HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / kernel / cgroup.c
blob7a7c535f8a2f898f422b7e391207824659a277a7
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 static DEFINE_SPINLOCK(release_agent_path_lock);
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
125 static struct workqueue_struct *cgroup_destroy_wq;
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
131 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys *cgroup_subsys[] = {
136 #include <linux/cgroup_subsys.h>
138 #undef SUBSYS
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name[] = {
143 #include <linux/cgroup_subsys.h>
145 #undef SUBSYS
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
148 #define SUBSYS(_x) \
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true *cgroup_subsys_enabled_key[] = {
158 #include <linux/cgroup_subsys.h>
160 #undef SUBSYS
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
164 #include <linux/cgroup_subsys.h>
166 #undef SUBSYS
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
173 struct cgroup_root cgrp_dfl_root;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
180 static bool cgrp_dfl_root_visible;
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
185 /* The list of hierarchy roots */
187 static LIST_HEAD(cgroup_roots);
188 static int cgroup_root_count;
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr);
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
200 static u64 css_serial_nr_next = 1;
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
207 static unsigned long have_fork_callback __read_mostly;
208 static unsigned long have_exit_callback __read_mostly;
209 static unsigned long have_free_callback __read_mostly;
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly;
214 static struct cftype cgroup_dfl_base_files[];
215 static struct cftype cgroup_legacy_base_files[];
217 static int rebind_subsystems(struct cgroup_root *dst_root,
218 unsigned long ss_mask);
219 static void css_task_iter_advance(struct css_task_iter *it);
220 static int cgroup_destroy_locked(struct cgroup *cgrp);
221 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
222 bool visible);
223 static void css_release(struct percpu_ref *ref);
224 static void kill_css(struct cgroup_subsys_state *css);
225 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
226 struct cgroup *cgrp, struct cftype cfts[],
227 bool is_add);
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 static bool cgroup_ssid_enabled(int ssid)
239 if (CGROUP_SUBSYS_COUNT == 0)
240 return false;
242 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
252 * interface version.
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
292 * is not created.
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 static bool cgroup_on_dfl(const struct cgroup *cgrp)
300 return cgrp->root == &cgrp_dfl_root;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
305 gfp_t gfp_mask)
307 int ret;
309 idr_preload(gfp_mask);
310 spin_lock_bh(&cgroup_idr_lock);
311 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
312 spin_unlock_bh(&cgroup_idr_lock);
313 idr_preload_end();
314 return ret;
317 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
319 void *ret;
321 spin_lock_bh(&cgroup_idr_lock);
322 ret = idr_replace(idr, ptr, id);
323 spin_unlock_bh(&cgroup_idr_lock);
324 return ret;
327 static void cgroup_idr_remove(struct idr *idr, int id)
329 spin_lock_bh(&cgroup_idr_lock);
330 idr_remove(idr, id);
331 spin_unlock_bh(&cgroup_idr_lock);
334 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
336 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
338 if (parent_css)
339 return container_of(parent_css, struct cgroup, self);
340 return NULL;
344 * cgroup_css - obtain a cgroup's css for the specified subsystem
345 * @cgrp: the cgroup of interest
346 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
348 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
349 * function must be called either under cgroup_mutex or rcu_read_lock() and
350 * the caller is responsible for pinning the returned css if it wants to
351 * keep accessing it outside the said locks. This function may return
352 * %NULL if @cgrp doesn't have @subsys_id enabled.
354 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
355 struct cgroup_subsys *ss)
357 if (ss)
358 return rcu_dereference_check(cgrp->subsys[ss->id],
359 lockdep_is_held(&cgroup_mutex));
360 else
361 return &cgrp->self;
365 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
366 * @cgrp: the cgroup of interest
367 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
369 * Similar to cgroup_css() but returns the effective css, which is defined
370 * as the matching css of the nearest ancestor including self which has @ss
371 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
372 * function is guaranteed to return non-NULL css.
374 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
375 struct cgroup_subsys *ss)
377 lockdep_assert_held(&cgroup_mutex);
379 if (!ss)
380 return &cgrp->self;
382 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
383 return NULL;
386 * This function is used while updating css associations and thus
387 * can't test the csses directly. Use ->child_subsys_mask.
389 while (cgroup_parent(cgrp) &&
390 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
391 cgrp = cgroup_parent(cgrp);
393 return cgroup_css(cgrp, ss);
397 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest
401 * Find and get the effective css of @cgrp for @ss. The effective css is
402 * defined as the matching css of the nearest ancestor including self which
403 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
404 * the root css is returned, so this function always returns a valid css.
405 * The returned css must be put using css_put().
407 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
408 struct cgroup_subsys *ss)
410 struct cgroup_subsys_state *css;
412 rcu_read_lock();
414 do {
415 css = cgroup_css(cgrp, ss);
417 if (css && css_tryget_online(css))
418 goto out_unlock;
419 cgrp = cgroup_parent(cgrp);
420 } while (cgrp);
422 css = init_css_set.subsys[ss->id];
423 css_get(css);
424 out_unlock:
425 rcu_read_unlock();
426 return css;
429 /* convenient tests for these bits */
430 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
432 return !(cgrp->self.flags & CSS_ONLINE);
435 static void cgroup_get(struct cgroup *cgrp)
437 WARN_ON_ONCE(cgroup_is_dead(cgrp));
438 css_get(&cgrp->self);
441 static bool cgroup_tryget(struct cgroup *cgrp)
443 return css_tryget(&cgrp->self);
446 static void cgroup_put(struct cgroup *cgrp)
448 css_put(&cgrp->self);
451 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
453 struct cgroup *cgrp = of->kn->parent->priv;
454 struct cftype *cft = of_cft(of);
457 * This is open and unprotected implementation of cgroup_css().
458 * seq_css() is only called from a kernfs file operation which has
459 * an active reference on the file. Because all the subsystem
460 * files are drained before a css is disassociated with a cgroup,
461 * the matching css from the cgroup's subsys table is guaranteed to
462 * be and stay valid until the enclosing operation is complete.
464 if (cft->ss)
465 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
466 else
467 return &cgrp->self;
469 EXPORT_SYMBOL_GPL(of_css);
472 * cgroup_is_descendant - test ancestry
473 * @cgrp: the cgroup to be tested
474 * @ancestor: possible ancestor of @cgrp
476 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
477 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
478 * and @ancestor are accessible.
480 bool cgroup_is_descendant(struct cgroup *cgrp, struct cgroup *ancestor)
482 while (cgrp) {
483 if (cgrp == ancestor)
484 return true;
485 cgrp = cgroup_parent(cgrp);
487 return false;
490 static int notify_on_release(const struct cgroup *cgrp)
492 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
496 * for_each_css - iterate all css's of a cgroup
497 * @css: the iteration cursor
498 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
499 * @cgrp: the target cgroup to iterate css's of
501 * Should be called under cgroup_[tree_]mutex.
503 #define for_each_css(css, ssid, cgrp) \
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
505 if (!((css) = rcu_dereference_check( \
506 (cgrp)->subsys[(ssid)], \
507 lockdep_is_held(&cgroup_mutex)))) { } \
508 else
511 * for_each_e_css - iterate all effective css's of a cgroup
512 * @css: the iteration cursor
513 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
514 * @cgrp: the target cgroup to iterate css's of
516 * Should be called under cgroup_[tree_]mutex.
518 #define for_each_e_css(css, ssid, cgrp) \
519 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
520 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
522 else
525 * for_each_subsys - iterate all enabled cgroup subsystems
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
529 #define for_each_subsys(ss, ssid) \
530 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
531 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
534 * for_each_subsys_which - filter for_each_subsys with a bitmask
535 * @ss: the iteration cursor
536 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
537 * @ss_maskp: a pointer to the bitmask
539 * The block will only run for cases where the ssid-th bit (1 << ssid) of
540 * mask is set to 1.
542 #define for_each_subsys_which(ss, ssid, ss_maskp) \
543 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
544 (ssid) = 0; \
545 else \
546 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
547 if (((ss) = cgroup_subsys[ssid]) && false) \
548 break; \
549 else
551 /* iterate across the hierarchies */
552 #define for_each_root(root) \
553 list_for_each_entry((root), &cgroup_roots, root_list)
555 /* iterate over child cgrps, lock should be held throughout iteration */
556 #define cgroup_for_each_live_child(child, cgrp) \
557 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
558 if (({ lockdep_assert_held(&cgroup_mutex); \
559 cgroup_is_dead(child); })) \
561 else
563 static void cgroup_release_agent(struct work_struct *work);
564 static void check_for_release(struct cgroup *cgrp);
567 * A cgroup can be associated with multiple css_sets as different tasks may
568 * belong to different cgroups on different hierarchies. In the other
569 * direction, a css_set is naturally associated with multiple cgroups.
570 * This M:N relationship is represented by the following link structure
571 * which exists for each association and allows traversing the associations
572 * from both sides.
574 struct cgrp_cset_link {
575 /* the cgroup and css_set this link associates */
576 struct cgroup *cgrp;
577 struct css_set *cset;
579 /* list of cgrp_cset_links anchored at cgrp->cset_links */
580 struct list_head cset_link;
582 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
583 struct list_head cgrp_link;
587 * The default css_set - used by init and its children prior to any
588 * hierarchies being mounted. It contains a pointer to the root state
589 * for each subsystem. Also used to anchor the list of css_sets. Not
590 * reference-counted, to improve performance when child cgroups
591 * haven't been created.
593 struct css_set init_css_set = {
594 .refcount = ATOMIC_INIT(1),
595 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
596 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
597 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
598 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
599 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
600 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
603 static int css_set_count = 1; /* 1 for init_css_set */
606 * css_set_populated - does a css_set contain any tasks?
607 * @cset: target css_set
609 static bool css_set_populated(struct css_set *cset)
611 lockdep_assert_held(&css_set_lock);
613 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
617 * cgroup_update_populated - updated populated count of a cgroup
618 * @cgrp: the target cgroup
619 * @populated: inc or dec populated count
621 * One of the css_sets associated with @cgrp is either getting its first
622 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
623 * count is propagated towards root so that a given cgroup's populated_cnt
624 * is zero iff the cgroup and all its descendants don't contain any tasks.
626 * @cgrp's interface file "cgroup.populated" is zero if
627 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
628 * changes from or to zero, userland is notified that the content of the
629 * interface file has changed. This can be used to detect when @cgrp and
630 * its descendants become populated or empty.
632 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
634 lockdep_assert_held(&css_set_lock);
636 do {
637 bool trigger;
639 if (populated)
640 trigger = !cgrp->populated_cnt++;
641 else
642 trigger = !--cgrp->populated_cnt;
644 if (!trigger)
645 break;
647 check_for_release(cgrp);
648 cgroup_file_notify(&cgrp->events_file);
650 cgrp = cgroup_parent(cgrp);
651 } while (cgrp);
655 * css_set_update_populated - update populated state of a css_set
656 * @cset: target css_set
657 * @populated: whether @cset is populated or depopulated
659 * @cset is either getting the first task or losing the last. Update the
660 * ->populated_cnt of all associated cgroups accordingly.
662 static void css_set_update_populated(struct css_set *cset, bool populated)
664 struct cgrp_cset_link *link;
666 lockdep_assert_held(&css_set_lock);
668 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
669 cgroup_update_populated(link->cgrp, populated);
673 * css_set_move_task - move a task from one css_set to another
674 * @task: task being moved
675 * @from_cset: css_set @task currently belongs to (may be NULL)
676 * @to_cset: new css_set @task is being moved to (may be NULL)
677 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
679 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
680 * css_set, @from_cset can be NULL. If @task is being disassociated
681 * instead of moved, @to_cset can be NULL.
683 * This function automatically handles populated_cnt updates and
684 * css_task_iter adjustments but the caller is responsible for managing
685 * @from_cset and @to_cset's reference counts.
687 static void css_set_move_task(struct task_struct *task,
688 struct css_set *from_cset, struct css_set *to_cset,
689 bool use_mg_tasks)
691 lockdep_assert_held(&css_set_lock);
693 if (from_cset) {
694 struct css_task_iter *it, *pos;
696 WARN_ON_ONCE(list_empty(&task->cg_list));
699 * @task is leaving, advance task iterators which are
700 * pointing to it so that they can resume at the next
701 * position. Advancing an iterator might remove it from
702 * the list, use safe walk. See css_task_iter_advance*()
703 * for details.
705 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
706 iters_node)
707 if (it->task_pos == &task->cg_list)
708 css_task_iter_advance(it);
710 list_del_init(&task->cg_list);
711 if (!css_set_populated(from_cset))
712 css_set_update_populated(from_cset, false);
713 } else {
714 WARN_ON_ONCE(!list_empty(&task->cg_list));
717 if (to_cset) {
719 * We are synchronized through cgroup_threadgroup_rwsem
720 * against PF_EXITING setting such that we can't race
721 * against cgroup_exit() changing the css_set to
722 * init_css_set and dropping the old one.
724 WARN_ON_ONCE(task->flags & PF_EXITING);
726 if (!css_set_populated(to_cset))
727 css_set_update_populated(to_cset, true);
728 rcu_assign_pointer(task->cgroups, to_cset);
729 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
730 &to_cset->tasks);
735 * hash table for cgroup groups. This improves the performance to find
736 * an existing css_set. This hash doesn't (currently) take into
737 * account cgroups in empty hierarchies.
739 #define CSS_SET_HASH_BITS 7
740 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
742 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
744 unsigned long key = 0UL;
745 struct cgroup_subsys *ss;
746 int i;
748 for_each_subsys(ss, i)
749 key += (unsigned long)css[i];
750 key = (key >> 16) ^ key;
752 return key;
755 static void put_css_set_locked(struct css_set *cset)
757 struct cgrp_cset_link *link, *tmp_link;
758 struct cgroup_subsys *ss;
759 int ssid;
761 lockdep_assert_held(&css_set_lock);
763 if (!atomic_dec_and_test(&cset->refcount))
764 return;
766 /* This css_set is dead. unlink it and release cgroup and css refs */
767 for_each_subsys(ss, ssid) {
768 list_del(&cset->e_cset_node[ssid]);
769 css_put(cset->subsys[ssid]);
771 hash_del(&cset->hlist);
772 css_set_count--;
774 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
775 list_del(&link->cset_link);
776 list_del(&link->cgrp_link);
777 if (cgroup_parent(link->cgrp))
778 cgroup_put(link->cgrp);
779 kfree(link);
782 kfree_rcu(cset, rcu_head);
785 static void put_css_set(struct css_set *cset)
787 unsigned long flags;
790 * Ensure that the refcount doesn't hit zero while any readers
791 * can see it. Similar to atomic_dec_and_lock(), but for an
792 * rwlock
794 if (atomic_add_unless(&cset->refcount, -1, 1))
795 return;
797 spin_lock_irqsave(&css_set_lock, flags);
798 put_css_set_locked(cset);
799 spin_unlock_irqrestore(&css_set_lock, flags);
803 * refcounted get/put for css_set objects
805 static inline void get_css_set(struct css_set *cset)
807 atomic_inc(&cset->refcount);
811 * compare_css_sets - helper function for find_existing_css_set().
812 * @cset: candidate css_set being tested
813 * @old_cset: existing css_set for a task
814 * @new_cgrp: cgroup that's being entered by the task
815 * @template: desired set of css pointers in css_set (pre-calculated)
817 * Returns true if "cset" matches "old_cset" except for the hierarchy
818 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
820 static bool compare_css_sets(struct css_set *cset,
821 struct css_set *old_cset,
822 struct cgroup *new_cgrp,
823 struct cgroup_subsys_state *template[])
825 struct list_head *l1, *l2;
828 * On the default hierarchy, there can be csets which are
829 * associated with the same set of cgroups but different csses.
830 * Let's first ensure that csses match.
832 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
833 return false;
836 * Compare cgroup pointers in order to distinguish between
837 * different cgroups in hierarchies. As different cgroups may
838 * share the same effective css, this comparison is always
839 * necessary.
841 l1 = &cset->cgrp_links;
842 l2 = &old_cset->cgrp_links;
843 while (1) {
844 struct cgrp_cset_link *link1, *link2;
845 struct cgroup *cgrp1, *cgrp2;
847 l1 = l1->next;
848 l2 = l2->next;
849 /* See if we reached the end - both lists are equal length. */
850 if (l1 == &cset->cgrp_links) {
851 BUG_ON(l2 != &old_cset->cgrp_links);
852 break;
853 } else {
854 BUG_ON(l2 == &old_cset->cgrp_links);
856 /* Locate the cgroups associated with these links. */
857 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
858 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
859 cgrp1 = link1->cgrp;
860 cgrp2 = link2->cgrp;
861 /* Hierarchies should be linked in the same order. */
862 BUG_ON(cgrp1->root != cgrp2->root);
865 * If this hierarchy is the hierarchy of the cgroup
866 * that's changing, then we need to check that this
867 * css_set points to the new cgroup; if it's any other
868 * hierarchy, then this css_set should point to the
869 * same cgroup as the old css_set.
871 if (cgrp1->root == new_cgrp->root) {
872 if (cgrp1 != new_cgrp)
873 return false;
874 } else {
875 if (cgrp1 != cgrp2)
876 return false;
879 return true;
883 * find_existing_css_set - init css array and find the matching css_set
884 * @old_cset: the css_set that we're using before the cgroup transition
885 * @cgrp: the cgroup that we're moving into
886 * @template: out param for the new set of csses, should be clear on entry
888 static struct css_set *find_existing_css_set(struct css_set *old_cset,
889 struct cgroup *cgrp,
890 struct cgroup_subsys_state *template[])
892 struct cgroup_root *root = cgrp->root;
893 struct cgroup_subsys *ss;
894 struct css_set *cset;
895 unsigned long key;
896 int i;
899 * Build the set of subsystem state objects that we want to see in the
900 * new css_set. while subsystems can change globally, the entries here
901 * won't change, so no need for locking.
903 for_each_subsys(ss, i) {
904 if (root->subsys_mask & (1UL << i)) {
906 * @ss is in this hierarchy, so we want the
907 * effective css from @cgrp.
909 template[i] = cgroup_e_css(cgrp, ss);
910 } else {
912 * @ss is not in this hierarchy, so we don't want
913 * to change the css.
915 template[i] = old_cset->subsys[i];
919 key = css_set_hash(template);
920 hash_for_each_possible(css_set_table, cset, hlist, key) {
921 if (!compare_css_sets(cset, old_cset, cgrp, template))
922 continue;
924 /* This css_set matches what we need */
925 return cset;
928 /* No existing cgroup group matched */
929 return NULL;
932 static void free_cgrp_cset_links(struct list_head *links_to_free)
934 struct cgrp_cset_link *link, *tmp_link;
936 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
937 list_del(&link->cset_link);
938 kfree(link);
943 * allocate_cgrp_cset_links - allocate cgrp_cset_links
944 * @count: the number of links to allocate
945 * @tmp_links: list_head the allocated links are put on
947 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
948 * through ->cset_link. Returns 0 on success or -errno.
950 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
952 struct cgrp_cset_link *link;
953 int i;
955 INIT_LIST_HEAD(tmp_links);
957 for (i = 0; i < count; i++) {
958 link = kzalloc(sizeof(*link), GFP_KERNEL);
959 if (!link) {
960 free_cgrp_cset_links(tmp_links);
961 return -ENOMEM;
963 list_add(&link->cset_link, tmp_links);
965 return 0;
969 * link_css_set - a helper function to link a css_set to a cgroup
970 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
971 * @cset: the css_set to be linked
972 * @cgrp: the destination cgroup
974 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
975 struct cgroup *cgrp)
977 struct cgrp_cset_link *link;
979 BUG_ON(list_empty(tmp_links));
981 if (cgroup_on_dfl(cgrp))
982 cset->dfl_cgrp = cgrp;
984 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
985 link->cset = cset;
986 link->cgrp = cgrp;
989 * Always add links to the tail of the lists so that the lists are
990 * in choronological order.
992 list_move_tail(&link->cset_link, &cgrp->cset_links);
993 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
995 if (cgroup_parent(cgrp))
996 cgroup_get(cgrp);
1000 * find_css_set - return a new css_set with one cgroup updated
1001 * @old_cset: the baseline css_set
1002 * @cgrp: the cgroup to be updated
1004 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1005 * substituted into the appropriate hierarchy.
1007 static struct css_set *find_css_set(struct css_set *old_cset,
1008 struct cgroup *cgrp)
1010 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1011 struct css_set *cset;
1012 struct list_head tmp_links;
1013 struct cgrp_cset_link *link;
1014 struct cgroup_subsys *ss;
1015 unsigned long key;
1016 int ssid;
1018 lockdep_assert_held(&cgroup_mutex);
1020 /* First see if we already have a cgroup group that matches
1021 * the desired set */
1022 spin_lock_irq(&css_set_lock);
1023 cset = find_existing_css_set(old_cset, cgrp, template);
1024 if (cset)
1025 get_css_set(cset);
1026 spin_unlock_irq(&css_set_lock);
1028 if (cset)
1029 return cset;
1031 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1032 if (!cset)
1033 return NULL;
1035 /* Allocate all the cgrp_cset_link objects that we'll need */
1036 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1037 kfree(cset);
1038 return NULL;
1041 atomic_set(&cset->refcount, 1);
1042 INIT_LIST_HEAD(&cset->cgrp_links);
1043 INIT_LIST_HEAD(&cset->tasks);
1044 INIT_LIST_HEAD(&cset->mg_tasks);
1045 INIT_LIST_HEAD(&cset->mg_preload_node);
1046 INIT_LIST_HEAD(&cset->mg_node);
1047 INIT_LIST_HEAD(&cset->task_iters);
1048 INIT_HLIST_NODE(&cset->hlist);
1050 /* Copy the set of subsystem state objects generated in
1051 * find_existing_css_set() */
1052 memcpy(cset->subsys, template, sizeof(cset->subsys));
1054 spin_lock_irq(&css_set_lock);
1055 /* Add reference counts and links from the new css_set. */
1056 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1057 struct cgroup *c = link->cgrp;
1059 if (c->root == cgrp->root)
1060 c = cgrp;
1061 link_css_set(&tmp_links, cset, c);
1064 BUG_ON(!list_empty(&tmp_links));
1066 css_set_count++;
1068 /* Add @cset to the hash table */
1069 key = css_set_hash(cset->subsys);
1070 hash_add(css_set_table, &cset->hlist, key);
1072 for_each_subsys(ss, ssid) {
1073 struct cgroup_subsys_state *css = cset->subsys[ssid];
1075 list_add_tail(&cset->e_cset_node[ssid],
1076 &css->cgroup->e_csets[ssid]);
1077 css_get(css);
1080 spin_unlock_irq(&css_set_lock);
1082 return cset;
1085 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1087 struct cgroup *root_cgrp = kf_root->kn->priv;
1089 return root_cgrp->root;
1092 static int cgroup_init_root_id(struct cgroup_root *root)
1094 int id;
1096 lockdep_assert_held(&cgroup_mutex);
1098 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1099 if (id < 0)
1100 return id;
1102 root->hierarchy_id = id;
1103 return 0;
1106 static void cgroup_exit_root_id(struct cgroup_root *root)
1108 lockdep_assert_held(&cgroup_mutex);
1110 if (root->hierarchy_id) {
1111 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1112 root->hierarchy_id = 0;
1116 static void cgroup_free_root(struct cgroup_root *root)
1118 if (root) {
1119 /* hierarchy ID should already have been released */
1120 WARN_ON_ONCE(root->hierarchy_id);
1122 idr_destroy(&root->cgroup_idr);
1123 kfree(root);
1127 static void cgroup_destroy_root(struct cgroup_root *root)
1129 struct cgroup *cgrp = &root->cgrp;
1130 struct cgrp_cset_link *link, *tmp_link;
1132 mutex_lock(&cgroup_mutex);
1134 BUG_ON(atomic_read(&root->nr_cgrps));
1135 BUG_ON(!list_empty(&cgrp->self.children));
1137 /* Rebind all subsystems back to the default hierarchy */
1138 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1141 * Release all the links from cset_links to this hierarchy's
1142 * root cgroup
1144 spin_lock_irq(&css_set_lock);
1146 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1147 list_del(&link->cset_link);
1148 list_del(&link->cgrp_link);
1149 kfree(link);
1152 spin_unlock_irq(&css_set_lock);
1154 if (!list_empty(&root->root_list)) {
1155 list_del(&root->root_list);
1156 cgroup_root_count--;
1159 cgroup_exit_root_id(root);
1161 mutex_unlock(&cgroup_mutex);
1163 kernfs_destroy_root(root->kf_root);
1164 cgroup_free_root(root);
1167 /* look up cgroup associated with given css_set on the specified hierarchy */
1168 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1169 struct cgroup_root *root)
1171 struct cgroup *res = NULL;
1173 lockdep_assert_held(&cgroup_mutex);
1174 lockdep_assert_held(&css_set_lock);
1176 if (cset == &init_css_set) {
1177 res = &root->cgrp;
1178 } else {
1179 struct cgrp_cset_link *link;
1181 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1182 struct cgroup *c = link->cgrp;
1184 if (c->root == root) {
1185 res = c;
1186 break;
1191 BUG_ON(!res);
1192 return res;
1196 * Return the cgroup for "task" from the given hierarchy. Must be
1197 * called with cgroup_mutex and css_set_lock held.
1199 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1200 struct cgroup_root *root)
1203 * No need to lock the task - since we hold cgroup_mutex the
1204 * task can't change groups, so the only thing that can happen
1205 * is that it exits and its css is set back to init_css_set.
1207 return cset_cgroup_from_root(task_css_set(task), root);
1211 * A task must hold cgroup_mutex to modify cgroups.
1213 * Any task can increment and decrement the count field without lock.
1214 * So in general, code holding cgroup_mutex can't rely on the count
1215 * field not changing. However, if the count goes to zero, then only
1216 * cgroup_attach_task() can increment it again. Because a count of zero
1217 * means that no tasks are currently attached, therefore there is no
1218 * way a task attached to that cgroup can fork (the other way to
1219 * increment the count). So code holding cgroup_mutex can safely
1220 * assume that if the count is zero, it will stay zero. Similarly, if
1221 * a task holds cgroup_mutex on a cgroup with zero count, it
1222 * knows that the cgroup won't be removed, as cgroup_rmdir()
1223 * needs that mutex.
1225 * A cgroup can only be deleted if both its 'count' of using tasks
1226 * is zero, and its list of 'children' cgroups is empty. Since all
1227 * tasks in the system use _some_ cgroup, and since there is always at
1228 * least one task in the system (init, pid == 1), therefore, root cgroup
1229 * always has either children cgroups and/or using tasks. So we don't
1230 * need a special hack to ensure that root cgroup cannot be deleted.
1232 * P.S. One more locking exception. RCU is used to guard the
1233 * update of a tasks cgroup pointer by cgroup_attach_task()
1236 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1237 static const struct file_operations proc_cgroupstats_operations;
1239 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1240 char *buf)
1242 struct cgroup_subsys *ss = cft->ss;
1244 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1245 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1246 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1247 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1248 cft->name);
1249 else
1250 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1251 return buf;
1255 * cgroup_file_mode - deduce file mode of a control file
1256 * @cft: the control file in question
1258 * S_IRUGO for read, S_IWUSR for write.
1260 static umode_t cgroup_file_mode(const struct cftype *cft)
1262 umode_t mode = 0;
1264 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1265 mode |= S_IRUGO;
1267 if (cft->write_u64 || cft->write_s64 || cft->write) {
1268 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1269 mode |= S_IWUGO;
1270 else
1271 mode |= S_IWUSR;
1274 return mode;
1278 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1279 * @cgrp: the target cgroup
1280 * @subtree_control: the new subtree_control mask to consider
1282 * On the default hierarchy, a subsystem may request other subsystems to be
1283 * enabled together through its ->depends_on mask. In such cases, more
1284 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1286 * This function calculates which subsystems need to be enabled if
1287 * @subtree_control is to be applied to @cgrp. The returned mask is always
1288 * a superset of @subtree_control and follows the usual hierarchy rules.
1290 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1291 unsigned long subtree_control)
1293 struct cgroup *parent = cgroup_parent(cgrp);
1294 unsigned long cur_ss_mask = subtree_control;
1295 struct cgroup_subsys *ss;
1296 int ssid;
1298 lockdep_assert_held(&cgroup_mutex);
1300 if (!cgroup_on_dfl(cgrp))
1301 return cur_ss_mask;
1303 while (true) {
1304 unsigned long new_ss_mask = cur_ss_mask;
1306 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1307 new_ss_mask |= ss->depends_on;
1310 * Mask out subsystems which aren't available. This can
1311 * happen only if some depended-upon subsystems were bound
1312 * to non-default hierarchies.
1314 if (parent)
1315 new_ss_mask &= parent->child_subsys_mask;
1316 else
1317 new_ss_mask &= cgrp->root->subsys_mask;
1319 if (new_ss_mask == cur_ss_mask)
1320 break;
1321 cur_ss_mask = new_ss_mask;
1324 return cur_ss_mask;
1328 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1329 * @cgrp: the target cgroup
1331 * Update @cgrp->child_subsys_mask according to the current
1332 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1334 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1336 cgrp->child_subsys_mask =
1337 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1341 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1342 * @kn: the kernfs_node being serviced
1344 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1345 * the method finishes if locking succeeded. Note that once this function
1346 * returns the cgroup returned by cgroup_kn_lock_live() may become
1347 * inaccessible any time. If the caller intends to continue to access the
1348 * cgroup, it should pin it before invoking this function.
1350 static void cgroup_kn_unlock(struct kernfs_node *kn)
1352 struct cgroup *cgrp;
1354 if (kernfs_type(kn) == KERNFS_DIR)
1355 cgrp = kn->priv;
1356 else
1357 cgrp = kn->parent->priv;
1359 mutex_unlock(&cgroup_mutex);
1361 kernfs_unbreak_active_protection(kn);
1362 cgroup_put(cgrp);
1366 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1367 * @kn: the kernfs_node being serviced
1369 * This helper is to be used by a cgroup kernfs method currently servicing
1370 * @kn. It breaks the active protection, performs cgroup locking and
1371 * verifies that the associated cgroup is alive. Returns the cgroup if
1372 * alive; otherwise, %NULL. A successful return should be undone by a
1373 * matching cgroup_kn_unlock() invocation.
1375 * Any cgroup kernfs method implementation which requires locking the
1376 * associated cgroup should use this helper. It avoids nesting cgroup
1377 * locking under kernfs active protection and allows all kernfs operations
1378 * including self-removal.
1380 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1382 struct cgroup *cgrp;
1384 if (kernfs_type(kn) == KERNFS_DIR)
1385 cgrp = kn->priv;
1386 else
1387 cgrp = kn->parent->priv;
1390 * We're gonna grab cgroup_mutex which nests outside kernfs
1391 * active_ref. cgroup liveliness check alone provides enough
1392 * protection against removal. Ensure @cgrp stays accessible and
1393 * break the active_ref protection.
1395 if (!cgroup_tryget(cgrp))
1396 return NULL;
1397 kernfs_break_active_protection(kn);
1399 mutex_lock(&cgroup_mutex);
1401 if (!cgroup_is_dead(cgrp))
1402 return cgrp;
1404 cgroup_kn_unlock(kn);
1405 return NULL;
1408 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1410 char name[CGROUP_FILE_NAME_MAX];
1412 lockdep_assert_held(&cgroup_mutex);
1414 if (cft->file_offset) {
1415 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1416 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1418 spin_lock_irq(&cgroup_file_kn_lock);
1419 cfile->kn = NULL;
1420 spin_unlock_irq(&cgroup_file_kn_lock);
1423 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1427 * css_clear_dir - remove subsys files in a cgroup directory
1428 * @css: taget css
1429 * @cgrp_override: specify if target cgroup is different from css->cgroup
1431 static void css_clear_dir(struct cgroup_subsys_state *css,
1432 struct cgroup *cgrp_override)
1434 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1435 struct cftype *cfts;
1437 list_for_each_entry(cfts, &css->ss->cfts, node)
1438 cgroup_addrm_files(css, cgrp, cfts, false);
1442 * css_populate_dir - create subsys files in a cgroup directory
1443 * @css: target css
1444 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1446 * On failure, no file is added.
1448 static int css_populate_dir(struct cgroup_subsys_state *css,
1449 struct cgroup *cgrp_override)
1451 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1452 struct cftype *cfts, *failed_cfts;
1453 int ret;
1455 if (!css->ss) {
1456 if (cgroup_on_dfl(cgrp))
1457 cfts = cgroup_dfl_base_files;
1458 else
1459 cfts = cgroup_legacy_base_files;
1461 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1464 list_for_each_entry(cfts, &css->ss->cfts, node) {
1465 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1466 if (ret < 0) {
1467 failed_cfts = cfts;
1468 goto err;
1471 return 0;
1472 err:
1473 list_for_each_entry(cfts, &css->ss->cfts, node) {
1474 if (cfts == failed_cfts)
1475 break;
1476 cgroup_addrm_files(css, cgrp, cfts, false);
1478 return ret;
1481 static int rebind_subsystems(struct cgroup_root *dst_root,
1482 unsigned long ss_mask)
1484 struct cgroup *dcgrp = &dst_root->cgrp;
1485 struct cgroup_subsys *ss;
1486 unsigned long tmp_ss_mask;
1487 int ssid, i, ret;
1489 lockdep_assert_held(&cgroup_mutex);
1491 for_each_subsys_which(ss, ssid, &ss_mask) {
1492 /* if @ss has non-root csses attached to it, can't move */
1493 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1494 return -EBUSY;
1496 /* can't move between two non-dummy roots either */
1497 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1498 return -EBUSY;
1501 /* skip creating root files on dfl_root for inhibited subsystems */
1502 tmp_ss_mask = ss_mask;
1503 if (dst_root == &cgrp_dfl_root)
1504 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1506 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1507 struct cgroup *scgrp = &ss->root->cgrp;
1508 int tssid;
1510 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1511 if (!ret)
1512 continue;
1515 * Rebinding back to the default root is not allowed to
1516 * fail. Using both default and non-default roots should
1517 * be rare. Moving subsystems back and forth even more so.
1518 * Just warn about it and continue.
1520 if (dst_root == &cgrp_dfl_root) {
1521 if (cgrp_dfl_root_visible) {
1522 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1523 ret, ss_mask);
1524 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1526 continue;
1529 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1530 if (tssid == ssid)
1531 break;
1532 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1534 return ret;
1538 * Nothing can fail from this point on. Remove files for the
1539 * removed subsystems and rebind each subsystem.
1541 for_each_subsys_which(ss, ssid, &ss_mask) {
1542 struct cgroup_root *src_root = ss->root;
1543 struct cgroup *scgrp = &src_root->cgrp;
1544 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1545 struct css_set *cset;
1547 WARN_ON(!css || cgroup_css(dcgrp, ss));
1549 css_clear_dir(css, NULL);
1551 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1552 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1553 ss->root = dst_root;
1554 css->cgroup = dcgrp;
1556 spin_lock_irq(&css_set_lock);
1557 hash_for_each(css_set_table, i, cset, hlist)
1558 list_move_tail(&cset->e_cset_node[ss->id],
1559 &dcgrp->e_csets[ss->id]);
1560 spin_unlock_irq(&css_set_lock);
1562 src_root->subsys_mask &= ~(1 << ssid);
1563 scgrp->subtree_control &= ~(1 << ssid);
1564 cgroup_refresh_child_subsys_mask(scgrp);
1566 /* default hierarchy doesn't enable controllers by default */
1567 dst_root->subsys_mask |= 1 << ssid;
1568 if (dst_root == &cgrp_dfl_root) {
1569 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1570 } else {
1571 dcgrp->subtree_control |= 1 << ssid;
1572 cgroup_refresh_child_subsys_mask(dcgrp);
1573 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1576 if (ss->bind)
1577 ss->bind(css);
1580 kernfs_activate(dcgrp->kn);
1581 return 0;
1584 static int cgroup_show_options(struct seq_file *seq,
1585 struct kernfs_root *kf_root)
1587 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1588 struct cgroup_subsys *ss;
1589 int ssid;
1591 if (root != &cgrp_dfl_root)
1592 for_each_subsys(ss, ssid)
1593 if (root->subsys_mask & (1 << ssid))
1594 seq_show_option(seq, ss->legacy_name, NULL);
1595 if (root->flags & CGRP_ROOT_NOPREFIX)
1596 seq_puts(seq, ",noprefix");
1597 if (root->flags & CGRP_ROOT_XATTR)
1598 seq_puts(seq, ",xattr");
1600 spin_lock(&release_agent_path_lock);
1601 if (strlen(root->release_agent_path))
1602 seq_show_option(seq, "release_agent",
1603 root->release_agent_path);
1604 spin_unlock(&release_agent_path_lock);
1606 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1607 seq_puts(seq, ",clone_children");
1608 if (strlen(root->name))
1609 seq_show_option(seq, "name", root->name);
1610 return 0;
1613 struct cgroup_sb_opts {
1614 unsigned long subsys_mask;
1615 unsigned int flags;
1616 char *release_agent;
1617 bool cpuset_clone_children;
1618 char *name;
1619 /* User explicitly requested empty subsystem */
1620 bool none;
1623 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1625 char *token, *o = data;
1626 bool all_ss = false, one_ss = false;
1627 unsigned long mask = -1UL;
1628 struct cgroup_subsys *ss;
1629 int nr_opts = 0;
1630 int i;
1632 #ifdef CONFIG_CPUSETS
1633 mask = ~(1U << cpuset_cgrp_id);
1634 #endif
1636 memset(opts, 0, sizeof(*opts));
1638 while ((token = strsep(&o, ",")) != NULL) {
1639 nr_opts++;
1641 if (!*token)
1642 return -EINVAL;
1643 if (!strcmp(token, "none")) {
1644 /* Explicitly have no subsystems */
1645 opts->none = true;
1646 continue;
1648 if (!strcmp(token, "all")) {
1649 /* Mutually exclusive option 'all' + subsystem name */
1650 if (one_ss)
1651 return -EINVAL;
1652 all_ss = true;
1653 continue;
1655 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1656 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1657 continue;
1659 if (!strcmp(token, "noprefix")) {
1660 opts->flags |= CGRP_ROOT_NOPREFIX;
1661 continue;
1663 if (!strcmp(token, "clone_children")) {
1664 opts->cpuset_clone_children = true;
1665 continue;
1667 if (!strcmp(token, "xattr")) {
1668 opts->flags |= CGRP_ROOT_XATTR;
1669 continue;
1671 if (!strncmp(token, "release_agent=", 14)) {
1672 /* Specifying two release agents is forbidden */
1673 if (opts->release_agent)
1674 return -EINVAL;
1675 opts->release_agent =
1676 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1677 if (!opts->release_agent)
1678 return -ENOMEM;
1679 continue;
1681 if (!strncmp(token, "name=", 5)) {
1682 const char *name = token + 5;
1683 /* Can't specify an empty name */
1684 if (!strlen(name))
1685 return -EINVAL;
1686 /* Must match [\w.-]+ */
1687 for (i = 0; i < strlen(name); i++) {
1688 char c = name[i];
1689 if (isalnum(c))
1690 continue;
1691 if ((c == '.') || (c == '-') || (c == '_'))
1692 continue;
1693 return -EINVAL;
1695 /* Specifying two names is forbidden */
1696 if (opts->name)
1697 return -EINVAL;
1698 opts->name = kstrndup(name,
1699 MAX_CGROUP_ROOT_NAMELEN - 1,
1700 GFP_KERNEL);
1701 if (!opts->name)
1702 return -ENOMEM;
1704 continue;
1707 for_each_subsys(ss, i) {
1708 if (strcmp(token, ss->legacy_name))
1709 continue;
1710 if (!cgroup_ssid_enabled(i))
1711 continue;
1713 /* Mutually exclusive option 'all' + subsystem name */
1714 if (all_ss)
1715 return -EINVAL;
1716 opts->subsys_mask |= (1 << i);
1717 one_ss = true;
1719 break;
1721 if (i == CGROUP_SUBSYS_COUNT)
1722 return -ENOENT;
1725 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1726 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1727 if (nr_opts != 1) {
1728 pr_err("sane_behavior: no other mount options allowed\n");
1729 return -EINVAL;
1731 return 0;
1735 * If the 'all' option was specified select all the subsystems,
1736 * otherwise if 'none', 'name=' and a subsystem name options were
1737 * not specified, let's default to 'all'
1739 if (all_ss || (!one_ss && !opts->none && !opts->name))
1740 for_each_subsys(ss, i)
1741 if (cgroup_ssid_enabled(i))
1742 opts->subsys_mask |= (1 << i);
1745 * We either have to specify by name or by subsystems. (So all
1746 * empty hierarchies must have a name).
1748 if (!opts->subsys_mask && !opts->name)
1749 return -EINVAL;
1752 * Option noprefix was introduced just for backward compatibility
1753 * with the old cpuset, so we allow noprefix only if mounting just
1754 * the cpuset subsystem.
1756 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1757 return -EINVAL;
1759 /* Can't specify "none" and some subsystems */
1760 if (opts->subsys_mask && opts->none)
1761 return -EINVAL;
1763 return 0;
1766 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1768 int ret = 0;
1769 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1770 struct cgroup_sb_opts opts;
1771 unsigned long added_mask, removed_mask;
1773 if (root == &cgrp_dfl_root) {
1774 pr_err("remount is not allowed\n");
1775 return -EINVAL;
1778 mutex_lock(&cgroup_mutex);
1780 /* See what subsystems are wanted */
1781 ret = parse_cgroupfs_options(data, &opts);
1782 if (ret)
1783 goto out_unlock;
1785 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1786 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1787 task_tgid_nr(current), current->comm);
1789 added_mask = opts.subsys_mask & ~root->subsys_mask;
1790 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1792 /* Don't allow flags or name to change at remount */
1793 if ((opts.flags ^ root->flags) ||
1794 (opts.name && strcmp(opts.name, root->name))) {
1795 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1796 opts.flags, opts.name ?: "", root->flags, root->name);
1797 ret = -EINVAL;
1798 goto out_unlock;
1801 /* remounting is not allowed for populated hierarchies */
1802 if (!list_empty(&root->cgrp.self.children)) {
1803 ret = -EBUSY;
1804 goto out_unlock;
1807 ret = rebind_subsystems(root, added_mask);
1808 if (ret)
1809 goto out_unlock;
1811 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1813 if (opts.release_agent) {
1814 spin_lock(&release_agent_path_lock);
1815 strcpy(root->release_agent_path, opts.release_agent);
1816 spin_unlock(&release_agent_path_lock);
1818 out_unlock:
1819 kfree(opts.release_agent);
1820 kfree(opts.name);
1821 mutex_unlock(&cgroup_mutex);
1822 return ret;
1826 * To reduce the fork() overhead for systems that are not actually using
1827 * their cgroups capability, we don't maintain the lists running through
1828 * each css_set to its tasks until we see the list actually used - in other
1829 * words after the first mount.
1831 static bool use_task_css_set_links __read_mostly;
1833 static void cgroup_enable_task_cg_lists(void)
1835 struct task_struct *p, *g;
1837 spin_lock_irq(&css_set_lock);
1839 if (use_task_css_set_links)
1840 goto out_unlock;
1842 use_task_css_set_links = true;
1845 * We need tasklist_lock because RCU is not safe against
1846 * while_each_thread(). Besides, a forking task that has passed
1847 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1848 * is not guaranteed to have its child immediately visible in the
1849 * tasklist if we walk through it with RCU.
1851 read_lock(&tasklist_lock);
1852 do_each_thread(g, p) {
1853 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1854 task_css_set(p) != &init_css_set);
1857 * We should check if the process is exiting, otherwise
1858 * it will race with cgroup_exit() in that the list
1859 * entry won't be deleted though the process has exited.
1860 * Do it while holding siglock so that we don't end up
1861 * racing against cgroup_exit().
1863 * Interrupts were already disabled while acquiring
1864 * the css_set_lock, so we do not need to disable it
1865 * again when acquiring the sighand->siglock here.
1867 spin_lock(&p->sighand->siglock);
1868 if (!(p->flags & PF_EXITING)) {
1869 struct css_set *cset = task_css_set(p);
1871 if (!css_set_populated(cset))
1872 css_set_update_populated(cset, true);
1873 list_add_tail(&p->cg_list, &cset->tasks);
1874 get_css_set(cset);
1876 spin_unlock(&p->sighand->siglock);
1877 } while_each_thread(g, p);
1878 read_unlock(&tasklist_lock);
1879 out_unlock:
1880 spin_unlock_irq(&css_set_lock);
1883 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1885 struct cgroup_subsys *ss;
1886 int ssid;
1888 INIT_LIST_HEAD(&cgrp->self.sibling);
1889 INIT_LIST_HEAD(&cgrp->self.children);
1890 INIT_LIST_HEAD(&cgrp->cset_links);
1891 INIT_LIST_HEAD(&cgrp->pidlists);
1892 mutex_init(&cgrp->pidlist_mutex);
1893 cgrp->self.cgroup = cgrp;
1894 cgrp->self.flags |= CSS_ONLINE;
1896 for_each_subsys(ss, ssid)
1897 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1899 init_waitqueue_head(&cgrp->offline_waitq);
1900 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1903 static void init_cgroup_root(struct cgroup_root *root,
1904 struct cgroup_sb_opts *opts)
1906 struct cgroup *cgrp = &root->cgrp;
1908 INIT_LIST_HEAD(&root->root_list);
1909 atomic_set(&root->nr_cgrps, 1);
1910 cgrp->root = root;
1911 init_cgroup_housekeeping(cgrp);
1912 idr_init(&root->cgroup_idr);
1914 root->flags = opts->flags;
1915 if (opts->release_agent)
1916 strcpy(root->release_agent_path, opts->release_agent);
1917 if (opts->name)
1918 strcpy(root->name, opts->name);
1919 if (opts->cpuset_clone_children)
1920 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1923 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1925 LIST_HEAD(tmp_links);
1926 struct cgroup *root_cgrp = &root->cgrp;
1927 struct css_set *cset;
1928 int i, ret;
1930 lockdep_assert_held(&cgroup_mutex);
1932 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1933 if (ret < 0)
1934 goto out;
1935 root_cgrp->id = ret;
1937 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1938 GFP_KERNEL);
1939 if (ret)
1940 goto out;
1943 * We're accessing css_set_count without locking css_set_lock here,
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. The worst that can happen is that we
1946 * have some link structures left over
1948 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1949 if (ret)
1950 goto cancel_ref;
1952 ret = cgroup_init_root_id(root);
1953 if (ret)
1954 goto cancel_ref;
1956 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1957 KERNFS_ROOT_CREATE_DEACTIVATED,
1958 root_cgrp);
1959 if (IS_ERR(root->kf_root)) {
1960 ret = PTR_ERR(root->kf_root);
1961 goto exit_root_id;
1963 root_cgrp->kn = root->kf_root->kn;
1965 ret = css_populate_dir(&root_cgrp->self, NULL);
1966 if (ret)
1967 goto destroy_root;
1969 ret = rebind_subsystems(root, ss_mask);
1970 if (ret)
1971 goto destroy_root;
1974 * There must be no failure case after here, since rebinding takes
1975 * care of subsystems' refcounts, which are explicitly dropped in
1976 * the failure exit path.
1978 list_add(&root->root_list, &cgroup_roots);
1979 cgroup_root_count++;
1982 * Link the root cgroup in this hierarchy into all the css_set
1983 * objects.
1985 spin_lock_irq(&css_set_lock);
1986 hash_for_each(css_set_table, i, cset, hlist) {
1987 link_css_set(&tmp_links, cset, root_cgrp);
1988 if (css_set_populated(cset))
1989 cgroup_update_populated(root_cgrp, true);
1991 spin_unlock_irq(&css_set_lock);
1993 BUG_ON(!list_empty(&root_cgrp->self.children));
1994 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1996 kernfs_activate(root_cgrp->kn);
1997 ret = 0;
1998 goto out;
2000 destroy_root:
2001 kernfs_destroy_root(root->kf_root);
2002 root->kf_root = NULL;
2003 exit_root_id:
2004 cgroup_exit_root_id(root);
2005 cancel_ref:
2006 percpu_ref_exit(&root_cgrp->self.refcnt);
2007 out:
2008 free_cgrp_cset_links(&tmp_links);
2009 return ret;
2012 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2013 int flags, const char *unused_dev_name,
2014 void *data)
2016 struct super_block *pinned_sb = NULL;
2017 struct cgroup_subsys *ss;
2018 struct cgroup_root *root;
2019 struct cgroup_sb_opts opts;
2020 struct dentry *dentry;
2021 int ret;
2022 int i;
2023 bool new_sb;
2026 * The first time anyone tries to mount a cgroup, enable the list
2027 * linking each css_set to its tasks and fix up all existing tasks.
2029 if (!use_task_css_set_links)
2030 cgroup_enable_task_cg_lists();
2032 mutex_lock(&cgroup_mutex);
2034 /* First find the desired set of subsystems */
2035 ret = parse_cgroupfs_options(data, &opts);
2036 if (ret)
2037 goto out_unlock;
2039 /* look for a matching existing root */
2040 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
2041 cgrp_dfl_root_visible = true;
2042 root = &cgrp_dfl_root;
2043 cgroup_get(&root->cgrp);
2044 ret = 0;
2045 goto out_unlock;
2049 * Destruction of cgroup root is asynchronous, so subsystems may
2050 * still be dying after the previous unmount. Let's drain the
2051 * dying subsystems. We just need to ensure that the ones
2052 * unmounted previously finish dying and don't care about new ones
2053 * starting. Testing ref liveliness is good enough.
2055 for_each_subsys(ss, i) {
2056 if (!(opts.subsys_mask & (1 << i)) ||
2057 ss->root == &cgrp_dfl_root)
2058 continue;
2060 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2061 mutex_unlock(&cgroup_mutex);
2062 msleep(10);
2063 ret = restart_syscall();
2064 goto out_free;
2066 cgroup_put(&ss->root->cgrp);
2069 for_each_root(root) {
2070 bool name_match = false;
2072 if (root == &cgrp_dfl_root)
2073 continue;
2076 * If we asked for a name then it must match. Also, if
2077 * name matches but sybsys_mask doesn't, we should fail.
2078 * Remember whether name matched.
2080 if (opts.name) {
2081 if (strcmp(opts.name, root->name))
2082 continue;
2083 name_match = true;
2087 * If we asked for subsystems (or explicitly for no
2088 * subsystems) then they must match.
2090 if ((opts.subsys_mask || opts.none) &&
2091 (opts.subsys_mask != root->subsys_mask)) {
2092 if (!name_match)
2093 continue;
2094 ret = -EBUSY;
2095 goto out_unlock;
2098 if (root->flags ^ opts.flags)
2099 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2102 * We want to reuse @root whose lifetime is governed by its
2103 * ->cgrp. Let's check whether @root is alive and keep it
2104 * that way. As cgroup_kill_sb() can happen anytime, we
2105 * want to block it by pinning the sb so that @root doesn't
2106 * get killed before mount is complete.
2108 * With the sb pinned, tryget_live can reliably indicate
2109 * whether @root can be reused. If it's being killed,
2110 * drain it. We can use wait_queue for the wait but this
2111 * path is super cold. Let's just sleep a bit and retry.
2113 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2114 if (IS_ERR(pinned_sb) ||
2115 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2116 mutex_unlock(&cgroup_mutex);
2117 if (!IS_ERR_OR_NULL(pinned_sb))
2118 deactivate_super(pinned_sb);
2119 msleep(10);
2120 ret = restart_syscall();
2121 goto out_free;
2124 ret = 0;
2125 goto out_unlock;
2129 * No such thing, create a new one. name= matching without subsys
2130 * specification is allowed for already existing hierarchies but we
2131 * can't create new one without subsys specification.
2133 if (!opts.subsys_mask && !opts.none) {
2134 ret = -EINVAL;
2135 goto out_unlock;
2138 root = kzalloc(sizeof(*root), GFP_KERNEL);
2139 if (!root) {
2140 ret = -ENOMEM;
2141 goto out_unlock;
2144 init_cgroup_root(root, &opts);
2146 ret = cgroup_setup_root(root, opts.subsys_mask);
2147 if (ret)
2148 cgroup_free_root(root);
2150 out_unlock:
2151 mutex_unlock(&cgroup_mutex);
2152 out_free:
2153 kfree(opts.release_agent);
2154 kfree(opts.name);
2156 if (ret)
2157 return ERR_PTR(ret);
2159 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2160 CGROUP_SUPER_MAGIC, &new_sb);
2161 if (IS_ERR(dentry) || !new_sb)
2162 cgroup_put(&root->cgrp);
2165 * If @pinned_sb, we're reusing an existing root and holding an
2166 * extra ref on its sb. Mount is complete. Put the extra ref.
2168 if (pinned_sb) {
2169 WARN_ON(new_sb);
2170 deactivate_super(pinned_sb);
2173 return dentry;
2176 static void cgroup_kill_sb(struct super_block *sb)
2178 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2179 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2182 * If @root doesn't have any mounts or children, start killing it.
2183 * This prevents new mounts by disabling percpu_ref_tryget_live().
2184 * cgroup_mount() may wait for @root's release.
2186 * And don't kill the default root.
2188 if (!list_empty(&root->cgrp.self.children) ||
2189 root == &cgrp_dfl_root)
2190 cgroup_put(&root->cgrp);
2191 else
2192 percpu_ref_kill(&root->cgrp.self.refcnt);
2194 kernfs_kill_sb(sb);
2197 static struct file_system_type cgroup_fs_type = {
2198 .name = "cgroup",
2199 .mount = cgroup_mount,
2200 .kill_sb = cgroup_kill_sb,
2204 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2205 * @task: target task
2206 * @buf: the buffer to write the path into
2207 * @buflen: the length of the buffer
2209 * Determine @task's cgroup on the first (the one with the lowest non-zero
2210 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2211 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2212 * cgroup controller callbacks.
2214 * Return value is the same as kernfs_path().
2216 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2218 struct cgroup_root *root;
2219 struct cgroup *cgrp;
2220 int hierarchy_id = 1;
2221 char *path = NULL;
2223 mutex_lock(&cgroup_mutex);
2224 spin_lock_irq(&css_set_lock);
2226 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2228 if (root) {
2229 cgrp = task_cgroup_from_root(task, root);
2230 path = cgroup_path(cgrp, buf, buflen);
2231 } else {
2232 /* if no hierarchy exists, everyone is in "/" */
2233 if (strlcpy(buf, "/", buflen) < buflen)
2234 path = buf;
2237 spin_unlock_irq(&css_set_lock);
2238 mutex_unlock(&cgroup_mutex);
2239 return path;
2241 EXPORT_SYMBOL_GPL(task_cgroup_path);
2243 /* used to track tasks and other necessary states during migration */
2244 struct cgroup_taskset {
2245 /* the src and dst cset list running through cset->mg_node */
2246 struct list_head src_csets;
2247 struct list_head dst_csets;
2249 /* the subsys currently being processed */
2250 int ssid;
2253 * Fields for cgroup_taskset_*() iteration.
2255 * Before migration is committed, the target migration tasks are on
2256 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2257 * the csets on ->dst_csets. ->csets point to either ->src_csets
2258 * or ->dst_csets depending on whether migration is committed.
2260 * ->cur_csets and ->cur_task point to the current task position
2261 * during iteration.
2263 struct list_head *csets;
2264 struct css_set *cur_cset;
2265 struct task_struct *cur_task;
2268 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2269 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2270 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2271 .csets = &tset.src_csets, \
2275 * cgroup_taskset_add - try to add a migration target task to a taskset
2276 * @task: target task
2277 * @tset: target taskset
2279 * Add @task, which is a migration target, to @tset. This function becomes
2280 * noop if @task doesn't need to be migrated. @task's css_set should have
2281 * been added as a migration source and @task->cg_list will be moved from
2282 * the css_set's tasks list to mg_tasks one.
2284 static void cgroup_taskset_add(struct task_struct *task,
2285 struct cgroup_taskset *tset)
2287 struct css_set *cset;
2289 lockdep_assert_held(&css_set_lock);
2291 /* @task either already exited or can't exit until the end */
2292 if (task->flags & PF_EXITING)
2293 return;
2295 /* leave @task alone if post_fork() hasn't linked it yet */
2296 if (list_empty(&task->cg_list))
2297 return;
2299 cset = task_css_set(task);
2300 if (!cset->mg_src_cgrp)
2301 return;
2303 list_move_tail(&task->cg_list, &cset->mg_tasks);
2304 if (list_empty(&cset->mg_node))
2305 list_add_tail(&cset->mg_node, &tset->src_csets);
2306 if (list_empty(&cset->mg_dst_cset->mg_node))
2307 list_move_tail(&cset->mg_dst_cset->mg_node,
2308 &tset->dst_csets);
2312 * cgroup_taskset_first - reset taskset and return the first task
2313 * @tset: taskset of interest
2314 * @dst_cssp: output variable for the destination css
2316 * @tset iteration is initialized and the first task is returned.
2318 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2319 struct cgroup_subsys_state **dst_cssp)
2321 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2322 tset->cur_task = NULL;
2324 return cgroup_taskset_next(tset, dst_cssp);
2328 * cgroup_taskset_next - iterate to the next task in taskset
2329 * @tset: taskset of interest
2330 * @dst_cssp: output variable for the destination css
2332 * Return the next task in @tset. Iteration must have been initialized
2333 * with cgroup_taskset_first().
2335 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2336 struct cgroup_subsys_state **dst_cssp)
2338 struct css_set *cset = tset->cur_cset;
2339 struct task_struct *task = tset->cur_task;
2341 while (&cset->mg_node != tset->csets) {
2342 if (!task)
2343 task = list_first_entry(&cset->mg_tasks,
2344 struct task_struct, cg_list);
2345 else
2346 task = list_next_entry(task, cg_list);
2348 if (&task->cg_list != &cset->mg_tasks) {
2349 tset->cur_cset = cset;
2350 tset->cur_task = task;
2353 * This function may be called both before and
2354 * after cgroup_taskset_migrate(). The two cases
2355 * can be distinguished by looking at whether @cset
2356 * has its ->mg_dst_cset set.
2358 if (cset->mg_dst_cset)
2359 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2360 else
2361 *dst_cssp = cset->subsys[tset->ssid];
2363 return task;
2366 cset = list_next_entry(cset, mg_node);
2367 task = NULL;
2370 return NULL;
2374 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2375 * @tset: taget taskset
2376 * @dst_cgrp: destination cgroup
2378 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2379 * ->can_attach callbacks fails and guarantees that either all or none of
2380 * the tasks in @tset are migrated. @tset is consumed regardless of
2381 * success.
2383 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2384 struct cgroup *dst_cgrp)
2386 struct cgroup_subsys_state *css, *failed_css = NULL;
2387 struct task_struct *task, *tmp_task;
2388 struct css_set *cset, *tmp_cset;
2389 int i, ret;
2391 /* methods shouldn't be called if no task is actually migrating */
2392 if (list_empty(&tset->src_csets))
2393 return 0;
2395 /* check that we can legitimately attach to the cgroup */
2396 for_each_e_css(css, i, dst_cgrp) {
2397 if (css->ss->can_attach) {
2398 tset->ssid = i;
2399 ret = css->ss->can_attach(tset);
2400 if (ret) {
2401 failed_css = css;
2402 goto out_cancel_attach;
2408 * Now that we're guaranteed success, proceed to move all tasks to
2409 * the new cgroup. There are no failure cases after here, so this
2410 * is the commit point.
2412 spin_lock_irq(&css_set_lock);
2413 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2414 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2415 struct css_set *from_cset = task_css_set(task);
2416 struct css_set *to_cset = cset->mg_dst_cset;
2418 get_css_set(to_cset);
2419 css_set_move_task(task, from_cset, to_cset, true);
2420 put_css_set_locked(from_cset);
2423 spin_unlock_irq(&css_set_lock);
2426 * Migration is committed, all target tasks are now on dst_csets.
2427 * Nothing is sensitive to fork() after this point. Notify
2428 * controllers that migration is complete.
2430 tset->csets = &tset->dst_csets;
2432 for_each_e_css(css, i, dst_cgrp) {
2433 if (css->ss->attach) {
2434 tset->ssid = i;
2435 css->ss->attach(tset);
2439 ret = 0;
2440 goto out_release_tset;
2442 out_cancel_attach:
2443 for_each_e_css(css, i, dst_cgrp) {
2444 if (css == failed_css)
2445 break;
2446 if (css->ss->cancel_attach) {
2447 tset->ssid = i;
2448 css->ss->cancel_attach(tset);
2451 out_release_tset:
2452 spin_lock_irq(&css_set_lock);
2453 list_splice_init(&tset->dst_csets, &tset->src_csets);
2454 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2455 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2456 list_del_init(&cset->mg_node);
2458 spin_unlock_irq(&css_set_lock);
2459 return ret;
2463 * cgroup_migrate_finish - cleanup after attach
2464 * @preloaded_csets: list of preloaded css_sets
2466 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2467 * those functions for details.
2469 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2471 struct css_set *cset, *tmp_cset;
2473 lockdep_assert_held(&cgroup_mutex);
2475 spin_lock_irq(&css_set_lock);
2476 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2477 cset->mg_src_cgrp = NULL;
2478 cset->mg_dst_cset = NULL;
2479 list_del_init(&cset->mg_preload_node);
2480 put_css_set_locked(cset);
2482 spin_unlock_irq(&css_set_lock);
2486 * cgroup_migrate_add_src - add a migration source css_set
2487 * @src_cset: the source css_set to add
2488 * @dst_cgrp: the destination cgroup
2489 * @preloaded_csets: list of preloaded css_sets
2491 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2492 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2493 * up by cgroup_migrate_finish().
2495 * This function may be called without holding cgroup_threadgroup_rwsem
2496 * even if the target is a process. Threads may be created and destroyed
2497 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2498 * into play and the preloaded css_sets are guaranteed to cover all
2499 * migrations.
2501 static void cgroup_migrate_add_src(struct css_set *src_cset,
2502 struct cgroup *dst_cgrp,
2503 struct list_head *preloaded_csets)
2505 struct cgroup *src_cgrp;
2507 lockdep_assert_held(&cgroup_mutex);
2508 lockdep_assert_held(&css_set_lock);
2511 * If ->dead, @src_set is associated with one or more dead cgroups
2512 * and doesn't contain any migratable tasks. Ignore it early so
2513 * that the rest of migration path doesn't get confused by it.
2515 if (src_cset->dead)
2516 return;
2518 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2520 if (!list_empty(&src_cset->mg_preload_node))
2521 return;
2523 WARN_ON(src_cset->mg_src_cgrp);
2524 WARN_ON(!list_empty(&src_cset->mg_tasks));
2525 WARN_ON(!list_empty(&src_cset->mg_node));
2527 src_cset->mg_src_cgrp = src_cgrp;
2528 get_css_set(src_cset);
2529 list_add(&src_cset->mg_preload_node, preloaded_csets);
2533 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2534 * @dst_cgrp: the destination cgroup (may be %NULL)
2535 * @preloaded_csets: list of preloaded source css_sets
2537 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2538 * have been preloaded to @preloaded_csets. This function looks up and
2539 * pins all destination css_sets, links each to its source, and append them
2540 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2541 * source css_set is assumed to be its cgroup on the default hierarchy.
2543 * This function must be called after cgroup_migrate_add_src() has been
2544 * called on each migration source css_set. After migration is performed
2545 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2546 * @preloaded_csets.
2548 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2549 struct list_head *preloaded_csets)
2551 LIST_HEAD(csets);
2552 struct css_set *src_cset, *tmp_cset;
2554 lockdep_assert_held(&cgroup_mutex);
2557 * Except for the root, child_subsys_mask must be zero for a cgroup
2558 * with tasks so that child cgroups don't compete against tasks.
2560 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2561 dst_cgrp->child_subsys_mask)
2562 return -EBUSY;
2564 /* look up the dst cset for each src cset and link it to src */
2565 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2566 struct css_set *dst_cset;
2568 dst_cset = find_css_set(src_cset,
2569 dst_cgrp ?: src_cset->dfl_cgrp);
2570 if (!dst_cset)
2571 goto err;
2573 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2576 * If src cset equals dst, it's noop. Drop the src.
2577 * cgroup_migrate() will skip the cset too. Note that we
2578 * can't handle src == dst as some nodes are used by both.
2580 if (src_cset == dst_cset) {
2581 src_cset->mg_src_cgrp = NULL;
2582 list_del_init(&src_cset->mg_preload_node);
2583 put_css_set(src_cset);
2584 put_css_set(dst_cset);
2585 continue;
2588 src_cset->mg_dst_cset = dst_cset;
2590 if (list_empty(&dst_cset->mg_preload_node))
2591 list_add(&dst_cset->mg_preload_node, &csets);
2592 else
2593 put_css_set(dst_cset);
2596 list_splice_tail(&csets, preloaded_csets);
2597 return 0;
2598 err:
2599 cgroup_migrate_finish(&csets);
2600 return -ENOMEM;
2604 * cgroup_migrate - migrate a process or task to a cgroup
2605 * @leader: the leader of the process or the task to migrate
2606 * @threadgroup: whether @leader points to the whole process or a single task
2607 * @cgrp: the destination cgroup
2609 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2610 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2611 * caller is also responsible for invoking cgroup_migrate_add_src() and
2612 * cgroup_migrate_prepare_dst() on the targets before invoking this
2613 * function and following up with cgroup_migrate_finish().
2615 * As long as a controller's ->can_attach() doesn't fail, this function is
2616 * guaranteed to succeed. This means that, excluding ->can_attach()
2617 * failure, when migrating multiple targets, the success or failure can be
2618 * decided for all targets by invoking group_migrate_prepare_dst() before
2619 * actually starting migrating.
2621 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2622 struct cgroup *cgrp)
2624 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2625 struct task_struct *task;
2628 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2629 * already PF_EXITING could be freed from underneath us unless we
2630 * take an rcu_read_lock.
2632 spin_lock_irq(&css_set_lock);
2633 rcu_read_lock();
2634 task = leader;
2635 do {
2636 cgroup_taskset_add(task, &tset);
2637 if (!threadgroup)
2638 break;
2639 } while_each_thread(leader, task);
2640 rcu_read_unlock();
2641 spin_unlock_irq(&css_set_lock);
2643 return cgroup_taskset_migrate(&tset, cgrp);
2647 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2648 * @dst_cgrp: the cgroup to attach to
2649 * @leader: the task or the leader of the threadgroup to be attached
2650 * @threadgroup: attach the whole threadgroup?
2652 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2654 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2655 struct task_struct *leader, bool threadgroup)
2657 LIST_HEAD(preloaded_csets);
2658 struct task_struct *task;
2659 int ret;
2661 /* look up all src csets */
2662 spin_lock_irq(&css_set_lock);
2663 rcu_read_lock();
2664 task = leader;
2665 do {
2666 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2667 &preloaded_csets);
2668 if (!threadgroup)
2669 break;
2670 } while_each_thread(leader, task);
2671 rcu_read_unlock();
2672 spin_unlock_irq(&css_set_lock);
2674 /* prepare dst csets and commit */
2675 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2676 if (!ret)
2677 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2679 cgroup_migrate_finish(&preloaded_csets);
2680 return ret;
2683 static int cgroup_procs_write_permission(struct task_struct *task,
2684 struct cgroup *dst_cgrp,
2685 struct kernfs_open_file *of)
2687 const struct cred *cred = current_cred();
2688 const struct cred *tcred = get_task_cred(task);
2689 int ret = 0;
2692 * even if we're attaching all tasks in the thread group, we only
2693 * need to check permissions on one of them.
2695 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2696 !uid_eq(cred->euid, tcred->uid) &&
2697 !uid_eq(cred->euid, tcred->suid))
2698 ret = -EACCES;
2700 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2701 struct super_block *sb = of->file->f_path.dentry->d_sb;
2702 struct cgroup *cgrp;
2703 struct inode *inode;
2705 spin_lock_irq(&css_set_lock);
2706 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2707 spin_unlock_irq(&css_set_lock);
2709 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2710 cgrp = cgroup_parent(cgrp);
2712 ret = -ENOMEM;
2713 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2714 if (inode) {
2715 ret = inode_permission(inode, MAY_WRITE);
2716 iput(inode);
2720 put_cred(tcred);
2721 return ret;
2725 * Find the task_struct of the task to attach by vpid and pass it along to the
2726 * function to attach either it or all tasks in its threadgroup. Will lock
2727 * cgroup_mutex and threadgroup.
2729 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2730 size_t nbytes, loff_t off, bool threadgroup)
2732 struct task_struct *tsk;
2733 struct cgroup_subsys *ss;
2734 struct cgroup *cgrp;
2735 pid_t pid;
2736 int ssid, ret;
2738 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2739 return -EINVAL;
2741 cgrp = cgroup_kn_lock_live(of->kn);
2742 if (!cgrp)
2743 return -ENODEV;
2745 percpu_down_write(&cgroup_threadgroup_rwsem);
2746 rcu_read_lock();
2747 if (pid) {
2748 tsk = find_task_by_vpid(pid);
2749 if (!tsk) {
2750 ret = -ESRCH;
2751 goto out_unlock_rcu;
2753 } else {
2754 tsk = current;
2757 if (threadgroup)
2758 tsk = tsk->group_leader;
2761 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2762 * If userland migrates such a kthread to a non-root cgroup, it can
2763 * become trapped in a cpuset, or RT kthread may be born in a
2764 * cgroup with no rt_runtime allocated. Just say no.
2766 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2767 ret = -EINVAL;
2768 goto out_unlock_rcu;
2771 get_task_struct(tsk);
2772 rcu_read_unlock();
2774 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2775 if (!ret)
2776 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2778 put_task_struct(tsk);
2779 goto out_unlock_threadgroup;
2781 out_unlock_rcu:
2782 rcu_read_unlock();
2783 out_unlock_threadgroup:
2784 percpu_up_write(&cgroup_threadgroup_rwsem);
2785 for_each_subsys(ss, ssid)
2786 if (ss->post_attach)
2787 ss->post_attach();
2788 cgroup_kn_unlock(of->kn);
2789 return ret ?: nbytes;
2793 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2794 * @from: attach to all cgroups of a given task
2795 * @tsk: the task to be attached
2797 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2799 struct cgroup_root *root;
2800 int retval = 0;
2802 mutex_lock(&cgroup_mutex);
2803 for_each_root(root) {
2804 struct cgroup *from_cgrp;
2806 if (root == &cgrp_dfl_root)
2807 continue;
2809 spin_lock_irq(&css_set_lock);
2810 from_cgrp = task_cgroup_from_root(from, root);
2811 spin_unlock_irq(&css_set_lock);
2813 retval = cgroup_attach_task(from_cgrp, tsk, false);
2814 if (retval)
2815 break;
2817 mutex_unlock(&cgroup_mutex);
2819 return retval;
2821 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2823 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2824 char *buf, size_t nbytes, loff_t off)
2826 return __cgroup_procs_write(of, buf, nbytes, off, false);
2829 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2830 char *buf, size_t nbytes, loff_t off)
2832 return __cgroup_procs_write(of, buf, nbytes, off, true);
2835 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2836 char *buf, size_t nbytes, loff_t off)
2838 struct cgroup *cgrp;
2840 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2842 cgrp = cgroup_kn_lock_live(of->kn);
2843 if (!cgrp)
2844 return -ENODEV;
2845 spin_lock(&release_agent_path_lock);
2846 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2847 sizeof(cgrp->root->release_agent_path));
2848 spin_unlock(&release_agent_path_lock);
2849 cgroup_kn_unlock(of->kn);
2850 return nbytes;
2853 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2855 struct cgroup *cgrp = seq_css(seq)->cgroup;
2857 spin_lock(&release_agent_path_lock);
2858 seq_puts(seq, cgrp->root->release_agent_path);
2859 spin_unlock(&release_agent_path_lock);
2860 seq_putc(seq, '\n');
2861 return 0;
2864 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2866 seq_puts(seq, "0\n");
2867 return 0;
2870 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2872 struct cgroup_subsys *ss;
2873 bool printed = false;
2874 int ssid;
2876 for_each_subsys_which(ss, ssid, &ss_mask) {
2877 if (printed)
2878 seq_putc(seq, ' ');
2879 seq_printf(seq, "%s", ss->name);
2880 printed = true;
2882 if (printed)
2883 seq_putc(seq, '\n');
2886 /* show controllers which are currently attached to the default hierarchy */
2887 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2889 struct cgroup *cgrp = seq_css(seq)->cgroup;
2891 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2892 ~cgrp_dfl_root_inhibit_ss_mask);
2893 return 0;
2896 /* show controllers which are enabled from the parent */
2897 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2899 struct cgroup *cgrp = seq_css(seq)->cgroup;
2901 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2902 return 0;
2905 /* show controllers which are enabled for a given cgroup's children */
2906 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2908 struct cgroup *cgrp = seq_css(seq)->cgroup;
2910 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2911 return 0;
2915 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2916 * @cgrp: root of the subtree to update csses for
2918 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2919 * css associations need to be updated accordingly. This function looks up
2920 * all css_sets which are attached to the subtree, creates the matching
2921 * updated css_sets and migrates the tasks to the new ones.
2923 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2925 LIST_HEAD(preloaded_csets);
2926 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2927 struct cgroup_subsys_state *css;
2928 struct css_set *src_cset;
2929 int ret;
2931 lockdep_assert_held(&cgroup_mutex);
2933 percpu_down_write(&cgroup_threadgroup_rwsem);
2935 /* look up all csses currently attached to @cgrp's subtree */
2936 spin_lock_irq(&css_set_lock);
2937 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2938 struct cgrp_cset_link *link;
2940 /* self is not affected by child_subsys_mask change */
2941 if (css->cgroup == cgrp)
2942 continue;
2944 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2945 cgroup_migrate_add_src(link->cset, cgrp,
2946 &preloaded_csets);
2948 spin_unlock_irq(&css_set_lock);
2950 /* NULL dst indicates self on default hierarchy */
2951 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2952 if (ret)
2953 goto out_finish;
2955 spin_lock_irq(&css_set_lock);
2956 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2957 struct task_struct *task, *ntask;
2959 /* src_csets precede dst_csets, break on the first dst_cset */
2960 if (!src_cset->mg_src_cgrp)
2961 break;
2963 /* all tasks in src_csets need to be migrated */
2964 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2965 cgroup_taskset_add(task, &tset);
2967 spin_unlock_irq(&css_set_lock);
2969 ret = cgroup_taskset_migrate(&tset, cgrp);
2970 out_finish:
2971 cgroup_migrate_finish(&preloaded_csets);
2972 percpu_up_write(&cgroup_threadgroup_rwsem);
2973 return ret;
2976 /* change the enabled child controllers for a cgroup in the default hierarchy */
2977 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2978 char *buf, size_t nbytes,
2979 loff_t off)
2981 unsigned long enable = 0, disable = 0;
2982 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2983 struct cgroup *cgrp, *child;
2984 struct cgroup_subsys *ss;
2985 char *tok;
2986 int ssid, ret;
2989 * Parse input - space separated list of subsystem names prefixed
2990 * with either + or -.
2992 buf = strstrip(buf);
2993 while ((tok = strsep(&buf, " "))) {
2994 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2996 if (tok[0] == '\0')
2997 continue;
2998 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2999 if (!cgroup_ssid_enabled(ssid) ||
3000 strcmp(tok + 1, ss->name))
3001 continue;
3003 if (*tok == '+') {
3004 enable |= 1 << ssid;
3005 disable &= ~(1 << ssid);
3006 } else if (*tok == '-') {
3007 disable |= 1 << ssid;
3008 enable &= ~(1 << ssid);
3009 } else {
3010 return -EINVAL;
3012 break;
3014 if (ssid == CGROUP_SUBSYS_COUNT)
3015 return -EINVAL;
3018 cgrp = cgroup_kn_lock_live(of->kn);
3019 if (!cgrp)
3020 return -ENODEV;
3022 for_each_subsys(ss, ssid) {
3023 if (enable & (1 << ssid)) {
3024 if (cgrp->subtree_control & (1 << ssid)) {
3025 enable &= ~(1 << ssid);
3026 continue;
3029 /* unavailable or not enabled on the parent? */
3030 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
3031 (cgroup_parent(cgrp) &&
3032 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
3033 ret = -ENOENT;
3034 goto out_unlock;
3036 } else if (disable & (1 << ssid)) {
3037 if (!(cgrp->subtree_control & (1 << ssid))) {
3038 disable &= ~(1 << ssid);
3039 continue;
3042 /* a child has it enabled? */
3043 cgroup_for_each_live_child(child, cgrp) {
3044 if (child->subtree_control & (1 << ssid)) {
3045 ret = -EBUSY;
3046 goto out_unlock;
3052 if (!enable && !disable) {
3053 ret = 0;
3054 goto out_unlock;
3058 * Except for the root, subtree_control must be zero for a cgroup
3059 * with tasks so that child cgroups don't compete against tasks.
3061 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
3062 ret = -EBUSY;
3063 goto out_unlock;
3067 * Update subsys masks and calculate what needs to be done. More
3068 * subsystems than specified may need to be enabled or disabled
3069 * depending on subsystem dependencies.
3071 old_sc = cgrp->subtree_control;
3072 old_ss = cgrp->child_subsys_mask;
3073 new_sc = (old_sc | enable) & ~disable;
3074 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
3076 css_enable = ~old_ss & new_ss;
3077 css_disable = old_ss & ~new_ss;
3078 enable |= css_enable;
3079 disable |= css_disable;
3082 * Because css offlining is asynchronous, userland might try to
3083 * re-enable the same controller while the previous instance is
3084 * still around. In such cases, wait till it's gone using
3085 * offline_waitq.
3087 for_each_subsys_which(ss, ssid, &css_enable) {
3088 cgroup_for_each_live_child(child, cgrp) {
3089 DEFINE_WAIT(wait);
3091 if (!cgroup_css(child, ss))
3092 continue;
3094 cgroup_get(child);
3095 prepare_to_wait(&child->offline_waitq, &wait,
3096 TASK_UNINTERRUPTIBLE);
3097 cgroup_kn_unlock(of->kn);
3098 schedule();
3099 finish_wait(&child->offline_waitq, &wait);
3100 cgroup_put(child);
3102 return restart_syscall();
3106 cgrp->subtree_control = new_sc;
3107 cgrp->child_subsys_mask = new_ss;
3110 * Create new csses or make the existing ones visible. A css is
3111 * created invisible if it's being implicitly enabled through
3112 * dependency. An invisible css is made visible when the userland
3113 * explicitly enables it.
3115 for_each_subsys(ss, ssid) {
3116 if (!(enable & (1 << ssid)))
3117 continue;
3119 cgroup_for_each_live_child(child, cgrp) {
3120 if (css_enable & (1 << ssid))
3121 ret = create_css(child, ss,
3122 cgrp->subtree_control & (1 << ssid));
3123 else
3124 ret = css_populate_dir(cgroup_css(child, ss),
3125 NULL);
3126 if (ret)
3127 goto err_undo_css;
3132 * At this point, cgroup_e_css() results reflect the new csses
3133 * making the following cgroup_update_dfl_csses() properly update
3134 * css associations of all tasks in the subtree.
3136 ret = cgroup_update_dfl_csses(cgrp);
3137 if (ret)
3138 goto err_undo_css;
3141 * All tasks are migrated out of disabled csses. Kill or hide
3142 * them. A css is hidden when the userland requests it to be
3143 * disabled while other subsystems are still depending on it. The
3144 * css must not actively control resources and be in the vanilla
3145 * state if it's made visible again later. Controllers which may
3146 * be depended upon should provide ->css_reset() for this purpose.
3148 for_each_subsys(ss, ssid) {
3149 if (!(disable & (1 << ssid)))
3150 continue;
3152 cgroup_for_each_live_child(child, cgrp) {
3153 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3155 if (css_disable & (1 << ssid)) {
3156 kill_css(css);
3157 } else {
3158 css_clear_dir(css, NULL);
3159 if (ss->css_reset)
3160 ss->css_reset(css);
3166 * The effective csses of all the descendants (excluding @cgrp) may
3167 * have changed. Subsystems can optionally subscribe to this event
3168 * by implementing ->css_e_css_changed() which is invoked if any of
3169 * the effective csses seen from the css's cgroup may have changed.
3171 for_each_subsys(ss, ssid) {
3172 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3173 struct cgroup_subsys_state *css;
3175 if (!ss->css_e_css_changed || !this_css)
3176 continue;
3178 css_for_each_descendant_pre(css, this_css)
3179 if (css != this_css)
3180 ss->css_e_css_changed(css);
3183 kernfs_activate(cgrp->kn);
3184 ret = 0;
3185 out_unlock:
3186 cgroup_kn_unlock(of->kn);
3187 return ret ?: nbytes;
3189 err_undo_css:
3190 cgrp->subtree_control = old_sc;
3191 cgrp->child_subsys_mask = old_ss;
3193 for_each_subsys(ss, ssid) {
3194 if (!(enable & (1 << ssid)))
3195 continue;
3197 cgroup_for_each_live_child(child, cgrp) {
3198 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3200 if (!css)
3201 continue;
3203 if (css_enable & (1 << ssid))
3204 kill_css(css);
3205 else
3206 css_clear_dir(css, NULL);
3209 goto out_unlock;
3212 static int cgroup_events_show(struct seq_file *seq, void *v)
3214 seq_printf(seq, "populated %d\n",
3215 cgroup_is_populated(seq_css(seq)->cgroup));
3216 return 0;
3219 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3220 size_t nbytes, loff_t off)
3222 struct cgroup *cgrp = of->kn->parent->priv;
3223 struct cftype *cft = of->kn->priv;
3224 struct cgroup_subsys_state *css;
3225 int ret;
3227 if (cft->write)
3228 return cft->write(of, buf, nbytes, off);
3231 * kernfs guarantees that a file isn't deleted with operations in
3232 * flight, which means that the matching css is and stays alive and
3233 * doesn't need to be pinned. The RCU locking is not necessary
3234 * either. It's just for the convenience of using cgroup_css().
3236 rcu_read_lock();
3237 css = cgroup_css(cgrp, cft->ss);
3238 rcu_read_unlock();
3240 if (cft->write_u64) {
3241 unsigned long long v;
3242 ret = kstrtoull(buf, 0, &v);
3243 if (!ret)
3244 ret = cft->write_u64(css, cft, v);
3245 } else if (cft->write_s64) {
3246 long long v;
3247 ret = kstrtoll(buf, 0, &v);
3248 if (!ret)
3249 ret = cft->write_s64(css, cft, v);
3250 } else {
3251 ret = -EINVAL;
3254 return ret ?: nbytes;
3257 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3259 return seq_cft(seq)->seq_start(seq, ppos);
3262 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3264 return seq_cft(seq)->seq_next(seq, v, ppos);
3267 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3269 seq_cft(seq)->seq_stop(seq, v);
3272 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3274 struct cftype *cft = seq_cft(m);
3275 struct cgroup_subsys_state *css = seq_css(m);
3277 if (cft->seq_show)
3278 return cft->seq_show(m, arg);
3280 if (cft->read_u64)
3281 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3282 else if (cft->read_s64)
3283 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3284 else
3285 return -EINVAL;
3286 return 0;
3289 static struct kernfs_ops cgroup_kf_single_ops = {
3290 .atomic_write_len = PAGE_SIZE,
3291 .write = cgroup_file_write,
3292 .seq_show = cgroup_seqfile_show,
3295 static struct kernfs_ops cgroup_kf_ops = {
3296 .atomic_write_len = PAGE_SIZE,
3297 .write = cgroup_file_write,
3298 .seq_start = cgroup_seqfile_start,
3299 .seq_next = cgroup_seqfile_next,
3300 .seq_stop = cgroup_seqfile_stop,
3301 .seq_show = cgroup_seqfile_show,
3305 * cgroup_rename - Only allow simple rename of directories in place.
3307 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3308 const char *new_name_str)
3310 struct cgroup *cgrp = kn->priv;
3311 int ret;
3313 if (kernfs_type(kn) != KERNFS_DIR)
3314 return -ENOTDIR;
3315 if (kn->parent != new_parent)
3316 return -EIO;
3319 * This isn't a proper migration and its usefulness is very
3320 * limited. Disallow on the default hierarchy.
3322 if (cgroup_on_dfl(cgrp))
3323 return -EPERM;
3326 * We're gonna grab cgroup_mutex which nests outside kernfs
3327 * active_ref. kernfs_rename() doesn't require active_ref
3328 * protection. Break them before grabbing cgroup_mutex.
3330 kernfs_break_active_protection(new_parent);
3331 kernfs_break_active_protection(kn);
3333 mutex_lock(&cgroup_mutex);
3335 ret = kernfs_rename(kn, new_parent, new_name_str);
3337 mutex_unlock(&cgroup_mutex);
3339 kernfs_unbreak_active_protection(kn);
3340 kernfs_unbreak_active_protection(new_parent);
3341 return ret;
3344 /* set uid and gid of cgroup dirs and files to that of the creator */
3345 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3347 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3348 .ia_uid = current_fsuid(),
3349 .ia_gid = current_fsgid(), };
3351 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3352 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3353 return 0;
3355 return kernfs_setattr(kn, &iattr);
3358 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3359 struct cftype *cft)
3361 char name[CGROUP_FILE_NAME_MAX];
3362 struct kernfs_node *kn;
3363 struct lock_class_key *key = NULL;
3364 int ret;
3366 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3367 key = &cft->lockdep_key;
3368 #endif
3369 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3370 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3371 NULL, key);
3372 if (IS_ERR(kn))
3373 return PTR_ERR(kn);
3375 ret = cgroup_kn_set_ugid(kn);
3376 if (ret) {
3377 kernfs_remove(kn);
3378 return ret;
3381 if (cft->file_offset) {
3382 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3384 spin_lock_irq(&cgroup_file_kn_lock);
3385 cfile->kn = kn;
3386 spin_unlock_irq(&cgroup_file_kn_lock);
3389 return 0;
3393 * cgroup_addrm_files - add or remove files to a cgroup directory
3394 * @css: the target css
3395 * @cgrp: the target cgroup (usually css->cgroup)
3396 * @cfts: array of cftypes to be added
3397 * @is_add: whether to add or remove
3399 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3400 * For removals, this function never fails.
3402 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3403 struct cgroup *cgrp, struct cftype cfts[],
3404 bool is_add)
3406 struct cftype *cft, *cft_end = NULL;
3407 int ret;
3409 lockdep_assert_held(&cgroup_mutex);
3411 restart:
3412 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3413 /* does cft->flags tell us to skip this file on @cgrp? */
3414 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3415 continue;
3416 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3417 continue;
3418 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3419 continue;
3420 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3421 continue;
3423 if (is_add) {
3424 ret = cgroup_add_file(css, cgrp, cft);
3425 if (ret) {
3426 pr_warn("%s: failed to add %s, err=%d\n",
3427 __func__, cft->name, ret);
3428 cft_end = cft;
3429 is_add = false;
3430 goto restart;
3432 } else {
3433 cgroup_rm_file(cgrp, cft);
3436 return 0;
3439 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3441 LIST_HEAD(pending);
3442 struct cgroup_subsys *ss = cfts[0].ss;
3443 struct cgroup *root = &ss->root->cgrp;
3444 struct cgroup_subsys_state *css;
3445 int ret = 0;
3447 lockdep_assert_held(&cgroup_mutex);
3449 /* add/rm files for all cgroups created before */
3450 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3451 struct cgroup *cgrp = css->cgroup;
3453 if (cgroup_is_dead(cgrp))
3454 continue;
3456 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3457 if (ret)
3458 break;
3461 if (is_add && !ret)
3462 kernfs_activate(root->kn);
3463 return ret;
3466 static void cgroup_exit_cftypes(struct cftype *cfts)
3468 struct cftype *cft;
3470 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3471 /* free copy for custom atomic_write_len, see init_cftypes() */
3472 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3473 kfree(cft->kf_ops);
3474 cft->kf_ops = NULL;
3475 cft->ss = NULL;
3477 /* revert flags set by cgroup core while adding @cfts */
3478 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3482 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3484 struct cftype *cft;
3486 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3487 struct kernfs_ops *kf_ops;
3489 WARN_ON(cft->ss || cft->kf_ops);
3491 if (cft->seq_start)
3492 kf_ops = &cgroup_kf_ops;
3493 else
3494 kf_ops = &cgroup_kf_single_ops;
3497 * Ugh... if @cft wants a custom max_write_len, we need to
3498 * make a copy of kf_ops to set its atomic_write_len.
3500 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3501 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3502 if (!kf_ops) {
3503 cgroup_exit_cftypes(cfts);
3504 return -ENOMEM;
3506 kf_ops->atomic_write_len = cft->max_write_len;
3509 cft->kf_ops = kf_ops;
3510 cft->ss = ss;
3513 return 0;
3516 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3518 lockdep_assert_held(&cgroup_mutex);
3520 if (!cfts || !cfts[0].ss)
3521 return -ENOENT;
3523 list_del(&cfts->node);
3524 cgroup_apply_cftypes(cfts, false);
3525 cgroup_exit_cftypes(cfts);
3526 return 0;
3530 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3531 * @cfts: zero-length name terminated array of cftypes
3533 * Unregister @cfts. Files described by @cfts are removed from all
3534 * existing cgroups and all future cgroups won't have them either. This
3535 * function can be called anytime whether @cfts' subsys is attached or not.
3537 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3538 * registered.
3540 int cgroup_rm_cftypes(struct cftype *cfts)
3542 int ret;
3544 mutex_lock(&cgroup_mutex);
3545 ret = cgroup_rm_cftypes_locked(cfts);
3546 mutex_unlock(&cgroup_mutex);
3547 return ret;
3551 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3552 * @ss: target cgroup subsystem
3553 * @cfts: zero-length name terminated array of cftypes
3555 * Register @cfts to @ss. Files described by @cfts are created for all
3556 * existing cgroups to which @ss is attached and all future cgroups will
3557 * have them too. This function can be called anytime whether @ss is
3558 * attached or not.
3560 * Returns 0 on successful registration, -errno on failure. Note that this
3561 * function currently returns 0 as long as @cfts registration is successful
3562 * even if some file creation attempts on existing cgroups fail.
3564 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3566 int ret;
3568 if (!cgroup_ssid_enabled(ss->id))
3569 return 0;
3571 if (!cfts || cfts[0].name[0] == '\0')
3572 return 0;
3574 ret = cgroup_init_cftypes(ss, cfts);
3575 if (ret)
3576 return ret;
3578 mutex_lock(&cgroup_mutex);
3580 list_add_tail(&cfts->node, &ss->cfts);
3581 ret = cgroup_apply_cftypes(cfts, true);
3582 if (ret)
3583 cgroup_rm_cftypes_locked(cfts);
3585 mutex_unlock(&cgroup_mutex);
3586 return ret;
3590 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3591 * @ss: target cgroup subsystem
3592 * @cfts: zero-length name terminated array of cftypes
3594 * Similar to cgroup_add_cftypes() but the added files are only used for
3595 * the default hierarchy.
3597 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3599 struct cftype *cft;
3601 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3602 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3603 return cgroup_add_cftypes(ss, cfts);
3607 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3608 * @ss: target cgroup subsystem
3609 * @cfts: zero-length name terminated array of cftypes
3611 * Similar to cgroup_add_cftypes() but the added files are only used for
3612 * the legacy hierarchies.
3614 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3616 struct cftype *cft;
3618 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3619 cft->flags |= __CFTYPE_NOT_ON_DFL;
3620 return cgroup_add_cftypes(ss, cfts);
3624 * cgroup_file_notify - generate a file modified event for a cgroup_file
3625 * @cfile: target cgroup_file
3627 * @cfile must have been obtained by setting cftype->file_offset.
3629 void cgroup_file_notify(struct cgroup_file *cfile)
3631 unsigned long flags;
3633 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3634 if (cfile->kn)
3635 kernfs_notify(cfile->kn);
3636 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3640 * cgroup_task_count - count the number of tasks in a cgroup.
3641 * @cgrp: the cgroup in question
3643 * Return the number of tasks in the cgroup.
3645 static int cgroup_task_count(const struct cgroup *cgrp)
3647 int count = 0;
3648 struct cgrp_cset_link *link;
3650 spin_lock_irq(&css_set_lock);
3651 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3652 count += atomic_read(&link->cset->refcount);
3653 spin_unlock_irq(&css_set_lock);
3654 return count;
3658 * css_next_child - find the next child of a given css
3659 * @pos: the current position (%NULL to initiate traversal)
3660 * @parent: css whose children to walk
3662 * This function returns the next child of @parent and should be called
3663 * under either cgroup_mutex or RCU read lock. The only requirement is
3664 * that @parent and @pos are accessible. The next sibling is guaranteed to
3665 * be returned regardless of their states.
3667 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3668 * css which finished ->css_online() is guaranteed to be visible in the
3669 * future iterations and will stay visible until the last reference is put.
3670 * A css which hasn't finished ->css_online() or already finished
3671 * ->css_offline() may show up during traversal. It's each subsystem's
3672 * responsibility to synchronize against on/offlining.
3674 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3675 struct cgroup_subsys_state *parent)
3677 struct cgroup_subsys_state *next;
3679 cgroup_assert_mutex_or_rcu_locked();
3682 * @pos could already have been unlinked from the sibling list.
3683 * Once a cgroup is removed, its ->sibling.next is no longer
3684 * updated when its next sibling changes. CSS_RELEASED is set when
3685 * @pos is taken off list, at which time its next pointer is valid,
3686 * and, as releases are serialized, the one pointed to by the next
3687 * pointer is guaranteed to not have started release yet. This
3688 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3689 * critical section, the one pointed to by its next pointer is
3690 * guaranteed to not have finished its RCU grace period even if we
3691 * have dropped rcu_read_lock() inbetween iterations.
3693 * If @pos has CSS_RELEASED set, its next pointer can't be
3694 * dereferenced; however, as each css is given a monotonically
3695 * increasing unique serial number and always appended to the
3696 * sibling list, the next one can be found by walking the parent's
3697 * children until the first css with higher serial number than
3698 * @pos's. While this path can be slower, it happens iff iteration
3699 * races against release and the race window is very small.
3701 if (!pos) {
3702 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3703 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3704 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3705 } else {
3706 list_for_each_entry_rcu(next, &parent->children, sibling)
3707 if (next->serial_nr > pos->serial_nr)
3708 break;
3712 * @next, if not pointing to the head, can be dereferenced and is
3713 * the next sibling.
3715 if (&next->sibling != &parent->children)
3716 return next;
3717 return NULL;
3721 * css_next_descendant_pre - find the next descendant for pre-order walk
3722 * @pos: the current position (%NULL to initiate traversal)
3723 * @root: css whose descendants to walk
3725 * To be used by css_for_each_descendant_pre(). Find the next descendant
3726 * to visit for pre-order traversal of @root's descendants. @root is
3727 * included in the iteration and the first node to be visited.
3729 * While this function requires cgroup_mutex or RCU read locking, it
3730 * doesn't require the whole traversal to be contained in a single critical
3731 * section. This function will return the correct next descendant as long
3732 * as both @pos and @root are accessible and @pos is a descendant of @root.
3734 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3735 * css which finished ->css_online() is guaranteed to be visible in the
3736 * future iterations and will stay visible until the last reference is put.
3737 * A css which hasn't finished ->css_online() or already finished
3738 * ->css_offline() may show up during traversal. It's each subsystem's
3739 * responsibility to synchronize against on/offlining.
3741 struct cgroup_subsys_state *
3742 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3743 struct cgroup_subsys_state *root)
3745 struct cgroup_subsys_state *next;
3747 cgroup_assert_mutex_or_rcu_locked();
3749 /* if first iteration, visit @root */
3750 if (!pos)
3751 return root;
3753 /* visit the first child if exists */
3754 next = css_next_child(NULL, pos);
3755 if (next)
3756 return next;
3758 /* no child, visit my or the closest ancestor's next sibling */
3759 while (pos != root) {
3760 next = css_next_child(pos, pos->parent);
3761 if (next)
3762 return next;
3763 pos = pos->parent;
3766 return NULL;
3770 * css_rightmost_descendant - return the rightmost descendant of a css
3771 * @pos: css of interest
3773 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3774 * is returned. This can be used during pre-order traversal to skip
3775 * subtree of @pos.
3777 * While this function requires cgroup_mutex or RCU read locking, it
3778 * doesn't require the whole traversal to be contained in a single critical
3779 * section. This function will return the correct rightmost descendant as
3780 * long as @pos is accessible.
3782 struct cgroup_subsys_state *
3783 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3785 struct cgroup_subsys_state *last, *tmp;
3787 cgroup_assert_mutex_or_rcu_locked();
3789 do {
3790 last = pos;
3791 /* ->prev isn't RCU safe, walk ->next till the end */
3792 pos = NULL;
3793 css_for_each_child(tmp, last)
3794 pos = tmp;
3795 } while (pos);
3797 return last;
3800 static struct cgroup_subsys_state *
3801 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3803 struct cgroup_subsys_state *last;
3805 do {
3806 last = pos;
3807 pos = css_next_child(NULL, pos);
3808 } while (pos);
3810 return last;
3814 * css_next_descendant_post - find the next descendant for post-order walk
3815 * @pos: the current position (%NULL to initiate traversal)
3816 * @root: css whose descendants to walk
3818 * To be used by css_for_each_descendant_post(). Find the next descendant
3819 * to visit for post-order traversal of @root's descendants. @root is
3820 * included in the iteration and the last node to be visited.
3822 * While this function requires cgroup_mutex or RCU read locking, it
3823 * doesn't require the whole traversal to be contained in a single critical
3824 * section. This function will return the correct next descendant as long
3825 * as both @pos and @cgroup are accessible and @pos is a descendant of
3826 * @cgroup.
3828 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3829 * css which finished ->css_online() is guaranteed to be visible in the
3830 * future iterations and will stay visible until the last reference is put.
3831 * A css which hasn't finished ->css_online() or already finished
3832 * ->css_offline() may show up during traversal. It's each subsystem's
3833 * responsibility to synchronize against on/offlining.
3835 struct cgroup_subsys_state *
3836 css_next_descendant_post(struct cgroup_subsys_state *pos,
3837 struct cgroup_subsys_state *root)
3839 struct cgroup_subsys_state *next;
3841 cgroup_assert_mutex_or_rcu_locked();
3843 /* if first iteration, visit leftmost descendant which may be @root */
3844 if (!pos)
3845 return css_leftmost_descendant(root);
3847 /* if we visited @root, we're done */
3848 if (pos == root)
3849 return NULL;
3851 /* if there's an unvisited sibling, visit its leftmost descendant */
3852 next = css_next_child(pos, pos->parent);
3853 if (next)
3854 return css_leftmost_descendant(next);
3856 /* no sibling left, visit parent */
3857 return pos->parent;
3861 * css_has_online_children - does a css have online children
3862 * @css: the target css
3864 * Returns %true if @css has any online children; otherwise, %false. This
3865 * function can be called from any context but the caller is responsible
3866 * for synchronizing against on/offlining as necessary.
3868 bool css_has_online_children(struct cgroup_subsys_state *css)
3870 struct cgroup_subsys_state *child;
3871 bool ret = false;
3873 rcu_read_lock();
3874 css_for_each_child(child, css) {
3875 if (child->flags & CSS_ONLINE) {
3876 ret = true;
3877 break;
3880 rcu_read_unlock();
3881 return ret;
3885 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3886 * @it: the iterator to advance
3888 * Advance @it to the next css_set to walk.
3890 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3892 struct list_head *l = it->cset_pos;
3893 struct cgrp_cset_link *link;
3894 struct css_set *cset;
3896 lockdep_assert_held(&css_set_lock);
3898 /* Advance to the next non-empty css_set */
3899 do {
3900 l = l->next;
3901 if (l == it->cset_head) {
3902 it->cset_pos = NULL;
3903 it->task_pos = NULL;
3904 return;
3907 if (it->ss) {
3908 cset = container_of(l, struct css_set,
3909 e_cset_node[it->ss->id]);
3910 } else {
3911 link = list_entry(l, struct cgrp_cset_link, cset_link);
3912 cset = link->cset;
3914 } while (!css_set_populated(cset));
3916 it->cset_pos = l;
3918 if (!list_empty(&cset->tasks))
3919 it->task_pos = cset->tasks.next;
3920 else
3921 it->task_pos = cset->mg_tasks.next;
3923 it->tasks_head = &cset->tasks;
3924 it->mg_tasks_head = &cset->mg_tasks;
3927 * We don't keep css_sets locked across iteration steps and thus
3928 * need to take steps to ensure that iteration can be resumed after
3929 * the lock is re-acquired. Iteration is performed at two levels -
3930 * css_sets and tasks in them.
3932 * Once created, a css_set never leaves its cgroup lists, so a
3933 * pinned css_set is guaranteed to stay put and we can resume
3934 * iteration afterwards.
3936 * Tasks may leave @cset across iteration steps. This is resolved
3937 * by registering each iterator with the css_set currently being
3938 * walked and making css_set_move_task() advance iterators whose
3939 * next task is leaving.
3941 if (it->cur_cset) {
3942 list_del(&it->iters_node);
3943 put_css_set_locked(it->cur_cset);
3945 get_css_set(cset);
3946 it->cur_cset = cset;
3947 list_add(&it->iters_node, &cset->task_iters);
3950 static void css_task_iter_advance(struct css_task_iter *it)
3952 struct list_head *l = it->task_pos;
3954 lockdep_assert_held(&css_set_lock);
3955 WARN_ON_ONCE(!l);
3958 * Advance iterator to find next entry. cset->tasks is consumed
3959 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3960 * next cset.
3962 l = l->next;
3964 if (l == it->tasks_head)
3965 l = it->mg_tasks_head->next;
3967 if (l == it->mg_tasks_head)
3968 css_task_iter_advance_css_set(it);
3969 else
3970 it->task_pos = l;
3974 * css_task_iter_start - initiate task iteration
3975 * @css: the css to walk tasks of
3976 * @it: the task iterator to use
3978 * Initiate iteration through the tasks of @css. The caller can call
3979 * css_task_iter_next() to walk through the tasks until the function
3980 * returns NULL. On completion of iteration, css_task_iter_end() must be
3981 * called.
3983 void css_task_iter_start(struct cgroup_subsys_state *css,
3984 struct css_task_iter *it)
3986 /* no one should try to iterate before mounting cgroups */
3987 WARN_ON_ONCE(!use_task_css_set_links);
3989 memset(it, 0, sizeof(*it));
3991 spin_lock_irq(&css_set_lock);
3993 it->ss = css->ss;
3995 if (it->ss)
3996 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3997 else
3998 it->cset_pos = &css->cgroup->cset_links;
4000 it->cset_head = it->cset_pos;
4002 css_task_iter_advance_css_set(it);
4004 spin_unlock_irq(&css_set_lock);
4008 * css_task_iter_next - return the next task for the iterator
4009 * @it: the task iterator being iterated
4011 * The "next" function for task iteration. @it should have been
4012 * initialized via css_task_iter_start(). Returns NULL when the iteration
4013 * reaches the end.
4015 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4017 if (it->cur_task) {
4018 put_task_struct(it->cur_task);
4019 it->cur_task = NULL;
4022 spin_lock_irq(&css_set_lock);
4024 if (it->task_pos) {
4025 it->cur_task = list_entry(it->task_pos, struct task_struct,
4026 cg_list);
4027 get_task_struct(it->cur_task);
4028 css_task_iter_advance(it);
4031 spin_unlock_irq(&css_set_lock);
4033 return it->cur_task;
4037 * css_task_iter_end - finish task iteration
4038 * @it: the task iterator to finish
4040 * Finish task iteration started by css_task_iter_start().
4042 void css_task_iter_end(struct css_task_iter *it)
4044 if (it->cur_cset) {
4045 spin_lock_irq(&css_set_lock);
4046 list_del(&it->iters_node);
4047 put_css_set_locked(it->cur_cset);
4048 spin_unlock_irq(&css_set_lock);
4051 if (it->cur_task)
4052 put_task_struct(it->cur_task);
4056 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4057 * @to: cgroup to which the tasks will be moved
4058 * @from: cgroup in which the tasks currently reside
4060 * Locking rules between cgroup_post_fork() and the migration path
4061 * guarantee that, if a task is forking while being migrated, the new child
4062 * is guaranteed to be either visible in the source cgroup after the
4063 * parent's migration is complete or put into the target cgroup. No task
4064 * can slip out of migration through forking.
4066 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
4068 LIST_HEAD(preloaded_csets);
4069 struct cgrp_cset_link *link;
4070 struct css_task_iter it;
4071 struct task_struct *task;
4072 int ret;
4074 mutex_lock(&cgroup_mutex);
4076 /* all tasks in @from are being moved, all csets are source */
4077 spin_lock_irq(&css_set_lock);
4078 list_for_each_entry(link, &from->cset_links, cset_link)
4079 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
4080 spin_unlock_irq(&css_set_lock);
4082 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
4083 if (ret)
4084 goto out_err;
4087 * Migrate tasks one-by-one until @form is empty. This fails iff
4088 * ->can_attach() fails.
4090 do {
4091 css_task_iter_start(&from->self, &it);
4093 do {
4094 task = css_task_iter_next(&it);
4095 } while (task && (task->flags & PF_EXITING));
4097 if (task)
4098 get_task_struct(task);
4099 css_task_iter_end(&it);
4101 if (task) {
4102 ret = cgroup_migrate(task, false, to);
4103 put_task_struct(task);
4105 } while (task && !ret);
4106 out_err:
4107 cgroup_migrate_finish(&preloaded_csets);
4108 mutex_unlock(&cgroup_mutex);
4109 return ret;
4113 * Stuff for reading the 'tasks'/'procs' files.
4115 * Reading this file can return large amounts of data if a cgroup has
4116 * *lots* of attached tasks. So it may need several calls to read(),
4117 * but we cannot guarantee that the information we produce is correct
4118 * unless we produce it entirely atomically.
4122 /* which pidlist file are we talking about? */
4123 enum cgroup_filetype {
4124 CGROUP_FILE_PROCS,
4125 CGROUP_FILE_TASKS,
4129 * A pidlist is a list of pids that virtually represents the contents of one
4130 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4131 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4132 * to the cgroup.
4134 struct cgroup_pidlist {
4136 * used to find which pidlist is wanted. doesn't change as long as
4137 * this particular list stays in the list.
4139 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4140 /* array of xids */
4141 pid_t *list;
4142 /* how many elements the above list has */
4143 int length;
4144 /* each of these stored in a list by its cgroup */
4145 struct list_head links;
4146 /* pointer to the cgroup we belong to, for list removal purposes */
4147 struct cgroup *owner;
4148 /* for delayed destruction */
4149 struct delayed_work destroy_dwork;
4153 * The following two functions "fix" the issue where there are more pids
4154 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4155 * TODO: replace with a kernel-wide solution to this problem
4157 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4158 static void *pidlist_allocate(int count)
4160 if (PIDLIST_TOO_LARGE(count))
4161 return vmalloc(count * sizeof(pid_t));
4162 else
4163 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4166 static void pidlist_free(void *p)
4168 kvfree(p);
4172 * Used to destroy all pidlists lingering waiting for destroy timer. None
4173 * should be left afterwards.
4175 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4177 struct cgroup_pidlist *l, *tmp_l;
4179 mutex_lock(&cgrp->pidlist_mutex);
4180 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4181 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4182 mutex_unlock(&cgrp->pidlist_mutex);
4184 flush_workqueue(cgroup_pidlist_destroy_wq);
4185 BUG_ON(!list_empty(&cgrp->pidlists));
4188 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4190 struct delayed_work *dwork = to_delayed_work(work);
4191 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4192 destroy_dwork);
4193 struct cgroup_pidlist *tofree = NULL;
4195 mutex_lock(&l->owner->pidlist_mutex);
4198 * Destroy iff we didn't get queued again. The state won't change
4199 * as destroy_dwork can only be queued while locked.
4201 if (!delayed_work_pending(dwork)) {
4202 list_del(&l->links);
4203 pidlist_free(l->list);
4204 put_pid_ns(l->key.ns);
4205 tofree = l;
4208 mutex_unlock(&l->owner->pidlist_mutex);
4209 kfree(tofree);
4213 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4214 * Returns the number of unique elements.
4216 static int pidlist_uniq(pid_t *list, int length)
4218 int src, dest = 1;
4221 * we presume the 0th element is unique, so i starts at 1. trivial
4222 * edge cases first; no work needs to be done for either
4224 if (length == 0 || length == 1)
4225 return length;
4226 /* src and dest walk down the list; dest counts unique elements */
4227 for (src = 1; src < length; src++) {
4228 /* find next unique element */
4229 while (list[src] == list[src-1]) {
4230 src++;
4231 if (src == length)
4232 goto after;
4234 /* dest always points to where the next unique element goes */
4235 list[dest] = list[src];
4236 dest++;
4238 after:
4239 return dest;
4243 * The two pid files - task and cgroup.procs - guaranteed that the result
4244 * is sorted, which forced this whole pidlist fiasco. As pid order is
4245 * different per namespace, each namespace needs differently sorted list,
4246 * making it impossible to use, for example, single rbtree of member tasks
4247 * sorted by task pointer. As pidlists can be fairly large, allocating one
4248 * per open file is dangerous, so cgroup had to implement shared pool of
4249 * pidlists keyed by cgroup and namespace.
4251 * All this extra complexity was caused by the original implementation
4252 * committing to an entirely unnecessary property. In the long term, we
4253 * want to do away with it. Explicitly scramble sort order if on the
4254 * default hierarchy so that no such expectation exists in the new
4255 * interface.
4257 * Scrambling is done by swapping every two consecutive bits, which is
4258 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4260 static pid_t pid_fry(pid_t pid)
4262 unsigned a = pid & 0x55555555;
4263 unsigned b = pid & 0xAAAAAAAA;
4265 return (a << 1) | (b >> 1);
4268 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4270 if (cgroup_on_dfl(cgrp))
4271 return pid_fry(pid);
4272 else
4273 return pid;
4276 static int cmppid(const void *a, const void *b)
4278 return *(pid_t *)a - *(pid_t *)b;
4281 static int fried_cmppid(const void *a, const void *b)
4283 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4286 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4287 enum cgroup_filetype type)
4289 struct cgroup_pidlist *l;
4290 /* don't need task_nsproxy() if we're looking at ourself */
4291 struct pid_namespace *ns = task_active_pid_ns(current);
4293 lockdep_assert_held(&cgrp->pidlist_mutex);
4295 list_for_each_entry(l, &cgrp->pidlists, links)
4296 if (l->key.type == type && l->key.ns == ns)
4297 return l;
4298 return NULL;
4302 * find the appropriate pidlist for our purpose (given procs vs tasks)
4303 * returns with the lock on that pidlist already held, and takes care
4304 * of the use count, or returns NULL with no locks held if we're out of
4305 * memory.
4307 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4308 enum cgroup_filetype type)
4310 struct cgroup_pidlist *l;
4312 lockdep_assert_held(&cgrp->pidlist_mutex);
4314 l = cgroup_pidlist_find(cgrp, type);
4315 if (l)
4316 return l;
4318 /* entry not found; create a new one */
4319 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4320 if (!l)
4321 return l;
4323 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4324 l->key.type = type;
4325 /* don't need task_nsproxy() if we're looking at ourself */
4326 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4327 l->owner = cgrp;
4328 list_add(&l->links, &cgrp->pidlists);
4329 return l;
4333 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4335 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4336 struct cgroup_pidlist **lp)
4338 pid_t *array;
4339 int length;
4340 int pid, n = 0; /* used for populating the array */
4341 struct css_task_iter it;
4342 struct task_struct *tsk;
4343 struct cgroup_pidlist *l;
4345 lockdep_assert_held(&cgrp->pidlist_mutex);
4348 * If cgroup gets more users after we read count, we won't have
4349 * enough space - tough. This race is indistinguishable to the
4350 * caller from the case that the additional cgroup users didn't
4351 * show up until sometime later on.
4353 length = cgroup_task_count(cgrp);
4354 array = pidlist_allocate(length);
4355 if (!array)
4356 return -ENOMEM;
4357 /* now, populate the array */
4358 css_task_iter_start(&cgrp->self, &it);
4359 while ((tsk = css_task_iter_next(&it))) {
4360 if (unlikely(n == length))
4361 break;
4362 /* get tgid or pid for procs or tasks file respectively */
4363 if (type == CGROUP_FILE_PROCS)
4364 pid = task_tgid_vnr(tsk);
4365 else
4366 pid = task_pid_vnr(tsk);
4367 if (pid > 0) /* make sure to only use valid results */
4368 array[n++] = pid;
4370 css_task_iter_end(&it);
4371 length = n;
4372 /* now sort & (if procs) strip out duplicates */
4373 if (cgroup_on_dfl(cgrp))
4374 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4375 else
4376 sort(array, length, sizeof(pid_t), cmppid, NULL);
4377 if (type == CGROUP_FILE_PROCS)
4378 length = pidlist_uniq(array, length);
4380 l = cgroup_pidlist_find_create(cgrp, type);
4381 if (!l) {
4382 pidlist_free(array);
4383 return -ENOMEM;
4386 /* store array, freeing old if necessary */
4387 pidlist_free(l->list);
4388 l->list = array;
4389 l->length = length;
4390 *lp = l;
4391 return 0;
4395 * cgroupstats_build - build and fill cgroupstats
4396 * @stats: cgroupstats to fill information into
4397 * @dentry: A dentry entry belonging to the cgroup for which stats have
4398 * been requested.
4400 * Build and fill cgroupstats so that taskstats can export it to user
4401 * space.
4403 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4405 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4406 struct cgroup *cgrp;
4407 struct css_task_iter it;
4408 struct task_struct *tsk;
4410 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4411 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4412 kernfs_type(kn) != KERNFS_DIR)
4413 return -EINVAL;
4415 mutex_lock(&cgroup_mutex);
4418 * We aren't being called from kernfs and there's no guarantee on
4419 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4420 * @kn->priv is RCU safe. Let's do the RCU dancing.
4422 rcu_read_lock();
4423 cgrp = rcu_dereference(kn->priv);
4424 if (!cgrp || cgroup_is_dead(cgrp)) {
4425 rcu_read_unlock();
4426 mutex_unlock(&cgroup_mutex);
4427 return -ENOENT;
4429 rcu_read_unlock();
4431 css_task_iter_start(&cgrp->self, &it);
4432 while ((tsk = css_task_iter_next(&it))) {
4433 switch (tsk->state) {
4434 case TASK_RUNNING:
4435 stats->nr_running++;
4436 break;
4437 case TASK_INTERRUPTIBLE:
4438 stats->nr_sleeping++;
4439 break;
4440 case TASK_UNINTERRUPTIBLE:
4441 stats->nr_uninterruptible++;
4442 break;
4443 case TASK_STOPPED:
4444 stats->nr_stopped++;
4445 break;
4446 default:
4447 if (delayacct_is_task_waiting_on_io(tsk))
4448 stats->nr_io_wait++;
4449 break;
4452 css_task_iter_end(&it);
4454 mutex_unlock(&cgroup_mutex);
4455 return 0;
4460 * seq_file methods for the tasks/procs files. The seq_file position is the
4461 * next pid to display; the seq_file iterator is a pointer to the pid
4462 * in the cgroup->l->list array.
4465 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4468 * Initially we receive a position value that corresponds to
4469 * one more than the last pid shown (or 0 on the first call or
4470 * after a seek to the start). Use a binary-search to find the
4471 * next pid to display, if any
4473 struct kernfs_open_file *of = s->private;
4474 struct cgroup *cgrp = seq_css(s)->cgroup;
4475 struct cgroup_pidlist *l;
4476 enum cgroup_filetype type = seq_cft(s)->private;
4477 int index = 0, pid = *pos;
4478 int *iter, ret;
4480 mutex_lock(&cgrp->pidlist_mutex);
4483 * !NULL @of->priv indicates that this isn't the first start()
4484 * after open. If the matching pidlist is around, we can use that.
4485 * Look for it. Note that @of->priv can't be used directly. It
4486 * could already have been destroyed.
4488 if (of->priv)
4489 of->priv = cgroup_pidlist_find(cgrp, type);
4492 * Either this is the first start() after open or the matching
4493 * pidlist has been destroyed inbetween. Create a new one.
4495 if (!of->priv) {
4496 ret = pidlist_array_load(cgrp, type,
4497 (struct cgroup_pidlist **)&of->priv);
4498 if (ret)
4499 return ERR_PTR(ret);
4501 l = of->priv;
4503 if (pid) {
4504 int end = l->length;
4506 while (index < end) {
4507 int mid = (index + end) / 2;
4508 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4509 index = mid;
4510 break;
4511 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4512 index = mid + 1;
4513 else
4514 end = mid;
4517 /* If we're off the end of the array, we're done */
4518 if (index >= l->length)
4519 return NULL;
4520 /* Update the abstract position to be the actual pid that we found */
4521 iter = l->list + index;
4522 *pos = cgroup_pid_fry(cgrp, *iter);
4523 return iter;
4526 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4528 struct kernfs_open_file *of = s->private;
4529 struct cgroup_pidlist *l = of->priv;
4531 if (l)
4532 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4533 CGROUP_PIDLIST_DESTROY_DELAY);
4534 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4537 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4539 struct kernfs_open_file *of = s->private;
4540 struct cgroup_pidlist *l = of->priv;
4541 pid_t *p = v;
4542 pid_t *end = l->list + l->length;
4544 * Advance to the next pid in the array. If this goes off the
4545 * end, we're done
4547 p++;
4548 if (p >= end) {
4549 return NULL;
4550 } else {
4551 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4552 return p;
4556 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4558 seq_printf(s, "%d\n", *(int *)v);
4560 return 0;
4563 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4564 struct cftype *cft)
4566 return notify_on_release(css->cgroup);
4569 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4570 struct cftype *cft, u64 val)
4572 if (val)
4573 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4574 else
4575 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4576 return 0;
4579 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4580 struct cftype *cft)
4582 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4585 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4586 struct cftype *cft, u64 val)
4588 if (val)
4589 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4590 else
4591 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4592 return 0;
4595 /* cgroup core interface files for the default hierarchy */
4596 static struct cftype cgroup_dfl_base_files[] = {
4598 .name = "cgroup.procs",
4599 .file_offset = offsetof(struct cgroup, procs_file),
4600 .seq_start = cgroup_pidlist_start,
4601 .seq_next = cgroup_pidlist_next,
4602 .seq_stop = cgroup_pidlist_stop,
4603 .seq_show = cgroup_pidlist_show,
4604 .private = CGROUP_FILE_PROCS,
4605 .write = cgroup_procs_write,
4608 .name = "cgroup.controllers",
4609 .flags = CFTYPE_ONLY_ON_ROOT,
4610 .seq_show = cgroup_root_controllers_show,
4613 .name = "cgroup.controllers",
4614 .flags = CFTYPE_NOT_ON_ROOT,
4615 .seq_show = cgroup_controllers_show,
4618 .name = "cgroup.subtree_control",
4619 .seq_show = cgroup_subtree_control_show,
4620 .write = cgroup_subtree_control_write,
4623 .name = "cgroup.events",
4624 .flags = CFTYPE_NOT_ON_ROOT,
4625 .file_offset = offsetof(struct cgroup, events_file),
4626 .seq_show = cgroup_events_show,
4628 { } /* terminate */
4631 /* cgroup core interface files for the legacy hierarchies */
4632 static struct cftype cgroup_legacy_base_files[] = {
4634 .name = "cgroup.procs",
4635 .seq_start = cgroup_pidlist_start,
4636 .seq_next = cgroup_pidlist_next,
4637 .seq_stop = cgroup_pidlist_stop,
4638 .seq_show = cgroup_pidlist_show,
4639 .private = CGROUP_FILE_PROCS,
4640 .write = cgroup_procs_write,
4643 .name = "cgroup.clone_children",
4644 .read_u64 = cgroup_clone_children_read,
4645 .write_u64 = cgroup_clone_children_write,
4648 .name = "cgroup.sane_behavior",
4649 .flags = CFTYPE_ONLY_ON_ROOT,
4650 .seq_show = cgroup_sane_behavior_show,
4653 .name = "tasks",
4654 .seq_start = cgroup_pidlist_start,
4655 .seq_next = cgroup_pidlist_next,
4656 .seq_stop = cgroup_pidlist_stop,
4657 .seq_show = cgroup_pidlist_show,
4658 .private = CGROUP_FILE_TASKS,
4659 .write = cgroup_tasks_write,
4662 .name = "notify_on_release",
4663 .read_u64 = cgroup_read_notify_on_release,
4664 .write_u64 = cgroup_write_notify_on_release,
4667 .name = "release_agent",
4668 .flags = CFTYPE_ONLY_ON_ROOT,
4669 .seq_show = cgroup_release_agent_show,
4670 .write = cgroup_release_agent_write,
4671 .max_write_len = PATH_MAX - 1,
4673 { } /* terminate */
4677 * css destruction is four-stage process.
4679 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4680 * Implemented in kill_css().
4682 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4683 * and thus css_tryget_online() is guaranteed to fail, the css can be
4684 * offlined by invoking offline_css(). After offlining, the base ref is
4685 * put. Implemented in css_killed_work_fn().
4687 * 3. When the percpu_ref reaches zero, the only possible remaining
4688 * accessors are inside RCU read sections. css_release() schedules the
4689 * RCU callback.
4691 * 4. After the grace period, the css can be freed. Implemented in
4692 * css_free_work_fn().
4694 * It is actually hairier because both step 2 and 4 require process context
4695 * and thus involve punting to css->destroy_work adding two additional
4696 * steps to the already complex sequence.
4698 static void css_free_work_fn(struct work_struct *work)
4700 struct cgroup_subsys_state *css =
4701 container_of(work, struct cgroup_subsys_state, destroy_work);
4702 struct cgroup_subsys *ss = css->ss;
4703 struct cgroup *cgrp = css->cgroup;
4705 percpu_ref_exit(&css->refcnt);
4707 if (ss) {
4708 /* css free path */
4709 struct cgroup_subsys_state *parent = css->parent;
4710 int id = css->id;
4712 ss->css_free(css);
4713 cgroup_idr_remove(&ss->css_idr, id);
4714 cgroup_put(cgrp);
4716 if (parent)
4717 css_put(parent);
4718 } else {
4719 /* cgroup free path */
4720 atomic_dec(&cgrp->root->nr_cgrps);
4721 cgroup_pidlist_destroy_all(cgrp);
4722 cancel_work_sync(&cgrp->release_agent_work);
4724 if (cgroup_parent(cgrp)) {
4726 * We get a ref to the parent, and put the ref when
4727 * this cgroup is being freed, so it's guaranteed
4728 * that the parent won't be destroyed before its
4729 * children.
4731 cgroup_put(cgroup_parent(cgrp));
4732 kernfs_put(cgrp->kn);
4733 kfree(cgrp);
4734 } else {
4736 * This is root cgroup's refcnt reaching zero,
4737 * which indicates that the root should be
4738 * released.
4740 cgroup_destroy_root(cgrp->root);
4745 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4747 struct cgroup_subsys_state *css =
4748 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4750 INIT_WORK(&css->destroy_work, css_free_work_fn);
4751 queue_work(cgroup_destroy_wq, &css->destroy_work);
4754 static void css_release_work_fn(struct work_struct *work)
4756 struct cgroup_subsys_state *css =
4757 container_of(work, struct cgroup_subsys_state, destroy_work);
4758 struct cgroup_subsys *ss = css->ss;
4759 struct cgroup *cgrp = css->cgroup;
4761 mutex_lock(&cgroup_mutex);
4763 css->flags |= CSS_RELEASED;
4764 list_del_rcu(&css->sibling);
4766 if (ss) {
4767 /* css release path */
4768 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4769 if (ss->css_released)
4770 ss->css_released(css);
4771 } else {
4772 /* cgroup release path */
4773 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4774 cgrp->id = -1;
4777 * There are two control paths which try to determine
4778 * cgroup from dentry without going through kernfs -
4779 * cgroupstats_build() and css_tryget_online_from_dir().
4780 * Those are supported by RCU protecting clearing of
4781 * cgrp->kn->priv backpointer.
4783 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4786 mutex_unlock(&cgroup_mutex);
4788 call_rcu(&css->rcu_head, css_free_rcu_fn);
4791 static void css_release(struct percpu_ref *ref)
4793 struct cgroup_subsys_state *css =
4794 container_of(ref, struct cgroup_subsys_state, refcnt);
4796 INIT_WORK(&css->destroy_work, css_release_work_fn);
4797 queue_work(cgroup_destroy_wq, &css->destroy_work);
4800 static void init_and_link_css(struct cgroup_subsys_state *css,
4801 struct cgroup_subsys *ss, struct cgroup *cgrp)
4803 lockdep_assert_held(&cgroup_mutex);
4805 cgroup_get(cgrp);
4807 memset(css, 0, sizeof(*css));
4808 css->cgroup = cgrp;
4809 css->ss = ss;
4810 css->id = -1;
4811 INIT_LIST_HEAD(&css->sibling);
4812 INIT_LIST_HEAD(&css->children);
4813 css->serial_nr = css_serial_nr_next++;
4814 atomic_set(&css->online_cnt, 0);
4816 if (cgroup_parent(cgrp)) {
4817 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4818 css_get(css->parent);
4821 BUG_ON(cgroup_css(cgrp, ss));
4824 /* invoke ->css_online() on a new CSS and mark it online if successful */
4825 static int online_css(struct cgroup_subsys_state *css)
4827 struct cgroup_subsys *ss = css->ss;
4828 int ret = 0;
4830 lockdep_assert_held(&cgroup_mutex);
4832 if (ss->css_online)
4833 ret = ss->css_online(css);
4834 if (!ret) {
4835 css->flags |= CSS_ONLINE;
4836 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4838 atomic_inc(&css->online_cnt);
4839 if (css->parent)
4840 atomic_inc(&css->parent->online_cnt);
4842 return ret;
4845 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4846 static void offline_css(struct cgroup_subsys_state *css)
4848 struct cgroup_subsys *ss = css->ss;
4850 lockdep_assert_held(&cgroup_mutex);
4852 if (!(css->flags & CSS_ONLINE))
4853 return;
4855 if (ss->css_offline)
4856 ss->css_offline(css);
4858 css->flags &= ~CSS_ONLINE;
4859 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4861 wake_up_all(&css->cgroup->offline_waitq);
4865 * create_css - create a cgroup_subsys_state
4866 * @cgrp: the cgroup new css will be associated with
4867 * @ss: the subsys of new css
4868 * @visible: whether to create control knobs for the new css or not
4870 * Create a new css associated with @cgrp - @ss pair. On success, the new
4871 * css is online and installed in @cgrp with all interface files created if
4872 * @visible. Returns 0 on success, -errno on failure.
4874 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4875 bool visible)
4877 struct cgroup *parent = cgroup_parent(cgrp);
4878 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4879 struct cgroup_subsys_state *css;
4880 int err;
4882 lockdep_assert_held(&cgroup_mutex);
4884 css = ss->css_alloc(parent_css);
4885 if (IS_ERR(css))
4886 return PTR_ERR(css);
4888 init_and_link_css(css, ss, cgrp);
4890 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4891 if (err)
4892 goto err_free_css;
4894 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4895 if (err < 0)
4896 goto err_free_percpu_ref;
4897 css->id = err;
4899 if (visible) {
4900 err = css_populate_dir(css, NULL);
4901 if (err)
4902 goto err_free_id;
4905 /* @css is ready to be brought online now, make it visible */
4906 list_add_tail_rcu(&css->sibling, &parent_css->children);
4907 cgroup_idr_replace(&ss->css_idr, css, css->id);
4909 err = online_css(css);
4910 if (err)
4911 goto err_list_del;
4913 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4914 cgroup_parent(parent)) {
4915 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4916 current->comm, current->pid, ss->name);
4917 if (!strcmp(ss->name, "memory"))
4918 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4919 ss->warned_broken_hierarchy = true;
4922 return 0;
4924 err_list_del:
4925 list_del_rcu(&css->sibling);
4926 css_clear_dir(css, NULL);
4927 err_free_id:
4928 cgroup_idr_remove(&ss->css_idr, css->id);
4929 err_free_percpu_ref:
4930 percpu_ref_exit(&css->refcnt);
4931 err_free_css:
4932 call_rcu(&css->rcu_head, css_free_rcu_fn);
4933 return err;
4936 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4937 umode_t mode)
4939 struct cgroup *parent, *cgrp;
4940 struct cgroup_root *root;
4941 struct cgroup_subsys *ss;
4942 struct kernfs_node *kn;
4943 int ssid, ret;
4945 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4947 if (strchr(name, '\n'))
4948 return -EINVAL;
4950 parent = cgroup_kn_lock_live(parent_kn);
4951 if (!parent)
4952 return -ENODEV;
4953 root = parent->root;
4955 /* allocate the cgroup and its ID, 0 is reserved for the root */
4956 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4957 if (!cgrp) {
4958 ret = -ENOMEM;
4959 goto out_unlock;
4962 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4963 if (ret)
4964 goto out_free_cgrp;
4967 * Temporarily set the pointer to NULL, so idr_find() won't return
4968 * a half-baked cgroup.
4970 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4971 if (cgrp->id < 0) {
4972 ret = -ENOMEM;
4973 goto out_cancel_ref;
4976 init_cgroup_housekeeping(cgrp);
4978 cgrp->self.parent = &parent->self;
4979 cgrp->root = root;
4981 if (notify_on_release(parent))
4982 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4984 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4985 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4987 /* create the directory */
4988 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4989 if (IS_ERR(kn)) {
4990 ret = PTR_ERR(kn);
4991 goto out_free_id;
4993 cgrp->kn = kn;
4996 * This extra ref will be put in cgroup_free_fn() and guarantees
4997 * that @cgrp->kn is always accessible.
4999 kernfs_get(kn);
5001 cgrp->self.serial_nr = css_serial_nr_next++;
5003 /* allocation complete, commit to creation */
5004 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
5005 atomic_inc(&root->nr_cgrps);
5006 cgroup_get(parent);
5009 * @cgrp is now fully operational. If something fails after this
5010 * point, it'll be released via the normal destruction path.
5012 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
5014 ret = cgroup_kn_set_ugid(kn);
5015 if (ret)
5016 goto out_destroy;
5018 ret = css_populate_dir(&cgrp->self, NULL);
5019 if (ret)
5020 goto out_destroy;
5022 /* let's create and online css's */
5023 for_each_subsys(ss, ssid) {
5024 if (parent->child_subsys_mask & (1 << ssid)) {
5025 ret = create_css(cgrp, ss,
5026 parent->subtree_control & (1 << ssid));
5027 if (ret)
5028 goto out_destroy;
5033 * On the default hierarchy, a child doesn't automatically inherit
5034 * subtree_control from the parent. Each is configured manually.
5036 if (!cgroup_on_dfl(cgrp)) {
5037 cgrp->subtree_control = parent->subtree_control;
5038 cgroup_refresh_child_subsys_mask(cgrp);
5041 kernfs_activate(kn);
5043 ret = 0;
5044 goto out_unlock;
5046 out_free_id:
5047 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
5048 out_cancel_ref:
5049 percpu_ref_exit(&cgrp->self.refcnt);
5050 out_free_cgrp:
5051 kfree(cgrp);
5052 out_unlock:
5053 cgroup_kn_unlock(parent_kn);
5054 return ret;
5056 out_destroy:
5057 cgroup_destroy_locked(cgrp);
5058 goto out_unlock;
5062 * This is called when the refcnt of a css is confirmed to be killed.
5063 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5064 * initate destruction and put the css ref from kill_css().
5066 static void css_killed_work_fn(struct work_struct *work)
5068 struct cgroup_subsys_state *css =
5069 container_of(work, struct cgroup_subsys_state, destroy_work);
5071 mutex_lock(&cgroup_mutex);
5073 do {
5074 offline_css(css);
5075 css_put(css);
5076 /* @css can't go away while we're holding cgroup_mutex */
5077 css = css->parent;
5078 } while (css && atomic_dec_and_test(&css->online_cnt));
5080 mutex_unlock(&cgroup_mutex);
5083 /* css kill confirmation processing requires process context, bounce */
5084 static void css_killed_ref_fn(struct percpu_ref *ref)
5086 struct cgroup_subsys_state *css =
5087 container_of(ref, struct cgroup_subsys_state, refcnt);
5089 if (atomic_dec_and_test(&css->online_cnt)) {
5090 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5091 queue_work(cgroup_destroy_wq, &css->destroy_work);
5096 * kill_css - destroy a css
5097 * @css: css to destroy
5099 * This function initiates destruction of @css by removing cgroup interface
5100 * files and putting its base reference. ->css_offline() will be invoked
5101 * asynchronously once css_tryget_online() is guaranteed to fail and when
5102 * the reference count reaches zero, @css will be released.
5104 static void kill_css(struct cgroup_subsys_state *css)
5106 lockdep_assert_held(&cgroup_mutex);
5109 * This must happen before css is disassociated with its cgroup.
5110 * See seq_css() for details.
5112 css_clear_dir(css, NULL);
5115 * Killing would put the base ref, but we need to keep it alive
5116 * until after ->css_offline().
5118 css_get(css);
5121 * cgroup core guarantees that, by the time ->css_offline() is
5122 * invoked, no new css reference will be given out via
5123 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5124 * proceed to offlining css's because percpu_ref_kill() doesn't
5125 * guarantee that the ref is seen as killed on all CPUs on return.
5127 * Use percpu_ref_kill_and_confirm() to get notifications as each
5128 * css is confirmed to be seen as killed on all CPUs.
5130 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5134 * cgroup_destroy_locked - the first stage of cgroup destruction
5135 * @cgrp: cgroup to be destroyed
5137 * css's make use of percpu refcnts whose killing latency shouldn't be
5138 * exposed to userland and are RCU protected. Also, cgroup core needs to
5139 * guarantee that css_tryget_online() won't succeed by the time
5140 * ->css_offline() is invoked. To satisfy all the requirements,
5141 * destruction is implemented in the following two steps.
5143 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5144 * userland visible parts and start killing the percpu refcnts of
5145 * css's. Set up so that the next stage will be kicked off once all
5146 * the percpu refcnts are confirmed to be killed.
5148 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5149 * rest of destruction. Once all cgroup references are gone, the
5150 * cgroup is RCU-freed.
5152 * This function implements s1. After this step, @cgrp is gone as far as
5153 * the userland is concerned and a new cgroup with the same name may be
5154 * created. As cgroup doesn't care about the names internally, this
5155 * doesn't cause any problem.
5157 static int cgroup_destroy_locked(struct cgroup *cgrp)
5158 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5160 struct cgroup_subsys_state *css;
5161 struct cgrp_cset_link *link;
5162 int ssid;
5164 lockdep_assert_held(&cgroup_mutex);
5167 * Only migration can raise populated from zero and we're already
5168 * holding cgroup_mutex.
5170 if (cgroup_is_populated(cgrp))
5171 return -EBUSY;
5174 * Make sure there's no live children. We can't test emptiness of
5175 * ->self.children as dead children linger on it while being
5176 * drained; otherwise, "rmdir parent/child parent" may fail.
5178 if (css_has_online_children(&cgrp->self))
5179 return -EBUSY;
5182 * Mark @cgrp and the associated csets dead. The former prevents
5183 * further task migration and child creation by disabling
5184 * cgroup_lock_live_group(). The latter makes the csets ignored by
5185 * the migration path.
5187 cgrp->self.flags &= ~CSS_ONLINE;
5189 spin_lock_irq(&css_set_lock);
5190 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5191 link->cset->dead = true;
5192 spin_unlock_irq(&css_set_lock);
5194 /* initiate massacre of all css's */
5195 for_each_css(css, ssid, cgrp)
5196 kill_css(css);
5199 * Remove @cgrp directory along with the base files. @cgrp has an
5200 * extra ref on its kn.
5202 kernfs_remove(cgrp->kn);
5204 check_for_release(cgroup_parent(cgrp));
5206 /* put the base reference */
5207 percpu_ref_kill(&cgrp->self.refcnt);
5209 return 0;
5212 static int cgroup_rmdir(struct kernfs_node *kn)
5214 struct cgroup *cgrp;
5215 int ret = 0;
5217 cgrp = cgroup_kn_lock_live(kn);
5218 if (!cgrp)
5219 return 0;
5221 ret = cgroup_destroy_locked(cgrp);
5223 cgroup_kn_unlock(kn);
5224 return ret;
5227 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5228 .remount_fs = cgroup_remount,
5229 .show_options = cgroup_show_options,
5230 .mkdir = cgroup_mkdir,
5231 .rmdir = cgroup_rmdir,
5232 .rename = cgroup_rename,
5235 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5237 struct cgroup_subsys_state *css;
5239 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5241 mutex_lock(&cgroup_mutex);
5243 idr_init(&ss->css_idr);
5244 INIT_LIST_HEAD(&ss->cfts);
5246 /* Create the root cgroup state for this subsystem */
5247 ss->root = &cgrp_dfl_root;
5248 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5249 /* We don't handle early failures gracefully */
5250 BUG_ON(IS_ERR(css));
5251 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5254 * Root csses are never destroyed and we can't initialize
5255 * percpu_ref during early init. Disable refcnting.
5257 css->flags |= CSS_NO_REF;
5259 if (early) {
5260 /* allocation can't be done safely during early init */
5261 css->id = 1;
5262 } else {
5263 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5264 BUG_ON(css->id < 0);
5267 /* Update the init_css_set to contain a subsys
5268 * pointer to this state - since the subsystem is
5269 * newly registered, all tasks and hence the
5270 * init_css_set is in the subsystem's root cgroup. */
5271 init_css_set.subsys[ss->id] = css;
5273 have_fork_callback |= (bool)ss->fork << ss->id;
5274 have_exit_callback |= (bool)ss->exit << ss->id;
5275 have_free_callback |= (bool)ss->free << ss->id;
5276 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5278 /* At system boot, before all subsystems have been
5279 * registered, no tasks have been forked, so we don't
5280 * need to invoke fork callbacks here. */
5281 BUG_ON(!list_empty(&init_task.tasks));
5283 BUG_ON(online_css(css));
5285 mutex_unlock(&cgroup_mutex);
5289 * cgroup_init_early - cgroup initialization at system boot
5291 * Initialize cgroups at system boot, and initialize any
5292 * subsystems that request early init.
5294 int __init cgroup_init_early(void)
5296 static struct cgroup_sb_opts __initdata opts;
5297 struct cgroup_subsys *ss;
5298 int i;
5300 init_cgroup_root(&cgrp_dfl_root, &opts);
5301 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5303 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5305 for_each_subsys(ss, i) {
5306 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5307 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5308 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5309 ss->id, ss->name);
5310 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5311 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5313 ss->id = i;
5314 ss->name = cgroup_subsys_name[i];
5315 if (!ss->legacy_name)
5316 ss->legacy_name = cgroup_subsys_name[i];
5318 if (ss->early_init)
5319 cgroup_init_subsys(ss, true);
5321 return 0;
5324 static unsigned long cgroup_disable_mask __initdata;
5327 * cgroup_init - cgroup initialization
5329 * Register cgroup filesystem and /proc file, and initialize
5330 * any subsystems that didn't request early init.
5332 int __init cgroup_init(void)
5334 struct cgroup_subsys *ss;
5335 unsigned long key;
5336 int ssid;
5338 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5339 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5340 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5342 mutex_lock(&cgroup_mutex);
5344 /* Add init_css_set to the hash table */
5345 key = css_set_hash(init_css_set.subsys);
5346 hash_add(css_set_table, &init_css_set.hlist, key);
5348 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5350 mutex_unlock(&cgroup_mutex);
5352 for_each_subsys(ss, ssid) {
5353 if (ss->early_init) {
5354 struct cgroup_subsys_state *css =
5355 init_css_set.subsys[ss->id];
5357 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5358 GFP_KERNEL);
5359 BUG_ON(css->id < 0);
5360 } else {
5361 cgroup_init_subsys(ss, false);
5364 list_add_tail(&init_css_set.e_cset_node[ssid],
5365 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5368 * Setting dfl_root subsys_mask needs to consider the
5369 * disabled flag and cftype registration needs kmalloc,
5370 * both of which aren't available during early_init.
5372 if (cgroup_disable_mask & (1 << ssid)) {
5373 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5374 printk(KERN_INFO "Disabling %s control group subsystem\n",
5375 ss->name);
5376 continue;
5379 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5381 if (!ss->dfl_cftypes)
5382 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5384 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5385 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5386 } else {
5387 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5388 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5391 if (ss->bind)
5392 ss->bind(init_css_set.subsys[ssid]);
5395 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5396 WARN_ON(register_filesystem(&cgroup_fs_type));
5397 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5399 return 0;
5402 static int __init cgroup_wq_init(void)
5405 * There isn't much point in executing destruction path in
5406 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5407 * Use 1 for @max_active.
5409 * We would prefer to do this in cgroup_init() above, but that
5410 * is called before init_workqueues(): so leave this until after.
5412 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5413 BUG_ON(!cgroup_destroy_wq);
5416 * Used to destroy pidlists and separate to serve as flush domain.
5417 * Cap @max_active to 1 too.
5419 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5420 0, 1);
5421 BUG_ON(!cgroup_pidlist_destroy_wq);
5423 return 0;
5425 core_initcall(cgroup_wq_init);
5428 * proc_cgroup_show()
5429 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5430 * - Used for /proc/<pid>/cgroup.
5432 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5433 struct pid *pid, struct task_struct *tsk)
5435 char *buf, *path;
5436 int retval;
5437 struct cgroup_root *root;
5439 retval = -ENOMEM;
5440 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5441 if (!buf)
5442 goto out;
5444 mutex_lock(&cgroup_mutex);
5445 spin_lock_irq(&css_set_lock);
5447 for_each_root(root) {
5448 struct cgroup_subsys *ss;
5449 struct cgroup *cgrp;
5450 int ssid, count = 0;
5452 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5453 continue;
5455 seq_printf(m, "%d:", root->hierarchy_id);
5456 if (root != &cgrp_dfl_root)
5457 for_each_subsys(ss, ssid)
5458 if (root->subsys_mask & (1 << ssid))
5459 seq_printf(m, "%s%s", count++ ? "," : "",
5460 ss->legacy_name);
5461 if (strlen(root->name))
5462 seq_printf(m, "%sname=%s", count ? "," : "",
5463 root->name);
5464 seq_putc(m, ':');
5466 cgrp = task_cgroup_from_root(tsk, root);
5469 * On traditional hierarchies, all zombie tasks show up as
5470 * belonging to the root cgroup. On the default hierarchy,
5471 * while a zombie doesn't show up in "cgroup.procs" and
5472 * thus can't be migrated, its /proc/PID/cgroup keeps
5473 * reporting the cgroup it belonged to before exiting. If
5474 * the cgroup is removed before the zombie is reaped,
5475 * " (deleted)" is appended to the cgroup path.
5477 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5478 path = cgroup_path(cgrp, buf, PATH_MAX);
5479 if (!path) {
5480 retval = -ENAMETOOLONG;
5481 goto out_unlock;
5483 } else {
5484 path = "/";
5487 seq_puts(m, path);
5489 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5490 seq_puts(m, " (deleted)\n");
5491 else
5492 seq_putc(m, '\n');
5495 retval = 0;
5496 out_unlock:
5497 spin_unlock_irq(&css_set_lock);
5498 mutex_unlock(&cgroup_mutex);
5499 kfree(buf);
5500 out:
5501 return retval;
5504 /* Display information about each subsystem and each hierarchy */
5505 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5507 struct cgroup_subsys *ss;
5508 int i;
5510 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5512 * ideally we don't want subsystems moving around while we do this.
5513 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5514 * subsys/hierarchy state.
5516 mutex_lock(&cgroup_mutex);
5518 for_each_subsys(ss, i)
5519 seq_printf(m, "%s\t%d\t%d\t%d\n",
5520 ss->legacy_name, ss->root->hierarchy_id,
5521 atomic_read(&ss->root->nr_cgrps),
5522 cgroup_ssid_enabled(i));
5524 mutex_unlock(&cgroup_mutex);
5525 return 0;
5528 static int cgroupstats_open(struct inode *inode, struct file *file)
5530 return single_open(file, proc_cgroupstats_show, NULL);
5533 static const struct file_operations proc_cgroupstats_operations = {
5534 .open = cgroupstats_open,
5535 .read = seq_read,
5536 .llseek = seq_lseek,
5537 .release = single_release,
5540 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5542 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5543 return &ss_priv[i - CGROUP_CANFORK_START];
5544 return NULL;
5547 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5549 void **private = subsys_canfork_priv_p(ss_priv, i);
5550 return private ? *private : NULL;
5554 * cgroup_fork - initialize cgroup related fields during copy_process()
5555 * @child: pointer to task_struct of forking parent process.
5557 * A task is associated with the init_css_set until cgroup_post_fork()
5558 * attaches it to the parent's css_set. Empty cg_list indicates that
5559 * @child isn't holding reference to its css_set.
5561 void cgroup_fork(struct task_struct *child)
5563 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5564 INIT_LIST_HEAD(&child->cg_list);
5568 * cgroup_can_fork - called on a new task before the process is exposed
5569 * @child: the task in question.
5571 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5572 * returns an error, the fork aborts with that error code. This allows for
5573 * a cgroup subsystem to conditionally allow or deny new forks.
5575 int cgroup_can_fork(struct task_struct *child,
5576 void *ss_priv[CGROUP_CANFORK_COUNT])
5578 struct cgroup_subsys *ss;
5579 int i, j, ret;
5581 for_each_subsys_which(ss, i, &have_canfork_callback) {
5582 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5583 if (ret)
5584 goto out_revert;
5587 return 0;
5589 out_revert:
5590 for_each_subsys(ss, j) {
5591 if (j >= i)
5592 break;
5593 if (ss->cancel_fork)
5594 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5597 return ret;
5601 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5602 * @child: the task in question
5604 * This calls the cancel_fork() callbacks if a fork failed *after*
5605 * cgroup_can_fork() succeded.
5607 void cgroup_cancel_fork(struct task_struct *child,
5608 void *ss_priv[CGROUP_CANFORK_COUNT])
5610 struct cgroup_subsys *ss;
5611 int i;
5613 for_each_subsys(ss, i)
5614 if (ss->cancel_fork)
5615 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5619 * cgroup_post_fork - called on a new task after adding it to the task list
5620 * @child: the task in question
5622 * Adds the task to the list running through its css_set if necessary and
5623 * call the subsystem fork() callbacks. Has to be after the task is
5624 * visible on the task list in case we race with the first call to
5625 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5626 * list.
5628 void cgroup_post_fork(struct task_struct *child,
5629 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5631 struct cgroup_subsys *ss;
5632 int i;
5635 * This may race against cgroup_enable_task_cg_lists(). As that
5636 * function sets use_task_css_set_links before grabbing
5637 * tasklist_lock and we just went through tasklist_lock to add
5638 * @child, it's guaranteed that either we see the set
5639 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5640 * @child during its iteration.
5642 * If we won the race, @child is associated with %current's
5643 * css_set. Grabbing css_set_lock guarantees both that the
5644 * association is stable, and, on completion of the parent's
5645 * migration, @child is visible in the source of migration or
5646 * already in the destination cgroup. This guarantee is necessary
5647 * when implementing operations which need to migrate all tasks of
5648 * a cgroup to another.
5650 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5651 * will remain in init_css_set. This is safe because all tasks are
5652 * in the init_css_set before cg_links is enabled and there's no
5653 * operation which transfers all tasks out of init_css_set.
5655 if (use_task_css_set_links) {
5656 struct css_set *cset;
5658 spin_lock_irq(&css_set_lock);
5659 cset = task_css_set(current);
5660 if (list_empty(&child->cg_list)) {
5661 get_css_set(cset);
5662 css_set_move_task(child, NULL, cset, false);
5664 spin_unlock_irq(&css_set_lock);
5668 * Call ss->fork(). This must happen after @child is linked on
5669 * css_set; otherwise, @child might change state between ->fork()
5670 * and addition to css_set.
5672 for_each_subsys_which(ss, i, &have_fork_callback)
5673 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5677 * cgroup_exit - detach cgroup from exiting task
5678 * @tsk: pointer to task_struct of exiting process
5680 * Description: Detach cgroup from @tsk and release it.
5682 * Note that cgroups marked notify_on_release force every task in
5683 * them to take the global cgroup_mutex mutex when exiting.
5684 * This could impact scaling on very large systems. Be reluctant to
5685 * use notify_on_release cgroups where very high task exit scaling
5686 * is required on large systems.
5688 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5689 * call cgroup_exit() while the task is still competent to handle
5690 * notify_on_release(), then leave the task attached to the root cgroup in
5691 * each hierarchy for the remainder of its exit. No need to bother with
5692 * init_css_set refcnting. init_css_set never goes away and we can't race
5693 * with migration path - PF_EXITING is visible to migration path.
5695 void cgroup_exit(struct task_struct *tsk)
5697 struct cgroup_subsys *ss;
5698 struct css_set *cset;
5699 int i;
5702 * Unlink from @tsk from its css_set. As migration path can't race
5703 * with us, we can check css_set and cg_list without synchronization.
5705 cset = task_css_set(tsk);
5707 if (!list_empty(&tsk->cg_list)) {
5708 spin_lock_irq(&css_set_lock);
5709 css_set_move_task(tsk, cset, NULL, false);
5710 spin_unlock_irq(&css_set_lock);
5711 } else {
5712 get_css_set(cset);
5715 /* see cgroup_post_fork() for details */
5716 for_each_subsys_which(ss, i, &have_exit_callback)
5717 ss->exit(tsk);
5720 void cgroup_free(struct task_struct *task)
5722 struct css_set *cset = task_css_set(task);
5723 struct cgroup_subsys *ss;
5724 int ssid;
5726 for_each_subsys_which(ss, ssid, &have_free_callback)
5727 ss->free(task);
5729 put_css_set(cset);
5732 static void check_for_release(struct cgroup *cgrp)
5734 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5735 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5736 schedule_work(&cgrp->release_agent_work);
5740 * Notify userspace when a cgroup is released, by running the
5741 * configured release agent with the name of the cgroup (path
5742 * relative to the root of cgroup file system) as the argument.
5744 * Most likely, this user command will try to rmdir this cgroup.
5746 * This races with the possibility that some other task will be
5747 * attached to this cgroup before it is removed, or that some other
5748 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5749 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5750 * unused, and this cgroup will be reprieved from its death sentence,
5751 * to continue to serve a useful existence. Next time it's released,
5752 * we will get notified again, if it still has 'notify_on_release' set.
5754 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5755 * means only wait until the task is successfully execve()'d. The
5756 * separate release agent task is forked by call_usermodehelper(),
5757 * then control in this thread returns here, without waiting for the
5758 * release agent task. We don't bother to wait because the caller of
5759 * this routine has no use for the exit status of the release agent
5760 * task, so no sense holding our caller up for that.
5762 static void cgroup_release_agent(struct work_struct *work)
5764 struct cgroup *cgrp =
5765 container_of(work, struct cgroup, release_agent_work);
5766 char *pathbuf = NULL, *agentbuf = NULL, *path;
5767 char *argv[3], *envp[3];
5769 mutex_lock(&cgroup_mutex);
5771 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5772 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5773 if (!pathbuf || !agentbuf)
5774 goto out;
5776 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5777 if (!path)
5778 goto out;
5780 argv[0] = agentbuf;
5781 argv[1] = path;
5782 argv[2] = NULL;
5784 /* minimal command environment */
5785 envp[0] = "HOME=/";
5786 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5787 envp[2] = NULL;
5789 mutex_unlock(&cgroup_mutex);
5790 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5791 goto out_free;
5792 out:
5793 mutex_unlock(&cgroup_mutex);
5794 out_free:
5795 kfree(agentbuf);
5796 kfree(pathbuf);
5799 static int __init cgroup_disable(char *str)
5801 struct cgroup_subsys *ss;
5802 char *token;
5803 int i;
5805 while ((token = strsep(&str, ",")) != NULL) {
5806 if (!*token)
5807 continue;
5809 for_each_subsys(ss, i) {
5810 if (strcmp(token, ss->name) &&
5811 strcmp(token, ss->legacy_name))
5812 continue;
5813 cgroup_disable_mask |= 1 << i;
5816 return 1;
5818 __setup("cgroup_disable=", cgroup_disable);
5821 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5822 * @dentry: directory dentry of interest
5823 * @ss: subsystem of interest
5825 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5826 * to get the corresponding css and return it. If such css doesn't exist
5827 * or can't be pinned, an ERR_PTR value is returned.
5829 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5830 struct cgroup_subsys *ss)
5832 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5833 struct cgroup_subsys_state *css = NULL;
5834 struct cgroup *cgrp;
5836 /* is @dentry a cgroup dir? */
5837 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5838 kernfs_type(kn) != KERNFS_DIR)
5839 return ERR_PTR(-EBADF);
5841 rcu_read_lock();
5844 * This path doesn't originate from kernfs and @kn could already
5845 * have been or be removed at any point. @kn->priv is RCU
5846 * protected for this access. See css_release_work_fn() for details.
5848 cgrp = rcu_dereference(kn->priv);
5849 if (cgrp)
5850 css = cgroup_css(cgrp, ss);
5852 if (!css || !css_tryget_online(css))
5853 css = ERR_PTR(-ENOENT);
5855 rcu_read_unlock();
5856 return css;
5860 * css_from_id - lookup css by id
5861 * @id: the cgroup id
5862 * @ss: cgroup subsys to be looked into
5864 * Returns the css if there's valid one with @id, otherwise returns NULL.
5865 * Should be called under rcu_read_lock().
5867 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5869 WARN_ON_ONCE(!rcu_read_lock_held());
5870 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5873 #ifdef CONFIG_CGROUP_DEBUG
5874 static struct cgroup_subsys_state *
5875 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5877 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5879 if (!css)
5880 return ERR_PTR(-ENOMEM);
5882 return css;
5885 static void debug_css_free(struct cgroup_subsys_state *css)
5887 kfree(css);
5890 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5891 struct cftype *cft)
5893 return cgroup_task_count(css->cgroup);
5896 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5897 struct cftype *cft)
5899 return (u64)(unsigned long)current->cgroups;
5902 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5903 struct cftype *cft)
5905 u64 count;
5907 rcu_read_lock();
5908 count = atomic_read(&task_css_set(current)->refcount);
5909 rcu_read_unlock();
5910 return count;
5913 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5915 struct cgrp_cset_link *link;
5916 struct css_set *cset;
5917 char *name_buf;
5919 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5920 if (!name_buf)
5921 return -ENOMEM;
5923 spin_lock_irq(&css_set_lock);
5924 rcu_read_lock();
5925 cset = rcu_dereference(current->cgroups);
5926 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5927 struct cgroup *c = link->cgrp;
5929 cgroup_name(c, name_buf, NAME_MAX + 1);
5930 seq_printf(seq, "Root %d group %s\n",
5931 c->root->hierarchy_id, name_buf);
5933 rcu_read_unlock();
5934 spin_unlock_irq(&css_set_lock);
5935 kfree(name_buf);
5936 return 0;
5939 #define MAX_TASKS_SHOWN_PER_CSS 25
5940 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5942 struct cgroup_subsys_state *css = seq_css(seq);
5943 struct cgrp_cset_link *link;
5945 spin_lock_irq(&css_set_lock);
5946 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5947 struct css_set *cset = link->cset;
5948 struct task_struct *task;
5949 int count = 0;
5951 seq_printf(seq, "css_set %p\n", cset);
5953 list_for_each_entry(task, &cset->tasks, cg_list) {
5954 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5955 goto overflow;
5956 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5959 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5960 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5961 goto overflow;
5962 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5964 continue;
5965 overflow:
5966 seq_puts(seq, " ...\n");
5968 spin_unlock_irq(&css_set_lock);
5969 return 0;
5972 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5974 return (!cgroup_is_populated(css->cgroup) &&
5975 !css_has_online_children(&css->cgroup->self));
5978 static struct cftype debug_files[] = {
5980 .name = "taskcount",
5981 .read_u64 = debug_taskcount_read,
5985 .name = "current_css_set",
5986 .read_u64 = current_css_set_read,
5990 .name = "current_css_set_refcount",
5991 .read_u64 = current_css_set_refcount_read,
5995 .name = "current_css_set_cg_links",
5996 .seq_show = current_css_set_cg_links_read,
6000 .name = "cgroup_css_links",
6001 .seq_show = cgroup_css_links_read,
6005 .name = "releasable",
6006 .read_u64 = releasable_read,
6009 { } /* terminate */
6012 struct cgroup_subsys debug_cgrp_subsys = {
6013 .css_alloc = debug_css_alloc,
6014 .css_free = debug_css_free,
6015 .legacy_cftypes = debug_files,
6017 #endif /* CONFIG_CGROUP_DEBUG */