4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly
= 100000;
33 static unsigned int m_hash_mask __read_mostly
;
34 static unsigned int m_hash_shift __read_mostly
;
35 static unsigned int mp_hash_mask __read_mostly
;
36 static unsigned int mp_hash_shift __read_mostly
;
38 static __initdata
unsigned long mhash_entries
;
39 static int __init
set_mhash_entries(char *str
)
43 mhash_entries
= simple_strtoul(str
, &str
, 0);
46 __setup("mhash_entries=", set_mhash_entries
);
48 static __initdata
unsigned long mphash_entries
;
49 static int __init
set_mphash_entries(char *str
)
53 mphash_entries
= simple_strtoul(str
, &str
, 0);
56 __setup("mphash_entries=", set_mphash_entries
);
59 static DEFINE_IDA(mnt_id_ida
);
60 static DEFINE_IDA(mnt_group_ida
);
61 static DEFINE_SPINLOCK(mnt_id_lock
);
62 static int mnt_id_start
= 0;
63 static int mnt_group_start
= 1;
65 static struct hlist_head
*mount_hashtable __read_mostly
;
66 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
67 static struct kmem_cache
*mnt_cache __read_mostly
;
68 static DECLARE_RWSEM(namespace_sem
);
71 struct kobject
*fs_kobj
;
72 EXPORT_SYMBOL_GPL(fs_kobj
);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
84 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
86 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
87 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
88 tmp
= tmp
+ (tmp
>> m_hash_shift
);
89 return &mount_hashtable
[tmp
& m_hash_mask
];
92 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
94 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
95 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
96 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount
*mnt
)
108 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
109 spin_lock(&mnt_id_lock
);
110 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
112 mnt_id_start
= mnt
->mnt_id
+ 1;
113 spin_unlock(&mnt_id_lock
);
120 static void mnt_free_id(struct mount
*mnt
)
122 int id
= mnt
->mnt_id
;
123 spin_lock(&mnt_id_lock
);
124 ida_remove(&mnt_id_ida
, id
);
125 if (mnt_id_start
> id
)
127 spin_unlock(&mnt_id_lock
);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount
*mnt
)
139 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
142 res
= ida_get_new_above(&mnt_group_ida
,
146 mnt_group_start
= mnt
->mnt_group_id
+ 1;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount
*mnt
)
156 int id
= mnt
->mnt_group_id
;
157 ida_remove(&mnt_group_ida
, id
);
158 if (mnt_group_start
> id
)
159 mnt_group_start
= id
;
160 mnt
->mnt_group_id
= 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount
*mnt
, int n
)
169 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount
*mnt
)
183 unsigned int count
= 0;
186 for_each_possible_cpu(cpu
) {
187 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
192 return mnt
->mnt_count
;
196 static void drop_mountpoint(struct fs_pin
*p
)
198 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
199 dput(m
->mnt_ex_mountpoint
);
204 static struct mount
*alloc_vfsmnt(const char *name
)
206 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
210 err
= mnt_alloc_id(mnt
);
215 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
216 if (!mnt
->mnt_devname
)
221 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
223 goto out_free_devname
;
225 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
228 mnt
->mnt_writers
= 0;
231 INIT_HLIST_NODE(&mnt
->mnt_hash
);
232 INIT_LIST_HEAD(&mnt
->mnt_child
);
233 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
234 INIT_LIST_HEAD(&mnt
->mnt_list
);
235 INIT_LIST_HEAD(&mnt
->mnt_expire
);
236 INIT_LIST_HEAD(&mnt
->mnt_share
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
238 INIT_LIST_HEAD(&mnt
->mnt_slave
);
239 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
240 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
244 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
250 kfree_const(mnt
->mnt_devname
);
255 kmem_cache_free(mnt_cache
, mnt
);
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
278 int __mnt_is_readonly(struct vfsmount
*mnt
)
280 if (mnt
->mnt_flags
& MNT_READONLY
)
282 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
288 static inline void mnt_inc_writers(struct mount
*mnt
)
291 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
297 static inline void mnt_dec_writers(struct mount
*mnt
)
300 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
306 static unsigned int mnt_get_writers(struct mount
*mnt
)
309 unsigned int count
= 0;
312 for_each_possible_cpu(cpu
) {
313 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
318 return mnt
->mnt_writers
;
322 static int mnt_is_readonly(struct vfsmount
*mnt
)
324 if (mnt
->mnt_sb
->s_readonly_remount
)
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
328 return __mnt_is_readonly(mnt
);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount
*m
)
349 struct mount
*mnt
= real_mount(m
);
353 mnt_inc_writers(mnt
);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
360 while (ACCESS_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
368 if (mnt_is_readonly(m
)) {
369 mnt_dec_writers(mnt
);
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount
*m
)
390 sb_start_write(m
->mnt_sb
);
391 ret
= __mnt_want_write(m
);
393 sb_end_write(m
->mnt_sb
);
396 EXPORT_SYMBOL_GPL(mnt_want_write
);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount
*mnt
)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt
))
416 mnt_inc_writers(real_mount(mnt
));
420 EXPORT_SYMBOL_GPL(mnt_clone_write
);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file
*file
)
431 if (!(file
->f_mode
& FMODE_WRITER
))
432 return __mnt_want_write(file
->f_path
.mnt
);
434 return mnt_clone_write(file
->f_path
.mnt
);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file
*file
)
448 sb_start_write(file
->f_path
.mnt
->mnt_sb
);
449 ret
= __mnt_want_write_file(file
);
451 sb_end_write(file
->f_path
.mnt
->mnt_sb
);
454 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount
*mnt
)
467 mnt_dec_writers(real_mount(mnt
));
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount
*mnt
)
481 __mnt_drop_write(mnt
);
482 sb_end_write(mnt
->mnt_sb
);
484 EXPORT_SYMBOL_GPL(mnt_drop_write
);
486 void __mnt_drop_write_file(struct file
*file
)
488 __mnt_drop_write(file
->f_path
.mnt
);
491 void mnt_drop_write_file(struct file
*file
)
493 mnt_drop_write(file
->f_path
.mnt
);
495 EXPORT_SYMBOL(mnt_drop_write_file
);
497 static int mnt_make_readonly(struct mount
*mnt
)
502 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt
) > 0)
528 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
534 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
539 static void __mnt_unmake_readonly(struct mount
*mnt
)
542 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
546 int sb_prepare_remount_readonly(struct super_block
*sb
)
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb
->s_remove_count
))
556 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
557 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
558 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
560 if (mnt_get_writers(mnt
) > 0) {
566 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
570 sb
->s_readonly_remount
= 1;
573 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
574 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
575 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
582 static void free_vfsmnt(struct mount
*mnt
)
584 kfree_const(mnt
->mnt_devname
);
586 free_percpu(mnt
->mnt_pcp
);
588 kmem_cache_free(mnt_cache
, mnt
);
591 static void delayed_free_vfsmnt(struct rcu_head
*head
)
593 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
600 if (read_seqretry(&mount_lock
, seq
))
604 mnt
= real_mount(bastard
);
605 mnt_add_count(mnt
, 1);
606 smp_mb(); // see mntput_no_expire()
607 if (likely(!read_seqretry(&mount_lock
, seq
)))
609 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
610 mnt_add_count(mnt
, -1);
614 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
615 mnt_add_count(mnt
, -1);
620 /* caller will mntput() */
624 /* call under rcu_read_lock */
625 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
627 int res
= __legitimize_mnt(bastard
, seq
);
630 if (unlikely(res
< 0)) {
639 * find the first mount at @dentry on vfsmount @mnt.
640 * call under rcu_read_lock()
642 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
644 struct hlist_head
*head
= m_hash(mnt
, dentry
);
647 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
648 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
654 * lookup_mnt - Return the first child mount mounted at path
656 * "First" means first mounted chronologically. If you create the
659 * mount /dev/sda1 /mnt
660 * mount /dev/sda2 /mnt
661 * mount /dev/sda3 /mnt
663 * Then lookup_mnt() on the base /mnt dentry in the root mount will
664 * return successively the root dentry and vfsmount of /dev/sda1, then
665 * /dev/sda2, then /dev/sda3, then NULL.
667 * lookup_mnt takes a reference to the found vfsmount.
669 struct vfsmount
*lookup_mnt(struct path
*path
)
671 struct mount
*child_mnt
;
677 seq
= read_seqbegin(&mount_lock
);
678 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
679 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
680 } while (!legitimize_mnt(m
, seq
));
686 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
687 * current mount namespace.
689 * The common case is dentries are not mountpoints at all and that
690 * test is handled inline. For the slow case when we are actually
691 * dealing with a mountpoint of some kind, walk through all of the
692 * mounts in the current mount namespace and test to see if the dentry
695 * The mount_hashtable is not usable in the context because we
696 * need to identify all mounts that may be in the current mount
697 * namespace not just a mount that happens to have some specified
700 bool __is_local_mountpoint(struct dentry
*dentry
)
702 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
704 bool is_covered
= false;
706 if (!d_mountpoint(dentry
))
709 down_read(&namespace_sem
);
710 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
711 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
715 up_read(&namespace_sem
);
720 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
722 struct hlist_head
*chain
= mp_hash(dentry
);
723 struct mountpoint
*mp
;
725 hlist_for_each_entry(mp
, chain
, m_hash
) {
726 if (mp
->m_dentry
== dentry
) {
727 /* might be worth a WARN_ON() */
728 if (d_unlinked(dentry
))
729 return ERR_PTR(-ENOENT
);
737 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
739 struct mountpoint
*mp
, *new = NULL
;
742 if (d_mountpoint(dentry
)) {
744 read_seqlock_excl(&mount_lock
);
745 mp
= lookup_mountpoint(dentry
);
746 read_sequnlock_excl(&mount_lock
);
752 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
754 return ERR_PTR(-ENOMEM
);
757 /* Exactly one processes may set d_mounted */
758 ret
= d_set_mounted(dentry
);
760 /* Someone else set d_mounted? */
764 /* The dentry is not available as a mountpoint? */
769 /* Add the new mountpoint to the hash table */
770 read_seqlock_excl(&mount_lock
);
771 new->m_dentry
= dentry
;
773 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
774 INIT_HLIST_HEAD(&new->m_list
);
775 read_sequnlock_excl(&mount_lock
);
784 static void put_mountpoint(struct mountpoint
*mp
)
786 if (!--mp
->m_count
) {
787 struct dentry
*dentry
= mp
->m_dentry
;
788 BUG_ON(!hlist_empty(&mp
->m_list
));
789 spin_lock(&dentry
->d_lock
);
790 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
791 spin_unlock(&dentry
->d_lock
);
792 hlist_del(&mp
->m_hash
);
797 static inline int check_mnt(struct mount
*mnt
)
799 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
803 * vfsmount lock must be held for write
805 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
809 wake_up_interruptible(&ns
->poll
);
814 * vfsmount lock must be held for write
816 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
818 if (ns
&& ns
->event
!= event
) {
820 wake_up_interruptible(&ns
->poll
);
825 * vfsmount lock must be held for write
827 static void unhash_mnt(struct mount
*mnt
)
829 mnt
->mnt_parent
= mnt
;
830 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
831 list_del_init(&mnt
->mnt_child
);
832 hlist_del_init_rcu(&mnt
->mnt_hash
);
833 hlist_del_init(&mnt
->mnt_mp_list
);
834 put_mountpoint(mnt
->mnt_mp
);
839 * vfsmount lock must be held for write
841 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
843 old_path
->dentry
= mnt
->mnt_mountpoint
;
844 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
849 * vfsmount lock must be held for write
851 static void umount_mnt(struct mount
*mnt
)
853 /* old mountpoint will be dropped when we can do that */
854 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
859 * vfsmount lock must be held for write
861 void mnt_set_mountpoint(struct mount
*mnt
,
862 struct mountpoint
*mp
,
863 struct mount
*child_mnt
)
866 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
867 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
868 child_mnt
->mnt_parent
= mnt
;
869 child_mnt
->mnt_mp
= mp
;
870 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
873 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
875 hlist_add_head_rcu(&mnt
->mnt_hash
,
876 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
877 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
881 * vfsmount lock must be held for write
883 static void attach_mnt(struct mount
*mnt
,
884 struct mount
*parent
,
885 struct mountpoint
*mp
)
887 mnt_set_mountpoint(parent
, mp
, mnt
);
888 __attach_mnt(mnt
, parent
);
891 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
893 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
894 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
895 struct mount
*old_parent
= mnt
->mnt_parent
;
897 list_del_init(&mnt
->mnt_child
);
898 hlist_del_init(&mnt
->mnt_mp_list
);
899 hlist_del_init_rcu(&mnt
->mnt_hash
);
901 attach_mnt(mnt
, parent
, mp
);
903 put_mountpoint(old_mp
);
906 * Safely avoid even the suggestion this code might sleep or
907 * lock the mount hash by taking advantage of the knowledge that
908 * mnt_change_mountpoint will not release the final reference
911 * During mounting, the mount passed in as the parent mount will
912 * continue to use the old mountpoint and during unmounting, the
913 * old mountpoint will continue to exist until namespace_unlock,
914 * which happens well after mnt_change_mountpoint.
916 spin_lock(&old_mountpoint
->d_lock
);
917 old_mountpoint
->d_lockref
.count
--;
918 spin_unlock(&old_mountpoint
->d_lock
);
920 mnt_add_count(old_parent
, -1);
924 * vfsmount lock must be held for write
926 static void commit_tree(struct mount
*mnt
)
928 struct mount
*parent
= mnt
->mnt_parent
;
931 struct mnt_namespace
*n
= parent
->mnt_ns
;
933 BUG_ON(parent
== mnt
);
935 list_add_tail(&head
, &mnt
->mnt_list
);
936 list_for_each_entry(m
, &head
, mnt_list
)
939 list_splice(&head
, n
->list
.prev
);
941 n
->mounts
+= n
->pending_mounts
;
942 n
->pending_mounts
= 0;
944 __attach_mnt(mnt
, parent
);
945 touch_mnt_namespace(n
);
948 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
950 struct list_head
*next
= p
->mnt_mounts
.next
;
951 if (next
== &p
->mnt_mounts
) {
955 next
= p
->mnt_child
.next
;
956 if (next
!= &p
->mnt_parent
->mnt_mounts
)
961 return list_entry(next
, struct mount
, mnt_child
);
964 static struct mount
*skip_mnt_tree(struct mount
*p
)
966 struct list_head
*prev
= p
->mnt_mounts
.prev
;
967 while (prev
!= &p
->mnt_mounts
) {
968 p
= list_entry(prev
, struct mount
, mnt_child
);
969 prev
= p
->mnt_mounts
.prev
;
975 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
981 return ERR_PTR(-ENODEV
);
983 mnt
= alloc_vfsmnt(name
);
985 return ERR_PTR(-ENOMEM
);
987 if (flags
& MS_KERNMOUNT
)
988 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
990 root
= mount_fs(type
, flags
, name
, data
);
994 return ERR_CAST(root
);
997 mnt
->mnt
.mnt_root
= root
;
998 mnt
->mnt
.mnt_sb
= root
->d_sb
;
999 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1000 mnt
->mnt_parent
= mnt
;
1002 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
1003 unlock_mount_hash();
1006 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1008 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1011 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1015 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1017 return ERR_PTR(-ENOMEM
);
1019 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1020 mnt
->mnt_group_id
= 0; /* not a peer of original */
1022 mnt
->mnt_group_id
= old
->mnt_group_id
;
1024 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1025 err
= mnt_alloc_group_id(mnt
);
1030 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1031 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1032 /* Don't allow unprivileged users to change mount flags */
1033 if (flag
& CL_UNPRIVILEGED
) {
1034 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1036 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1037 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1039 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1040 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1042 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1043 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1045 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1046 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1049 /* Don't allow unprivileged users to reveal what is under a mount */
1050 if ((flag
& CL_UNPRIVILEGED
) &&
1051 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1052 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1054 atomic_inc(&sb
->s_active
);
1055 mnt
->mnt
.mnt_sb
= sb
;
1056 mnt
->mnt
.mnt_root
= dget(root
);
1057 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1058 mnt
->mnt_parent
= mnt
;
1060 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1061 unlock_mount_hash();
1063 if ((flag
& CL_SLAVE
) ||
1064 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1065 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1066 mnt
->mnt_master
= old
;
1067 CLEAR_MNT_SHARED(mnt
);
1068 } else if (!(flag
& CL_PRIVATE
)) {
1069 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1070 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1071 if (IS_MNT_SLAVE(old
))
1072 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1073 mnt
->mnt_master
= old
->mnt_master
;
1075 if (flag
& CL_MAKE_SHARED
)
1076 set_mnt_shared(mnt
);
1078 /* stick the duplicate mount on the same expiry list
1079 * as the original if that was on one */
1080 if (flag
& CL_EXPIRE
) {
1081 if (!list_empty(&old
->mnt_expire
))
1082 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1090 return ERR_PTR(err
);
1093 static void cleanup_mnt(struct mount
*mnt
)
1096 * This probably indicates that somebody messed
1097 * up a mnt_want/drop_write() pair. If this
1098 * happens, the filesystem was probably unable
1099 * to make r/w->r/o transitions.
1102 * The locking used to deal with mnt_count decrement provides barriers,
1103 * so mnt_get_writers() below is safe.
1105 WARN_ON(mnt_get_writers(mnt
));
1106 if (unlikely(mnt
->mnt_pins
.first
))
1108 fsnotify_vfsmount_delete(&mnt
->mnt
);
1109 dput(mnt
->mnt
.mnt_root
);
1110 deactivate_super(mnt
->mnt
.mnt_sb
);
1112 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1115 static void __cleanup_mnt(struct rcu_head
*head
)
1117 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1120 static LLIST_HEAD(delayed_mntput_list
);
1121 static void delayed_mntput(struct work_struct
*unused
)
1123 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1124 struct llist_node
*next
;
1126 for (; node
; node
= next
) {
1127 next
= llist_next(node
);
1128 cleanup_mnt(llist_entry(node
, struct mount
, mnt_llist
));
1131 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1133 static void mntput_no_expire(struct mount
*mnt
)
1136 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1138 * Since we don't do lock_mount_hash() here,
1139 * ->mnt_ns can change under us. However, if it's
1140 * non-NULL, then there's a reference that won't
1141 * be dropped until after an RCU delay done after
1142 * turning ->mnt_ns NULL. So if we observe it
1143 * non-NULL under rcu_read_lock(), the reference
1144 * we are dropping is not the final one.
1146 mnt_add_count(mnt
, -1);
1152 * make sure that if __legitimize_mnt() has not seen us grab
1153 * mount_lock, we'll see their refcount increment here.
1156 mnt_add_count(mnt
, -1);
1157 if (mnt_get_count(mnt
)) {
1159 unlock_mount_hash();
1162 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1164 unlock_mount_hash();
1167 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1170 list_del(&mnt
->mnt_instance
);
1172 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1173 struct mount
*p
, *tmp
;
1174 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1178 unlock_mount_hash();
1180 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1181 struct task_struct
*task
= current
;
1182 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1183 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1184 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1187 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1188 schedule_delayed_work(&delayed_mntput_work
, 1);
1194 void mntput(struct vfsmount
*mnt
)
1197 struct mount
*m
= real_mount(mnt
);
1198 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1199 if (unlikely(m
->mnt_expiry_mark
))
1200 m
->mnt_expiry_mark
= 0;
1201 mntput_no_expire(m
);
1204 EXPORT_SYMBOL(mntput
);
1206 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1209 mnt_add_count(real_mount(mnt
), 1);
1212 EXPORT_SYMBOL(mntget
);
1214 struct vfsmount
*mnt_clone_internal(struct path
*path
)
1217 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1220 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1224 static inline void mangle(struct seq_file
*m
, const char *s
)
1226 seq_escape(m
, s
, " \t\n\\");
1230 * Simple .show_options callback for filesystems which don't want to
1231 * implement more complex mount option showing.
1233 * See also save_mount_options().
1235 int generic_show_options(struct seq_file
*m
, struct dentry
*root
)
1237 const char *options
;
1240 options
= rcu_dereference(root
->d_sb
->s_options
);
1242 if (options
!= NULL
&& options
[0]) {
1250 EXPORT_SYMBOL(generic_show_options
);
1253 * If filesystem uses generic_show_options(), this function should be
1254 * called from the fill_super() callback.
1256 * The .remount_fs callback usually needs to be handled in a special
1257 * way, to make sure, that previous options are not overwritten if the
1260 * Also note, that if the filesystem's .remount_fs function doesn't
1261 * reset all options to their default value, but changes only newly
1262 * given options, then the displayed options will not reflect reality
1265 void save_mount_options(struct super_block
*sb
, char *options
)
1267 BUG_ON(sb
->s_options
);
1268 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
1270 EXPORT_SYMBOL(save_mount_options
);
1272 void replace_mount_options(struct super_block
*sb
, char *options
)
1274 char *old
= sb
->s_options
;
1275 rcu_assign_pointer(sb
->s_options
, options
);
1281 EXPORT_SYMBOL(replace_mount_options
);
1283 #ifdef CONFIG_PROC_FS
1284 /* iterator; we want it to have access to namespace_sem, thus here... */
1285 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1287 struct proc_mounts
*p
= m
->private;
1289 down_read(&namespace_sem
);
1290 if (p
->cached_event
== p
->ns
->event
) {
1291 void *v
= p
->cached_mount
;
1292 if (*pos
== p
->cached_index
)
1294 if (*pos
== p
->cached_index
+ 1) {
1295 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1296 return p
->cached_mount
= v
;
1300 p
->cached_event
= p
->ns
->event
;
1301 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1302 p
->cached_index
= *pos
;
1303 return p
->cached_mount
;
1306 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1308 struct proc_mounts
*p
= m
->private;
1310 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1311 p
->cached_index
= *pos
;
1312 return p
->cached_mount
;
1315 static void m_stop(struct seq_file
*m
, void *v
)
1317 up_read(&namespace_sem
);
1320 static int m_show(struct seq_file
*m
, void *v
)
1322 struct proc_mounts
*p
= m
->private;
1323 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1324 return p
->show(m
, &r
->mnt
);
1327 const struct seq_operations mounts_op
= {
1333 #endif /* CONFIG_PROC_FS */
1336 * may_umount_tree - check if a mount tree is busy
1337 * @mnt: root of mount tree
1339 * This is called to check if a tree of mounts has any
1340 * open files, pwds, chroots or sub mounts that are
1343 int may_umount_tree(struct vfsmount
*m
)
1345 struct mount
*mnt
= real_mount(m
);
1346 int actual_refs
= 0;
1347 int minimum_refs
= 0;
1351 /* write lock needed for mnt_get_count */
1353 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1354 actual_refs
+= mnt_get_count(p
);
1357 unlock_mount_hash();
1359 if (actual_refs
> minimum_refs
)
1365 EXPORT_SYMBOL(may_umount_tree
);
1368 * may_umount - check if a mount point is busy
1369 * @mnt: root of mount
1371 * This is called to check if a mount point has any
1372 * open files, pwds, chroots or sub mounts. If the
1373 * mount has sub mounts this will return busy
1374 * regardless of whether the sub mounts are busy.
1376 * Doesn't take quota and stuff into account. IOW, in some cases it will
1377 * give false negatives. The main reason why it's here is that we need
1378 * a non-destructive way to look for easily umountable filesystems.
1380 int may_umount(struct vfsmount
*mnt
)
1383 down_read(&namespace_sem
);
1385 if (propagate_mount_busy(real_mount(mnt
), 2))
1387 unlock_mount_hash();
1388 up_read(&namespace_sem
);
1392 EXPORT_SYMBOL(may_umount
);
1394 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1396 static void namespace_unlock(void)
1398 struct hlist_head head
;
1400 hlist_move_list(&unmounted
, &head
);
1402 up_write(&namespace_sem
);
1404 if (likely(hlist_empty(&head
)))
1409 group_pin_kill(&head
);
1412 static inline void namespace_lock(void)
1414 down_write(&namespace_sem
);
1417 enum umount_tree_flags
{
1419 UMOUNT_PROPAGATE
= 2,
1420 UMOUNT_CONNECTED
= 4,
1423 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1425 /* Leaving mounts connected is only valid for lazy umounts */
1426 if (how
& UMOUNT_SYNC
)
1429 /* A mount without a parent has nothing to be connected to */
1430 if (!mnt_has_parent(mnt
))
1433 /* Because the reference counting rules change when mounts are
1434 * unmounted and connected, umounted mounts may not be
1435 * connected to mounted mounts.
1437 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1440 /* Has it been requested that the mount remain connected? */
1441 if (how
& UMOUNT_CONNECTED
)
1444 /* Is the mount locked such that it needs to remain connected? */
1445 if (IS_MNT_LOCKED(mnt
))
1448 /* By default disconnect the mount */
1453 * mount_lock must be held
1454 * namespace_sem must be held for write
1456 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1458 LIST_HEAD(tmp_list
);
1461 if (how
& UMOUNT_PROPAGATE
)
1462 propagate_mount_unlock(mnt
);
1464 /* Gather the mounts to umount */
1465 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1466 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1467 list_move(&p
->mnt_list
, &tmp_list
);
1470 /* Hide the mounts from mnt_mounts */
1471 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1472 list_del_init(&p
->mnt_child
);
1475 /* Add propogated mounts to the tmp_list */
1476 if (how
& UMOUNT_PROPAGATE
)
1477 propagate_umount(&tmp_list
);
1479 while (!list_empty(&tmp_list
)) {
1480 struct mnt_namespace
*ns
;
1482 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1483 list_del_init(&p
->mnt_expire
);
1484 list_del_init(&p
->mnt_list
);
1488 __touch_mnt_namespace(ns
);
1491 if (how
& UMOUNT_SYNC
)
1492 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1494 disconnect
= disconnect_mount(p
, how
);
1496 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1497 disconnect
? &unmounted
: NULL
);
1498 if (mnt_has_parent(p
)) {
1499 mnt_add_count(p
->mnt_parent
, -1);
1501 /* Don't forget about p */
1502 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1507 change_mnt_propagation(p
, MS_PRIVATE
);
1511 static void shrink_submounts(struct mount
*mnt
);
1513 static int do_umount(struct mount
*mnt
, int flags
)
1515 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1518 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1523 * Allow userspace to request a mountpoint be expired rather than
1524 * unmounting unconditionally. Unmount only happens if:
1525 * (1) the mark is already set (the mark is cleared by mntput())
1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 if (flags
& MNT_EXPIRE
) {
1529 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1530 flags
& (MNT_FORCE
| MNT_DETACH
))
1534 * probably don't strictly need the lock here if we examined
1535 * all race cases, but it's a slowpath.
1538 if (mnt_get_count(mnt
) != 2) {
1539 unlock_mount_hash();
1542 unlock_mount_hash();
1544 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1549 * If we may have to abort operations to get out of this
1550 * mount, and they will themselves hold resources we must
1551 * allow the fs to do things. In the Unix tradition of
1552 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 * might fail to complete on the first run through as other tasks
1554 * must return, and the like. Thats for the mount program to worry
1555 * about for the moment.
1558 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1559 sb
->s_op
->umount_begin(sb
);
1563 * No sense to grab the lock for this test, but test itself looks
1564 * somewhat bogus. Suggestions for better replacement?
1565 * Ho-hum... In principle, we might treat that as umount + switch
1566 * to rootfs. GC would eventually take care of the old vfsmount.
1567 * Actually it makes sense, especially if rootfs would contain a
1568 * /reboot - static binary that would close all descriptors and
1569 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1573 * Special case for "unmounting" root ...
1574 * we just try to remount it readonly.
1576 if (!capable(CAP_SYS_ADMIN
))
1578 down_write(&sb
->s_umount
);
1579 if (!(sb
->s_flags
& MS_RDONLY
))
1580 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1581 up_write(&sb
->s_umount
);
1588 /* Recheck MNT_LOCKED with the locks held */
1590 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1594 if (flags
& MNT_DETACH
) {
1595 if (!list_empty(&mnt
->mnt_list
))
1596 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1599 shrink_submounts(mnt
);
1601 if (!propagate_mount_busy(mnt
, 2)) {
1602 if (!list_empty(&mnt
->mnt_list
))
1603 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1608 unlock_mount_hash();
1614 * __detach_mounts - lazily unmount all mounts on the specified dentry
1616 * During unlink, rmdir, and d_drop it is possible to loose the path
1617 * to an existing mountpoint, and wind up leaking the mount.
1618 * detach_mounts allows lazily unmounting those mounts instead of
1621 * The caller may hold dentry->d_inode->i_mutex.
1623 void __detach_mounts(struct dentry
*dentry
)
1625 struct mountpoint
*mp
;
1630 mp
= lookup_mountpoint(dentry
);
1631 if (IS_ERR_OR_NULL(mp
))
1635 while (!hlist_empty(&mp
->m_list
)) {
1636 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1637 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1638 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1641 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1645 unlock_mount_hash();
1650 * Is the caller allowed to modify his namespace?
1652 static inline bool may_mount(void)
1654 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1658 * Now umount can handle mount points as well as block devices.
1659 * This is important for filesystems which use unnamed block devices.
1661 * We now support a flag for forced unmount like the other 'big iron'
1662 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1670 int lookup_flags
= 0;
1672 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1678 if (!(flags
& UMOUNT_NOFOLLOW
))
1679 lookup_flags
|= LOOKUP_FOLLOW
;
1681 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1684 mnt
= real_mount(path
.mnt
);
1686 if (path
.dentry
!= path
.mnt
->mnt_root
)
1688 if (!check_mnt(mnt
))
1690 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
) /* Check optimistically */
1693 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1696 retval
= do_umount(mnt
, flags
);
1698 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1700 mntput_no_expire(mnt
);
1705 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1708 * The 2.0 compatible umount. No flags.
1710 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1712 return sys_umount(name
, 0);
1717 static bool is_mnt_ns_file(struct dentry
*dentry
)
1719 /* Is this a proxy for a mount namespace? */
1720 return dentry
->d_op
== &ns_dentry_operations
&&
1721 dentry
->d_fsdata
== &mntns_operations
;
1724 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1726 return container_of(ns
, struct mnt_namespace
, ns
);
1729 static bool mnt_ns_loop(struct dentry
*dentry
)
1731 /* Could bind mounting the mount namespace inode cause a
1732 * mount namespace loop?
1734 struct mnt_namespace
*mnt_ns
;
1735 if (!is_mnt_ns_file(dentry
))
1738 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1739 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1742 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1745 struct mount
*res
, *p
, *q
, *r
, *parent
;
1747 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1748 return ERR_PTR(-EINVAL
);
1750 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1751 return ERR_PTR(-EINVAL
);
1753 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1757 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1760 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1762 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1765 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1766 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1767 IS_MNT_UNBINDABLE(s
)) {
1768 if (s
->mnt
.mnt_flags
& MNT_LOCKED
) {
1769 /* Both unbindable and locked. */
1770 q
= ERR_PTR(-EPERM
);
1773 s
= skip_mnt_tree(s
);
1777 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1778 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1779 s
= skip_mnt_tree(s
);
1782 while (p
!= s
->mnt_parent
) {
1788 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1792 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1793 attach_mnt(q
, parent
, p
->mnt_mp
);
1794 unlock_mount_hash();
1801 umount_tree(res
, UMOUNT_SYNC
);
1802 unlock_mount_hash();
1807 /* Caller should check returned pointer for errors */
1809 struct vfsmount
*collect_mounts(struct path
*path
)
1813 if (!check_mnt(real_mount(path
->mnt
)))
1814 tree
= ERR_PTR(-EINVAL
);
1816 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1817 CL_COPY_ALL
| CL_PRIVATE
);
1820 return ERR_CAST(tree
);
1824 void drop_collected_mounts(struct vfsmount
*mnt
)
1828 umount_tree(real_mount(mnt
), 0);
1829 unlock_mount_hash();
1834 * clone_private_mount - create a private clone of a path
1836 * This creates a new vfsmount, which will be the clone of @path. The new will
1837 * not be attached anywhere in the namespace and will be private (i.e. changes
1838 * to the originating mount won't be propagated into this).
1840 * Release with mntput().
1842 struct vfsmount
*clone_private_mount(struct path
*path
)
1844 struct mount
*old_mnt
= real_mount(path
->mnt
);
1845 struct mount
*new_mnt
;
1847 if (IS_MNT_UNBINDABLE(old_mnt
))
1848 return ERR_PTR(-EINVAL
);
1850 down_read(&namespace_sem
);
1851 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1852 up_read(&namespace_sem
);
1853 if (IS_ERR(new_mnt
))
1854 return ERR_CAST(new_mnt
);
1856 return &new_mnt
->mnt
;
1858 EXPORT_SYMBOL_GPL(clone_private_mount
);
1860 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1861 struct vfsmount
*root
)
1864 int res
= f(root
, arg
);
1867 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1868 res
= f(&mnt
->mnt
, arg
);
1875 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1879 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1880 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1881 mnt_release_group_id(p
);
1885 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1889 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1890 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1891 int err
= mnt_alloc_group_id(p
);
1893 cleanup_group_ids(mnt
, p
);
1902 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1904 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1905 unsigned int mounts
= 0, old
, pending
, sum
;
1908 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1912 pending
= ns
->pending_mounts
;
1913 sum
= old
+ pending
;
1917 (mounts
> (max
- sum
)))
1920 ns
->pending_mounts
= pending
+ mounts
;
1925 * @source_mnt : mount tree to be attached
1926 * @nd : place the mount tree @source_mnt is attached
1927 * @parent_nd : if non-null, detach the source_mnt from its parent and
1928 * store the parent mount and mountpoint dentry.
1929 * (done when source_mnt is moved)
1931 * NOTE: in the table below explains the semantics when a source mount
1932 * of a given type is attached to a destination mount of a given type.
1933 * ---------------------------------------------------------------------------
1934 * | BIND MOUNT OPERATION |
1935 * |**************************************************************************
1936 * | source-->| shared | private | slave | unbindable |
1940 * |**************************************************************************
1941 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1943 * |non-shared| shared (+) | private | slave (*) | invalid |
1944 * ***************************************************************************
1945 * A bind operation clones the source mount and mounts the clone on the
1946 * destination mount.
1948 * (++) the cloned mount is propagated to all the mounts in the propagation
1949 * tree of the destination mount and the cloned mount is added to
1950 * the peer group of the source mount.
1951 * (+) the cloned mount is created under the destination mount and is marked
1952 * as shared. The cloned mount is added to the peer group of the source
1954 * (+++) the mount is propagated to all the mounts in the propagation tree
1955 * of the destination mount and the cloned mount is made slave
1956 * of the same master as that of the source mount. The cloned mount
1957 * is marked as 'shared and slave'.
1958 * (*) the cloned mount is made a slave of the same master as that of the
1961 * ---------------------------------------------------------------------------
1962 * | MOVE MOUNT OPERATION |
1963 * |**************************************************************************
1964 * | source-->| shared | private | slave | unbindable |
1968 * |**************************************************************************
1969 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1971 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1972 * ***************************************************************************
1974 * (+) the mount is moved to the destination. And is then propagated to
1975 * all the mounts in the propagation tree of the destination mount.
1976 * (+*) the mount is moved to the destination.
1977 * (+++) the mount is moved to the destination and is then propagated to
1978 * all the mounts belonging to the destination mount's propagation tree.
1979 * the mount is marked as 'shared and slave'.
1980 * (*) the mount continues to be a slave at the new location.
1982 * if the source mount is a tree, the operations explained above is
1983 * applied to each mount in the tree.
1984 * Must be called without spinlocks held, since this function can sleep
1987 static int attach_recursive_mnt(struct mount
*source_mnt
,
1988 struct mount
*dest_mnt
,
1989 struct mountpoint
*dest_mp
,
1990 struct path
*parent_path
)
1992 HLIST_HEAD(tree_list
);
1993 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1994 struct mountpoint
*smp
;
1995 struct mount
*child
, *p
;
1996 struct hlist_node
*n
;
1999 /* Preallocate a mountpoint in case the new mounts need
2000 * to be tucked under other mounts.
2002 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
2004 return PTR_ERR(smp
);
2006 /* Is there space to add these mounts to the mount namespace? */
2008 err
= count_mounts(ns
, source_mnt
);
2013 if (IS_MNT_SHARED(dest_mnt
)) {
2014 err
= invent_group_ids(source_mnt
, true);
2017 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2020 goto out_cleanup_ids
;
2021 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2027 detach_mnt(source_mnt
, parent_path
);
2028 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2029 touch_mnt_namespace(source_mnt
->mnt_ns
);
2031 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2032 commit_tree(source_mnt
);
2035 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2037 hlist_del_init(&child
->mnt_hash
);
2038 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2039 child
->mnt_mountpoint
);
2041 mnt_change_mountpoint(child
, smp
, q
);
2044 put_mountpoint(smp
);
2045 unlock_mount_hash();
2050 while (!hlist_empty(&tree_list
)) {
2051 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2052 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2053 umount_tree(child
, UMOUNT_SYNC
);
2055 unlock_mount_hash();
2056 cleanup_group_ids(source_mnt
, NULL
);
2058 ns
->pending_mounts
= 0;
2060 read_seqlock_excl(&mount_lock
);
2061 put_mountpoint(smp
);
2062 read_sequnlock_excl(&mount_lock
);
2067 static struct mountpoint
*lock_mount(struct path
*path
)
2069 struct vfsmount
*mnt
;
2070 struct dentry
*dentry
= path
->dentry
;
2072 mutex_lock(&dentry
->d_inode
->i_mutex
);
2073 if (unlikely(cant_mount(dentry
))) {
2074 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2075 return ERR_PTR(-ENOENT
);
2078 mnt
= lookup_mnt(path
);
2080 struct mountpoint
*mp
= get_mountpoint(dentry
);
2083 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2089 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
2092 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2096 static void unlock_mount(struct mountpoint
*where
)
2098 struct dentry
*dentry
= where
->m_dentry
;
2100 read_seqlock_excl(&mount_lock
);
2101 put_mountpoint(where
);
2102 read_sequnlock_excl(&mount_lock
);
2105 mutex_unlock(&dentry
->d_inode
->i_mutex
);
2108 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2110 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_NOUSER
)
2113 if (d_is_dir(mp
->m_dentry
) !=
2114 d_is_dir(mnt
->mnt
.mnt_root
))
2117 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2121 * Sanity check the flags to change_mnt_propagation.
2124 static int flags_to_propagation_type(int flags
)
2126 int type
= flags
& ~(MS_REC
| MS_SILENT
);
2128 /* Fail if any non-propagation flags are set */
2129 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2131 /* Only one propagation flag should be set */
2132 if (!is_power_of_2(type
))
2138 * recursively change the type of the mountpoint.
2140 static int do_change_type(struct path
*path
, int flag
)
2143 struct mount
*mnt
= real_mount(path
->mnt
);
2144 int recurse
= flag
& MS_REC
;
2148 if (path
->dentry
!= path
->mnt
->mnt_root
)
2151 type
= flags_to_propagation_type(flag
);
2156 if (type
== MS_SHARED
) {
2157 err
= invent_group_ids(mnt
, recurse
);
2163 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2164 change_mnt_propagation(m
, type
);
2165 unlock_mount_hash();
2172 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2174 struct mount
*child
;
2175 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2176 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2179 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2186 * do loopback mount.
2188 static int do_loopback(struct path
*path
, const char *old_name
,
2191 struct path old_path
;
2192 struct mount
*mnt
= NULL
, *old
, *parent
;
2193 struct mountpoint
*mp
;
2195 if (!old_name
|| !*old_name
)
2197 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2202 if (mnt_ns_loop(old_path
.dentry
))
2205 mp
= lock_mount(path
);
2210 old
= real_mount(old_path
.mnt
);
2211 parent
= real_mount(path
->mnt
);
2214 if (IS_MNT_UNBINDABLE(old
))
2217 if (!check_mnt(parent
))
2220 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2223 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2227 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2229 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2236 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2238 err
= graft_tree(mnt
, parent
, mp
);
2241 umount_tree(mnt
, UMOUNT_SYNC
);
2242 unlock_mount_hash();
2247 path_put(&old_path
);
2251 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2254 int readonly_request
= 0;
2256 if (ms_flags
& MS_RDONLY
)
2257 readonly_request
= 1;
2258 if (readonly_request
== __mnt_is_readonly(mnt
))
2261 if (readonly_request
)
2262 error
= mnt_make_readonly(real_mount(mnt
));
2264 __mnt_unmake_readonly(real_mount(mnt
));
2269 * change filesystem flags. dir should be a physical root of filesystem.
2270 * If you've mounted a non-root directory somewhere and want to do remount
2271 * on it - tough luck.
2273 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
2277 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2278 struct mount
*mnt
= real_mount(path
->mnt
);
2280 if (!check_mnt(mnt
))
2283 if (path
->dentry
!= path
->mnt
->mnt_root
)
2286 /* Don't allow changing of locked mnt flags.
2288 * No locks need to be held here while testing the various
2289 * MNT_LOCK flags because those flags can never be cleared
2290 * once they are set.
2292 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2293 !(mnt_flags
& MNT_READONLY
)) {
2296 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2297 !(mnt_flags
& MNT_NODEV
)) {
2298 /* Was the nodev implicitly added in mount? */
2299 if ((mnt
->mnt_ns
->user_ns
!= &init_user_ns
) &&
2300 !(sb
->s_type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2301 mnt_flags
|= MNT_NODEV
;
2306 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2307 !(mnt_flags
& MNT_NOSUID
)) {
2310 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2311 !(mnt_flags
& MNT_NOEXEC
)) {
2314 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2315 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2319 err
= security_sb_remount(sb
, data
);
2323 down_write(&sb
->s_umount
);
2324 if (flags
& MS_BIND
)
2325 err
= change_mount_flags(path
->mnt
, flags
);
2326 else if (!capable(CAP_SYS_ADMIN
))
2329 err
= do_remount_sb(sb
, flags
, data
, 0);
2332 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2333 mnt
->mnt
.mnt_flags
= mnt_flags
;
2334 touch_mnt_namespace(mnt
->mnt_ns
);
2335 unlock_mount_hash();
2337 up_write(&sb
->s_umount
);
2341 static inline int tree_contains_unbindable(struct mount
*mnt
)
2344 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2345 if (IS_MNT_UNBINDABLE(p
))
2351 static int do_move_mount(struct path
*path
, const char *old_name
)
2353 struct path old_path
, parent_path
;
2356 struct mountpoint
*mp
;
2358 if (!old_name
|| !*old_name
)
2360 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2364 mp
= lock_mount(path
);
2369 old
= real_mount(old_path
.mnt
);
2370 p
= real_mount(path
->mnt
);
2373 if (!check_mnt(p
) || !check_mnt(old
))
2376 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2380 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2383 if (!mnt_has_parent(old
))
2386 if (d_is_dir(path
->dentry
) !=
2387 d_is_dir(old_path
.dentry
))
2390 * Don't move a mount residing in a shared parent.
2392 if (IS_MNT_SHARED(old
->mnt_parent
))
2395 * Don't move a mount tree containing unbindable mounts to a destination
2396 * mount which is shared.
2398 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2401 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2405 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2409 /* if the mount is moved, it should no longer be expire
2411 list_del_init(&old
->mnt_expire
);
2416 path_put(&parent_path
);
2417 path_put(&old_path
);
2421 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2424 const char *subtype
= strchr(fstype
, '.');
2433 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2435 if (!mnt
->mnt_sb
->s_subtype
)
2441 return ERR_PTR(err
);
2445 * add a mount into a namespace's mount tree
2447 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2449 struct mountpoint
*mp
;
2450 struct mount
*parent
;
2453 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2455 mp
= lock_mount(path
);
2459 parent
= real_mount(path
->mnt
);
2461 if (unlikely(!check_mnt(parent
))) {
2462 /* that's acceptable only for automounts done in private ns */
2463 if (!(mnt_flags
& MNT_SHRINKABLE
))
2465 /* ... and for those we'd better have mountpoint still alive */
2466 if (!parent
->mnt_ns
)
2470 /* Refuse the same filesystem on the same mount point */
2472 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2473 path
->mnt
->mnt_root
== path
->dentry
)
2477 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2480 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2481 err
= graft_tree(newmnt
, parent
, mp
);
2488 static bool fs_fully_visible(struct file_system_type
*fs_type
, int *new_mnt_flags
);
2491 * create a new mount for userspace and request it to be added into the
2494 static int do_new_mount(struct path
*path
, const char *fstype
, int flags
,
2495 int mnt_flags
, const char *name
, void *data
)
2497 struct file_system_type
*type
;
2498 struct user_namespace
*user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
2499 struct vfsmount
*mnt
;
2505 type
= get_fs_type(fstype
);
2509 if (user_ns
!= &init_user_ns
) {
2510 if (!(type
->fs_flags
& FS_USERNS_MOUNT
)) {
2511 put_filesystem(type
);
2514 /* Only in special cases allow devices from mounts
2515 * created outside the initial user namespace.
2517 if (!(type
->fs_flags
& FS_USERNS_DEV_MOUNT
)) {
2519 mnt_flags
|= MNT_NODEV
| MNT_LOCK_NODEV
;
2521 if (type
->fs_flags
& FS_USERNS_VISIBLE
) {
2522 if (!fs_fully_visible(type
, &mnt_flags
)) {
2523 put_filesystem(type
);
2529 mnt
= vfs_kern_mount(type
, flags
, name
, data
);
2530 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2531 !mnt
->mnt_sb
->s_subtype
)
2532 mnt
= fs_set_subtype(mnt
, fstype
);
2534 put_filesystem(type
);
2536 return PTR_ERR(mnt
);
2538 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2544 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2546 struct mount
*mnt
= real_mount(m
);
2548 /* The new mount record should have at least 2 refs to prevent it being
2549 * expired before we get a chance to add it
2551 BUG_ON(mnt_get_count(mnt
) < 2);
2553 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2554 m
->mnt_root
== path
->dentry
) {
2559 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2563 /* remove m from any expiration list it may be on */
2564 if (!list_empty(&mnt
->mnt_expire
)) {
2566 list_del_init(&mnt
->mnt_expire
);
2575 * mnt_set_expiry - Put a mount on an expiration list
2576 * @mnt: The mount to list.
2577 * @expiry_list: The list to add the mount to.
2579 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2583 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2587 EXPORT_SYMBOL(mnt_set_expiry
);
2590 * process a list of expirable mountpoints with the intent of discarding any
2591 * mountpoints that aren't in use and haven't been touched since last we came
2594 void mark_mounts_for_expiry(struct list_head
*mounts
)
2596 struct mount
*mnt
, *next
;
2597 LIST_HEAD(graveyard
);
2599 if (list_empty(mounts
))
2605 /* extract from the expiration list every vfsmount that matches the
2606 * following criteria:
2607 * - only referenced by its parent vfsmount
2608 * - still marked for expiry (marked on the last call here; marks are
2609 * cleared by mntput())
2611 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2612 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2613 propagate_mount_busy(mnt
, 1))
2615 list_move(&mnt
->mnt_expire
, &graveyard
);
2617 while (!list_empty(&graveyard
)) {
2618 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2619 touch_mnt_namespace(mnt
->mnt_ns
);
2620 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2622 unlock_mount_hash();
2626 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2629 * Ripoff of 'select_parent()'
2631 * search the list of submounts for a given mountpoint, and move any
2632 * shrinkable submounts to the 'graveyard' list.
2634 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2636 struct mount
*this_parent
= parent
;
2637 struct list_head
*next
;
2641 next
= this_parent
->mnt_mounts
.next
;
2643 while (next
!= &this_parent
->mnt_mounts
) {
2644 struct list_head
*tmp
= next
;
2645 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2648 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2651 * Descend a level if the d_mounts list is non-empty.
2653 if (!list_empty(&mnt
->mnt_mounts
)) {
2658 if (!propagate_mount_busy(mnt
, 1)) {
2659 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2664 * All done at this level ... ascend and resume the search
2666 if (this_parent
!= parent
) {
2667 next
= this_parent
->mnt_child
.next
;
2668 this_parent
= this_parent
->mnt_parent
;
2675 * process a list of expirable mountpoints with the intent of discarding any
2676 * submounts of a specific parent mountpoint
2678 * mount_lock must be held for write
2680 static void shrink_submounts(struct mount
*mnt
)
2682 LIST_HEAD(graveyard
);
2685 /* extract submounts of 'mountpoint' from the expiration list */
2686 while (select_submounts(mnt
, &graveyard
)) {
2687 while (!list_empty(&graveyard
)) {
2688 m
= list_first_entry(&graveyard
, struct mount
,
2690 touch_mnt_namespace(m
->mnt_ns
);
2691 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2697 * Some copy_from_user() implementations do not return the exact number of
2698 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2699 * Note that this function differs from copy_from_user() in that it will oops
2700 * on bad values of `to', rather than returning a short copy.
2702 static long exact_copy_from_user(void *to
, const void __user
* from
,
2706 const char __user
*f
= from
;
2709 if (!access_ok(VERIFY_READ
, from
, n
))
2713 if (__get_user(c
, f
)) {
2724 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2734 if (!(page
= __get_free_page(GFP_KERNEL
)))
2737 /* We only care that *some* data at the address the user
2738 * gave us is valid. Just in case, we'll zero
2739 * the remainder of the page.
2741 /* copy_from_user cannot cross TASK_SIZE ! */
2742 size
= TASK_SIZE
- (unsigned long)data
;
2743 if (size
> PAGE_SIZE
)
2746 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2752 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2757 char *copy_mount_string(const void __user
*data
)
2759 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2763 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2764 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2766 * data is a (void *) that can point to any structure up to
2767 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2768 * information (or be NULL).
2770 * Pre-0.97 versions of mount() didn't have a flags word.
2771 * When the flags word was introduced its top half was required
2772 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2773 * Therefore, if this magic number is present, it carries no information
2774 * and must be discarded.
2776 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2777 const char *type_page
, unsigned long flags
, void *data_page
)
2784 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2785 flags
&= ~MS_MGC_MSK
;
2787 /* Basic sanity checks */
2789 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2791 /* ... and get the mountpoint */
2792 retval
= user_path(dir_name
, &path
);
2796 retval
= security_sb_mount(dev_name
, &path
,
2797 type_page
, flags
, data_page
);
2798 if (!retval
&& !may_mount())
2803 /* Default to relatime unless overriden */
2804 if (!(flags
& MS_NOATIME
))
2805 mnt_flags
|= MNT_RELATIME
;
2807 /* Separate the per-mountpoint flags */
2808 if (flags
& MS_NOSUID
)
2809 mnt_flags
|= MNT_NOSUID
;
2810 if (flags
& MS_NODEV
)
2811 mnt_flags
|= MNT_NODEV
;
2812 if (flags
& MS_NOEXEC
)
2813 mnt_flags
|= MNT_NOEXEC
;
2814 if (flags
& MS_NOATIME
)
2815 mnt_flags
|= MNT_NOATIME
;
2816 if (flags
& MS_NODIRATIME
)
2817 mnt_flags
|= MNT_NODIRATIME
;
2818 if (flags
& MS_STRICTATIME
)
2819 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2820 if (flags
& MS_RDONLY
)
2821 mnt_flags
|= MNT_READONLY
;
2823 /* The default atime for remount is preservation */
2824 if ((flags
& MS_REMOUNT
) &&
2825 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2826 MS_STRICTATIME
)) == 0)) {
2827 mnt_flags
&= ~MNT_ATIME_MASK
;
2828 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2831 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2832 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2835 if (flags
& MS_REMOUNT
)
2836 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2838 else if (flags
& MS_BIND
)
2839 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2840 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2841 retval
= do_change_type(&path
, flags
);
2842 else if (flags
& MS_MOVE
)
2843 retval
= do_move_mount(&path
, dev_name
);
2845 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2846 dev_name
, data_page
);
2852 static void free_mnt_ns(struct mnt_namespace
*ns
)
2854 ns_free_inum(&ns
->ns
);
2855 put_user_ns(ns
->user_ns
);
2860 * Assign a sequence number so we can detect when we attempt to bind
2861 * mount a reference to an older mount namespace into the current
2862 * mount namespace, preventing reference counting loops. A 64bit
2863 * number incrementing at 10Ghz will take 12,427 years to wrap which
2864 * is effectively never, so we can ignore the possibility.
2866 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2868 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2870 struct mnt_namespace
*new_ns
;
2873 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2875 return ERR_PTR(-ENOMEM
);
2876 ret
= ns_alloc_inum(&new_ns
->ns
);
2879 return ERR_PTR(ret
);
2881 new_ns
->ns
.ops
= &mntns_operations
;
2882 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2883 atomic_set(&new_ns
->count
, 1);
2884 new_ns
->root
= NULL
;
2885 INIT_LIST_HEAD(&new_ns
->list
);
2886 init_waitqueue_head(&new_ns
->poll
);
2888 new_ns
->user_ns
= get_user_ns(user_ns
);
2890 new_ns
->pending_mounts
= 0;
2894 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2895 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2897 struct mnt_namespace
*new_ns
;
2898 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2899 struct mount
*p
, *q
;
2906 if (likely(!(flags
& CLONE_NEWNS
))) {
2913 new_ns
= alloc_mnt_ns(user_ns
);
2918 /* First pass: copy the tree topology */
2919 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2920 if (user_ns
!= ns
->user_ns
)
2921 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2922 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2925 free_mnt_ns(new_ns
);
2926 return ERR_CAST(new);
2929 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2932 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2933 * as belonging to new namespace. We have already acquired a private
2934 * fs_struct, so tsk->fs->lock is not needed.
2942 if (&p
->mnt
== new_fs
->root
.mnt
) {
2943 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2946 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2947 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2951 p
= next_mnt(p
, old
);
2952 q
= next_mnt(q
, new);
2955 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2956 p
= next_mnt(p
, old
);
2969 * create_mnt_ns - creates a private namespace and adds a root filesystem
2970 * @mnt: pointer to the new root filesystem mountpoint
2972 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2974 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2975 if (!IS_ERR(new_ns
)) {
2976 struct mount
*mnt
= real_mount(m
);
2977 mnt
->mnt_ns
= new_ns
;
2980 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2987 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2989 struct mnt_namespace
*ns
;
2990 struct super_block
*s
;
2994 ns
= create_mnt_ns(mnt
);
2996 return ERR_CAST(ns
);
2998 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2999 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
3004 return ERR_PTR(err
);
3006 /* trade a vfsmount reference for active sb one */
3007 s
= path
.mnt
->mnt_sb
;
3008 atomic_inc(&s
->s_active
);
3010 /* lock the sucker */
3011 down_write(&s
->s_umount
);
3012 /* ... and return the root of (sub)tree on it */
3015 EXPORT_SYMBOL(mount_subtree
);
3017 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3018 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3023 unsigned long data_page
;
3025 kernel_type
= copy_mount_string(type
);
3026 ret
= PTR_ERR(kernel_type
);
3027 if (IS_ERR(kernel_type
))
3030 kernel_dev
= copy_mount_string(dev_name
);
3031 ret
= PTR_ERR(kernel_dev
);
3032 if (IS_ERR(kernel_dev
))
3035 ret
= copy_mount_options(data
, &data_page
);
3039 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
,
3040 (void *) data_page
);
3042 free_page(data_page
);
3052 * Return true if path is reachable from root
3054 * namespace_sem or mount_lock is held
3056 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3057 const struct path
*root
)
3059 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3060 dentry
= mnt
->mnt_mountpoint
;
3061 mnt
= mnt
->mnt_parent
;
3063 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3066 int path_is_under(struct path
*path1
, struct path
*path2
)
3069 read_seqlock_excl(&mount_lock
);
3070 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3071 read_sequnlock_excl(&mount_lock
);
3074 EXPORT_SYMBOL(path_is_under
);
3077 * pivot_root Semantics:
3078 * Moves the root file system of the current process to the directory put_old,
3079 * makes new_root as the new root file system of the current process, and sets
3080 * root/cwd of all processes which had them on the current root to new_root.
3083 * The new_root and put_old must be directories, and must not be on the
3084 * same file system as the current process root. The put_old must be
3085 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3086 * pointed to by put_old must yield the same directory as new_root. No other
3087 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3089 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3090 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3091 * in this situation.
3094 * - we don't move root/cwd if they are not at the root (reason: if something
3095 * cared enough to change them, it's probably wrong to force them elsewhere)
3096 * - it's okay to pick a root that isn't the root of a file system, e.g.
3097 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3098 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3101 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3102 const char __user
*, put_old
)
3104 struct path
new, old
, parent_path
, root_parent
, root
;
3105 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3106 struct mountpoint
*old_mp
, *root_mp
;
3112 error
= user_path_dir(new_root
, &new);
3116 error
= user_path_dir(put_old
, &old
);
3120 error
= security_sb_pivotroot(&old
, &new);
3124 get_fs_root(current
->fs
, &root
);
3125 old_mp
= lock_mount(&old
);
3126 error
= PTR_ERR(old_mp
);
3131 new_mnt
= real_mount(new.mnt
);
3132 root_mnt
= real_mount(root
.mnt
);
3133 old_mnt
= real_mount(old
.mnt
);
3134 if (IS_MNT_SHARED(old_mnt
) ||
3135 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3136 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3138 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3140 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3143 if (d_unlinked(new.dentry
))
3146 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3147 goto out4
; /* loop, on the same file system */
3149 if (root
.mnt
->mnt_root
!= root
.dentry
)
3150 goto out4
; /* not a mountpoint */
3151 if (!mnt_has_parent(root_mnt
))
3152 goto out4
; /* not attached */
3153 root_mp
= root_mnt
->mnt_mp
;
3154 if (new.mnt
->mnt_root
!= new.dentry
)
3155 goto out4
; /* not a mountpoint */
3156 if (!mnt_has_parent(new_mnt
))
3157 goto out4
; /* not attached */
3158 /* make sure we can reach put_old from new_root */
3159 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3161 /* make certain new is below the root */
3162 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3165 root_mp
->m_count
++; /* pin it so it won't go away */
3166 detach_mnt(new_mnt
, &parent_path
);
3167 detach_mnt(root_mnt
, &root_parent
);
3168 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3169 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3170 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3172 /* mount old root on put_old */
3173 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3174 /* mount new_root on / */
3175 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3176 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3177 /* A moved mount should not expire automatically */
3178 list_del_init(&new_mnt
->mnt_expire
);
3179 put_mountpoint(root_mp
);
3180 unlock_mount_hash();
3181 chroot_fs_refs(&root
, &new);
3184 unlock_mount(old_mp
);
3186 path_put(&root_parent
);
3187 path_put(&parent_path
);
3199 static void __init
init_mount_tree(void)
3201 struct vfsmount
*mnt
;
3202 struct mnt_namespace
*ns
;
3204 struct file_system_type
*type
;
3206 type
= get_fs_type("rootfs");
3208 panic("Can't find rootfs type");
3209 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3210 put_filesystem(type
);
3212 panic("Can't create rootfs");
3214 ns
= create_mnt_ns(mnt
);
3216 panic("Can't allocate initial namespace");
3218 init_task
.nsproxy
->mnt_ns
= ns
;
3222 root
.dentry
= mnt
->mnt_root
;
3223 mnt
->mnt_flags
|= MNT_LOCKED
;
3225 set_fs_pwd(current
->fs
, &root
);
3226 set_fs_root(current
->fs
, &root
);
3229 void __init
mnt_init(void)
3234 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3235 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3237 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3238 sizeof(struct hlist_head
),
3241 &m_hash_shift
, &m_hash_mask
, 0, 0);
3242 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3243 sizeof(struct hlist_head
),
3246 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3248 if (!mount_hashtable
|| !mountpoint_hashtable
)
3249 panic("Failed to allocate mount hash table\n");
3251 for (u
= 0; u
<= m_hash_mask
; u
++)
3252 INIT_HLIST_HEAD(&mount_hashtable
[u
]);
3253 for (u
= 0; u
<= mp_hash_mask
; u
++)
3254 INIT_HLIST_HEAD(&mountpoint_hashtable
[u
]);
3260 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3262 fs_kobj
= kobject_create_and_add("fs", NULL
);
3264 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3269 void put_mnt_ns(struct mnt_namespace
*ns
)
3271 if (!atomic_dec_and_test(&ns
->count
))
3273 drop_collected_mounts(&ns
->root
->mnt
);
3277 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3279 struct vfsmount
*mnt
;
3280 mnt
= vfs_kern_mount(type
, MS_KERNMOUNT
, type
->name
, data
);
3283 * it is a longterm mount, don't release mnt until
3284 * we unmount before file sys is unregistered
3286 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3290 EXPORT_SYMBOL_GPL(kern_mount_data
);
3292 void kern_unmount(struct vfsmount
*mnt
)
3294 /* release long term mount so mount point can be released */
3295 if (!IS_ERR_OR_NULL(mnt
)) {
3296 real_mount(mnt
)->mnt_ns
= NULL
;
3297 synchronize_rcu(); /* yecchhh... */
3301 EXPORT_SYMBOL(kern_unmount
);
3303 bool our_mnt(struct vfsmount
*mnt
)
3305 return check_mnt(real_mount(mnt
));
3308 bool current_chrooted(void)
3310 /* Does the current process have a non-standard root */
3311 struct path ns_root
;
3312 struct path fs_root
;
3315 /* Find the namespace root */
3316 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3317 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3319 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3322 get_fs_root(current
->fs
, &fs_root
);
3324 chrooted
= !path_equal(&fs_root
, &ns_root
);
3332 static bool fs_fully_visible(struct file_system_type
*type
, int *new_mnt_flags
)
3334 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3335 int new_flags
= *new_mnt_flags
;
3337 bool visible
= false;
3342 down_read(&namespace_sem
);
3343 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3344 struct mount
*child
;
3347 if (mnt
->mnt
.mnt_sb
->s_type
!= type
)
3350 /* This mount is not fully visible if it's root directory
3351 * is not the root directory of the filesystem.
3353 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3356 /* Read the mount flags and filter out flags that
3357 * may safely be ignored.
3359 mnt_flags
= mnt
->mnt
.mnt_flags
;
3360 if (mnt
->mnt
.mnt_sb
->s_iflags
& SB_I_NOEXEC
)
3361 mnt_flags
&= ~(MNT_LOCK_NOSUID
| MNT_LOCK_NOEXEC
);
3363 /* Don't miss readonly hidden in the superblock flags */
3364 if (mnt
->mnt
.mnt_sb
->s_flags
& MS_RDONLY
)
3365 mnt_flags
|= MNT_LOCK_READONLY
;
3367 /* Verify the mount flags are equal to or more permissive
3368 * than the proposed new mount.
3370 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3371 !(new_flags
& MNT_READONLY
))
3373 if ((mnt_flags
& MNT_LOCK_NODEV
) &&
3374 !(new_flags
& MNT_NODEV
))
3376 if ((mnt_flags
& MNT_LOCK_NOSUID
) &&
3377 !(new_flags
& MNT_NOSUID
))
3379 if ((mnt_flags
& MNT_LOCK_NOEXEC
) &&
3380 !(new_flags
& MNT_NOEXEC
))
3382 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3383 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3386 /* This mount is not fully visible if there are any
3387 * locked child mounts that cover anything except for
3388 * empty directories.
3390 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3391 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3392 /* Only worry about locked mounts */
3393 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3395 /* Is the directory permanetly empty? */
3396 if (!is_empty_dir_inode(inode
))
3399 /* Preserve the locked attributes */
3400 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3410 up_read(&namespace_sem
);
3414 static struct ns_common
*mntns_get(struct task_struct
*task
)
3416 struct ns_common
*ns
= NULL
;
3417 struct nsproxy
*nsproxy
;
3420 nsproxy
= task
->nsproxy
;
3422 ns
= &nsproxy
->mnt_ns
->ns
;
3423 get_mnt_ns(to_mnt_ns(ns
));
3430 static void mntns_put(struct ns_common
*ns
)
3432 put_mnt_ns(to_mnt_ns(ns
));
3435 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3437 struct fs_struct
*fs
= current
->fs
;
3438 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
);
3441 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3442 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3443 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3450 put_mnt_ns(nsproxy
->mnt_ns
);
3451 nsproxy
->mnt_ns
= mnt_ns
;
3454 root
.mnt
= &mnt_ns
->root
->mnt
;
3455 root
.dentry
= mnt_ns
->root
->mnt
.mnt_root
;
3457 while(d_mountpoint(root
.dentry
) && follow_down_one(&root
))
3460 /* Update the pwd and root */
3461 set_fs_pwd(fs
, &root
);
3462 set_fs_root(fs
, &root
);
3468 const struct proc_ns_operations mntns_operations
= {
3470 .type
= CLONE_NEWNS
,
3473 .install
= mntns_install
,