2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
31 #include "xfs_ialloc.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
35 #include "xfs_trans.h"
36 #include "xfs_trans_priv.h"
38 #include "xfs_error.h"
39 #include "xfs_quota.h"
40 #include "xfs_fsops.h"
41 #include "xfs_trace.h"
42 #include "xfs_icache.h"
43 #include "xfs_sysfs.h"
46 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
47 static int xfs_uuid_table_size
;
48 static uuid_t
*xfs_uuid_table
;
51 xfs_uuid_table_free(void)
53 if (xfs_uuid_table_size
== 0)
55 kmem_free(xfs_uuid_table
);
56 xfs_uuid_table
= NULL
;
57 xfs_uuid_table_size
= 0;
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
71 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
74 if (uuid_is_nil(uuid
)) {
75 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
79 mutex_lock(&xfs_uuid_table_mutex
);
80 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
81 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
85 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
90 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
91 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
92 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
94 hole
= xfs_uuid_table_size
++;
96 xfs_uuid_table
[hole
] = *uuid
;
97 mutex_unlock(&xfs_uuid_table_mutex
);
102 mutex_unlock(&xfs_uuid_table_mutex
);
103 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
109 struct xfs_mount
*mp
)
111 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
114 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
117 mutex_lock(&xfs_uuid_table_mutex
);
118 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
119 if (uuid_is_nil(&xfs_uuid_table
[i
]))
121 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
123 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
126 ASSERT(i
< xfs_uuid_table_size
);
127 mutex_unlock(&xfs_uuid_table_mutex
);
133 struct rcu_head
*head
)
135 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
137 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
142 * Free up the per-ag resources associated with the mount structure.
149 struct xfs_perag
*pag
;
151 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
152 spin_lock(&mp
->m_perag_lock
);
153 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
154 spin_unlock(&mp
->m_perag_lock
);
156 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
157 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
166 xfs_sb_validate_fsb_count(
170 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
171 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
173 /* Limited by ULONG_MAX of page cache index */
174 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
180 xfs_initialize_perag(
182 xfs_agnumber_t agcount
,
183 xfs_agnumber_t
*maxagi
)
185 xfs_agnumber_t index
;
186 xfs_agnumber_t first_initialised
= 0;
190 xfs_sb_t
*sbp
= &mp
->m_sb
;
194 * Walk the current per-ag tree so we don't try to initialise AGs
195 * that already exist (growfs case). Allocate and insert all the
196 * AGs we don't find ready for initialisation.
198 for (index
= 0; index
< agcount
; index
++) {
199 pag
= xfs_perag_get(mp
, index
);
204 if (!first_initialised
)
205 first_initialised
= index
;
207 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
210 pag
->pag_agno
= index
;
212 spin_lock_init(&pag
->pag_ici_lock
);
213 mutex_init(&pag
->pag_ici_reclaim_lock
);
214 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
215 spin_lock_init(&pag
->pag_buf_lock
);
216 pag
->pag_buf_tree
= RB_ROOT
;
218 if (radix_tree_preload(GFP_NOFS
))
221 spin_lock(&mp
->m_perag_lock
);
222 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
224 spin_unlock(&mp
->m_perag_lock
);
225 radix_tree_preload_end();
229 spin_unlock(&mp
->m_perag_lock
);
230 radix_tree_preload_end();
234 * If we mount with the inode64 option, or no inode overflows
235 * the legacy 32-bit address space clear the inode32 option.
237 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
238 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
240 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
241 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
243 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
245 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
246 index
= xfs_set_inode32(mp
, agcount
);
248 index
= xfs_set_inode64(mp
, agcount
);
256 for (; index
> first_initialised
; index
--) {
257 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
266 * Does the initial read of the superblock.
270 struct xfs_mount
*mp
,
273 unsigned int sector_size
;
275 struct xfs_sb
*sbp
= &mp
->m_sb
;
277 int loud
= !(flags
& XFS_MFSI_QUIET
);
278 const struct xfs_buf_ops
*buf_ops
;
280 ASSERT(mp
->m_sb_bp
== NULL
);
281 ASSERT(mp
->m_ddev_targp
!= NULL
);
284 * For the initial read, we must guess at the sector
285 * size based on the block device. It's enough to
286 * get the sb_sectsize out of the superblock and
287 * then reread with the proper length.
288 * We don't verify it yet, because it may not be complete.
290 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
294 * Allocate a (locked) buffer to hold the superblock.
295 * This will be kept around at all times to optimize
296 * access to the superblock.
299 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
300 BTOBB(sector_size
), 0, &bp
, buf_ops
);
303 xfs_warn(mp
, "SB validate failed with error %d.", error
);
304 /* bad CRC means corrupted metadata */
305 if (error
== -EFSBADCRC
)
306 error
= -EFSCORRUPTED
;
311 * Initialize the mount structure from the superblock.
313 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
319 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
321 xfs_warn(mp
, "Invalid superblock magic number");
327 * We must be able to do sector-sized and sector-aligned IO.
329 if (sector_size
> sbp
->sb_sectsize
) {
331 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
332 sector_size
, sbp
->sb_sectsize
);
337 if (buf_ops
== NULL
) {
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
343 sector_size
= sbp
->sb_sectsize
;
344 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
348 xfs_reinit_percpu_counters(mp
);
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp
->b_ops
= &xfs_sb_buf_ops
;
363 * Update alignment values based on mount options and sb values
366 xfs_update_alignment(xfs_mount_t
*mp
)
368 xfs_sb_t
*sbp
= &(mp
->m_sb
);
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
375 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
376 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
383 * Convert the stripe unit and width to FSBs.
385 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
386 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
391 } else if (mp
->m_dalign
) {
392 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp
->m_dalign
, sbp
->sb_blocksize
);
402 * Update superblock with new values
405 if (xfs_sb_version_hasdalign(sbp
)) {
406 if (sbp
->sb_unit
!= mp
->m_dalign
) {
407 sbp
->sb_unit
= mp
->m_dalign
;
408 mp
->m_update_sb
= true;
410 if (sbp
->sb_width
!= mp
->m_swidth
) {
411 sbp
->sb_width
= mp
->m_swidth
;
412 mp
->m_update_sb
= true;
416 "cannot change alignment: superblock does not support data alignment");
419 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
420 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
421 mp
->m_dalign
= sbp
->sb_unit
;
422 mp
->m_swidth
= sbp
->sb_width
;
429 * Set the maximum inode count for this filesystem
432 xfs_set_maxicount(xfs_mount_t
*mp
)
434 xfs_sb_t
*sbp
= &(mp
->m_sb
);
437 if (sbp
->sb_imax_pct
) {
439 * Make sure the maximum inode count is a multiple
440 * of the units we allocate inodes in.
442 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
444 do_div(icount
, mp
->m_ialloc_blks
);
445 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
453 * Set the default minimum read and write sizes unless
454 * already specified in a mount option.
455 * We use smaller I/O sizes when the file system
456 * is being used for NFS service (wsync mount option).
459 xfs_set_rw_sizes(xfs_mount_t
*mp
)
461 xfs_sb_t
*sbp
= &(mp
->m_sb
);
462 int readio_log
, writeio_log
;
464 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
465 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
466 readio_log
= XFS_WSYNC_READIO_LOG
;
467 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
469 readio_log
= XFS_READIO_LOG_LARGE
;
470 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
473 readio_log
= mp
->m_readio_log
;
474 writeio_log
= mp
->m_writeio_log
;
477 if (sbp
->sb_blocklog
> readio_log
) {
478 mp
->m_readio_log
= sbp
->sb_blocklog
;
480 mp
->m_readio_log
= readio_log
;
482 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
483 if (sbp
->sb_blocklog
> writeio_log
) {
484 mp
->m_writeio_log
= sbp
->sb_blocklog
;
486 mp
->m_writeio_log
= writeio_log
;
488 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
492 * precalculate the low space thresholds for dynamic speculative preallocation.
495 xfs_set_low_space_thresholds(
496 struct xfs_mount
*mp
)
500 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
501 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
504 mp
->m_low_space
[i
] = space
* (i
+ 1);
510 * Set whether we're using inode alignment.
513 xfs_set_inoalignment(xfs_mount_t
*mp
)
515 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
516 mp
->m_sb
.sb_inoalignmt
>=
517 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
518 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
520 mp
->m_inoalign_mask
= 0;
522 * If we are using stripe alignment, check whether
523 * the stripe unit is a multiple of the inode alignment
525 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
526 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
527 mp
->m_sinoalign
= mp
->m_dalign
;
533 * Check that the data (and log if separate) is an ok size.
537 struct xfs_mount
*mp
)
543 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
544 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
545 xfs_warn(mp
, "filesystem size mismatch detected");
548 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
549 d
- XFS_FSS_TO_BB(mp
, 1),
550 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
552 xfs_warn(mp
, "last sector read failed");
557 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
560 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
561 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
562 xfs_warn(mp
, "log size mismatch detected");
565 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
566 d
- XFS_FSB_TO_BB(mp
, 1),
567 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
569 xfs_warn(mp
, "log device read failed");
577 * Clear the quotaflags in memory and in the superblock.
580 xfs_mount_reset_sbqflags(
581 struct xfs_mount
*mp
)
585 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
586 if (mp
->m_sb
.sb_qflags
== 0)
588 spin_lock(&mp
->m_sb_lock
);
589 mp
->m_sb
.sb_qflags
= 0;
590 spin_unlock(&mp
->m_sb_lock
);
592 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
595 return xfs_sync_sb(mp
, false);
599 xfs_default_resblks(xfs_mount_t
*mp
)
604 * We default to 5% or 8192 fsbs of space reserved, whichever is
605 * smaller. This is intended to cover concurrent allocation
606 * transactions when we initially hit enospc. These each require a 4
607 * block reservation. Hence by default we cover roughly 2000 concurrent
608 * allocation reservations.
610 resblks
= mp
->m_sb
.sb_dblocks
;
612 resblks
= min_t(__uint64_t
, resblks
, 8192);
617 * This function does the following on an initial mount of a file system:
618 * - reads the superblock from disk and init the mount struct
619 * - if we're a 32-bit kernel, do a size check on the superblock
620 * so we don't mount terabyte filesystems
621 * - init mount struct realtime fields
622 * - allocate inode hash table for fs
623 * - init directory manager
624 * - perform recovery and init the log manager
628 struct xfs_mount
*mp
)
630 struct xfs_sb
*sbp
= &(mp
->m_sb
);
631 struct xfs_inode
*rip
;
637 xfs_sb_mount_common(mp
, sbp
);
640 * Check for a mismatched features2 values. Older kernels read & wrote
641 * into the wrong sb offset for sb_features2 on some platforms due to
642 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
643 * which made older superblock reading/writing routines swap it as a
646 * For backwards compatibility, we make both slots equal.
648 * If we detect a mismatched field, we OR the set bits into the existing
649 * features2 field in case it has already been modified; we don't want
650 * to lose any features. We then update the bad location with the ORed
651 * value so that older kernels will see any features2 flags. The
652 * superblock writeback code ensures the new sb_features2 is copied to
653 * sb_bad_features2 before it is logged or written to disk.
655 if (xfs_sb_has_mismatched_features2(sbp
)) {
656 xfs_warn(mp
, "correcting sb_features alignment problem");
657 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
658 mp
->m_update_sb
= true;
661 * Re-check for ATTR2 in case it was found in bad_features2
664 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
665 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
666 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
669 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
670 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
671 xfs_sb_version_removeattr2(&mp
->m_sb
);
672 mp
->m_update_sb
= true;
674 /* update sb_versionnum for the clearing of the morebits */
675 if (!sbp
->sb_features2
)
676 mp
->m_update_sb
= true;
679 /* always use v2 inodes by default now */
680 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
681 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
682 mp
->m_update_sb
= true;
686 * Check if sb_agblocks is aligned at stripe boundary
687 * If sb_agblocks is NOT aligned turn off m_dalign since
688 * allocator alignment is within an ag, therefore ag has
689 * to be aligned at stripe boundary.
691 error
= xfs_update_alignment(mp
);
695 xfs_alloc_compute_maxlevels(mp
);
696 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
697 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
698 xfs_ialloc_compute_maxlevels(mp
);
700 xfs_set_maxicount(mp
);
702 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
706 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
707 &mp
->m_kobj
, "stats");
709 goto out_remove_sysfs
;
711 error
= xfs_uuid_mount(mp
);
716 * Set the minimum read and write sizes
718 xfs_set_rw_sizes(mp
);
720 /* set the low space thresholds for dynamic preallocation */
721 xfs_set_low_space_thresholds(mp
);
724 * Set the inode cluster size.
725 * This may still be overridden by the file system
726 * block size if it is larger than the chosen cluster size.
728 * For v5 filesystems, scale the cluster size with the inode size to
729 * keep a constant ratio of inode per cluster buffer, but only if mkfs
730 * has set the inode alignment value appropriately for larger cluster
733 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
734 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
735 int new_size
= mp
->m_inode_cluster_size
;
737 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
738 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
739 mp
->m_inode_cluster_size
= new_size
;
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
747 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
748 mp
->m_sb
.sb_spino_align
!=
749 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp
->m_sb
.sb_spino_align
,
753 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
755 goto out_remove_uuid
;
759 * Set inode alignment fields
761 xfs_set_inoalignment(mp
);
764 * Check that the data (and log if separate) is an ok size.
766 error
= xfs_check_sizes(mp
);
768 goto out_remove_uuid
;
771 * Initialize realtime fields in the mount structure
773 error
= xfs_rtmount_init(mp
);
775 xfs_warn(mp
, "RT mount failed");
776 goto out_remove_uuid
;
780 * Copies the low order bits of the timestamp and the randomly
781 * set "sequence" number out of a UUID.
783 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
785 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
787 error
= xfs_da_mount(mp
);
789 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
790 goto out_remove_uuid
;
794 * Initialize the precomputed transaction reservations values.
799 * Allocate and initialize the per-ag data.
801 spin_lock_init(&mp
->m_perag_lock
);
802 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
803 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
805 xfs_warn(mp
, "Failed per-ag init: %d", error
);
809 if (!sbp
->sb_logblocks
) {
810 xfs_warn(mp
, "no log defined");
811 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
812 error
= -EFSCORRUPTED
;
817 * Log's mount-time initialization. The first part of recovery can place
818 * some items on the AIL, to be handled when recovery is finished or
821 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
822 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
823 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
825 xfs_warn(mp
, "log mount failed");
830 * Now the log is mounted, we know if it was an unclean shutdown or
831 * not. If it was, with the first phase of recovery has completed, we
832 * have consistent AG blocks on disk. We have not recovered EFIs yet,
833 * but they are recovered transactionally in the second recovery phase
836 * Hence we can safely re-initialise incore superblock counters from
837 * the per-ag data. These may not be correct if the filesystem was not
838 * cleanly unmounted, so we need to wait for recovery to finish before
841 * If the filesystem was cleanly unmounted, then we can trust the
842 * values in the superblock to be correct and we don't need to do
845 * If we are currently making the filesystem, the initialisation will
846 * fail as the perag data is in an undefined state.
848 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
849 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
850 !mp
->m_sb
.sb_inprogress
) {
851 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
853 goto out_log_dealloc
;
857 * Get and sanity-check the root inode.
858 * Save the pointer to it in the mount structure.
860 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
862 xfs_warn(mp
, "failed to read root inode");
863 goto out_log_dealloc
;
868 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
869 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
870 (unsigned long long)rip
->i_ino
);
871 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
872 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
874 error
= -EFSCORRUPTED
;
877 mp
->m_rootip
= rip
; /* save it */
879 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
882 * Initialize realtime inode pointers in the mount structure
884 error
= xfs_rtmount_inodes(mp
);
887 * Free up the root inode.
889 xfs_warn(mp
, "failed to read RT inodes");
894 * If this is a read-only mount defer the superblock updates until
895 * the next remount into writeable mode. Otherwise we would never
896 * perform the update e.g. for the root filesystem.
898 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
899 error
= xfs_sync_sb(mp
, false);
901 xfs_warn(mp
, "failed to write sb changes");
907 * Initialise the XFS quota management subsystem for this mount
909 if (XFS_IS_QUOTA_RUNNING(mp
)) {
910 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
914 ASSERT(!XFS_IS_QUOTA_ON(mp
));
917 * If a file system had quotas running earlier, but decided to
918 * mount without -o uquota/pquota/gquota options, revoke the
919 * quotachecked license.
921 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
922 xfs_notice(mp
, "resetting quota flags");
923 error
= xfs_mount_reset_sbqflags(mp
);
930 * Finish recovering the file system. This part needed to be delayed
931 * until after the root and real-time bitmap inodes were consistently
934 error
= xfs_log_mount_finish(mp
);
936 xfs_warn(mp
, "log mount finish failed");
941 * Complete the quota initialisation, post-log-replay component.
944 ASSERT(mp
->m_qflags
== 0);
945 mp
->m_qflags
= quotaflags
;
947 xfs_qm_mount_quotas(mp
);
951 * Now we are mounted, reserve a small amount of unused space for
952 * privileged transactions. This is needed so that transaction
953 * space required for critical operations can dip into this pool
954 * when at ENOSPC. This is needed for operations like create with
955 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
956 * are not allowed to use this reserved space.
958 * This may drive us straight to ENOSPC on mount, but that implies
959 * we were already there on the last unmount. Warn if this occurs.
961 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
962 resblks
= xfs_default_resblks(mp
);
963 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
966 "Unable to allocate reserve blocks. Continuing without reserve pool.");
972 xfs_rtunmount_inodes(mp
);
975 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
976 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
978 xfs_log_mount_cancel(mp
);
980 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
981 xfs_wait_buftarg(mp
->m_logdev_targp
);
982 xfs_wait_buftarg(mp
->m_ddev_targp
);
988 xfs_uuid_unmount(mp
);
990 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
992 xfs_sysfs_del(&mp
->m_kobj
);
998 * This flushes out the inodes,dquots and the superblock, unmounts the
999 * log and makes sure that incore structures are freed.
1003 struct xfs_mount
*mp
)
1008 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
1010 xfs_qm_unmount_quotas(mp
);
1011 xfs_rtunmount_inodes(mp
);
1012 IRELE(mp
->m_rootip
);
1015 * We can potentially deadlock here if we have an inode cluster
1016 * that has been freed has its buffer still pinned in memory because
1017 * the transaction is still sitting in a iclog. The stale inodes
1018 * on that buffer will have their flush locks held until the
1019 * transaction hits the disk and the callbacks run. the inode
1020 * flush takes the flush lock unconditionally and with nothing to
1021 * push out the iclog we will never get that unlocked. hence we
1022 * need to force the log first.
1024 xfs_log_force(mp
, XFS_LOG_SYNC
);
1027 * Flush all pending changes from the AIL.
1029 xfs_ail_push_all_sync(mp
->m_ail
);
1032 * And reclaim all inodes. At this point there should be no dirty
1033 * inodes and none should be pinned or locked, but use synchronous
1034 * reclaim just to be sure. We can stop background inode reclaim
1035 * here as well if it is still running.
1037 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1038 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1043 * Unreserve any blocks we have so that when we unmount we don't account
1044 * the reserved free space as used. This is really only necessary for
1045 * lazy superblock counting because it trusts the incore superblock
1046 * counters to be absolutely correct on clean unmount.
1048 * We don't bother correcting this elsewhere for lazy superblock
1049 * counting because on mount of an unclean filesystem we reconstruct the
1050 * correct counter value and this is irrelevant.
1052 * For non-lazy counter filesystems, this doesn't matter at all because
1053 * we only every apply deltas to the superblock and hence the incore
1054 * value does not matter....
1057 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1059 xfs_warn(mp
, "Unable to free reserved block pool. "
1060 "Freespace may not be correct on next mount.");
1062 error
= xfs_log_sbcount(mp
);
1064 xfs_warn(mp
, "Unable to update superblock counters. "
1065 "Freespace may not be correct on next mount.");
1068 xfs_log_unmount(mp
);
1070 xfs_uuid_unmount(mp
);
1073 xfs_errortag_clearall(mp
, 0);
1077 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1078 xfs_sysfs_del(&mp
->m_kobj
);
1082 * Determine whether modifications can proceed. The caller specifies the minimum
1083 * freeze level for which modifications should not be allowed. This allows
1084 * certain operations to proceed while the freeze sequence is in progress, if
1089 struct xfs_mount
*mp
,
1092 ASSERT(level
> SB_UNFROZEN
);
1093 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1094 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1103 * Sync the superblock counters to disk.
1105 * Note this code can be called during the process of freezing, so we use the
1106 * transaction allocator that does not block when the transaction subsystem is
1107 * in its frozen state.
1110 xfs_log_sbcount(xfs_mount_t
*mp
)
1112 /* allow this to proceed during the freeze sequence... */
1113 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1117 * we don't need to do this if we are updating the superblock
1118 * counters on every modification.
1120 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1123 return xfs_sync_sb(mp
, true);
1127 * Deltas for the inode count are +/-64, hence we use a large batch size
1128 * of 128 so we don't need to take the counter lock on every update.
1130 #define XFS_ICOUNT_BATCH 128
1133 struct xfs_mount
*mp
,
1136 __percpu_counter_add(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1137 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1139 percpu_counter_add(&mp
->m_icount
, -delta
);
1147 struct xfs_mount
*mp
,
1150 percpu_counter_add(&mp
->m_ifree
, delta
);
1151 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1153 percpu_counter_add(&mp
->m_ifree
, -delta
);
1160 * Deltas for the block count can vary from 1 to very large, but lock contention
1161 * only occurs on frequent small block count updates such as in the delayed
1162 * allocation path for buffered writes (page a time updates). Hence we set
1163 * a large batch count (1024) to minimise global counter updates except when
1164 * we get near to ENOSPC and we have to be very accurate with our updates.
1166 #define XFS_FDBLOCKS_BATCH 1024
1169 struct xfs_mount
*mp
,
1179 * If the reserve pool is depleted, put blocks back into it
1180 * first. Most of the time the pool is full.
1182 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1183 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1187 spin_lock(&mp
->m_sb_lock
);
1188 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1190 if (res_used
> delta
) {
1191 mp
->m_resblks_avail
+= delta
;
1194 mp
->m_resblks_avail
= mp
->m_resblks
;
1195 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1197 spin_unlock(&mp
->m_sb_lock
);
1202 * Taking blocks away, need to be more accurate the closer we
1205 * If the counter has a value of less than 2 * max batch size,
1206 * then make everything serialise as we are real close to
1209 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1210 XFS_FDBLOCKS_BATCH
) < 0)
1213 batch
= XFS_FDBLOCKS_BATCH
;
1215 __percpu_counter_add(&mp
->m_fdblocks
, delta
, batch
);
1216 if (__percpu_counter_compare(&mp
->m_fdblocks
, XFS_ALLOC_SET_ASIDE(mp
),
1217 XFS_FDBLOCKS_BATCH
) >= 0) {
1223 * lock up the sb for dipping into reserves before releasing the space
1224 * that took us to ENOSPC.
1226 spin_lock(&mp
->m_sb_lock
);
1227 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1229 goto fdblocks_enospc
;
1231 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1232 if (lcounter
>= 0) {
1233 mp
->m_resblks_avail
= lcounter
;
1234 spin_unlock(&mp
->m_sb_lock
);
1237 printk_once(KERN_WARNING
1238 "Filesystem \"%s\": reserve blocks depleted! "
1239 "Consider increasing reserve pool size.",
1242 spin_unlock(&mp
->m_sb_lock
);
1248 struct xfs_mount
*mp
,
1254 spin_lock(&mp
->m_sb_lock
);
1255 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1259 mp
->m_sb
.sb_frextents
= lcounter
;
1260 spin_unlock(&mp
->m_sb_lock
);
1265 * xfs_getsb() is called to obtain the buffer for the superblock.
1266 * The buffer is returned locked and read in from disk.
1267 * The buffer should be released with a call to xfs_brelse().
1269 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1270 * the superblock buffer if it can be locked without sleeping.
1271 * If it can't then we'll return NULL.
1275 struct xfs_mount
*mp
,
1278 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1280 if (!xfs_buf_trylock(bp
)) {
1281 if (flags
& XBF_TRYLOCK
)
1287 ASSERT(XFS_BUF_ISDONE(bp
));
1292 * Used to free the superblock along various error paths.
1296 struct xfs_mount
*mp
)
1298 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1306 * If the underlying (data/log/rt) device is readonly, there are some
1307 * operations that cannot proceed.
1310 xfs_dev_is_read_only(
1311 struct xfs_mount
*mp
,
1314 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1315 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1316 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1317 xfs_notice(mp
, "%s required on read-only device.", message
);
1318 xfs_notice(mp
, "write access unavailable, cannot proceed.");