HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / nfsd / nfscache.c
blob54cde9a5864e18f12ed198474c4f48c0dc8b1f16
1 /*
2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
9 */
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
18 #include "nfsd.h"
19 #include "cache.h"
21 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24 * We use this value to determine the number of hash buckets from the max
25 * cache size, the idea being that when the cache is at its maximum number
26 * of entries, then this should be the average number of entries per bucket.
28 #define TARGET_BUCKET_SIZE 64
30 struct nfsd_drc_bucket {
31 struct list_head lru_head;
32 spinlock_t cache_lock;
35 static struct nfsd_drc_bucket *drc_hashtbl;
36 static struct kmem_cache *drc_slab;
38 /* max number of entries allowed in the cache */
39 static unsigned int max_drc_entries;
41 /* number of significant bits in the hash value */
42 static unsigned int maskbits;
43 static unsigned int drc_hashsize;
46 * Stats and other tracking of on the duplicate reply cache. All of these and
47 * the "rc" fields in nfsdstats are protected by the cache_lock
50 /* total number of entries */
51 static atomic_t num_drc_entries;
53 /* cache misses due only to checksum comparison failures */
54 static unsigned int payload_misses;
56 /* amount of memory (in bytes) currently consumed by the DRC */
57 static unsigned int drc_mem_usage;
59 /* longest hash chain seen */
60 static unsigned int longest_chain;
62 /* size of cache when we saw the longest hash chain */
63 static unsigned int longest_chain_cachesize;
65 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
66 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
67 struct shrink_control *sc);
68 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
69 struct shrink_control *sc);
71 static struct shrinker nfsd_reply_cache_shrinker = {
72 .scan_objects = nfsd_reply_cache_scan,
73 .count_objects = nfsd_reply_cache_count,
74 .seeks = 1,
78 * Put a cap on the size of the DRC based on the amount of available
79 * low memory in the machine.
81 * 64MB: 8192
82 * 128MB: 11585
83 * 256MB: 16384
84 * 512MB: 23170
85 * 1GB: 32768
86 * 2GB: 46340
87 * 4GB: 65536
88 * 8GB: 92681
89 * 16GB: 131072
91 * ...with a hard cap of 256k entries. In the worst case, each entry will be
92 * ~1k, so the above numbers should give a rough max of the amount of memory
93 * used in k.
95 static unsigned int
96 nfsd_cache_size_limit(void)
98 unsigned int limit;
99 unsigned long low_pages = totalram_pages - totalhigh_pages;
101 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
102 return min_t(unsigned int, limit, 256*1024);
106 * Compute the number of hash buckets we need. Divide the max cachesize by
107 * the "target" max bucket size, and round up to next power of two.
109 static unsigned int
110 nfsd_hashsize(unsigned int limit)
112 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
115 static u32
116 nfsd_cache_hash(__be32 xid)
118 return hash_32(be32_to_cpu(xid), maskbits);
121 static struct svc_cacherep *
122 nfsd_reply_cache_alloc(void)
124 struct svc_cacherep *rp;
126 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
127 if (rp) {
128 rp->c_state = RC_UNUSED;
129 rp->c_type = RC_NOCACHE;
130 INIT_LIST_HEAD(&rp->c_lru);
132 return rp;
135 static void
136 nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
138 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
139 drc_mem_usage -= rp->c_replvec.iov_len;
140 kfree(rp->c_replvec.iov_base);
142 list_del(&rp->c_lru);
143 atomic_dec(&num_drc_entries);
144 drc_mem_usage -= sizeof(*rp);
145 kmem_cache_free(drc_slab, rp);
148 static void
149 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
151 spin_lock(&b->cache_lock);
152 nfsd_reply_cache_free_locked(rp);
153 spin_unlock(&b->cache_lock);
156 int nfsd_reply_cache_init(void)
158 unsigned int hashsize;
159 unsigned int i;
160 int status = 0;
162 max_drc_entries = nfsd_cache_size_limit();
163 atomic_set(&num_drc_entries, 0);
164 hashsize = nfsd_hashsize(max_drc_entries);
165 maskbits = ilog2(hashsize);
167 status = register_shrinker(&nfsd_reply_cache_shrinker);
168 if (status)
169 return status;
171 drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
172 0, 0, NULL);
173 if (!drc_slab)
174 goto out_nomem;
176 drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
177 if (!drc_hashtbl)
178 goto out_nomem;
179 for (i = 0; i < hashsize; i++) {
180 INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
181 spin_lock_init(&drc_hashtbl[i].cache_lock);
183 drc_hashsize = hashsize;
185 return 0;
186 out_nomem:
187 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
188 nfsd_reply_cache_shutdown();
189 return -ENOMEM;
192 void nfsd_reply_cache_shutdown(void)
194 struct svc_cacherep *rp;
195 unsigned int i;
197 unregister_shrinker(&nfsd_reply_cache_shrinker);
199 for (i = 0; i < drc_hashsize; i++) {
200 struct list_head *head = &drc_hashtbl[i].lru_head;
201 while (!list_empty(head)) {
202 rp = list_first_entry(head, struct svc_cacherep, c_lru);
203 nfsd_reply_cache_free_locked(rp);
207 kfree (drc_hashtbl);
208 drc_hashtbl = NULL;
209 drc_hashsize = 0;
211 kmem_cache_destroy(drc_slab);
212 drc_slab = NULL;
216 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
217 * not already scheduled.
219 static void
220 lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
222 rp->c_timestamp = jiffies;
223 list_move_tail(&rp->c_lru, &b->lru_head);
226 static long
227 prune_bucket(struct nfsd_drc_bucket *b)
229 struct svc_cacherep *rp, *tmp;
230 long freed = 0;
232 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
234 * Don't free entries attached to calls that are still
235 * in-progress, but do keep scanning the list.
237 if (rp->c_state == RC_INPROG)
238 continue;
239 if (atomic_read(&num_drc_entries) <= max_drc_entries &&
240 time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
241 break;
242 nfsd_reply_cache_free_locked(rp);
243 freed++;
245 return freed;
249 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
250 * Also prune the oldest ones when the total exceeds the max number of entries.
252 static long
253 prune_cache_entries(void)
255 unsigned int i;
256 long freed = 0;
258 for (i = 0; i < drc_hashsize; i++) {
259 struct nfsd_drc_bucket *b = &drc_hashtbl[i];
261 if (list_empty(&b->lru_head))
262 continue;
263 spin_lock(&b->cache_lock);
264 freed += prune_bucket(b);
265 spin_unlock(&b->cache_lock);
267 return freed;
270 static unsigned long
271 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
273 return atomic_read(&num_drc_entries);
276 static unsigned long
277 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
279 return prune_cache_entries();
282 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
284 static __wsum
285 nfsd_cache_csum(struct svc_rqst *rqstp)
287 int idx;
288 unsigned int base;
289 __wsum csum;
290 struct xdr_buf *buf = &rqstp->rq_arg;
291 const unsigned char *p = buf->head[0].iov_base;
292 size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
293 RC_CSUMLEN);
294 size_t len = min(buf->head[0].iov_len, csum_len);
296 /* rq_arg.head first */
297 csum = csum_partial(p, len, 0);
298 csum_len -= len;
300 /* Continue into page array */
301 idx = buf->page_base / PAGE_SIZE;
302 base = buf->page_base & ~PAGE_MASK;
303 while (csum_len) {
304 p = page_address(buf->pages[idx]) + base;
305 len = min_t(size_t, PAGE_SIZE - base, csum_len);
306 csum = csum_partial(p, len, csum);
307 csum_len -= len;
308 base = 0;
309 ++idx;
311 return csum;
314 static bool
315 nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
317 /* Check RPC XID first */
318 if (rqstp->rq_xid != rp->c_xid)
319 return false;
320 /* compare checksum of NFS data */
321 if (csum != rp->c_csum) {
322 ++payload_misses;
323 return false;
326 /* Other discriminators */
327 if (rqstp->rq_proc != rp->c_proc ||
328 rqstp->rq_prot != rp->c_prot ||
329 rqstp->rq_vers != rp->c_vers ||
330 rqstp->rq_arg.len != rp->c_len ||
331 !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
332 rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
333 return false;
335 return true;
339 * Search the request hash for an entry that matches the given rqstp.
340 * Must be called with cache_lock held. Returns the found entry or
341 * NULL on failure.
343 static struct svc_cacherep *
344 nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
345 __wsum csum)
347 struct svc_cacherep *rp, *ret = NULL;
348 struct list_head *rh = &b->lru_head;
349 unsigned int entries = 0;
351 list_for_each_entry(rp, rh, c_lru) {
352 ++entries;
353 if (nfsd_cache_match(rqstp, csum, rp)) {
354 ret = rp;
355 break;
359 /* tally hash chain length stats */
360 if (entries > longest_chain) {
361 longest_chain = entries;
362 longest_chain_cachesize = atomic_read(&num_drc_entries);
363 } else if (entries == longest_chain) {
364 /* prefer to keep the smallest cachesize possible here */
365 longest_chain_cachesize = min_t(unsigned int,
366 longest_chain_cachesize,
367 atomic_read(&num_drc_entries));
370 return ret;
374 * Try to find an entry matching the current call in the cache. When none
375 * is found, we try to grab the oldest expired entry off the LRU list. If
376 * a suitable one isn't there, then drop the cache_lock and allocate a
377 * new one, then search again in case one got inserted while this thread
378 * didn't hold the lock.
381 nfsd_cache_lookup(struct svc_rqst *rqstp)
383 struct svc_cacherep *rp, *found;
384 __be32 xid = rqstp->rq_xid;
385 u32 proto = rqstp->rq_prot,
386 vers = rqstp->rq_vers,
387 proc = rqstp->rq_proc;
388 __wsum csum;
389 u32 hash = nfsd_cache_hash(xid);
390 struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
391 unsigned long age;
392 int type = rqstp->rq_cachetype;
393 int rtn = RC_DOIT;
395 rqstp->rq_cacherep = NULL;
396 if (type == RC_NOCACHE) {
397 nfsdstats.rcnocache++;
398 return rtn;
401 csum = nfsd_cache_csum(rqstp);
404 * Since the common case is a cache miss followed by an insert,
405 * preallocate an entry.
407 rp = nfsd_reply_cache_alloc();
408 spin_lock(&b->cache_lock);
409 if (likely(rp)) {
410 atomic_inc(&num_drc_entries);
411 drc_mem_usage += sizeof(*rp);
414 /* go ahead and prune the cache */
415 prune_bucket(b);
417 found = nfsd_cache_search(b, rqstp, csum);
418 if (found) {
419 if (likely(rp))
420 nfsd_reply_cache_free_locked(rp);
421 rp = found;
422 goto found_entry;
425 if (!rp) {
426 dprintk("nfsd: unable to allocate DRC entry!\n");
427 goto out;
430 nfsdstats.rcmisses++;
431 rqstp->rq_cacherep = rp;
432 rp->c_state = RC_INPROG;
433 rp->c_xid = xid;
434 rp->c_proc = proc;
435 rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
436 rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
437 rp->c_prot = proto;
438 rp->c_vers = vers;
439 rp->c_len = rqstp->rq_arg.len;
440 rp->c_csum = csum;
442 lru_put_end(b, rp);
444 /* release any buffer */
445 if (rp->c_type == RC_REPLBUFF) {
446 drc_mem_usage -= rp->c_replvec.iov_len;
447 kfree(rp->c_replvec.iov_base);
448 rp->c_replvec.iov_base = NULL;
450 rp->c_type = RC_NOCACHE;
451 out:
452 spin_unlock(&b->cache_lock);
453 return rtn;
455 found_entry:
456 nfsdstats.rchits++;
457 /* We found a matching entry which is either in progress or done. */
458 age = jiffies - rp->c_timestamp;
459 lru_put_end(b, rp);
461 rtn = RC_DROPIT;
462 /* Request being processed or excessive rexmits */
463 if (rp->c_state == RC_INPROG || age < RC_DELAY)
464 goto out;
466 /* From the hall of fame of impractical attacks:
467 * Is this a user who tries to snoop on the cache? */
468 rtn = RC_DOIT;
469 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
470 goto out;
472 /* Compose RPC reply header */
473 switch (rp->c_type) {
474 case RC_NOCACHE:
475 break;
476 case RC_REPLSTAT:
477 svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
478 rtn = RC_REPLY;
479 break;
480 case RC_REPLBUFF:
481 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
482 goto out; /* should not happen */
483 rtn = RC_REPLY;
484 break;
485 default:
486 printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
487 nfsd_reply_cache_free_locked(rp);
490 goto out;
494 * Update a cache entry. This is called from nfsd_dispatch when
495 * the procedure has been executed and the complete reply is in
496 * rqstp->rq_res.
498 * We're copying around data here rather than swapping buffers because
499 * the toplevel loop requires max-sized buffers, which would be a waste
500 * of memory for a cache with a max reply size of 100 bytes (diropokres).
502 * If we should start to use different types of cache entries tailored
503 * specifically for attrstat and fh's, we may save even more space.
505 * Also note that a cachetype of RC_NOCACHE can legally be passed when
506 * nfsd failed to encode a reply that otherwise would have been cached.
507 * In this case, nfsd_cache_update is called with statp == NULL.
509 void
510 nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
512 struct svc_cacherep *rp = rqstp->rq_cacherep;
513 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
514 u32 hash;
515 struct nfsd_drc_bucket *b;
516 int len;
517 size_t bufsize = 0;
519 if (!rp)
520 return;
522 hash = nfsd_cache_hash(rp->c_xid);
523 b = &drc_hashtbl[hash];
525 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
526 len >>= 2;
528 /* Don't cache excessive amounts of data and XDR failures */
529 if (!statp || len > (256 >> 2)) {
530 nfsd_reply_cache_free(b, rp);
531 return;
534 switch (cachetype) {
535 case RC_REPLSTAT:
536 if (len != 1)
537 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
538 rp->c_replstat = *statp;
539 break;
540 case RC_REPLBUFF:
541 cachv = &rp->c_replvec;
542 bufsize = len << 2;
543 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
544 if (!cachv->iov_base) {
545 nfsd_reply_cache_free(b, rp);
546 return;
548 cachv->iov_len = bufsize;
549 memcpy(cachv->iov_base, statp, bufsize);
550 break;
551 case RC_NOCACHE:
552 nfsd_reply_cache_free(b, rp);
553 return;
555 spin_lock(&b->cache_lock);
556 drc_mem_usage += bufsize;
557 lru_put_end(b, rp);
558 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
559 rp->c_type = cachetype;
560 rp->c_state = RC_DONE;
561 spin_unlock(&b->cache_lock);
562 return;
566 * Copy cached reply to current reply buffer. Should always fit.
567 * FIXME as reply is in a page, we should just attach the page, and
568 * keep a refcount....
570 static int
571 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
573 struct kvec *vec = &rqstp->rq_res.head[0];
575 if (vec->iov_len + data->iov_len > PAGE_SIZE) {
576 printk(KERN_WARNING "nfsd: cached reply too large (%Zd).\n",
577 data->iov_len);
578 return 0;
580 memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
581 vec->iov_len += data->iov_len;
582 return 1;
586 * Note that fields may be added, removed or reordered in the future. Programs
587 * scraping this file for info should test the labels to ensure they're
588 * getting the correct field.
590 static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
592 seq_printf(m, "max entries: %u\n", max_drc_entries);
593 seq_printf(m, "num entries: %u\n",
594 atomic_read(&num_drc_entries));
595 seq_printf(m, "hash buckets: %u\n", 1 << maskbits);
596 seq_printf(m, "mem usage: %u\n", drc_mem_usage);
597 seq_printf(m, "cache hits: %u\n", nfsdstats.rchits);
598 seq_printf(m, "cache misses: %u\n", nfsdstats.rcmisses);
599 seq_printf(m, "not cached: %u\n", nfsdstats.rcnocache);
600 seq_printf(m, "payload misses: %u\n", payload_misses);
601 seq_printf(m, "longest chain len: %u\n", longest_chain);
602 seq_printf(m, "cachesize at longest: %u\n", longest_chain_cachesize);
603 return 0;
606 int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
608 return single_open(file, nfsd_reply_cache_stats_show, NULL);