HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / fs / userfaultfd.c
blobfe1c146f4032e931e6c46d9577d61302a24aa665
1 /*
2 * fs/userfaultfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
32 enum userfaultfd_state {
33 UFFD_STATE_WAIT_API,
34 UFFD_STATE_RUNNING,
38 * Start with fault_pending_wqh and fault_wqh so they're more likely
39 * to be in the same cacheline.
41 struct userfaultfd_ctx {
42 /* waitqueue head for the pending (i.e. not read) userfaults */
43 wait_queue_head_t fault_pending_wqh;
44 /* waitqueue head for the userfaults */
45 wait_queue_head_t fault_wqh;
46 /* waitqueue head for the pseudo fd to wakeup poll/read */
47 wait_queue_head_t fd_wqh;
48 /* a refile sequence protected by fault_pending_wqh lock */
49 struct seqcount refile_seq;
50 /* pseudo fd refcounting */
51 atomic_t refcount;
52 /* userfaultfd syscall flags */
53 unsigned int flags;
54 /* state machine */
55 enum userfaultfd_state state;
56 /* released */
57 bool released;
58 /* mm with one ore more vmas attached to this userfaultfd_ctx */
59 struct mm_struct *mm;
62 struct userfaultfd_wait_queue {
63 struct uffd_msg msg;
64 wait_queue_t wq;
65 struct userfaultfd_ctx *ctx;
68 struct userfaultfd_wake_range {
69 unsigned long start;
70 unsigned long len;
73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
74 int wake_flags, void *key)
76 struct userfaultfd_wake_range *range = key;
77 int ret;
78 struct userfaultfd_wait_queue *uwq;
79 unsigned long start, len;
81 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
82 ret = 0;
83 /* len == 0 means wake all */
84 start = range->start;
85 len = range->len;
86 if (len && (start > uwq->msg.arg.pagefault.address ||
87 start + len <= uwq->msg.arg.pagefault.address))
88 goto out;
89 ret = wake_up_state(wq->private, mode);
90 if (ret)
92 * Wake only once, autoremove behavior.
94 * After the effect of list_del_init is visible to the
95 * other CPUs, the waitqueue may disappear from under
96 * us, see the !list_empty_careful() in
97 * handle_userfault(). try_to_wake_up() has an
98 * implicit smp_mb__before_spinlock, and the
99 * wq->private is read before calling the extern
100 * function "wake_up_state" (which in turns calls
101 * try_to_wake_up). While the spin_lock;spin_unlock;
102 * wouldn't be enough, the smp_mb__before_spinlock is
103 * enough to avoid an explicit smp_mb() here.
105 list_del_init(&wq->task_list);
106 out:
107 return ret;
111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
112 * context.
113 * @ctx: [in] Pointer to the userfaultfd context.
115 * Returns: In case of success, returns not zero.
117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
119 if (!atomic_inc_not_zero(&ctx->refcount))
120 BUG();
124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
125 * context.
126 * @ctx: [in] Pointer to userfaultfd context.
128 * The userfaultfd context reference must have been previously acquired either
129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
133 if (atomic_dec_and_test(&ctx->refcount)) {
134 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
135 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
136 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
137 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
138 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
139 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
140 mmdrop(ctx->mm);
141 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
145 static inline void msg_init(struct uffd_msg *msg)
147 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
149 * Must use memset to zero out the paddings or kernel data is
150 * leaked to userland.
152 memset(msg, 0, sizeof(struct uffd_msg));
155 static inline struct uffd_msg userfault_msg(unsigned long address,
156 unsigned int flags,
157 unsigned long reason)
159 struct uffd_msg msg;
160 msg_init(&msg);
161 msg.event = UFFD_EVENT_PAGEFAULT;
162 msg.arg.pagefault.address = address;
163 if (flags & FAULT_FLAG_WRITE)
165 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
166 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
167 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
168 * was a read fault, otherwise if set it means it's
169 * a write fault.
171 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
172 if (reason & VM_UFFD_WP)
174 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
175 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
176 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
177 * a missing fault, otherwise if set it means it's a
178 * write protect fault.
180 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
181 return msg;
185 * Verify the pagetables are still not ok after having reigstered into
186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
187 * userfault that has already been resolved, if userfaultfd_read and
188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
189 * threads.
191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
192 unsigned long address,
193 unsigned long flags,
194 unsigned long reason)
196 struct mm_struct *mm = ctx->mm;
197 pgd_t *pgd;
198 pud_t *pud;
199 pmd_t *pmd, _pmd;
200 pte_t *pte;
201 bool ret = true;
203 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
205 pgd = pgd_offset(mm, address);
206 if (!pgd_present(*pgd))
207 goto out;
208 pud = pud_offset(pgd, address);
209 if (!pud_present(*pud))
210 goto out;
211 pmd = pmd_offset(pud, address);
213 * READ_ONCE must function as a barrier with narrower scope
214 * and it must be equivalent to:
215 * _pmd = *pmd; barrier();
217 * This is to deal with the instability (as in
218 * pmd_trans_unstable) of the pmd.
220 _pmd = READ_ONCE(*pmd);
221 if (!pmd_present(_pmd))
222 goto out;
224 ret = false;
225 if (pmd_trans_huge(_pmd))
226 goto out;
229 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
230 * and use the standard pte_offset_map() instead of parsing _pmd.
232 pte = pte_offset_map(pmd, address);
234 * Lockless access: we're in a wait_event so it's ok if it
235 * changes under us.
237 if (pte_none(*pte))
238 ret = true;
239 pte_unmap(pte);
241 out:
242 return ret;
246 * The locking rules involved in returning VM_FAULT_RETRY depending on
247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
249 * recommendation in __lock_page_or_retry is not an understatement.
251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
253 * not set.
255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
256 * set, VM_FAULT_RETRY can still be returned if and only if there are
257 * fatal_signal_pending()s, and the mmap_sem must be released before
258 * returning it.
260 int handle_userfault(struct vm_area_struct *vma, unsigned long address,
261 unsigned int flags, unsigned long reason)
263 struct mm_struct *mm = vma->vm_mm;
264 struct userfaultfd_ctx *ctx;
265 struct userfaultfd_wait_queue uwq;
266 int ret;
267 bool must_wait, return_to_userland;
269 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
271 ret = VM_FAULT_SIGBUS;
272 ctx = vma->vm_userfaultfd_ctx.ctx;
273 if (!ctx)
274 goto out;
276 BUG_ON(ctx->mm != mm);
278 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
279 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
282 * If it's already released don't get it. This avoids to loop
283 * in __get_user_pages if userfaultfd_release waits on the
284 * caller of handle_userfault to release the mmap_sem.
286 if (unlikely(ACCESS_ONCE(ctx->released)))
287 goto out;
290 * We don't do userfault handling for the final child pid update.
292 if (current->flags & PF_EXITING)
293 goto out;
296 * Check that we can return VM_FAULT_RETRY.
298 * NOTE: it should become possible to return VM_FAULT_RETRY
299 * even if FAULT_FLAG_TRIED is set without leading to gup()
300 * -EBUSY failures, if the userfaultfd is to be extended for
301 * VM_UFFD_WP tracking and we intend to arm the userfault
302 * without first stopping userland access to the memory. For
303 * VM_UFFD_MISSING userfaults this is enough for now.
305 if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) {
307 * Validate the invariant that nowait must allow retry
308 * to be sure not to return SIGBUS erroneously on
309 * nowait invocations.
311 BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT);
312 #ifdef CONFIG_DEBUG_VM
313 if (printk_ratelimit()) {
314 printk(KERN_WARNING
315 "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags);
316 dump_stack();
318 #endif
319 goto out;
323 * Handle nowait, not much to do other than tell it to retry
324 * and wait.
326 ret = VM_FAULT_RETRY;
327 if (flags & FAULT_FLAG_RETRY_NOWAIT)
328 goto out;
330 /* take the reference before dropping the mmap_sem */
331 userfaultfd_ctx_get(ctx);
333 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
334 uwq.wq.private = current;
335 uwq.msg = userfault_msg(address, flags, reason);
336 uwq.ctx = ctx;
338 return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
339 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
341 spin_lock(&ctx->fault_pending_wqh.lock);
343 * After the __add_wait_queue the uwq is visible to userland
344 * through poll/read().
346 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
348 * The smp_mb() after __set_current_state prevents the reads
349 * following the spin_unlock to happen before the list_add in
350 * __add_wait_queue.
352 set_current_state(return_to_userland ? TASK_INTERRUPTIBLE :
353 TASK_KILLABLE);
354 spin_unlock(&ctx->fault_pending_wqh.lock);
356 must_wait = userfaultfd_must_wait(ctx, address, flags, reason);
357 up_read(&mm->mmap_sem);
359 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
360 (return_to_userland ? !signal_pending(current) :
361 !fatal_signal_pending(current)))) {
362 wake_up_poll(&ctx->fd_wqh, POLLIN);
363 schedule();
364 ret |= VM_FAULT_MAJOR;
367 __set_current_state(TASK_RUNNING);
369 if (return_to_userland) {
370 if (signal_pending(current) &&
371 !fatal_signal_pending(current)) {
373 * If we got a SIGSTOP or SIGCONT and this is
374 * a normal userland page fault, just let
375 * userland return so the signal will be
376 * handled and gdb debugging works. The page
377 * fault code immediately after we return from
378 * this function is going to release the
379 * mmap_sem and it's not depending on it
380 * (unlike gup would if we were not to return
381 * VM_FAULT_RETRY).
383 * If a fatal signal is pending we still take
384 * the streamlined VM_FAULT_RETRY failure path
385 * and there's no need to retake the mmap_sem
386 * in such case.
388 down_read(&mm->mmap_sem);
389 ret = VM_FAULT_NOPAGE;
394 * Here we race with the list_del; list_add in
395 * userfaultfd_ctx_read(), however because we don't ever run
396 * list_del_init() to refile across the two lists, the prev
397 * and next pointers will never point to self. list_add also
398 * would never let any of the two pointers to point to
399 * self. So list_empty_careful won't risk to see both pointers
400 * pointing to self at any time during the list refile. The
401 * only case where list_del_init() is called is the full
402 * removal in the wake function and there we don't re-list_add
403 * and it's fine not to block on the spinlock. The uwq on this
404 * kernel stack can be released after the list_del_init.
406 if (!list_empty_careful(&uwq.wq.task_list)) {
407 spin_lock(&ctx->fault_pending_wqh.lock);
409 * No need of list_del_init(), the uwq on the stack
410 * will be freed shortly anyway.
412 list_del(&uwq.wq.task_list);
413 spin_unlock(&ctx->fault_pending_wqh.lock);
417 * ctx may go away after this if the userfault pseudo fd is
418 * already released.
420 userfaultfd_ctx_put(ctx);
422 out:
423 return ret;
426 static int userfaultfd_release(struct inode *inode, struct file *file)
428 struct userfaultfd_ctx *ctx = file->private_data;
429 struct mm_struct *mm = ctx->mm;
430 struct vm_area_struct *vma, *prev;
431 /* len == 0 means wake all */
432 struct userfaultfd_wake_range range = { .len = 0, };
433 unsigned long new_flags;
434 bool still_valid;
436 ACCESS_ONCE(ctx->released) = true;
438 if (!mmget_not_zero(mm))
439 goto wakeup;
442 * Flush page faults out of all CPUs. NOTE: all page faults
443 * must be retried without returning VM_FAULT_SIGBUS if
444 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
445 * changes while handle_userfault released the mmap_sem. So
446 * it's critical that released is set to true (above), before
447 * taking the mmap_sem for writing.
449 down_write(&mm->mmap_sem);
450 still_valid = mmget_still_valid(mm);
451 prev = NULL;
452 for (vma = mm->mmap; vma; vma = vma->vm_next) {
453 cond_resched();
454 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
455 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
456 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
457 prev = vma;
458 continue;
460 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
461 if (still_valid) {
462 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
463 new_flags, vma->anon_vma,
464 vma->vm_file, vma->vm_pgoff,
465 vma_policy(vma),
466 NULL_VM_UFFD_CTX);
467 if (prev)
468 vma = prev;
469 else
470 prev = vma;
472 vma->vm_flags = new_flags;
473 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
475 up_write(&mm->mmap_sem);
476 mmput(mm);
477 wakeup:
479 * After no new page faults can wait on this fault_*wqh, flush
480 * the last page faults that may have been already waiting on
481 * the fault_*wqh.
483 spin_lock(&ctx->fault_pending_wqh.lock);
484 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
485 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
486 spin_unlock(&ctx->fault_pending_wqh.lock);
488 wake_up_poll(&ctx->fd_wqh, POLLHUP);
489 userfaultfd_ctx_put(ctx);
490 return 0;
493 /* fault_pending_wqh.lock must be hold by the caller */
494 static inline struct userfaultfd_wait_queue *find_userfault(
495 struct userfaultfd_ctx *ctx)
497 wait_queue_t *wq;
498 struct userfaultfd_wait_queue *uwq;
500 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
502 uwq = NULL;
503 if (!waitqueue_active(&ctx->fault_pending_wqh))
504 goto out;
505 /* walk in reverse to provide FIFO behavior to read userfaults */
506 wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
507 typeof(*wq), task_list);
508 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
509 out:
510 return uwq;
513 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
515 struct userfaultfd_ctx *ctx = file->private_data;
516 unsigned int ret;
518 poll_wait(file, &ctx->fd_wqh, wait);
520 switch (ctx->state) {
521 case UFFD_STATE_WAIT_API:
522 return POLLERR;
523 case UFFD_STATE_RUNNING:
525 * poll() never guarantees that read won't block.
526 * userfaults can be waken before they're read().
528 if (unlikely(!(file->f_flags & O_NONBLOCK)))
529 return POLLERR;
531 * lockless access to see if there are pending faults
532 * __pollwait last action is the add_wait_queue but
533 * the spin_unlock would allow the waitqueue_active to
534 * pass above the actual list_add inside
535 * add_wait_queue critical section. So use a full
536 * memory barrier to serialize the list_add write of
537 * add_wait_queue() with the waitqueue_active read
538 * below.
540 ret = 0;
541 smp_mb();
542 if (waitqueue_active(&ctx->fault_pending_wqh))
543 ret = POLLIN;
544 return ret;
545 default:
546 BUG();
550 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
551 struct uffd_msg *msg)
553 ssize_t ret;
554 DECLARE_WAITQUEUE(wait, current);
555 struct userfaultfd_wait_queue *uwq;
557 /* always take the fd_wqh lock before the fault_pending_wqh lock */
558 spin_lock(&ctx->fd_wqh.lock);
559 __add_wait_queue(&ctx->fd_wqh, &wait);
560 for (;;) {
561 set_current_state(TASK_INTERRUPTIBLE);
562 spin_lock(&ctx->fault_pending_wqh.lock);
563 uwq = find_userfault(ctx);
564 if (uwq) {
566 * Use a seqcount to repeat the lockless check
567 * in wake_userfault() to avoid missing
568 * wakeups because during the refile both
569 * waitqueue could become empty if this is the
570 * only userfault.
572 write_seqcount_begin(&ctx->refile_seq);
575 * The fault_pending_wqh.lock prevents the uwq
576 * to disappear from under us.
578 * Refile this userfault from
579 * fault_pending_wqh to fault_wqh, it's not
580 * pending anymore after we read it.
582 * Use list_del() by hand (as
583 * userfaultfd_wake_function also uses
584 * list_del_init() by hand) to be sure nobody
585 * changes __remove_wait_queue() to use
586 * list_del_init() in turn breaking the
587 * !list_empty_careful() check in
588 * handle_userfault(). The uwq->wq.task_list
589 * must never be empty at any time during the
590 * refile, or the waitqueue could disappear
591 * from under us. The "wait_queue_head_t"
592 * parameter of __remove_wait_queue() is unused
593 * anyway.
595 list_del(&uwq->wq.task_list);
596 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
598 write_seqcount_end(&ctx->refile_seq);
600 /* careful to always initialize msg if ret == 0 */
601 *msg = uwq->msg;
602 spin_unlock(&ctx->fault_pending_wqh.lock);
603 ret = 0;
604 break;
606 spin_unlock(&ctx->fault_pending_wqh.lock);
607 if (signal_pending(current)) {
608 ret = -ERESTARTSYS;
609 break;
611 if (no_wait) {
612 ret = -EAGAIN;
613 break;
615 spin_unlock(&ctx->fd_wqh.lock);
616 schedule();
617 spin_lock(&ctx->fd_wqh.lock);
619 __remove_wait_queue(&ctx->fd_wqh, &wait);
620 __set_current_state(TASK_RUNNING);
621 spin_unlock(&ctx->fd_wqh.lock);
623 return ret;
626 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
627 size_t count, loff_t *ppos)
629 struct userfaultfd_ctx *ctx = file->private_data;
630 ssize_t _ret, ret = 0;
631 struct uffd_msg msg;
632 int no_wait = file->f_flags & O_NONBLOCK;
634 if (ctx->state == UFFD_STATE_WAIT_API)
635 return -EINVAL;
637 for (;;) {
638 if (count < sizeof(msg))
639 return ret ? ret : -EINVAL;
640 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
641 if (_ret < 0)
642 return ret ? ret : _ret;
643 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
644 return ret ? ret : -EFAULT;
645 ret += sizeof(msg);
646 buf += sizeof(msg);
647 count -= sizeof(msg);
649 * Allow to read more than one fault at time but only
650 * block if waiting for the very first one.
652 no_wait = O_NONBLOCK;
656 static void __wake_userfault(struct userfaultfd_ctx *ctx,
657 struct userfaultfd_wake_range *range)
659 unsigned long start, end;
661 start = range->start;
662 end = range->start + range->len;
664 spin_lock(&ctx->fault_pending_wqh.lock);
665 /* wake all in the range and autoremove */
666 if (waitqueue_active(&ctx->fault_pending_wqh))
667 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
668 range);
669 if (waitqueue_active(&ctx->fault_wqh))
670 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
671 spin_unlock(&ctx->fault_pending_wqh.lock);
674 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
675 struct userfaultfd_wake_range *range)
677 unsigned seq;
678 bool need_wakeup;
681 * To be sure waitqueue_active() is not reordered by the CPU
682 * before the pagetable update, use an explicit SMP memory
683 * barrier here. PT lock release or up_read(mmap_sem) still
684 * have release semantics that can allow the
685 * waitqueue_active() to be reordered before the pte update.
687 smp_mb();
690 * Use waitqueue_active because it's very frequent to
691 * change the address space atomically even if there are no
692 * userfaults yet. So we take the spinlock only when we're
693 * sure we've userfaults to wake.
695 do {
696 seq = read_seqcount_begin(&ctx->refile_seq);
697 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
698 waitqueue_active(&ctx->fault_wqh);
699 cond_resched();
700 } while (read_seqcount_retry(&ctx->refile_seq, seq));
701 if (need_wakeup)
702 __wake_userfault(ctx, range);
705 static __always_inline int validate_range(struct mm_struct *mm,
706 __u64 start, __u64 len)
708 __u64 task_size = mm->task_size;
710 if (start & ~PAGE_MASK)
711 return -EINVAL;
712 if (len & ~PAGE_MASK)
713 return -EINVAL;
714 if (!len)
715 return -EINVAL;
716 if (start < mmap_min_addr)
717 return -EINVAL;
718 if (start >= task_size)
719 return -EINVAL;
720 if (len > task_size - start)
721 return -EINVAL;
722 return 0;
725 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
726 unsigned long arg)
728 struct mm_struct *mm = ctx->mm;
729 struct vm_area_struct *vma, *prev, *cur;
730 int ret;
731 struct uffdio_register uffdio_register;
732 struct uffdio_register __user *user_uffdio_register;
733 unsigned long vm_flags, new_flags;
734 bool found;
735 unsigned long start, end, vma_end;
737 user_uffdio_register = (struct uffdio_register __user *) arg;
739 ret = -EFAULT;
740 if (copy_from_user(&uffdio_register, user_uffdio_register,
741 sizeof(uffdio_register)-sizeof(__u64)))
742 goto out;
744 ret = -EINVAL;
745 if (!uffdio_register.mode)
746 goto out;
747 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
748 UFFDIO_REGISTER_MODE_WP))
749 goto out;
750 vm_flags = 0;
751 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
752 vm_flags |= VM_UFFD_MISSING;
753 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
754 vm_flags |= VM_UFFD_WP;
756 * FIXME: remove the below error constraint by
757 * implementing the wprotect tracking mode.
759 ret = -EINVAL;
760 goto out;
763 ret = validate_range(mm, uffdio_register.range.start,
764 uffdio_register.range.len);
765 if (ret)
766 goto out;
768 start = uffdio_register.range.start;
769 end = start + uffdio_register.range.len;
771 ret = -ENOMEM;
772 if (!mmget_not_zero(mm))
773 goto out;
775 down_write(&mm->mmap_sem);
776 if (!mmget_still_valid(mm))
777 goto out_unlock;
778 vma = find_vma_prev(mm, start, &prev);
779 if (!vma)
780 goto out_unlock;
782 /* check that there's at least one vma in the range */
783 ret = -EINVAL;
784 if (vma->vm_start >= end)
785 goto out_unlock;
788 * Search for not compatible vmas.
790 * FIXME: this shall be relaxed later so that it doesn't fail
791 * on tmpfs backed vmas (in addition to the current allowance
792 * on anonymous vmas).
794 found = false;
795 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
796 cond_resched();
798 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
799 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
801 /* check not compatible vmas */
802 ret = -EINVAL;
803 if (cur->vm_ops)
804 goto out_unlock;
807 * Check that this vma isn't already owned by a
808 * different userfaultfd. We can't allow more than one
809 * userfaultfd to own a single vma simultaneously or we
810 * wouldn't know which one to deliver the userfaults to.
812 ret = -EBUSY;
813 if (cur->vm_userfaultfd_ctx.ctx &&
814 cur->vm_userfaultfd_ctx.ctx != ctx)
815 goto out_unlock;
817 found = true;
819 BUG_ON(!found);
821 if (vma->vm_start < start)
822 prev = vma;
824 ret = 0;
825 do {
826 cond_resched();
828 BUG_ON(vma->vm_ops);
829 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
830 vma->vm_userfaultfd_ctx.ctx != ctx);
833 * Nothing to do: this vma is already registered into this
834 * userfaultfd and with the right tracking mode too.
836 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
837 (vma->vm_flags & vm_flags) == vm_flags)
838 goto skip;
840 if (vma->vm_start > start)
841 start = vma->vm_start;
842 vma_end = min(end, vma->vm_end);
844 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
845 prev = vma_merge(mm, prev, start, vma_end, new_flags,
846 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
847 vma_policy(vma),
848 ((struct vm_userfaultfd_ctx){ ctx }));
849 if (prev) {
850 vma = prev;
851 goto next;
853 if (vma->vm_start < start) {
854 ret = split_vma(mm, vma, start, 1);
855 if (ret)
856 break;
858 if (vma->vm_end > end) {
859 ret = split_vma(mm, vma, end, 0);
860 if (ret)
861 break;
863 next:
865 * In the vma_merge() successful mprotect-like case 8:
866 * the next vma was merged into the current one and
867 * the current one has not been updated yet.
869 vma->vm_flags = new_flags;
870 vma->vm_userfaultfd_ctx.ctx = ctx;
872 skip:
873 prev = vma;
874 start = vma->vm_end;
875 vma = vma->vm_next;
876 } while (vma && vma->vm_start < end);
877 out_unlock:
878 up_write(&mm->mmap_sem);
879 mmput(mm);
880 if (!ret) {
882 * Now that we scanned all vmas we can already tell
883 * userland which ioctls methods are guaranteed to
884 * succeed on this range.
886 if (put_user(UFFD_API_RANGE_IOCTLS,
887 &user_uffdio_register->ioctls))
888 ret = -EFAULT;
890 out:
891 return ret;
894 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
895 unsigned long arg)
897 struct mm_struct *mm = ctx->mm;
898 struct vm_area_struct *vma, *prev, *cur;
899 int ret;
900 struct uffdio_range uffdio_unregister;
901 unsigned long new_flags;
902 bool found;
903 unsigned long start, end, vma_end;
904 const void __user *buf = (void __user *)arg;
906 ret = -EFAULT;
907 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
908 goto out;
910 ret = validate_range(mm, uffdio_unregister.start,
911 uffdio_unregister.len);
912 if (ret)
913 goto out;
915 start = uffdio_unregister.start;
916 end = start + uffdio_unregister.len;
918 ret = -ENOMEM;
919 if (!mmget_not_zero(mm))
920 goto out;
922 down_write(&mm->mmap_sem);
923 if (!mmget_still_valid(mm))
924 goto out_unlock;
925 vma = find_vma_prev(mm, start, &prev);
926 if (!vma)
927 goto out_unlock;
929 /* check that there's at least one vma in the range */
930 ret = -EINVAL;
931 if (vma->vm_start >= end)
932 goto out_unlock;
935 * Search for not compatible vmas.
937 * FIXME: this shall be relaxed later so that it doesn't fail
938 * on tmpfs backed vmas (in addition to the current allowance
939 * on anonymous vmas).
941 found = false;
942 ret = -EINVAL;
943 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
944 cond_resched();
946 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
947 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
950 * Check not compatible vmas, not strictly required
951 * here as not compatible vmas cannot have an
952 * userfaultfd_ctx registered on them, but this
953 * provides for more strict behavior to notice
954 * unregistration errors.
956 if (cur->vm_ops)
957 goto out_unlock;
959 found = true;
961 BUG_ON(!found);
963 if (vma->vm_start < start)
964 prev = vma;
966 ret = 0;
967 do {
968 cond_resched();
970 BUG_ON(vma->vm_ops);
973 * Nothing to do: this vma is already registered into this
974 * userfaultfd and with the right tracking mode too.
976 if (!vma->vm_userfaultfd_ctx.ctx)
977 goto skip;
979 if (vma->vm_start > start)
980 start = vma->vm_start;
981 vma_end = min(end, vma->vm_end);
983 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
984 prev = vma_merge(mm, prev, start, vma_end, new_flags,
985 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
986 vma_policy(vma),
987 NULL_VM_UFFD_CTX);
988 if (prev) {
989 vma = prev;
990 goto next;
992 if (vma->vm_start < start) {
993 ret = split_vma(mm, vma, start, 1);
994 if (ret)
995 break;
997 if (vma->vm_end > end) {
998 ret = split_vma(mm, vma, end, 0);
999 if (ret)
1000 break;
1002 next:
1004 * In the vma_merge() successful mprotect-like case 8:
1005 * the next vma was merged into the current one and
1006 * the current one has not been updated yet.
1008 vma->vm_flags = new_flags;
1009 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1011 skip:
1012 prev = vma;
1013 start = vma->vm_end;
1014 vma = vma->vm_next;
1015 } while (vma && vma->vm_start < end);
1016 out_unlock:
1017 up_write(&mm->mmap_sem);
1018 mmput(mm);
1019 out:
1020 return ret;
1024 * userfaultfd_wake may be used in combination with the
1025 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1027 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1028 unsigned long arg)
1030 int ret;
1031 struct uffdio_range uffdio_wake;
1032 struct userfaultfd_wake_range range;
1033 const void __user *buf = (void __user *)arg;
1035 ret = -EFAULT;
1036 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1037 goto out;
1039 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1040 if (ret)
1041 goto out;
1043 range.start = uffdio_wake.start;
1044 range.len = uffdio_wake.len;
1047 * len == 0 means wake all and we don't want to wake all here,
1048 * so check it again to be sure.
1050 VM_BUG_ON(!range.len);
1052 wake_userfault(ctx, &range);
1053 ret = 0;
1055 out:
1056 return ret;
1059 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1060 unsigned long arg)
1062 __s64 ret;
1063 struct uffdio_copy uffdio_copy;
1064 struct uffdio_copy __user *user_uffdio_copy;
1065 struct userfaultfd_wake_range range;
1067 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1069 ret = -EFAULT;
1070 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1071 /* don't copy "copy" last field */
1072 sizeof(uffdio_copy)-sizeof(__s64)))
1073 goto out;
1075 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1076 if (ret)
1077 goto out;
1079 * double check for wraparound just in case. copy_from_user()
1080 * will later check uffdio_copy.src + uffdio_copy.len to fit
1081 * in the userland range.
1083 ret = -EINVAL;
1084 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1085 goto out;
1086 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1087 goto out;
1088 if (mmget_not_zero(ctx->mm)) {
1089 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1090 uffdio_copy.len);
1091 mmput(ctx->mm);
1093 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1094 return -EFAULT;
1095 if (ret < 0)
1096 goto out;
1097 BUG_ON(!ret);
1098 /* len == 0 would wake all */
1099 range.len = ret;
1100 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1101 range.start = uffdio_copy.dst;
1102 wake_userfault(ctx, &range);
1104 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1105 out:
1106 return ret;
1109 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1110 unsigned long arg)
1112 __s64 ret;
1113 struct uffdio_zeropage uffdio_zeropage;
1114 struct uffdio_zeropage __user *user_uffdio_zeropage;
1115 struct userfaultfd_wake_range range;
1117 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1119 ret = -EFAULT;
1120 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1121 /* don't copy "zeropage" last field */
1122 sizeof(uffdio_zeropage)-sizeof(__s64)))
1123 goto out;
1125 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1126 uffdio_zeropage.range.len);
1127 if (ret)
1128 goto out;
1129 ret = -EINVAL;
1130 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1131 goto out;
1133 if (mmget_not_zero(ctx->mm)) {
1134 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1135 uffdio_zeropage.range.len);
1136 mmput(ctx->mm);
1138 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1139 return -EFAULT;
1140 if (ret < 0)
1141 goto out;
1142 /* len == 0 would wake all */
1143 BUG_ON(!ret);
1144 range.len = ret;
1145 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1146 range.start = uffdio_zeropage.range.start;
1147 wake_userfault(ctx, &range);
1149 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1150 out:
1151 return ret;
1155 * userland asks for a certain API version and we return which bits
1156 * and ioctl commands are implemented in this kernel for such API
1157 * version or -EINVAL if unknown.
1159 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1160 unsigned long arg)
1162 struct uffdio_api uffdio_api;
1163 void __user *buf = (void __user *)arg;
1164 int ret;
1166 ret = -EINVAL;
1167 if (ctx->state != UFFD_STATE_WAIT_API)
1168 goto out;
1169 ret = -EFAULT;
1170 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1171 goto out;
1172 if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1173 memset(&uffdio_api, 0, sizeof(uffdio_api));
1174 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1175 goto out;
1176 ret = -EINVAL;
1177 goto out;
1179 uffdio_api.features = UFFD_API_FEATURES;
1180 uffdio_api.ioctls = UFFD_API_IOCTLS;
1181 ret = -EFAULT;
1182 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1183 goto out;
1184 ctx->state = UFFD_STATE_RUNNING;
1185 ret = 0;
1186 out:
1187 return ret;
1190 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1191 unsigned long arg)
1193 int ret = -EINVAL;
1194 struct userfaultfd_ctx *ctx = file->private_data;
1196 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1197 return -EINVAL;
1199 switch(cmd) {
1200 case UFFDIO_API:
1201 ret = userfaultfd_api(ctx, arg);
1202 break;
1203 case UFFDIO_REGISTER:
1204 ret = userfaultfd_register(ctx, arg);
1205 break;
1206 case UFFDIO_UNREGISTER:
1207 ret = userfaultfd_unregister(ctx, arg);
1208 break;
1209 case UFFDIO_WAKE:
1210 ret = userfaultfd_wake(ctx, arg);
1211 break;
1212 case UFFDIO_COPY:
1213 ret = userfaultfd_copy(ctx, arg);
1214 break;
1215 case UFFDIO_ZEROPAGE:
1216 ret = userfaultfd_zeropage(ctx, arg);
1217 break;
1219 return ret;
1222 #ifdef CONFIG_PROC_FS
1223 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1225 struct userfaultfd_ctx *ctx = f->private_data;
1226 wait_queue_t *wq;
1227 struct userfaultfd_wait_queue *uwq;
1228 unsigned long pending = 0, total = 0;
1230 spin_lock(&ctx->fault_pending_wqh.lock);
1231 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1232 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1233 pending++;
1234 total++;
1236 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1237 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1238 total++;
1240 spin_unlock(&ctx->fault_pending_wqh.lock);
1243 * If more protocols will be added, there will be all shown
1244 * separated by a space. Like this:
1245 * protocols: aa:... bb:...
1247 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1248 pending, total, UFFD_API, UFFD_API_FEATURES,
1249 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1251 #endif
1253 static const struct file_operations userfaultfd_fops = {
1254 #ifdef CONFIG_PROC_FS
1255 .show_fdinfo = userfaultfd_show_fdinfo,
1256 #endif
1257 .release = userfaultfd_release,
1258 .poll = userfaultfd_poll,
1259 .read = userfaultfd_read,
1260 .unlocked_ioctl = userfaultfd_ioctl,
1261 .compat_ioctl = userfaultfd_ioctl,
1262 .llseek = noop_llseek,
1265 static void init_once_userfaultfd_ctx(void *mem)
1267 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1269 init_waitqueue_head(&ctx->fault_pending_wqh);
1270 init_waitqueue_head(&ctx->fault_wqh);
1271 init_waitqueue_head(&ctx->fd_wqh);
1272 seqcount_init(&ctx->refile_seq);
1276 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1277 * @flags: Flags for the userfaultfd file.
1279 * This function creates an userfaultfd file pointer, w/out installing
1280 * it into the fd table. This is useful when the userfaultfd file is
1281 * used during the initialization of data structures that require
1282 * extra setup after the userfaultfd creation. So the userfaultfd
1283 * creation is split into the file pointer creation phase, and the
1284 * file descriptor installation phase. In this way races with
1285 * userspace closing the newly installed file descriptor can be
1286 * avoided. Returns an userfaultfd file pointer, or a proper error
1287 * pointer.
1289 static struct file *userfaultfd_file_create(int flags)
1291 struct file *file;
1292 struct userfaultfd_ctx *ctx;
1294 BUG_ON(!current->mm);
1296 /* Check the UFFD_* constants for consistency. */
1297 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1298 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1300 file = ERR_PTR(-EINVAL);
1301 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1302 goto out;
1304 file = ERR_PTR(-ENOMEM);
1305 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1306 if (!ctx)
1307 goto out;
1309 atomic_set(&ctx->refcount, 1);
1310 ctx->flags = flags;
1311 ctx->state = UFFD_STATE_WAIT_API;
1312 ctx->released = false;
1313 ctx->mm = current->mm;
1314 /* prevent the mm struct to be freed */
1315 atomic_inc(&ctx->mm->mm_count);
1317 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1318 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1319 if (IS_ERR(file)) {
1320 mmdrop(ctx->mm);
1321 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1323 out:
1324 return file;
1327 SYSCALL_DEFINE1(userfaultfd, int, flags)
1329 int fd, error;
1330 struct file *file;
1332 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1333 if (error < 0)
1334 return error;
1335 fd = error;
1337 file = userfaultfd_file_create(flags);
1338 if (IS_ERR(file)) {
1339 error = PTR_ERR(file);
1340 goto err_put_unused_fd;
1342 fd_install(fd, file);
1344 return fd;
1346 err_put_unused_fd:
1347 put_unused_fd(fd);
1349 return error;
1352 static int __init userfaultfd_init(void)
1354 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1355 sizeof(struct userfaultfd_ctx),
1357 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1358 init_once_userfaultfd_ctx);
1359 return 0;
1361 __initcall(userfaultfd_init);