
1152 list_for_each_prev_safe(pos
, node
, &tmp
) {
1153 inode
= wb_inode(pos
);
1154 if (inode
->i_sb
== sb
)
1155 list_move(&inode
->i_io_list
, dispatch_queue
);
1163 * Queue all expired dirty inodes for io, eldest first.
1165 * newly dirtied b_dirty b_io b_more_io
1166 * =============> gf edc BA
1168 * newly dirtied b_dirty b_io b_more_io
1169 * =============> g fBAedc
1171 * +--> dequeue for IO
1173 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
,
1174 unsigned long dirtied_before
)
1177 unsigned long time_expire_jif
= dirtied_before
;
1179 assert_spin_locked(&wb
->list_lock
);
1180 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1181 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, dirtied_before
);
1182 if (!work
->for_sync
)
1183 time_expire_jif
= jiffies
- dirtytime_expire_interval
* HZ
;
1184 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1185 EXPIRE_DIRTY_ATIME
, time_expire_jif
);
1187 wb_io_lists_populated(wb
);
1188 trace_writeback_queue_io(wb
, work
, dirtied_before
, moved
);
1191 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1195 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1196 trace_writeback_write_inode_start(inode
, wbc
);
1197 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1198 trace_writeback_write_inode(inode
, wbc
);
1205 * Wait for writeback on an inode to complete. Called with i_lock held.
1206 * Caller must make sure inode cannot go away when we drop i_lock.
1208 static void __inode_wait_for_writeback(struct inode
*inode
)
1209 __releases(inode
->i_lock
)
1210 __acquires(inode
->i_lock
)
1212 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1213 wait_queue_head_t
*wqh
;
1215 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1216 while (inode
->i_state
& I_SYNC
) {
1217 spin_unlock(&inode
->i_lock
);
1218 __wait_on_bit(wqh
, &wq
, bit_wait
,
1219 TASK_UNINTERRUPTIBLE
);
1220 spin_lock(&inode
->i_lock
);
1225 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1227 void inode_wait_for_writeback(struct inode
*inode
)
1229 spin_lock(&inode
->i_lock
);
1230 __inode_wait_for_writeback(inode
);
1231 spin_unlock(&inode
->i_lock
);
1235 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1236 * held and drops it. It is aimed for callers not holding any inode reference
1237 * so once i_lock is dropped, inode can go away.
1239 static void inode_sleep_on_writeback(struct inode
*inode
)
1240 __releases(inode
->i_lock
)
1243 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1246 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1247 sleep
= inode
->i_state
& I_SYNC
;
1248 spin_unlock(&inode
->i_lock
);
1251 finish_wait(wqh
, &wait
);
1255 * Find proper writeback list for the inode depending on its current state and
1256 * possibly also change of its state while we were doing writeback. Here we
1257 * handle things such as livelock prevention or fairness of writeback among
1258 * inodes. This function can be called only by flusher thread - noone else
1259 * processes all inodes in writeback lists and requeueing inodes behind flusher
1260 * thread's back can have unexpected consequences.
1262 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1263 struct writeback_control
*wbc
)
1265 if (inode
->i_state
& I_FREEING
)
1269 * Sync livelock prevention. Each inode is tagged and synced in one
1270 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1271 * the dirty time to prevent enqueue and sync it again.
1273 if ((inode
->i_state
& I_DIRTY
) &&
1274 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1275 inode
->dirtied_when
= jiffies
;
1277 if (wbc
->pages_skipped
) {
1279 * writeback is not making progress due to locked
1280 * buffers. Skip this inode for now.
1282 redirty_tail_locked(inode
, wb
);
1286 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1288 * We didn't write back all the pages. nfs_writepages()
1289 * sometimes bales out without doing anything.
1291 if (wbc
->nr_to_write
<= 0) {
1292 /* Slice used up. Queue for next turn. */
1293 requeue_io(inode
, wb
);
1296 * Writeback blocked by something other than
1297 * congestion. Delay the inode for some time to
1298 * avoid spinning on the CPU (100% iowait)
1299 * retrying writeback of the dirty page/inode
1300 * that cannot be performed immediately.
1302 redirty_tail_locked(inode
, wb
);
1304 } else if (inode
->i_state
& I_DIRTY
) {
1306 * Filesystems can dirty the inode during writeback operations,
1307 * such as delayed allocation during submission or metadata
1308 * updates after data IO completion.
1310 redirty_tail_locked(inode
, wb
);
1311 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1312 inode
->dirtied_when
= jiffies
;
1313 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1314 inode
->i_state
&= ~I_SYNC_QUEUED
;
1316 /* The inode is clean. Remove from writeback lists. */
1317 inode_io_list_del_locked(inode
, wb
);
1322 * Write out an inode and its dirty pages. Do not update the writeback list
1323 * linkage. That is left to the caller. The caller is also responsible for
1324 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1327 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1329 struct address_space
*mapping
= inode
->i_mapping
;
1330 long nr_to_write
= wbc
->nr_to_write
;
1334 WARN_ON(!(inode
->i_state
& I_SYNC
));
1336 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1338 ret
= do_writepages(mapping
, wbc
);
1341 * Make sure to wait on the data before writing out the metadata.
1342 * This is important for filesystems that modify metadata on data
1343 * I/O completion. We don't do it for sync(2) writeback because it has a
1344 * separate, external IO completion path and ->sync_fs for guaranteeing
1345 * inode metadata is written back correctly.
1347 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1348 int err
= filemap_fdatawait(mapping
);
1354 * Some filesystems may redirty the inode during the writeback
1355 * due to delalloc, clear dirty metadata flags right before
1358 spin_lock(&inode
->i_lock
);
1360 dirty
= inode
->i_state
& I_DIRTY
;
1361 if (inode
->i_state
& I_DIRTY_TIME
) {
1362 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1363 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1364 unlikely(time_after(jiffies
,
1365 (inode
->dirtied_time_when
+
1366 dirtytime_expire_interval
* HZ
)))) {
1367 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1368 trace_writeback_lazytime(inode
);
1371 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1372 inode
->i_state
&= ~dirty
;
1375 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1376 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1377 * either they see the I_DIRTY bits cleared or we see the dirtied
1380 * I_DIRTY_PAGES is always cleared together above even if @mapping
1381 * still has dirty pages. The flag is reinstated after smp_mb() if
1382 * necessary. This guarantees that either __mark_inode_dirty()
1383 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1387 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1388 inode
->i_state
|= I_DIRTY_PAGES
;
1390 spin_unlock(&inode
->i_lock
);
1392 if (dirty
& I_DIRTY_TIME
)
1393 mark_inode_dirty_sync(inode
);
1394 /* Don't write the inode if only I_DIRTY_PAGES was set */
1395 if (dirty
& ~I_DIRTY_PAGES
) {
1396 int err
= write_inode(inode
, wbc
);
1400 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1405 * Write out an inode's dirty pages. Either the caller has an active reference
1406 * on the inode or the inode has I_WILL_FREE set.
1408 * This function is designed to be called for writing back one inode which
1409 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1410 * and does more profound writeback list handling in writeback_sb_inodes().
1412 static int writeback_single_inode(struct inode
*inode
,
1413 struct writeback_control
*wbc
)
1415 struct bdi_writeback
*wb
;
1418 spin_lock(&inode
->i_lock
);
1419 if (!atomic_read(&inode
->i_count
))
1420 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1422 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1424 if (inode
->i_state
& I_SYNC
) {
1425 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1428 * It's a data-integrity sync. We must wait. Since callers hold
1429 * inode reference or inode has I_WILL_FREE set, it cannot go
1432 __inode_wait_for_writeback(inode
);
1434 WARN_ON(inode
->i_state
& I_SYNC
);
1436 * Skip inode if it is clean and we have no outstanding writeback in
1437 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1438 * function since flusher thread may be doing for example sync in
1439 * parallel and if we move the inode, it could get skipped. So here we
1440 * make sure inode is on some writeback list and leave it there unless
1441 * we have completely cleaned the inode.
1443 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1444 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1445 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1447 inode
->i_state
|= I_SYNC
;
1448 wbc_attach_and_unlock_inode(wbc
, inode
);
1450 ret
= __writeback_single_inode(inode
, wbc
);
1452 wbc_detach_inode(wbc
);
1454 wb
= inode_to_wb_and_lock_list(inode
);
1455 spin_lock(&inode
->i_lock
);
1457 * If inode is clean, remove it from writeback lists. Otherwise don't
1458 * touch it. See comment above for explanation.
1460 if (!(inode
->i_state
& I_DIRTY_ALL
))
1461 inode_io_list_del_locked(inode
, wb
);
1462 spin_unlock(&wb
->list_lock
);
1463 inode_sync_complete(inode
);
1465 spin_unlock(&inode
->i_lock
);
1469 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1470 struct wb_writeback_work
*work
)
1475 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1476 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1477 * here avoids calling into writeback_inodes_wb() more than once.
1479 * The intended call sequence for WB_SYNC_ALL writeback is:
1482 * writeback_sb_inodes() <== called only once
1483 * write_cache_pages() <== called once for each inode
1484 * (quickly) tag currently dirty pages
1485 * (maybe slowly) sync all tagged pages
1487 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1490 pages
= min(wb
->avg_write_bandwidth
/ 2,
1491 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1492 pages
= min(pages
, work
->nr_pages
);
1493 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1494 MIN_WRITEBACK_PAGES
);
1501 * Write a portion of b_io inodes which belong to @sb.
1503 * Return the number of pages and/or inodes written.
1505 * NOTE! This is called with wb->list_lock held, and will
1506 * unlock and relock that for each inode it ends up doing
1509 static long writeback_sb_inodes(struct super_block
*sb
,
1510 struct bdi_writeback
*wb
,
1511 struct wb_writeback_work
*work
)
1513 struct writeback_control wbc
= {
1514 .sync_mode
= work
->sync_mode
,
1515 .tagged_writepages
= work
->tagged_writepages
,
1516 .for_kupdate
= work
->for_kupdate
,
1517 .for_background
= work
->for_background
,
1518 .for_sync
= work
->for_sync
,
1519 .range_cyclic
= work
->range_cyclic
,
1521 .range_end
= LLONG_MAX
,
1523 unsigned long start_time
= jiffies
;
1525 long wrote
= 0; /* count both pages and inodes */
1527 while (!list_empty(&wb
->b_io
)) {
1528 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1529 struct bdi_writeback
*tmp_wb
;
1531 if (inode
->i_sb
!= sb
) {
1534 * We only want to write back data for this
1535 * superblock, move all inodes not belonging
1536 * to it back onto the dirty list.
1538 redirty_tail(inode
, wb
);
1543 * The inode belongs to a different superblock.
1544 * Bounce back to the caller to unpin this and
1545 * pin the next superblock.
1551 * Don't bother with new inodes or inodes being freed, first
1552 * kind does not need periodic writeout yet, and for the latter
1553 * kind writeout is handled by the freer.
1555 spin_lock(&inode
->i_lock
);
1556 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1557 redirty_tail_locked(inode
, wb
);
1558 spin_unlock(&inode
->i_lock
);
1561 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1563 * If this inode is locked for writeback and we are not
1564 * doing writeback-for-data-integrity, move it to
1565 * b_more_io so that writeback can proceed with the
1566 * other inodes on s_io.
1568 * We'll have another go at writing back this inode
1569 * when we completed a full scan of b_io.
1571 spin_unlock(&inode
->i_lock
);
1572 requeue_io(inode
, wb
);
1573 trace_writeback_sb_inodes_requeue(inode
);
1576 spin_unlock(&wb
->list_lock
);
1579 * We already requeued the inode if it had I_SYNC set and we
1580 * are doing WB_SYNC_NONE writeback. So this catches only the
1583 if (inode
->i_state
& I_SYNC
) {
1584 /* Wait for I_SYNC. This function drops i_lock... */
1585 inode_sleep_on_writeback(inode
);
1586 /* Inode may be gone, start again */
1587 spin_lock(&wb
->list_lock
);
1590 inode
->i_state
|= I_SYNC
;
1591 wbc_attach_and_unlock_inode(&wbc
, inode
);
1593 write_chunk
= writeback_chunk_size(wb
, work
);
1594 wbc
.nr_to_write
= write_chunk
;
1595 wbc
.pages_skipped
= 0;
1598 * We use I_SYNC to pin the inode in memory. While it is set
1599 * evict_inode() will wait so the inode cannot be freed.
1601 __writeback_single_inode(inode
, &wbc
);
1603 wbc_detach_inode(&wbc
);
1604 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1605 wrote
+= write_chunk
- wbc
.nr_to_write
;
1607 if (need_resched()) {
1609 * We're trying to balance between building up a nice
1610 * long list of IOs to improve our merge rate, and
1611 * getting those IOs out quickly for anyone throttling
1612 * in balance_dirty_pages(). cond_resched() doesn't
1613 * unplug, so get our IOs out the door before we
1616 blk_flush_plug(current
);
1621 * Requeue @inode if still dirty. Be careful as @inode may
1622 * have been switched to another wb in the meantime.
1624 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1625 spin_lock(&inode
->i_lock
);
1626 if (!(inode
->i_state
& I_DIRTY_ALL
))
1628 requeue_inode(inode
, tmp_wb
, &wbc
);
1629 inode_sync_complete(inode
);
1630 spin_unlock(&inode
->i_lock
);
1632 if (unlikely(tmp_wb
!= wb
)) {
1633 spin_unlock(&tmp_wb
->list_lock
);
1634 spin_lock(&wb
->list_lock
);
1638 * bail out to wb_writeback() often enough to check
1639 * background threshold and other termination conditions.
1642 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1644 if (work
->nr_pages
<= 0)
1651 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1652 struct wb_writeback_work
*work
)
1654 unsigned long start_time
= jiffies
;
1657 while (!list_empty(&wb
->b_io
)) {
1658 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1659 struct super_block
*sb
= inode
->i_sb
;
1661 if (!trylock_super(sb
)) {
1663 * trylock_super() may fail consistently due to
1664 * s_umount being grabbed by someone else. Don't use
1665 * requeue_io() to avoid busy retrying the inode/sb.
1667 redirty_tail(inode
, wb
);
1670 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1671 up_read(&sb
->s_umount
);
1673 /* refer to the same tests at the end of writeback_sb_inodes */
1675 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1677 if (work
->nr_pages
<= 0)
1681 /* Leave any unwritten inodes on b_io */
1685 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1686 enum wb_reason reason
)
1688 struct wb_writeback_work work
= {
1689 .nr_pages
= nr_pages
,
1690 .sync_mode
= WB_SYNC_NONE
,
1694 struct blk_plug plug
;
1696 blk_start_plug(&plug
);
1697 spin_lock(&wb
->list_lock
);
1698 if (list_empty(&wb
->b_io
))
1699 queue_io(wb
, &work
, jiffies
);
1700 __writeback_inodes_wb(wb
, &work
);
1701 spin_unlock(&wb
->list_lock
);
1702 blk_finish_plug(&plug
);
1704 return nr_pages
- work
.nr_pages
;
1708 * Explicit flushing or periodic writeback of "old" data.
1710 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1711 * dirtying-time in the inode's address_space. So this periodic writeback code
1712 * just walks the superblock inode list, writing back any inodes which are
1713 * older than a specific point in time.
1715 * Try to run once per dirty_writeback_interval. But if a writeback event
1716 * takes longer than a dirty_writeback_interval interval, then leave a
1719 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1720 * all dirty pages if they are all attached to "old" mappings.
1722 static long wb_writeback(struct bdi_writeback
*wb
,
1723 struct wb_writeback_work
*work
)
1725 unsigned long wb_start
= jiffies
;
1726 long nr_pages
= work
->nr_pages
;
1727 unsigned long dirtied_before
= jiffies
;
1728 struct inode
*inode
;
1730 struct blk_plug plug
;
1732 blk_start_plug(&plug
);
1733 spin_lock(&wb
->list_lock
);
1736 * Stop writeback when nr_pages has been consumed
1738 if (work
->nr_pages
<= 0)
1742 * Background writeout and kupdate-style writeback may
1743 * run forever. Stop them if there is other work to do
1744 * so that e.g. sync can proceed. They'll be restarted
1745 * after the other works are all done.
1747 if ((work
->for_background
|| work
->for_kupdate
) &&
1748 !list_empty(&wb
->work_list
))
1752 * For background writeout, stop when we are below the
1753 * background dirty threshold
1755 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1759 * Kupdate and background works are special and we want to
1760 * include all inodes that need writing. Livelock avoidance is
1761 * handled by these works yielding to any other work so we are
1764 if (work
->for_kupdate
) {
1765 dirtied_before
= jiffies
-
1766 msecs_to_jiffies(dirty_expire_interval
* 10);
1767 } else if (work
->for_background
)
1768 dirtied_before
= jiffies
;
1770 trace_writeback_start(wb
, work
);
1771 if (list_empty(&wb
->b_io
))
1772 queue_io(wb
, work
, dirtied_before
);
1774 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1776 progress
= __writeback_inodes_wb(wb
, work
);
1777 trace_writeback_written(wb
, work
);
1779 wb_update_bandwidth(wb
, wb_start
);
1782 * Did we write something? Try for more
1784 * Dirty inodes are moved to b_io for writeback in batches.
1785 * The completion of the current batch does not necessarily
1786 * mean the overall work is done. So we keep looping as long
1787 * as made some progress on cleaning pages or inodes.
1792 * No more inodes for IO, bail
1794 if (list_empty(&wb
->b_more_io
))
1797 * Nothing written. Wait for some inode to
1798 * become available for writeback. Otherwise
1799 * we'll just busyloop.
1801 if (!list_empty(&wb
->b_more_io
)) {
1802 trace_writeback_wait(wb
, work
);
1803 inode
= wb_inode(wb
->b_more_io
.prev
);
1804 spin_lock(&inode
->i_lock
);
1805 spin_unlock(&wb
->list_lock
);
1806 /* This function drops i_lock... */
1807 inode_sleep_on_writeback(inode
);
1808 spin_lock(&wb
->list_lock
);
1811 spin_unlock(&wb
->list_lock
);
1812 blk_finish_plug(&plug
);
1814 return nr_pages
- work
->nr_pages
;
1818 * Return the next wb_writeback_work struct that hasn't been processed yet.
1820 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1822 struct wb_writeback_work
*work
= NULL
;
1824 spin_lock_bh(&wb
->work_lock
);
1825 if (!list_empty(&wb
->work_list
)) {
1826 work
= list_entry(wb
->work_list
.next
,
1827 struct wb_writeback_work
, list
);
1828 list_del_init(&work
->list
);
1830 spin_unlock_bh(&wb
->work_lock
);
1835 * Add in the number of potentially dirty inodes, because each inode
1836 * write can dirty pagecache in the underlying blockdev.
1838 static unsigned long get_nr_dirty_pages(void)
1840 return global_page_state(NR_FILE_DIRTY
) +
1841 global_page_state(NR_UNSTABLE_NFS
) +
1842 get_nr_dirty_inodes();
1845 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1847 if (wb_over_bg_thresh(wb
)) {
1849 struct wb_writeback_work work
= {
1850 .nr_pages
= LONG_MAX
,
1851 .sync_mode
= WB_SYNC_NONE
,
1852 .for_background
= 1,
1854 .reason
= WB_REASON_BACKGROUND
,
1857 return wb_writeback(wb
, &work
);
1863 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1865 unsigned long expired
;
1869 * When set to zero, disable periodic writeback
1871 if (!dirty_writeback_interval
)
1874 expired
= wb
->last_old_flush
+
1875 msecs_to_jiffies(dirty_writeback_interval
* 10);
1876 if (time_before(jiffies
, expired
))
1879 wb
->last_old_flush
= jiffies
;
1880 nr_pages
= get_nr_dirty_pages();
1883 struct wb_writeback_work work
= {
1884 .nr_pages
= nr_pages
,
1885 .sync_mode
= WB_SYNC_NONE
,
1888 .reason
= WB_REASON_PERIODIC
,
1891 return wb_writeback(wb
, &work
);
1898 * Retrieve work items and do the writeback they describe
1900 static long wb_do_writeback(struct bdi_writeback
*wb
)
1902 struct wb_writeback_work
*work
;
1905 set_bit(WB_writeback_running
, &wb
->state
);
1906 while ((work
= get_next_work_item(wb
)) != NULL
) {
1907 trace_writeback_exec(wb
, work
);
1908 wrote
+= wb_writeback(wb
, work
);
1909 finish_writeback_work(wb
, work
);
1913 * Check for periodic writeback, kupdated() style
1915 wrote
+= wb_check_old_data_flush(wb
);
1916 wrote
+= wb_check_background_flush(wb
);
1917 clear_bit(WB_writeback_running
, &wb
->state
);
1923 * Handle writeback of dirty data for the device backed by this bdi. Also
1924 * reschedules periodically and does kupdated style flushing.
1926 void wb_workfn(struct work_struct
*work
)
1928 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1929 struct bdi_writeback
, dwork
);
1932 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1933 current
->flags
|= PF_SWAPWRITE
;
1935 if (likely(!current_is_workqueue_rescuer() ||
1936 !test_bit(WB_registered
, &wb
->state
))) {
1938 * The normal path. Keep writing back @wb until its
1939 * work_list is empty. Note that this path is also taken
1940 * if @wb is shutting down even when we're running off the
1941 * rescuer as work_list needs to be drained.
1944 pages_written
= wb_do_writeback(wb
);
1945 trace_writeback_pages_written(pages_written
);
1946 } while (!list_empty(&wb
->work_list
));
1949 * bdi_wq can't get enough workers and we're running off
1950 * the emergency worker. Don't hog it. Hopefully, 1024 is
1951 * enough for efficient IO.
1953 pages_written
= writeback_inodes_wb(wb
, 1024,
1954 WB_REASON_FORKER_THREAD
);
1955 trace_writeback_pages_written(pages_written
);
1958 if (!list_empty(&wb
->work_list
))
1960 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1961 wb_wakeup_delayed(wb
);
1963 current
->flags
&= ~PF_SWAPWRITE
;
1967 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1970 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1972 struct backing_dev_info
*bdi
;
1975 nr_pages
= get_nr_dirty_pages();
1978 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1979 struct bdi_writeback
*wb
;
1981 if (!bdi_has_dirty_io(bdi
))
1984 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1985 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1992 * Wake up bdi's periodically to make sure dirtytime inodes gets
1993 * written back periodically. We deliberately do *not* check the
1994 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1995 * kernel to be constantly waking up once there are any dirtytime
1996 * inodes on the system. So instead we define a separate delayed work
1997 * function which gets called much more rarely. (By default, only
1998 * once every 12 hours.)
2000 * If there is any other write activity going on in the file system,
2001 * this function won't be necessary. But if the only thing that has
2002 * happened on the file system is a dirtytime inode caused by an atime
2003 * update, we need this infrastructure below to make sure that inode
2004 * eventually gets pushed out to disk.
2006 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
2007 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
2009 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
2011 struct backing_dev_info
*bdi
;
2014 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
2015 struct bdi_writeback
*wb
;
2017 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2018 if (!list_empty(&wb
->b_dirty_time
))
2022 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2025 static int __init
start_dirtytime_writeback(void)
2027 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2030 __initcall(start_dirtytime_writeback
);
2032 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2033 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2037 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2038 if (ret
== 0 && write
)
2039 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2043 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2045 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2046 struct dentry
*dentry
;
2047 const char *name
= "?";
2049 dentry
= d_find_alias(inode
);
2051 spin_lock(&dentry
->d_lock
);
2052 name
= (const char *) dentry
->d_name
.name
;
2055 "%s(%d): dirtied inode %lu (%s) on %s\n",
2056 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2057 name
, inode
->i_sb
->s_id
);
2059 spin_unlock(&dentry
->d_lock
);
2066 * __mark_inode_dirty - internal function
2067 * @inode: inode to mark
2068 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2069 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2070 * mark_inode_dirty_sync.
2072 * Put the inode on the super block's dirty list.
2074 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2075 * dirty list only if it is hashed or if it refers to a blockdev.
2076 * If it was not hashed, it will never be added to the dirty list
2077 * even if it is later hashed, as it will have been marked dirty already.
2079 * In short, make sure you hash any inodes _before_ you start marking
2082 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2083 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2084 * the kernel-internal blockdev inode represents the dirtying time of the
2085 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2086 * page->mapping->host, so the page-dirtying time is recorded in the internal
2089 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2091 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2092 struct super_block
*sb
= inode
->i_sb
;
2095 trace_writeback_mark_inode_dirty(inode
, flags
);
2098 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2099 * dirty the inode itself
2101 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
2102 trace_writeback_dirty_inode_start(inode
, flags
);
2104 if (sb
->s_op
->dirty_inode
)
2105 sb
->s_op
->dirty_inode(inode
, flags
);
2107 trace_writeback_dirty_inode(inode
, flags
);
2109 if (flags
& I_DIRTY_INODE
)
2110 flags
&= ~I_DIRTY_TIME
;
2111 dirtytime
= flags
& I_DIRTY_TIME
;
2114 * Paired with smp_mb() in __writeback_single_inode() for the
2115 * following lockless i_state test. See there for details.
2119 if (((inode
->i_state
& flags
) == flags
) ||
2120 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2123 if (unlikely(block_dump
))
2124 block_dump___mark_inode_dirty(inode
);
2126 spin_lock(&inode
->i_lock
);
2127 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2128 goto out_unlock_inode
;
2129 if ((inode
->i_state
& flags
) != flags
) {
2130 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2132 inode_attach_wb(inode
, NULL
);
2134 if (flags
& I_DIRTY_INODE
)
2135 inode
->i_state
&= ~I_DIRTY_TIME
;
2136 inode
->i_state
|= flags
;
2139 * If the inode is queued for writeback by flush worker, just
2140 * update its dirty state. Once the flush worker is done with
2141 * the inode it will place it on the appropriate superblock
2142 * list, based upon its state.
2144 if (inode
->i_state
& I_SYNC_QUEUED
)
2145 goto out_unlock_inode
;
2148 * Only add valid (hashed) inodes to the superblock's
2149 * dirty list. Add blockdev inodes as well.
2151 if (!S_ISBLK(inode
->i_mode
)) {
2152 if (inode_unhashed(inode
))
2153 goto out_unlock_inode
;
2155 if (inode
->i_state
& I_FREEING
)
2156 goto out_unlock_inode
;
2159 * If the inode was already on b_dirty/b_io/b_more_io, don't
2160 * reposition it (that would break b_dirty time-ordering).
2163 struct bdi_writeback
*wb
;
2164 struct list_head
*dirty_list
;
2165 bool wakeup_bdi
= false;
2167 wb
= locked_inode_to_wb_and_lock_list(inode
);
2169 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2170 !test_bit(WB_registered
, &wb
->state
),
2171 "bdi-%s not registered\n", wb
->bdi
->name
);
2173 inode
->dirtied_when
= jiffies
;
2175 inode
->dirtied_time_when
= jiffies
;
2177 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2178 dirty_list
= &wb
->b_dirty
;
2180 dirty_list
= &wb
->b_dirty_time
;
2182 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2185 spin_unlock(&wb
->list_lock
);
2186 trace_writeback_dirty_inode_enqueue(inode
);
2189 * If this is the first dirty inode for this bdi,
2190 * we have to wake-up the corresponding bdi thread
2191 * to make sure background write-back happens
2194 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2195 wb_wakeup_delayed(wb
);
2200 spin_unlock(&inode
->i_lock
);
2202 #undef I_DIRTY_INODE
2204 EXPORT_SYMBOL(__mark_inode_dirty
);
2207 * The @s_sync_lock is used to serialise concurrent sync operations
2208 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2209 * Concurrent callers will block on the s_sync_lock rather than doing contending
2210 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2211 * has been issued up to the time this function is enter is guaranteed to be
2212 * completed by the time we have gained the lock and waited for all IO that is
2213 * in progress regardless of the order callers are granted the lock.
2215 static void wait_sb_inodes(struct super_block
*sb
)
2217 struct inode
*inode
, *old_inode
= NULL
;
2220 * We need to be protected against the filesystem going from
2221 * r/o to r/w or vice versa.
2223 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2225 mutex_lock(&sb
->s_sync_lock
);
2226 spin_lock(&sb
->s_inode_list_lock
);
2229 * Data integrity sync. Must wait for all pages under writeback,
2230 * because there may have been pages dirtied before our sync
2231 * call, but which had writeout started before we write it out.
2232 * In which case, the inode may not be on the dirty list, but
2233 * we still have to wait for that writeout.
2235 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
2236 struct address_space
*mapping
= inode
->i_mapping
;
2238 spin_lock(&inode
->i_lock
);
2239 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
2240 (mapping
->nrpages
== 0)) {
2241 spin_unlock(&inode
->i_lock
);
2245 spin_unlock(&inode
->i_lock
);
2246 spin_unlock(&sb
->s_inode_list_lock
);
2249 * We hold a reference to 'inode' so it couldn't have been
2250 * removed from s_inodes list while we dropped the
2251 * s_inode_list_lock. We cannot iput the inode now as we can
2252 * be holding the last reference and we cannot iput it under
2253 * s_inode_list_lock. So we keep the reference and iput it
2260 * We keep the error status of individual mapping so that
2261 * applications can catch the writeback error using fsync(2).
2262 * See filemap_fdatawait_keep_errors() for details.
2264 filemap_fdatawait_keep_errors(mapping
);
2268 spin_lock(&sb
->s_inode_list_lock
);
2270 spin_unlock(&sb
->s_inode_list_lock
);
2272 mutex_unlock(&sb
->s_sync_lock
);
2275 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2276 enum wb_reason reason
, bool skip_if_busy
)
2278 DEFINE_WB_COMPLETION_ONSTACK(done
);
2279 struct wb_writeback_work work
= {
2281 .sync_mode
= WB_SYNC_NONE
,
2282 .tagged_writepages
= 1,
2287 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2289 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2291 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2293 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2294 wb_wait_for_completion(bdi
, &done
);
2298 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2299 * @sb: the superblock
2300 * @nr: the number of pages to write
2301 * @reason: reason why some writeback work initiated
2303 * Start writeback on some inodes on this super_block. No guarantees are made
2304 * on how many (if any) will be written, and this function does not wait
2305 * for IO completion of submitted IO.
2307 void writeback_inodes_sb_nr(struct super_block
*sb
,
2309 enum wb_reason reason
)
2311 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2313 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2316 * writeback_inodes_sb - writeback dirty inodes from given super_block
2317 * @sb: the superblock
2318 * @reason: reason why some writeback work was initiated
2320 * Start writeback on some inodes on this super_block. No guarantees are made
2321 * on how many (if any) will be written, and this function does not wait
2322 * for IO completion of submitted IO.
2324 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2326 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2328 EXPORT_SYMBOL(writeback_inodes_sb
);
2331 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2332 * @sb: the superblock
2333 * @nr: the number of pages to write
2334 * @reason: the reason of writeback
2336 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2337 * Returns 1 if writeback was started, 0 if not.
2339 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2340 enum wb_reason reason
)
2342 if (!down_read_trylock(&sb
->s_umount
))
2345 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2346 up_read(&sb
->s_umount
);
2349 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2352 * try_to_writeback_inodes_sb - try to start writeback if none underway
2353 * @sb: the superblock
2354 * @reason: reason why some writeback work was initiated
2356 * Implement by try_to_writeback_inodes_sb_nr()
2357 * Returns 1 if writeback was started, 0 if not.
2359 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2361 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2363 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2366 * sync_inodes_sb - sync sb inode pages
2367 * @sb: the superblock
2369 * This function writes and waits on any dirty inode belonging to this
2372 void sync_inodes_sb(struct super_block
*sb
)
2374 DEFINE_WB_COMPLETION_ONSTACK(done
);
2375 struct wb_writeback_work work
= {
2377 .sync_mode
= WB_SYNC_ALL
,
2378 .nr_pages
= LONG_MAX
,
2381 .reason
= WB_REASON_SYNC
,
2384 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2387 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2388 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2389 * bdi_has_dirty() need to be written out too.
2391 if (bdi
== &noop_backing_dev_info
)
2393 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2395 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2396 bdi_down_write_wb_switch_rwsem(bdi
);
2397 bdi_split_work_to_wbs(bdi
, &work
, false);
2398 wb_wait_for_completion(bdi
, &done
);
2399 bdi_up_write_wb_switch_rwsem(bdi
);
2403 EXPORT_SYMBOL(sync_inodes_sb
);
2406 * write_inode_now - write an inode to disk
2407 * @inode: inode to write to disk
2408 * @sync: whether the write should be synchronous or not
2410 * This function commits an inode to disk immediately if it is dirty. This is
2411 * primarily needed by knfsd.
2413 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2415 int write_inode_now(struct inode
*inode
, int sync
)
2417 struct writeback_control wbc
= {
2418 .nr_to_write
= LONG_MAX
,
2419 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2421 .range_end
= LLONG_MAX
,
2424 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2425 wbc
.nr_to_write
= 0;
2428 return writeback_single_inode(inode
, &wbc
);
2430 EXPORT_SYMBOL(write_inode_now
);
2433 * sync_inode - write an inode and its pages to disk.
2434 * @inode: the inode to sync
2435 * @wbc: controls the writeback mode
2437 * sync_inode() will write an inode and its pages to disk. It will also
2438 * correctly update the inode on its superblock's dirty inode lists and will
2439 * update inode->i_state.
2441 * The caller must have a ref on the inode.
2443 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2445 return writeback_single_inode(inode
, wbc
);
2447 EXPORT_SYMBOL(sync_inode
);
2450 * sync_inode_metadata - write an inode to disk
2451 * @inode: the inode to sync
2452 * @wait: wait for I/O to complete.
2454 * Write an inode to disk and adjust its dirty state after completion.
2456 * Note: only writes the actual inode, no associated data or other metadata.
2458 int sync_inode_metadata(struct inode
*inode
, int wait
)
2460 struct writeback_control wbc
= {
2461 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2462 .nr_to_write
= 0, /* metadata-only */
2465 return sync_inode(inode
, &wbc
);
2467 EXPORT_SYMBOL(sync_inode_metadata
);