HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / namespace.c
blob5fb1e4a430f8b879d0d3ecc77cf4d4c41305543a
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 INIT_LIST_HEAD(&mnt->mnt_umounting);
241 #ifdef CONFIG_FSNOTIFY
242 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
243 #endif
244 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 return mnt;
248 #ifdef CONFIG_SMP
249 out_free_devname:
250 kfree_const(mnt->mnt_devname);
251 #endif
252 out_free_id:
253 mnt_free_id(mnt);
254 out_free_cache:
255 kmem_cache_free(mnt_cache, mnt);
256 return NULL;
260 * Most r/o checks on a fs are for operations that take
261 * discrete amounts of time, like a write() or unlink().
262 * We must keep track of when those operations start
263 * (for permission checks) and when they end, so that
264 * we can determine when writes are able to occur to
265 * a filesystem.
268 * __mnt_is_readonly: check whether a mount is read-only
269 * @mnt: the mount to check for its write status
271 * This shouldn't be used directly ouside of the VFS.
272 * It does not guarantee that the filesystem will stay
273 * r/w, just that it is right *now*. This can not and
274 * should not be used in place of IS_RDONLY(inode).
275 * mnt_want/drop_write() will _keep_ the filesystem
276 * r/w.
278 int __mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_flags & MNT_READONLY)
281 return 1;
282 if (mnt->mnt_sb->s_flags & MS_RDONLY)
283 return 1;
284 return 0;
286 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
288 static inline void mnt_inc_writers(struct mount *mnt)
290 #ifdef CONFIG_SMP
291 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
292 #else
293 mnt->mnt_writers++;
294 #endif
297 static inline void mnt_dec_writers(struct mount *mnt)
299 #ifdef CONFIG_SMP
300 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
301 #else
302 mnt->mnt_writers--;
303 #endif
306 static unsigned int mnt_get_writers(struct mount *mnt)
308 #ifdef CONFIG_SMP
309 unsigned int count = 0;
310 int cpu;
312 for_each_possible_cpu(cpu) {
313 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
316 return count;
317 #else
318 return mnt->mnt_writers;
319 #endif
322 static int mnt_is_readonly(struct vfsmount *mnt)
324 if (mnt->mnt_sb->s_readonly_remount)
325 return 1;
326 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
327 smp_rmb();
328 return __mnt_is_readonly(mnt);
332 * Most r/o & frozen checks on a fs are for operations that take discrete
333 * amounts of time, like a write() or unlink(). We must keep track of when
334 * those operations start (for permission checks) and when they end, so that we
335 * can determine when writes are able to occur to a filesystem.
338 * __mnt_want_write - get write access to a mount without freeze protection
339 * @m: the mount on which to take a write
341 * This tells the low-level filesystem that a write is about to be performed to
342 * it, and makes sure that writes are allowed (mnt it read-write) before
343 * returning success. This operation does not protect against filesystem being
344 * frozen. When the write operation is finished, __mnt_drop_write() must be
345 * called. This is effectively a refcount.
347 int __mnt_want_write(struct vfsmount *m)
349 struct mount *mnt = real_mount(m);
350 int ret = 0;
352 preempt_disable();
353 mnt_inc_writers(mnt);
355 * The store to mnt_inc_writers must be visible before we pass
356 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
357 * incremented count after it has set MNT_WRITE_HOLD.
359 smp_mb();
360 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
361 cpu_relax();
363 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
364 * be set to match its requirements. So we must not load that until
365 * MNT_WRITE_HOLD is cleared.
367 smp_rmb();
368 if (mnt_is_readonly(m)) {
369 mnt_dec_writers(mnt);
370 ret = -EROFS;
372 preempt_enable();
374 return ret;
378 * mnt_want_write - get write access to a mount
379 * @m: the mount on which to take a write
381 * This tells the low-level filesystem that a write is about to be performed to
382 * it, and makes sure that writes are allowed (mount is read-write, filesystem
383 * is not frozen) before returning success. When the write operation is
384 * finished, mnt_drop_write() must be called. This is effectively a refcount.
386 int mnt_want_write(struct vfsmount *m)
388 int ret;
390 sb_start_write(m->mnt_sb);
391 ret = __mnt_want_write(m);
392 if (ret)
393 sb_end_write(m->mnt_sb);
394 return ret;
396 EXPORT_SYMBOL_GPL(mnt_want_write);
399 * mnt_clone_write - get write access to a mount
400 * @mnt: the mount on which to take a write
402 * This is effectively like mnt_want_write, except
403 * it must only be used to take an extra write reference
404 * on a mountpoint that we already know has a write reference
405 * on it. This allows some optimisation.
407 * After finished, mnt_drop_write must be called as usual to
408 * drop the reference.
410 int mnt_clone_write(struct vfsmount *mnt)
412 /* superblock may be r/o */
413 if (__mnt_is_readonly(mnt))
414 return -EROFS;
415 preempt_disable();
416 mnt_inc_writers(real_mount(mnt));
417 preempt_enable();
418 return 0;
420 EXPORT_SYMBOL_GPL(mnt_clone_write);
423 * __mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like __mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int __mnt_want_write_file(struct file *file)
431 if (!(file->f_mode & FMODE_WRITER))
432 return __mnt_want_write(file->f_path.mnt);
433 else
434 return mnt_clone_write(file->f_path.mnt);
438 * mnt_want_write_file - get write access to a file's mount
439 * @file: the file who's mount on which to take a write
441 * This is like mnt_want_write, but it takes a file and can
442 * do some optimisations if the file is open for write already
444 int mnt_want_write_file(struct file *file)
446 int ret;
448 sb_start_write(file->f_path.mnt->mnt_sb);
449 ret = __mnt_want_write_file(file);
450 if (ret)
451 sb_end_write(file->f_path.mnt->mnt_sb);
452 return ret;
454 EXPORT_SYMBOL_GPL(mnt_want_write_file);
457 * __mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done
461 * performing writes to it. Must be matched with
462 * __mnt_want_write() call above.
464 void __mnt_drop_write(struct vfsmount *mnt)
466 preempt_disable();
467 mnt_dec_writers(real_mount(mnt));
468 preempt_enable();
472 * mnt_drop_write - give up write access to a mount
473 * @mnt: the mount on which to give up write access
475 * Tells the low-level filesystem that we are done performing writes to it and
476 * also allows filesystem to be frozen again. Must be matched with
477 * mnt_want_write() call above.
479 void mnt_drop_write(struct vfsmount *mnt)
481 __mnt_drop_write(mnt);
482 sb_end_write(mnt->mnt_sb);
484 EXPORT_SYMBOL_GPL(mnt_drop_write);
486 void __mnt_drop_write_file(struct file *file)
488 __mnt_drop_write(file->f_path.mnt);
491 void mnt_drop_write_file(struct file *file)
493 mnt_drop_write(file->f_path.mnt);
495 EXPORT_SYMBOL(mnt_drop_write_file);
497 static int mnt_make_readonly(struct mount *mnt)
499 int ret = 0;
501 lock_mount_hash();
502 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
504 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
505 * should be visible before we do.
507 smp_mb();
510 * With writers on hold, if this value is zero, then there are
511 * definitely no active writers (although held writers may subsequently
512 * increment the count, they'll have to wait, and decrement it after
513 * seeing MNT_READONLY).
515 * It is OK to have counter incremented on one CPU and decremented on
516 * another: the sum will add up correctly. The danger would be when we
517 * sum up each counter, if we read a counter before it is incremented,
518 * but then read another CPU's count which it has been subsequently
519 * decremented from -- we would see more decrements than we should.
520 * MNT_WRITE_HOLD protects against this scenario, because
521 * mnt_want_write first increments count, then smp_mb, then spins on
522 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
523 * we're counting up here.
525 if (mnt_get_writers(mnt) > 0)
526 ret = -EBUSY;
527 else
528 mnt->mnt.mnt_flags |= MNT_READONLY;
530 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
531 * that become unheld will see MNT_READONLY.
533 smp_wmb();
534 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 unlock_mount_hash();
536 return ret;
539 static void __mnt_unmake_readonly(struct mount *mnt)
541 lock_mount_hash();
542 mnt->mnt.mnt_flags &= ~MNT_READONLY;
543 unlock_mount_hash();
546 int sb_prepare_remount_readonly(struct super_block *sb)
548 struct mount *mnt;
549 int err = 0;
551 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
552 if (atomic_long_read(&sb->s_remove_count))
553 return -EBUSY;
555 lock_mount_hash();
556 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
557 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
558 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
559 smp_mb();
560 if (mnt_get_writers(mnt) > 0) {
561 err = -EBUSY;
562 break;
566 if (!err && atomic_long_read(&sb->s_remove_count))
567 err = -EBUSY;
569 if (!err) {
570 sb->s_readonly_remount = 1;
571 smp_wmb();
573 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
574 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
575 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
577 unlock_mount_hash();
579 return err;
582 static void free_vfsmnt(struct mount *mnt)
584 kfree_const(mnt->mnt_devname);
585 #ifdef CONFIG_SMP
586 free_percpu(mnt->mnt_pcp);
587 #endif
588 kmem_cache_free(mnt_cache, mnt);
591 static void delayed_free_vfsmnt(struct rcu_head *head)
593 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
596 /* call under rcu_read_lock */
597 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
599 struct mount *mnt;
600 if (read_seqretry(&mount_lock, seq))
601 return 1;
602 if (bastard == NULL)
603 return 0;
604 mnt = real_mount(bastard);
605 mnt_add_count(mnt, 1);
606 smp_mb(); // see mntput_no_expire()
607 if (likely(!read_seqretry(&mount_lock, seq)))
608 return 0;
609 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
610 mnt_add_count(mnt, -1);
611 return 1;
613 lock_mount_hash();
614 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
615 mnt_add_count(mnt, -1);
616 unlock_mount_hash();
617 return 1;
619 unlock_mount_hash();
620 /* caller will mntput() */
621 return -1;
624 /* call under rcu_read_lock */
625 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
627 int res = __legitimize_mnt(bastard, seq);
628 if (likely(!res))
629 return true;
630 if (unlikely(res < 0)) {
631 rcu_read_unlock();
632 mntput(bastard);
633 rcu_read_lock();
635 return false;
639 * find the first mount at @dentry on vfsmount @mnt.
640 * call under rcu_read_lock()
642 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
644 struct hlist_head *head = m_hash(mnt, dentry);
645 struct mount *p;
647 hlist_for_each_entry_rcu(p, head, mnt_hash)
648 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
649 return p;
650 return NULL;
654 * lookup_mnt - Return the first child mount mounted at path
656 * "First" means first mounted chronologically. If you create the
657 * following mounts:
659 * mount /dev/sda1 /mnt
660 * mount /dev/sda2 /mnt
661 * mount /dev/sda3 /mnt
663 * Then lookup_mnt() on the base /mnt dentry in the root mount will
664 * return successively the root dentry and vfsmount of /dev/sda1, then
665 * /dev/sda2, then /dev/sda3, then NULL.
667 * lookup_mnt takes a reference to the found vfsmount.
669 struct vfsmount *lookup_mnt(struct path *path)
671 struct mount *child_mnt;
672 struct vfsmount *m;
673 unsigned seq;
675 rcu_read_lock();
676 do {
677 seq = read_seqbegin(&mount_lock);
678 child_mnt = __lookup_mnt(path->mnt, path->dentry);
679 m = child_mnt ? &child_mnt->mnt : NULL;
680 } while (!legitimize_mnt(m, seq));
681 rcu_read_unlock();
682 return m;
686 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
687 * current mount namespace.
689 * The common case is dentries are not mountpoints at all and that
690 * test is handled inline. For the slow case when we are actually
691 * dealing with a mountpoint of some kind, walk through all of the
692 * mounts in the current mount namespace and test to see if the dentry
693 * is a mountpoint.
695 * The mount_hashtable is not usable in the context because we
696 * need to identify all mounts that may be in the current mount
697 * namespace not just a mount that happens to have some specified
698 * parent mount.
700 bool __is_local_mountpoint(struct dentry *dentry)
702 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
703 struct mount *mnt;
704 bool is_covered = false;
706 if (!d_mountpoint(dentry))
707 goto out;
709 down_read(&namespace_sem);
710 list_for_each_entry(mnt, &ns->list, mnt_list) {
711 is_covered = (mnt->mnt_mountpoint == dentry);
712 if (is_covered)
713 break;
715 up_read(&namespace_sem);
716 out:
717 return is_covered;
720 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
722 struct hlist_head *chain = mp_hash(dentry);
723 struct mountpoint *mp;
725 hlist_for_each_entry(mp, chain, m_hash) {
726 if (mp->m_dentry == dentry) {
727 /* might be worth a WARN_ON() */
728 if (d_unlinked(dentry))
729 return ERR_PTR(-ENOENT);
730 mp->m_count++;
731 return mp;
734 return NULL;
737 static struct mountpoint *get_mountpoint(struct dentry *dentry)
739 struct mountpoint *mp, *new = NULL;
740 int ret;
742 if (d_mountpoint(dentry)) {
743 mountpoint:
744 read_seqlock_excl(&mount_lock);
745 mp = lookup_mountpoint(dentry);
746 read_sequnlock_excl(&mount_lock);
747 if (mp)
748 goto done;
751 if (!new)
752 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
753 if (!new)
754 return ERR_PTR(-ENOMEM);
757 /* Exactly one processes may set d_mounted */
758 ret = d_set_mounted(dentry);
760 /* Someone else set d_mounted? */
761 if (ret == -EBUSY)
762 goto mountpoint;
764 /* The dentry is not available as a mountpoint? */
765 mp = ERR_PTR(ret);
766 if (ret)
767 goto done;
769 /* Add the new mountpoint to the hash table */
770 read_seqlock_excl(&mount_lock);
771 new->m_dentry = dentry;
772 new->m_count = 1;
773 hlist_add_head(&new->m_hash, mp_hash(dentry));
774 INIT_HLIST_HEAD(&new->m_list);
775 read_sequnlock_excl(&mount_lock);
777 mp = new;
778 new = NULL;
779 done:
780 kfree(new);
781 return mp;
784 static void put_mountpoint(struct mountpoint *mp)
786 if (!--mp->m_count) {
787 struct dentry *dentry = mp->m_dentry;
788 BUG_ON(!hlist_empty(&mp->m_list));
789 spin_lock(&dentry->d_lock);
790 dentry->d_flags &= ~DCACHE_MOUNTED;
791 spin_unlock(&dentry->d_lock);
792 hlist_del(&mp->m_hash);
793 kfree(mp);
797 static inline int check_mnt(struct mount *mnt)
799 return mnt->mnt_ns == current->nsproxy->mnt_ns;
803 * vfsmount lock must be held for write
805 static void touch_mnt_namespace(struct mnt_namespace *ns)
807 if (ns) {
808 ns->event = ++event;
809 wake_up_interruptible(&ns->poll);
814 * vfsmount lock must be held for write
816 static void __touch_mnt_namespace(struct mnt_namespace *ns)
818 if (ns && ns->event != event) {
819 ns->event = event;
820 wake_up_interruptible(&ns->poll);
825 * vfsmount lock must be held for write
827 static void unhash_mnt(struct mount *mnt)
829 mnt->mnt_parent = mnt;
830 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
831 list_del_init(&mnt->mnt_child);
832 hlist_del_init_rcu(&mnt->mnt_hash);
833 hlist_del_init(&mnt->mnt_mp_list);
834 put_mountpoint(mnt->mnt_mp);
835 mnt->mnt_mp = NULL;
839 * vfsmount lock must be held for write
841 static void detach_mnt(struct mount *mnt, struct path *old_path)
843 old_path->dentry = mnt->mnt_mountpoint;
844 old_path->mnt = &mnt->mnt_parent->mnt;
845 unhash_mnt(mnt);
849 * vfsmount lock must be held for write
851 static void umount_mnt(struct mount *mnt)
853 /* old mountpoint will be dropped when we can do that */
854 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
855 unhash_mnt(mnt);
859 * vfsmount lock must be held for write
861 void mnt_set_mountpoint(struct mount *mnt,
862 struct mountpoint *mp,
863 struct mount *child_mnt)
865 mp->m_count++;
866 mnt_add_count(mnt, 1); /* essentially, that's mntget */
867 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
868 child_mnt->mnt_parent = mnt;
869 child_mnt->mnt_mp = mp;
870 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
873 static void __attach_mnt(struct mount *mnt, struct mount *parent)
875 hlist_add_head_rcu(&mnt->mnt_hash,
876 m_hash(&parent->mnt, mnt->mnt_mountpoint));
877 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
881 * vfsmount lock must be held for write
883 static void attach_mnt(struct mount *mnt,
884 struct mount *parent,
885 struct mountpoint *mp)
887 mnt_set_mountpoint(parent, mp, mnt);
888 __attach_mnt(mnt, parent);
891 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
893 struct mountpoint *old_mp = mnt->mnt_mp;
894 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
895 struct mount *old_parent = mnt->mnt_parent;
897 list_del_init(&mnt->mnt_child);
898 hlist_del_init(&mnt->mnt_mp_list);
899 hlist_del_init_rcu(&mnt->mnt_hash);
901 attach_mnt(mnt, parent, mp);
903 put_mountpoint(old_mp);
906 * Safely avoid even the suggestion this code might sleep or
907 * lock the mount hash by taking advantage of the knowledge that
908 * mnt_change_mountpoint will not release the final reference
909 * to a mountpoint.
911 * During mounting, the mount passed in as the parent mount will
912 * continue to use the old mountpoint and during unmounting, the
913 * old mountpoint will continue to exist until namespace_unlock,
914 * which happens well after mnt_change_mountpoint.
916 spin_lock(&old_mountpoint->d_lock);
917 old_mountpoint->d_lockref.count--;
918 spin_unlock(&old_mountpoint->d_lock);
920 mnt_add_count(old_parent, -1);
924 * vfsmount lock must be held for write
926 static void commit_tree(struct mount *mnt)
928 struct mount *parent = mnt->mnt_parent;
929 struct mount *m;
930 LIST_HEAD(head);
931 struct mnt_namespace *n = parent->mnt_ns;
933 BUG_ON(parent == mnt);
935 list_add_tail(&head, &mnt->mnt_list);
936 list_for_each_entry(m, &head, mnt_list)
937 m->mnt_ns = n;
939 list_splice(&head, n->list.prev);
941 n->mounts += n->pending_mounts;
942 n->pending_mounts = 0;
944 __attach_mnt(mnt, parent);
945 touch_mnt_namespace(n);
948 static struct mount *next_mnt(struct mount *p, struct mount *root)
950 struct list_head *next = p->mnt_mounts.next;
951 if (next == &p->mnt_mounts) {
952 while (1) {
953 if (p == root)
954 return NULL;
955 next = p->mnt_child.next;
956 if (next != &p->mnt_parent->mnt_mounts)
957 break;
958 p = p->mnt_parent;
961 return list_entry(next, struct mount, mnt_child);
964 static struct mount *skip_mnt_tree(struct mount *p)
966 struct list_head *prev = p->mnt_mounts.prev;
967 while (prev != &p->mnt_mounts) {
968 p = list_entry(prev, struct mount, mnt_child);
969 prev = p->mnt_mounts.prev;
971 return p;
974 struct vfsmount *
975 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
977 struct mount *mnt;
978 struct dentry *root;
980 if (!type)
981 return ERR_PTR(-ENODEV);
983 mnt = alloc_vfsmnt(name);
984 if (!mnt)
985 return ERR_PTR(-ENOMEM);
987 if (flags & MS_KERNMOUNT)
988 mnt->mnt.mnt_flags = MNT_INTERNAL;
990 root = mount_fs(type, flags, name, data);
991 if (IS_ERR(root)) {
992 mnt_free_id(mnt);
993 free_vfsmnt(mnt);
994 return ERR_CAST(root);
997 mnt->mnt.mnt_root = root;
998 mnt->mnt.mnt_sb = root->d_sb;
999 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1000 mnt->mnt_parent = mnt;
1001 lock_mount_hash();
1002 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1003 unlock_mount_hash();
1004 return &mnt->mnt;
1006 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1009 int flag)
1011 struct super_block *sb = old->mnt.mnt_sb;
1012 struct mount *mnt;
1013 int err;
1015 mnt = alloc_vfsmnt(old->mnt_devname);
1016 if (!mnt)
1017 return ERR_PTR(-ENOMEM);
1019 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1020 mnt->mnt_group_id = 0; /* not a peer of original */
1021 else
1022 mnt->mnt_group_id = old->mnt_group_id;
1024 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1025 err = mnt_alloc_group_id(mnt);
1026 if (err)
1027 goto out_free;
1030 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1031 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1032 /* Don't allow unprivileged users to change mount flags */
1033 if (flag & CL_UNPRIVILEGED) {
1034 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1036 if (mnt->mnt.mnt_flags & MNT_READONLY)
1037 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1039 if (mnt->mnt.mnt_flags & MNT_NODEV)
1040 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1042 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1043 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1045 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1046 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1049 /* Don't allow unprivileged users to reveal what is under a mount */
1050 if ((flag & CL_UNPRIVILEGED) &&
1051 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1052 mnt->mnt.mnt_flags |= MNT_LOCKED;
1054 atomic_inc(&sb->s_active);
1055 mnt->mnt.mnt_sb = sb;
1056 mnt->mnt.mnt_root = dget(root);
1057 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1058 mnt->mnt_parent = mnt;
1059 lock_mount_hash();
1060 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1061 unlock_mount_hash();
1063 if ((flag & CL_SLAVE) ||
1064 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1065 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1066 mnt->mnt_master = old;
1067 CLEAR_MNT_SHARED(mnt);
1068 } else if (!(flag & CL_PRIVATE)) {
1069 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1070 list_add(&mnt->mnt_share, &old->mnt_share);
1071 if (IS_MNT_SLAVE(old))
1072 list_add(&mnt->mnt_slave, &old->mnt_slave);
1073 mnt->mnt_master = old->mnt_master;
1075 if (flag & CL_MAKE_SHARED)
1076 set_mnt_shared(mnt);
1078 /* stick the duplicate mount on the same expiry list
1079 * as the original if that was on one */
1080 if (flag & CL_EXPIRE) {
1081 if (!list_empty(&old->mnt_expire))
1082 list_add(&mnt->mnt_expire, &old->mnt_expire);
1085 return mnt;
1087 out_free:
1088 mnt_free_id(mnt);
1089 free_vfsmnt(mnt);
1090 return ERR_PTR(err);
1093 static void cleanup_mnt(struct mount *mnt)
1096 * This probably indicates that somebody messed
1097 * up a mnt_want/drop_write() pair. If this
1098 * happens, the filesystem was probably unable
1099 * to make r/w->r/o transitions.
1102 * The locking used to deal with mnt_count decrement provides barriers,
1103 * so mnt_get_writers() below is safe.
1105 WARN_ON(mnt_get_writers(mnt));
1106 if (unlikely(mnt->mnt_pins.first))
1107 mnt_pin_kill(mnt);
1108 fsnotify_vfsmount_delete(&mnt->mnt);
1109 dput(mnt->mnt.mnt_root);
1110 deactivate_super(mnt->mnt.mnt_sb);
1111 mnt_free_id(mnt);
1112 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1115 static void __cleanup_mnt(struct rcu_head *head)
1117 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1120 static LLIST_HEAD(delayed_mntput_list);
1121 static void delayed_mntput(struct work_struct *unused)
1123 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1124 struct llist_node *next;
1126 for (; node; node = next) {
1127 next = llist_next(node);
1128 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1131 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1133 static void mntput_no_expire(struct mount *mnt)
1135 rcu_read_lock();
1136 if (likely(READ_ONCE(mnt->mnt_ns))) {
1138 * Since we don't do lock_mount_hash() here,
1139 * ->mnt_ns can change under us. However, if it's
1140 * non-NULL, then there's a reference that won't
1141 * be dropped until after an RCU delay done after
1142 * turning ->mnt_ns NULL. So if we observe it
1143 * non-NULL under rcu_read_lock(), the reference
1144 * we are dropping is not the final one.
1146 mnt_add_count(mnt, -1);
1147 rcu_read_unlock();
1148 return;
1150 lock_mount_hash();
1152 * make sure that if __legitimize_mnt() has not seen us grab
1153 * mount_lock, we'll see their refcount increment here.
1155 smp_mb();
1156 mnt_add_count(mnt, -1);
1157 if (mnt_get_count(mnt)) {
1158 rcu_read_unlock();
1159 unlock_mount_hash();
1160 return;
1162 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1163 rcu_read_unlock();
1164 unlock_mount_hash();
1165 return;
1167 mnt->mnt.mnt_flags |= MNT_DOOMED;
1168 rcu_read_unlock();
1170 list_del(&mnt->mnt_instance);
1172 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1173 struct mount *p, *tmp;
1174 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1175 umount_mnt(p);
1178 unlock_mount_hash();
1180 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1181 struct task_struct *task = current;
1182 if (likely(!(task->flags & PF_KTHREAD))) {
1183 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1184 if (!task_work_add(task, &mnt->mnt_rcu, true))
1185 return;
1187 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1188 schedule_delayed_work(&delayed_mntput_work, 1);
1189 return;
1191 cleanup_mnt(mnt);
1194 void mntput(struct vfsmount *mnt)
1196 if (mnt) {
1197 struct mount *m = real_mount(mnt);
1198 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1199 if (unlikely(m->mnt_expiry_mark))
1200 m->mnt_expiry_mark = 0;
1201 mntput_no_expire(m);
1204 EXPORT_SYMBOL(mntput);
1206 struct vfsmount *mntget(struct vfsmount *mnt)
1208 if (mnt)
1209 mnt_add_count(real_mount(mnt), 1);
1210 return mnt;
1212 EXPORT_SYMBOL(mntget);
1214 struct vfsmount *mnt_clone_internal(struct path *path)
1216 struct mount *p;
1217 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1218 if (IS_ERR(p))
1219 return ERR_CAST(p);
1220 p->mnt.mnt_flags |= MNT_INTERNAL;
1221 return &p->mnt;
1224 static inline void mangle(struct seq_file *m, const char *s)
1226 seq_escape(m, s, " \t\n\\");
1230 * Simple .show_options callback for filesystems which don't want to
1231 * implement more complex mount option showing.
1233 * See also save_mount_options().
1235 int generic_show_options(struct seq_file *m, struct dentry *root)
1237 const char *options;
1239 rcu_read_lock();
1240 options = rcu_dereference(root->d_sb->s_options);
1242 if (options != NULL && options[0]) {
1243 seq_putc(m, ',');
1244 mangle(m, options);
1246 rcu_read_unlock();
1248 return 0;
1250 EXPORT_SYMBOL(generic_show_options);
1253 * If filesystem uses generic_show_options(), this function should be
1254 * called from the fill_super() callback.
1256 * The .remount_fs callback usually needs to be handled in a special
1257 * way, to make sure, that previous options are not overwritten if the
1258 * remount fails.
1260 * Also note, that if the filesystem's .remount_fs function doesn't
1261 * reset all options to their default value, but changes only newly
1262 * given options, then the displayed options will not reflect reality
1263 * any more.
1265 void save_mount_options(struct super_block *sb, char *options)
1267 BUG_ON(sb->s_options);
1268 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1270 EXPORT_SYMBOL(save_mount_options);
1272 void replace_mount_options(struct super_block *sb, char *options)
1274 char *old = sb->s_options;
1275 rcu_assign_pointer(sb->s_options, options);
1276 if (old) {
1277 synchronize_rcu();
1278 kfree(old);
1281 EXPORT_SYMBOL(replace_mount_options);
1283 #ifdef CONFIG_PROC_FS
1284 /* iterator; we want it to have access to namespace_sem, thus here... */
1285 static void *m_start(struct seq_file *m, loff_t *pos)
1287 struct proc_mounts *p = m->private;
1289 down_read(&namespace_sem);
1290 if (p->cached_event == p->ns->event) {
1291 void *v = p->cached_mount;
1292 if (*pos == p->cached_index)
1293 return v;
1294 if (*pos == p->cached_index + 1) {
1295 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1296 return p->cached_mount = v;
1300 p->cached_event = p->ns->event;
1301 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1302 p->cached_index = *pos;
1303 return p->cached_mount;
1306 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1308 struct proc_mounts *p = m->private;
1310 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1311 p->cached_index = *pos;
1312 return p->cached_mount;
1315 static void m_stop(struct seq_file *m, void *v)
1317 up_read(&namespace_sem);
1320 static int m_show(struct seq_file *m, void *v)
1322 struct proc_mounts *p = m->private;
1323 struct mount *r = list_entry(v, struct mount, mnt_list);
1324 return p->show(m, &r->mnt);
1327 const struct seq_operations mounts_op = {
1328 .start = m_start,
1329 .next = m_next,
1330 .stop = m_stop,
1331 .show = m_show,
1333 #endif /* CONFIG_PROC_FS */
1336 * may_umount_tree - check if a mount tree is busy
1337 * @mnt: root of mount tree
1339 * This is called to check if a tree of mounts has any
1340 * open files, pwds, chroots or sub mounts that are
1341 * busy.
1343 int may_umount_tree(struct vfsmount *m)
1345 struct mount *mnt = real_mount(m);
1346 int actual_refs = 0;
1347 int minimum_refs = 0;
1348 struct mount *p;
1349 BUG_ON(!m);
1351 /* write lock needed for mnt_get_count */
1352 lock_mount_hash();
1353 for (p = mnt; p; p = next_mnt(p, mnt)) {
1354 actual_refs += mnt_get_count(p);
1355 minimum_refs += 2;
1357 unlock_mount_hash();
1359 if (actual_refs > minimum_refs)
1360 return 0;
1362 return 1;
1365 EXPORT_SYMBOL(may_umount_tree);
1368 * may_umount - check if a mount point is busy
1369 * @mnt: root of mount
1371 * This is called to check if a mount point has any
1372 * open files, pwds, chroots or sub mounts. If the
1373 * mount has sub mounts this will return busy
1374 * regardless of whether the sub mounts are busy.
1376 * Doesn't take quota and stuff into account. IOW, in some cases it will
1377 * give false negatives. The main reason why it's here is that we need
1378 * a non-destructive way to look for easily umountable filesystems.
1380 int may_umount(struct vfsmount *mnt)
1382 int ret = 1;
1383 down_read(&namespace_sem);
1384 lock_mount_hash();
1385 if (propagate_mount_busy(real_mount(mnt), 2))
1386 ret = 0;
1387 unlock_mount_hash();
1388 up_read(&namespace_sem);
1389 return ret;
1392 EXPORT_SYMBOL(may_umount);
1394 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1396 static void namespace_unlock(void)
1398 struct hlist_head head;
1400 hlist_move_list(&unmounted, &head);
1402 up_write(&namespace_sem);
1404 if (likely(hlist_empty(&head)))
1405 return;
1407 synchronize_rcu();
1409 group_pin_kill(&head);
1412 static inline void namespace_lock(void)
1414 down_write(&namespace_sem);
1417 enum umount_tree_flags {
1418 UMOUNT_SYNC = 1,
1419 UMOUNT_PROPAGATE = 2,
1420 UMOUNT_CONNECTED = 4,
1423 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1425 /* Leaving mounts connected is only valid for lazy umounts */
1426 if (how & UMOUNT_SYNC)
1427 return true;
1429 /* A mount without a parent has nothing to be connected to */
1430 if (!mnt_has_parent(mnt))
1431 return true;
1433 /* Because the reference counting rules change when mounts are
1434 * unmounted and connected, umounted mounts may not be
1435 * connected to mounted mounts.
1437 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1438 return true;
1440 /* Has it been requested that the mount remain connected? */
1441 if (how & UMOUNT_CONNECTED)
1442 return false;
1444 /* Is the mount locked such that it needs to remain connected? */
1445 if (IS_MNT_LOCKED(mnt))
1446 return false;
1448 /* By default disconnect the mount */
1449 return true;
1453 * mount_lock must be held
1454 * namespace_sem must be held for write
1456 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1458 LIST_HEAD(tmp_list);
1459 struct mount *p;
1461 if (how & UMOUNT_PROPAGATE)
1462 propagate_mount_unlock(mnt);
1464 /* Gather the mounts to umount */
1465 for (p = mnt; p; p = next_mnt(p, mnt)) {
1466 p->mnt.mnt_flags |= MNT_UMOUNT;
1467 list_move(&p->mnt_list, &tmp_list);
1470 /* Hide the mounts from mnt_mounts */
1471 list_for_each_entry(p, &tmp_list, mnt_list) {
1472 list_del_init(&p->mnt_child);
1475 /* Add propogated mounts to the tmp_list */
1476 if (how & UMOUNT_PROPAGATE)
1477 propagate_umount(&tmp_list);
1479 while (!list_empty(&tmp_list)) {
1480 struct mnt_namespace *ns;
1481 bool disconnect;
1482 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1483 list_del_init(&p->mnt_expire);
1484 list_del_init(&p->mnt_list);
1485 ns = p->mnt_ns;
1486 if (ns) {
1487 ns->mounts--;
1488 __touch_mnt_namespace(ns);
1490 p->mnt_ns = NULL;
1491 if (how & UMOUNT_SYNC)
1492 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1494 disconnect = disconnect_mount(p, how);
1496 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1497 disconnect ? &unmounted : NULL);
1498 if (mnt_has_parent(p)) {
1499 mnt_add_count(p->mnt_parent, -1);
1500 if (!disconnect) {
1501 /* Don't forget about p */
1502 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1503 } else {
1504 umount_mnt(p);
1507 change_mnt_propagation(p, MS_PRIVATE);
1511 static void shrink_submounts(struct mount *mnt);
1513 static int do_umount(struct mount *mnt, int flags)
1515 struct super_block *sb = mnt->mnt.mnt_sb;
1516 int retval;
1518 retval = security_sb_umount(&mnt->mnt, flags);
1519 if (retval)
1520 return retval;
1523 * Allow userspace to request a mountpoint be expired rather than
1524 * unmounting unconditionally. Unmount only happens if:
1525 * (1) the mark is already set (the mark is cleared by mntput())
1526 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 if (flags & MNT_EXPIRE) {
1529 if (&mnt->mnt == current->fs->root.mnt ||
1530 flags & (MNT_FORCE | MNT_DETACH))
1531 return -EINVAL;
1534 * probably don't strictly need the lock here if we examined
1535 * all race cases, but it's a slowpath.
1537 lock_mount_hash();
1538 if (mnt_get_count(mnt) != 2) {
1539 unlock_mount_hash();
1540 return -EBUSY;
1542 unlock_mount_hash();
1544 if (!xchg(&mnt->mnt_expiry_mark, 1))
1545 return -EAGAIN;
1549 * If we may have to abort operations to get out of this
1550 * mount, and they will themselves hold resources we must
1551 * allow the fs to do things. In the Unix tradition of
1552 * 'Gee thats tricky lets do it in userspace' the umount_begin
1553 * might fail to complete on the first run through as other tasks
1554 * must return, and the like. Thats for the mount program to worry
1555 * about for the moment.
1558 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1559 sb->s_op->umount_begin(sb);
1563 * No sense to grab the lock for this test, but test itself looks
1564 * somewhat bogus. Suggestions for better replacement?
1565 * Ho-hum... In principle, we might treat that as umount + switch
1566 * to rootfs. GC would eventually take care of the old vfsmount.
1567 * Actually it makes sense, especially if rootfs would contain a
1568 * /reboot - static binary that would close all descriptors and
1569 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573 * Special case for "unmounting" root ...
1574 * we just try to remount it readonly.
1576 if (!capable(CAP_SYS_ADMIN))
1577 return -EPERM;
1578 down_write(&sb->s_umount);
1579 if (!(sb->s_flags & MS_RDONLY))
1580 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1581 up_write(&sb->s_umount);
1582 return retval;
1585 namespace_lock();
1586 lock_mount_hash();
1588 /* Recheck MNT_LOCKED with the locks held */
1589 retval = -EINVAL;
1590 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1591 goto out;
1593 event++;
1594 if (flags & MNT_DETACH) {
1595 if (!list_empty(&mnt->mnt_list))
1596 umount_tree(mnt, UMOUNT_PROPAGATE);
1597 retval = 0;
1598 } else {
1599 shrink_submounts(mnt);
1600 retval = -EBUSY;
1601 if (!propagate_mount_busy(mnt, 2)) {
1602 if (!list_empty(&mnt->mnt_list))
1603 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1604 retval = 0;
1607 out:
1608 unlock_mount_hash();
1609 namespace_unlock();
1610 return retval;
1614 * __detach_mounts - lazily unmount all mounts on the specified dentry
1616 * During unlink, rmdir, and d_drop it is possible to loose the path
1617 * to an existing mountpoint, and wind up leaking the mount.
1618 * detach_mounts allows lazily unmounting those mounts instead of
1619 * leaking them.
1621 * The caller may hold dentry->d_inode->i_mutex.
1623 void __detach_mounts(struct dentry *dentry)
1625 struct mountpoint *mp;
1626 struct mount *mnt;
1628 namespace_lock();
1629 lock_mount_hash();
1630 mp = lookup_mountpoint(dentry);
1631 if (IS_ERR_OR_NULL(mp))
1632 goto out_unlock;
1634 event++;
1635 while (!hlist_empty(&mp->m_list)) {
1636 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1637 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1638 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1639 umount_mnt(mnt);
1641 else umount_tree(mnt, UMOUNT_CONNECTED);
1643 put_mountpoint(mp);
1644 out_unlock:
1645 unlock_mount_hash();
1646 namespace_unlock();
1650 * Is the caller allowed to modify his namespace?
1652 static inline bool may_mount(void)
1654 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1658 * Now umount can handle mount points as well as block devices.
1659 * This is important for filesystems which use unnamed block devices.
1661 * We now support a flag for forced unmount like the other 'big iron'
1662 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1665 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1667 struct path path;
1668 struct mount *mnt;
1669 int retval;
1670 int lookup_flags = 0;
1672 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1673 return -EINVAL;
1675 if (!may_mount())
1676 return -EPERM;
1678 if (!(flags & UMOUNT_NOFOLLOW))
1679 lookup_flags |= LOOKUP_FOLLOW;
1681 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1682 if (retval)
1683 goto out;
1684 mnt = real_mount(path.mnt);
1685 retval = -EINVAL;
1686 if (path.dentry != path.mnt->mnt_root)
1687 goto dput_and_out;
1688 if (!check_mnt(mnt))
1689 goto dput_and_out;
1690 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1691 goto dput_and_out;
1692 retval = -EPERM;
1693 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1694 goto dput_and_out;
1696 retval = do_umount(mnt, flags);
1697 dput_and_out:
1698 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1699 dput(path.dentry);
1700 mntput_no_expire(mnt);
1701 out:
1702 return retval;
1705 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1708 * The 2.0 compatible umount. No flags.
1710 SYSCALL_DEFINE1(oldumount, char __user *, name)
1712 return sys_umount(name, 0);
1715 #endif
1717 static bool is_mnt_ns_file(struct dentry *dentry)
1719 /* Is this a proxy for a mount namespace? */
1720 return dentry->d_op == &ns_dentry_operations &&
1721 dentry->d_fsdata == &mntns_operations;
1724 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1726 return container_of(ns, struct mnt_namespace, ns);
1729 static bool mnt_ns_loop(struct dentry *dentry)
1731 /* Could bind mounting the mount namespace inode cause a
1732 * mount namespace loop?
1734 struct mnt_namespace *mnt_ns;
1735 if (!is_mnt_ns_file(dentry))
1736 return false;
1738 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1739 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1742 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1743 int flag)
1745 struct mount *res, *p, *q, *r, *parent;
1747 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1748 return ERR_PTR(-EINVAL);
1750 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1751 return ERR_PTR(-EINVAL);
1753 res = q = clone_mnt(mnt, dentry, flag);
1754 if (IS_ERR(q))
1755 return q;
1757 q->mnt_mountpoint = mnt->mnt_mountpoint;
1759 p = mnt;
1760 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1761 struct mount *s;
1762 if (!is_subdir(r->mnt_mountpoint, dentry))
1763 continue;
1765 for (s = r; s; s = next_mnt(s, r)) {
1766 if (!(flag & CL_COPY_UNBINDABLE) &&
1767 IS_MNT_UNBINDABLE(s)) {
1768 if (s->mnt.mnt_flags & MNT_LOCKED) {
1769 /* Both unbindable and locked. */
1770 q = ERR_PTR(-EPERM);
1771 goto out;
1772 } else {
1773 s = skip_mnt_tree(s);
1774 continue;
1777 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1778 is_mnt_ns_file(s->mnt.mnt_root)) {
1779 s = skip_mnt_tree(s);
1780 continue;
1782 while (p != s->mnt_parent) {
1783 p = p->mnt_parent;
1784 q = q->mnt_parent;
1786 p = s;
1787 parent = q;
1788 q = clone_mnt(p, p->mnt.mnt_root, flag);
1789 if (IS_ERR(q))
1790 goto out;
1791 lock_mount_hash();
1792 list_add_tail(&q->mnt_list, &res->mnt_list);
1793 attach_mnt(q, parent, p->mnt_mp);
1794 unlock_mount_hash();
1797 return res;
1798 out:
1799 if (res) {
1800 lock_mount_hash();
1801 umount_tree(res, UMOUNT_SYNC);
1802 unlock_mount_hash();
1804 return q;
1807 /* Caller should check returned pointer for errors */
1809 struct vfsmount *collect_mounts(struct path *path)
1811 struct mount *tree;
1812 namespace_lock();
1813 if (!check_mnt(real_mount(path->mnt)))
1814 tree = ERR_PTR(-EINVAL);
1815 else
1816 tree = copy_tree(real_mount(path->mnt), path->dentry,
1817 CL_COPY_ALL | CL_PRIVATE);
1818 namespace_unlock();
1819 if (IS_ERR(tree))
1820 return ERR_CAST(tree);
1821 return &tree->mnt;
1824 void drop_collected_mounts(struct vfsmount *mnt)
1826 namespace_lock();
1827 lock_mount_hash();
1828 umount_tree(real_mount(mnt), 0);
1829 unlock_mount_hash();
1830 namespace_unlock();
1834 * clone_private_mount - create a private clone of a path
1836 * This creates a new vfsmount, which will be the clone of @path. The new will
1837 * not be attached anywhere in the namespace and will be private (i.e. changes
1838 * to the originating mount won't be propagated into this).
1840 * Release with mntput().
1842 struct vfsmount *clone_private_mount(struct path *path)
1844 struct mount *old_mnt = real_mount(path->mnt);
1845 struct mount *new_mnt;
1847 if (IS_MNT_UNBINDABLE(old_mnt))
1848 return ERR_PTR(-EINVAL);
1850 down_read(&namespace_sem);
1851 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1852 up_read(&namespace_sem);
1853 if (IS_ERR(new_mnt))
1854 return ERR_CAST(new_mnt);
1856 return &new_mnt->mnt;
1858 EXPORT_SYMBOL_GPL(clone_private_mount);
1860 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1861 struct vfsmount *root)
1863 struct mount *mnt;
1864 int res = f(root, arg);
1865 if (res)
1866 return res;
1867 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1868 res = f(&mnt->mnt, arg);
1869 if (res)
1870 return res;
1872 return 0;
1875 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1877 struct mount *p;
1879 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1880 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1881 mnt_release_group_id(p);
1885 static int invent_group_ids(struct mount *mnt, bool recurse)
1887 struct mount *p;
1889 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1890 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1891 int err = mnt_alloc_group_id(p);
1892 if (err) {
1893 cleanup_group_ids(mnt, p);
1894 return err;
1899 return 0;
1902 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1904 unsigned int max = READ_ONCE(sysctl_mount_max);
1905 unsigned int mounts = 0, old, pending, sum;
1906 struct mount *p;
1908 for (p = mnt; p; p = next_mnt(p, mnt))
1909 mounts++;
1911 old = ns->mounts;
1912 pending = ns->pending_mounts;
1913 sum = old + pending;
1914 if ((old > sum) ||
1915 (pending > sum) ||
1916 (max < sum) ||
1917 (mounts > (max - sum)))
1918 return -ENOSPC;
1920 ns->pending_mounts = pending + mounts;
1921 return 0;
1925 * @source_mnt : mount tree to be attached
1926 * @nd : place the mount tree @source_mnt is attached
1927 * @parent_nd : if non-null, detach the source_mnt from its parent and
1928 * store the parent mount and mountpoint dentry.
1929 * (done when source_mnt is moved)
1931 * NOTE: in the table below explains the semantics when a source mount
1932 * of a given type is attached to a destination mount of a given type.
1933 * ---------------------------------------------------------------------------
1934 * | BIND MOUNT OPERATION |
1935 * |**************************************************************************
1936 * | source-->| shared | private | slave | unbindable |
1937 * | dest | | | | |
1938 * | | | | | | |
1939 * | v | | | | |
1940 * |**************************************************************************
1941 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1942 * | | | | | |
1943 * |non-shared| shared (+) | private | slave (*) | invalid |
1944 * ***************************************************************************
1945 * A bind operation clones the source mount and mounts the clone on the
1946 * destination mount.
1948 * (++) the cloned mount is propagated to all the mounts in the propagation
1949 * tree of the destination mount and the cloned mount is added to
1950 * the peer group of the source mount.
1951 * (+) the cloned mount is created under the destination mount and is marked
1952 * as shared. The cloned mount is added to the peer group of the source
1953 * mount.
1954 * (+++) the mount is propagated to all the mounts in the propagation tree
1955 * of the destination mount and the cloned mount is made slave
1956 * of the same master as that of the source mount. The cloned mount
1957 * is marked as 'shared and slave'.
1958 * (*) the cloned mount is made a slave of the same master as that of the
1959 * source mount.
1961 * ---------------------------------------------------------------------------
1962 * | MOVE MOUNT OPERATION |
1963 * |**************************************************************************
1964 * | source-->| shared | private | slave | unbindable |
1965 * | dest | | | | |
1966 * | | | | | | |
1967 * | v | | | | |
1968 * |**************************************************************************
1969 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1970 * | | | | | |
1971 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1972 * ***************************************************************************
1974 * (+) the mount is moved to the destination. And is then propagated to
1975 * all the mounts in the propagation tree of the destination mount.
1976 * (+*) the mount is moved to the destination.
1977 * (+++) the mount is moved to the destination and is then propagated to
1978 * all the mounts belonging to the destination mount's propagation tree.
1979 * the mount is marked as 'shared and slave'.
1980 * (*) the mount continues to be a slave at the new location.
1982 * if the source mount is a tree, the operations explained above is
1983 * applied to each mount in the tree.
1984 * Must be called without spinlocks held, since this function can sleep
1985 * in allocations.
1987 static int attach_recursive_mnt(struct mount *source_mnt,
1988 struct mount *dest_mnt,
1989 struct mountpoint *dest_mp,
1990 struct path *parent_path)
1992 HLIST_HEAD(tree_list);
1993 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1994 struct mountpoint *smp;
1995 struct mount *child, *p;
1996 struct hlist_node *n;
1997 int err;
1999 /* Preallocate a mountpoint in case the new mounts need
2000 * to be tucked under other mounts.
2002 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2003 if (IS_ERR(smp))
2004 return PTR_ERR(smp);
2006 /* Is there space to add these mounts to the mount namespace? */
2007 if (!parent_path) {
2008 err = count_mounts(ns, source_mnt);
2009 if (err)
2010 goto out;
2013 if (IS_MNT_SHARED(dest_mnt)) {
2014 err = invent_group_ids(source_mnt, true);
2015 if (err)
2016 goto out;
2017 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2018 lock_mount_hash();
2019 if (err)
2020 goto out_cleanup_ids;
2021 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2022 set_mnt_shared(p);
2023 } else {
2024 lock_mount_hash();
2026 if (parent_path) {
2027 detach_mnt(source_mnt, parent_path);
2028 attach_mnt(source_mnt, dest_mnt, dest_mp);
2029 touch_mnt_namespace(source_mnt->mnt_ns);
2030 } else {
2031 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2032 commit_tree(source_mnt);
2035 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2036 struct mount *q;
2037 hlist_del_init(&child->mnt_hash);
2038 q = __lookup_mnt(&child->mnt_parent->mnt,
2039 child->mnt_mountpoint);
2040 if (q)
2041 mnt_change_mountpoint(child, smp, q);
2042 commit_tree(child);
2044 put_mountpoint(smp);
2045 unlock_mount_hash();
2047 return 0;
2049 out_cleanup_ids:
2050 while (!hlist_empty(&tree_list)) {
2051 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2052 child->mnt_parent->mnt_ns->pending_mounts = 0;
2053 umount_tree(child, UMOUNT_SYNC);
2055 unlock_mount_hash();
2056 cleanup_group_ids(source_mnt, NULL);
2057 out:
2058 ns->pending_mounts = 0;
2060 read_seqlock_excl(&mount_lock);
2061 put_mountpoint(smp);
2062 read_sequnlock_excl(&mount_lock);
2064 return err;
2067 static struct mountpoint *lock_mount(struct path *path)
2069 struct vfsmount *mnt;
2070 struct dentry *dentry = path->dentry;
2071 retry:
2072 mutex_lock(&dentry->d_inode->i_mutex);
2073 if (unlikely(cant_mount(dentry))) {
2074 mutex_unlock(&dentry->d_inode->i_mutex);
2075 return ERR_PTR(-ENOENT);
2077 namespace_lock();
2078 mnt = lookup_mnt(path);
2079 if (likely(!mnt)) {
2080 struct mountpoint *mp = get_mountpoint(dentry);
2081 if (IS_ERR(mp)) {
2082 namespace_unlock();
2083 mutex_unlock(&dentry->d_inode->i_mutex);
2084 return mp;
2086 return mp;
2088 namespace_unlock();
2089 mutex_unlock(&path->dentry->d_inode->i_mutex);
2090 path_put(path);
2091 path->mnt = mnt;
2092 dentry = path->dentry = dget(mnt->mnt_root);
2093 goto retry;
2096 static void unlock_mount(struct mountpoint *where)
2098 struct dentry *dentry = where->m_dentry;
2100 read_seqlock_excl(&mount_lock);
2101 put_mountpoint(where);
2102 read_sequnlock_excl(&mount_lock);
2104 namespace_unlock();
2105 mutex_unlock(&dentry->d_inode->i_mutex);
2108 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2110 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2111 return -EINVAL;
2113 if (d_is_dir(mp->m_dentry) !=
2114 d_is_dir(mnt->mnt.mnt_root))
2115 return -ENOTDIR;
2117 return attach_recursive_mnt(mnt, p, mp, NULL);
2121 * Sanity check the flags to change_mnt_propagation.
2124 static int flags_to_propagation_type(int flags)
2126 int type = flags & ~(MS_REC | MS_SILENT);
2128 /* Fail if any non-propagation flags are set */
2129 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2130 return 0;
2131 /* Only one propagation flag should be set */
2132 if (!is_power_of_2(type))
2133 return 0;
2134 return type;
2138 * recursively change the type of the mountpoint.
2140 static int do_change_type(struct path *path, int flag)
2142 struct mount *m;
2143 struct mount *mnt = real_mount(path->mnt);
2144 int recurse = flag & MS_REC;
2145 int type;
2146 int err = 0;
2148 if (path->dentry != path->mnt->mnt_root)
2149 return -EINVAL;
2151 type = flags_to_propagation_type(flag);
2152 if (!type)
2153 return -EINVAL;
2155 namespace_lock();
2156 if (type == MS_SHARED) {
2157 err = invent_group_ids(mnt, recurse);
2158 if (err)
2159 goto out_unlock;
2162 lock_mount_hash();
2163 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2164 change_mnt_propagation(m, type);
2165 unlock_mount_hash();
2167 out_unlock:
2168 namespace_unlock();
2169 return err;
2172 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2174 struct mount *child;
2175 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2176 if (!is_subdir(child->mnt_mountpoint, dentry))
2177 continue;
2179 if (child->mnt.mnt_flags & MNT_LOCKED)
2180 return true;
2182 return false;
2186 * do loopback mount.
2188 static int do_loopback(struct path *path, const char *old_name,
2189 int recurse)
2191 struct path old_path;
2192 struct mount *mnt = NULL, *old, *parent;
2193 struct mountpoint *mp;
2194 int err;
2195 if (!old_name || !*old_name)
2196 return -EINVAL;
2197 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2198 if (err)
2199 return err;
2201 err = -EINVAL;
2202 if (mnt_ns_loop(old_path.dentry))
2203 goto out;
2205 mp = lock_mount(path);
2206 err = PTR_ERR(mp);
2207 if (IS_ERR(mp))
2208 goto out;
2210 old = real_mount(old_path.mnt);
2211 parent = real_mount(path->mnt);
2213 err = -EINVAL;
2214 if (IS_MNT_UNBINDABLE(old))
2215 goto out2;
2217 if (!check_mnt(parent))
2218 goto out2;
2220 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2221 goto out2;
2223 if (!recurse && has_locked_children(old, old_path.dentry))
2224 goto out2;
2226 if (recurse)
2227 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2228 else
2229 mnt = clone_mnt(old, old_path.dentry, 0);
2231 if (IS_ERR(mnt)) {
2232 err = PTR_ERR(mnt);
2233 goto out2;
2236 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2238 err = graft_tree(mnt, parent, mp);
2239 if (err) {
2240 lock_mount_hash();
2241 umount_tree(mnt, UMOUNT_SYNC);
2242 unlock_mount_hash();
2244 out2:
2245 unlock_mount(mp);
2246 out:
2247 path_put(&old_path);
2248 return err;
2251 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2253 int error = 0;
2254 int readonly_request = 0;
2256 if (ms_flags & MS_RDONLY)
2257 readonly_request = 1;
2258 if (readonly_request == __mnt_is_readonly(mnt))
2259 return 0;
2261 if (readonly_request)
2262 error = mnt_make_readonly(real_mount(mnt));
2263 else
2264 __mnt_unmake_readonly(real_mount(mnt));
2265 return error;
2269 * change filesystem flags. dir should be a physical root of filesystem.
2270 * If you've mounted a non-root directory somewhere and want to do remount
2271 * on it - tough luck.
2273 static int do_remount(struct path *path, int flags, int mnt_flags,
2274 void *data)
2276 int err;
2277 struct super_block *sb = path->mnt->mnt_sb;
2278 struct mount *mnt = real_mount(path->mnt);
2280 if (!check_mnt(mnt))
2281 return -EINVAL;
2283 if (path->dentry != path->mnt->mnt_root)
2284 return -EINVAL;
2286 /* Don't allow changing of locked mnt flags.
2288 * No locks need to be held here while testing the various
2289 * MNT_LOCK flags because those flags can never be cleared
2290 * once they are set.
2292 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2293 !(mnt_flags & MNT_READONLY)) {
2294 return -EPERM;
2296 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2297 !(mnt_flags & MNT_NODEV)) {
2298 /* Was the nodev implicitly added in mount? */
2299 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2300 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2301 mnt_flags |= MNT_NODEV;
2302 } else {
2303 return -EPERM;
2306 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2307 !(mnt_flags & MNT_NOSUID)) {
2308 return -EPERM;
2310 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2311 !(mnt_flags & MNT_NOEXEC)) {
2312 return -EPERM;
2314 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2315 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2316 return -EPERM;
2319 err = security_sb_remount(sb, data);
2320 if (err)
2321 return err;
2323 down_write(&sb->s_umount);
2324 if (flags & MS_BIND)
2325 err = change_mount_flags(path->mnt, flags);
2326 else if (!capable(CAP_SYS_ADMIN))
2327 err = -EPERM;
2328 else
2329 err = do_remount_sb(sb, flags, data, 0);
2330 if (!err) {
2331 lock_mount_hash();
2332 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2333 mnt->mnt.mnt_flags = mnt_flags;
2334 touch_mnt_namespace(mnt->mnt_ns);
2335 unlock_mount_hash();
2337 up_write(&sb->s_umount);
2338 return err;
2341 static inline int tree_contains_unbindable(struct mount *mnt)
2343 struct mount *p;
2344 for (p = mnt; p; p = next_mnt(p, mnt)) {
2345 if (IS_MNT_UNBINDABLE(p))
2346 return 1;
2348 return 0;
2351 static int do_move_mount(struct path *path, const char *old_name)
2353 struct path old_path, parent_path;
2354 struct mount *p;
2355 struct mount *old;
2356 struct mountpoint *mp;
2357 int err;
2358 if (!old_name || !*old_name)
2359 return -EINVAL;
2360 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2361 if (err)
2362 return err;
2364 mp = lock_mount(path);
2365 err = PTR_ERR(mp);
2366 if (IS_ERR(mp))
2367 goto out;
2369 old = real_mount(old_path.mnt);
2370 p = real_mount(path->mnt);
2372 err = -EINVAL;
2373 if (!check_mnt(p) || !check_mnt(old))
2374 goto out1;
2376 if (old->mnt.mnt_flags & MNT_LOCKED)
2377 goto out1;
2379 err = -EINVAL;
2380 if (old_path.dentry != old_path.mnt->mnt_root)
2381 goto out1;
2383 if (!mnt_has_parent(old))
2384 goto out1;
2386 if (d_is_dir(path->dentry) !=
2387 d_is_dir(old_path.dentry))
2388 goto out1;
2390 * Don't move a mount residing in a shared parent.
2392 if (IS_MNT_SHARED(old->mnt_parent))
2393 goto out1;
2395 * Don't move a mount tree containing unbindable mounts to a destination
2396 * mount which is shared.
2398 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2399 goto out1;
2400 err = -ELOOP;
2401 for (; mnt_has_parent(p); p = p->mnt_parent)
2402 if (p == old)
2403 goto out1;
2405 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2406 if (err)
2407 goto out1;
2409 /* if the mount is moved, it should no longer be expire
2410 * automatically */
2411 list_del_init(&old->mnt_expire);
2412 out1:
2413 unlock_mount(mp);
2414 out:
2415 if (!err)
2416 path_put(&parent_path);
2417 path_put(&old_path);
2418 return err;
2421 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2423 int err;
2424 const char *subtype = strchr(fstype, '.');
2425 if (subtype) {
2426 subtype++;
2427 err = -EINVAL;
2428 if (!subtype[0])
2429 goto err;
2430 } else
2431 subtype = "";
2433 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2434 err = -ENOMEM;
2435 if (!mnt->mnt_sb->s_subtype)
2436 goto err;
2437 return mnt;
2439 err:
2440 mntput(mnt);
2441 return ERR_PTR(err);
2445 * add a mount into a namespace's mount tree
2447 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2449 struct mountpoint *mp;
2450 struct mount *parent;
2451 int err;
2453 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2455 mp = lock_mount(path);
2456 if (IS_ERR(mp))
2457 return PTR_ERR(mp);
2459 parent = real_mount(path->mnt);
2460 err = -EINVAL;
2461 if (unlikely(!check_mnt(parent))) {
2462 /* that's acceptable only for automounts done in private ns */
2463 if (!(mnt_flags & MNT_SHRINKABLE))
2464 goto unlock;
2465 /* ... and for those we'd better have mountpoint still alive */
2466 if (!parent->mnt_ns)
2467 goto unlock;
2470 /* Refuse the same filesystem on the same mount point */
2471 err = -EBUSY;
2472 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2473 path->mnt->mnt_root == path->dentry)
2474 goto unlock;
2476 err = -EINVAL;
2477 if (d_is_symlink(newmnt->mnt.mnt_root))
2478 goto unlock;
2480 newmnt->mnt.mnt_flags = mnt_flags;
2481 err = graft_tree(newmnt, parent, mp);
2483 unlock:
2484 unlock_mount(mp);
2485 return err;
2488 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2491 * create a new mount for userspace and request it to be added into the
2492 * namespace's tree
2494 static int do_new_mount(struct path *path, const char *fstype, int flags,
2495 int mnt_flags, const char *name, void *data)
2497 struct file_system_type *type;
2498 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2499 struct vfsmount *mnt;
2500 int err;
2502 if (!fstype)
2503 return -EINVAL;
2505 type = get_fs_type(fstype);
2506 if (!type)
2507 return -ENODEV;
2509 if (user_ns != &init_user_ns) {
2510 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2511 put_filesystem(type);
2512 return -EPERM;
2514 /* Only in special cases allow devices from mounts
2515 * created outside the initial user namespace.
2517 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2518 flags |= MS_NODEV;
2519 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2521 if (type->fs_flags & FS_USERNS_VISIBLE) {
2522 if (!fs_fully_visible(type, &mnt_flags)) {
2523 put_filesystem(type);
2524 return -EPERM;
2529 mnt = vfs_kern_mount(type, flags, name, data);
2530 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2531 !mnt->mnt_sb->s_subtype)
2532 mnt = fs_set_subtype(mnt, fstype);
2534 put_filesystem(type);
2535 if (IS_ERR(mnt))
2536 return PTR_ERR(mnt);
2538 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2539 if (err)
2540 mntput(mnt);
2541 return err;
2544 int finish_automount(struct vfsmount *m, struct path *path)
2546 struct mount *mnt = real_mount(m);
2547 int err;
2548 /* The new mount record should have at least 2 refs to prevent it being
2549 * expired before we get a chance to add it
2551 BUG_ON(mnt_get_count(mnt) < 2);
2553 if (m->mnt_sb == path->mnt->mnt_sb &&
2554 m->mnt_root == path->dentry) {
2555 err = -ELOOP;
2556 goto fail;
2559 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2560 if (!err)
2561 return 0;
2562 fail:
2563 /* remove m from any expiration list it may be on */
2564 if (!list_empty(&mnt->mnt_expire)) {
2565 namespace_lock();
2566 list_del_init(&mnt->mnt_expire);
2567 namespace_unlock();
2569 mntput(m);
2570 mntput(m);
2571 return err;
2575 * mnt_set_expiry - Put a mount on an expiration list
2576 * @mnt: The mount to list.
2577 * @expiry_list: The list to add the mount to.
2579 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2581 namespace_lock();
2583 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2585 namespace_unlock();
2587 EXPORT_SYMBOL(mnt_set_expiry);
2590 * process a list of expirable mountpoints with the intent of discarding any
2591 * mountpoints that aren't in use and haven't been touched since last we came
2592 * here
2594 void mark_mounts_for_expiry(struct list_head *mounts)
2596 struct mount *mnt, *next;
2597 LIST_HEAD(graveyard);
2599 if (list_empty(mounts))
2600 return;
2602 namespace_lock();
2603 lock_mount_hash();
2605 /* extract from the expiration list every vfsmount that matches the
2606 * following criteria:
2607 * - only referenced by its parent vfsmount
2608 * - still marked for expiry (marked on the last call here; marks are
2609 * cleared by mntput())
2611 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2612 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2613 propagate_mount_busy(mnt, 1))
2614 continue;
2615 list_move(&mnt->mnt_expire, &graveyard);
2617 while (!list_empty(&graveyard)) {
2618 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2619 touch_mnt_namespace(mnt->mnt_ns);
2620 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2622 unlock_mount_hash();
2623 namespace_unlock();
2626 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2629 * Ripoff of 'select_parent()'
2631 * search the list of submounts for a given mountpoint, and move any
2632 * shrinkable submounts to the 'graveyard' list.
2634 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2636 struct mount *this_parent = parent;
2637 struct list_head *next;
2638 int found = 0;
2640 repeat:
2641 next = this_parent->mnt_mounts.next;
2642 resume:
2643 while (next != &this_parent->mnt_mounts) {
2644 struct list_head *tmp = next;
2645 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2647 next = tmp->next;
2648 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2649 continue;
2651 * Descend a level if the d_mounts list is non-empty.
2653 if (!list_empty(&mnt->mnt_mounts)) {
2654 this_parent = mnt;
2655 goto repeat;
2658 if (!propagate_mount_busy(mnt, 1)) {
2659 list_move_tail(&mnt->mnt_expire, graveyard);
2660 found++;
2664 * All done at this level ... ascend and resume the search
2666 if (this_parent != parent) {
2667 next = this_parent->mnt_child.next;
2668 this_parent = this_parent->mnt_parent;
2669 goto resume;
2671 return found;
2675 * process a list of expirable mountpoints with the intent of discarding any
2676 * submounts of a specific parent mountpoint
2678 * mount_lock must be held for write
2680 static void shrink_submounts(struct mount *mnt)
2682 LIST_HEAD(graveyard);
2683 struct mount *m;
2685 /* extract submounts of 'mountpoint' from the expiration list */
2686 while (select_submounts(mnt, &graveyard)) {
2687 while (!list_empty(&graveyard)) {
2688 m = list_first_entry(&graveyard, struct mount,
2689 mnt_expire);
2690 touch_mnt_namespace(m->mnt_ns);
2691 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2697 * Some copy_from_user() implementations do not return the exact number of
2698 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2699 * Note that this function differs from copy_from_user() in that it will oops
2700 * on bad values of `to', rather than returning a short copy.
2702 static long exact_copy_from_user(void *to, const void __user * from,
2703 unsigned long n)
2705 char *t = to;
2706 const char __user *f = from;
2707 char c;
2709 if (!access_ok(VERIFY_READ, from, n))
2710 return n;
2712 while (n) {
2713 if (__get_user(c, f)) {
2714 memset(t, 0, n);
2715 break;
2717 *t++ = c;
2718 f++;
2719 n--;
2721 return n;
2724 int copy_mount_options(const void __user * data, unsigned long *where)
2726 int i;
2727 unsigned long page;
2728 unsigned long size;
2730 *where = 0;
2731 if (!data)
2732 return 0;
2734 if (!(page = __get_free_page(GFP_KERNEL)))
2735 return -ENOMEM;
2737 /* We only care that *some* data at the address the user
2738 * gave us is valid. Just in case, we'll zero
2739 * the remainder of the page.
2741 /* copy_from_user cannot cross TASK_SIZE ! */
2742 size = TASK_SIZE - (unsigned long)data;
2743 if (size > PAGE_SIZE)
2744 size = PAGE_SIZE;
2746 i = size - exact_copy_from_user((void *)page, data, size);
2747 if (!i) {
2748 free_page(page);
2749 return -EFAULT;
2751 if (i != PAGE_SIZE)
2752 memset((char *)page + i, 0, PAGE_SIZE - i);
2753 *where = page;
2754 return 0;
2757 char *copy_mount_string(const void __user *data)
2759 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2763 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2764 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2766 * data is a (void *) that can point to any structure up to
2767 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2768 * information (or be NULL).
2770 * Pre-0.97 versions of mount() didn't have a flags word.
2771 * When the flags word was introduced its top half was required
2772 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2773 * Therefore, if this magic number is present, it carries no information
2774 * and must be discarded.
2776 long do_mount(const char *dev_name, const char __user *dir_name,
2777 const char *type_page, unsigned long flags, void *data_page)
2779 struct path path;
2780 int retval = 0;
2781 int mnt_flags = 0;
2783 /* Discard magic */
2784 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2785 flags &= ~MS_MGC_MSK;
2787 /* Basic sanity checks */
2788 if (data_page)
2789 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2791 /* ... and get the mountpoint */
2792 retval = user_path(dir_name, &path);
2793 if (retval)
2794 return retval;
2796 retval = security_sb_mount(dev_name, &path,
2797 type_page, flags, data_page);
2798 if (!retval && !may_mount())
2799 retval = -EPERM;
2800 if (retval)
2801 goto dput_out;
2803 /* Default to relatime unless overriden */
2804 if (!(flags & MS_NOATIME))
2805 mnt_flags |= MNT_RELATIME;
2807 /* Separate the per-mountpoint flags */
2808 if (flags & MS_NOSUID)
2809 mnt_flags |= MNT_NOSUID;
2810 if (flags & MS_NODEV)
2811 mnt_flags |= MNT_NODEV;
2812 if (flags & MS_NOEXEC)
2813 mnt_flags |= MNT_NOEXEC;
2814 if (flags & MS_NOATIME)
2815 mnt_flags |= MNT_NOATIME;
2816 if (flags & MS_NODIRATIME)
2817 mnt_flags |= MNT_NODIRATIME;
2818 if (flags & MS_STRICTATIME)
2819 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2820 if (flags & MS_RDONLY)
2821 mnt_flags |= MNT_READONLY;
2823 /* The default atime for remount is preservation */
2824 if ((flags & MS_REMOUNT) &&
2825 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2826 MS_STRICTATIME)) == 0)) {
2827 mnt_flags &= ~MNT_ATIME_MASK;
2828 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2831 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2832 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2833 MS_STRICTATIME);
2835 if (flags & MS_REMOUNT)
2836 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2837 data_page);
2838 else if (flags & MS_BIND)
2839 retval = do_loopback(&path, dev_name, flags & MS_REC);
2840 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2841 retval = do_change_type(&path, flags);
2842 else if (flags & MS_MOVE)
2843 retval = do_move_mount(&path, dev_name);
2844 else
2845 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2846 dev_name, data_page);
2847 dput_out:
2848 path_put(&path);
2849 return retval;
2852 static void free_mnt_ns(struct mnt_namespace *ns)
2854 ns_free_inum(&ns->ns);
2855 put_user_ns(ns->user_ns);
2856 kfree(ns);
2860 * Assign a sequence number so we can detect when we attempt to bind
2861 * mount a reference to an older mount namespace into the current
2862 * mount namespace, preventing reference counting loops. A 64bit
2863 * number incrementing at 10Ghz will take 12,427 years to wrap which
2864 * is effectively never, so we can ignore the possibility.
2866 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2868 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2870 struct mnt_namespace *new_ns;
2871 int ret;
2873 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2874 if (!new_ns)
2875 return ERR_PTR(-ENOMEM);
2876 ret = ns_alloc_inum(&new_ns->ns);
2877 if (ret) {
2878 kfree(new_ns);
2879 return ERR_PTR(ret);
2881 new_ns->ns.ops = &mntns_operations;
2882 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2883 atomic_set(&new_ns->count, 1);
2884 new_ns->root = NULL;
2885 INIT_LIST_HEAD(&new_ns->list);
2886 init_waitqueue_head(&new_ns->poll);
2887 new_ns->event = 0;
2888 new_ns->user_ns = get_user_ns(user_ns);
2889 new_ns->mounts = 0;
2890 new_ns->pending_mounts = 0;
2891 return new_ns;
2894 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2895 struct user_namespace *user_ns, struct fs_struct *new_fs)
2897 struct mnt_namespace *new_ns;
2898 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2899 struct mount *p, *q;
2900 struct mount *old;
2901 struct mount *new;
2902 int copy_flags;
2904 BUG_ON(!ns);
2906 if (likely(!(flags & CLONE_NEWNS))) {
2907 get_mnt_ns(ns);
2908 return ns;
2911 old = ns->root;
2913 new_ns = alloc_mnt_ns(user_ns);
2914 if (IS_ERR(new_ns))
2915 return new_ns;
2917 namespace_lock();
2918 /* First pass: copy the tree topology */
2919 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2920 if (user_ns != ns->user_ns)
2921 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2922 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2923 if (IS_ERR(new)) {
2924 namespace_unlock();
2925 free_mnt_ns(new_ns);
2926 return ERR_CAST(new);
2928 new_ns->root = new;
2929 list_add_tail(&new_ns->list, &new->mnt_list);
2932 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2933 * as belonging to new namespace. We have already acquired a private
2934 * fs_struct, so tsk->fs->lock is not needed.
2936 p = old;
2937 q = new;
2938 while (p) {
2939 q->mnt_ns = new_ns;
2940 new_ns->mounts++;
2941 if (new_fs) {
2942 if (&p->mnt == new_fs->root.mnt) {
2943 new_fs->root.mnt = mntget(&q->mnt);
2944 rootmnt = &p->mnt;
2946 if (&p->mnt == new_fs->pwd.mnt) {
2947 new_fs->pwd.mnt = mntget(&q->mnt);
2948 pwdmnt = &p->mnt;
2951 p = next_mnt(p, old);
2952 q = next_mnt(q, new);
2953 if (!q)
2954 break;
2955 while (p->mnt.mnt_root != q->mnt.mnt_root)
2956 p = next_mnt(p, old);
2958 namespace_unlock();
2960 if (rootmnt)
2961 mntput(rootmnt);
2962 if (pwdmnt)
2963 mntput(pwdmnt);
2965 return new_ns;
2969 * create_mnt_ns - creates a private namespace and adds a root filesystem
2970 * @mnt: pointer to the new root filesystem mountpoint
2972 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2974 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2975 if (!IS_ERR(new_ns)) {
2976 struct mount *mnt = real_mount(m);
2977 mnt->mnt_ns = new_ns;
2978 new_ns->root = mnt;
2979 new_ns->mounts++;
2980 list_add(&mnt->mnt_list, &new_ns->list);
2981 } else {
2982 mntput(m);
2984 return new_ns;
2987 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2989 struct mnt_namespace *ns;
2990 struct super_block *s;
2991 struct path path;
2992 int err;
2994 ns = create_mnt_ns(mnt);
2995 if (IS_ERR(ns))
2996 return ERR_CAST(ns);
2998 err = vfs_path_lookup(mnt->mnt_root, mnt,
2999 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3001 put_mnt_ns(ns);
3003 if (err)
3004 return ERR_PTR(err);
3006 /* trade a vfsmount reference for active sb one */
3007 s = path.mnt->mnt_sb;
3008 atomic_inc(&s->s_active);
3009 mntput(path.mnt);
3010 /* lock the sucker */
3011 down_write(&s->s_umount);
3012 /* ... and return the root of (sub)tree on it */
3013 return path.dentry;
3015 EXPORT_SYMBOL(mount_subtree);
3017 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3018 char __user *, type, unsigned long, flags, void __user *, data)
3020 int ret;
3021 char *kernel_type;
3022 char *kernel_dev;
3023 unsigned long data_page;
3025 kernel_type = copy_mount_string(type);
3026 ret = PTR_ERR(kernel_type);
3027 if (IS_ERR(kernel_type))
3028 goto out_type;
3030 kernel_dev = copy_mount_string(dev_name);
3031 ret = PTR_ERR(kernel_dev);
3032 if (IS_ERR(kernel_dev))
3033 goto out_dev;
3035 ret = copy_mount_options(data, &data_page);
3036 if (ret < 0)
3037 goto out_data;
3039 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
3040 (void *) data_page);
3042 free_page(data_page);
3043 out_data:
3044 kfree(kernel_dev);
3045 out_dev:
3046 kfree(kernel_type);
3047 out_type:
3048 return ret;
3052 * Return true if path is reachable from root
3054 * namespace_sem or mount_lock is held
3056 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3057 const struct path *root)
3059 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3060 dentry = mnt->mnt_mountpoint;
3061 mnt = mnt->mnt_parent;
3063 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3066 int path_is_under(struct path *path1, struct path *path2)
3068 int res;
3069 read_seqlock_excl(&mount_lock);
3070 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3071 read_sequnlock_excl(&mount_lock);
3072 return res;
3074 EXPORT_SYMBOL(path_is_under);
3077 * pivot_root Semantics:
3078 * Moves the root file system of the current process to the directory put_old,
3079 * makes new_root as the new root file system of the current process, and sets
3080 * root/cwd of all processes which had them on the current root to new_root.
3082 * Restrictions:
3083 * The new_root and put_old must be directories, and must not be on the
3084 * same file system as the current process root. The put_old must be
3085 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3086 * pointed to by put_old must yield the same directory as new_root. No other
3087 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3089 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3090 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3091 * in this situation.
3093 * Notes:
3094 * - we don't move root/cwd if they are not at the root (reason: if something
3095 * cared enough to change them, it's probably wrong to force them elsewhere)
3096 * - it's okay to pick a root that isn't the root of a file system, e.g.
3097 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3098 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3099 * first.
3101 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3102 const char __user *, put_old)
3104 struct path new, old, parent_path, root_parent, root;
3105 struct mount *new_mnt, *root_mnt, *old_mnt;
3106 struct mountpoint *old_mp, *root_mp;
3107 int error;
3109 if (!may_mount())
3110 return -EPERM;
3112 error = user_path_dir(new_root, &new);
3113 if (error)
3114 goto out0;
3116 error = user_path_dir(put_old, &old);
3117 if (error)
3118 goto out1;
3120 error = security_sb_pivotroot(&old, &new);
3121 if (error)
3122 goto out2;
3124 get_fs_root(current->fs, &root);
3125 old_mp = lock_mount(&old);
3126 error = PTR_ERR(old_mp);
3127 if (IS_ERR(old_mp))
3128 goto out3;
3130 error = -EINVAL;
3131 new_mnt = real_mount(new.mnt);
3132 root_mnt = real_mount(root.mnt);
3133 old_mnt = real_mount(old.mnt);
3134 if (IS_MNT_SHARED(old_mnt) ||
3135 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3136 IS_MNT_SHARED(root_mnt->mnt_parent))
3137 goto out4;
3138 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3139 goto out4;
3140 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3141 goto out4;
3142 error = -ENOENT;
3143 if (d_unlinked(new.dentry))
3144 goto out4;
3145 error = -EBUSY;
3146 if (new_mnt == root_mnt || old_mnt == root_mnt)
3147 goto out4; /* loop, on the same file system */
3148 error = -EINVAL;
3149 if (root.mnt->mnt_root != root.dentry)
3150 goto out4; /* not a mountpoint */
3151 if (!mnt_has_parent(root_mnt))
3152 goto out4; /* not attached */
3153 root_mp = root_mnt->mnt_mp;
3154 if (new.mnt->mnt_root != new.dentry)
3155 goto out4; /* not a mountpoint */
3156 if (!mnt_has_parent(new_mnt))
3157 goto out4; /* not attached */
3158 /* make sure we can reach put_old from new_root */
3159 if (!is_path_reachable(old_mnt, old.dentry, &new))
3160 goto out4;
3161 /* make certain new is below the root */
3162 if (!is_path_reachable(new_mnt, new.dentry, &root))
3163 goto out4;
3164 lock_mount_hash();
3165 root_mp->m_count++; /* pin it so it won't go away */
3166 detach_mnt(new_mnt, &parent_path);
3167 detach_mnt(root_mnt, &root_parent);
3168 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3169 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3170 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3172 /* mount old root on put_old */
3173 attach_mnt(root_mnt, old_mnt, old_mp);
3174 /* mount new_root on / */
3175 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3176 touch_mnt_namespace(current->nsproxy->mnt_ns);
3177 /* A moved mount should not expire automatically */
3178 list_del_init(&new_mnt->mnt_expire);
3179 put_mountpoint(root_mp);
3180 unlock_mount_hash();
3181 chroot_fs_refs(&root, &new);
3182 error = 0;
3183 out4:
3184 unlock_mount(old_mp);
3185 if (!error) {
3186 path_put(&root_parent);
3187 path_put(&parent_path);
3189 out3:
3190 path_put(&root);
3191 out2:
3192 path_put(&old);
3193 out1:
3194 path_put(&new);
3195 out0:
3196 return error;
3199 static void __init init_mount_tree(void)
3201 struct vfsmount *mnt;
3202 struct mnt_namespace *ns;
3203 struct path root;
3204 struct file_system_type *type;
3206 type = get_fs_type("rootfs");
3207 if (!type)
3208 panic("Can't find rootfs type");
3209 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3210 put_filesystem(type);
3211 if (IS_ERR(mnt))
3212 panic("Can't create rootfs");
3214 ns = create_mnt_ns(mnt);
3215 if (IS_ERR(ns))
3216 panic("Can't allocate initial namespace");
3218 init_task.nsproxy->mnt_ns = ns;
3219 get_mnt_ns(ns);
3221 root.mnt = mnt;
3222 root.dentry = mnt->mnt_root;
3223 mnt->mnt_flags |= MNT_LOCKED;
3225 set_fs_pwd(current->fs, &root);
3226 set_fs_root(current->fs, &root);
3229 void __init mnt_init(void)
3231 unsigned u;
3232 int err;
3234 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3235 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3237 mount_hashtable = alloc_large_system_hash("Mount-cache",
3238 sizeof(struct hlist_head),
3239 mhash_entries, 19,
3241 &m_hash_shift, &m_hash_mask, 0, 0);
3242 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3243 sizeof(struct hlist_head),
3244 mphash_entries, 19,
3246 &mp_hash_shift, &mp_hash_mask, 0, 0);
3248 if (!mount_hashtable || !mountpoint_hashtable)
3249 panic("Failed to allocate mount hash table\n");
3251 for (u = 0; u <= m_hash_mask; u++)
3252 INIT_HLIST_HEAD(&mount_hashtable[u]);
3253 for (u = 0; u <= mp_hash_mask; u++)
3254 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3256 kernfs_init();
3258 err = sysfs_init();
3259 if (err)
3260 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3261 __func__, err);
3262 fs_kobj = kobject_create_and_add("fs", NULL);
3263 if (!fs_kobj)
3264 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3265 init_rootfs();
3266 init_mount_tree();
3269 void put_mnt_ns(struct mnt_namespace *ns)
3271 if (!atomic_dec_and_test(&ns->count))
3272 return;
3273 drop_collected_mounts(&ns->root->mnt);
3274 free_mnt_ns(ns);
3277 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3279 struct vfsmount *mnt;
3280 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3281 if (!IS_ERR(mnt)) {
3283 * it is a longterm mount, don't release mnt until
3284 * we unmount before file sys is unregistered
3286 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3288 return mnt;
3290 EXPORT_SYMBOL_GPL(kern_mount_data);
3292 void kern_unmount(struct vfsmount *mnt)
3294 /* release long term mount so mount point can be released */
3295 if (!IS_ERR_OR_NULL(mnt)) {
3296 real_mount(mnt)->mnt_ns = NULL;
3297 synchronize_rcu(); /* yecchhh... */
3298 mntput(mnt);
3301 EXPORT_SYMBOL(kern_unmount);
3303 bool our_mnt(struct vfsmount *mnt)
3305 return check_mnt(real_mount(mnt));
3308 bool current_chrooted(void)
3310 /* Does the current process have a non-standard root */
3311 struct path ns_root;
3312 struct path fs_root;
3313 bool chrooted;
3315 /* Find the namespace root */
3316 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3317 ns_root.dentry = ns_root.mnt->mnt_root;
3318 path_get(&ns_root);
3319 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3322 get_fs_root(current->fs, &fs_root);
3324 chrooted = !path_equal(&fs_root, &ns_root);
3326 path_put(&fs_root);
3327 path_put(&ns_root);
3329 return chrooted;
3332 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3334 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3335 int new_flags = *new_mnt_flags;
3336 struct mount *mnt;
3337 bool visible = false;
3339 if (unlikely(!ns))
3340 return false;
3342 down_read(&namespace_sem);
3343 list_for_each_entry(mnt, &ns->list, mnt_list) {
3344 struct mount *child;
3345 int mnt_flags;
3347 if (mnt->mnt.mnt_sb->s_type != type)
3348 continue;
3350 /* This mount is not fully visible if it's root directory
3351 * is not the root directory of the filesystem.
3353 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3354 continue;
3356 /* Read the mount flags and filter out flags that
3357 * may safely be ignored.
3359 mnt_flags = mnt->mnt.mnt_flags;
3360 if (mnt->mnt.mnt_sb->s_iflags & SB_I_NOEXEC)
3361 mnt_flags &= ~(MNT_LOCK_NOSUID | MNT_LOCK_NOEXEC);
3363 /* Don't miss readonly hidden in the superblock flags */
3364 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3365 mnt_flags |= MNT_LOCK_READONLY;
3367 /* Verify the mount flags are equal to or more permissive
3368 * than the proposed new mount.
3370 if ((mnt_flags & MNT_LOCK_READONLY) &&
3371 !(new_flags & MNT_READONLY))
3372 continue;
3373 if ((mnt_flags & MNT_LOCK_NODEV) &&
3374 !(new_flags & MNT_NODEV))
3375 continue;
3376 if ((mnt_flags & MNT_LOCK_NOSUID) &&
3377 !(new_flags & MNT_NOSUID))
3378 continue;
3379 if ((mnt_flags & MNT_LOCK_NOEXEC) &&
3380 !(new_flags & MNT_NOEXEC))
3381 continue;
3382 if ((mnt_flags & MNT_LOCK_ATIME) &&
3383 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3384 continue;
3386 /* This mount is not fully visible if there are any
3387 * locked child mounts that cover anything except for
3388 * empty directories.
3390 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3391 struct inode *inode = child->mnt_mountpoint->d_inode;
3392 /* Only worry about locked mounts */
3393 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3394 continue;
3395 /* Is the directory permanetly empty? */
3396 if (!is_empty_dir_inode(inode))
3397 goto next;
3399 /* Preserve the locked attributes */
3400 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3401 MNT_LOCK_NODEV | \
3402 MNT_LOCK_NOSUID | \
3403 MNT_LOCK_NOEXEC | \
3404 MNT_LOCK_ATIME);
3405 visible = true;
3406 goto found;
3407 next: ;
3409 found:
3410 up_read(&namespace_sem);
3411 return visible;
3414 static struct ns_common *mntns_get(struct task_struct *task)
3416 struct ns_common *ns = NULL;
3417 struct nsproxy *nsproxy;
3419 task_lock(task);
3420 nsproxy = task->nsproxy;
3421 if (nsproxy) {
3422 ns = &nsproxy->mnt_ns->ns;
3423 get_mnt_ns(to_mnt_ns(ns));
3425 task_unlock(task);
3427 return ns;
3430 static void mntns_put(struct ns_common *ns)
3432 put_mnt_ns(to_mnt_ns(ns));
3435 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3437 struct fs_struct *fs = current->fs;
3438 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3439 struct path root;
3441 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3442 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3443 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3444 return -EPERM;
3446 if (fs->users != 1)
3447 return -EINVAL;
3449 get_mnt_ns(mnt_ns);
3450 put_mnt_ns(nsproxy->mnt_ns);
3451 nsproxy->mnt_ns = mnt_ns;
3453 /* Find the root */
3454 root.mnt = &mnt_ns->root->mnt;
3455 root.dentry = mnt_ns->root->mnt.mnt_root;
3456 path_get(&root);
3457 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3460 /* Update the pwd and root */
3461 set_fs_pwd(fs, &root);
3462 set_fs_root(fs, &root);
3464 path_put(&root);
3465 return 0;
3468 const struct proc_ns_operations mntns_operations = {
3469 .name = "mnt",
3470 .type = CLONE_NEWNS,
3471 .get = mntns_get,
3472 .put = mntns_put,
3473 .install = mntns_install,