2 * Request reply cache. This is currently a global cache, but this may
3 * change in the future and be a per-client cache.
5 * This code is heavily inspired by the 44BSD implementation, although
6 * it does things a bit differently.
8 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
11 #include <linux/slab.h>
12 #include <linux/sunrpc/addr.h>
13 #include <linux/highmem.h>
14 #include <linux/log2.h>
15 #include <linux/hash.h>
16 #include <net/checksum.h>
21 #define NFSDDBG_FACILITY NFSDDBG_REPCACHE
24 * We use this value to determine the number of hash buckets from the max
25 * cache size, the idea being that when the cache is at its maximum number
26 * of entries, then this should be the average number of entries per bucket.
28 #define TARGET_BUCKET_SIZE 64
30 struct nfsd_drc_bucket
{
31 struct list_head lru_head
;
32 spinlock_t cache_lock
;
35 static struct nfsd_drc_bucket
*drc_hashtbl
;
36 static struct kmem_cache
*drc_slab
;
38 /* max number of entries allowed in the cache */
39 static unsigned int max_drc_entries
;
41 /* number of significant bits in the hash value */
42 static unsigned int maskbits
;
43 static unsigned int drc_hashsize
;
46 * Stats and other tracking of on the duplicate reply cache. All of these and
47 * the "rc" fields in nfsdstats are protected by the cache_lock
50 /* total number of entries */
51 static atomic_t num_drc_entries
;
53 /* cache misses due only to checksum comparison failures */
54 static unsigned int payload_misses
;
56 /* amount of memory (in bytes) currently consumed by the DRC */
57 static unsigned int drc_mem_usage
;
59 /* longest hash chain seen */
60 static unsigned int longest_chain
;
62 /* size of cache when we saw the longest hash chain */
63 static unsigned int longest_chain_cachesize
;
65 static int nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*vec
);
66 static unsigned long nfsd_reply_cache_count(struct shrinker
*shrink
,
67 struct shrink_control
*sc
);
68 static unsigned long nfsd_reply_cache_scan(struct shrinker
*shrink
,
69 struct shrink_control
*sc
);
71 static struct shrinker nfsd_reply_cache_shrinker
= {
72 .scan_objects
= nfsd_reply_cache_scan
,
73 .count_objects
= nfsd_reply_cache_count
,
78 * Put a cap on the size of the DRC based on the amount of available
79 * low memory in the machine.
91 * ...with a hard cap of 256k entries. In the worst case, each entry will be
92 * ~1k, so the above numbers should give a rough max of the amount of memory
96 nfsd_cache_size_limit(void)
99 unsigned long low_pages
= totalram_pages
- totalhigh_pages
;
101 limit
= (16 * int_sqrt(low_pages
)) << (PAGE_SHIFT
-10);
102 return min_t(unsigned int, limit
, 256*1024);
106 * Compute the number of hash buckets we need. Divide the max cachesize by
107 * the "target" max bucket size, and round up to next power of two.
110 nfsd_hashsize(unsigned int limit
)
112 return roundup_pow_of_two(limit
/ TARGET_BUCKET_SIZE
);
116 nfsd_cache_hash(__be32 xid
)
118 return hash_32(be32_to_cpu(xid
), maskbits
);
121 static struct svc_cacherep
*
122 nfsd_reply_cache_alloc(void)
124 struct svc_cacherep
*rp
;
126 rp
= kmem_cache_alloc(drc_slab
, GFP_KERNEL
);
128 rp
->c_state
= RC_UNUSED
;
129 rp
->c_type
= RC_NOCACHE
;
130 INIT_LIST_HEAD(&rp
->c_lru
);
136 nfsd_reply_cache_free_locked(struct svc_cacherep
*rp
)
138 if (rp
->c_type
== RC_REPLBUFF
&& rp
->c_replvec
.iov_base
) {
139 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
140 kfree(rp
->c_replvec
.iov_base
);
142 list_del(&rp
->c_lru
);
143 atomic_dec(&num_drc_entries
);
144 drc_mem_usage
-= sizeof(*rp
);
145 kmem_cache_free(drc_slab
, rp
);
149 nfsd_reply_cache_free(struct nfsd_drc_bucket
*b
, struct svc_cacherep
*rp
)
151 spin_lock(&b
->cache_lock
);
152 nfsd_reply_cache_free_locked(rp
);
153 spin_unlock(&b
->cache_lock
);
156 int nfsd_reply_cache_init(void)
158 unsigned int hashsize
;
162 max_drc_entries
= nfsd_cache_size_limit();
163 atomic_set(&num_drc_entries
, 0);
164 hashsize
= nfsd_hashsize(max_drc_entries
);
165 maskbits
= ilog2(hashsize
);
167 status
= register_shrinker(&nfsd_reply_cache_shrinker
);
171 drc_slab
= kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep
),
176 drc_hashtbl
= kcalloc(hashsize
, sizeof(*drc_hashtbl
), GFP_KERNEL
);
179 for (i
= 0; i
< hashsize
; i
++) {
180 INIT_LIST_HEAD(&drc_hashtbl
[i
].lru_head
);
181 spin_lock_init(&drc_hashtbl
[i
].cache_lock
);
183 drc_hashsize
= hashsize
;
187 printk(KERN_ERR
"nfsd: failed to allocate reply cache\n");
188 nfsd_reply_cache_shutdown();
192 void nfsd_reply_cache_shutdown(void)
194 struct svc_cacherep
*rp
;
197 unregister_shrinker(&nfsd_reply_cache_shrinker
);
199 for (i
= 0; i
< drc_hashsize
; i
++) {
200 struct list_head
*head
= &drc_hashtbl
[i
].lru_head
;
201 while (!list_empty(head
)) {
202 rp
= list_first_entry(head
, struct svc_cacherep
, c_lru
);
203 nfsd_reply_cache_free_locked(rp
);
211 kmem_cache_destroy(drc_slab
);
216 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
217 * not already scheduled.
220 lru_put_end(struct nfsd_drc_bucket
*b
, struct svc_cacherep
*rp
)
222 rp
->c_timestamp
= jiffies
;
223 list_move_tail(&rp
->c_lru
, &b
->lru_head
);
227 prune_bucket(struct nfsd_drc_bucket
*b
)
229 struct svc_cacherep
*rp
, *tmp
;
232 list_for_each_entry_safe(rp
, tmp
, &b
->lru_head
, c_lru
) {
234 * Don't free entries attached to calls that are still
235 * in-progress, but do keep scanning the list.
237 if (rp
->c_state
== RC_INPROG
)
239 if (atomic_read(&num_drc_entries
) <= max_drc_entries
&&
240 time_before(jiffies
, rp
->c_timestamp
+ RC_EXPIRE
))
242 nfsd_reply_cache_free_locked(rp
);
249 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
250 * Also prune the oldest ones when the total exceeds the max number of entries.
253 prune_cache_entries(void)
258 for (i
= 0; i
< drc_hashsize
; i
++) {
259 struct nfsd_drc_bucket
*b
= &drc_hashtbl
[i
];
261 if (list_empty(&b
->lru_head
))
263 spin_lock(&b
->cache_lock
);
264 freed
+= prune_bucket(b
);
265 spin_unlock(&b
->cache_lock
);
271 nfsd_reply_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
273 return atomic_read(&num_drc_entries
);
277 nfsd_reply_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
279 return prune_cache_entries();
282 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
285 nfsd_cache_csum(struct svc_rqst
*rqstp
)
290 struct xdr_buf
*buf
= &rqstp
->rq_arg
;
291 const unsigned char *p
= buf
->head
[0].iov_base
;
292 size_t csum_len
= min_t(size_t, buf
->head
[0].iov_len
+ buf
->page_len
,
294 size_t len
= min(buf
->head
[0].iov_len
, csum_len
);
296 /* rq_arg.head first */
297 csum
= csum_partial(p
, len
, 0);
300 /* Continue into page array */
301 idx
= buf
->page_base
/ PAGE_SIZE
;
302 base
= buf
->page_base
& ~PAGE_MASK
;
304 p
= page_address(buf
->pages
[idx
]) + base
;
305 len
= min_t(size_t, PAGE_SIZE
- base
, csum_len
);
306 csum
= csum_partial(p
, len
, csum
);
315 nfsd_cache_match(struct svc_rqst
*rqstp
, __wsum csum
, struct svc_cacherep
*rp
)
317 /* Check RPC XID first */
318 if (rqstp
->rq_xid
!= rp
->c_xid
)
320 /* compare checksum of NFS data */
321 if (csum
!= rp
->c_csum
) {
326 /* Other discriminators */
327 if (rqstp
->rq_proc
!= rp
->c_proc
||
328 rqstp
->rq_prot
!= rp
->c_prot
||
329 rqstp
->rq_vers
!= rp
->c_vers
||
330 rqstp
->rq_arg
.len
!= rp
->c_len
||
331 !rpc_cmp_addr(svc_addr(rqstp
), (struct sockaddr
*)&rp
->c_addr
) ||
332 rpc_get_port(svc_addr(rqstp
)) != rpc_get_port((struct sockaddr
*)&rp
->c_addr
))
339 * Search the request hash for an entry that matches the given rqstp.
340 * Must be called with cache_lock held. Returns the found entry or
343 static struct svc_cacherep
*
344 nfsd_cache_search(struct nfsd_drc_bucket
*b
, struct svc_rqst
*rqstp
,
347 struct svc_cacherep
*rp
, *ret
= NULL
;
348 struct list_head
*rh
= &b
->lru_head
;
349 unsigned int entries
= 0;
351 list_for_each_entry(rp
, rh
, c_lru
) {
353 if (nfsd_cache_match(rqstp
, csum
, rp
)) {
359 /* tally hash chain length stats */
360 if (entries
> longest_chain
) {
361 longest_chain
= entries
;
362 longest_chain_cachesize
= atomic_read(&num_drc_entries
);
363 } else if (entries
== longest_chain
) {
364 /* prefer to keep the smallest cachesize possible here */
365 longest_chain_cachesize
= min_t(unsigned int,
366 longest_chain_cachesize
,
367 atomic_read(&num_drc_entries
));
374 * Try to find an entry matching the current call in the cache. When none
375 * is found, we try to grab the oldest expired entry off the LRU list. If
376 * a suitable one isn't there, then drop the cache_lock and allocate a
377 * new one, then search again in case one got inserted while this thread
378 * didn't hold the lock.
381 nfsd_cache_lookup(struct svc_rqst
*rqstp
)
383 struct svc_cacherep
*rp
, *found
;
384 __be32 xid
= rqstp
->rq_xid
;
385 u32 proto
= rqstp
->rq_prot
,
386 vers
= rqstp
->rq_vers
,
387 proc
= rqstp
->rq_proc
;
389 u32 hash
= nfsd_cache_hash(xid
);
390 struct nfsd_drc_bucket
*b
= &drc_hashtbl
[hash
];
392 int type
= rqstp
->rq_cachetype
;
395 rqstp
->rq_cacherep
= NULL
;
396 if (type
== RC_NOCACHE
) {
397 nfsdstats
.rcnocache
++;
401 csum
= nfsd_cache_csum(rqstp
);
404 * Since the common case is a cache miss followed by an insert,
405 * preallocate an entry.
407 rp
= nfsd_reply_cache_alloc();
408 spin_lock(&b
->cache_lock
);
410 atomic_inc(&num_drc_entries
);
411 drc_mem_usage
+= sizeof(*rp
);
414 /* go ahead and prune the cache */
417 found
= nfsd_cache_search(b
, rqstp
, csum
);
420 nfsd_reply_cache_free_locked(rp
);
426 dprintk("nfsd: unable to allocate DRC entry!\n");
430 nfsdstats
.rcmisses
++;
431 rqstp
->rq_cacherep
= rp
;
432 rp
->c_state
= RC_INPROG
;
435 rpc_copy_addr((struct sockaddr
*)&rp
->c_addr
, svc_addr(rqstp
));
436 rpc_set_port((struct sockaddr
*)&rp
->c_addr
, rpc_get_port(svc_addr(rqstp
)));
439 rp
->c_len
= rqstp
->rq_arg
.len
;
444 /* release any buffer */
445 if (rp
->c_type
== RC_REPLBUFF
) {
446 drc_mem_usage
-= rp
->c_replvec
.iov_len
;
447 kfree(rp
->c_replvec
.iov_base
);
448 rp
->c_replvec
.iov_base
= NULL
;
450 rp
->c_type
= RC_NOCACHE
;
452 spin_unlock(&b
->cache_lock
);
457 /* We found a matching entry which is either in progress or done. */
458 age
= jiffies
- rp
->c_timestamp
;
462 /* Request being processed or excessive rexmits */
463 if (rp
->c_state
== RC_INPROG
|| age
< RC_DELAY
)
466 /* From the hall of fame of impractical attacks:
467 * Is this a user who tries to snoop on the cache? */
469 if (!test_bit(RQ_SECURE
, &rqstp
->rq_flags
) && rp
->c_secure
)
472 /* Compose RPC reply header */
473 switch (rp
->c_type
) {
477 svc_putu32(&rqstp
->rq_res
.head
[0], rp
->c_replstat
);
481 if (!nfsd_cache_append(rqstp
, &rp
->c_replvec
))
482 goto out
; /* should not happen */
486 printk(KERN_WARNING
"nfsd: bad repcache type %d\n", rp
->c_type
);
487 nfsd_reply_cache_free_locked(rp
);
494 * Update a cache entry. This is called from nfsd_dispatch when
495 * the procedure has been executed and the complete reply is in
498 * We're copying around data here rather than swapping buffers because
499 * the toplevel loop requires max-sized buffers, which would be a waste
500 * of memory for a cache with a max reply size of 100 bytes (diropokres).
502 * If we should start to use different types of cache entries tailored
503 * specifically for attrstat and fh's, we may save even more space.
505 * Also note that a cachetype of RC_NOCACHE can legally be passed when
506 * nfsd failed to encode a reply that otherwise would have been cached.
507 * In this case, nfsd_cache_update is called with statp == NULL.
510 nfsd_cache_update(struct svc_rqst
*rqstp
, int cachetype
, __be32
*statp
)
512 struct svc_cacherep
*rp
= rqstp
->rq_cacherep
;
513 struct kvec
*resv
= &rqstp
->rq_res
.head
[0], *cachv
;
515 struct nfsd_drc_bucket
*b
;
522 hash
= nfsd_cache_hash(rp
->c_xid
);
523 b
= &drc_hashtbl
[hash
];
525 len
= resv
->iov_len
- ((char*)statp
- (char*)resv
->iov_base
);
528 /* Don't cache excessive amounts of data and XDR failures */
529 if (!statp
|| len
> (256 >> 2)) {
530 nfsd_reply_cache_free(b
, rp
);
537 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len
);
538 rp
->c_replstat
= *statp
;
541 cachv
= &rp
->c_replvec
;
543 cachv
->iov_base
= kmalloc(bufsize
, GFP_KERNEL
);
544 if (!cachv
->iov_base
) {
545 nfsd_reply_cache_free(b
, rp
);
548 cachv
->iov_len
= bufsize
;
549 memcpy(cachv
->iov_base
, statp
, bufsize
);
552 nfsd_reply_cache_free(b
, rp
);
555 spin_lock(&b
->cache_lock
);
556 drc_mem_usage
+= bufsize
;
558 rp
->c_secure
= test_bit(RQ_SECURE
, &rqstp
->rq_flags
);
559 rp
->c_type
= cachetype
;
560 rp
->c_state
= RC_DONE
;
561 spin_unlock(&b
->cache_lock
);
566 * Copy cached reply to current reply buffer. Should always fit.
567 * FIXME as reply is in a page, we should just attach the page, and
568 * keep a refcount....
571 nfsd_cache_append(struct svc_rqst
*rqstp
, struct kvec
*data
)
573 struct kvec
*vec
= &rqstp
->rq_res
.head
[0];
575 if (vec
->iov_len
+ data
->iov_len
> PAGE_SIZE
) {
576 printk(KERN_WARNING
"nfsd: cached reply too large (%Zd).\n",
580 memcpy((char*)vec
->iov_base
+ vec
->iov_len
, data
->iov_base
, data
->iov_len
);
581 vec
->iov_len
+= data
->iov_len
;
586 * Note that fields may be added, removed or reordered in the future. Programs
587 * scraping this file for info should test the labels to ensure they're
588 * getting the correct field.
590 static int nfsd_reply_cache_stats_show(struct seq_file
*m
, void *v
)
592 seq_printf(m
, "max entries: %u\n", max_drc_entries
);
593 seq_printf(m
, "num entries: %u\n",
594 atomic_read(&num_drc_entries
));
595 seq_printf(m
, "hash buckets: %u\n", 1 << maskbits
);
596 seq_printf(m
, "mem usage: %u\n", drc_mem_usage
);
597 seq_printf(m
, "cache hits: %u\n", nfsdstats
.rchits
);
598 seq_printf(m
, "cache misses: %u\n", nfsdstats
.rcmisses
);
599 seq_printf(m
, "not cached: %u\n", nfsdstats
.rcnocache
);
600 seq_printf(m
, "payload misses: %u\n", payload_misses
);
601 seq_printf(m
, "longest chain len: %u\n", longest_chain
);
602 seq_printf(m
, "cachesize at longest: %u\n", longest_chain_cachesize
);
606 int nfsd_reply_cache_stats_open(struct inode
*inode
, struct file
*file
)
608 return single_open(file
, nfsd_reply_cache_stats_show
, NULL
);