2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/pagemap.h>
25 #include <linux/buffer_head.h>
26 #include <linux/writeback.h>
27 #include <linux/bitops.h>
28 #include <linux/bio.h>
29 #include <linux/completion.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/freezer.h>
33 #include <linux/kthread.h>
34 #include <linux/crc32.h>
35 #include <linux/pagevec.h>
36 #include <linux/slab.h>
50 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
52 #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
53 appended in collection retry loop */
55 /* Construction mode */
57 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
58 SC_LSEG_DSYNC
, /* Flush data blocks of a given file and make
59 a logical segment without a super root */
60 SC_FLUSH_FILE
, /* Flush data files, leads to segment writes without
61 creating a checkpoint */
62 SC_FLUSH_DAT
, /* Flush DAT file. This also creates segments without
66 /* Stage numbers of dirty block collection */
69 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
75 NILFS_ST_SR
, /* Super root */
76 NILFS_ST_DSYNC
, /* Data sync blocks */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/nilfs2.h>
84 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
85 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
86 * the variable must use them because transition of stage count must involve
87 * trace events (trace_nilfs2_collection_stage_transition).
89 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
90 * produce tracepoint events. It is provided just for making the intention
93 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info
*sci
)
96 trace_nilfs2_collection_stage_transition(sci
);
99 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info
*sci
, int next_scnt
)
101 sci
->sc_stage
.scnt
= next_scnt
;
102 trace_nilfs2_collection_stage_transition(sci
);
105 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info
*sci
)
107 return sci
->sc_stage
.scnt
;
110 /* State flags of collection */
111 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
112 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
113 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
114 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
116 /* Operations depending on the construction mode and file type */
117 struct nilfs_sc_operations
{
118 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
120 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
122 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
124 void (*write_data_binfo
)(struct nilfs_sc_info
*,
125 struct nilfs_segsum_pointer
*,
126 union nilfs_binfo
*);
127 void (*write_node_binfo
)(struct nilfs_sc_info
*,
128 struct nilfs_segsum_pointer
*,
129 union nilfs_binfo
*);
135 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
136 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
137 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
138 static void nilfs_dispose_list(struct the_nilfs
*, struct list_head
*, int);
140 #define nilfs_cnt32_gt(a, b) \
141 (typecheck(__u32, a) && typecheck(__u32, b) && \
142 ((__s32)(b) - (__s32)(a) < 0))
143 #define nilfs_cnt32_ge(a, b) \
144 (typecheck(__u32, a) && typecheck(__u32, b) && \
145 ((__s32)(a) - (__s32)(b) >= 0))
146 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
147 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
149 static int nilfs_prepare_segment_lock(struct nilfs_transaction_info
*ti
)
151 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
155 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
156 return ++cur_ti
->ti_count
;
159 * If journal_info field is occupied by other FS,
160 * it is saved and will be restored on
161 * nilfs_transaction_commit().
164 "NILFS warning: journal info from a different "
166 save
= current
->journal_info
;
170 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
173 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
179 ti
->ti_magic
= NILFS_TI_MAGIC
;
180 current
->journal_info
= ti
;
185 * nilfs_transaction_begin - start indivisible file operations.
187 * @ti: nilfs_transaction_info
188 * @vacancy_check: flags for vacancy rate checks
190 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
191 * the segment semaphore, to make a segment construction and write tasks
192 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
193 * The region enclosed by these two functions can be nested. To avoid a
194 * deadlock, the semaphore is only acquired or released in the outermost call.
196 * This function allocates a nilfs_transaction_info struct to keep context
197 * information on it. It is initialized and hooked onto the current task in
198 * the outermost call. If a pre-allocated struct is given to @ti, it is used
199 * instead; otherwise a new struct is assigned from a slab.
201 * When @vacancy_check flag is set, this function will check the amount of
202 * free space, and will wait for the GC to reclaim disk space if low capacity.
204 * Return Value: On success, 0 is returned. On error, one of the following
205 * negative error code is returned.
207 * %-ENOMEM - Insufficient memory available.
209 * %-ENOSPC - No space left on device
211 int nilfs_transaction_begin(struct super_block
*sb
,
212 struct nilfs_transaction_info
*ti
,
215 struct the_nilfs
*nilfs
;
216 int ret
= nilfs_prepare_segment_lock(ti
);
217 struct nilfs_transaction_info
*trace_ti
;
219 if (unlikely(ret
< 0))
222 trace_ti
= current
->journal_info
;
224 trace_nilfs2_transaction_transition(sb
, trace_ti
,
225 trace_ti
->ti_count
, trace_ti
->ti_flags
,
226 TRACE_NILFS2_TRANSACTION_BEGIN
);
230 sb_start_intwrite(sb
);
232 nilfs
= sb
->s_fs_info
;
233 down_read(&nilfs
->ns_segctor_sem
);
234 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
235 up_read(&nilfs
->ns_segctor_sem
);
240 trace_ti
= current
->journal_info
;
241 trace_nilfs2_transaction_transition(sb
, trace_ti
, trace_ti
->ti_count
,
243 TRACE_NILFS2_TRANSACTION_BEGIN
);
247 ti
= current
->journal_info
;
248 current
->journal_info
= ti
->ti_save
;
249 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
250 kmem_cache_free(nilfs_transaction_cachep
, ti
);
256 * nilfs_transaction_commit - commit indivisible file operations.
259 * nilfs_transaction_commit() releases the read semaphore which is
260 * acquired by nilfs_transaction_begin(). This is only performed
261 * in outermost call of this function. If a commit flag is set,
262 * nilfs_transaction_commit() sets a timer to start the segment
263 * constructor. If a sync flag is set, it starts construction
266 int nilfs_transaction_commit(struct super_block
*sb
)
268 struct nilfs_transaction_info
*ti
= current
->journal_info
;
269 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
272 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
273 ti
->ti_flags
|= NILFS_TI_COMMIT
;
274 if (ti
->ti_count
> 0) {
276 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
277 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
280 if (nilfs
->ns_writer
) {
281 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
283 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
284 nilfs_segctor_start_timer(sci
);
285 if (atomic_read(&nilfs
->ns_ndirtyblks
) > sci
->sc_watermark
)
286 nilfs_segctor_do_flush(sci
, 0);
288 up_read(&nilfs
->ns_segctor_sem
);
289 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
290 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
292 current
->journal_info
= ti
->ti_save
;
294 if (ti
->ti_flags
& NILFS_TI_SYNC
)
295 err
= nilfs_construct_segment(sb
);
296 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
297 kmem_cache_free(nilfs_transaction_cachep
, ti
);
302 void nilfs_transaction_abort(struct super_block
*sb
)
304 struct nilfs_transaction_info
*ti
= current
->journal_info
;
305 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
307 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
308 if (ti
->ti_count
> 0) {
310 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
311 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
314 up_read(&nilfs
->ns_segctor_sem
);
316 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
317 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
319 current
->journal_info
= ti
->ti_save
;
320 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
321 kmem_cache_free(nilfs_transaction_cachep
, ti
);
325 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
327 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
328 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
330 if (!sci
|| !sci
->sc_flush_request
)
333 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
334 up_read(&nilfs
->ns_segctor_sem
);
336 down_write(&nilfs
->ns_segctor_sem
);
337 if (sci
->sc_flush_request
&&
338 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
339 struct nilfs_transaction_info
*ti
= current
->journal_info
;
341 ti
->ti_flags
|= NILFS_TI_WRITER
;
342 nilfs_segctor_do_immediate_flush(sci
);
343 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
345 downgrade_write(&nilfs
->ns_segctor_sem
);
348 static void nilfs_transaction_lock(struct super_block
*sb
,
349 struct nilfs_transaction_info
*ti
,
352 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
353 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
354 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
357 ti
->ti_flags
= NILFS_TI_WRITER
;
359 ti
->ti_save
= cur_ti
;
360 ti
->ti_magic
= NILFS_TI_MAGIC
;
361 current
->journal_info
= ti
;
364 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
365 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_TRYLOCK
);
367 down_write(&nilfs
->ns_segctor_sem
);
368 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
))
371 nilfs_segctor_do_immediate_flush(sci
);
373 up_write(&nilfs
->ns_segctor_sem
);
377 ti
->ti_flags
|= NILFS_TI_GC
;
379 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
380 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_LOCK
);
383 static void nilfs_transaction_unlock(struct super_block
*sb
)
385 struct nilfs_transaction_info
*ti
= current
->journal_info
;
386 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
388 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
389 BUG_ON(ti
->ti_count
> 0);
391 up_write(&nilfs
->ns_segctor_sem
);
392 current
->journal_info
= ti
->ti_save
;
394 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
395 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_UNLOCK
);
398 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
399 struct nilfs_segsum_pointer
*ssp
,
402 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
403 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
406 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
408 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
409 &segbuf
->sb_segsum_buffers
));
410 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
412 p
= ssp
->bh
->b_data
+ ssp
->offset
;
413 ssp
->offset
+= bytes
;
418 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
419 * @sci: nilfs_sc_info
421 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
423 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
424 struct buffer_head
*sumbh
;
429 if (nilfs_doing_gc())
431 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
, sci
->sc_cno
);
435 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
436 sumbytes
= segbuf
->sb_sum
.sumbytes
;
437 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
438 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
439 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
443 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
445 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
446 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
447 return -E2BIG
; /* The current segment is filled up
449 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
450 return nilfs_segctor_reset_segment_buffer(sci
);
453 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
455 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
458 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
459 err
= nilfs_segctor_feed_segment(sci
);
462 segbuf
= sci
->sc_curseg
;
464 err
= nilfs_segbuf_extend_payload(segbuf
, &segbuf
->sb_super_root
);
466 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
471 * Functions for making segment summary and payloads
473 static int nilfs_segctor_segsum_block_required(
474 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
477 unsigned blocksize
= sci
->sc_super
->s_blocksize
;
478 /* Size of finfo and binfo is enough small against blocksize */
480 return ssp
->offset
+ binfo_size
+
481 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
485 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
488 sci
->sc_curseg
->sb_sum
.nfinfo
++;
489 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
490 nilfs_segctor_map_segsum_entry(
491 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
493 if (NILFS_I(inode
)->i_root
&&
494 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
495 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
499 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
502 struct nilfs_finfo
*finfo
;
503 struct nilfs_inode_info
*ii
;
504 struct nilfs_segment_buffer
*segbuf
;
507 if (sci
->sc_blk_cnt
== 0)
512 if (test_bit(NILFS_I_GCINODE
, &ii
->i_state
))
514 else if (NILFS_ROOT_METADATA_FILE(inode
->i_ino
))
519 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
521 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
522 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
523 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
524 finfo
->fi_cno
= cpu_to_le64(cno
);
526 segbuf
= sci
->sc_curseg
;
527 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
528 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
529 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
530 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
533 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
534 struct buffer_head
*bh
,
538 struct nilfs_segment_buffer
*segbuf
;
539 int required
, err
= 0;
542 segbuf
= sci
->sc_curseg
;
543 required
= nilfs_segctor_segsum_block_required(
544 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
545 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
546 nilfs_segctor_end_finfo(sci
, inode
);
547 err
= nilfs_segctor_feed_segment(sci
);
552 if (unlikely(required
)) {
553 err
= nilfs_segbuf_extend_segsum(segbuf
);
557 if (sci
->sc_blk_cnt
== 0)
558 nilfs_segctor_begin_finfo(sci
, inode
);
560 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
561 /* Substitution to vblocknr is delayed until update_blocknr() */
562 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
569 * Callback functions that enumerate, mark, and collect dirty blocks
571 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
572 struct buffer_head
*bh
, struct inode
*inode
)
576 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
580 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
581 sizeof(struct nilfs_binfo_v
));
583 sci
->sc_datablk_cnt
++;
587 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
588 struct buffer_head
*bh
,
591 return nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
594 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
595 struct buffer_head
*bh
,
598 WARN_ON(!buffer_dirty(bh
));
599 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
602 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
603 struct nilfs_segsum_pointer
*ssp
,
604 union nilfs_binfo
*binfo
)
606 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
607 sci
, ssp
, sizeof(*binfo_v
));
608 *binfo_v
= binfo
->bi_v
;
611 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
612 struct nilfs_segsum_pointer
*ssp
,
613 union nilfs_binfo
*binfo
)
615 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
616 sci
, ssp
, sizeof(*vblocknr
));
617 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
620 static struct nilfs_sc_operations nilfs_sc_file_ops
= {
621 .collect_data
= nilfs_collect_file_data
,
622 .collect_node
= nilfs_collect_file_node
,
623 .collect_bmap
= nilfs_collect_file_bmap
,
624 .write_data_binfo
= nilfs_write_file_data_binfo
,
625 .write_node_binfo
= nilfs_write_file_node_binfo
,
628 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
629 struct buffer_head
*bh
, struct inode
*inode
)
633 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
637 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
639 sci
->sc_datablk_cnt
++;
643 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
644 struct buffer_head
*bh
, struct inode
*inode
)
646 WARN_ON(!buffer_dirty(bh
));
647 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
648 sizeof(struct nilfs_binfo_dat
));
651 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
652 struct nilfs_segsum_pointer
*ssp
,
653 union nilfs_binfo
*binfo
)
655 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
657 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
660 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
661 struct nilfs_segsum_pointer
*ssp
,
662 union nilfs_binfo
*binfo
)
664 struct nilfs_binfo_dat
*binfo_dat
=
665 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
666 *binfo_dat
= binfo
->bi_dat
;
669 static struct nilfs_sc_operations nilfs_sc_dat_ops
= {
670 .collect_data
= nilfs_collect_dat_data
,
671 .collect_node
= nilfs_collect_file_node
,
672 .collect_bmap
= nilfs_collect_dat_bmap
,
673 .write_data_binfo
= nilfs_write_dat_data_binfo
,
674 .write_node_binfo
= nilfs_write_dat_node_binfo
,
677 static struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
678 .collect_data
= nilfs_collect_file_data
,
679 .collect_node
= NULL
,
680 .collect_bmap
= NULL
,
681 .write_data_binfo
= nilfs_write_file_data_binfo
,
682 .write_node_binfo
= NULL
,
685 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
686 struct list_head
*listp
,
688 loff_t start
, loff_t end
)
690 struct address_space
*mapping
= inode
->i_mapping
;
692 pgoff_t index
= 0, last
= ULONG_MAX
;
696 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
698 * A valid range is given for sync-ing data pages. The
699 * range is rounded to per-page; extra dirty buffers
700 * may be included if blocksize < pagesize.
702 index
= start
>> PAGE_SHIFT
;
703 last
= end
>> PAGE_SHIFT
;
705 pagevec_init(&pvec
, 0);
707 if (unlikely(index
> last
) ||
708 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
709 min_t(pgoff_t
, last
- index
,
710 PAGEVEC_SIZE
- 1) + 1))
713 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
714 struct buffer_head
*bh
, *head
;
715 struct page
*page
= pvec
.pages
[i
];
717 if (unlikely(page
->index
> last
))
721 if (!page_has_buffers(page
))
722 create_empty_buffers(page
, i_blocksize(inode
), 0);
725 bh
= head
= page_buffers(page
);
727 if (!buffer_dirty(bh
) || buffer_async_write(bh
))
730 list_add_tail(&bh
->b_assoc_buffers
, listp
);
732 if (unlikely(ndirties
>= nlimit
)) {
733 pagevec_release(&pvec
);
737 } while (bh
= bh
->b_this_page
, bh
!= head
);
739 pagevec_release(&pvec
);
744 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
745 struct list_head
*listp
)
747 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
748 struct address_space
*mapping
= &ii
->i_btnode_cache
;
750 struct buffer_head
*bh
, *head
;
754 pagevec_init(&pvec
, 0);
756 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
758 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
759 bh
= head
= page_buffers(pvec
.pages
[i
]);
761 if (buffer_dirty(bh
) &&
762 !buffer_async_write(bh
)) {
764 list_add_tail(&bh
->b_assoc_buffers
,
767 bh
= bh
->b_this_page
;
768 } while (bh
!= head
);
770 pagevec_release(&pvec
);
775 static void nilfs_dispose_list(struct the_nilfs
*nilfs
,
776 struct list_head
*head
, int force
)
778 struct nilfs_inode_info
*ii
, *n
;
779 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
782 while (!list_empty(head
)) {
783 spin_lock(&nilfs
->ns_inode_lock
);
784 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
785 list_del_init(&ii
->i_dirty
);
787 if (unlikely(ii
->i_bh
)) {
791 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
792 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
793 list_add_tail(&ii
->i_dirty
,
794 &nilfs
->ns_dirty_files
);
798 if (nv
== SC_N_INODEVEC
)
801 spin_unlock(&nilfs
->ns_inode_lock
);
803 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
804 iput(&(*pii
)->vfs_inode
);
808 static void nilfs_iput_work_func(struct work_struct
*work
)
810 struct nilfs_sc_info
*sci
= container_of(work
, struct nilfs_sc_info
,
812 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
814 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 0);
817 static int nilfs_test_metadata_dirty(struct the_nilfs
*nilfs
,
818 struct nilfs_root
*root
)
822 if (nilfs_mdt_fetch_dirty(root
->ifile
))
824 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
826 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
828 if ((ret
|| nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs
->ns_dat
))
833 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
835 return list_empty(&sci
->sc_dirty_files
) &&
836 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
837 sci
->sc_nfreesegs
== 0 &&
838 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
841 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
843 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
846 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
847 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
849 spin_lock(&nilfs
->ns_inode_lock
);
850 if (list_empty(&nilfs
->ns_dirty_files
) && nilfs_segctor_clean(sci
))
853 spin_unlock(&nilfs
->ns_inode_lock
);
857 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
859 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
861 nilfs_mdt_clear_dirty(sci
->sc_root
->ifile
);
862 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
863 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
864 nilfs_mdt_clear_dirty(nilfs
->ns_dat
);
867 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
869 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
870 struct buffer_head
*bh_cp
;
871 struct nilfs_checkpoint
*raw_cp
;
874 /* XXX: this interface will be changed */
875 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
878 /* The following code is duplicated with cpfile. But, it is
879 needed to collect the checkpoint even if it was not newly
881 mark_buffer_dirty(bh_cp
);
882 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
883 nilfs_cpfile_put_checkpoint(
884 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
886 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
891 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
893 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
894 struct buffer_head
*bh_cp
;
895 struct nilfs_checkpoint
*raw_cp
;
898 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
901 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
904 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
905 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
906 raw_cp
->cp_inodes_count
=
907 cpu_to_le64(atomic64_read(&sci
->sc_root
->inodes_count
));
908 raw_cp
->cp_blocks_count
=
909 cpu_to_le64(atomic64_read(&sci
->sc_root
->blocks_count
));
910 raw_cp
->cp_nblk_inc
=
911 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
912 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
913 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
915 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
916 nilfs_checkpoint_clear_minor(raw_cp
);
918 nilfs_checkpoint_set_minor(raw_cp
);
920 nilfs_write_inode_common(sci
->sc_root
->ifile
,
921 &raw_cp
->cp_ifile_inode
, 1);
922 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
929 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
930 struct nilfs_inode_info
*ii
)
933 struct buffer_head
*ibh
;
934 struct nilfs_inode
*raw_inode
;
936 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
939 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
941 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
942 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
946 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
)
948 struct nilfs_inode_info
*ii
;
950 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
951 nilfs_fill_in_file_bmap(sci
->sc_root
->ifile
, ii
);
952 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
956 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
957 struct the_nilfs
*nilfs
)
959 struct buffer_head
*bh_sr
;
960 struct nilfs_super_root
*raw_sr
;
963 bh_sr
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
)->sb_super_root
;
964 raw_sr
= (struct nilfs_super_root
*)bh_sr
->b_data
;
965 isz
= nilfs
->ns_inode_size
;
966 srsz
= NILFS_SR_BYTES(isz
);
968 raw_sr
->sr_bytes
= cpu_to_le16(srsz
);
969 raw_sr
->sr_nongc_ctime
970 = cpu_to_le64(nilfs_doing_gc() ?
971 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
972 raw_sr
->sr_flags
= 0;
974 nilfs_write_inode_common(nilfs
->ns_dat
, (void *)raw_sr
+
975 NILFS_SR_DAT_OFFSET(isz
), 1);
976 nilfs_write_inode_common(nilfs
->ns_cpfile
, (void *)raw_sr
+
977 NILFS_SR_CPFILE_OFFSET(isz
), 1);
978 nilfs_write_inode_common(nilfs
->ns_sufile
, (void *)raw_sr
+
979 NILFS_SR_SUFILE_OFFSET(isz
), 1);
980 memset((void *)raw_sr
+ srsz
, 0, nilfs
->ns_blocksize
- srsz
);
983 static void nilfs_redirty_inodes(struct list_head
*head
)
985 struct nilfs_inode_info
*ii
;
987 list_for_each_entry(ii
, head
, i_dirty
) {
988 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
989 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
993 static void nilfs_drop_collected_inodes(struct list_head
*head
)
995 struct nilfs_inode_info
*ii
;
997 list_for_each_entry(ii
, head
, i_dirty
) {
998 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1001 clear_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
);
1002 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1006 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1007 struct inode
*inode
,
1008 struct list_head
*listp
,
1009 int (*collect
)(struct nilfs_sc_info
*,
1010 struct buffer_head
*,
1013 struct buffer_head
*bh
, *n
;
1017 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1018 list_del_init(&bh
->b_assoc_buffers
);
1019 err
= collect(sci
, bh
, inode
);
1022 goto dispose_buffers
;
1028 while (!list_empty(listp
)) {
1029 bh
= list_first_entry(listp
, struct buffer_head
,
1031 list_del_init(&bh
->b_assoc_buffers
);
1037 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1039 /* Remaining number of blocks within segment buffer */
1040 return sci
->sc_segbuf_nblocks
-
1041 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1044 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1045 struct inode
*inode
,
1046 struct nilfs_sc_operations
*sc_ops
)
1048 LIST_HEAD(data_buffers
);
1049 LIST_HEAD(node_buffers
);
1052 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1053 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1055 n
= nilfs_lookup_dirty_data_buffers(
1056 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1058 err
= nilfs_segctor_apply_buffers(
1059 sci
, inode
, &data_buffers
,
1060 sc_ops
->collect_data
);
1061 BUG_ON(!err
); /* always receive -E2BIG or true error */
1065 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1067 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1068 err
= nilfs_segctor_apply_buffers(
1069 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1070 if (unlikely(err
)) {
1071 /* dispose node list */
1072 nilfs_segctor_apply_buffers(
1073 sci
, inode
, &node_buffers
, NULL
);
1076 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1079 err
= nilfs_segctor_apply_buffers(
1080 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1084 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1085 err
= nilfs_segctor_apply_buffers(
1086 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1090 nilfs_segctor_end_finfo(sci
, inode
);
1091 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1097 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1098 struct inode
*inode
)
1100 LIST_HEAD(data_buffers
);
1101 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1104 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1105 sci
->sc_dsync_start
,
1108 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1109 nilfs_collect_file_data
);
1111 nilfs_segctor_end_finfo(sci
, inode
);
1113 /* always receive -E2BIG or true error if n > rest */
1118 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1120 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1121 struct list_head
*head
;
1122 struct nilfs_inode_info
*ii
;
1126 switch (nilfs_sc_cstage_get(sci
)) {
1129 sci
->sc_stage
.flags
= 0;
1131 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1132 sci
->sc_nblk_inc
= 0;
1133 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1134 if (mode
== SC_LSEG_DSYNC
) {
1135 nilfs_sc_cstage_set(sci
, NILFS_ST_DSYNC
);
1140 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1141 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1142 if (mode
== SC_FLUSH_DAT
) {
1143 nilfs_sc_cstage_set(sci
, NILFS_ST_DAT
);
1146 nilfs_sc_cstage_inc(sci
); /* Fall through */
1148 if (nilfs_doing_gc()) {
1149 head
= &sci
->sc_gc_inodes
;
1150 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1152 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1153 err
= nilfs_segctor_scan_file(
1154 sci
, &ii
->vfs_inode
,
1155 &nilfs_sc_file_ops
);
1156 if (unlikely(err
)) {
1157 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1159 struct nilfs_inode_info
,
1163 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1165 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1167 nilfs_sc_cstage_inc(sci
); /* Fall through */
1169 head
= &sci
->sc_dirty_files
;
1170 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1172 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1173 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1175 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1176 &nilfs_sc_file_ops
);
1177 if (unlikely(err
)) {
1178 sci
->sc_stage
.dirty_file_ptr
=
1179 list_entry(ii
->i_dirty
.prev
,
1180 struct nilfs_inode_info
,
1184 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1185 /* XXX: required ? */
1187 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1188 if (mode
== SC_FLUSH_FILE
) {
1189 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1192 nilfs_sc_cstage_inc(sci
);
1193 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1195 case NILFS_ST_IFILE
:
1196 err
= nilfs_segctor_scan_file(sci
, sci
->sc_root
->ifile
,
1197 &nilfs_sc_file_ops
);
1200 nilfs_sc_cstage_inc(sci
);
1201 /* Creating a checkpoint */
1202 err
= nilfs_segctor_create_checkpoint(sci
);
1206 case NILFS_ST_CPFILE
:
1207 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1208 &nilfs_sc_file_ops
);
1211 nilfs_sc_cstage_inc(sci
); /* Fall through */
1212 case NILFS_ST_SUFILE
:
1213 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1214 sci
->sc_nfreesegs
, &ndone
);
1215 if (unlikely(err
)) {
1216 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1217 sci
->sc_freesegs
, ndone
,
1221 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1223 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1224 &nilfs_sc_file_ops
);
1227 nilfs_sc_cstage_inc(sci
); /* Fall through */
1230 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_dat
,
1234 if (mode
== SC_FLUSH_DAT
) {
1235 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1238 nilfs_sc_cstage_inc(sci
); /* Fall through */
1240 if (mode
== SC_LSEG_SR
) {
1241 /* Appending a super root */
1242 err
= nilfs_segctor_add_super_root(sci
);
1246 /* End of a logical segment */
1247 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1248 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1250 case NILFS_ST_DSYNC
:
1252 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1253 ii
= sci
->sc_dsync_inode
;
1254 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1257 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1260 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1261 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1274 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1275 * @sci: nilfs_sc_info
1276 * @nilfs: nilfs object
1278 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1279 struct the_nilfs
*nilfs
)
1281 struct nilfs_segment_buffer
*segbuf
, *prev
;
1285 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1286 if (unlikely(!segbuf
))
1289 if (list_empty(&sci
->sc_write_logs
)) {
1290 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1291 nilfs
->ns_pseg_offset
, nilfs
);
1292 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1293 nilfs_shift_to_next_segment(nilfs
);
1294 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1297 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1298 nextnum
= nilfs
->ns_nextnum
;
1300 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1301 /* Start from the head of a new full segment */
1305 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1306 nilfs_segbuf_map_cont(segbuf
, prev
);
1307 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1308 nextnum
= prev
->sb_nextnum
;
1310 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1311 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1312 segbuf
->sb_sum
.seg_seq
++;
1317 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1322 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1326 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1328 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1329 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1330 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1334 nilfs_segbuf_free(segbuf
);
1338 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1339 struct the_nilfs
*nilfs
, int nadd
)
1341 struct nilfs_segment_buffer
*segbuf
, *prev
;
1342 struct inode
*sufile
= nilfs
->ns_sufile
;
1347 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1349 * Since the segment specified with nextnum might be allocated during
1350 * the previous construction, the buffer including its segusage may
1351 * not be dirty. The following call ensures that the buffer is dirty
1352 * and will pin the buffer on memory until the sufile is written.
1354 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1358 for (i
= 0; i
< nadd
; i
++) {
1359 /* extend segment info */
1361 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1362 if (unlikely(!segbuf
))
1365 /* map this buffer to region of segment on-disk */
1366 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1367 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1369 /* allocate the next next full segment */
1370 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1374 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1375 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1377 list_add_tail(&segbuf
->sb_list
, &list
);
1380 list_splice_tail(&list
, &sci
->sc_segbufs
);
1384 nilfs_segbuf_free(segbuf
);
1386 list_for_each_entry(segbuf
, &list
, sb_list
) {
1387 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1388 WARN_ON(ret
); /* never fails */
1390 nilfs_destroy_logs(&list
);
1394 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1395 struct the_nilfs
*nilfs
)
1397 struct nilfs_segment_buffer
*segbuf
, *prev
;
1398 struct inode
*sufile
= nilfs
->ns_sufile
;
1401 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1402 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1403 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1404 WARN_ON(ret
); /* never fails */
1406 if (atomic_read(&segbuf
->sb_err
)) {
1407 /* Case 1: The first segment failed */
1408 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1409 /* Case 1a: Partial segment appended into an existing
1411 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1412 segbuf
->sb_fseg_end
);
1413 else /* Case 1b: New full segment */
1414 set_nilfs_discontinued(nilfs
);
1418 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1419 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1420 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1421 WARN_ON(ret
); /* never fails */
1423 if (atomic_read(&segbuf
->sb_err
) &&
1424 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1425 /* Case 2: extended segment (!= next) failed */
1426 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1431 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1432 struct inode
*sufile
)
1434 struct nilfs_segment_buffer
*segbuf
;
1435 unsigned long live_blocks
;
1438 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1439 live_blocks
= segbuf
->sb_sum
.nblocks
+
1440 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1441 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1444 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1448 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1450 struct nilfs_segment_buffer
*segbuf
;
1453 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1454 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1455 segbuf
->sb_pseg_start
-
1456 segbuf
->sb_fseg_start
, 0);
1457 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1459 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1460 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1462 WARN_ON(ret
); /* always succeed */
1466 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1467 struct nilfs_segment_buffer
*last
,
1468 struct inode
*sufile
)
1470 struct nilfs_segment_buffer
*segbuf
= last
;
1473 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1474 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1475 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1478 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1482 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1483 struct the_nilfs
*nilfs
, int mode
)
1485 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1488 /* Collection retry loop */
1490 sci
->sc_nblk_this_inc
= 0;
1491 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1493 err
= nilfs_segctor_reset_segment_buffer(sci
);
1497 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1498 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1502 if (unlikely(err
!= -E2BIG
))
1505 /* The current segment is filled up */
1506 if (mode
!= SC_LSEG_SR
||
1507 nilfs_sc_cstage_get(sci
) < NILFS_ST_CPFILE
)
1510 nilfs_clear_logs(&sci
->sc_segbufs
);
1512 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1513 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1517 WARN_ON(err
); /* do not happen */
1518 sci
->sc_stage
.flags
&= ~NILFS_CF_SUFREED
;
1521 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1525 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1526 sci
->sc_stage
= prev_stage
;
1528 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1535 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1536 struct buffer_head
*new_bh
)
1538 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1540 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1541 /* The caller must release old_bh */
1545 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1546 struct nilfs_segment_buffer
*segbuf
,
1549 struct inode
*inode
= NULL
;
1551 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1552 unsigned long nblocks
= 0, ndatablk
= 0;
1553 struct nilfs_sc_operations
*sc_op
= NULL
;
1554 struct nilfs_segsum_pointer ssp
;
1555 struct nilfs_finfo
*finfo
= NULL
;
1556 union nilfs_binfo binfo
;
1557 struct buffer_head
*bh
, *bh_org
;
1564 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1565 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1566 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1568 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1569 if (bh
== segbuf
->sb_super_root
)
1572 finfo
= nilfs_segctor_map_segsum_entry(
1573 sci
, &ssp
, sizeof(*finfo
));
1574 ino
= le64_to_cpu(finfo
->fi_ino
);
1575 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1576 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1578 inode
= bh
->b_page
->mapping
->host
;
1580 if (mode
== SC_LSEG_DSYNC
)
1581 sc_op
= &nilfs_sc_dsync_ops
;
1582 else if (ino
== NILFS_DAT_INO
)
1583 sc_op
= &nilfs_sc_dat_ops
;
1584 else /* file blocks */
1585 sc_op
= &nilfs_sc_file_ops
;
1589 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1592 nilfs_list_replace_buffer(bh_org
, bh
);
1598 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1600 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1603 if (--nblocks
== 0) {
1607 } else if (ndatablk
> 0)
1617 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1619 struct nilfs_segment_buffer
*segbuf
;
1622 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1623 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1626 nilfs_segbuf_fill_in_segsum(segbuf
);
1631 static void nilfs_begin_page_io(struct page
*page
)
1633 if (!page
|| PageWriteback(page
))
1634 /* For split b-tree node pages, this function may be called
1635 twice. We ignore the 2nd or later calls by this check. */
1639 clear_page_dirty_for_io(page
);
1640 set_page_writeback(page
);
1644 static void nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
)
1646 struct nilfs_segment_buffer
*segbuf
;
1647 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1649 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1650 struct buffer_head
*bh
;
1652 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1654 if (bh
->b_page
!= bd_page
) {
1657 clear_page_dirty_for_io(bd_page
);
1658 set_page_writeback(bd_page
);
1659 unlock_page(bd_page
);
1661 bd_page
= bh
->b_page
;
1665 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1667 set_buffer_async_write(bh
);
1668 if (bh
== segbuf
->sb_super_root
) {
1669 if (bh
->b_page
!= bd_page
) {
1671 clear_page_dirty_for_io(bd_page
);
1672 set_page_writeback(bd_page
);
1673 unlock_page(bd_page
);
1674 bd_page
= bh
->b_page
;
1678 if (bh
->b_page
!= fs_page
) {
1679 nilfs_begin_page_io(fs_page
);
1680 fs_page
= bh
->b_page
;
1686 clear_page_dirty_for_io(bd_page
);
1687 set_page_writeback(bd_page
);
1688 unlock_page(bd_page
);
1690 nilfs_begin_page_io(fs_page
);
1693 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1694 struct the_nilfs
*nilfs
)
1698 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1699 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1703 static void nilfs_end_page_io(struct page
*page
, int err
)
1708 if (buffer_nilfs_node(page_buffers(page
)) && !PageWriteback(page
)) {
1710 * For b-tree node pages, this function may be called twice
1711 * or more because they might be split in a segment.
1713 if (PageDirty(page
)) {
1715 * For pages holding split b-tree node buffers, dirty
1716 * flag on the buffers may be cleared discretely.
1717 * In that case, the page is once redirtied for
1718 * remaining buffers, and it must be cancelled if
1719 * all the buffers get cleaned later.
1722 if (nilfs_page_buffers_clean(page
))
1723 __nilfs_clear_page_dirty(page
);
1730 if (!nilfs_page_buffers_clean(page
))
1731 __set_page_dirty_nobuffers(page
);
1732 ClearPageError(page
);
1734 __set_page_dirty_nobuffers(page
);
1738 end_page_writeback(page
);
1741 static void nilfs_abort_logs(struct list_head
*logs
, int err
)
1743 struct nilfs_segment_buffer
*segbuf
;
1744 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1745 struct buffer_head
*bh
;
1747 if (list_empty(logs
))
1750 list_for_each_entry(segbuf
, logs
, sb_list
) {
1751 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1753 if (bh
->b_page
!= bd_page
) {
1755 end_page_writeback(bd_page
);
1756 bd_page
= bh
->b_page
;
1760 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1762 clear_buffer_async_write(bh
);
1763 if (bh
== segbuf
->sb_super_root
) {
1764 if (bh
->b_page
!= bd_page
) {
1765 end_page_writeback(bd_page
);
1766 bd_page
= bh
->b_page
;
1770 if (bh
->b_page
!= fs_page
) {
1771 nilfs_end_page_io(fs_page
, err
);
1772 fs_page
= bh
->b_page
;
1777 end_page_writeback(bd_page
);
1779 nilfs_end_page_io(fs_page
, err
);
1782 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1783 struct the_nilfs
*nilfs
, int err
)
1788 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1789 ret
= nilfs_wait_on_logs(&logs
);
1790 nilfs_abort_logs(&logs
, ret
? : err
);
1792 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1793 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1794 nilfs_free_incomplete_logs(&logs
, nilfs
);
1796 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1797 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1801 WARN_ON(ret
); /* do not happen */
1804 nilfs_destroy_logs(&logs
);
1807 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1808 struct nilfs_segment_buffer
*segbuf
)
1810 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1811 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1812 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1813 + segbuf
->sb_sum
.nblocks
;
1814 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1815 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1818 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1820 struct nilfs_segment_buffer
*segbuf
;
1821 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1822 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1823 int update_sr
= false;
1825 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1826 struct buffer_head
*bh
;
1828 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1830 set_buffer_uptodate(bh
);
1831 clear_buffer_dirty(bh
);
1832 if (bh
->b_page
!= bd_page
) {
1834 end_page_writeback(bd_page
);
1835 bd_page
= bh
->b_page
;
1839 * We assume that the buffers which belong to the same page
1840 * continue over the buffer list.
1841 * Under this assumption, the last BHs of pages is
1842 * identifiable by the discontinuity of bh->b_page
1843 * (page != fs_page).
1845 * For B-tree node blocks, however, this assumption is not
1846 * guaranteed. The cleanup code of B-tree node pages needs
1849 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1851 const unsigned long set_bits
= (1 << BH_Uptodate
);
1852 const unsigned long clear_bits
=
1853 (1 << BH_Dirty
| 1 << BH_Async_Write
|
1854 1 << BH_Delay
| 1 << BH_NILFS_Volatile
|
1855 1 << BH_NILFS_Redirected
);
1857 set_mask_bits(&bh
->b_state
, clear_bits
, set_bits
);
1858 if (bh
== segbuf
->sb_super_root
) {
1859 if (bh
->b_page
!= bd_page
) {
1860 end_page_writeback(bd_page
);
1861 bd_page
= bh
->b_page
;
1866 if (bh
->b_page
!= fs_page
) {
1867 nilfs_end_page_io(fs_page
, 0);
1868 fs_page
= bh
->b_page
;
1872 if (!nilfs_segbuf_simplex(segbuf
)) {
1873 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGBGN
) {
1874 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1875 sci
->sc_lseg_stime
= jiffies
;
1877 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGEND
)
1878 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1882 * Since pages may continue over multiple segment buffers,
1883 * end of the last page must be checked outside of the loop.
1886 end_page_writeback(bd_page
);
1888 nilfs_end_page_io(fs_page
, 0);
1890 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
1892 if (nilfs_doing_gc())
1893 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
1895 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
1897 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
1899 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1900 nilfs_set_next_segment(nilfs
, segbuf
);
1903 nilfs
->ns_flushed_device
= 0;
1904 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
1905 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
1907 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
1908 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
1909 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1910 nilfs_segctor_clear_metadata_dirty(sci
);
1912 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1915 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
1919 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
1921 nilfs_segctor_complete_write(sci
);
1922 nilfs_destroy_logs(&sci
->sc_write_logs
);
1927 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info
*sci
,
1928 struct the_nilfs
*nilfs
)
1930 struct nilfs_inode_info
*ii
, *n
;
1931 struct inode
*ifile
= sci
->sc_root
->ifile
;
1933 spin_lock(&nilfs
->ns_inode_lock
);
1935 list_for_each_entry_safe(ii
, n
, &nilfs
->ns_dirty_files
, i_dirty
) {
1937 struct buffer_head
*ibh
;
1940 spin_unlock(&nilfs
->ns_inode_lock
);
1941 err
= nilfs_ifile_get_inode_block(
1942 ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
1943 if (unlikely(err
)) {
1944 nilfs_warning(sci
->sc_super
, __func__
,
1945 "failed to get inode block.\n");
1948 spin_lock(&nilfs
->ns_inode_lock
);
1949 if (likely(!ii
->i_bh
))
1956 // Always redirty the buffer to avoid race condition
1957 mark_buffer_dirty(ii
->i_bh
);
1958 nilfs_mdt_mark_dirty(ifile
);
1960 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
1961 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
1962 list_move_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
1964 spin_unlock(&nilfs
->ns_inode_lock
);
1969 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info
*sci
,
1970 struct the_nilfs
*nilfs
)
1972 struct nilfs_inode_info
*ii
, *n
;
1973 int during_mount
= !(sci
->sc_super
->s_flags
& MS_ACTIVE
);
1974 int defer_iput
= false;
1976 spin_lock(&nilfs
->ns_inode_lock
);
1977 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
1978 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
1979 test_bit(NILFS_I_DIRTY
, &ii
->i_state
))
1982 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
1985 list_del_init(&ii
->i_dirty
);
1986 if (!ii
->vfs_inode
.i_nlink
|| during_mount
) {
1988 * Defer calling iput() to avoid deadlocks if
1989 * i_nlink == 0 or mount is not yet finished.
1991 list_add_tail(&ii
->i_dirty
, &sci
->sc_iput_queue
);
1994 spin_unlock(&nilfs
->ns_inode_lock
);
1995 iput(&ii
->vfs_inode
);
1996 spin_lock(&nilfs
->ns_inode_lock
);
1999 spin_unlock(&nilfs
->ns_inode_lock
);
2002 schedule_work(&sci
->sc_iput_work
);
2006 * Main procedure of segment constructor
2008 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2010 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2013 nilfs_sc_cstage_set(sci
, NILFS_ST_INIT
);
2014 sci
->sc_cno
= nilfs
->ns_cno
;
2016 err
= nilfs_segctor_collect_dirty_files(sci
, nilfs
);
2020 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
2021 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2023 if (nilfs_segctor_clean(sci
))
2027 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2029 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2033 /* Update time stamp */
2034 sci
->sc_seg_ctime
= get_seconds();
2036 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2040 /* Avoid empty segment */
2041 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
&&
2042 nilfs_segbuf_empty(sci
->sc_curseg
)) {
2043 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2047 err
= nilfs_segctor_assign(sci
, mode
);
2051 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2052 nilfs_segctor_fill_in_file_bmap(sci
);
2054 if (mode
== SC_LSEG_SR
&&
2055 nilfs_sc_cstage_get(sci
) >= NILFS_ST_CPFILE
) {
2056 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2058 goto failed_to_write
;
2060 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2062 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2064 /* Write partial segments */
2065 nilfs_segctor_prepare_write(sci
);
2067 nilfs_add_checksums_on_logs(&sci
->sc_segbufs
,
2068 nilfs
->ns_crc_seed
);
2070 err
= nilfs_segctor_write(sci
, nilfs
);
2072 goto failed_to_write
;
2074 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
||
2075 nilfs
->ns_blocksize_bits
!= PAGE_CACHE_SHIFT
) {
2077 * At this point, we avoid double buffering
2078 * for blocksize < pagesize because page dirty
2079 * flag is turned off during write and dirty
2080 * buffers are not properly collected for
2081 * pages crossing over segments.
2083 err
= nilfs_segctor_wait(sci
);
2085 goto failed_to_write
;
2087 } while (nilfs_sc_cstage_get(sci
) != NILFS_ST_DONE
);
2090 nilfs_segctor_drop_written_files(sci
, nilfs
);
2094 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2095 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2098 if (nilfs_doing_gc())
2099 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2100 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2105 * nilfs_segctor_start_timer - set timer of background write
2106 * @sci: nilfs_sc_info
2108 * If the timer has already been set, it ignores the new request.
2109 * This function MUST be called within a section locking the segment
2112 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2114 spin_lock(&sci
->sc_state_lock
);
2115 if (!(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2116 sci
->sc_timer
.expires
= jiffies
+ sci
->sc_interval
;
2117 add_timer(&sci
->sc_timer
);
2118 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2120 spin_unlock(&sci
->sc_state_lock
);
2123 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2125 spin_lock(&sci
->sc_state_lock
);
2126 if (!(sci
->sc_flush_request
& (1 << bn
))) {
2127 unsigned long prev_req
= sci
->sc_flush_request
;
2129 sci
->sc_flush_request
|= (1 << bn
);
2131 wake_up(&sci
->sc_wait_daemon
);
2133 spin_unlock(&sci
->sc_state_lock
);
2137 * nilfs_flush_segment - trigger a segment construction for resource control
2139 * @ino: inode number of the file to be flushed out.
2141 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2143 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2144 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2146 if (!sci
|| nilfs_doing_construction())
2148 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2149 /* assign bit 0 to data files */
2152 struct nilfs_segctor_wait_request
{
2159 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2161 struct nilfs_segctor_wait_request wait_req
;
2164 spin_lock(&sci
->sc_state_lock
);
2165 init_wait(&wait_req
.wq
);
2167 atomic_set(&wait_req
.done
, 0);
2168 wait_req
.seq
= ++sci
->sc_seq_request
;
2169 spin_unlock(&sci
->sc_state_lock
);
2171 init_waitqueue_entry(&wait_req
.wq
, current
);
2172 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2173 set_current_state(TASK_INTERRUPTIBLE
);
2174 wake_up(&sci
->sc_wait_daemon
);
2177 if (atomic_read(&wait_req
.done
)) {
2181 if (!signal_pending(current
)) {
2188 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2192 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2194 struct nilfs_segctor_wait_request
*wrq
, *n
;
2195 unsigned long flags
;
2197 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2198 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2200 if (!atomic_read(&wrq
->done
) &&
2201 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2203 atomic_set(&wrq
->done
, 1);
2205 if (atomic_read(&wrq
->done
)) {
2206 wrq
->wq
.func(&wrq
->wq
,
2207 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2211 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2215 * nilfs_construct_segment - construct a logical segment
2218 * Return Value: On success, 0 is retured. On errors, one of the following
2219 * negative error code is returned.
2221 * %-EROFS - Read only filesystem.
2225 * %-ENOSPC - No space left on device (only in a panic state).
2227 * %-ERESTARTSYS - Interrupted.
2229 * %-ENOMEM - Insufficient memory available.
2231 int nilfs_construct_segment(struct super_block
*sb
)
2233 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2234 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2235 struct nilfs_transaction_info
*ti
;
2241 /* A call inside transactions causes a deadlock. */
2242 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2244 err
= nilfs_segctor_sync(sci
);
2249 * nilfs_construct_dsync_segment - construct a data-only logical segment
2251 * @inode: inode whose data blocks should be written out
2252 * @start: start byte offset
2253 * @end: end byte offset (inclusive)
2255 * Return Value: On success, 0 is retured. On errors, one of the following
2256 * negative error code is returned.
2258 * %-EROFS - Read only filesystem.
2262 * %-ENOSPC - No space left on device (only in a panic state).
2264 * %-ERESTARTSYS - Interrupted.
2266 * %-ENOMEM - Insufficient memory available.
2268 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2269 loff_t start
, loff_t end
)
2271 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2272 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2273 struct nilfs_inode_info
*ii
;
2274 struct nilfs_transaction_info ti
;
2280 nilfs_transaction_lock(sb
, &ti
, 0);
2282 ii
= NILFS_I(inode
);
2283 if (test_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
) ||
2284 nilfs_test_opt(nilfs
, STRICT_ORDER
) ||
2285 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2286 nilfs_discontinued(nilfs
)) {
2287 nilfs_transaction_unlock(sb
);
2288 err
= nilfs_segctor_sync(sci
);
2292 spin_lock(&nilfs
->ns_inode_lock
);
2293 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2294 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2295 spin_unlock(&nilfs
->ns_inode_lock
);
2296 nilfs_transaction_unlock(sb
);
2299 spin_unlock(&nilfs
->ns_inode_lock
);
2300 sci
->sc_dsync_inode
= ii
;
2301 sci
->sc_dsync_start
= start
;
2302 sci
->sc_dsync_end
= end
;
2304 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2306 nilfs
->ns_flushed_device
= 0;
2308 nilfs_transaction_unlock(sb
);
2312 #define FLUSH_FILE_BIT (0x1) /* data file only */
2313 #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
2316 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2317 * @sci: segment constructor object
2319 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2321 spin_lock(&sci
->sc_state_lock
);
2322 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2323 spin_unlock(&sci
->sc_state_lock
);
2324 del_timer_sync(&sci
->sc_timer
);
2328 * nilfs_segctor_notify - notify the result of request to caller threads
2329 * @sci: segment constructor object
2330 * @mode: mode of log forming
2331 * @err: error code to be notified
2333 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2335 /* Clear requests (even when the construction failed) */
2336 spin_lock(&sci
->sc_state_lock
);
2338 if (mode
== SC_LSEG_SR
) {
2339 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2340 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2341 nilfs_segctor_wakeup(sci
, err
);
2342 sci
->sc_flush_request
= 0;
2344 if (mode
== SC_FLUSH_FILE
)
2345 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2346 else if (mode
== SC_FLUSH_DAT
)
2347 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2349 /* re-enable timer if checkpoint creation was not done */
2350 if ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2351 time_before(jiffies
, sci
->sc_timer
.expires
))
2352 add_timer(&sci
->sc_timer
);
2354 spin_unlock(&sci
->sc_state_lock
);
2358 * nilfs_segctor_construct - form logs and write them to disk
2359 * @sci: segment constructor object
2360 * @mode: mode of log forming
2362 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2364 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2365 struct nilfs_super_block
**sbp
;
2368 nilfs_segctor_accept(sci
);
2370 if (nilfs_discontinued(nilfs
))
2372 if (!nilfs_segctor_confirm(sci
))
2373 err
= nilfs_segctor_do_construct(sci
, mode
);
2376 if (mode
!= SC_FLUSH_DAT
)
2377 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2378 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2379 nilfs_discontinued(nilfs
)) {
2380 down_write(&nilfs
->ns_sem
);
2382 sbp
= nilfs_prepare_super(sci
->sc_super
,
2383 nilfs_sb_will_flip(nilfs
));
2385 nilfs_set_log_cursor(sbp
[0], nilfs
);
2386 err
= nilfs_commit_super(sci
->sc_super
,
2389 up_write(&nilfs
->ns_sem
);
2393 nilfs_segctor_notify(sci
, mode
, err
);
2397 static void nilfs_construction_timeout(unsigned long data
)
2399 struct task_struct
*p
= (struct task_struct
*)data
;
2404 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2406 struct nilfs_inode_info
*ii
, *n
;
2408 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2409 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2411 list_del_init(&ii
->i_dirty
);
2412 truncate_inode_pages(&ii
->vfs_inode
.i_data
, 0);
2413 nilfs_btnode_cache_clear(&ii
->i_btnode_cache
);
2414 iput(&ii
->vfs_inode
);
2418 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2421 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2422 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2423 struct nilfs_transaction_info ti
;
2429 nilfs_transaction_lock(sb
, &ti
, 1);
2431 err
= nilfs_mdt_save_to_shadow_map(nilfs
->ns_dat
);
2435 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2436 if (unlikely(err
)) {
2437 nilfs_mdt_restore_from_shadow_map(nilfs
->ns_dat
);
2441 sci
->sc_freesegs
= kbufs
[4];
2442 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2443 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2446 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2447 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2452 nilfs_warning(sb
, __func__
,
2453 "segment construction failed. (err=%d)", err
);
2454 set_current_state(TASK_INTERRUPTIBLE
);
2455 schedule_timeout(sci
->sc_interval
);
2457 if (nilfs_test_opt(nilfs
, DISCARD
)) {
2458 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2462 "NILFS warning: error %d on discard request, "
2463 "turning discards off for the device\n", ret
);
2464 nilfs_clear_opt(nilfs
, DISCARD
);
2469 sci
->sc_freesegs
= NULL
;
2470 sci
->sc_nfreesegs
= 0;
2471 nilfs_mdt_clear_shadow_map(nilfs
->ns_dat
);
2472 nilfs_transaction_unlock(sb
);
2476 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2478 struct nilfs_transaction_info ti
;
2480 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2481 nilfs_segctor_construct(sci
, mode
);
2484 * Unclosed segment should be retried. We do this using sc_timer.
2485 * Timeout of sc_timer will invoke complete construction which leads
2486 * to close the current logical segment.
2488 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2489 nilfs_segctor_start_timer(sci
);
2491 nilfs_transaction_unlock(sci
->sc_super
);
2494 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2498 spin_lock(&sci
->sc_state_lock
);
2499 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2500 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2501 spin_unlock(&sci
->sc_state_lock
);
2504 nilfs_segctor_do_construct(sci
, mode
);
2506 spin_lock(&sci
->sc_state_lock
);
2507 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2508 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2509 spin_unlock(&sci
->sc_state_lock
);
2511 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2514 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2516 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2517 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2518 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2519 return SC_FLUSH_FILE
;
2520 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2521 return SC_FLUSH_DAT
;
2527 * nilfs_segctor_thread - main loop of the segment constructor thread.
2528 * @arg: pointer to a struct nilfs_sc_info.
2530 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2531 * to execute segment constructions.
2533 static int nilfs_segctor_thread(void *arg
)
2535 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2536 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2539 sci
->sc_timer
.data
= (unsigned long)current
;
2540 sci
->sc_timer
.function
= nilfs_construction_timeout
;
2543 sci
->sc_task
= current
;
2544 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2546 "segctord starting. Construction interval = %lu seconds, "
2547 "CP frequency < %lu seconds\n",
2548 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2550 spin_lock(&sci
->sc_state_lock
);
2555 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2558 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2560 else if (!sci
->sc_flush_request
)
2563 mode
= nilfs_segctor_flush_mode(sci
);
2565 spin_unlock(&sci
->sc_state_lock
);
2566 nilfs_segctor_thread_construct(sci
, mode
);
2567 spin_lock(&sci
->sc_state_lock
);
2572 if (freezing(current
)) {
2573 spin_unlock(&sci
->sc_state_lock
);
2575 spin_lock(&sci
->sc_state_lock
);
2578 int should_sleep
= 1;
2580 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2581 TASK_INTERRUPTIBLE
);
2583 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2585 else if (sci
->sc_flush_request
)
2587 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2588 should_sleep
= time_before(jiffies
,
2589 sci
->sc_timer
.expires
);
2592 spin_unlock(&sci
->sc_state_lock
);
2594 spin_lock(&sci
->sc_state_lock
);
2596 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2597 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2598 time_after_eq(jiffies
, sci
->sc_timer
.expires
));
2600 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2601 set_nilfs_discontinued(nilfs
);
2606 spin_unlock(&sci
->sc_state_lock
);
2609 sci
->sc_task
= NULL
;
2610 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2614 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2616 struct task_struct
*t
;
2618 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2620 int err
= PTR_ERR(t
);
2622 printk(KERN_ERR
"NILFS: error %d creating segctord thread\n",
2626 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2630 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2631 __acquires(&sci
->sc_state_lock
)
2632 __releases(&sci
->sc_state_lock
)
2634 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2636 while (sci
->sc_task
) {
2637 wake_up(&sci
->sc_wait_daemon
);
2638 spin_unlock(&sci
->sc_state_lock
);
2639 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2640 spin_lock(&sci
->sc_state_lock
);
2645 * Setup & clean-up functions
2647 static struct nilfs_sc_info
*nilfs_segctor_new(struct super_block
*sb
,
2648 struct nilfs_root
*root
)
2650 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2651 struct nilfs_sc_info
*sci
;
2653 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2659 nilfs_get_root(root
);
2660 sci
->sc_root
= root
;
2662 init_waitqueue_head(&sci
->sc_wait_request
);
2663 init_waitqueue_head(&sci
->sc_wait_daemon
);
2664 init_waitqueue_head(&sci
->sc_wait_task
);
2665 spin_lock_init(&sci
->sc_state_lock
);
2666 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2667 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2668 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2669 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2670 INIT_LIST_HEAD(&sci
->sc_iput_queue
);
2671 INIT_WORK(&sci
->sc_iput_work
, nilfs_iput_work_func
);
2672 init_timer(&sci
->sc_timer
);
2674 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2675 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2676 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2678 if (nilfs
->ns_interval
)
2679 sci
->sc_interval
= HZ
* nilfs
->ns_interval
;
2680 if (nilfs
->ns_watermark
)
2681 sci
->sc_watermark
= nilfs
->ns_watermark
;
2685 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2687 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2689 /* The segctord thread was stopped and its timer was removed.
2690 But some tasks remain. */
2692 struct nilfs_transaction_info ti
;
2694 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2695 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2696 nilfs_transaction_unlock(sci
->sc_super
);
2698 flush_work(&sci
->sc_iput_work
);
2700 } while (ret
&& retrycount
-- > 0);
2704 * nilfs_segctor_destroy - destroy the segment constructor.
2705 * @sci: nilfs_sc_info
2707 * nilfs_segctor_destroy() kills the segctord thread and frees
2708 * the nilfs_sc_info struct.
2709 * Caller must hold the segment semaphore.
2711 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2713 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2716 up_write(&nilfs
->ns_segctor_sem
);
2718 spin_lock(&sci
->sc_state_lock
);
2719 nilfs_segctor_kill_thread(sci
);
2720 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2721 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2722 spin_unlock(&sci
->sc_state_lock
);
2724 if (flush_work(&sci
->sc_iput_work
))
2727 if (flag
|| !nilfs_segctor_confirm(sci
))
2728 nilfs_segctor_write_out(sci
);
2730 if (!list_empty(&sci
->sc_dirty_files
)) {
2731 nilfs_warning(sci
->sc_super
, __func__
,
2732 "dirty file(s) after the final construction\n");
2733 nilfs_dispose_list(nilfs
, &sci
->sc_dirty_files
, 1);
2736 if (!list_empty(&sci
->sc_iput_queue
)) {
2737 nilfs_warning(sci
->sc_super
, __func__
,
2738 "iput queue is not empty\n");
2739 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 1);
2742 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2743 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2745 nilfs_put_root(sci
->sc_root
);
2747 down_write(&nilfs
->ns_segctor_sem
);
2749 del_timer_sync(&sci
->sc_timer
);
2754 * nilfs_attach_log_writer - attach log writer
2755 * @sb: super block instance
2756 * @root: root object of the current filesystem tree
2758 * This allocates a log writer object, initializes it, and starts the
2761 * Return Value: On success, 0 is returned. On error, one of the following
2762 * negative error code is returned.
2764 * %-ENOMEM - Insufficient memory available.
2766 int nilfs_attach_log_writer(struct super_block
*sb
, struct nilfs_root
*root
)
2768 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2771 if (nilfs
->ns_writer
) {
2773 * This happens if the filesystem was remounted
2774 * read/write after nilfs_error degenerated it into a
2777 nilfs_detach_log_writer(sb
);
2780 nilfs
->ns_writer
= nilfs_segctor_new(sb
, root
);
2781 if (!nilfs
->ns_writer
)
2784 inode_attach_wb(nilfs
->ns_bdev
->bd_inode
, NULL
);
2786 err
= nilfs_segctor_start_thread(nilfs
->ns_writer
);
2788 kfree(nilfs
->ns_writer
);
2789 nilfs
->ns_writer
= NULL
;
2795 * nilfs_detach_log_writer - destroy log writer
2796 * @sb: super block instance
2798 * This kills log writer daemon, frees the log writer object, and
2799 * destroys list of dirty files.
2801 void nilfs_detach_log_writer(struct super_block
*sb
)
2803 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2804 LIST_HEAD(garbage_list
);
2806 down_write(&nilfs
->ns_segctor_sem
);
2807 if (nilfs
->ns_writer
) {
2808 nilfs_segctor_destroy(nilfs
->ns_writer
);
2809 nilfs
->ns_writer
= NULL
;
2812 /* Force to free the list of dirty files */
2813 spin_lock(&nilfs
->ns_inode_lock
);
2814 if (!list_empty(&nilfs
->ns_dirty_files
)) {
2815 list_splice_init(&nilfs
->ns_dirty_files
, &garbage_list
);
2816 nilfs_warning(sb
, __func__
,
2817 "Hit dirty file after stopped log writer\n");
2819 spin_unlock(&nilfs
->ns_inode_lock
);
2820 up_write(&nilfs
->ns_segctor_sem
);
2822 nilfs_dispose_list(nilfs
, &garbage_list
, 1);