2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic64_set(&inode
->i_sequence
, 0);
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
144 i_uid_write(inode
, 0);
145 i_gid_write(inode
, 0);
146 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_generation
= 0;
151 inode
->i_pipe
= NULL
;
152 inode
->i_bdev
= NULL
;
153 inode
->i_cdev
= NULL
;
154 inode
->i_link
= NULL
;
156 inode
->dirtied_when
= 0;
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 inode
->i_wb_frn_winner
= 0;
160 inode
->i_wb_frn_avg_time
= 0;
161 inode
->i_wb_frn_history
= 0;
164 if (security_inode_alloc(inode
))
166 spin_lock_init(&inode
->i_lock
);
167 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
169 mutex_init(&inode
->i_mutex
);
170 lockdep_set_class(&inode
->i_mutex
, &sb
->s_type
->i_mutex_key
);
172 atomic_set(&inode
->i_dio_count
, 0);
174 mapping
->a_ops
= &empty_aops
;
175 mapping
->host
= inode
;
177 atomic_set(&mapping
->i_mmap_writable
, 0);
178 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
179 mapping
->private_data
= NULL
;
180 mapping
->writeback_index
= 0;
181 inode
->i_private
= NULL
;
182 inode
->i_mapping
= mapping
;
183 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
184 #ifdef CONFIG_FS_POSIX_ACL
185 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
188 #ifdef CONFIG_FSNOTIFY
189 inode
->i_fsnotify_mask
= 0;
191 inode
->i_flctx
= NULL
;
192 this_cpu_inc(nr_inodes
);
198 EXPORT_SYMBOL(inode_init_always
);
200 static struct inode
*alloc_inode(struct super_block
*sb
)
204 if (sb
->s_op
->alloc_inode
)
205 inode
= sb
->s_op
->alloc_inode(sb
);
207 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
212 if (unlikely(inode_init_always(sb
, inode
))) {
213 if (inode
->i_sb
->s_op
->destroy_inode
)
214 inode
->i_sb
->s_op
->destroy_inode(inode
);
216 kmem_cache_free(inode_cachep
, inode
);
223 void free_inode_nonrcu(struct inode
*inode
)
225 kmem_cache_free(inode_cachep
, inode
);
227 EXPORT_SYMBOL(free_inode_nonrcu
);
229 void __destroy_inode(struct inode
*inode
)
231 BUG_ON(inode_has_buffers(inode
));
232 inode_detach_wb(inode
);
233 security_inode_free(inode
);
234 fsnotify_inode_delete(inode
);
235 locks_free_lock_context(inode
->i_flctx
);
236 if (!inode
->i_nlink
) {
237 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
238 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode
->i_acl
&& inode
->i_acl
!= ACL_NOT_CACHED
)
243 posix_acl_release(inode
->i_acl
);
244 if (inode
->i_default_acl
&& inode
->i_default_acl
!= ACL_NOT_CACHED
)
245 posix_acl_release(inode
->i_default_acl
);
247 this_cpu_dec(nr_inodes
);
249 EXPORT_SYMBOL(__destroy_inode
);
251 static void i_callback(struct rcu_head
*head
)
253 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
254 kmem_cache_free(inode_cachep
, inode
);
257 static void destroy_inode(struct inode
*inode
)
259 BUG_ON(!list_empty(&inode
->i_lru
));
260 __destroy_inode(inode
);
261 if (inode
->i_sb
->s_op
->destroy_inode
)
262 inode
->i_sb
->s_op
->destroy_inode(inode
);
264 call_rcu(&inode
->i_rcu
, i_callback
);
268 * drop_nlink - directly drop an inode's link count
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
278 void drop_nlink(struct inode
*inode
)
280 WARN_ON(inode
->i_nlink
== 0);
283 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
285 EXPORT_SYMBOL(drop_nlink
);
288 * clear_nlink - directly zero an inode's link count
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode
*inode
)
297 if (inode
->i_nlink
) {
298 inode
->__i_nlink
= 0;
299 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
302 EXPORT_SYMBOL(clear_nlink
);
305 * set_nlink - directly set an inode's link count
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode
*inode
, unsigned int nlink
)
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode
->i_nlink
== 0)
319 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
321 inode
->__i_nlink
= nlink
;
324 EXPORT_SYMBOL(set_nlink
);
327 * inc_nlink - directly increment an inode's link count
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode
*inode
)
336 if (unlikely(inode
->i_nlink
== 0)) {
337 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
338 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
343 EXPORT_SYMBOL(inc_nlink
);
345 void address_space_init_once(struct address_space
*mapping
)
347 memset(mapping
, 0, sizeof(*mapping
));
348 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
);
349 spin_lock_init(&mapping
->tree_lock
);
350 init_rwsem(&mapping
->i_mmap_rwsem
);
351 INIT_LIST_HEAD(&mapping
->private_list
);
352 spin_lock_init(&mapping
->private_lock
);
353 mapping
->i_mmap
= RB_ROOT
;
355 EXPORT_SYMBOL(address_space_init_once
);
358 * These are initializations that only need to be done
359 * once, because the fields are idempotent across use
360 * of the inode, so let the slab aware of that.
362 void inode_init_once(struct inode
*inode
)
364 memset(inode
, 0, sizeof(*inode
));
365 INIT_HLIST_NODE(&inode
->i_hash
);
366 INIT_LIST_HEAD(&inode
->i_devices
);
367 INIT_LIST_HEAD(&inode
->i_io_list
);
368 INIT_LIST_HEAD(&inode
->i_lru
);
369 address_space_init_once(&inode
->i_data
);
370 i_size_ordered_init(inode
);
371 #ifdef CONFIG_FSNOTIFY
372 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
375 EXPORT_SYMBOL(inode_init_once
);
377 static void init_once(void *foo
)
379 struct inode
*inode
= (struct inode
*) foo
;
381 inode_init_once(inode
);
385 * inode->i_lock must be held
387 void __iget(struct inode
*inode
)
389 atomic_inc(&inode
->i_count
);
393 * get additional reference to inode; caller must already hold one.
395 void ihold(struct inode
*inode
)
397 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
399 EXPORT_SYMBOL(ihold
);
401 static void inode_lru_list_add(struct inode
*inode
)
403 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
404 this_cpu_inc(nr_unused
);
408 * Add inode to LRU if needed (inode is unused and clean).
410 * Needs inode->i_lock held.
412 void inode_add_lru(struct inode
*inode
)
414 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
415 I_FREEING
| I_WILL_FREE
)) &&
416 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
417 inode_lru_list_add(inode
);
421 static void inode_lru_list_del(struct inode
*inode
)
424 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
425 this_cpu_dec(nr_unused
);
429 * inode_sb_list_add - add inode to the superblock list of inodes
430 * @inode: inode to add
432 void inode_sb_list_add(struct inode
*inode
)
434 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
435 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
436 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
438 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
440 static inline void inode_sb_list_del(struct inode
*inode
)
442 if (!list_empty(&inode
->i_sb_list
)) {
443 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
444 list_del_init(&inode
->i_sb_list
);
445 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
449 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
453 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
455 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
456 return tmp
& i_hash_mask
;
460 * __insert_inode_hash - hash an inode
461 * @inode: unhashed inode
462 * @hashval: unsigned long value used to locate this object in the
465 * Add an inode to the inode hash for this superblock.
467 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
469 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
471 spin_lock(&inode_hash_lock
);
472 spin_lock(&inode
->i_lock
);
473 hlist_add_head(&inode
->i_hash
, b
);
474 spin_unlock(&inode
->i_lock
);
475 spin_unlock(&inode_hash_lock
);
477 EXPORT_SYMBOL(__insert_inode_hash
);
480 * __remove_inode_hash - remove an inode from the hash
481 * @inode: inode to unhash
483 * Remove an inode from the superblock.
485 void __remove_inode_hash(struct inode
*inode
)
487 spin_lock(&inode_hash_lock
);
488 spin_lock(&inode
->i_lock
);
489 hlist_del_init(&inode
->i_hash
);
490 spin_unlock(&inode
->i_lock
);
491 spin_unlock(&inode_hash_lock
);
493 EXPORT_SYMBOL(__remove_inode_hash
);
495 void clear_inode(struct inode
*inode
)
499 * We have to cycle tree_lock here because reclaim can be still in the
500 * process of removing the last page (in __delete_from_page_cache())
501 * and we must not free mapping under it.
503 spin_lock_irq(&inode
->i_data
.tree_lock
);
504 BUG_ON(inode
->i_data
.nrpages
);
505 BUG_ON(inode
->i_data
.nrshadows
);
506 spin_unlock_irq(&inode
->i_data
.tree_lock
);
507 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
508 BUG_ON(!(inode
->i_state
& I_FREEING
));
509 BUG_ON(inode
->i_state
& I_CLEAR
);
510 /* don't need i_lock here, no concurrent mods to i_state */
511 inode
->i_state
= I_FREEING
| I_CLEAR
;
513 EXPORT_SYMBOL(clear_inode
);
516 * Free the inode passed in, removing it from the lists it is still connected
517 * to. We remove any pages still attached to the inode and wait for any IO that
518 * is still in progress before finally destroying the inode.
520 * An inode must already be marked I_FREEING so that we avoid the inode being
521 * moved back onto lists if we race with other code that manipulates the lists
522 * (e.g. writeback_single_inode). The caller is responsible for setting this.
524 * An inode must already be removed from the LRU list before being evicted from
525 * the cache. This should occur atomically with setting the I_FREEING state
526 * flag, so no inodes here should ever be on the LRU when being evicted.
528 static void evict(struct inode
*inode
)
530 const struct super_operations
*op
= inode
->i_sb
->s_op
;
532 BUG_ON(!(inode
->i_state
& I_FREEING
));
533 BUG_ON(!list_empty(&inode
->i_lru
));
535 if (!list_empty(&inode
->i_io_list
))
536 inode_io_list_del(inode
);
538 inode_sb_list_del(inode
);
541 * Wait for flusher thread to be done with the inode so that filesystem
542 * does not start destroying it while writeback is still running. Since
543 * the inode has I_FREEING set, flusher thread won't start new work on
544 * the inode. We just have to wait for running writeback to finish.
546 inode_wait_for_writeback(inode
);
548 if (op
->evict_inode
) {
549 op
->evict_inode(inode
);
551 truncate_inode_pages_final(&inode
->i_data
);
554 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
556 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
559 remove_inode_hash(inode
);
561 spin_lock(&inode
->i_lock
);
562 wake_up_bit(&inode
->i_state
, __I_NEW
);
563 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
564 spin_unlock(&inode
->i_lock
);
566 destroy_inode(inode
);
570 * dispose_list - dispose of the contents of a local list
571 * @head: the head of the list to free
573 * Dispose-list gets a local list with local inodes in it, so it doesn't
574 * need to worry about list corruption and SMP locks.
576 static void dispose_list(struct list_head
*head
)
578 while (!list_empty(head
)) {
581 inode
= list_first_entry(head
, struct inode
, i_lru
);
582 list_del_init(&inode
->i_lru
);
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
598 void evict_inodes(struct super_block
*sb
)
600 struct inode
*inode
, *next
;
604 spin_lock(&sb
->s_inode_list_lock
);
605 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
606 if (atomic_read(&inode
->i_count
))
609 spin_lock(&inode
->i_lock
);
610 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
611 spin_unlock(&inode
->i_lock
);
615 inode
->i_state
|= I_FREEING
;
616 inode_lru_list_del(inode
);
617 spin_unlock(&inode
->i_lock
);
618 list_add(&inode
->i_lru
, &dispose
);
621 * We can have a ton of inodes to evict at unmount time given
622 * enough memory, check to see if we need to go to sleep for a
623 * bit so we don't livelock.
625 if (need_resched()) {
626 spin_unlock(&sb
->s_inode_list_lock
);
628 dispose_list(&dispose
);
632 spin_unlock(&sb
->s_inode_list_lock
);
634 dispose_list(&dispose
);
638 * invalidate_inodes - attempt to free all inodes on a superblock
639 * @sb: superblock to operate on
640 * @kill_dirty: flag to guide handling of dirty inodes
642 * Attempts to free all inodes for a given superblock. If there were any
643 * busy inodes return a non-zero value, else zero.
644 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
647 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
650 struct inode
*inode
, *next
;
653 spin_lock(&sb
->s_inode_list_lock
);
654 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
655 spin_lock(&inode
->i_lock
);
656 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
657 spin_unlock(&inode
->i_lock
);
660 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
661 spin_unlock(&inode
->i_lock
);
665 if (atomic_read(&inode
->i_count
)) {
666 spin_unlock(&inode
->i_lock
);
671 inode
->i_state
|= I_FREEING
;
672 inode_lru_list_del(inode
);
673 spin_unlock(&inode
->i_lock
);
674 list_add(&inode
->i_lru
, &dispose
);
676 spin_unlock(&sb
->s_inode_list_lock
);
678 dispose_list(&dispose
);
684 * Isolate the inode from the LRU in preparation for freeing it.
686 * Any inodes which are pinned purely because of attached pagecache have their
687 * pagecache removed. If the inode has metadata buffers attached to
688 * mapping->private_list then try to remove them.
690 * If the inode has the I_REFERENCED flag set, then it means that it has been
691 * used recently - the flag is set in iput_final(). When we encounter such an
692 * inode, clear the flag and move it to the back of the LRU so it gets another
693 * pass through the LRU before it gets reclaimed. This is necessary because of
694 * the fact we are doing lazy LRU updates to minimise lock contention so the
695 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
696 * with this flag set because they are the inodes that are out of order.
698 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
699 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
701 struct list_head
*freeable
= arg
;
702 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
705 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
706 * If we fail to get the lock, just skip it.
708 if (!spin_trylock(&inode
->i_lock
))
712 * Referenced or dirty inodes are still in use. Give them another pass
713 * through the LRU as we canot reclaim them now.
715 if (atomic_read(&inode
->i_count
) ||
716 (inode
->i_state
& ~I_REFERENCED
)) {
717 list_lru_isolate(lru
, &inode
->i_lru
);
718 spin_unlock(&inode
->i_lock
);
719 this_cpu_dec(nr_unused
);
723 /* recently referenced inodes get one more pass */
724 if (inode
->i_state
& I_REFERENCED
) {
725 inode
->i_state
&= ~I_REFERENCED
;
726 spin_unlock(&inode
->i_lock
);
730 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
732 spin_unlock(&inode
->i_lock
);
733 spin_unlock(lru_lock
);
734 if (remove_inode_buffers(inode
)) {
736 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
737 if (current_is_kswapd())
738 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
740 __count_vm_events(PGINODESTEAL
, reap
);
741 if (current
->reclaim_state
)
742 current
->reclaim_state
->reclaimed_slab
+= reap
;
749 WARN_ON(inode
->i_state
& I_NEW
);
750 inode
->i_state
|= I_FREEING
;
751 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
752 spin_unlock(&inode
->i_lock
);
754 this_cpu_dec(nr_unused
);
759 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
760 * This is called from the superblock shrinker function with a number of inodes
761 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
762 * then are freed outside inode_lock by dispose_list().
764 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
769 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
770 inode_lru_isolate
, &freeable
);
771 dispose_list(&freeable
);
775 static void __wait_on_freeing_inode(struct inode
*inode
);
777 * Called with the inode lock held.
779 static struct inode
*find_inode(struct super_block
*sb
,
780 struct hlist_head
*head
,
781 int (*test
)(struct inode
*, void *),
784 struct inode
*inode
= NULL
;
787 hlist_for_each_entry(inode
, head
, i_hash
) {
788 if (inode
->i_sb
!= sb
)
790 if (!test(inode
, data
))
792 spin_lock(&inode
->i_lock
);
793 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
794 __wait_on_freeing_inode(inode
);
798 spin_unlock(&inode
->i_lock
);
805 * find_inode_fast is the fast path version of find_inode, see the comment at
806 * iget_locked for details.
808 static struct inode
*find_inode_fast(struct super_block
*sb
,
809 struct hlist_head
*head
, unsigned long ino
)
811 struct inode
*inode
= NULL
;
814 hlist_for_each_entry(inode
, head
, i_hash
) {
815 if (inode
->i_ino
!= ino
)
817 if (inode
->i_sb
!= sb
)
819 spin_lock(&inode
->i_lock
);
820 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
821 __wait_on_freeing_inode(inode
);
825 spin_unlock(&inode
->i_lock
);
832 * Each cpu owns a range of LAST_INO_BATCH numbers.
833 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
834 * to renew the exhausted range.
836 * This does not significantly increase overflow rate because every CPU can
837 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
838 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
839 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
840 * overflow rate by 2x, which does not seem too significant.
842 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
843 * error if st_ino won't fit in target struct field. Use 32bit counter
844 * here to attempt to avoid that.
846 #define LAST_INO_BATCH 1024
847 static DEFINE_PER_CPU(unsigned int, last_ino
);
849 unsigned int get_next_ino(void)
851 unsigned int *p
= &get_cpu_var(last_ino
);
852 unsigned int res
= *p
;
855 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
856 static atomic_t shared_last_ino
;
857 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
859 res
= next
- LAST_INO_BATCH
;
864 /* get_next_ino should not provide a 0 inode number */
868 put_cpu_var(last_ino
);
871 EXPORT_SYMBOL(get_next_ino
);
874 * new_inode_pseudo - obtain an inode
877 * Allocates a new inode for given superblock.
878 * Inode wont be chained in superblock s_inodes list
880 * - fs can't be unmount
881 * - quotas, fsnotify, writeback can't work
883 struct inode
*new_inode_pseudo(struct super_block
*sb
)
885 struct inode
*inode
= alloc_inode(sb
);
888 spin_lock(&inode
->i_lock
);
890 spin_unlock(&inode
->i_lock
);
891 INIT_LIST_HEAD(&inode
->i_sb_list
);
897 * new_inode - obtain an inode
900 * Allocates a new inode for given superblock. The default gfp_mask
901 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
902 * If HIGHMEM pages are unsuitable or it is known that pages allocated
903 * for the page cache are not reclaimable or migratable,
904 * mapping_set_gfp_mask() must be called with suitable flags on the
905 * newly created inode's mapping
908 struct inode
*new_inode(struct super_block
*sb
)
912 spin_lock_prefetch(&sb
->s_inode_list_lock
);
914 inode
= new_inode_pseudo(sb
);
916 inode_sb_list_add(inode
);
919 EXPORT_SYMBOL(new_inode
);
921 #ifdef CONFIG_DEBUG_LOCK_ALLOC
922 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
924 if (S_ISDIR(inode
->i_mode
)) {
925 struct file_system_type
*type
= inode
->i_sb
->s_type
;
927 /* Set new key only if filesystem hasn't already changed it */
928 if (lockdep_match_class(&inode
->i_mutex
, &type
->i_mutex_key
)) {
930 * ensure nobody is actually holding i_mutex
932 mutex_destroy(&inode
->i_mutex
);
933 mutex_init(&inode
->i_mutex
);
934 lockdep_set_class(&inode
->i_mutex
,
935 &type
->i_mutex_dir_key
);
939 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
943 * unlock_new_inode - clear the I_NEW state and wake up any waiters
944 * @inode: new inode to unlock
946 * Called when the inode is fully initialised to clear the new state of the
947 * inode and wake up anyone waiting for the inode to finish initialisation.
949 void unlock_new_inode(struct inode
*inode
)
951 lockdep_annotate_inode_mutex_key(inode
);
952 spin_lock(&inode
->i_lock
);
953 WARN_ON(!(inode
->i_state
& I_NEW
));
954 inode
->i_state
&= ~I_NEW
;
956 wake_up_bit(&inode
->i_state
, __I_NEW
);
957 spin_unlock(&inode
->i_lock
);
959 EXPORT_SYMBOL(unlock_new_inode
);
962 * lock_two_nondirectories - take two i_mutexes on non-directory objects
964 * Lock any non-NULL argument that is not a directory.
965 * Zero, one or two objects may be locked by this function.
967 * @inode1: first inode to lock
968 * @inode2: second inode to lock
970 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
973 swap(inode1
, inode2
);
975 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
976 mutex_lock(&inode1
->i_mutex
);
977 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
978 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_NONDIR2
);
980 EXPORT_SYMBOL(lock_two_nondirectories
);
983 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
984 * @inode1: first inode to unlock
985 * @inode2: second inode to unlock
987 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
989 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
990 mutex_unlock(&inode1
->i_mutex
);
991 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
992 mutex_unlock(&inode2
->i_mutex
);
994 EXPORT_SYMBOL(unlock_two_nondirectories
);
997 * iget5_locked - obtain an inode from a mounted file system
998 * @sb: super block of file system
999 * @hashval: hash value (usually inode number) to get
1000 * @test: callback used for comparisons between inodes
1001 * @set: callback used to initialize a new struct inode
1002 * @data: opaque data pointer to pass to @test and @set
1004 * Search for the inode specified by @hashval and @data in the inode cache,
1005 * and if present it is return it with an increased reference count. This is
1006 * a generalized version of iget_locked() for file systems where the inode
1007 * number is not sufficient for unique identification of an inode.
1009 * If the inode is not in cache, allocate a new inode and return it locked,
1010 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1011 * before unlocking it via unlock_new_inode().
1013 * Note both @test and @set are called with the inode_hash_lock held, so can't
1016 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1017 int (*test
)(struct inode
*, void *),
1018 int (*set
)(struct inode
*, void *), void *data
)
1020 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1021 struct inode
*inode
;
1023 spin_lock(&inode_hash_lock
);
1024 inode
= find_inode(sb
, head
, test
, data
);
1025 spin_unlock(&inode_hash_lock
);
1028 wait_on_inode(inode
);
1032 inode
= alloc_inode(sb
);
1036 spin_lock(&inode_hash_lock
);
1037 /* We released the lock, so.. */
1038 old
= find_inode(sb
, head
, test
, data
);
1040 if (set(inode
, data
))
1043 spin_lock(&inode
->i_lock
);
1044 inode
->i_state
= I_NEW
;
1045 hlist_add_head(&inode
->i_hash
, head
);
1046 spin_unlock(&inode
->i_lock
);
1047 inode_sb_list_add(inode
);
1048 spin_unlock(&inode_hash_lock
);
1050 /* Return the locked inode with I_NEW set, the
1051 * caller is responsible for filling in the contents
1057 * Uhhuh, somebody else created the same inode under
1058 * us. Use the old inode instead of the one we just
1061 spin_unlock(&inode_hash_lock
);
1062 destroy_inode(inode
);
1064 wait_on_inode(inode
);
1069 spin_unlock(&inode_hash_lock
);
1070 destroy_inode(inode
);
1073 EXPORT_SYMBOL(iget5_locked
);
1076 * iget_locked - obtain an inode from a mounted file system
1077 * @sb: super block of file system
1078 * @ino: inode number to get
1080 * Search for the inode specified by @ino in the inode cache and if present
1081 * return it with an increased reference count. This is for file systems
1082 * where the inode number is sufficient for unique identification of an inode.
1084 * If the inode is not in cache, allocate a new inode and return it locked,
1085 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1086 * before unlocking it via unlock_new_inode().
1088 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1090 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1091 struct inode
*inode
;
1093 spin_lock(&inode_hash_lock
);
1094 inode
= find_inode_fast(sb
, head
, ino
);
1095 spin_unlock(&inode_hash_lock
);
1097 wait_on_inode(inode
);
1101 inode
= alloc_inode(sb
);
1105 spin_lock(&inode_hash_lock
);
1106 /* We released the lock, so.. */
1107 old
= find_inode_fast(sb
, head
, ino
);
1110 spin_lock(&inode
->i_lock
);
1111 inode
->i_state
= I_NEW
;
1112 hlist_add_head(&inode
->i_hash
, head
);
1113 spin_unlock(&inode
->i_lock
);
1114 inode_sb_list_add(inode
);
1115 spin_unlock(&inode_hash_lock
);
1117 /* Return the locked inode with I_NEW set, the
1118 * caller is responsible for filling in the contents
1124 * Uhhuh, somebody else created the same inode under
1125 * us. Use the old inode instead of the one we just
1128 spin_unlock(&inode_hash_lock
);
1129 destroy_inode(inode
);
1131 wait_on_inode(inode
);
1135 EXPORT_SYMBOL(iget_locked
);
1138 * search the inode cache for a matching inode number.
1139 * If we find one, then the inode number we are trying to
1140 * allocate is not unique and so we should not use it.
1142 * Returns 1 if the inode number is unique, 0 if it is not.
1144 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1146 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1147 struct inode
*inode
;
1149 spin_lock(&inode_hash_lock
);
1150 hlist_for_each_entry(inode
, b
, i_hash
) {
1151 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1152 spin_unlock(&inode_hash_lock
);
1156 spin_unlock(&inode_hash_lock
);
1162 * iunique - get a unique inode number
1164 * @max_reserved: highest reserved inode number
1166 * Obtain an inode number that is unique on the system for a given
1167 * superblock. This is used by file systems that have no natural
1168 * permanent inode numbering system. An inode number is returned that
1169 * is higher than the reserved limit but unique.
1172 * With a large number of inodes live on the file system this function
1173 * currently becomes quite slow.
1175 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1178 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1179 * error if st_ino won't fit in target struct field. Use 32bit counter
1180 * here to attempt to avoid that.
1182 static DEFINE_SPINLOCK(iunique_lock
);
1183 static unsigned int counter
;
1186 spin_lock(&iunique_lock
);
1188 if (counter
<= max_reserved
)
1189 counter
= max_reserved
+ 1;
1191 } while (!test_inode_iunique(sb
, res
));
1192 spin_unlock(&iunique_lock
);
1196 EXPORT_SYMBOL(iunique
);
1198 struct inode
*igrab(struct inode
*inode
)
1200 spin_lock(&inode
->i_lock
);
1201 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1203 spin_unlock(&inode
->i_lock
);
1205 spin_unlock(&inode
->i_lock
);
1207 * Handle the case where s_op->clear_inode is not been
1208 * called yet, and somebody is calling igrab
1209 * while the inode is getting freed.
1215 EXPORT_SYMBOL(igrab
);
1218 * ilookup5_nowait - search for an inode in the inode cache
1219 * @sb: super block of file system to search
1220 * @hashval: hash value (usually inode number) to search for
1221 * @test: callback used for comparisons between inodes
1222 * @data: opaque data pointer to pass to @test
1224 * Search for the inode specified by @hashval and @data in the inode cache.
1225 * If the inode is in the cache, the inode is returned with an incremented
1228 * Note: I_NEW is not waited upon so you have to be very careful what you do
1229 * with the returned inode. You probably should be using ilookup5() instead.
1231 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1233 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1234 int (*test
)(struct inode
*, void *), void *data
)
1236 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1237 struct inode
*inode
;
1239 spin_lock(&inode_hash_lock
);
1240 inode
= find_inode(sb
, head
, test
, data
);
1241 spin_unlock(&inode_hash_lock
);
1245 EXPORT_SYMBOL(ilookup5_nowait
);
1248 * ilookup5 - search for an inode in the inode cache
1249 * @sb: super block of file system to search
1250 * @hashval: hash value (usually inode number) to search for
1251 * @test: callback used for comparisons between inodes
1252 * @data: opaque data pointer to pass to @test
1254 * Search for the inode specified by @hashval and @data in the inode cache,
1255 * and if the inode is in the cache, return the inode with an incremented
1256 * reference count. Waits on I_NEW before returning the inode.
1257 * returned with an incremented reference count.
1259 * This is a generalized version of ilookup() for file systems where the
1260 * inode number is not sufficient for unique identification of an inode.
1262 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1264 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1265 int (*test
)(struct inode
*, void *), void *data
)
1267 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1270 wait_on_inode(inode
);
1273 EXPORT_SYMBOL(ilookup5
);
1276 * ilookup - search for an inode in the inode cache
1277 * @sb: super block of file system to search
1278 * @ino: inode number to search for
1280 * Search for the inode @ino in the inode cache, and if the inode is in the
1281 * cache, the inode is returned with an incremented reference count.
1283 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1285 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1286 struct inode
*inode
;
1288 spin_lock(&inode_hash_lock
);
1289 inode
= find_inode_fast(sb
, head
, ino
);
1290 spin_unlock(&inode_hash_lock
);
1293 wait_on_inode(inode
);
1296 EXPORT_SYMBOL(ilookup
);
1299 * find_inode_nowait - find an inode in the inode cache
1300 * @sb: super block of file system to search
1301 * @hashval: hash value (usually inode number) to search for
1302 * @match: callback used for comparisons between inodes
1303 * @data: opaque data pointer to pass to @match
1305 * Search for the inode specified by @hashval and @data in the inode
1306 * cache, where the helper function @match will return 0 if the inode
1307 * does not match, 1 if the inode does match, and -1 if the search
1308 * should be stopped. The @match function must be responsible for
1309 * taking the i_lock spin_lock and checking i_state for an inode being
1310 * freed or being initialized, and incrementing the reference count
1311 * before returning 1. It also must not sleep, since it is called with
1312 * the inode_hash_lock spinlock held.
1314 * This is a even more generalized version of ilookup5() when the
1315 * function must never block --- find_inode() can block in
1316 * __wait_on_freeing_inode() --- or when the caller can not increment
1317 * the reference count because the resulting iput() might cause an
1318 * inode eviction. The tradeoff is that the @match funtion must be
1319 * very carefully implemented.
1321 struct inode
*find_inode_nowait(struct super_block
*sb
,
1322 unsigned long hashval
,
1323 int (*match
)(struct inode
*, unsigned long,
1327 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1328 struct inode
*inode
, *ret_inode
= NULL
;
1331 spin_lock(&inode_hash_lock
);
1332 hlist_for_each_entry(inode
, head
, i_hash
) {
1333 if (inode
->i_sb
!= sb
)
1335 mval
= match(inode
, hashval
, data
);
1343 spin_unlock(&inode_hash_lock
);
1346 EXPORT_SYMBOL(find_inode_nowait
);
1348 int insert_inode_locked(struct inode
*inode
)
1350 struct super_block
*sb
= inode
->i_sb
;
1351 ino_t ino
= inode
->i_ino
;
1352 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1355 struct inode
*old
= NULL
;
1356 spin_lock(&inode_hash_lock
);
1357 hlist_for_each_entry(old
, head
, i_hash
) {
1358 if (old
->i_ino
!= ino
)
1360 if (old
->i_sb
!= sb
)
1362 spin_lock(&old
->i_lock
);
1363 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1364 spin_unlock(&old
->i_lock
);
1370 spin_lock(&inode
->i_lock
);
1371 inode
->i_state
|= I_NEW
;
1372 hlist_add_head(&inode
->i_hash
, head
);
1373 spin_unlock(&inode
->i_lock
);
1374 spin_unlock(&inode_hash_lock
);
1378 spin_unlock(&old
->i_lock
);
1379 spin_unlock(&inode_hash_lock
);
1381 if (unlikely(!inode_unhashed(old
))) {
1388 EXPORT_SYMBOL(insert_inode_locked
);
1390 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1391 int (*test
)(struct inode
*, void *), void *data
)
1393 struct super_block
*sb
= inode
->i_sb
;
1394 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1397 struct inode
*old
= NULL
;
1399 spin_lock(&inode_hash_lock
);
1400 hlist_for_each_entry(old
, head
, i_hash
) {
1401 if (old
->i_sb
!= sb
)
1403 if (!test(old
, data
))
1405 spin_lock(&old
->i_lock
);
1406 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1407 spin_unlock(&old
->i_lock
);
1413 spin_lock(&inode
->i_lock
);
1414 inode
->i_state
|= I_NEW
;
1415 hlist_add_head(&inode
->i_hash
, head
);
1416 spin_unlock(&inode
->i_lock
);
1417 spin_unlock(&inode_hash_lock
);
1421 spin_unlock(&old
->i_lock
);
1422 spin_unlock(&inode_hash_lock
);
1424 if (unlikely(!inode_unhashed(old
))) {
1431 EXPORT_SYMBOL(insert_inode_locked4
);
1434 int generic_delete_inode(struct inode
*inode
)
1438 EXPORT_SYMBOL(generic_delete_inode
);
1441 * Called when we're dropping the last reference
1444 * Call the FS "drop_inode()" function, defaulting to
1445 * the legacy UNIX filesystem behaviour. If it tells
1446 * us to evict inode, do so. Otherwise, retain inode
1447 * in cache if fs is alive, sync and evict if fs is
1450 static void iput_final(struct inode
*inode
)
1452 struct super_block
*sb
= inode
->i_sb
;
1453 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1456 WARN_ON(inode
->i_state
& I_NEW
);
1459 drop
= op
->drop_inode(inode
);
1461 drop
= generic_drop_inode(inode
);
1463 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1464 inode
->i_state
|= I_REFERENCED
;
1465 inode_add_lru(inode
);
1466 spin_unlock(&inode
->i_lock
);
1471 inode
->i_state
|= I_WILL_FREE
;
1472 spin_unlock(&inode
->i_lock
);
1473 write_inode_now(inode
, 1);
1474 spin_lock(&inode
->i_lock
);
1475 WARN_ON(inode
->i_state
& I_NEW
);
1476 inode
->i_state
&= ~I_WILL_FREE
;
1479 inode
->i_state
|= I_FREEING
;
1480 if (!list_empty(&inode
->i_lru
))
1481 inode_lru_list_del(inode
);
1482 spin_unlock(&inode
->i_lock
);
1488 * iput - put an inode
1489 * @inode: inode to put
1491 * Puts an inode, dropping its usage count. If the inode use count hits
1492 * zero, the inode is then freed and may also be destroyed.
1494 * Consequently, iput() can sleep.
1496 void iput(struct inode
*inode
)
1500 BUG_ON(inode
->i_state
& I_CLEAR
);
1502 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1503 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1504 atomic_inc(&inode
->i_count
);
1505 inode
->i_state
&= ~I_DIRTY_TIME
;
1506 spin_unlock(&inode
->i_lock
);
1507 trace_writeback_lazytime_iput(inode
);
1508 mark_inode_dirty_sync(inode
);
1514 EXPORT_SYMBOL(iput
);
1517 * bmap - find a block number in a file
1518 * @inode: inode of file
1519 * @block: block to find
1521 * Returns the block number on the device holding the inode that
1522 * is the disk block number for the block of the file requested.
1523 * That is, asked for block 4 of inode 1 the function will return the
1524 * disk block relative to the disk start that holds that block of the
1527 sector_t
bmap(struct inode
*inode
, sector_t block
)
1530 if (inode
->i_mapping
->a_ops
->bmap
)
1531 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1534 EXPORT_SYMBOL(bmap
);
1537 * With relative atime, only update atime if the previous atime is
1538 * earlier than either the ctime or mtime or if at least a day has
1539 * passed since the last atime update.
1541 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1542 struct timespec now
)
1545 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1548 * Is mtime younger than atime? If yes, update atime:
1550 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1553 * Is ctime younger than atime? If yes, update atime:
1555 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1559 * Is the previous atime value older than a day? If yes,
1562 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1565 * Good, we can skip the atime update:
1570 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1572 int iflags
= I_DIRTY_TIME
;
1574 if (flags
& S_ATIME
)
1575 inode
->i_atime
= *time
;
1576 if (flags
& S_VERSION
)
1577 inode_inc_iversion(inode
);
1578 if (flags
& S_CTIME
)
1579 inode
->i_ctime
= *time
;
1580 if (flags
& S_MTIME
)
1581 inode
->i_mtime
= *time
;
1583 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1584 iflags
|= I_DIRTY_SYNC
;
1585 __mark_inode_dirty(inode
, iflags
);
1588 EXPORT_SYMBOL(generic_update_time
);
1591 * This does the actual work of updating an inodes time or version. Must have
1592 * had called mnt_want_write() before calling this.
1594 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1596 int (*update_time
)(struct inode
*, struct timespec
*, int);
1598 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1599 generic_update_time
;
1601 return update_time(inode
, time
, flags
);
1605 * touch_atime - update the access time
1606 * @path: the &struct path to update
1607 * @inode: inode to update
1609 * Update the accessed time on an inode and mark it for writeback.
1610 * This function automatically handles read only file systems and media,
1611 * as well as the "noatime" flag and inode specific "noatime" markers.
1613 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1615 struct vfsmount
*mnt
= path
->mnt
;
1616 struct timespec now
;
1618 if (inode
->i_flags
& S_NOATIME
)
1620 if (IS_NOATIME(inode
))
1622 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1625 if (mnt
->mnt_flags
& MNT_NOATIME
)
1627 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1630 now
= current_fs_time(inode
->i_sb
);
1632 if (!relatime_need_update(mnt
, inode
, now
))
1635 if (timespec_equal(&inode
->i_atime
, &now
))
1641 void touch_atime(const struct path
*path
)
1643 struct vfsmount
*mnt
= path
->mnt
;
1644 struct inode
*inode
= d_inode(path
->dentry
);
1645 struct timespec now
;
1647 if (!atime_needs_update(path
, inode
))
1650 if (!sb_start_write_trylock(inode
->i_sb
))
1653 if (__mnt_want_write(mnt
) != 0)
1656 * File systems can error out when updating inodes if they need to
1657 * allocate new space to modify an inode (such is the case for
1658 * Btrfs), but since we touch atime while walking down the path we
1659 * really don't care if we failed to update the atime of the file,
1660 * so just ignore the return value.
1661 * We may also fail on filesystems that have the ability to make parts
1662 * of the fs read only, e.g. subvolumes in Btrfs.
1664 now
= current_fs_time(inode
->i_sb
);
1665 update_time(inode
, &now
, S_ATIME
);
1666 __mnt_drop_write(mnt
);
1668 sb_end_write(inode
->i_sb
);
1670 EXPORT_SYMBOL(touch_atime
);
1673 * The logic we want is
1675 * if suid or (sgid and xgrp)
1678 int should_remove_suid(struct dentry
*dentry
)
1680 umode_t mode
= d_inode(dentry
)->i_mode
;
1683 /* suid always must be killed */
1684 if (unlikely(mode
& S_ISUID
))
1685 kill
= ATTR_KILL_SUID
;
1688 * sgid without any exec bits is just a mandatory locking mark; leave
1689 * it alone. If some exec bits are set, it's a real sgid; kill it.
1691 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1692 kill
|= ATTR_KILL_SGID
;
1694 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1699 EXPORT_SYMBOL(should_remove_suid
);
1702 * Return mask of changes for notify_change() that need to be done as a
1703 * response to write or truncate. Return 0 if nothing has to be changed.
1704 * Negative value on error (change should be denied).
1706 int dentry_needs_remove_privs(struct dentry
*dentry
)
1708 struct inode
*inode
= d_inode(dentry
);
1712 if (IS_NOSEC(inode
))
1715 mask
= should_remove_suid(dentry
);
1716 ret
= security_inode_need_killpriv(dentry
);
1720 mask
|= ATTR_KILL_PRIV
;
1723 EXPORT_SYMBOL(dentry_needs_remove_privs
);
1725 static int __remove_privs(struct dentry
*dentry
, int kill
)
1727 struct iattr newattrs
;
1729 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1731 * Note we call this on write, so notify_change will not
1732 * encounter any conflicting delegations:
1734 return notify_change(dentry
, &newattrs
, NULL
);
1738 * Remove special file priviledges (suid, capabilities) when file is written
1741 int file_remove_privs(struct file
*file
)
1743 struct dentry
*dentry
= file_dentry(file
);
1744 struct inode
*inode
= file_inode(file
);
1749 * Fast path for nothing security related.
1750 * As well for non-regular files, e.g. blkdev inodes.
1751 * For example, blkdev_write_iter() might get here
1752 * trying to remove privs which it is not allowed to.
1754 if (IS_NOSEC(inode
) || !S_ISREG(inode
->i_mode
))
1757 kill
= dentry_needs_remove_privs(dentry
);
1761 error
= __remove_privs(dentry
, kill
);
1763 inode_has_no_xattr(inode
);
1767 EXPORT_SYMBOL(file_remove_privs
);
1770 * file_update_time - update mtime and ctime time
1771 * @file: file accessed
1773 * Update the mtime and ctime members of an inode and mark the inode
1774 * for writeback. Note that this function is meant exclusively for
1775 * usage in the file write path of filesystems, and filesystems may
1776 * choose to explicitly ignore update via this function with the
1777 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1778 * timestamps are handled by the server. This can return an error for
1779 * file systems who need to allocate space in order to update an inode.
1782 int file_update_time(struct file
*file
)
1784 struct inode
*inode
= file_inode(file
);
1785 struct timespec now
;
1789 /* First try to exhaust all avenues to not sync */
1790 if (IS_NOCMTIME(inode
))
1793 now
= current_fs_time(inode
->i_sb
);
1794 if (!timespec_equal(&inode
->i_mtime
, &now
))
1797 if (!timespec_equal(&inode
->i_ctime
, &now
))
1800 if (IS_I_VERSION(inode
))
1801 sync_it
|= S_VERSION
;
1806 /* Finally allowed to write? Takes lock. */
1807 if (__mnt_want_write_file(file
))
1810 ret
= update_time(inode
, &now
, sync_it
);
1811 __mnt_drop_write_file(file
);
1815 EXPORT_SYMBOL(file_update_time
);
1817 int inode_needs_sync(struct inode
*inode
)
1821 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1825 EXPORT_SYMBOL(inode_needs_sync
);
1828 * If we try to find an inode in the inode hash while it is being
1829 * deleted, we have to wait until the filesystem completes its
1830 * deletion before reporting that it isn't found. This function waits
1831 * until the deletion _might_ have completed. Callers are responsible
1832 * to recheck inode state.
1834 * It doesn't matter if I_NEW is not set initially, a call to
1835 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1838 static void __wait_on_freeing_inode(struct inode
*inode
)
1840 wait_queue_head_t
*wq
;
1841 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1842 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1843 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1844 spin_unlock(&inode
->i_lock
);
1845 spin_unlock(&inode_hash_lock
);
1847 finish_wait(wq
, &wait
.wait
);
1848 spin_lock(&inode_hash_lock
);
1851 static __initdata
unsigned long ihash_entries
;
1852 static int __init
set_ihash_entries(char *str
)
1856 ihash_entries
= simple_strtoul(str
, &str
, 0);
1859 __setup("ihash_entries=", set_ihash_entries
);
1862 * Initialize the waitqueues and inode hash table.
1864 void __init
inode_init_early(void)
1868 /* If hashes are distributed across NUMA nodes, defer
1869 * hash allocation until vmalloc space is available.
1875 alloc_large_system_hash("Inode-cache",
1876 sizeof(struct hlist_head
),
1885 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1886 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1889 void __init
inode_init(void)
1893 /* inode slab cache */
1894 inode_cachep
= kmem_cache_create("inode_cache",
1895 sizeof(struct inode
),
1897 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1901 /* Hash may have been set up in inode_init_early */
1906 alloc_large_system_hash("Inode-cache",
1907 sizeof(struct hlist_head
),
1916 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1917 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1920 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1922 inode
->i_mode
= mode
;
1923 if (S_ISCHR(mode
)) {
1924 inode
->i_fop
= &def_chr_fops
;
1925 inode
->i_rdev
= rdev
;
1926 } else if (S_ISBLK(mode
)) {
1927 inode
->i_fop
= &def_blk_fops
;
1928 inode
->i_rdev
= rdev
;
1929 } else if (S_ISFIFO(mode
))
1930 inode
->i_fop
= &pipefifo_fops
;
1931 else if (S_ISSOCK(mode
))
1932 ; /* leave it no_open_fops */
1934 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1935 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1938 EXPORT_SYMBOL(init_special_inode
);
1941 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1943 * @dir: Directory inode
1944 * @mode: mode of the new inode
1946 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1949 inode
->i_uid
= current_fsuid();
1950 if (dir
&& dir
->i_mode
& S_ISGID
) {
1951 inode
->i_gid
= dir
->i_gid
;
1953 /* Directories are special, and always inherit S_ISGID */
1956 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
1957 !in_group_p(inode
->i_gid
) &&
1958 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
1961 inode
->i_gid
= current_fsgid();
1962 inode
->i_mode
= mode
;
1964 EXPORT_SYMBOL(inode_init_owner
);
1967 * inode_owner_or_capable - check current task permissions to inode
1968 * @inode: inode being checked
1970 * Return true if current either has CAP_FOWNER in a namespace with the
1971 * inode owner uid mapped, or owns the file.
1973 bool inode_owner_or_capable(const struct inode
*inode
)
1975 struct user_namespace
*ns
;
1977 if (uid_eq(current_fsuid(), inode
->i_uid
))
1980 ns
= current_user_ns();
1981 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
1985 EXPORT_SYMBOL(inode_owner_or_capable
);
1988 * Direct i/o helper functions
1990 static void __inode_dio_wait(struct inode
*inode
)
1992 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1993 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1996 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1997 if (atomic_read(&inode
->i_dio_count
))
1999 } while (atomic_read(&inode
->i_dio_count
));
2000 finish_wait(wq
, &q
.wait
);
2004 * inode_dio_wait - wait for outstanding DIO requests to finish
2005 * @inode: inode to wait for
2007 * Waits for all pending direct I/O requests to finish so that we can
2008 * proceed with a truncate or equivalent operation.
2010 * Must be called under a lock that serializes taking new references
2011 * to i_dio_count, usually by inode->i_mutex.
2013 void inode_dio_wait(struct inode
*inode
)
2015 if (atomic_read(&inode
->i_dio_count
))
2016 __inode_dio_wait(inode
);
2018 EXPORT_SYMBOL(inode_dio_wait
);
2021 * inode_set_flags - atomically set some inode flags
2023 * Note: the caller should be holding i_mutex, or else be sure that
2024 * they have exclusive access to the inode structure (i.e., while the
2025 * inode is being instantiated). The reason for the cmpxchg() loop
2026 * --- which wouldn't be necessary if all code paths which modify
2027 * i_flags actually followed this rule, is that there is at least one
2028 * code path which doesn't today so we use cmpxchg() out of an abundance
2031 * In the long run, i_mutex is overkill, and we should probably look
2032 * at using the i_lock spinlock to protect i_flags, and then make sure
2033 * it is so documented in include/linux/fs.h and that all code follows
2034 * the locking convention!!
2036 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2039 unsigned int old_flags
, new_flags
;
2041 WARN_ON_ONCE(flags
& ~mask
);
2043 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2044 new_flags
= (old_flags
& ~mask
) | flags
;
2045 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2046 new_flags
) != old_flags
));
2048 EXPORT_SYMBOL(inode_set_flags
);
2050 void inode_nohighmem(struct inode
*inode
)
2052 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2054 EXPORT_SYMBOL(inode_nohighmem
);