HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / nilfs2 / the_nilfs.c
blob37e49cb2ac4c4a61d61357272a2ee168165bf793
1 /*
2 * the_nilfs.c - the_nilfs shared structure.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
24 #include <linux/buffer_head.h>
25 #include <linux/slab.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/random.h>
29 #include <linux/crc32.h>
30 #include "nilfs.h"
31 #include "segment.h"
32 #include "alloc.h"
33 #include "cpfile.h"
34 #include "sufile.h"
35 #include "dat.h"
36 #include "segbuf.h"
39 static int nilfs_valid_sb(struct nilfs_super_block *sbp);
41 void nilfs_set_last_segment(struct the_nilfs *nilfs,
42 sector_t start_blocknr, u64 seq, __u64 cno)
44 spin_lock(&nilfs->ns_last_segment_lock);
45 nilfs->ns_last_pseg = start_blocknr;
46 nilfs->ns_last_seq = seq;
47 nilfs->ns_last_cno = cno;
49 if (!nilfs_sb_dirty(nilfs)) {
50 if (nilfs->ns_prev_seq == nilfs->ns_last_seq)
51 goto stay_cursor;
53 set_nilfs_sb_dirty(nilfs);
55 nilfs->ns_prev_seq = nilfs->ns_last_seq;
57 stay_cursor:
58 spin_unlock(&nilfs->ns_last_segment_lock);
61 /**
62 * alloc_nilfs - allocate a nilfs object
63 * @bdev: block device to which the_nilfs is related
65 * Return Value: On success, pointer to the_nilfs is returned.
66 * On error, NULL is returned.
68 struct the_nilfs *alloc_nilfs(struct block_device *bdev)
70 struct the_nilfs *nilfs;
72 nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL);
73 if (!nilfs)
74 return NULL;
76 nilfs->ns_bdev = bdev;
77 atomic_set(&nilfs->ns_ndirtyblks, 0);
78 init_rwsem(&nilfs->ns_sem);
79 mutex_init(&nilfs->ns_snapshot_mount_mutex);
80 INIT_LIST_HEAD(&nilfs->ns_dirty_files);
81 INIT_LIST_HEAD(&nilfs->ns_gc_inodes);
82 spin_lock_init(&nilfs->ns_inode_lock);
83 spin_lock_init(&nilfs->ns_next_gen_lock);
84 spin_lock_init(&nilfs->ns_last_segment_lock);
85 nilfs->ns_cptree = RB_ROOT;
86 spin_lock_init(&nilfs->ns_cptree_lock);
87 init_rwsem(&nilfs->ns_segctor_sem);
88 nilfs->ns_sb_update_freq = NILFS_SB_FREQ;
90 return nilfs;
93 /**
94 * destroy_nilfs - destroy nilfs object
95 * @nilfs: nilfs object to be released
97 void destroy_nilfs(struct the_nilfs *nilfs)
99 might_sleep();
100 if (nilfs_init(nilfs)) {
101 nilfs_sysfs_delete_device_group(nilfs);
102 brelse(nilfs->ns_sbh[0]);
103 brelse(nilfs->ns_sbh[1]);
105 kfree(nilfs);
108 static int nilfs_load_super_root(struct the_nilfs *nilfs,
109 struct super_block *sb, sector_t sr_block)
111 struct buffer_head *bh_sr;
112 struct nilfs_super_root *raw_sr;
113 struct nilfs_super_block **sbp = nilfs->ns_sbp;
114 struct nilfs_inode *rawi;
115 unsigned dat_entry_size, segment_usage_size, checkpoint_size;
116 unsigned inode_size;
117 int err;
119 err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1);
120 if (unlikely(err))
121 return err;
123 down_read(&nilfs->ns_sem);
124 dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size);
125 checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size);
126 segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size);
127 up_read(&nilfs->ns_sem);
129 inode_size = nilfs->ns_inode_size;
131 rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size);
132 err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat);
133 if (err)
134 goto failed;
136 rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size);
137 err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile);
138 if (err)
139 goto failed_dat;
141 rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size);
142 err = nilfs_sufile_read(sb, segment_usage_size, rawi,
143 &nilfs->ns_sufile);
144 if (err)
145 goto failed_cpfile;
147 raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
148 nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime);
150 failed:
151 brelse(bh_sr);
152 return err;
154 failed_cpfile:
155 iput(nilfs->ns_cpfile);
157 failed_dat:
158 iput(nilfs->ns_dat);
159 goto failed;
162 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri)
164 memset(ri, 0, sizeof(*ri));
165 INIT_LIST_HEAD(&ri->ri_used_segments);
168 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri)
170 nilfs_dispose_segment_list(&ri->ri_used_segments);
174 * nilfs_store_log_cursor - load log cursor from a super block
175 * @nilfs: nilfs object
176 * @sbp: buffer storing super block to be read
178 * nilfs_store_log_cursor() reads the last position of the log
179 * containing a super root from a given super block, and initializes
180 * relevant information on the nilfs object preparatory for log
181 * scanning and recovery.
183 static int nilfs_store_log_cursor(struct the_nilfs *nilfs,
184 struct nilfs_super_block *sbp)
186 int ret = 0;
188 nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg);
189 nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno);
190 nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq);
192 nilfs->ns_prev_seq = nilfs->ns_last_seq;
193 nilfs->ns_seg_seq = nilfs->ns_last_seq;
194 nilfs->ns_segnum =
195 nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg);
196 nilfs->ns_cno = nilfs->ns_last_cno + 1;
197 if (nilfs->ns_segnum >= nilfs->ns_nsegments) {
198 printk(KERN_ERR "NILFS invalid last segment number.\n");
199 ret = -EINVAL;
201 return ret;
205 * load_nilfs - load and recover the nilfs
206 * @nilfs: the_nilfs structure to be released
207 * @sb: super block isntance used to recover past segment
209 * load_nilfs() searches and load the latest super root,
210 * attaches the last segment, and does recovery if needed.
211 * The caller must call this exclusively for simultaneous mounts.
213 int load_nilfs(struct the_nilfs *nilfs, struct super_block *sb)
215 struct nilfs_recovery_info ri;
216 unsigned int s_flags = sb->s_flags;
217 int really_read_only = bdev_read_only(nilfs->ns_bdev);
218 int valid_fs = nilfs_valid_fs(nilfs);
219 int err;
221 if (!valid_fs) {
222 printk(KERN_WARNING "NILFS warning: mounting unchecked fs\n");
223 if (s_flags & MS_RDONLY) {
224 printk(KERN_INFO "NILFS: INFO: recovery "
225 "required for readonly filesystem.\n");
226 printk(KERN_INFO "NILFS: write access will "
227 "be enabled during recovery.\n");
231 nilfs_init_recovery_info(&ri);
233 err = nilfs_search_super_root(nilfs, &ri);
234 if (unlikely(err)) {
235 struct nilfs_super_block **sbp = nilfs->ns_sbp;
236 int blocksize;
238 if (err != -EINVAL)
239 goto scan_error;
241 if (!nilfs_valid_sb(sbp[1])) {
242 printk(KERN_WARNING
243 "NILFS warning: unable to fall back to spare"
244 "super block\n");
245 goto scan_error;
247 printk(KERN_INFO
248 "NILFS: try rollback from an earlier position\n");
251 * restore super block with its spare and reconfigure
252 * relevant states of the nilfs object.
254 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
255 nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed);
256 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
258 /* verify consistency between two super blocks */
259 blocksize = BLOCK_SIZE << le32_to_cpu(sbp[0]->s_log_block_size);
260 if (blocksize != nilfs->ns_blocksize) {
261 printk(KERN_WARNING
262 "NILFS warning: blocksize differs between "
263 "two super blocks (%d != %d)\n",
264 blocksize, nilfs->ns_blocksize);
265 goto scan_error;
268 err = nilfs_store_log_cursor(nilfs, sbp[0]);
269 if (err)
270 goto scan_error;
272 /* drop clean flag to allow roll-forward and recovery */
273 nilfs->ns_mount_state &= ~NILFS_VALID_FS;
274 valid_fs = 0;
276 err = nilfs_search_super_root(nilfs, &ri);
277 if (err)
278 goto scan_error;
281 err = nilfs_load_super_root(nilfs, sb, ri.ri_super_root);
282 if (unlikely(err)) {
283 printk(KERN_ERR "NILFS: error loading super root.\n");
284 goto failed;
287 if (valid_fs)
288 goto skip_recovery;
290 if (s_flags & MS_RDONLY) {
291 __u64 features;
293 if (nilfs_test_opt(nilfs, NORECOVERY)) {
294 printk(KERN_INFO "NILFS: norecovery option specified. "
295 "skipping roll-forward recovery\n");
296 goto skip_recovery;
298 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
299 ~NILFS_FEATURE_COMPAT_RO_SUPP;
300 if (features) {
301 printk(KERN_ERR "NILFS: couldn't proceed with "
302 "recovery because of unsupported optional "
303 "features (%llx)\n",
304 (unsigned long long)features);
305 err = -EROFS;
306 goto failed_unload;
308 if (really_read_only) {
309 printk(KERN_ERR "NILFS: write access "
310 "unavailable, cannot proceed.\n");
311 err = -EROFS;
312 goto failed_unload;
314 sb->s_flags &= ~MS_RDONLY;
315 } else if (nilfs_test_opt(nilfs, NORECOVERY)) {
316 printk(KERN_ERR "NILFS: recovery cancelled because norecovery "
317 "option was specified for a read/write mount\n");
318 err = -EINVAL;
319 goto failed_unload;
322 err = nilfs_salvage_orphan_logs(nilfs, sb, &ri);
323 if (err)
324 goto failed_unload;
326 down_write(&nilfs->ns_sem);
327 nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */
328 err = nilfs_cleanup_super(sb);
329 up_write(&nilfs->ns_sem);
331 if (err) {
332 printk(KERN_ERR "NILFS: failed to update super block. "
333 "recovery unfinished.\n");
334 goto failed_unload;
336 printk(KERN_INFO "NILFS: recovery complete.\n");
338 skip_recovery:
339 nilfs_clear_recovery_info(&ri);
340 sb->s_flags = s_flags;
341 return 0;
343 scan_error:
344 printk(KERN_ERR "NILFS: error searching super root.\n");
345 goto failed;
347 failed_unload:
348 iput(nilfs->ns_cpfile);
349 iput(nilfs->ns_sufile);
350 iput(nilfs->ns_dat);
352 failed:
353 nilfs_clear_recovery_info(&ri);
354 sb->s_flags = s_flags;
355 return err;
358 static unsigned long long nilfs_max_size(unsigned int blkbits)
360 unsigned int max_bits;
361 unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */
363 max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */
364 if (max_bits < 64)
365 res = min_t(unsigned long long, res, (1ULL << max_bits) - 1);
366 return res;
370 * nilfs_nrsvsegs - calculate the number of reserved segments
371 * @nilfs: nilfs object
372 * @nsegs: total number of segments
374 unsigned long nilfs_nrsvsegs(struct the_nilfs *nilfs, unsigned long nsegs)
376 return max_t(unsigned long, NILFS_MIN_NRSVSEGS,
377 DIV_ROUND_UP(nsegs * nilfs->ns_r_segments_percentage,
378 100));
381 void nilfs_set_nsegments(struct the_nilfs *nilfs, unsigned long nsegs)
383 nilfs->ns_nsegments = nsegs;
384 nilfs->ns_nrsvsegs = nilfs_nrsvsegs(nilfs, nsegs);
387 static int nilfs_store_disk_layout(struct the_nilfs *nilfs,
388 struct nilfs_super_block *sbp)
390 if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) {
391 printk(KERN_ERR "NILFS: unsupported revision "
392 "(superblock rev.=%d.%d, current rev.=%d.%d). "
393 "Please check the version of mkfs.nilfs.\n",
394 le32_to_cpu(sbp->s_rev_level),
395 le16_to_cpu(sbp->s_minor_rev_level),
396 NILFS_CURRENT_REV, NILFS_MINOR_REV);
397 return -EINVAL;
399 nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes);
400 if (nilfs->ns_sbsize > BLOCK_SIZE)
401 return -EINVAL;
403 nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size);
404 if (nilfs->ns_inode_size > nilfs->ns_blocksize) {
405 printk(KERN_ERR "NILFS: too large inode size: %d bytes.\n",
406 nilfs->ns_inode_size);
407 return -EINVAL;
408 } else if (nilfs->ns_inode_size < NILFS_MIN_INODE_SIZE) {
409 printk(KERN_ERR "NILFS: too small inode size: %d bytes.\n",
410 nilfs->ns_inode_size);
411 return -EINVAL;
414 nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino);
416 nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment);
417 if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) {
418 printk(KERN_ERR "NILFS: too short segment.\n");
419 return -EINVAL;
422 nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block);
423 nilfs->ns_r_segments_percentage =
424 le32_to_cpu(sbp->s_r_segments_percentage);
425 if (nilfs->ns_r_segments_percentage < 1 ||
426 nilfs->ns_r_segments_percentage > 99) {
427 printk(KERN_ERR "NILFS: invalid reserved segments percentage.\n");
428 return -EINVAL;
431 nilfs_set_nsegments(nilfs, le64_to_cpu(sbp->s_nsegments));
432 nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed);
433 return 0;
436 static int nilfs_valid_sb(struct nilfs_super_block *sbp)
438 static unsigned char sum[4];
439 const int sumoff = offsetof(struct nilfs_super_block, s_sum);
440 size_t bytes;
441 u32 crc;
443 if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC)
444 return 0;
445 bytes = le16_to_cpu(sbp->s_bytes);
446 if (bytes < sumoff + 4 || bytes > BLOCK_SIZE)
447 return 0;
448 crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp,
449 sumoff);
450 crc = crc32_le(crc, sum, 4);
451 crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4,
452 bytes - sumoff - 4);
453 return crc == le32_to_cpu(sbp->s_sum);
456 static int nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset)
458 return offset < ((le64_to_cpu(sbp->s_nsegments) *
459 le32_to_cpu(sbp->s_blocks_per_segment)) <<
460 (le32_to_cpu(sbp->s_log_block_size) + 10));
463 static void nilfs_release_super_block(struct the_nilfs *nilfs)
465 int i;
467 for (i = 0; i < 2; i++) {
468 if (nilfs->ns_sbp[i]) {
469 brelse(nilfs->ns_sbh[i]);
470 nilfs->ns_sbh[i] = NULL;
471 nilfs->ns_sbp[i] = NULL;
476 void nilfs_fall_back_super_block(struct the_nilfs *nilfs)
478 brelse(nilfs->ns_sbh[0]);
479 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
480 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
481 nilfs->ns_sbh[1] = NULL;
482 nilfs->ns_sbp[1] = NULL;
485 void nilfs_swap_super_block(struct the_nilfs *nilfs)
487 struct buffer_head *tsbh = nilfs->ns_sbh[0];
488 struct nilfs_super_block *tsbp = nilfs->ns_sbp[0];
490 nilfs->ns_sbh[0] = nilfs->ns_sbh[1];
491 nilfs->ns_sbp[0] = nilfs->ns_sbp[1];
492 nilfs->ns_sbh[1] = tsbh;
493 nilfs->ns_sbp[1] = tsbp;
496 static int nilfs_load_super_block(struct the_nilfs *nilfs,
497 struct super_block *sb, int blocksize,
498 struct nilfs_super_block **sbpp)
500 struct nilfs_super_block **sbp = nilfs->ns_sbp;
501 struct buffer_head **sbh = nilfs->ns_sbh;
502 u64 sb2off = NILFS_SB2_OFFSET_BYTES(nilfs->ns_bdev->bd_inode->i_size);
503 int valid[2], swp = 0;
505 sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize,
506 &sbh[0]);
507 sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]);
509 if (!sbp[0]) {
510 if (!sbp[1]) {
511 printk(KERN_ERR "NILFS: unable to read superblock\n");
512 return -EIO;
514 printk(KERN_WARNING
515 "NILFS warning: unable to read primary superblock "
516 "(blocksize = %d)\n", blocksize);
517 } else if (!sbp[1]) {
518 printk(KERN_WARNING
519 "NILFS warning: unable to read secondary superblock "
520 "(blocksize = %d)\n", blocksize);
524 * Compare two super blocks and set 1 in swp if the secondary
525 * super block is valid and newer. Otherwise, set 0 in swp.
527 valid[0] = nilfs_valid_sb(sbp[0]);
528 valid[1] = nilfs_valid_sb(sbp[1]);
529 swp = valid[1] && (!valid[0] ||
530 le64_to_cpu(sbp[1]->s_last_cno) >
531 le64_to_cpu(sbp[0]->s_last_cno));
533 if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) {
534 brelse(sbh[1]);
535 sbh[1] = NULL;
536 sbp[1] = NULL;
537 valid[1] = 0;
538 swp = 0;
540 if (!valid[swp]) {
541 nilfs_release_super_block(nilfs);
542 printk(KERN_ERR "NILFS: Can't find nilfs on dev %s.\n",
543 sb->s_id);
544 return -EINVAL;
547 if (!valid[!swp])
548 printk(KERN_WARNING "NILFS warning: broken superblock. "
549 "using spare superblock (blocksize = %d).\n", blocksize);
550 if (swp)
551 nilfs_swap_super_block(nilfs);
553 nilfs->ns_sbwcount = 0;
554 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime);
555 nilfs->ns_prot_seq = le64_to_cpu(sbp[valid[1] & !swp]->s_last_seq);
556 *sbpp = sbp[0];
557 return 0;
561 * init_nilfs - initialize a NILFS instance.
562 * @nilfs: the_nilfs structure
563 * @sb: super block
564 * @data: mount options
566 * init_nilfs() performs common initialization per block device (e.g.
567 * reading the super block, getting disk layout information, initializing
568 * shared fields in the_nilfs).
570 * Return Value: On success, 0 is returned. On error, a negative error
571 * code is returned.
573 int init_nilfs(struct the_nilfs *nilfs, struct super_block *sb, char *data)
575 struct nilfs_super_block *sbp;
576 int blocksize;
577 int err;
579 down_write(&nilfs->ns_sem);
581 blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE);
582 if (!blocksize) {
583 printk(KERN_ERR "NILFS: unable to set blocksize\n");
584 err = -EINVAL;
585 goto out;
587 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
588 if (err)
589 goto out;
591 err = nilfs_store_magic_and_option(sb, sbp, data);
592 if (err)
593 goto failed_sbh;
595 err = nilfs_check_feature_compatibility(sb, sbp);
596 if (err)
597 goto failed_sbh;
599 blocksize = BLOCK_SIZE << le32_to_cpu(sbp->s_log_block_size);
600 if (blocksize < NILFS_MIN_BLOCK_SIZE ||
601 blocksize > NILFS_MAX_BLOCK_SIZE) {
602 printk(KERN_ERR "NILFS: couldn't mount because of unsupported "
603 "filesystem blocksize %d\n", blocksize);
604 err = -EINVAL;
605 goto failed_sbh;
607 if (sb->s_blocksize != blocksize) {
608 int hw_blocksize = bdev_logical_block_size(sb->s_bdev);
610 if (blocksize < hw_blocksize) {
611 printk(KERN_ERR
612 "NILFS: blocksize %d too small for device "
613 "(sector-size = %d).\n",
614 blocksize, hw_blocksize);
615 err = -EINVAL;
616 goto failed_sbh;
618 nilfs_release_super_block(nilfs);
619 sb_set_blocksize(sb, blocksize);
621 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp);
622 if (err)
623 goto out;
624 /* not failed_sbh; sbh is released automatically
625 when reloading fails. */
627 nilfs->ns_blocksize_bits = sb->s_blocksize_bits;
628 nilfs->ns_blocksize = blocksize;
630 get_random_bytes(&nilfs->ns_next_generation,
631 sizeof(nilfs->ns_next_generation));
633 err = nilfs_store_disk_layout(nilfs, sbp);
634 if (err)
635 goto failed_sbh;
637 sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits);
639 nilfs->ns_mount_state = le16_to_cpu(sbp->s_state);
641 err = nilfs_store_log_cursor(nilfs, sbp);
642 if (err)
643 goto failed_sbh;
645 err = nilfs_sysfs_create_device_group(sb);
646 if (err)
647 goto failed_sbh;
649 set_nilfs_init(nilfs);
650 err = 0;
651 out:
652 up_write(&nilfs->ns_sem);
653 return err;
655 failed_sbh:
656 nilfs_release_super_block(nilfs);
657 goto out;
660 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump,
661 size_t nsegs)
663 sector_t seg_start, seg_end;
664 sector_t start = 0, nblocks = 0;
665 unsigned int sects_per_block;
666 __u64 *sn;
667 int ret = 0;
669 sects_per_block = (1 << nilfs->ns_blocksize_bits) /
670 bdev_logical_block_size(nilfs->ns_bdev);
671 for (sn = segnump; sn < segnump + nsegs; sn++) {
672 nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end);
674 if (!nblocks) {
675 start = seg_start;
676 nblocks = seg_end - seg_start + 1;
677 } else if (start + nblocks == seg_start) {
678 nblocks += seg_end - seg_start + 1;
679 } else {
680 ret = blkdev_issue_discard(nilfs->ns_bdev,
681 start * sects_per_block,
682 nblocks * sects_per_block,
683 GFP_NOFS, 0);
684 if (ret < 0)
685 return ret;
686 nblocks = 0;
689 if (nblocks)
690 ret = blkdev_issue_discard(nilfs->ns_bdev,
691 start * sects_per_block,
692 nblocks * sects_per_block,
693 GFP_NOFS, 0);
694 return ret;
697 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks)
699 unsigned long ncleansegs;
701 down_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
702 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
703 up_read(&NILFS_MDT(nilfs->ns_dat)->mi_sem);
704 *nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment;
705 return 0;
708 int nilfs_near_disk_full(struct the_nilfs *nilfs)
710 unsigned long ncleansegs, nincsegs;
712 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile);
713 nincsegs = atomic_read(&nilfs->ns_ndirtyblks) /
714 nilfs->ns_blocks_per_segment + 1;
716 return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs;
719 struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno)
721 struct rb_node *n;
722 struct nilfs_root *root;
724 spin_lock(&nilfs->ns_cptree_lock);
725 n = nilfs->ns_cptree.rb_node;
726 while (n) {
727 root = rb_entry(n, struct nilfs_root, rb_node);
729 if (cno < root->cno) {
730 n = n->rb_left;
731 } else if (cno > root->cno) {
732 n = n->rb_right;
733 } else {
734 atomic_inc(&root->count);
735 spin_unlock(&nilfs->ns_cptree_lock);
736 return root;
739 spin_unlock(&nilfs->ns_cptree_lock);
741 return NULL;
744 struct nilfs_root *
745 nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno)
747 struct rb_node **p, *parent;
748 struct nilfs_root *root, *new;
749 int err;
751 root = nilfs_lookup_root(nilfs, cno);
752 if (root)
753 return root;
755 new = kzalloc(sizeof(*root), GFP_KERNEL);
756 if (!new)
757 return NULL;
759 spin_lock(&nilfs->ns_cptree_lock);
761 p = &nilfs->ns_cptree.rb_node;
762 parent = NULL;
764 while (*p) {
765 parent = *p;
766 root = rb_entry(parent, struct nilfs_root, rb_node);
768 if (cno < root->cno) {
769 p = &(*p)->rb_left;
770 } else if (cno > root->cno) {
771 p = &(*p)->rb_right;
772 } else {
773 atomic_inc(&root->count);
774 spin_unlock(&nilfs->ns_cptree_lock);
775 kfree(new);
776 return root;
780 new->cno = cno;
781 new->ifile = NULL;
782 new->nilfs = nilfs;
783 atomic_set(&new->count, 1);
784 atomic64_set(&new->inodes_count, 0);
785 atomic64_set(&new->blocks_count, 0);
787 rb_link_node(&new->rb_node, parent, p);
788 rb_insert_color(&new->rb_node, &nilfs->ns_cptree);
790 spin_unlock(&nilfs->ns_cptree_lock);
792 err = nilfs_sysfs_create_snapshot_group(new);
793 if (err) {
794 kfree(new);
795 new = NULL;
798 return new;
801 void nilfs_put_root(struct nilfs_root *root)
803 if (atomic_dec_and_test(&root->count)) {
804 struct the_nilfs *nilfs = root->nilfs;
806 nilfs_sysfs_delete_snapshot_group(root);
808 spin_lock(&nilfs->ns_cptree_lock);
809 rb_erase(&root->rb_node, &nilfs->ns_cptree);
810 spin_unlock(&nilfs->ns_cptree_lock);
811 iput(root->ifile);
813 kfree(root);