HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / ocfs2 / journal.c
blobbbf1634ff42701c2f9e56ea88b59a30511bba749
1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * journal.c
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
35 #include <cluster/masklog.h>
37 #include "ocfs2.h"
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
59 DEFINE_SPINLOCK(trans_inc_lock);
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65 int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70 int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72 int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74 int slot,
75 enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78 int slot_num,
79 struct ocfs2_dinode *la_dinode,
80 struct ocfs2_dinode *tl_dinode,
81 struct ocfs2_quota_recovery *qrec,
82 enum ocfs2_orphan_reco_type orphan_reco_type);
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
86 return __ocfs2_wait_on_mount(osb, 0);
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
91 return __ocfs2_wait_on_mount(osb, 1);
95 * This replay_map is to track online/offline slots, so we could recover
96 * offline slots during recovery and mount
99 enum ocfs2_replay_state {
100 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
101 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
102 REPLAY_DONE /* Replay was already queued */
105 struct ocfs2_replay_map {
106 unsigned int rm_slots;
107 enum ocfs2_replay_state rm_state;
108 unsigned char rm_replay_slots[0];
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
113 if (!osb->replay_map)
114 return;
116 /* If we've already queued the replay, we don't have any more to do */
117 if (osb->replay_map->rm_state == REPLAY_DONE)
118 return;
120 osb->replay_map->rm_state = state;
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
125 struct ocfs2_replay_map *replay_map;
126 int i, node_num;
128 /* If replay map is already set, we don't do it again */
129 if (osb->replay_map)
130 return 0;
132 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133 (osb->max_slots * sizeof(char)), GFP_KERNEL);
135 if (!replay_map) {
136 mlog_errno(-ENOMEM);
137 return -ENOMEM;
140 spin_lock(&osb->osb_lock);
142 replay_map->rm_slots = osb->max_slots;
143 replay_map->rm_state = REPLAY_UNNEEDED;
145 /* set rm_replay_slots for offline slot(s) */
146 for (i = 0; i < replay_map->rm_slots; i++) {
147 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148 replay_map->rm_replay_slots[i] = 1;
151 osb->replay_map = replay_map;
152 spin_unlock(&osb->osb_lock);
153 return 0;
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157 enum ocfs2_orphan_reco_type orphan_reco_type)
159 struct ocfs2_replay_map *replay_map = osb->replay_map;
160 int i;
162 if (!replay_map)
163 return;
165 if (replay_map->rm_state != REPLAY_NEEDED)
166 return;
168 for (i = 0; i < replay_map->rm_slots; i++)
169 if (replay_map->rm_replay_slots[i])
170 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171 NULL, NULL,
172 orphan_reco_type);
173 replay_map->rm_state = REPLAY_DONE;
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
178 struct ocfs2_replay_map *replay_map = osb->replay_map;
180 if (!osb->replay_map)
181 return;
183 kfree(replay_map);
184 osb->replay_map = NULL;
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
189 struct ocfs2_recovery_map *rm;
191 mutex_init(&osb->recovery_lock);
192 osb->disable_recovery = 0;
193 osb->recovery_thread_task = NULL;
194 init_waitqueue_head(&osb->recovery_event);
196 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197 osb->max_slots * sizeof(unsigned int),
198 GFP_KERNEL);
199 if (!rm) {
200 mlog_errno(-ENOMEM);
201 return -ENOMEM;
204 rm->rm_entries = (unsigned int *)((char *)rm +
205 sizeof(struct ocfs2_recovery_map));
206 osb->recovery_map = rm;
208 return 0;
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212 * memory barriers to make sure that we'll see the null task before
213 * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
216 mb();
217 return osb->recovery_thread_task != NULL;
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
222 struct ocfs2_recovery_map *rm;
224 /* disable any new recovery threads and wait for any currently
225 * running ones to exit. Do this before setting the vol_state. */
226 mutex_lock(&osb->recovery_lock);
227 osb->disable_recovery = 1;
228 mutex_unlock(&osb->recovery_lock);
229 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
231 /* At this point, we know that no more recovery threads can be
232 * launched, so wait for any recovery completion work to
233 * complete. */
234 flush_workqueue(ocfs2_wq);
237 * Now that recovery is shut down, and the osb is about to be
238 * freed, the osb_lock is not taken here.
240 rm = osb->recovery_map;
241 /* XXX: Should we bug if there are dirty entries? */
243 kfree(rm);
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247 unsigned int node_num)
249 int i;
250 struct ocfs2_recovery_map *rm = osb->recovery_map;
252 assert_spin_locked(&osb->osb_lock);
254 for (i = 0; i < rm->rm_used; i++) {
255 if (rm->rm_entries[i] == node_num)
256 return 1;
259 return 0;
262 /* Behaves like test-and-set. Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264 unsigned int node_num)
266 struct ocfs2_recovery_map *rm = osb->recovery_map;
268 spin_lock(&osb->osb_lock);
269 if (__ocfs2_recovery_map_test(osb, node_num)) {
270 spin_unlock(&osb->osb_lock);
271 return 1;
274 /* XXX: Can this be exploited? Not from o2dlm... */
275 BUG_ON(rm->rm_used >= osb->max_slots);
277 rm->rm_entries[rm->rm_used] = node_num;
278 rm->rm_used++;
279 spin_unlock(&osb->osb_lock);
281 return 0;
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285 unsigned int node_num)
287 int i;
288 struct ocfs2_recovery_map *rm = osb->recovery_map;
290 spin_lock(&osb->osb_lock);
292 for (i = 0; i < rm->rm_used; i++) {
293 if (rm->rm_entries[i] == node_num)
294 break;
297 if (i < rm->rm_used) {
298 /* XXX: be careful with the pointer math */
299 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300 (rm->rm_used - i - 1) * sizeof(unsigned int));
301 rm->rm_used--;
304 spin_unlock(&osb->osb_lock);
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
309 int status = 0;
310 unsigned int flushed;
311 struct ocfs2_journal *journal = NULL;
313 journal = osb->journal;
315 /* Flush all pending commits and checkpoint the journal. */
316 down_write(&journal->j_trans_barrier);
318 flushed = atomic_read(&journal->j_num_trans);
319 trace_ocfs2_commit_cache_begin(flushed);
320 if (flushed == 0) {
321 up_write(&journal->j_trans_barrier);
322 goto finally;
325 jbd2_journal_lock_updates(journal->j_journal);
326 status = jbd2_journal_flush(journal->j_journal);
327 jbd2_journal_unlock_updates(journal->j_journal);
328 if (status < 0) {
329 up_write(&journal->j_trans_barrier);
330 mlog_errno(status);
331 goto finally;
334 ocfs2_inc_trans_id(journal);
336 flushed = atomic_read(&journal->j_num_trans);
337 atomic_set(&journal->j_num_trans, 0);
338 up_write(&journal->j_trans_barrier);
340 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
342 ocfs2_wake_downconvert_thread(osb);
343 wake_up(&journal->j_checkpointed);
344 finally:
345 return status;
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
350 journal_t *journal = osb->journal->j_journal;
351 handle_t *handle;
353 BUG_ON(!osb || !osb->journal->j_journal);
355 if (ocfs2_is_hard_readonly(osb))
356 return ERR_PTR(-EROFS);
358 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359 BUG_ON(max_buffs <= 0);
361 /* Nested transaction? Just return the handle... */
362 if (journal_current_handle())
363 return jbd2_journal_start(journal, max_buffs);
365 sb_start_intwrite(osb->sb);
367 down_read(&osb->journal->j_trans_barrier);
369 handle = jbd2_journal_start(journal, max_buffs);
370 if (IS_ERR(handle)) {
371 up_read(&osb->journal->j_trans_barrier);
372 sb_end_intwrite(osb->sb);
374 mlog_errno(PTR_ERR(handle));
376 if (is_journal_aborted(journal)) {
377 ocfs2_abort(osb->sb, "Detected aborted journal\n");
378 handle = ERR_PTR(-EROFS);
380 } else {
381 if (!ocfs2_mount_local(osb))
382 atomic_inc(&(osb->journal->j_num_trans));
385 return handle;
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389 handle_t *handle)
391 int ret, nested;
392 struct ocfs2_journal *journal = osb->journal;
394 BUG_ON(!handle);
396 nested = handle->h_ref > 1;
397 ret = jbd2_journal_stop(handle);
398 if (ret < 0)
399 mlog_errno(ret);
401 if (!nested) {
402 up_read(&journal->j_trans_barrier);
403 sb_end_intwrite(osb->sb);
406 return ret;
410 * 'nblocks' is what you want to add to the current transaction.
412 * This might call jbd2_journal_restart() which will commit dirty buffers
413 * and then restart the transaction. Before calling
414 * ocfs2_extend_trans(), any changed blocks should have been
415 * dirtied. After calling it, all blocks which need to be changed must
416 * go through another set of journal_access/journal_dirty calls.
418 * WARNING: This will not release any semaphores or disk locks taken
419 * during the transaction, so make sure they were taken *before*
420 * start_trans or we'll have ordering deadlocks.
422 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423 * good because transaction ids haven't yet been recorded on the
424 * cluster locks associated with this handle.
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
428 int status, old_nblocks;
430 BUG_ON(!handle);
431 BUG_ON(nblocks < 0);
433 if (!nblocks)
434 return 0;
436 old_nblocks = handle->h_buffer_credits;
438 trace_ocfs2_extend_trans(old_nblocks, nblocks);
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441 status = 1;
442 #else
443 status = jbd2_journal_extend(handle, nblocks);
444 if (status < 0) {
445 mlog_errno(status);
446 goto bail;
448 #endif
450 if (status > 0) {
451 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452 status = jbd2_journal_restart(handle,
453 old_nblocks + nblocks);
454 if (status < 0) {
455 mlog_errno(status);
456 goto bail;
460 status = 0;
461 bail:
462 return status;
466 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467 * If that fails, restart the transaction & regain write access for the
468 * buffer head which is used for metadata modifications.
469 * Taken from Ext4: extend_or_restart_transaction()
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
473 int status, old_nblks;
475 BUG_ON(!handle);
477 old_nblks = handle->h_buffer_credits;
478 trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
480 if (old_nblks < thresh)
481 return 0;
483 status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484 if (status < 0) {
485 mlog_errno(status);
486 goto bail;
489 if (status > 0) {
490 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491 if (status < 0)
492 mlog_errno(status);
495 bail:
496 return status;
500 struct ocfs2_triggers {
501 struct jbd2_buffer_trigger_type ot_triggers;
502 int ot_offset;
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
507 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511 struct buffer_head *bh,
512 void *data, size_t size)
514 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
517 * We aren't guaranteed to have the superblock here, so we
518 * must unconditionally compute the ecc data.
519 * __ocfs2_journal_access() will only set the triggers if
520 * metaecc is enabled.
522 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
526 * Quota blocks have their own trigger because the struct ocfs2_block_check
527 * offset depends on the blocksize.
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530 struct buffer_head *bh,
531 void *data, size_t size)
533 struct ocfs2_disk_dqtrailer *dqt =
534 ocfs2_block_dqtrailer(size, data);
537 * We aren't guaranteed to have the superblock here, so we
538 * must unconditionally compute the ecc data.
539 * __ocfs2_journal_access() will only set the triggers if
540 * metaecc is enabled.
542 ocfs2_block_check_compute(data, size, &dqt->dq_check);
546 * Directory blocks also have their own trigger because the
547 * struct ocfs2_block_check offset depends on the blocksize.
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550 struct buffer_head *bh,
551 void *data, size_t size)
553 struct ocfs2_dir_block_trailer *trailer =
554 ocfs2_dir_trailer_from_size(size, data);
557 * We aren't guaranteed to have the superblock here, so we
558 * must unconditionally compute the ecc data.
559 * __ocfs2_journal_access() will only set the triggers if
560 * metaecc is enabled.
562 ocfs2_block_check_compute(data, size, &trailer->db_check);
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566 struct buffer_head *bh)
568 mlog(ML_ERROR,
569 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
570 "bh->b_blocknr = %llu\n",
571 (unsigned long)bh,
572 (unsigned long long)bh->b_blocknr);
574 ocfs2_error(bh->b_bdev->bd_super,
575 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
578 static struct ocfs2_triggers di_triggers = {
579 .ot_triggers = {
580 .t_frozen = ocfs2_frozen_trigger,
581 .t_abort = ocfs2_abort_trigger,
583 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
586 static struct ocfs2_triggers eb_triggers = {
587 .ot_triggers = {
588 .t_frozen = ocfs2_frozen_trigger,
589 .t_abort = ocfs2_abort_trigger,
591 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
594 static struct ocfs2_triggers rb_triggers = {
595 .ot_triggers = {
596 .t_frozen = ocfs2_frozen_trigger,
597 .t_abort = ocfs2_abort_trigger,
599 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
602 static struct ocfs2_triggers gd_triggers = {
603 .ot_triggers = {
604 .t_frozen = ocfs2_frozen_trigger,
605 .t_abort = ocfs2_abort_trigger,
607 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
610 static struct ocfs2_triggers db_triggers = {
611 .ot_triggers = {
612 .t_frozen = ocfs2_db_frozen_trigger,
613 .t_abort = ocfs2_abort_trigger,
617 static struct ocfs2_triggers xb_triggers = {
618 .ot_triggers = {
619 .t_frozen = ocfs2_frozen_trigger,
620 .t_abort = ocfs2_abort_trigger,
622 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
625 static struct ocfs2_triggers dq_triggers = {
626 .ot_triggers = {
627 .t_frozen = ocfs2_dq_frozen_trigger,
628 .t_abort = ocfs2_abort_trigger,
632 static struct ocfs2_triggers dr_triggers = {
633 .ot_triggers = {
634 .t_frozen = ocfs2_frozen_trigger,
635 .t_abort = ocfs2_abort_trigger,
637 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
640 static struct ocfs2_triggers dl_triggers = {
641 .ot_triggers = {
642 .t_frozen = ocfs2_frozen_trigger,
643 .t_abort = ocfs2_abort_trigger,
645 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
648 static int __ocfs2_journal_access(handle_t *handle,
649 struct ocfs2_caching_info *ci,
650 struct buffer_head *bh,
651 struct ocfs2_triggers *triggers,
652 int type)
654 int status;
655 struct ocfs2_super *osb =
656 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
658 BUG_ON(!ci || !ci->ci_ops);
659 BUG_ON(!handle);
660 BUG_ON(!bh);
662 trace_ocfs2_journal_access(
663 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664 (unsigned long long)bh->b_blocknr, type, bh->b_size);
666 /* we can safely remove this assertion after testing. */
667 if (!buffer_uptodate(bh)) {
668 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670 (unsigned long long)bh->b_blocknr, bh->b_state);
672 lock_buffer(bh);
674 * A previous transaction with a couple of buffer heads fail
675 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676 * For current transaction, the bh is just among those error
677 * bhs which previous transaction handle. We can't just clear
678 * its BH_Write_EIO and reuse directly, since other bhs are
679 * not written to disk yet and that will cause metadata
680 * inconsistency. So we should set fs read-only to avoid
681 * further damage.
683 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684 unlock_buffer(bh);
685 return ocfs2_error(osb->sb, "A previous attempt to "
686 "write this buffer head failed\n");
688 unlock_buffer(bh);
691 /* Set the current transaction information on the ci so
692 * that the locking code knows whether it can drop it's locks
693 * on this ci or not. We're protected from the commit
694 * thread updating the current transaction id until
695 * ocfs2_commit_trans() because ocfs2_start_trans() took
696 * j_trans_barrier for us. */
697 ocfs2_set_ci_lock_trans(osb->journal, ci);
699 ocfs2_metadata_cache_io_lock(ci);
700 switch (type) {
701 case OCFS2_JOURNAL_ACCESS_CREATE:
702 case OCFS2_JOURNAL_ACCESS_WRITE:
703 status = jbd2_journal_get_write_access(handle, bh);
704 break;
706 case OCFS2_JOURNAL_ACCESS_UNDO:
707 status = jbd2_journal_get_undo_access(handle, bh);
708 break;
710 default:
711 status = -EINVAL;
712 mlog(ML_ERROR, "Unknown access type!\n");
714 if (!status && ocfs2_meta_ecc(osb) && triggers)
715 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716 ocfs2_metadata_cache_io_unlock(ci);
718 if (status < 0)
719 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720 status, type);
722 return status;
725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726 struct buffer_head *bh, int type)
728 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732 struct buffer_head *bh, int type)
734 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738 struct buffer_head *bh, int type)
740 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741 type);
744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745 struct buffer_head *bh, int type)
747 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751 struct buffer_head *bh, int type)
753 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757 struct buffer_head *bh, int type)
759 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763 struct buffer_head *bh, int type)
765 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769 struct buffer_head *bh, int type)
771 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775 struct buffer_head *bh, int type)
777 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781 struct buffer_head *bh, int type)
783 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
788 int status;
790 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
792 status = jbd2_journal_dirty_metadata(handle, bh);
793 if (status) {
794 mlog_errno(status);
795 if (!is_handle_aborted(handle)) {
796 journal_t *journal = handle->h_transaction->t_journal;
797 struct super_block *sb = bh->b_bdev->bd_super;
799 mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800 "Aborting transaction and journal.\n");
801 handle->h_err = status;
802 jbd2_journal_abort_handle(handle);
803 jbd2_journal_abort(journal, status);
804 ocfs2_abort(sb, "Journal already aborted.\n");
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
813 journal_t *journal = osb->journal->j_journal;
814 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
816 if (osb->osb_commit_interval)
817 commit_interval = osb->osb_commit_interval;
819 write_lock(&journal->j_state_lock);
820 journal->j_commit_interval = commit_interval;
821 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822 journal->j_flags |= JBD2_BARRIER;
823 else
824 journal->j_flags &= ~JBD2_BARRIER;
825 write_unlock(&journal->j_state_lock);
828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
830 int status = -1;
831 struct inode *inode = NULL; /* the journal inode */
832 journal_t *j_journal = NULL;
833 struct ocfs2_dinode *di = NULL;
834 struct buffer_head *bh = NULL;
835 struct ocfs2_super *osb;
836 int inode_lock = 0;
838 BUG_ON(!journal);
840 osb = journal->j_osb;
842 /* already have the inode for our journal */
843 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844 osb->slot_num);
845 if (inode == NULL) {
846 status = -EACCES;
847 mlog_errno(status);
848 goto done;
850 if (is_bad_inode(inode)) {
851 mlog(ML_ERROR, "access error (bad inode)\n");
852 iput(inode);
853 inode = NULL;
854 status = -EACCES;
855 goto done;
858 SET_INODE_JOURNAL(inode);
859 OCFS2_I(inode)->ip_open_count++;
861 /* Skip recovery waits here - journal inode metadata never
862 * changes in a live cluster so it can be considered an
863 * exception to the rule. */
864 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865 if (status < 0) {
866 if (status != -ERESTARTSYS)
867 mlog(ML_ERROR, "Could not get lock on journal!\n");
868 goto done;
871 inode_lock = 1;
872 di = (struct ocfs2_dinode *)bh->b_data;
874 if (i_size_read(inode) < OCFS2_MIN_JOURNAL_SIZE) {
875 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876 i_size_read(inode));
877 status = -EINVAL;
878 goto done;
881 trace_ocfs2_journal_init(i_size_read(inode),
882 (unsigned long long)inode->i_blocks,
883 OCFS2_I(inode)->ip_clusters);
885 /* call the kernels journal init function now */
886 j_journal = jbd2_journal_init_inode(inode);
887 if (j_journal == NULL) {
888 mlog(ML_ERROR, "Linux journal layer error\n");
889 status = -EINVAL;
890 goto done;
893 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
895 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896 OCFS2_JOURNAL_DIRTY_FL);
898 journal->j_journal = j_journal;
899 journal->j_inode = inode;
900 journal->j_bh = bh;
902 ocfs2_set_journal_params(osb);
904 journal->j_state = OCFS2_JOURNAL_LOADED;
906 status = 0;
907 done:
908 if (status < 0) {
909 if (inode_lock)
910 ocfs2_inode_unlock(inode, 1);
911 brelse(bh);
912 if (inode) {
913 OCFS2_I(inode)->ip_open_count--;
914 iput(inode);
918 return status;
921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
923 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
928 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932 int dirty, int replayed)
934 int status;
935 unsigned int flags;
936 struct ocfs2_journal *journal = osb->journal;
937 struct buffer_head *bh = journal->j_bh;
938 struct ocfs2_dinode *fe;
940 fe = (struct ocfs2_dinode *)bh->b_data;
942 /* The journal bh on the osb always comes from ocfs2_journal_init()
943 * and was validated there inside ocfs2_inode_lock_full(). It's a
944 * code bug if we mess it up. */
945 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
947 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948 if (dirty)
949 flags |= OCFS2_JOURNAL_DIRTY_FL;
950 else
951 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
954 if (replayed)
955 ocfs2_bump_recovery_generation(fe);
957 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959 if (status < 0)
960 mlog_errno(status);
962 return status;
966 * If the journal has been kmalloc'd it needs to be freed after this
967 * call.
969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
971 struct ocfs2_journal *journal = NULL;
972 int status = 0;
973 struct inode *inode = NULL;
974 int num_running_trans = 0;
976 BUG_ON(!osb);
978 journal = osb->journal;
979 if (!journal)
980 goto done;
982 inode = journal->j_inode;
984 if (journal->j_state != OCFS2_JOURNAL_LOADED)
985 goto done;
987 /* need to inc inode use count - jbd2_journal_destroy will iput. */
988 if (!igrab(inode))
989 BUG();
991 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992 trace_ocfs2_journal_shutdown(num_running_trans);
994 /* Do a commit_cache here. It will flush our journal, *and*
995 * release any locks that are still held.
996 * set the SHUTDOWN flag and release the trans lock.
997 * the commit thread will take the trans lock for us below. */
998 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1000 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001 * drop the trans_lock (which we want to hold until we
1002 * completely destroy the journal. */
1003 if (osb->commit_task) {
1004 /* Wait for the commit thread */
1005 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006 kthread_stop(osb->commit_task);
1007 osb->commit_task = NULL;
1010 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1012 if (ocfs2_mount_local(osb)) {
1013 jbd2_journal_lock_updates(journal->j_journal);
1014 status = jbd2_journal_flush(journal->j_journal);
1015 jbd2_journal_unlock_updates(journal->j_journal);
1016 if (status < 0)
1017 mlog_errno(status);
1020 /* Shutdown the kernel journal system */
1021 if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1023 * Do not toggle if flush was unsuccessful otherwise
1024 * will leave dirty metadata in a "clean" journal
1026 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1027 if (status < 0)
1028 mlog_errno(status);
1030 journal->j_journal = NULL;
1032 OCFS2_I(inode)->ip_open_count--;
1034 /* unlock our journal */
1035 ocfs2_inode_unlock(inode, 1);
1037 brelse(journal->j_bh);
1038 journal->j_bh = NULL;
1040 journal->j_state = OCFS2_JOURNAL_FREE;
1042 // up_write(&journal->j_trans_barrier);
1043 done:
1044 if (inode)
1045 iput(inode);
1048 static void ocfs2_clear_journal_error(struct super_block *sb,
1049 journal_t *journal,
1050 int slot)
1052 int olderr;
1054 olderr = jbd2_journal_errno(journal);
1055 if (olderr) {
1056 mlog(ML_ERROR, "File system error %d recorded in "
1057 "journal %u.\n", olderr, slot);
1058 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1059 sb->s_id);
1061 jbd2_journal_ack_err(journal);
1062 jbd2_journal_clear_err(journal);
1066 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1068 int status = 0;
1069 struct ocfs2_super *osb;
1071 BUG_ON(!journal);
1073 osb = journal->j_osb;
1075 status = jbd2_journal_load(journal->j_journal);
1076 if (status < 0) {
1077 mlog(ML_ERROR, "Failed to load journal!\n");
1078 goto done;
1081 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1083 if (replayed) {
1084 jbd2_journal_lock_updates(journal->j_journal);
1085 status = jbd2_journal_flush(journal->j_journal);
1086 jbd2_journal_unlock_updates(journal->j_journal);
1087 if (status < 0)
1088 mlog_errno(status);
1091 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1092 if (status < 0) {
1093 mlog_errno(status);
1094 goto done;
1097 /* Launch the commit thread */
1098 if (!local) {
1099 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1100 "ocfs2cmt-%s", osb->uuid_str);
1101 if (IS_ERR(osb->commit_task)) {
1102 status = PTR_ERR(osb->commit_task);
1103 osb->commit_task = NULL;
1104 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1105 "error=%d", status);
1106 goto done;
1108 } else
1109 osb->commit_task = NULL;
1111 done:
1112 return status;
1116 /* 'full' flag tells us whether we clear out all blocks or if we just
1117 * mark the journal clean */
1118 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1120 int status;
1122 BUG_ON(!journal);
1124 status = jbd2_journal_wipe(journal->j_journal, full);
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto bail;
1130 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1131 if (status < 0)
1132 mlog_errno(status);
1134 bail:
1135 return status;
1138 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1140 int empty;
1141 struct ocfs2_recovery_map *rm = osb->recovery_map;
1143 spin_lock(&osb->osb_lock);
1144 empty = (rm->rm_used == 0);
1145 spin_unlock(&osb->osb_lock);
1147 return empty;
1150 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1152 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1156 * JBD Might read a cached version of another nodes journal file. We
1157 * don't want this as this file changes often and we get no
1158 * notification on those changes. The only way to be sure that we've
1159 * got the most up to date version of those blocks then is to force
1160 * read them off disk. Just searching through the buffer cache won't
1161 * work as there may be pages backing this file which are still marked
1162 * up to date. We know things can't change on this file underneath us
1163 * as we have the lock by now :)
1165 static int ocfs2_force_read_journal(struct inode *inode)
1167 int status = 0;
1168 int i;
1169 u64 v_blkno, p_blkno, p_blocks, num_blocks;
1170 #define CONCURRENT_JOURNAL_FILL 32ULL
1171 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1173 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1175 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1176 v_blkno = 0;
1177 while (v_blkno < num_blocks) {
1178 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1179 &p_blkno, &p_blocks, NULL);
1180 if (status < 0) {
1181 mlog_errno(status);
1182 goto bail;
1185 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1186 p_blocks = CONCURRENT_JOURNAL_FILL;
1188 /* We are reading journal data which should not
1189 * be put in the uptodate cache */
1190 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1191 p_blkno, p_blocks, bhs);
1192 if (status < 0) {
1193 mlog_errno(status);
1194 goto bail;
1197 for(i = 0; i < p_blocks; i++) {
1198 brelse(bhs[i]);
1199 bhs[i] = NULL;
1202 v_blkno += p_blocks;
1205 bail:
1206 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
1207 brelse(bhs[i]);
1208 return status;
1211 struct ocfs2_la_recovery_item {
1212 struct list_head lri_list;
1213 int lri_slot;
1214 struct ocfs2_dinode *lri_la_dinode;
1215 struct ocfs2_dinode *lri_tl_dinode;
1216 struct ocfs2_quota_recovery *lri_qrec;
1217 enum ocfs2_orphan_reco_type lri_orphan_reco_type;
1220 /* Does the second half of the recovery process. By this point, the
1221 * node is marked clean and can actually be considered recovered,
1222 * hence it's no longer in the recovery map, but there's still some
1223 * cleanup we can do which shouldn't happen within the recovery thread
1224 * as locking in that context becomes very difficult if we are to take
1225 * recovering nodes into account.
1227 * NOTE: This function can and will sleep on recovery of other nodes
1228 * during cluster locking, just like any other ocfs2 process.
1230 void ocfs2_complete_recovery(struct work_struct *work)
1232 int ret = 0;
1233 struct ocfs2_journal *journal =
1234 container_of(work, struct ocfs2_journal, j_recovery_work);
1235 struct ocfs2_super *osb = journal->j_osb;
1236 struct ocfs2_dinode *la_dinode, *tl_dinode;
1237 struct ocfs2_la_recovery_item *item, *n;
1238 struct ocfs2_quota_recovery *qrec;
1239 enum ocfs2_orphan_reco_type orphan_reco_type;
1240 LIST_HEAD(tmp_la_list);
1242 trace_ocfs2_complete_recovery(
1243 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1245 spin_lock(&journal->j_lock);
1246 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1247 spin_unlock(&journal->j_lock);
1249 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1250 list_del_init(&item->lri_list);
1252 ocfs2_wait_on_quotas(osb);
1254 la_dinode = item->lri_la_dinode;
1255 tl_dinode = item->lri_tl_dinode;
1256 qrec = item->lri_qrec;
1257 orphan_reco_type = item->lri_orphan_reco_type;
1259 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1260 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1261 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1262 qrec);
1264 if (la_dinode) {
1265 ret = ocfs2_complete_local_alloc_recovery(osb,
1266 la_dinode);
1267 if (ret < 0)
1268 mlog_errno(ret);
1270 kfree(la_dinode);
1273 if (tl_dinode) {
1274 ret = ocfs2_complete_truncate_log_recovery(osb,
1275 tl_dinode);
1276 if (ret < 0)
1277 mlog_errno(ret);
1279 kfree(tl_dinode);
1282 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1283 orphan_reco_type);
1284 if (ret < 0)
1285 mlog_errno(ret);
1287 if (qrec) {
1288 ret = ocfs2_finish_quota_recovery(osb, qrec,
1289 item->lri_slot);
1290 if (ret < 0)
1291 mlog_errno(ret);
1292 /* Recovery info is already freed now */
1295 kfree(item);
1298 trace_ocfs2_complete_recovery_end(ret);
1301 /* NOTE: This function always eats your references to la_dinode and
1302 * tl_dinode, either manually on error, or by passing them to
1303 * ocfs2_complete_recovery */
1304 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1305 int slot_num,
1306 struct ocfs2_dinode *la_dinode,
1307 struct ocfs2_dinode *tl_dinode,
1308 struct ocfs2_quota_recovery *qrec,
1309 enum ocfs2_orphan_reco_type orphan_reco_type)
1311 struct ocfs2_la_recovery_item *item;
1313 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1314 if (!item) {
1315 /* Though we wish to avoid it, we are in fact safe in
1316 * skipping local alloc cleanup as fsck.ocfs2 is more
1317 * than capable of reclaiming unused space. */
1318 kfree(la_dinode);
1319 kfree(tl_dinode);
1321 if (qrec)
1322 ocfs2_free_quota_recovery(qrec);
1324 mlog_errno(-ENOMEM);
1325 return;
1328 INIT_LIST_HEAD(&item->lri_list);
1329 item->lri_la_dinode = la_dinode;
1330 item->lri_slot = slot_num;
1331 item->lri_tl_dinode = tl_dinode;
1332 item->lri_qrec = qrec;
1333 item->lri_orphan_reco_type = orphan_reco_type;
1335 spin_lock(&journal->j_lock);
1336 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1337 queue_work(ocfs2_wq, &journal->j_recovery_work);
1338 spin_unlock(&journal->j_lock);
1341 /* Called by the mount code to queue recovery the last part of
1342 * recovery for it's own and offline slot(s). */
1343 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1345 struct ocfs2_journal *journal = osb->journal;
1347 if (ocfs2_is_hard_readonly(osb))
1348 return;
1350 /* No need to queue up our truncate_log as regular cleanup will catch
1351 * that */
1352 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1353 osb->local_alloc_copy, NULL, NULL,
1354 ORPHAN_NEED_TRUNCATE);
1355 ocfs2_schedule_truncate_log_flush(osb, 0);
1357 osb->local_alloc_copy = NULL;
1358 osb->dirty = 0;
1360 /* queue to recover orphan slots for all offline slots */
1361 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1362 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1363 ocfs2_free_replay_slots(osb);
1366 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1368 if (osb->quota_rec) {
1369 ocfs2_queue_recovery_completion(osb->journal,
1370 osb->slot_num,
1371 NULL,
1372 NULL,
1373 osb->quota_rec,
1374 ORPHAN_NEED_TRUNCATE);
1375 osb->quota_rec = NULL;
1379 static int __ocfs2_recovery_thread(void *arg)
1381 int status, node_num, slot_num;
1382 struct ocfs2_super *osb = arg;
1383 struct ocfs2_recovery_map *rm = osb->recovery_map;
1384 int *rm_quota = NULL;
1385 int rm_quota_used = 0, i;
1386 struct ocfs2_quota_recovery *qrec;
1388 status = ocfs2_wait_on_mount(osb);
1389 if (status < 0) {
1390 goto bail;
1393 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1394 if (!rm_quota) {
1395 status = -ENOMEM;
1396 goto bail;
1398 restart:
1399 status = ocfs2_super_lock(osb, 1);
1400 if (status < 0) {
1401 mlog_errno(status);
1402 goto bail;
1405 status = ocfs2_compute_replay_slots(osb);
1406 if (status < 0)
1407 mlog_errno(status);
1409 /* queue recovery for our own slot */
1410 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1411 NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1413 spin_lock(&osb->osb_lock);
1414 while (rm->rm_used) {
1415 /* It's always safe to remove entry zero, as we won't
1416 * clear it until ocfs2_recover_node() has succeeded. */
1417 node_num = rm->rm_entries[0];
1418 spin_unlock(&osb->osb_lock);
1419 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1420 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1421 if (slot_num == -ENOENT) {
1422 status = 0;
1423 goto skip_recovery;
1426 /* It is a bit subtle with quota recovery. We cannot do it
1427 * immediately because we have to obtain cluster locks from
1428 * quota files and we also don't want to just skip it because
1429 * then quota usage would be out of sync until some node takes
1430 * the slot. So we remember which nodes need quota recovery
1431 * and when everything else is done, we recover quotas. */
1432 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1433 if (i == rm_quota_used)
1434 rm_quota[rm_quota_used++] = slot_num;
1436 status = ocfs2_recover_node(osb, node_num, slot_num);
1437 skip_recovery:
1438 if (!status) {
1439 ocfs2_recovery_map_clear(osb, node_num);
1440 } else {
1441 mlog(ML_ERROR,
1442 "Error %d recovering node %d on device (%u,%u)!\n",
1443 status, node_num,
1444 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1445 mlog(ML_ERROR, "Volume requires unmount.\n");
1448 spin_lock(&osb->osb_lock);
1450 spin_unlock(&osb->osb_lock);
1451 trace_ocfs2_recovery_thread_end(status);
1453 /* Refresh all journal recovery generations from disk */
1454 status = ocfs2_check_journals_nolocks(osb);
1455 status = (status == -EROFS) ? 0 : status;
1456 if (status < 0)
1457 mlog_errno(status);
1459 /* Now it is right time to recover quotas... We have to do this under
1460 * superblock lock so that no one can start using the slot (and crash)
1461 * before we recover it */
1462 for (i = 0; i < rm_quota_used; i++) {
1463 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1464 if (IS_ERR(qrec)) {
1465 status = PTR_ERR(qrec);
1466 mlog_errno(status);
1467 continue;
1469 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1470 NULL, NULL, qrec,
1471 ORPHAN_NEED_TRUNCATE);
1474 ocfs2_super_unlock(osb, 1);
1476 /* queue recovery for offline slots */
1477 ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1479 bail:
1480 mutex_lock(&osb->recovery_lock);
1481 if (!status && !ocfs2_recovery_completed(osb)) {
1482 mutex_unlock(&osb->recovery_lock);
1483 goto restart;
1486 ocfs2_free_replay_slots(osb);
1487 osb->recovery_thread_task = NULL;
1488 mb(); /* sync with ocfs2_recovery_thread_running */
1489 wake_up(&osb->recovery_event);
1491 mutex_unlock(&osb->recovery_lock);
1493 kfree(rm_quota);
1495 /* no one is callint kthread_stop() for us so the kthread() api
1496 * requires that we call do_exit(). And it isn't exported, but
1497 * complete_and_exit() seems to be a minimal wrapper around it. */
1498 complete_and_exit(NULL, status);
1501 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1503 mutex_lock(&osb->recovery_lock);
1505 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1506 osb->disable_recovery, osb->recovery_thread_task,
1507 osb->disable_recovery ?
1508 -1 : ocfs2_recovery_map_set(osb, node_num));
1510 if (osb->disable_recovery)
1511 goto out;
1513 if (osb->recovery_thread_task)
1514 goto out;
1516 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
1517 "ocfs2rec-%s", osb->uuid_str);
1518 if (IS_ERR(osb->recovery_thread_task)) {
1519 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1520 osb->recovery_thread_task = NULL;
1523 out:
1524 mutex_unlock(&osb->recovery_lock);
1525 wake_up(&osb->recovery_event);
1528 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1529 int slot_num,
1530 struct buffer_head **bh,
1531 struct inode **ret_inode)
1533 int status = -EACCES;
1534 struct inode *inode = NULL;
1536 BUG_ON(slot_num >= osb->max_slots);
1538 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1539 slot_num);
1540 if (!inode || is_bad_inode(inode)) {
1541 mlog_errno(status);
1542 goto bail;
1544 SET_INODE_JOURNAL(inode);
1546 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1547 if (status < 0) {
1548 mlog_errno(status);
1549 goto bail;
1552 status = 0;
1554 bail:
1555 if (inode) {
1556 if (status || !ret_inode)
1557 iput(inode);
1558 else
1559 *ret_inode = inode;
1561 return status;
1564 /* Does the actual journal replay and marks the journal inode as
1565 * clean. Will only replay if the journal inode is marked dirty. */
1566 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1567 int node_num,
1568 int slot_num)
1570 int status;
1571 int got_lock = 0;
1572 unsigned int flags;
1573 struct inode *inode = NULL;
1574 struct ocfs2_dinode *fe;
1575 journal_t *journal = NULL;
1576 struct buffer_head *bh = NULL;
1577 u32 slot_reco_gen;
1579 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1580 if (status) {
1581 mlog_errno(status);
1582 goto done;
1585 fe = (struct ocfs2_dinode *)bh->b_data;
1586 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1587 brelse(bh);
1588 bh = NULL;
1591 * As the fs recovery is asynchronous, there is a small chance that
1592 * another node mounted (and recovered) the slot before the recovery
1593 * thread could get the lock. To handle that, we dirty read the journal
1594 * inode for that slot to get the recovery generation. If it is
1595 * different than what we expected, the slot has been recovered.
1596 * If not, it needs recovery.
1598 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1599 trace_ocfs2_replay_journal_recovered(slot_num,
1600 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1601 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1602 status = -EBUSY;
1603 goto done;
1606 /* Continue with recovery as the journal has not yet been recovered */
1608 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1609 if (status < 0) {
1610 trace_ocfs2_replay_journal_lock_err(status);
1611 if (status != -ERESTARTSYS)
1612 mlog(ML_ERROR, "Could not lock journal!\n");
1613 goto done;
1615 got_lock = 1;
1617 fe = (struct ocfs2_dinode *) bh->b_data;
1619 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1620 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1622 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1623 trace_ocfs2_replay_journal_skip(node_num);
1624 /* Refresh recovery generation for the slot */
1625 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1626 goto done;
1629 /* we need to run complete recovery for offline orphan slots */
1630 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1632 printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1633 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1634 MINOR(osb->sb->s_dev));
1636 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1638 status = ocfs2_force_read_journal(inode);
1639 if (status < 0) {
1640 mlog_errno(status);
1641 goto done;
1644 journal = jbd2_journal_init_inode(inode);
1645 if (journal == NULL) {
1646 mlog(ML_ERROR, "Linux journal layer error\n");
1647 status = -EIO;
1648 goto done;
1651 status = jbd2_journal_load(journal);
1652 if (status < 0) {
1653 mlog_errno(status);
1654 if (!igrab(inode))
1655 BUG();
1656 jbd2_journal_destroy(journal);
1657 goto done;
1660 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1662 /* wipe the journal */
1663 jbd2_journal_lock_updates(journal);
1664 status = jbd2_journal_flush(journal);
1665 jbd2_journal_unlock_updates(journal);
1666 if (status < 0)
1667 mlog_errno(status);
1669 /* This will mark the node clean */
1670 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1671 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1672 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1674 /* Increment recovery generation to indicate successful recovery */
1675 ocfs2_bump_recovery_generation(fe);
1676 osb->slot_recovery_generations[slot_num] =
1677 ocfs2_get_recovery_generation(fe);
1679 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1680 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1681 if (status < 0)
1682 mlog_errno(status);
1684 if (!igrab(inode))
1685 BUG();
1687 jbd2_journal_destroy(journal);
1689 printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1690 "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1691 MINOR(osb->sb->s_dev));
1692 done:
1693 /* drop the lock on this nodes journal */
1694 if (got_lock)
1695 ocfs2_inode_unlock(inode, 1);
1697 if (inode)
1698 iput(inode);
1700 brelse(bh);
1702 return status;
1706 * Do the most important parts of node recovery:
1707 * - Replay it's journal
1708 * - Stamp a clean local allocator file
1709 * - Stamp a clean truncate log
1710 * - Mark the node clean
1712 * If this function completes without error, a node in OCFS2 can be
1713 * said to have been safely recovered. As a result, failure during the
1714 * second part of a nodes recovery process (local alloc recovery) is
1715 * far less concerning.
1717 static int ocfs2_recover_node(struct ocfs2_super *osb,
1718 int node_num, int slot_num)
1720 int status = 0;
1721 struct ocfs2_dinode *la_copy = NULL;
1722 struct ocfs2_dinode *tl_copy = NULL;
1724 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1726 /* Should not ever be called to recover ourselves -- in that
1727 * case we should've called ocfs2_journal_load instead. */
1728 BUG_ON(osb->node_num == node_num);
1730 status = ocfs2_replay_journal(osb, node_num, slot_num);
1731 if (status < 0) {
1732 if (status == -EBUSY) {
1733 trace_ocfs2_recover_node_skip(slot_num, node_num);
1734 status = 0;
1735 goto done;
1737 mlog_errno(status);
1738 goto done;
1741 /* Stamp a clean local alloc file AFTER recovering the journal... */
1742 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1743 if (status < 0) {
1744 mlog_errno(status);
1745 goto done;
1748 /* An error from begin_truncate_log_recovery is not
1749 * serious enough to warrant halting the rest of
1750 * recovery. */
1751 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1752 if (status < 0)
1753 mlog_errno(status);
1755 /* Likewise, this would be a strange but ultimately not so
1756 * harmful place to get an error... */
1757 status = ocfs2_clear_slot(osb, slot_num);
1758 if (status < 0)
1759 mlog_errno(status);
1761 /* This will kfree the memory pointed to by la_copy and tl_copy */
1762 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1763 tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1765 status = 0;
1766 done:
1768 return status;
1771 /* Test node liveness by trylocking his journal. If we get the lock,
1772 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1773 * still alive (we couldn't get the lock) and < 0 on error. */
1774 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1775 int slot_num)
1777 int status, flags;
1778 struct inode *inode = NULL;
1780 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1781 slot_num);
1782 if (inode == NULL) {
1783 mlog(ML_ERROR, "access error\n");
1784 status = -EACCES;
1785 goto bail;
1787 if (is_bad_inode(inode)) {
1788 mlog(ML_ERROR, "access error (bad inode)\n");
1789 iput(inode);
1790 inode = NULL;
1791 status = -EACCES;
1792 goto bail;
1794 SET_INODE_JOURNAL(inode);
1796 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1797 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1798 if (status < 0) {
1799 if (status != -EAGAIN)
1800 mlog_errno(status);
1801 goto bail;
1804 ocfs2_inode_unlock(inode, 1);
1805 bail:
1806 if (inode)
1807 iput(inode);
1809 return status;
1812 /* Call this underneath ocfs2_super_lock. It also assumes that the
1813 * slot info struct has been updated from disk. */
1814 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1816 unsigned int node_num;
1817 int status, i;
1818 u32 gen;
1819 struct buffer_head *bh = NULL;
1820 struct ocfs2_dinode *di;
1822 /* This is called with the super block cluster lock, so we
1823 * know that the slot map can't change underneath us. */
1825 for (i = 0; i < osb->max_slots; i++) {
1826 /* Read journal inode to get the recovery generation */
1827 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1828 if (status) {
1829 mlog_errno(status);
1830 goto bail;
1832 di = (struct ocfs2_dinode *)bh->b_data;
1833 gen = ocfs2_get_recovery_generation(di);
1834 brelse(bh);
1835 bh = NULL;
1837 spin_lock(&osb->osb_lock);
1838 osb->slot_recovery_generations[i] = gen;
1840 trace_ocfs2_mark_dead_nodes(i,
1841 osb->slot_recovery_generations[i]);
1843 if (i == osb->slot_num) {
1844 spin_unlock(&osb->osb_lock);
1845 continue;
1848 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1849 if (status == -ENOENT) {
1850 spin_unlock(&osb->osb_lock);
1851 continue;
1854 if (__ocfs2_recovery_map_test(osb, node_num)) {
1855 spin_unlock(&osb->osb_lock);
1856 continue;
1858 spin_unlock(&osb->osb_lock);
1860 /* Ok, we have a slot occupied by another node which
1861 * is not in the recovery map. We trylock his journal
1862 * file here to test if he's alive. */
1863 status = ocfs2_trylock_journal(osb, i);
1864 if (!status) {
1865 /* Since we're called from mount, we know that
1866 * the recovery thread can't race us on
1867 * setting / checking the recovery bits. */
1868 ocfs2_recovery_thread(osb, node_num);
1869 } else if ((status < 0) && (status != -EAGAIN)) {
1870 mlog_errno(status);
1871 goto bail;
1875 status = 0;
1876 bail:
1877 return status;
1881 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1882 * randomness to the timeout to minimize multple nodes firing the timer at the
1883 * same time.
1885 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1887 unsigned long time;
1889 get_random_bytes(&time, sizeof(time));
1890 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1891 return msecs_to_jiffies(time);
1895 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1896 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1897 * is done to catch any orphans that are left over in orphan directories.
1899 * It scans all slots, even ones that are in use. It does so to handle the
1900 * case described below:
1902 * Node 1 has an inode it was using. The dentry went away due to memory
1903 * pressure. Node 1 closes the inode, but it's on the free list. The node
1904 * has the open lock.
1905 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1906 * but node 1 has no dentry and doesn't get the message. It trylocks the
1907 * open lock, sees that another node has a PR, and does nothing.
1908 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1909 * open lock, sees the PR still, and does nothing.
1910 * Basically, we have to trigger an orphan iput on node 1. The only way
1911 * for this to happen is if node 1 runs node 2's orphan dir.
1913 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1914 * seconds. It gets an EX lock on os_lockres and checks sequence number
1915 * stored in LVB. If the sequence number has changed, it means some other
1916 * node has done the scan. This node skips the scan and tracks the
1917 * sequence number. If the sequence number didn't change, it means a scan
1918 * hasn't happened. The node queues a scan and increments the
1919 * sequence number in the LVB.
1921 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1923 struct ocfs2_orphan_scan *os;
1924 int status, i;
1925 u32 seqno = 0;
1927 os = &osb->osb_orphan_scan;
1929 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1930 goto out;
1932 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1933 atomic_read(&os->os_state));
1935 status = ocfs2_orphan_scan_lock(osb, &seqno);
1936 if (status < 0) {
1937 if (status != -EAGAIN)
1938 mlog_errno(status);
1939 goto out;
1942 /* Do no queue the tasks if the volume is being umounted */
1943 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1944 goto unlock;
1946 if (os->os_seqno != seqno) {
1947 os->os_seqno = seqno;
1948 goto unlock;
1951 for (i = 0; i < osb->max_slots; i++)
1952 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1953 NULL, ORPHAN_NO_NEED_TRUNCATE);
1955 * We queued a recovery on orphan slots, increment the sequence
1956 * number and update LVB so other node will skip the scan for a while
1958 seqno++;
1959 os->os_count++;
1960 os->os_scantime = CURRENT_TIME;
1961 unlock:
1962 ocfs2_orphan_scan_unlock(osb, seqno);
1963 out:
1964 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1965 atomic_read(&os->os_state));
1966 return;
1969 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1970 static void ocfs2_orphan_scan_work(struct work_struct *work)
1972 struct ocfs2_orphan_scan *os;
1973 struct ocfs2_super *osb;
1975 os = container_of(work, struct ocfs2_orphan_scan,
1976 os_orphan_scan_work.work);
1977 osb = os->os_osb;
1979 mutex_lock(&os->os_lock);
1980 ocfs2_queue_orphan_scan(osb);
1981 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1982 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1983 ocfs2_orphan_scan_timeout());
1984 mutex_unlock(&os->os_lock);
1987 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1989 struct ocfs2_orphan_scan *os;
1991 os = &osb->osb_orphan_scan;
1992 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1993 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1994 mutex_lock(&os->os_lock);
1995 cancel_delayed_work(&os->os_orphan_scan_work);
1996 mutex_unlock(&os->os_lock);
2000 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2002 struct ocfs2_orphan_scan *os;
2004 os = &osb->osb_orphan_scan;
2005 os->os_osb = osb;
2006 os->os_count = 0;
2007 os->os_seqno = 0;
2008 mutex_init(&os->os_lock);
2009 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2012 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2014 struct ocfs2_orphan_scan *os;
2016 os = &osb->osb_orphan_scan;
2017 os->os_scantime = CURRENT_TIME;
2018 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2019 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2020 else {
2021 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2022 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
2023 ocfs2_orphan_scan_timeout());
2027 struct ocfs2_orphan_filldir_priv {
2028 struct dir_context ctx;
2029 struct inode *head;
2030 struct ocfs2_super *osb;
2031 enum ocfs2_orphan_reco_type orphan_reco_type;
2034 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2035 int name_len, loff_t pos, u64 ino,
2036 unsigned type)
2038 struct ocfs2_orphan_filldir_priv *p =
2039 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2040 struct inode *iter;
2042 if (name_len == 1 && !strncmp(".", name, 1))
2043 return 0;
2044 if (name_len == 2 && !strncmp("..", name, 2))
2045 return 0;
2047 /* do not include dio entry in case of orphan scan */
2048 if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2049 (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050 OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2051 return 0;
2053 /* Skip bad inodes so that recovery can continue */
2054 iter = ocfs2_iget(p->osb, ino,
2055 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2056 if (IS_ERR(iter))
2057 return 0;
2059 if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2060 OCFS2_DIO_ORPHAN_PREFIX_LEN))
2061 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2063 /* Skip inodes which are already added to recover list, since dio may
2064 * happen concurrently with unlink/rename */
2065 if (OCFS2_I(iter)->ip_next_orphan) {
2066 iput(iter);
2067 return 0;
2070 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2071 /* No locking is required for the next_orphan queue as there
2072 * is only ever a single process doing orphan recovery. */
2073 OCFS2_I(iter)->ip_next_orphan = p->head;
2074 p->head = iter;
2076 return 0;
2079 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2080 int slot,
2081 struct inode **head,
2082 enum ocfs2_orphan_reco_type orphan_reco_type)
2084 int status;
2085 struct inode *orphan_dir_inode = NULL;
2086 struct ocfs2_orphan_filldir_priv priv = {
2087 .ctx.actor = ocfs2_orphan_filldir,
2088 .osb = osb,
2089 .head = *head,
2090 .orphan_reco_type = orphan_reco_type
2093 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2094 ORPHAN_DIR_SYSTEM_INODE,
2095 slot);
2096 if (!orphan_dir_inode) {
2097 status = -ENOENT;
2098 mlog_errno(status);
2099 return status;
2102 mutex_lock(&orphan_dir_inode->i_mutex);
2103 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2104 if (status < 0) {
2105 mlog_errno(status);
2106 goto out;
2109 status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2110 if (status) {
2111 mlog_errno(status);
2112 goto out_cluster;
2115 *head = priv.head;
2117 out_cluster:
2118 ocfs2_inode_unlock(orphan_dir_inode, 0);
2119 out:
2120 mutex_unlock(&orphan_dir_inode->i_mutex);
2121 iput(orphan_dir_inode);
2122 return status;
2125 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2126 int slot)
2128 int ret;
2130 spin_lock(&osb->osb_lock);
2131 ret = !osb->osb_orphan_wipes[slot];
2132 spin_unlock(&osb->osb_lock);
2133 return ret;
2136 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2137 int slot)
2139 spin_lock(&osb->osb_lock);
2140 /* Mark ourselves such that new processes in delete_inode()
2141 * know to quit early. */
2142 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2143 while (osb->osb_orphan_wipes[slot]) {
2144 /* If any processes are already in the middle of an
2145 * orphan wipe on this dir, then we need to wait for
2146 * them. */
2147 spin_unlock(&osb->osb_lock);
2148 wait_event_interruptible(osb->osb_wipe_event,
2149 ocfs2_orphan_recovery_can_continue(osb, slot));
2150 spin_lock(&osb->osb_lock);
2152 spin_unlock(&osb->osb_lock);
2155 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2156 int slot)
2158 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2162 * Orphan recovery. Each mounted node has it's own orphan dir which we
2163 * must run during recovery. Our strategy here is to build a list of
2164 * the inodes in the orphan dir and iget/iput them. The VFS does
2165 * (most) of the rest of the work.
2167 * Orphan recovery can happen at any time, not just mount so we have a
2168 * couple of extra considerations.
2170 * - We grab as many inodes as we can under the orphan dir lock -
2171 * doing iget() outside the orphan dir risks getting a reference on
2172 * an invalid inode.
2173 * - We must be sure not to deadlock with other processes on the
2174 * system wanting to run delete_inode(). This can happen when they go
2175 * to lock the orphan dir and the orphan recovery process attempts to
2176 * iget() inside the orphan dir lock. This can be avoided by
2177 * advertising our state to ocfs2_delete_inode().
2179 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2180 int slot,
2181 enum ocfs2_orphan_reco_type orphan_reco_type)
2183 int ret = 0;
2184 struct inode *inode = NULL;
2185 struct inode *iter;
2186 struct ocfs2_inode_info *oi;
2187 struct buffer_head *di_bh = NULL;
2188 struct ocfs2_dinode *di = NULL;
2190 trace_ocfs2_recover_orphans(slot);
2192 ocfs2_mark_recovering_orphan_dir(osb, slot);
2193 ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2194 ocfs2_clear_recovering_orphan_dir(osb, slot);
2196 /* Error here should be noted, but we want to continue with as
2197 * many queued inodes as we've got. */
2198 if (ret)
2199 mlog_errno(ret);
2201 while (inode) {
2202 oi = OCFS2_I(inode);
2203 trace_ocfs2_recover_orphans_iput(
2204 (unsigned long long)oi->ip_blkno);
2206 iter = oi->ip_next_orphan;
2207 oi->ip_next_orphan = NULL;
2209 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2210 mutex_lock(&inode->i_mutex);
2211 ret = ocfs2_rw_lock(inode, 1);
2212 if (ret < 0) {
2213 mlog_errno(ret);
2214 goto unlock_mutex;
2217 * We need to take and drop the inode lock to
2218 * force read inode from disk.
2220 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2221 if (ret) {
2222 mlog_errno(ret);
2223 goto unlock_rw;
2226 di = (struct ocfs2_dinode *)di_bh->b_data;
2228 if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2229 ret = ocfs2_truncate_file(inode, di_bh,
2230 i_size_read(inode));
2231 if (ret < 0) {
2232 if (ret != -ENOSPC)
2233 mlog_errno(ret);
2234 goto unlock_inode;
2237 ret = ocfs2_del_inode_from_orphan(osb, inode,
2238 di_bh, 0, 0);
2239 if (ret)
2240 mlog_errno(ret);
2242 unlock_inode:
2243 ocfs2_inode_unlock(inode, 1);
2244 brelse(di_bh);
2245 di_bh = NULL;
2246 unlock_rw:
2247 ocfs2_rw_unlock(inode, 1);
2248 unlock_mutex:
2249 mutex_unlock(&inode->i_mutex);
2251 /* clear dio flag in ocfs2_inode_info */
2252 oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2253 } else {
2254 spin_lock(&oi->ip_lock);
2255 /* Set the proper information to get us going into
2256 * ocfs2_delete_inode. */
2257 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2258 spin_unlock(&oi->ip_lock);
2261 iput(inode);
2262 inode = iter;
2265 return ret;
2268 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2270 /* This check is good because ocfs2 will wait on our recovery
2271 * thread before changing it to something other than MOUNTED
2272 * or DISABLED. */
2273 wait_event(osb->osb_mount_event,
2274 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2275 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2276 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2278 /* If there's an error on mount, then we may never get to the
2279 * MOUNTED flag, but this is set right before
2280 * dismount_volume() so we can trust it. */
2281 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2282 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2283 mlog(0, "mount error, exiting!\n");
2284 return -EBUSY;
2287 return 0;
2290 static int ocfs2_commit_thread(void *arg)
2292 int status;
2293 struct ocfs2_super *osb = arg;
2294 struct ocfs2_journal *journal = osb->journal;
2296 /* we can trust j_num_trans here because _should_stop() is only set in
2297 * shutdown and nobody other than ourselves should be able to start
2298 * transactions. committing on shutdown might take a few iterations
2299 * as final transactions put deleted inodes on the list */
2300 while (!(kthread_should_stop() &&
2301 atomic_read(&journal->j_num_trans) == 0)) {
2303 wait_event_interruptible(osb->checkpoint_event,
2304 atomic_read(&journal->j_num_trans)
2305 || kthread_should_stop());
2307 status = ocfs2_commit_cache(osb);
2308 if (status < 0) {
2309 static unsigned long abort_warn_time;
2311 /* Warn about this once per minute */
2312 if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2313 mlog(ML_ERROR, "status = %d, journal is "
2314 "already aborted.\n", status);
2316 * After ocfs2_commit_cache() fails, j_num_trans has a
2317 * non-zero value. Sleep here to avoid a busy-wait
2318 * loop.
2320 msleep_interruptible(1000);
2323 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2324 mlog(ML_KTHREAD,
2325 "commit_thread: %u transactions pending on "
2326 "shutdown\n",
2327 atomic_read(&journal->j_num_trans));
2331 return 0;
2334 /* Reads all the journal inodes without taking any cluster locks. Used
2335 * for hard readonly access to determine whether any journal requires
2336 * recovery. Also used to refresh the recovery generation numbers after
2337 * a journal has been recovered by another node.
2339 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2341 int ret = 0;
2342 unsigned int slot;
2343 struct buffer_head *di_bh = NULL;
2344 struct ocfs2_dinode *di;
2345 int journal_dirty = 0;
2347 for(slot = 0; slot < osb->max_slots; slot++) {
2348 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2349 if (ret) {
2350 mlog_errno(ret);
2351 goto out;
2354 di = (struct ocfs2_dinode *) di_bh->b_data;
2356 osb->slot_recovery_generations[slot] =
2357 ocfs2_get_recovery_generation(di);
2359 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2360 OCFS2_JOURNAL_DIRTY_FL)
2361 journal_dirty = 1;
2363 brelse(di_bh);
2364 di_bh = NULL;
2367 out:
2368 if (journal_dirty)
2369 ret = -EROFS;
2370 return ret;