2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/cpuset.h>
61 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DEFINE_SPINLOCK(css_set_lock
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_lock
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DEFINE_SPINLOCK(css_set_lock
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
102 * against file removal/re-creation across css hiding.
104 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
107 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
108 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
110 static DEFINE_SPINLOCK(release_agent_path_lock
);
112 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
114 #define cgroup_assert_mutex_or_rcu_locked() \
115 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
116 !lockdep_is_held(&cgroup_mutex), \
117 "cgroup_mutex or RCU read lock required");
120 * cgroup destruction makes heavy use of work items and there can be a lot
121 * of concurrent destructions. Use a separate workqueue so that cgroup
122 * destruction work items don't end up filling up max_active of system_wq
123 * which may lead to deadlock.
125 static struct workqueue_struct
*cgroup_destroy_wq
;
128 * pidlist destructions need to be flushed on cgroup destruction. Use a
129 * separate workqueue as flush domain.
131 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
133 /* generate an array of cgroup subsystem pointers */
134 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
135 static struct cgroup_subsys
*cgroup_subsys
[] = {
136 #include <linux/cgroup_subsys.h>
140 /* array of cgroup subsystem names */
141 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
142 static const char *cgroup_subsys_name
[] = {
143 #include <linux/cgroup_subsys.h>
147 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
149 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
150 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
151 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
152 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
153 #include <linux/cgroup_subsys.h>
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
157 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
158 #include <linux/cgroup_subsys.h>
162 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
163 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
164 #include <linux/cgroup_subsys.h>
169 * The default hierarchy, reserved for the subsystems that are otherwise
170 * unattached - it never has more than a single cgroup, and all tasks are
171 * part of that cgroup.
173 struct cgroup_root cgrp_dfl_root
;
174 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
177 * The default hierarchy always exists but is hidden until mounted for the
178 * first time. This is for backward compatibility.
180 static bool cgrp_dfl_root_visible
;
182 /* some controllers are not supported in the default hierarchy */
183 static unsigned long cgrp_dfl_root_inhibit_ss_mask
;
185 /* The list of hierarchy roots */
187 static LIST_HEAD(cgroup_roots
);
188 static int cgroup_root_count
;
190 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
191 static DEFINE_IDR(cgroup_hierarchy_idr
);
194 * Assign a monotonically increasing serial number to csses. It guarantees
195 * cgroups with bigger numbers are newer than those with smaller numbers.
196 * Also, as csses are always appended to the parent's ->children list, it
197 * guarantees that sibling csses are always sorted in the ascending serial
198 * number order on the list. Protected by cgroup_mutex.
200 static u64 css_serial_nr_next
= 1;
203 * These bitmask flags indicate whether tasks in the fork and exit paths have
204 * fork/exit handlers to call. This avoids us having to do extra work in the
205 * fork/exit path to check which subsystems have fork/exit callbacks.
207 static unsigned long have_fork_callback __read_mostly
;
208 static unsigned long have_exit_callback __read_mostly
;
209 static unsigned long have_free_callback __read_mostly
;
211 /* Ditto for the can_fork callback. */
212 static unsigned long have_canfork_callback __read_mostly
;
214 static struct cftype cgroup_dfl_base_files
[];
215 static struct cftype cgroup_legacy_base_files
[];
217 static int rebind_subsystems(struct cgroup_root
*dst_root
,
218 unsigned long ss_mask
);
219 static void css_task_iter_advance(struct css_task_iter
*it
);
220 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
221 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
223 static void css_release(struct percpu_ref
*ref
);
224 static void kill_css(struct cgroup_subsys_state
*css
);
225 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
226 struct cgroup
*cgrp
, struct cftype cfts
[],
230 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
231 * @ssid: subsys ID of interest
233 * cgroup_subsys_enabled() can only be used with literal subsys names which
234 * is fine for individual subsystems but unsuitable for cgroup core. This
235 * is slower static_key_enabled() based test indexed by @ssid.
237 static bool cgroup_ssid_enabled(int ssid
)
239 if (CGROUP_SUBSYS_COUNT
== 0)
242 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
246 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
247 * @cgrp: the cgroup of interest
249 * The default hierarchy is the v2 interface of cgroup and this function
250 * can be used to test whether a cgroup is on the default hierarchy for
251 * cases where a subsystem should behave differnetly depending on the
254 * The set of behaviors which change on the default hierarchy are still
255 * being determined and the mount option is prefixed with __DEVEL__.
257 * List of changed behaviors:
259 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
260 * and "name" are disallowed.
262 * - When mounting an existing superblock, mount options should match.
264 * - Remount is disallowed.
266 * - rename(2) is disallowed.
268 * - "tasks" is removed. Everything should be at process granularity. Use
269 * "cgroup.procs" instead.
271 * - "cgroup.procs" is not sorted. pids will be unique unless they got
272 * recycled inbetween reads.
274 * - "release_agent" and "notify_on_release" are removed. Replacement
275 * notification mechanism will be implemented.
277 * - "cgroup.clone_children" is removed.
279 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
280 * and its descendants contain no task; otherwise, 1. The file also
281 * generates kernfs notification which can be monitored through poll and
282 * [di]notify when the value of the file changes.
284 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
285 * take masks of ancestors with non-empty cpus/mems, instead of being
286 * moved to an ancestor.
288 * - cpuset: a task can be moved into an empty cpuset, and again it takes
289 * masks of ancestors.
291 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
294 * - blkcg: blk-throttle becomes properly hierarchical.
296 * - debug: disallowed on the default hierarchy.
298 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
300 return cgrp
->root
== &cgrp_dfl_root
;
303 /* IDR wrappers which synchronize using cgroup_idr_lock */
304 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
309 idr_preload(gfp_mask
);
310 spin_lock_bh(&cgroup_idr_lock
);
311 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
312 spin_unlock_bh(&cgroup_idr_lock
);
317 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
321 spin_lock_bh(&cgroup_idr_lock
);
322 ret
= idr_replace(idr
, ptr
, id
);
323 spin_unlock_bh(&cgroup_idr_lock
);
327 static void cgroup_idr_remove(struct idr
*idr
, int id
)
329 spin_lock_bh(&cgroup_idr_lock
);
331 spin_unlock_bh(&cgroup_idr_lock
);
334 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
336 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
339 return container_of(parent_css
, struct cgroup
, self
);
344 * cgroup_css - obtain a cgroup's css for the specified subsystem
345 * @cgrp: the cgroup of interest
346 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
348 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
349 * function must be called either under cgroup_mutex or rcu_read_lock() and
350 * the caller is responsible for pinning the returned css if it wants to
351 * keep accessing it outside the said locks. This function may return
352 * %NULL if @cgrp doesn't have @subsys_id enabled.
354 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
355 struct cgroup_subsys
*ss
)
358 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
359 lockdep_is_held(&cgroup_mutex
));
365 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
366 * @cgrp: the cgroup of interest
367 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
369 * Similar to cgroup_css() but returns the effective css, which is defined
370 * as the matching css of the nearest ancestor including self which has @ss
371 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
372 * function is guaranteed to return non-NULL css.
374 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
375 struct cgroup_subsys
*ss
)
377 lockdep_assert_held(&cgroup_mutex
);
382 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
386 * This function is used while updating css associations and thus
387 * can't test the csses directly. Use ->child_subsys_mask.
389 while (cgroup_parent(cgrp
) &&
390 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
391 cgrp
= cgroup_parent(cgrp
);
393 return cgroup_css(cgrp
, ss
);
397 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
398 * @cgrp: the cgroup of interest
399 * @ss: the subsystem of interest
401 * Find and get the effective css of @cgrp for @ss. The effective css is
402 * defined as the matching css of the nearest ancestor including self which
403 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
404 * the root css is returned, so this function always returns a valid css.
405 * The returned css must be put using css_put().
407 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
408 struct cgroup_subsys
*ss
)
410 struct cgroup_subsys_state
*css
;
415 css
= cgroup_css(cgrp
, ss
);
417 if (css
&& css_tryget_online(css
))
419 cgrp
= cgroup_parent(cgrp
);
422 css
= init_css_set
.subsys
[ss
->id
];
429 /* convenient tests for these bits */
430 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
432 return !(cgrp
->self
.flags
& CSS_ONLINE
);
435 static void cgroup_get(struct cgroup
*cgrp
)
437 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
438 css_get(&cgrp
->self
);
441 static bool cgroup_tryget(struct cgroup
*cgrp
)
443 return css_tryget(&cgrp
->self
);
446 static void cgroup_put(struct cgroup
*cgrp
)
448 css_put(&cgrp
->self
);
451 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
453 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
454 struct cftype
*cft
= of_cft(of
);
457 * This is open and unprotected implementation of cgroup_css().
458 * seq_css() is only called from a kernfs file operation which has
459 * an active reference on the file. Because all the subsystem
460 * files are drained before a css is disassociated with a cgroup,
461 * the matching css from the cgroup's subsys table is guaranteed to
462 * be and stay valid until the enclosing operation is complete.
465 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
469 EXPORT_SYMBOL_GPL(of_css
);
472 * cgroup_is_descendant - test ancestry
473 * @cgrp: the cgroup to be tested
474 * @ancestor: possible ancestor of @cgrp
476 * Test whether @cgrp is a descendant of @ancestor. It also returns %true
477 * if @cgrp == @ancestor. This function is safe to call as long as @cgrp
478 * and @ancestor are accessible.
480 bool cgroup_is_descendant(struct cgroup
*cgrp
, struct cgroup
*ancestor
)
483 if (cgrp
== ancestor
)
485 cgrp
= cgroup_parent(cgrp
);
490 static int notify_on_release(const struct cgroup
*cgrp
)
492 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
496 * for_each_css - iterate all css's of a cgroup
497 * @css: the iteration cursor
498 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
499 * @cgrp: the target cgroup to iterate css's of
501 * Should be called under cgroup_[tree_]mutex.
503 #define for_each_css(css, ssid, cgrp) \
504 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
505 if (!((css) = rcu_dereference_check( \
506 (cgrp)->subsys[(ssid)], \
507 lockdep_is_held(&cgroup_mutex)))) { } \
511 * for_each_e_css - iterate all effective css's of a cgroup
512 * @css: the iteration cursor
513 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
514 * @cgrp: the target cgroup to iterate css's of
516 * Should be called under cgroup_[tree_]mutex.
518 #define for_each_e_css(css, ssid, cgrp) \
519 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
520 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
525 * for_each_subsys - iterate all enabled cgroup subsystems
526 * @ss: the iteration cursor
527 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
529 #define for_each_subsys(ss, ssid) \
530 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
531 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
534 * for_each_subsys_which - filter for_each_subsys with a bitmask
535 * @ss: the iteration cursor
536 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
537 * @ss_maskp: a pointer to the bitmask
539 * The block will only run for cases where the ssid-th bit (1 << ssid) of
542 #define for_each_subsys_which(ss, ssid, ss_maskp) \
543 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
546 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
547 if (((ss) = cgroup_subsys[ssid]) && false) \
551 /* iterate across the hierarchies */
552 #define for_each_root(root) \
553 list_for_each_entry((root), &cgroup_roots, root_list)
555 /* iterate over child cgrps, lock should be held throughout iteration */
556 #define cgroup_for_each_live_child(child, cgrp) \
557 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
558 if (({ lockdep_assert_held(&cgroup_mutex); \
559 cgroup_is_dead(child); })) \
563 static void cgroup_release_agent(struct work_struct
*work
);
564 static void check_for_release(struct cgroup
*cgrp
);
567 * A cgroup can be associated with multiple css_sets as different tasks may
568 * belong to different cgroups on different hierarchies. In the other
569 * direction, a css_set is naturally associated with multiple cgroups.
570 * This M:N relationship is represented by the following link structure
571 * which exists for each association and allows traversing the associations
574 struct cgrp_cset_link
{
575 /* the cgroup and css_set this link associates */
577 struct css_set
*cset
;
579 /* list of cgrp_cset_links anchored at cgrp->cset_links */
580 struct list_head cset_link
;
582 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
583 struct list_head cgrp_link
;
587 * The default css_set - used by init and its children prior to any
588 * hierarchies being mounted. It contains a pointer to the root state
589 * for each subsystem. Also used to anchor the list of css_sets. Not
590 * reference-counted, to improve performance when child cgroups
591 * haven't been created.
593 struct css_set init_css_set
= {
594 .refcount
= ATOMIC_INIT(1),
595 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
596 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
597 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
598 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
599 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
600 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
603 static int css_set_count
= 1; /* 1 for init_css_set */
606 * css_set_populated - does a css_set contain any tasks?
607 * @cset: target css_set
609 static bool css_set_populated(struct css_set
*cset
)
611 lockdep_assert_held(&css_set_lock
);
613 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
617 * cgroup_update_populated - updated populated count of a cgroup
618 * @cgrp: the target cgroup
619 * @populated: inc or dec populated count
621 * One of the css_sets associated with @cgrp is either getting its first
622 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
623 * count is propagated towards root so that a given cgroup's populated_cnt
624 * is zero iff the cgroup and all its descendants don't contain any tasks.
626 * @cgrp's interface file "cgroup.populated" is zero if
627 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
628 * changes from or to zero, userland is notified that the content of the
629 * interface file has changed. This can be used to detect when @cgrp and
630 * its descendants become populated or empty.
632 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
634 lockdep_assert_held(&css_set_lock
);
640 trigger
= !cgrp
->populated_cnt
++;
642 trigger
= !--cgrp
->populated_cnt
;
647 check_for_release(cgrp
);
648 cgroup_file_notify(&cgrp
->events_file
);
650 cgrp
= cgroup_parent(cgrp
);
655 * css_set_update_populated - update populated state of a css_set
656 * @cset: target css_set
657 * @populated: whether @cset is populated or depopulated
659 * @cset is either getting the first task or losing the last. Update the
660 * ->populated_cnt of all associated cgroups accordingly.
662 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
664 struct cgrp_cset_link
*link
;
666 lockdep_assert_held(&css_set_lock
);
668 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
669 cgroup_update_populated(link
->cgrp
, populated
);
673 * css_set_move_task - move a task from one css_set to another
674 * @task: task being moved
675 * @from_cset: css_set @task currently belongs to (may be NULL)
676 * @to_cset: new css_set @task is being moved to (may be NULL)
677 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
679 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
680 * css_set, @from_cset can be NULL. If @task is being disassociated
681 * instead of moved, @to_cset can be NULL.
683 * This function automatically handles populated_cnt updates and
684 * css_task_iter adjustments but the caller is responsible for managing
685 * @from_cset and @to_cset's reference counts.
687 static void css_set_move_task(struct task_struct
*task
,
688 struct css_set
*from_cset
, struct css_set
*to_cset
,
691 lockdep_assert_held(&css_set_lock
);
694 struct css_task_iter
*it
, *pos
;
696 WARN_ON_ONCE(list_empty(&task
->cg_list
));
699 * @task is leaving, advance task iterators which are
700 * pointing to it so that they can resume at the next
701 * position. Advancing an iterator might remove it from
702 * the list, use safe walk. See css_task_iter_advance*()
705 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
707 if (it
->task_pos
== &task
->cg_list
)
708 css_task_iter_advance(it
);
710 list_del_init(&task
->cg_list
);
711 if (!css_set_populated(from_cset
))
712 css_set_update_populated(from_cset
, false);
714 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
719 * We are synchronized through cgroup_threadgroup_rwsem
720 * against PF_EXITING setting such that we can't race
721 * against cgroup_exit() changing the css_set to
722 * init_css_set and dropping the old one.
724 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
726 if (!css_set_populated(to_cset
))
727 css_set_update_populated(to_cset
, true);
728 rcu_assign_pointer(task
->cgroups
, to_cset
);
729 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
735 * hash table for cgroup groups. This improves the performance to find
736 * an existing css_set. This hash doesn't (currently) take into
737 * account cgroups in empty hierarchies.
739 #define CSS_SET_HASH_BITS 7
740 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
742 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
744 unsigned long key
= 0UL;
745 struct cgroup_subsys
*ss
;
748 for_each_subsys(ss
, i
)
749 key
+= (unsigned long)css
[i
];
750 key
= (key
>> 16) ^ key
;
755 static void put_css_set_locked(struct css_set
*cset
)
757 struct cgrp_cset_link
*link
, *tmp_link
;
758 struct cgroup_subsys
*ss
;
761 lockdep_assert_held(&css_set_lock
);
763 if (!atomic_dec_and_test(&cset
->refcount
))
766 /* This css_set is dead. unlink it and release cgroup and css refs */
767 for_each_subsys(ss
, ssid
) {
768 list_del(&cset
->e_cset_node
[ssid
]);
769 css_put(cset
->subsys
[ssid
]);
771 hash_del(&cset
->hlist
);
774 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
775 list_del(&link
->cset_link
);
776 list_del(&link
->cgrp_link
);
777 if (cgroup_parent(link
->cgrp
))
778 cgroup_put(link
->cgrp
);
782 kfree_rcu(cset
, rcu_head
);
785 static void put_css_set(struct css_set
*cset
)
790 * Ensure that the refcount doesn't hit zero while any readers
791 * can see it. Similar to atomic_dec_and_lock(), but for an
794 if (atomic_add_unless(&cset
->refcount
, -1, 1))
797 spin_lock_irqsave(&css_set_lock
, flags
);
798 put_css_set_locked(cset
);
799 spin_unlock_irqrestore(&css_set_lock
, flags
);
803 * refcounted get/put for css_set objects
805 static inline void get_css_set(struct css_set
*cset
)
807 atomic_inc(&cset
->refcount
);
811 * compare_css_sets - helper function for find_existing_css_set().
812 * @cset: candidate css_set being tested
813 * @old_cset: existing css_set for a task
814 * @new_cgrp: cgroup that's being entered by the task
815 * @template: desired set of css pointers in css_set (pre-calculated)
817 * Returns true if "cset" matches "old_cset" except for the hierarchy
818 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
820 static bool compare_css_sets(struct css_set
*cset
,
821 struct css_set
*old_cset
,
822 struct cgroup
*new_cgrp
,
823 struct cgroup_subsys_state
*template[])
825 struct list_head
*l1
, *l2
;
828 * On the default hierarchy, there can be csets which are
829 * associated with the same set of cgroups but different csses.
830 * Let's first ensure that csses match.
832 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
836 * Compare cgroup pointers in order to distinguish between
837 * different cgroups in hierarchies. As different cgroups may
838 * share the same effective css, this comparison is always
841 l1
= &cset
->cgrp_links
;
842 l2
= &old_cset
->cgrp_links
;
844 struct cgrp_cset_link
*link1
, *link2
;
845 struct cgroup
*cgrp1
, *cgrp2
;
849 /* See if we reached the end - both lists are equal length. */
850 if (l1
== &cset
->cgrp_links
) {
851 BUG_ON(l2
!= &old_cset
->cgrp_links
);
854 BUG_ON(l2
== &old_cset
->cgrp_links
);
856 /* Locate the cgroups associated with these links. */
857 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
858 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
861 /* Hierarchies should be linked in the same order. */
862 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
865 * If this hierarchy is the hierarchy of the cgroup
866 * that's changing, then we need to check that this
867 * css_set points to the new cgroup; if it's any other
868 * hierarchy, then this css_set should point to the
869 * same cgroup as the old css_set.
871 if (cgrp1
->root
== new_cgrp
->root
) {
872 if (cgrp1
!= new_cgrp
)
883 * find_existing_css_set - init css array and find the matching css_set
884 * @old_cset: the css_set that we're using before the cgroup transition
885 * @cgrp: the cgroup that we're moving into
886 * @template: out param for the new set of csses, should be clear on entry
888 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
890 struct cgroup_subsys_state
*template[])
892 struct cgroup_root
*root
= cgrp
->root
;
893 struct cgroup_subsys
*ss
;
894 struct css_set
*cset
;
899 * Build the set of subsystem state objects that we want to see in the
900 * new css_set. while subsystems can change globally, the entries here
901 * won't change, so no need for locking.
903 for_each_subsys(ss
, i
) {
904 if (root
->subsys_mask
& (1UL << i
)) {
906 * @ss is in this hierarchy, so we want the
907 * effective css from @cgrp.
909 template[i
] = cgroup_e_css(cgrp
, ss
);
912 * @ss is not in this hierarchy, so we don't want
915 template[i
] = old_cset
->subsys
[i
];
919 key
= css_set_hash(template);
920 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
921 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
924 /* This css_set matches what we need */
928 /* No existing cgroup group matched */
932 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
934 struct cgrp_cset_link
*link
, *tmp_link
;
936 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
937 list_del(&link
->cset_link
);
943 * allocate_cgrp_cset_links - allocate cgrp_cset_links
944 * @count: the number of links to allocate
945 * @tmp_links: list_head the allocated links are put on
947 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
948 * through ->cset_link. Returns 0 on success or -errno.
950 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
952 struct cgrp_cset_link
*link
;
955 INIT_LIST_HEAD(tmp_links
);
957 for (i
= 0; i
< count
; i
++) {
958 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
960 free_cgrp_cset_links(tmp_links
);
963 list_add(&link
->cset_link
, tmp_links
);
969 * link_css_set - a helper function to link a css_set to a cgroup
970 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
971 * @cset: the css_set to be linked
972 * @cgrp: the destination cgroup
974 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
977 struct cgrp_cset_link
*link
;
979 BUG_ON(list_empty(tmp_links
));
981 if (cgroup_on_dfl(cgrp
))
982 cset
->dfl_cgrp
= cgrp
;
984 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
989 * Always add links to the tail of the lists so that the lists are
990 * in choronological order.
992 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
993 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
995 if (cgroup_parent(cgrp
))
1000 * find_css_set - return a new css_set with one cgroup updated
1001 * @old_cset: the baseline css_set
1002 * @cgrp: the cgroup to be updated
1004 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1005 * substituted into the appropriate hierarchy.
1007 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1008 struct cgroup
*cgrp
)
1010 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1011 struct css_set
*cset
;
1012 struct list_head tmp_links
;
1013 struct cgrp_cset_link
*link
;
1014 struct cgroup_subsys
*ss
;
1018 lockdep_assert_held(&cgroup_mutex
);
1020 /* First see if we already have a cgroup group that matches
1021 * the desired set */
1022 spin_lock_irq(&css_set_lock
);
1023 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1026 spin_unlock_irq(&css_set_lock
);
1031 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1035 /* Allocate all the cgrp_cset_link objects that we'll need */
1036 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1041 atomic_set(&cset
->refcount
, 1);
1042 INIT_LIST_HEAD(&cset
->cgrp_links
);
1043 INIT_LIST_HEAD(&cset
->tasks
);
1044 INIT_LIST_HEAD(&cset
->mg_tasks
);
1045 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1046 INIT_LIST_HEAD(&cset
->mg_node
);
1047 INIT_LIST_HEAD(&cset
->task_iters
);
1048 INIT_HLIST_NODE(&cset
->hlist
);
1050 /* Copy the set of subsystem state objects generated in
1051 * find_existing_css_set() */
1052 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1054 spin_lock_irq(&css_set_lock
);
1055 /* Add reference counts and links from the new css_set. */
1056 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1057 struct cgroup
*c
= link
->cgrp
;
1059 if (c
->root
== cgrp
->root
)
1061 link_css_set(&tmp_links
, cset
, c
);
1064 BUG_ON(!list_empty(&tmp_links
));
1068 /* Add @cset to the hash table */
1069 key
= css_set_hash(cset
->subsys
);
1070 hash_add(css_set_table
, &cset
->hlist
, key
);
1072 for_each_subsys(ss
, ssid
) {
1073 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1075 list_add_tail(&cset
->e_cset_node
[ssid
],
1076 &css
->cgroup
->e_csets
[ssid
]);
1080 spin_unlock_irq(&css_set_lock
);
1085 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1087 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1089 return root_cgrp
->root
;
1092 static int cgroup_init_root_id(struct cgroup_root
*root
)
1096 lockdep_assert_held(&cgroup_mutex
);
1098 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1102 root
->hierarchy_id
= id
;
1106 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1108 lockdep_assert_held(&cgroup_mutex
);
1110 if (root
->hierarchy_id
) {
1111 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1112 root
->hierarchy_id
= 0;
1116 static void cgroup_free_root(struct cgroup_root
*root
)
1119 /* hierarchy ID should already have been released */
1120 WARN_ON_ONCE(root
->hierarchy_id
);
1122 idr_destroy(&root
->cgroup_idr
);
1127 static void cgroup_destroy_root(struct cgroup_root
*root
)
1129 struct cgroup
*cgrp
= &root
->cgrp
;
1130 struct cgrp_cset_link
*link
, *tmp_link
;
1132 mutex_lock(&cgroup_mutex
);
1134 BUG_ON(atomic_read(&root
->nr_cgrps
));
1135 BUG_ON(!list_empty(&cgrp
->self
.children
));
1137 /* Rebind all subsystems back to the default hierarchy */
1138 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
1141 * Release all the links from cset_links to this hierarchy's
1144 spin_lock_irq(&css_set_lock
);
1146 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1147 list_del(&link
->cset_link
);
1148 list_del(&link
->cgrp_link
);
1152 spin_unlock_irq(&css_set_lock
);
1154 if (!list_empty(&root
->root_list
)) {
1155 list_del(&root
->root_list
);
1156 cgroup_root_count
--;
1159 cgroup_exit_root_id(root
);
1161 mutex_unlock(&cgroup_mutex
);
1163 kernfs_destroy_root(root
->kf_root
);
1164 cgroup_free_root(root
);
1167 /* look up cgroup associated with given css_set on the specified hierarchy */
1168 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1169 struct cgroup_root
*root
)
1171 struct cgroup
*res
= NULL
;
1173 lockdep_assert_held(&cgroup_mutex
);
1174 lockdep_assert_held(&css_set_lock
);
1176 if (cset
== &init_css_set
) {
1179 struct cgrp_cset_link
*link
;
1181 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1182 struct cgroup
*c
= link
->cgrp
;
1184 if (c
->root
== root
) {
1196 * Return the cgroup for "task" from the given hierarchy. Must be
1197 * called with cgroup_mutex and css_set_lock held.
1199 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1200 struct cgroup_root
*root
)
1203 * No need to lock the task - since we hold cgroup_mutex the
1204 * task can't change groups, so the only thing that can happen
1205 * is that it exits and its css is set back to init_css_set.
1207 return cset_cgroup_from_root(task_css_set(task
), root
);
1211 * A task must hold cgroup_mutex to modify cgroups.
1213 * Any task can increment and decrement the count field without lock.
1214 * So in general, code holding cgroup_mutex can't rely on the count
1215 * field not changing. However, if the count goes to zero, then only
1216 * cgroup_attach_task() can increment it again. Because a count of zero
1217 * means that no tasks are currently attached, therefore there is no
1218 * way a task attached to that cgroup can fork (the other way to
1219 * increment the count). So code holding cgroup_mutex can safely
1220 * assume that if the count is zero, it will stay zero. Similarly, if
1221 * a task holds cgroup_mutex on a cgroup with zero count, it
1222 * knows that the cgroup won't be removed, as cgroup_rmdir()
1225 * A cgroup can only be deleted if both its 'count' of using tasks
1226 * is zero, and its list of 'children' cgroups is empty. Since all
1227 * tasks in the system use _some_ cgroup, and since there is always at
1228 * least one task in the system (init, pid == 1), therefore, root cgroup
1229 * always has either children cgroups and/or using tasks. So we don't
1230 * need a special hack to ensure that root cgroup cannot be deleted.
1232 * P.S. One more locking exception. RCU is used to guard the
1233 * update of a tasks cgroup pointer by cgroup_attach_task()
1236 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1237 static const struct file_operations proc_cgroupstats_operations
;
1239 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1242 struct cgroup_subsys
*ss
= cft
->ss
;
1244 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1245 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1246 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1247 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1250 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1255 * cgroup_file_mode - deduce file mode of a control file
1256 * @cft: the control file in question
1258 * S_IRUGO for read, S_IWUSR for write.
1260 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1264 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1267 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1268 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1278 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1279 * @cgrp: the target cgroup
1280 * @subtree_control: the new subtree_control mask to consider
1282 * On the default hierarchy, a subsystem may request other subsystems to be
1283 * enabled together through its ->depends_on mask. In such cases, more
1284 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1286 * This function calculates which subsystems need to be enabled if
1287 * @subtree_control is to be applied to @cgrp. The returned mask is always
1288 * a superset of @subtree_control and follows the usual hierarchy rules.
1290 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup
*cgrp
,
1291 unsigned long subtree_control
)
1293 struct cgroup
*parent
= cgroup_parent(cgrp
);
1294 unsigned long cur_ss_mask
= subtree_control
;
1295 struct cgroup_subsys
*ss
;
1298 lockdep_assert_held(&cgroup_mutex
);
1300 if (!cgroup_on_dfl(cgrp
))
1304 unsigned long new_ss_mask
= cur_ss_mask
;
1306 for_each_subsys_which(ss
, ssid
, &cur_ss_mask
)
1307 new_ss_mask
|= ss
->depends_on
;
1310 * Mask out subsystems which aren't available. This can
1311 * happen only if some depended-upon subsystems were bound
1312 * to non-default hierarchies.
1315 new_ss_mask
&= parent
->child_subsys_mask
;
1317 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1319 if (new_ss_mask
== cur_ss_mask
)
1321 cur_ss_mask
= new_ss_mask
;
1328 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1329 * @cgrp: the target cgroup
1331 * Update @cgrp->child_subsys_mask according to the current
1332 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1334 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1336 cgrp
->child_subsys_mask
=
1337 cgroup_calc_child_subsys_mask(cgrp
, cgrp
->subtree_control
);
1341 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1342 * @kn: the kernfs_node being serviced
1344 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1345 * the method finishes if locking succeeded. Note that once this function
1346 * returns the cgroup returned by cgroup_kn_lock_live() may become
1347 * inaccessible any time. If the caller intends to continue to access the
1348 * cgroup, it should pin it before invoking this function.
1350 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1352 struct cgroup
*cgrp
;
1354 if (kernfs_type(kn
) == KERNFS_DIR
)
1357 cgrp
= kn
->parent
->priv
;
1359 mutex_unlock(&cgroup_mutex
);
1361 kernfs_unbreak_active_protection(kn
);
1366 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1367 * @kn: the kernfs_node being serviced
1369 * This helper is to be used by a cgroup kernfs method currently servicing
1370 * @kn. It breaks the active protection, performs cgroup locking and
1371 * verifies that the associated cgroup is alive. Returns the cgroup if
1372 * alive; otherwise, %NULL. A successful return should be undone by a
1373 * matching cgroup_kn_unlock() invocation.
1375 * Any cgroup kernfs method implementation which requires locking the
1376 * associated cgroup should use this helper. It avoids nesting cgroup
1377 * locking under kernfs active protection and allows all kernfs operations
1378 * including self-removal.
1380 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1382 struct cgroup
*cgrp
;
1384 if (kernfs_type(kn
) == KERNFS_DIR
)
1387 cgrp
= kn
->parent
->priv
;
1390 * We're gonna grab cgroup_mutex which nests outside kernfs
1391 * active_ref. cgroup liveliness check alone provides enough
1392 * protection against removal. Ensure @cgrp stays accessible and
1393 * break the active_ref protection.
1395 if (!cgroup_tryget(cgrp
))
1397 kernfs_break_active_protection(kn
);
1399 mutex_lock(&cgroup_mutex
);
1401 if (!cgroup_is_dead(cgrp
))
1404 cgroup_kn_unlock(kn
);
1408 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1410 char name
[CGROUP_FILE_NAME_MAX
];
1412 lockdep_assert_held(&cgroup_mutex
);
1414 if (cft
->file_offset
) {
1415 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1416 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1418 spin_lock_irq(&cgroup_file_kn_lock
);
1420 spin_unlock_irq(&cgroup_file_kn_lock
);
1423 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1427 * css_clear_dir - remove subsys files in a cgroup directory
1429 * @cgrp_override: specify if target cgroup is different from css->cgroup
1431 static void css_clear_dir(struct cgroup_subsys_state
*css
,
1432 struct cgroup
*cgrp_override
)
1434 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1435 struct cftype
*cfts
;
1437 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1438 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1442 * css_populate_dir - create subsys files in a cgroup directory
1444 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1446 * On failure, no file is added.
1448 static int css_populate_dir(struct cgroup_subsys_state
*css
,
1449 struct cgroup
*cgrp_override
)
1451 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1452 struct cftype
*cfts
, *failed_cfts
;
1456 if (cgroup_on_dfl(cgrp
))
1457 cfts
= cgroup_dfl_base_files
;
1459 cfts
= cgroup_legacy_base_files
;
1461 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1464 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1465 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1473 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1474 if (cfts
== failed_cfts
)
1476 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1481 static int rebind_subsystems(struct cgroup_root
*dst_root
,
1482 unsigned long ss_mask
)
1484 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1485 struct cgroup_subsys
*ss
;
1486 unsigned long tmp_ss_mask
;
1489 lockdep_assert_held(&cgroup_mutex
);
1491 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1492 /* if @ss has non-root csses attached to it, can't move */
1493 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1496 /* can't move between two non-dummy roots either */
1497 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1501 /* skip creating root files on dfl_root for inhibited subsystems */
1502 tmp_ss_mask
= ss_mask
;
1503 if (dst_root
== &cgrp_dfl_root
)
1504 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1506 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
1507 struct cgroup
*scgrp
= &ss
->root
->cgrp
;
1510 ret
= css_populate_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1515 * Rebinding back to the default root is not allowed to
1516 * fail. Using both default and non-default roots should
1517 * be rare. Moving subsystems back and forth even more so.
1518 * Just warn about it and continue.
1520 if (dst_root
== &cgrp_dfl_root
) {
1521 if (cgrp_dfl_root_visible
) {
1522 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1524 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1529 for_each_subsys_which(ss
, tssid
, &tmp_ss_mask
) {
1532 css_clear_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1538 * Nothing can fail from this point on. Remove files for the
1539 * removed subsystems and rebind each subsystem.
1541 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1542 struct cgroup_root
*src_root
= ss
->root
;
1543 struct cgroup
*scgrp
= &src_root
->cgrp
;
1544 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1545 struct css_set
*cset
;
1547 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1549 css_clear_dir(css
, NULL
);
1551 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1552 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1553 ss
->root
= dst_root
;
1554 css
->cgroup
= dcgrp
;
1556 spin_lock_irq(&css_set_lock
);
1557 hash_for_each(css_set_table
, i
, cset
, hlist
)
1558 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1559 &dcgrp
->e_csets
[ss
->id
]);
1560 spin_unlock_irq(&css_set_lock
);
1562 src_root
->subsys_mask
&= ~(1 << ssid
);
1563 scgrp
->subtree_control
&= ~(1 << ssid
);
1564 cgroup_refresh_child_subsys_mask(scgrp
);
1566 /* default hierarchy doesn't enable controllers by default */
1567 dst_root
->subsys_mask
|= 1 << ssid
;
1568 if (dst_root
== &cgrp_dfl_root
) {
1569 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1571 dcgrp
->subtree_control
|= 1 << ssid
;
1572 cgroup_refresh_child_subsys_mask(dcgrp
);
1573 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1580 kernfs_activate(dcgrp
->kn
);
1584 static int cgroup_show_options(struct seq_file
*seq
,
1585 struct kernfs_root
*kf_root
)
1587 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1588 struct cgroup_subsys
*ss
;
1591 if (root
!= &cgrp_dfl_root
)
1592 for_each_subsys(ss
, ssid
)
1593 if (root
->subsys_mask
& (1 << ssid
))
1594 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1595 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1596 seq_puts(seq
, ",noprefix");
1597 if (root
->flags
& CGRP_ROOT_XATTR
)
1598 seq_puts(seq
, ",xattr");
1600 spin_lock(&release_agent_path_lock
);
1601 if (strlen(root
->release_agent_path
))
1602 seq_show_option(seq
, "release_agent",
1603 root
->release_agent_path
);
1604 spin_unlock(&release_agent_path_lock
);
1606 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1607 seq_puts(seq
, ",clone_children");
1608 if (strlen(root
->name
))
1609 seq_show_option(seq
, "name", root
->name
);
1613 struct cgroup_sb_opts
{
1614 unsigned long subsys_mask
;
1616 char *release_agent
;
1617 bool cpuset_clone_children
;
1619 /* User explicitly requested empty subsystem */
1623 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1625 char *token
, *o
= data
;
1626 bool all_ss
= false, one_ss
= false;
1627 unsigned long mask
= -1UL;
1628 struct cgroup_subsys
*ss
;
1632 #ifdef CONFIG_CPUSETS
1633 mask
= ~(1U << cpuset_cgrp_id
);
1636 memset(opts
, 0, sizeof(*opts
));
1638 while ((token
= strsep(&o
, ",")) != NULL
) {
1643 if (!strcmp(token
, "none")) {
1644 /* Explicitly have no subsystems */
1648 if (!strcmp(token
, "all")) {
1649 /* Mutually exclusive option 'all' + subsystem name */
1655 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1656 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1659 if (!strcmp(token
, "noprefix")) {
1660 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1663 if (!strcmp(token
, "clone_children")) {
1664 opts
->cpuset_clone_children
= true;
1667 if (!strcmp(token
, "xattr")) {
1668 opts
->flags
|= CGRP_ROOT_XATTR
;
1671 if (!strncmp(token
, "release_agent=", 14)) {
1672 /* Specifying two release agents is forbidden */
1673 if (opts
->release_agent
)
1675 opts
->release_agent
=
1676 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1677 if (!opts
->release_agent
)
1681 if (!strncmp(token
, "name=", 5)) {
1682 const char *name
= token
+ 5;
1683 /* Can't specify an empty name */
1686 /* Must match [\w.-]+ */
1687 for (i
= 0; i
< strlen(name
); i
++) {
1691 if ((c
== '.') || (c
== '-') || (c
== '_'))
1695 /* Specifying two names is forbidden */
1698 opts
->name
= kstrndup(name
,
1699 MAX_CGROUP_ROOT_NAMELEN
- 1,
1707 for_each_subsys(ss
, i
) {
1708 if (strcmp(token
, ss
->legacy_name
))
1710 if (!cgroup_ssid_enabled(i
))
1713 /* Mutually exclusive option 'all' + subsystem name */
1716 opts
->subsys_mask
|= (1 << i
);
1721 if (i
== CGROUP_SUBSYS_COUNT
)
1725 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1726 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1728 pr_err("sane_behavior: no other mount options allowed\n");
1735 * If the 'all' option was specified select all the subsystems,
1736 * otherwise if 'none', 'name=' and a subsystem name options were
1737 * not specified, let's default to 'all'
1739 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1740 for_each_subsys(ss
, i
)
1741 if (cgroup_ssid_enabled(i
))
1742 opts
->subsys_mask
|= (1 << i
);
1745 * We either have to specify by name or by subsystems. (So all
1746 * empty hierarchies must have a name).
1748 if (!opts
->subsys_mask
&& !opts
->name
)
1752 * Option noprefix was introduced just for backward compatibility
1753 * with the old cpuset, so we allow noprefix only if mounting just
1754 * the cpuset subsystem.
1756 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1759 /* Can't specify "none" and some subsystems */
1760 if (opts
->subsys_mask
&& opts
->none
)
1766 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1769 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1770 struct cgroup_sb_opts opts
;
1771 unsigned long added_mask
, removed_mask
;
1773 if (root
== &cgrp_dfl_root
) {
1774 pr_err("remount is not allowed\n");
1778 mutex_lock(&cgroup_mutex
);
1780 /* See what subsystems are wanted */
1781 ret
= parse_cgroupfs_options(data
, &opts
);
1785 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1786 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1787 task_tgid_nr(current
), current
->comm
);
1789 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1790 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1792 /* Don't allow flags or name to change at remount */
1793 if ((opts
.flags
^ root
->flags
) ||
1794 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1795 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1796 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1801 /* remounting is not allowed for populated hierarchies */
1802 if (!list_empty(&root
->cgrp
.self
.children
)) {
1807 ret
= rebind_subsystems(root
, added_mask
);
1811 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1813 if (opts
.release_agent
) {
1814 spin_lock(&release_agent_path_lock
);
1815 strcpy(root
->release_agent_path
, opts
.release_agent
);
1816 spin_unlock(&release_agent_path_lock
);
1819 kfree(opts
.release_agent
);
1821 mutex_unlock(&cgroup_mutex
);
1826 * To reduce the fork() overhead for systems that are not actually using
1827 * their cgroups capability, we don't maintain the lists running through
1828 * each css_set to its tasks until we see the list actually used - in other
1829 * words after the first mount.
1831 static bool use_task_css_set_links __read_mostly
;
1833 static void cgroup_enable_task_cg_lists(void)
1835 struct task_struct
*p
, *g
;
1837 spin_lock_irq(&css_set_lock
);
1839 if (use_task_css_set_links
)
1842 use_task_css_set_links
= true;
1845 * We need tasklist_lock because RCU is not safe against
1846 * while_each_thread(). Besides, a forking task that has passed
1847 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1848 * is not guaranteed to have its child immediately visible in the
1849 * tasklist if we walk through it with RCU.
1851 read_lock(&tasklist_lock
);
1852 do_each_thread(g
, p
) {
1853 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1854 task_css_set(p
) != &init_css_set
);
1857 * We should check if the process is exiting, otherwise
1858 * it will race with cgroup_exit() in that the list
1859 * entry won't be deleted though the process has exited.
1860 * Do it while holding siglock so that we don't end up
1861 * racing against cgroup_exit().
1863 * Interrupts were already disabled while acquiring
1864 * the css_set_lock, so we do not need to disable it
1865 * again when acquiring the sighand->siglock here.
1867 spin_lock(&p
->sighand
->siglock
);
1868 if (!(p
->flags
& PF_EXITING
)) {
1869 struct css_set
*cset
= task_css_set(p
);
1871 if (!css_set_populated(cset
))
1872 css_set_update_populated(cset
, true);
1873 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1876 spin_unlock(&p
->sighand
->siglock
);
1877 } while_each_thread(g
, p
);
1878 read_unlock(&tasklist_lock
);
1880 spin_unlock_irq(&css_set_lock
);
1883 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1885 struct cgroup_subsys
*ss
;
1888 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1889 INIT_LIST_HEAD(&cgrp
->self
.children
);
1890 INIT_LIST_HEAD(&cgrp
->cset_links
);
1891 INIT_LIST_HEAD(&cgrp
->pidlists
);
1892 mutex_init(&cgrp
->pidlist_mutex
);
1893 cgrp
->self
.cgroup
= cgrp
;
1894 cgrp
->self
.flags
|= CSS_ONLINE
;
1896 for_each_subsys(ss
, ssid
)
1897 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1899 init_waitqueue_head(&cgrp
->offline_waitq
);
1900 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1903 static void init_cgroup_root(struct cgroup_root
*root
,
1904 struct cgroup_sb_opts
*opts
)
1906 struct cgroup
*cgrp
= &root
->cgrp
;
1908 INIT_LIST_HEAD(&root
->root_list
);
1909 atomic_set(&root
->nr_cgrps
, 1);
1911 init_cgroup_housekeeping(cgrp
);
1912 idr_init(&root
->cgroup_idr
);
1914 root
->flags
= opts
->flags
;
1915 if (opts
->release_agent
)
1916 strcpy(root
->release_agent_path
, opts
->release_agent
);
1918 strcpy(root
->name
, opts
->name
);
1919 if (opts
->cpuset_clone_children
)
1920 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1923 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned long ss_mask
)
1925 LIST_HEAD(tmp_links
);
1926 struct cgroup
*root_cgrp
= &root
->cgrp
;
1927 struct css_set
*cset
;
1930 lockdep_assert_held(&cgroup_mutex
);
1932 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1935 root_cgrp
->id
= ret
;
1937 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1943 * We're accessing css_set_count without locking css_set_lock here,
1944 * but that's OK - it can only be increased by someone holding
1945 * cgroup_lock, and that's us. The worst that can happen is that we
1946 * have some link structures left over
1948 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1952 ret
= cgroup_init_root_id(root
);
1956 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1957 KERNFS_ROOT_CREATE_DEACTIVATED
,
1959 if (IS_ERR(root
->kf_root
)) {
1960 ret
= PTR_ERR(root
->kf_root
);
1963 root_cgrp
->kn
= root
->kf_root
->kn
;
1965 ret
= css_populate_dir(&root_cgrp
->self
, NULL
);
1969 ret
= rebind_subsystems(root
, ss_mask
);
1974 * There must be no failure case after here, since rebinding takes
1975 * care of subsystems' refcounts, which are explicitly dropped in
1976 * the failure exit path.
1978 list_add(&root
->root_list
, &cgroup_roots
);
1979 cgroup_root_count
++;
1982 * Link the root cgroup in this hierarchy into all the css_set
1985 spin_lock_irq(&css_set_lock
);
1986 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1987 link_css_set(&tmp_links
, cset
, root_cgrp
);
1988 if (css_set_populated(cset
))
1989 cgroup_update_populated(root_cgrp
, true);
1991 spin_unlock_irq(&css_set_lock
);
1993 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1994 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1996 kernfs_activate(root_cgrp
->kn
);
2001 kernfs_destroy_root(root
->kf_root
);
2002 root
->kf_root
= NULL
;
2004 cgroup_exit_root_id(root
);
2006 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
2008 free_cgrp_cset_links(&tmp_links
);
2012 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2013 int flags
, const char *unused_dev_name
,
2016 struct super_block
*pinned_sb
= NULL
;
2017 struct cgroup_subsys
*ss
;
2018 struct cgroup_root
*root
;
2019 struct cgroup_sb_opts opts
;
2020 struct dentry
*dentry
;
2026 * The first time anyone tries to mount a cgroup, enable the list
2027 * linking each css_set to its tasks and fix up all existing tasks.
2029 if (!use_task_css_set_links
)
2030 cgroup_enable_task_cg_lists();
2032 mutex_lock(&cgroup_mutex
);
2034 /* First find the desired set of subsystems */
2035 ret
= parse_cgroupfs_options(data
, &opts
);
2039 /* look for a matching existing root */
2040 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
2041 cgrp_dfl_root_visible
= true;
2042 root
= &cgrp_dfl_root
;
2043 cgroup_get(&root
->cgrp
);
2049 * Destruction of cgroup root is asynchronous, so subsystems may
2050 * still be dying after the previous unmount. Let's drain the
2051 * dying subsystems. We just need to ensure that the ones
2052 * unmounted previously finish dying and don't care about new ones
2053 * starting. Testing ref liveliness is good enough.
2055 for_each_subsys(ss
, i
) {
2056 if (!(opts
.subsys_mask
& (1 << i
)) ||
2057 ss
->root
== &cgrp_dfl_root
)
2060 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2061 mutex_unlock(&cgroup_mutex
);
2063 ret
= restart_syscall();
2066 cgroup_put(&ss
->root
->cgrp
);
2069 for_each_root(root
) {
2070 bool name_match
= false;
2072 if (root
== &cgrp_dfl_root
)
2076 * If we asked for a name then it must match. Also, if
2077 * name matches but sybsys_mask doesn't, we should fail.
2078 * Remember whether name matched.
2081 if (strcmp(opts
.name
, root
->name
))
2087 * If we asked for subsystems (or explicitly for no
2088 * subsystems) then they must match.
2090 if ((opts
.subsys_mask
|| opts
.none
) &&
2091 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2098 if (root
->flags
^ opts
.flags
)
2099 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2102 * We want to reuse @root whose lifetime is governed by its
2103 * ->cgrp. Let's check whether @root is alive and keep it
2104 * that way. As cgroup_kill_sb() can happen anytime, we
2105 * want to block it by pinning the sb so that @root doesn't
2106 * get killed before mount is complete.
2108 * With the sb pinned, tryget_live can reliably indicate
2109 * whether @root can be reused. If it's being killed,
2110 * drain it. We can use wait_queue for the wait but this
2111 * path is super cold. Let's just sleep a bit and retry.
2113 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2114 if (IS_ERR(pinned_sb
) ||
2115 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2116 mutex_unlock(&cgroup_mutex
);
2117 if (!IS_ERR_OR_NULL(pinned_sb
))
2118 deactivate_super(pinned_sb
);
2120 ret
= restart_syscall();
2129 * No such thing, create a new one. name= matching without subsys
2130 * specification is allowed for already existing hierarchies but we
2131 * can't create new one without subsys specification.
2133 if (!opts
.subsys_mask
&& !opts
.none
) {
2138 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2144 init_cgroup_root(root
, &opts
);
2146 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2148 cgroup_free_root(root
);
2151 mutex_unlock(&cgroup_mutex
);
2153 kfree(opts
.release_agent
);
2157 return ERR_PTR(ret
);
2159 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2160 CGROUP_SUPER_MAGIC
, &new_sb
);
2161 if (IS_ERR(dentry
) || !new_sb
)
2162 cgroup_put(&root
->cgrp
);
2165 * If @pinned_sb, we're reusing an existing root and holding an
2166 * extra ref on its sb. Mount is complete. Put the extra ref.
2170 deactivate_super(pinned_sb
);
2176 static void cgroup_kill_sb(struct super_block
*sb
)
2178 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2179 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2182 * If @root doesn't have any mounts or children, start killing it.
2183 * This prevents new mounts by disabling percpu_ref_tryget_live().
2184 * cgroup_mount() may wait for @root's release.
2186 * And don't kill the default root.
2188 if (!list_empty(&root
->cgrp
.self
.children
) ||
2189 root
== &cgrp_dfl_root
)
2190 cgroup_put(&root
->cgrp
);
2192 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2197 static struct file_system_type cgroup_fs_type
= {
2199 .mount
= cgroup_mount
,
2200 .kill_sb
= cgroup_kill_sb
,
2204 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2205 * @task: target task
2206 * @buf: the buffer to write the path into
2207 * @buflen: the length of the buffer
2209 * Determine @task's cgroup on the first (the one with the lowest non-zero
2210 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2211 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2212 * cgroup controller callbacks.
2214 * Return value is the same as kernfs_path().
2216 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2218 struct cgroup_root
*root
;
2219 struct cgroup
*cgrp
;
2220 int hierarchy_id
= 1;
2223 mutex_lock(&cgroup_mutex
);
2224 spin_lock_irq(&css_set_lock
);
2226 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2229 cgrp
= task_cgroup_from_root(task
, root
);
2230 path
= cgroup_path(cgrp
, buf
, buflen
);
2232 /* if no hierarchy exists, everyone is in "/" */
2233 if (strlcpy(buf
, "/", buflen
) < buflen
)
2237 spin_unlock_irq(&css_set_lock
);
2238 mutex_unlock(&cgroup_mutex
);
2241 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2243 /* used to track tasks and other necessary states during migration */
2244 struct cgroup_taskset
{
2245 /* the src and dst cset list running through cset->mg_node */
2246 struct list_head src_csets
;
2247 struct list_head dst_csets
;
2249 /* the subsys currently being processed */
2253 * Fields for cgroup_taskset_*() iteration.
2255 * Before migration is committed, the target migration tasks are on
2256 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2257 * the csets on ->dst_csets. ->csets point to either ->src_csets
2258 * or ->dst_csets depending on whether migration is committed.
2260 * ->cur_csets and ->cur_task point to the current task position
2263 struct list_head
*csets
;
2264 struct css_set
*cur_cset
;
2265 struct task_struct
*cur_task
;
2268 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2269 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2270 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2271 .csets = &tset.src_csets, \
2275 * cgroup_taskset_add - try to add a migration target task to a taskset
2276 * @task: target task
2277 * @tset: target taskset
2279 * Add @task, which is a migration target, to @tset. This function becomes
2280 * noop if @task doesn't need to be migrated. @task's css_set should have
2281 * been added as a migration source and @task->cg_list will be moved from
2282 * the css_set's tasks list to mg_tasks one.
2284 static void cgroup_taskset_add(struct task_struct
*task
,
2285 struct cgroup_taskset
*tset
)
2287 struct css_set
*cset
;
2289 lockdep_assert_held(&css_set_lock
);
2291 /* @task either already exited or can't exit until the end */
2292 if (task
->flags
& PF_EXITING
)
2295 /* leave @task alone if post_fork() hasn't linked it yet */
2296 if (list_empty(&task
->cg_list
))
2299 cset
= task_css_set(task
);
2300 if (!cset
->mg_src_cgrp
)
2303 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2304 if (list_empty(&cset
->mg_node
))
2305 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2306 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2307 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2312 * cgroup_taskset_first - reset taskset and return the first task
2313 * @tset: taskset of interest
2314 * @dst_cssp: output variable for the destination css
2316 * @tset iteration is initialized and the first task is returned.
2318 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2319 struct cgroup_subsys_state
**dst_cssp
)
2321 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2322 tset
->cur_task
= NULL
;
2324 return cgroup_taskset_next(tset
, dst_cssp
);
2328 * cgroup_taskset_next - iterate to the next task in taskset
2329 * @tset: taskset of interest
2330 * @dst_cssp: output variable for the destination css
2332 * Return the next task in @tset. Iteration must have been initialized
2333 * with cgroup_taskset_first().
2335 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2336 struct cgroup_subsys_state
**dst_cssp
)
2338 struct css_set
*cset
= tset
->cur_cset
;
2339 struct task_struct
*task
= tset
->cur_task
;
2341 while (&cset
->mg_node
!= tset
->csets
) {
2343 task
= list_first_entry(&cset
->mg_tasks
,
2344 struct task_struct
, cg_list
);
2346 task
= list_next_entry(task
, cg_list
);
2348 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2349 tset
->cur_cset
= cset
;
2350 tset
->cur_task
= task
;
2353 * This function may be called both before and
2354 * after cgroup_taskset_migrate(). The two cases
2355 * can be distinguished by looking at whether @cset
2356 * has its ->mg_dst_cset set.
2358 if (cset
->mg_dst_cset
)
2359 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2361 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2366 cset
= list_next_entry(cset
, mg_node
);
2374 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2375 * @tset: taget taskset
2376 * @dst_cgrp: destination cgroup
2378 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2379 * ->can_attach callbacks fails and guarantees that either all or none of
2380 * the tasks in @tset are migrated. @tset is consumed regardless of
2383 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2384 struct cgroup
*dst_cgrp
)
2386 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2387 struct task_struct
*task
, *tmp_task
;
2388 struct css_set
*cset
, *tmp_cset
;
2391 /* methods shouldn't be called if no task is actually migrating */
2392 if (list_empty(&tset
->src_csets
))
2395 /* check that we can legitimately attach to the cgroup */
2396 for_each_e_css(css
, i
, dst_cgrp
) {
2397 if (css
->ss
->can_attach
) {
2399 ret
= css
->ss
->can_attach(tset
);
2402 goto out_cancel_attach
;
2408 * Now that we're guaranteed success, proceed to move all tasks to
2409 * the new cgroup. There are no failure cases after here, so this
2410 * is the commit point.
2412 spin_lock_irq(&css_set_lock
);
2413 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2414 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2415 struct css_set
*from_cset
= task_css_set(task
);
2416 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2418 get_css_set(to_cset
);
2419 css_set_move_task(task
, from_cset
, to_cset
, true);
2420 put_css_set_locked(from_cset
);
2423 spin_unlock_irq(&css_set_lock
);
2426 * Migration is committed, all target tasks are now on dst_csets.
2427 * Nothing is sensitive to fork() after this point. Notify
2428 * controllers that migration is complete.
2430 tset
->csets
= &tset
->dst_csets
;
2432 for_each_e_css(css
, i
, dst_cgrp
) {
2433 if (css
->ss
->attach
) {
2435 css
->ss
->attach(tset
);
2440 goto out_release_tset
;
2443 for_each_e_css(css
, i
, dst_cgrp
) {
2444 if (css
== failed_css
)
2446 if (css
->ss
->cancel_attach
) {
2448 css
->ss
->cancel_attach(tset
);
2452 spin_lock_irq(&css_set_lock
);
2453 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2454 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2455 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2456 list_del_init(&cset
->mg_node
);
2458 spin_unlock_irq(&css_set_lock
);
2463 * cgroup_migrate_finish - cleanup after attach
2464 * @preloaded_csets: list of preloaded css_sets
2466 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2467 * those functions for details.
2469 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2471 struct css_set
*cset
, *tmp_cset
;
2473 lockdep_assert_held(&cgroup_mutex
);
2475 spin_lock_irq(&css_set_lock
);
2476 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2477 cset
->mg_src_cgrp
= NULL
;
2478 cset
->mg_dst_cset
= NULL
;
2479 list_del_init(&cset
->mg_preload_node
);
2480 put_css_set_locked(cset
);
2482 spin_unlock_irq(&css_set_lock
);
2486 * cgroup_migrate_add_src - add a migration source css_set
2487 * @src_cset: the source css_set to add
2488 * @dst_cgrp: the destination cgroup
2489 * @preloaded_csets: list of preloaded css_sets
2491 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2492 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2493 * up by cgroup_migrate_finish().
2495 * This function may be called without holding cgroup_threadgroup_rwsem
2496 * even if the target is a process. Threads may be created and destroyed
2497 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2498 * into play and the preloaded css_sets are guaranteed to cover all
2501 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2502 struct cgroup
*dst_cgrp
,
2503 struct list_head
*preloaded_csets
)
2505 struct cgroup
*src_cgrp
;
2507 lockdep_assert_held(&cgroup_mutex
);
2508 lockdep_assert_held(&css_set_lock
);
2511 * If ->dead, @src_set is associated with one or more dead cgroups
2512 * and doesn't contain any migratable tasks. Ignore it early so
2513 * that the rest of migration path doesn't get confused by it.
2518 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2520 if (!list_empty(&src_cset
->mg_preload_node
))
2523 WARN_ON(src_cset
->mg_src_cgrp
);
2524 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2525 WARN_ON(!list_empty(&src_cset
->mg_node
));
2527 src_cset
->mg_src_cgrp
= src_cgrp
;
2528 get_css_set(src_cset
);
2529 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2533 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2534 * @dst_cgrp: the destination cgroup (may be %NULL)
2535 * @preloaded_csets: list of preloaded source css_sets
2537 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2538 * have been preloaded to @preloaded_csets. This function looks up and
2539 * pins all destination css_sets, links each to its source, and append them
2540 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2541 * source css_set is assumed to be its cgroup on the default hierarchy.
2543 * This function must be called after cgroup_migrate_add_src() has been
2544 * called on each migration source css_set. After migration is performed
2545 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2548 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2549 struct list_head
*preloaded_csets
)
2552 struct css_set
*src_cset
, *tmp_cset
;
2554 lockdep_assert_held(&cgroup_mutex
);
2557 * Except for the root, child_subsys_mask must be zero for a cgroup
2558 * with tasks so that child cgroups don't compete against tasks.
2560 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2561 dst_cgrp
->child_subsys_mask
)
2564 /* look up the dst cset for each src cset and link it to src */
2565 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2566 struct css_set
*dst_cset
;
2568 dst_cset
= find_css_set(src_cset
,
2569 dst_cgrp
?: src_cset
->dfl_cgrp
);
2573 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2576 * If src cset equals dst, it's noop. Drop the src.
2577 * cgroup_migrate() will skip the cset too. Note that we
2578 * can't handle src == dst as some nodes are used by both.
2580 if (src_cset
== dst_cset
) {
2581 src_cset
->mg_src_cgrp
= NULL
;
2582 list_del_init(&src_cset
->mg_preload_node
);
2583 put_css_set(src_cset
);
2584 put_css_set(dst_cset
);
2588 src_cset
->mg_dst_cset
= dst_cset
;
2590 if (list_empty(&dst_cset
->mg_preload_node
))
2591 list_add(&dst_cset
->mg_preload_node
, &csets
);
2593 put_css_set(dst_cset
);
2596 list_splice_tail(&csets
, preloaded_csets
);
2599 cgroup_migrate_finish(&csets
);
2604 * cgroup_migrate - migrate a process or task to a cgroup
2605 * @leader: the leader of the process or the task to migrate
2606 * @threadgroup: whether @leader points to the whole process or a single task
2607 * @cgrp: the destination cgroup
2609 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2610 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2611 * caller is also responsible for invoking cgroup_migrate_add_src() and
2612 * cgroup_migrate_prepare_dst() on the targets before invoking this
2613 * function and following up with cgroup_migrate_finish().
2615 * As long as a controller's ->can_attach() doesn't fail, this function is
2616 * guaranteed to succeed. This means that, excluding ->can_attach()
2617 * failure, when migrating multiple targets, the success or failure can be
2618 * decided for all targets by invoking group_migrate_prepare_dst() before
2619 * actually starting migrating.
2621 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2622 struct cgroup
*cgrp
)
2624 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2625 struct task_struct
*task
;
2628 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2629 * already PF_EXITING could be freed from underneath us unless we
2630 * take an rcu_read_lock.
2632 spin_lock_irq(&css_set_lock
);
2636 cgroup_taskset_add(task
, &tset
);
2639 } while_each_thread(leader
, task
);
2641 spin_unlock_irq(&css_set_lock
);
2643 return cgroup_taskset_migrate(&tset
, cgrp
);
2647 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2648 * @dst_cgrp: the cgroup to attach to
2649 * @leader: the task or the leader of the threadgroup to be attached
2650 * @threadgroup: attach the whole threadgroup?
2652 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2654 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2655 struct task_struct
*leader
, bool threadgroup
)
2657 LIST_HEAD(preloaded_csets
);
2658 struct task_struct
*task
;
2661 /* look up all src csets */
2662 spin_lock_irq(&css_set_lock
);
2666 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2670 } while_each_thread(leader
, task
);
2672 spin_unlock_irq(&css_set_lock
);
2674 /* prepare dst csets and commit */
2675 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2677 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
);
2679 cgroup_migrate_finish(&preloaded_csets
);
2683 static int cgroup_procs_write_permission(struct task_struct
*task
,
2684 struct cgroup
*dst_cgrp
,
2685 struct kernfs_open_file
*of
)
2687 const struct cred
*cred
= current_cred();
2688 const struct cred
*tcred
= get_task_cred(task
);
2692 * even if we're attaching all tasks in the thread group, we only
2693 * need to check permissions on one of them.
2695 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2696 !uid_eq(cred
->euid
, tcred
->uid
) &&
2697 !uid_eq(cred
->euid
, tcred
->suid
))
2700 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2701 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2702 struct cgroup
*cgrp
;
2703 struct inode
*inode
;
2705 spin_lock_irq(&css_set_lock
);
2706 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2707 spin_unlock_irq(&css_set_lock
);
2709 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2710 cgrp
= cgroup_parent(cgrp
);
2713 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2715 ret
= inode_permission(inode
, MAY_WRITE
);
2725 * Find the task_struct of the task to attach by vpid and pass it along to the
2726 * function to attach either it or all tasks in its threadgroup. Will lock
2727 * cgroup_mutex and threadgroup.
2729 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2730 size_t nbytes
, loff_t off
, bool threadgroup
)
2732 struct task_struct
*tsk
;
2733 struct cgroup_subsys
*ss
;
2734 struct cgroup
*cgrp
;
2738 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2741 cgrp
= cgroup_kn_lock_live(of
->kn
);
2745 percpu_down_write(&cgroup_threadgroup_rwsem
);
2748 tsk
= find_task_by_vpid(pid
);
2751 goto out_unlock_rcu
;
2758 tsk
= tsk
->group_leader
;
2761 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2762 * If userland migrates such a kthread to a non-root cgroup, it can
2763 * become trapped in a cpuset, or RT kthread may be born in a
2764 * cgroup with no rt_runtime allocated. Just say no.
2766 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2768 goto out_unlock_rcu
;
2771 get_task_struct(tsk
);
2774 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2776 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2778 put_task_struct(tsk
);
2779 goto out_unlock_threadgroup
;
2783 out_unlock_threadgroup
:
2784 percpu_up_write(&cgroup_threadgroup_rwsem
);
2785 for_each_subsys(ss
, ssid
)
2786 if (ss
->post_attach
)
2788 cgroup_kn_unlock(of
->kn
);
2789 return ret
?: nbytes
;
2793 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2794 * @from: attach to all cgroups of a given task
2795 * @tsk: the task to be attached
2797 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2799 struct cgroup_root
*root
;
2802 mutex_lock(&cgroup_mutex
);
2803 for_each_root(root
) {
2804 struct cgroup
*from_cgrp
;
2806 if (root
== &cgrp_dfl_root
)
2809 spin_lock_irq(&css_set_lock
);
2810 from_cgrp
= task_cgroup_from_root(from
, root
);
2811 spin_unlock_irq(&css_set_lock
);
2813 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2817 mutex_unlock(&cgroup_mutex
);
2821 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2823 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2824 char *buf
, size_t nbytes
, loff_t off
)
2826 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2829 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2830 char *buf
, size_t nbytes
, loff_t off
)
2832 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2835 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2836 char *buf
, size_t nbytes
, loff_t off
)
2838 struct cgroup
*cgrp
;
2840 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2842 cgrp
= cgroup_kn_lock_live(of
->kn
);
2845 spin_lock(&release_agent_path_lock
);
2846 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2847 sizeof(cgrp
->root
->release_agent_path
));
2848 spin_unlock(&release_agent_path_lock
);
2849 cgroup_kn_unlock(of
->kn
);
2853 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2855 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2857 spin_lock(&release_agent_path_lock
);
2858 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2859 spin_unlock(&release_agent_path_lock
);
2860 seq_putc(seq
, '\n');
2864 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2866 seq_puts(seq
, "0\n");
2870 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned long ss_mask
)
2872 struct cgroup_subsys
*ss
;
2873 bool printed
= false;
2876 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
2879 seq_printf(seq
, "%s", ss
->name
);
2883 seq_putc(seq
, '\n');
2886 /* show controllers which are currently attached to the default hierarchy */
2887 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2889 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2891 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2892 ~cgrp_dfl_root_inhibit_ss_mask
);
2896 /* show controllers which are enabled from the parent */
2897 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2899 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2901 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2905 /* show controllers which are enabled for a given cgroup's children */
2906 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2908 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2910 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2915 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2916 * @cgrp: root of the subtree to update csses for
2918 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2919 * css associations need to be updated accordingly. This function looks up
2920 * all css_sets which are attached to the subtree, creates the matching
2921 * updated css_sets and migrates the tasks to the new ones.
2923 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2925 LIST_HEAD(preloaded_csets
);
2926 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2927 struct cgroup_subsys_state
*css
;
2928 struct css_set
*src_cset
;
2931 lockdep_assert_held(&cgroup_mutex
);
2933 percpu_down_write(&cgroup_threadgroup_rwsem
);
2935 /* look up all csses currently attached to @cgrp's subtree */
2936 spin_lock_irq(&css_set_lock
);
2937 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2938 struct cgrp_cset_link
*link
;
2940 /* self is not affected by child_subsys_mask change */
2941 if (css
->cgroup
== cgrp
)
2944 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2945 cgroup_migrate_add_src(link
->cset
, cgrp
,
2948 spin_unlock_irq(&css_set_lock
);
2950 /* NULL dst indicates self on default hierarchy */
2951 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2955 spin_lock_irq(&css_set_lock
);
2956 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2957 struct task_struct
*task
, *ntask
;
2959 /* src_csets precede dst_csets, break on the first dst_cset */
2960 if (!src_cset
->mg_src_cgrp
)
2963 /* all tasks in src_csets need to be migrated */
2964 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2965 cgroup_taskset_add(task
, &tset
);
2967 spin_unlock_irq(&css_set_lock
);
2969 ret
= cgroup_taskset_migrate(&tset
, cgrp
);
2971 cgroup_migrate_finish(&preloaded_csets
);
2972 percpu_up_write(&cgroup_threadgroup_rwsem
);
2976 /* change the enabled child controllers for a cgroup in the default hierarchy */
2977 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2978 char *buf
, size_t nbytes
,
2981 unsigned long enable
= 0, disable
= 0;
2982 unsigned long css_enable
, css_disable
, old_sc
, new_sc
, old_ss
, new_ss
;
2983 struct cgroup
*cgrp
, *child
;
2984 struct cgroup_subsys
*ss
;
2989 * Parse input - space separated list of subsystem names prefixed
2990 * with either + or -.
2992 buf
= strstrip(buf
);
2993 while ((tok
= strsep(&buf
, " "))) {
2994 unsigned long tmp_ss_mask
= ~cgrp_dfl_root_inhibit_ss_mask
;
2998 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
2999 if (!cgroup_ssid_enabled(ssid
) ||
3000 strcmp(tok
+ 1, ss
->name
))
3004 enable
|= 1 << ssid
;
3005 disable
&= ~(1 << ssid
);
3006 } else if (*tok
== '-') {
3007 disable
|= 1 << ssid
;
3008 enable
&= ~(1 << ssid
);
3014 if (ssid
== CGROUP_SUBSYS_COUNT
)
3018 cgrp
= cgroup_kn_lock_live(of
->kn
);
3022 for_each_subsys(ss
, ssid
) {
3023 if (enable
& (1 << ssid
)) {
3024 if (cgrp
->subtree_control
& (1 << ssid
)) {
3025 enable
&= ~(1 << ssid
);
3029 /* unavailable or not enabled on the parent? */
3030 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
3031 (cgroup_parent(cgrp
) &&
3032 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
3036 } else if (disable
& (1 << ssid
)) {
3037 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3038 disable
&= ~(1 << ssid
);
3042 /* a child has it enabled? */
3043 cgroup_for_each_live_child(child
, cgrp
) {
3044 if (child
->subtree_control
& (1 << ssid
)) {
3052 if (!enable
&& !disable
) {
3058 * Except for the root, subtree_control must be zero for a cgroup
3059 * with tasks so that child cgroups don't compete against tasks.
3061 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
3067 * Update subsys masks and calculate what needs to be done. More
3068 * subsystems than specified may need to be enabled or disabled
3069 * depending on subsystem dependencies.
3071 old_sc
= cgrp
->subtree_control
;
3072 old_ss
= cgrp
->child_subsys_mask
;
3073 new_sc
= (old_sc
| enable
) & ~disable
;
3074 new_ss
= cgroup_calc_child_subsys_mask(cgrp
, new_sc
);
3076 css_enable
= ~old_ss
& new_ss
;
3077 css_disable
= old_ss
& ~new_ss
;
3078 enable
|= css_enable
;
3079 disable
|= css_disable
;
3082 * Because css offlining is asynchronous, userland might try to
3083 * re-enable the same controller while the previous instance is
3084 * still around. In such cases, wait till it's gone using
3087 for_each_subsys_which(ss
, ssid
, &css_enable
) {
3088 cgroup_for_each_live_child(child
, cgrp
) {
3091 if (!cgroup_css(child
, ss
))
3095 prepare_to_wait(&child
->offline_waitq
, &wait
,
3096 TASK_UNINTERRUPTIBLE
);
3097 cgroup_kn_unlock(of
->kn
);
3099 finish_wait(&child
->offline_waitq
, &wait
);
3102 return restart_syscall();
3106 cgrp
->subtree_control
= new_sc
;
3107 cgrp
->child_subsys_mask
= new_ss
;
3110 * Create new csses or make the existing ones visible. A css is
3111 * created invisible if it's being implicitly enabled through
3112 * dependency. An invisible css is made visible when the userland
3113 * explicitly enables it.
3115 for_each_subsys(ss
, ssid
) {
3116 if (!(enable
& (1 << ssid
)))
3119 cgroup_for_each_live_child(child
, cgrp
) {
3120 if (css_enable
& (1 << ssid
))
3121 ret
= create_css(child
, ss
,
3122 cgrp
->subtree_control
& (1 << ssid
));
3124 ret
= css_populate_dir(cgroup_css(child
, ss
),
3132 * At this point, cgroup_e_css() results reflect the new csses
3133 * making the following cgroup_update_dfl_csses() properly update
3134 * css associations of all tasks in the subtree.
3136 ret
= cgroup_update_dfl_csses(cgrp
);
3141 * All tasks are migrated out of disabled csses. Kill or hide
3142 * them. A css is hidden when the userland requests it to be
3143 * disabled while other subsystems are still depending on it. The
3144 * css must not actively control resources and be in the vanilla
3145 * state if it's made visible again later. Controllers which may
3146 * be depended upon should provide ->css_reset() for this purpose.
3148 for_each_subsys(ss
, ssid
) {
3149 if (!(disable
& (1 << ssid
)))
3152 cgroup_for_each_live_child(child
, cgrp
) {
3153 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3155 if (css_disable
& (1 << ssid
)) {
3158 css_clear_dir(css
, NULL
);
3166 * The effective csses of all the descendants (excluding @cgrp) may
3167 * have changed. Subsystems can optionally subscribe to this event
3168 * by implementing ->css_e_css_changed() which is invoked if any of
3169 * the effective csses seen from the css's cgroup may have changed.
3171 for_each_subsys(ss
, ssid
) {
3172 struct cgroup_subsys_state
*this_css
= cgroup_css(cgrp
, ss
);
3173 struct cgroup_subsys_state
*css
;
3175 if (!ss
->css_e_css_changed
|| !this_css
)
3178 css_for_each_descendant_pre(css
, this_css
)
3179 if (css
!= this_css
)
3180 ss
->css_e_css_changed(css
);
3183 kernfs_activate(cgrp
->kn
);
3186 cgroup_kn_unlock(of
->kn
);
3187 return ret
?: nbytes
;
3190 cgrp
->subtree_control
= old_sc
;
3191 cgrp
->child_subsys_mask
= old_ss
;
3193 for_each_subsys(ss
, ssid
) {
3194 if (!(enable
& (1 << ssid
)))
3197 cgroup_for_each_live_child(child
, cgrp
) {
3198 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3203 if (css_enable
& (1 << ssid
))
3206 css_clear_dir(css
, NULL
);
3212 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3214 seq_printf(seq
, "populated %d\n",
3215 cgroup_is_populated(seq_css(seq
)->cgroup
));
3219 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3220 size_t nbytes
, loff_t off
)
3222 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3223 struct cftype
*cft
= of
->kn
->priv
;
3224 struct cgroup_subsys_state
*css
;
3228 return cft
->write(of
, buf
, nbytes
, off
);
3231 * kernfs guarantees that a file isn't deleted with operations in
3232 * flight, which means that the matching css is and stays alive and
3233 * doesn't need to be pinned. The RCU locking is not necessary
3234 * either. It's just for the convenience of using cgroup_css().
3237 css
= cgroup_css(cgrp
, cft
->ss
);
3240 if (cft
->write_u64
) {
3241 unsigned long long v
;
3242 ret
= kstrtoull(buf
, 0, &v
);
3244 ret
= cft
->write_u64(css
, cft
, v
);
3245 } else if (cft
->write_s64
) {
3247 ret
= kstrtoll(buf
, 0, &v
);
3249 ret
= cft
->write_s64(css
, cft
, v
);
3254 return ret
?: nbytes
;
3257 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3259 return seq_cft(seq
)->seq_start(seq
, ppos
);
3262 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3264 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3267 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3269 seq_cft(seq
)->seq_stop(seq
, v
);
3272 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3274 struct cftype
*cft
= seq_cft(m
);
3275 struct cgroup_subsys_state
*css
= seq_css(m
);
3278 return cft
->seq_show(m
, arg
);
3281 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3282 else if (cft
->read_s64
)
3283 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3289 static struct kernfs_ops cgroup_kf_single_ops
= {
3290 .atomic_write_len
= PAGE_SIZE
,
3291 .write
= cgroup_file_write
,
3292 .seq_show
= cgroup_seqfile_show
,
3295 static struct kernfs_ops cgroup_kf_ops
= {
3296 .atomic_write_len
= PAGE_SIZE
,
3297 .write
= cgroup_file_write
,
3298 .seq_start
= cgroup_seqfile_start
,
3299 .seq_next
= cgroup_seqfile_next
,
3300 .seq_stop
= cgroup_seqfile_stop
,
3301 .seq_show
= cgroup_seqfile_show
,
3305 * cgroup_rename - Only allow simple rename of directories in place.
3307 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3308 const char *new_name_str
)
3310 struct cgroup
*cgrp
= kn
->priv
;
3313 if (kernfs_type(kn
) != KERNFS_DIR
)
3315 if (kn
->parent
!= new_parent
)
3319 * This isn't a proper migration and its usefulness is very
3320 * limited. Disallow on the default hierarchy.
3322 if (cgroup_on_dfl(cgrp
))
3326 * We're gonna grab cgroup_mutex which nests outside kernfs
3327 * active_ref. kernfs_rename() doesn't require active_ref
3328 * protection. Break them before grabbing cgroup_mutex.
3330 kernfs_break_active_protection(new_parent
);
3331 kernfs_break_active_protection(kn
);
3333 mutex_lock(&cgroup_mutex
);
3335 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3337 mutex_unlock(&cgroup_mutex
);
3339 kernfs_unbreak_active_protection(kn
);
3340 kernfs_unbreak_active_protection(new_parent
);
3344 /* set uid and gid of cgroup dirs and files to that of the creator */
3345 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3347 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3348 .ia_uid
= current_fsuid(),
3349 .ia_gid
= current_fsgid(), };
3351 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3352 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3355 return kernfs_setattr(kn
, &iattr
);
3358 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3361 char name
[CGROUP_FILE_NAME_MAX
];
3362 struct kernfs_node
*kn
;
3363 struct lock_class_key
*key
= NULL
;
3366 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3367 key
= &cft
->lockdep_key
;
3369 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3370 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3375 ret
= cgroup_kn_set_ugid(kn
);
3381 if (cft
->file_offset
) {
3382 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3384 spin_lock_irq(&cgroup_file_kn_lock
);
3386 spin_unlock_irq(&cgroup_file_kn_lock
);
3393 * cgroup_addrm_files - add or remove files to a cgroup directory
3394 * @css: the target css
3395 * @cgrp: the target cgroup (usually css->cgroup)
3396 * @cfts: array of cftypes to be added
3397 * @is_add: whether to add or remove
3399 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3400 * For removals, this function never fails.
3402 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3403 struct cgroup
*cgrp
, struct cftype cfts
[],
3406 struct cftype
*cft
, *cft_end
= NULL
;
3409 lockdep_assert_held(&cgroup_mutex
);
3412 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3413 /* does cft->flags tell us to skip this file on @cgrp? */
3414 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3416 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3418 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3420 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3424 ret
= cgroup_add_file(css
, cgrp
, cft
);
3426 pr_warn("%s: failed to add %s, err=%d\n",
3427 __func__
, cft
->name
, ret
);
3433 cgroup_rm_file(cgrp
, cft
);
3439 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3442 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3443 struct cgroup
*root
= &ss
->root
->cgrp
;
3444 struct cgroup_subsys_state
*css
;
3447 lockdep_assert_held(&cgroup_mutex
);
3449 /* add/rm files for all cgroups created before */
3450 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3451 struct cgroup
*cgrp
= css
->cgroup
;
3453 if (cgroup_is_dead(cgrp
))
3456 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3462 kernfs_activate(root
->kn
);
3466 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3470 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3471 /* free copy for custom atomic_write_len, see init_cftypes() */
3472 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3477 /* revert flags set by cgroup core while adding @cfts */
3478 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3482 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3486 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3487 struct kernfs_ops
*kf_ops
;
3489 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3492 kf_ops
= &cgroup_kf_ops
;
3494 kf_ops
= &cgroup_kf_single_ops
;
3497 * Ugh... if @cft wants a custom max_write_len, we need to
3498 * make a copy of kf_ops to set its atomic_write_len.
3500 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3501 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3503 cgroup_exit_cftypes(cfts
);
3506 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3509 cft
->kf_ops
= kf_ops
;
3516 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3518 lockdep_assert_held(&cgroup_mutex
);
3520 if (!cfts
|| !cfts
[0].ss
)
3523 list_del(&cfts
->node
);
3524 cgroup_apply_cftypes(cfts
, false);
3525 cgroup_exit_cftypes(cfts
);
3530 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3531 * @cfts: zero-length name terminated array of cftypes
3533 * Unregister @cfts. Files described by @cfts are removed from all
3534 * existing cgroups and all future cgroups won't have them either. This
3535 * function can be called anytime whether @cfts' subsys is attached or not.
3537 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3540 int cgroup_rm_cftypes(struct cftype
*cfts
)
3544 mutex_lock(&cgroup_mutex
);
3545 ret
= cgroup_rm_cftypes_locked(cfts
);
3546 mutex_unlock(&cgroup_mutex
);
3551 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3552 * @ss: target cgroup subsystem
3553 * @cfts: zero-length name terminated array of cftypes
3555 * Register @cfts to @ss. Files described by @cfts are created for all
3556 * existing cgroups to which @ss is attached and all future cgroups will
3557 * have them too. This function can be called anytime whether @ss is
3560 * Returns 0 on successful registration, -errno on failure. Note that this
3561 * function currently returns 0 as long as @cfts registration is successful
3562 * even if some file creation attempts on existing cgroups fail.
3564 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3568 if (!cgroup_ssid_enabled(ss
->id
))
3571 if (!cfts
|| cfts
[0].name
[0] == '\0')
3574 ret
= cgroup_init_cftypes(ss
, cfts
);
3578 mutex_lock(&cgroup_mutex
);
3580 list_add_tail(&cfts
->node
, &ss
->cfts
);
3581 ret
= cgroup_apply_cftypes(cfts
, true);
3583 cgroup_rm_cftypes_locked(cfts
);
3585 mutex_unlock(&cgroup_mutex
);
3590 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3591 * @ss: target cgroup subsystem
3592 * @cfts: zero-length name terminated array of cftypes
3594 * Similar to cgroup_add_cftypes() but the added files are only used for
3595 * the default hierarchy.
3597 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3601 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3602 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3603 return cgroup_add_cftypes(ss
, cfts
);
3607 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3608 * @ss: target cgroup subsystem
3609 * @cfts: zero-length name terminated array of cftypes
3611 * Similar to cgroup_add_cftypes() but the added files are only used for
3612 * the legacy hierarchies.
3614 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3618 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3619 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3620 return cgroup_add_cftypes(ss
, cfts
);
3624 * cgroup_file_notify - generate a file modified event for a cgroup_file
3625 * @cfile: target cgroup_file
3627 * @cfile must have been obtained by setting cftype->file_offset.
3629 void cgroup_file_notify(struct cgroup_file
*cfile
)
3631 unsigned long flags
;
3633 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3635 kernfs_notify(cfile
->kn
);
3636 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3640 * cgroup_task_count - count the number of tasks in a cgroup.
3641 * @cgrp: the cgroup in question
3643 * Return the number of tasks in the cgroup.
3645 static int cgroup_task_count(const struct cgroup
*cgrp
)
3648 struct cgrp_cset_link
*link
;
3650 spin_lock_irq(&css_set_lock
);
3651 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3652 count
+= atomic_read(&link
->cset
->refcount
);
3653 spin_unlock_irq(&css_set_lock
);
3658 * css_next_child - find the next child of a given css
3659 * @pos: the current position (%NULL to initiate traversal)
3660 * @parent: css whose children to walk
3662 * This function returns the next child of @parent and should be called
3663 * under either cgroup_mutex or RCU read lock. The only requirement is
3664 * that @parent and @pos are accessible. The next sibling is guaranteed to
3665 * be returned regardless of their states.
3667 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3668 * css which finished ->css_online() is guaranteed to be visible in the
3669 * future iterations and will stay visible until the last reference is put.
3670 * A css which hasn't finished ->css_online() or already finished
3671 * ->css_offline() may show up during traversal. It's each subsystem's
3672 * responsibility to synchronize against on/offlining.
3674 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3675 struct cgroup_subsys_state
*parent
)
3677 struct cgroup_subsys_state
*next
;
3679 cgroup_assert_mutex_or_rcu_locked();
3682 * @pos could already have been unlinked from the sibling list.
3683 * Once a cgroup is removed, its ->sibling.next is no longer
3684 * updated when its next sibling changes. CSS_RELEASED is set when
3685 * @pos is taken off list, at which time its next pointer is valid,
3686 * and, as releases are serialized, the one pointed to by the next
3687 * pointer is guaranteed to not have started release yet. This
3688 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3689 * critical section, the one pointed to by its next pointer is
3690 * guaranteed to not have finished its RCU grace period even if we
3691 * have dropped rcu_read_lock() inbetween iterations.
3693 * If @pos has CSS_RELEASED set, its next pointer can't be
3694 * dereferenced; however, as each css is given a monotonically
3695 * increasing unique serial number and always appended to the
3696 * sibling list, the next one can be found by walking the parent's
3697 * children until the first css with higher serial number than
3698 * @pos's. While this path can be slower, it happens iff iteration
3699 * races against release and the race window is very small.
3702 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3703 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3704 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3706 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3707 if (next
->serial_nr
> pos
->serial_nr
)
3712 * @next, if not pointing to the head, can be dereferenced and is
3715 if (&next
->sibling
!= &parent
->children
)
3721 * css_next_descendant_pre - find the next descendant for pre-order walk
3722 * @pos: the current position (%NULL to initiate traversal)
3723 * @root: css whose descendants to walk
3725 * To be used by css_for_each_descendant_pre(). Find the next descendant
3726 * to visit for pre-order traversal of @root's descendants. @root is
3727 * included in the iteration and the first node to be visited.
3729 * While this function requires cgroup_mutex or RCU read locking, it
3730 * doesn't require the whole traversal to be contained in a single critical
3731 * section. This function will return the correct next descendant as long
3732 * as both @pos and @root are accessible and @pos is a descendant of @root.
3734 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3735 * css which finished ->css_online() is guaranteed to be visible in the
3736 * future iterations and will stay visible until the last reference is put.
3737 * A css which hasn't finished ->css_online() or already finished
3738 * ->css_offline() may show up during traversal. It's each subsystem's
3739 * responsibility to synchronize against on/offlining.
3741 struct cgroup_subsys_state
*
3742 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3743 struct cgroup_subsys_state
*root
)
3745 struct cgroup_subsys_state
*next
;
3747 cgroup_assert_mutex_or_rcu_locked();
3749 /* if first iteration, visit @root */
3753 /* visit the first child if exists */
3754 next
= css_next_child(NULL
, pos
);
3758 /* no child, visit my or the closest ancestor's next sibling */
3759 while (pos
!= root
) {
3760 next
= css_next_child(pos
, pos
->parent
);
3770 * css_rightmost_descendant - return the rightmost descendant of a css
3771 * @pos: css of interest
3773 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3774 * is returned. This can be used during pre-order traversal to skip
3777 * While this function requires cgroup_mutex or RCU read locking, it
3778 * doesn't require the whole traversal to be contained in a single critical
3779 * section. This function will return the correct rightmost descendant as
3780 * long as @pos is accessible.
3782 struct cgroup_subsys_state
*
3783 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3785 struct cgroup_subsys_state
*last
, *tmp
;
3787 cgroup_assert_mutex_or_rcu_locked();
3791 /* ->prev isn't RCU safe, walk ->next till the end */
3793 css_for_each_child(tmp
, last
)
3800 static struct cgroup_subsys_state
*
3801 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3803 struct cgroup_subsys_state
*last
;
3807 pos
= css_next_child(NULL
, pos
);
3814 * css_next_descendant_post - find the next descendant for post-order walk
3815 * @pos: the current position (%NULL to initiate traversal)
3816 * @root: css whose descendants to walk
3818 * To be used by css_for_each_descendant_post(). Find the next descendant
3819 * to visit for post-order traversal of @root's descendants. @root is
3820 * included in the iteration and the last node to be visited.
3822 * While this function requires cgroup_mutex or RCU read locking, it
3823 * doesn't require the whole traversal to be contained in a single critical
3824 * section. This function will return the correct next descendant as long
3825 * as both @pos and @cgroup are accessible and @pos is a descendant of
3828 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3829 * css which finished ->css_online() is guaranteed to be visible in the
3830 * future iterations and will stay visible until the last reference is put.
3831 * A css which hasn't finished ->css_online() or already finished
3832 * ->css_offline() may show up during traversal. It's each subsystem's
3833 * responsibility to synchronize against on/offlining.
3835 struct cgroup_subsys_state
*
3836 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3837 struct cgroup_subsys_state
*root
)
3839 struct cgroup_subsys_state
*next
;
3841 cgroup_assert_mutex_or_rcu_locked();
3843 /* if first iteration, visit leftmost descendant which may be @root */
3845 return css_leftmost_descendant(root
);
3847 /* if we visited @root, we're done */
3851 /* if there's an unvisited sibling, visit its leftmost descendant */
3852 next
= css_next_child(pos
, pos
->parent
);
3854 return css_leftmost_descendant(next
);
3856 /* no sibling left, visit parent */
3861 * css_has_online_children - does a css have online children
3862 * @css: the target css
3864 * Returns %true if @css has any online children; otherwise, %false. This
3865 * function can be called from any context but the caller is responsible
3866 * for synchronizing against on/offlining as necessary.
3868 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3870 struct cgroup_subsys_state
*child
;
3874 css_for_each_child(child
, css
) {
3875 if (child
->flags
& CSS_ONLINE
) {
3885 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3886 * @it: the iterator to advance
3888 * Advance @it to the next css_set to walk.
3890 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
3892 struct list_head
*l
= it
->cset_pos
;
3893 struct cgrp_cset_link
*link
;
3894 struct css_set
*cset
;
3896 lockdep_assert_held(&css_set_lock
);
3898 /* Advance to the next non-empty css_set */
3901 if (l
== it
->cset_head
) {
3902 it
->cset_pos
= NULL
;
3903 it
->task_pos
= NULL
;
3908 cset
= container_of(l
, struct css_set
,
3909 e_cset_node
[it
->ss
->id
]);
3911 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3914 } while (!css_set_populated(cset
));
3918 if (!list_empty(&cset
->tasks
))
3919 it
->task_pos
= cset
->tasks
.next
;
3921 it
->task_pos
= cset
->mg_tasks
.next
;
3923 it
->tasks_head
= &cset
->tasks
;
3924 it
->mg_tasks_head
= &cset
->mg_tasks
;
3927 * We don't keep css_sets locked across iteration steps and thus
3928 * need to take steps to ensure that iteration can be resumed after
3929 * the lock is re-acquired. Iteration is performed at two levels -
3930 * css_sets and tasks in them.
3932 * Once created, a css_set never leaves its cgroup lists, so a
3933 * pinned css_set is guaranteed to stay put and we can resume
3934 * iteration afterwards.
3936 * Tasks may leave @cset across iteration steps. This is resolved
3937 * by registering each iterator with the css_set currently being
3938 * walked and making css_set_move_task() advance iterators whose
3939 * next task is leaving.
3942 list_del(&it
->iters_node
);
3943 put_css_set_locked(it
->cur_cset
);
3946 it
->cur_cset
= cset
;
3947 list_add(&it
->iters_node
, &cset
->task_iters
);
3950 static void css_task_iter_advance(struct css_task_iter
*it
)
3952 struct list_head
*l
= it
->task_pos
;
3954 lockdep_assert_held(&css_set_lock
);
3958 * Advance iterator to find next entry. cset->tasks is consumed
3959 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3964 if (l
== it
->tasks_head
)
3965 l
= it
->mg_tasks_head
->next
;
3967 if (l
== it
->mg_tasks_head
)
3968 css_task_iter_advance_css_set(it
);
3974 * css_task_iter_start - initiate task iteration
3975 * @css: the css to walk tasks of
3976 * @it: the task iterator to use
3978 * Initiate iteration through the tasks of @css. The caller can call
3979 * css_task_iter_next() to walk through the tasks until the function
3980 * returns NULL. On completion of iteration, css_task_iter_end() must be
3983 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3984 struct css_task_iter
*it
)
3986 /* no one should try to iterate before mounting cgroups */
3987 WARN_ON_ONCE(!use_task_css_set_links
);
3989 memset(it
, 0, sizeof(*it
));
3991 spin_lock_irq(&css_set_lock
);
3996 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3998 it
->cset_pos
= &css
->cgroup
->cset_links
;
4000 it
->cset_head
= it
->cset_pos
;
4002 css_task_iter_advance_css_set(it
);
4004 spin_unlock_irq(&css_set_lock
);
4008 * css_task_iter_next - return the next task for the iterator
4009 * @it: the task iterator being iterated
4011 * The "next" function for task iteration. @it should have been
4012 * initialized via css_task_iter_start(). Returns NULL when the iteration
4015 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4018 put_task_struct(it
->cur_task
);
4019 it
->cur_task
= NULL
;
4022 spin_lock_irq(&css_set_lock
);
4025 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4027 get_task_struct(it
->cur_task
);
4028 css_task_iter_advance(it
);
4031 spin_unlock_irq(&css_set_lock
);
4033 return it
->cur_task
;
4037 * css_task_iter_end - finish task iteration
4038 * @it: the task iterator to finish
4040 * Finish task iteration started by css_task_iter_start().
4042 void css_task_iter_end(struct css_task_iter
*it
)
4045 spin_lock_irq(&css_set_lock
);
4046 list_del(&it
->iters_node
);
4047 put_css_set_locked(it
->cur_cset
);
4048 spin_unlock_irq(&css_set_lock
);
4052 put_task_struct(it
->cur_task
);
4056 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
4057 * @to: cgroup to which the tasks will be moved
4058 * @from: cgroup in which the tasks currently reside
4060 * Locking rules between cgroup_post_fork() and the migration path
4061 * guarantee that, if a task is forking while being migrated, the new child
4062 * is guaranteed to be either visible in the source cgroup after the
4063 * parent's migration is complete or put into the target cgroup. No task
4064 * can slip out of migration through forking.
4066 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
4068 LIST_HEAD(preloaded_csets
);
4069 struct cgrp_cset_link
*link
;
4070 struct css_task_iter it
;
4071 struct task_struct
*task
;
4074 mutex_lock(&cgroup_mutex
);
4076 /* all tasks in @from are being moved, all csets are source */
4077 spin_lock_irq(&css_set_lock
);
4078 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
4079 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
4080 spin_unlock_irq(&css_set_lock
);
4082 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
4087 * Migrate tasks one-by-one until @form is empty. This fails iff
4088 * ->can_attach() fails.
4091 css_task_iter_start(&from
->self
, &it
);
4094 task
= css_task_iter_next(&it
);
4095 } while (task
&& (task
->flags
& PF_EXITING
));
4098 get_task_struct(task
);
4099 css_task_iter_end(&it
);
4102 ret
= cgroup_migrate(task
, false, to
);
4103 put_task_struct(task
);
4105 } while (task
&& !ret
);
4107 cgroup_migrate_finish(&preloaded_csets
);
4108 mutex_unlock(&cgroup_mutex
);
4113 * Stuff for reading the 'tasks'/'procs' files.
4115 * Reading this file can return large amounts of data if a cgroup has
4116 * *lots* of attached tasks. So it may need several calls to read(),
4117 * but we cannot guarantee that the information we produce is correct
4118 * unless we produce it entirely atomically.
4122 /* which pidlist file are we talking about? */
4123 enum cgroup_filetype
{
4129 * A pidlist is a list of pids that virtually represents the contents of one
4130 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4131 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4134 struct cgroup_pidlist
{
4136 * used to find which pidlist is wanted. doesn't change as long as
4137 * this particular list stays in the list.
4139 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4142 /* how many elements the above list has */
4144 /* each of these stored in a list by its cgroup */
4145 struct list_head links
;
4146 /* pointer to the cgroup we belong to, for list removal purposes */
4147 struct cgroup
*owner
;
4148 /* for delayed destruction */
4149 struct delayed_work destroy_dwork
;
4153 * The following two functions "fix" the issue where there are more pids
4154 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4155 * TODO: replace with a kernel-wide solution to this problem
4157 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4158 static void *pidlist_allocate(int count
)
4160 if (PIDLIST_TOO_LARGE(count
))
4161 return vmalloc(count
* sizeof(pid_t
));
4163 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4166 static void pidlist_free(void *p
)
4172 * Used to destroy all pidlists lingering waiting for destroy timer. None
4173 * should be left afterwards.
4175 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4177 struct cgroup_pidlist
*l
, *tmp_l
;
4179 mutex_lock(&cgrp
->pidlist_mutex
);
4180 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4181 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4182 mutex_unlock(&cgrp
->pidlist_mutex
);
4184 flush_workqueue(cgroup_pidlist_destroy_wq
);
4185 BUG_ON(!list_empty(&cgrp
->pidlists
));
4188 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4190 struct delayed_work
*dwork
= to_delayed_work(work
);
4191 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4193 struct cgroup_pidlist
*tofree
= NULL
;
4195 mutex_lock(&l
->owner
->pidlist_mutex
);
4198 * Destroy iff we didn't get queued again. The state won't change
4199 * as destroy_dwork can only be queued while locked.
4201 if (!delayed_work_pending(dwork
)) {
4202 list_del(&l
->links
);
4203 pidlist_free(l
->list
);
4204 put_pid_ns(l
->key
.ns
);
4208 mutex_unlock(&l
->owner
->pidlist_mutex
);
4213 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4214 * Returns the number of unique elements.
4216 static int pidlist_uniq(pid_t
*list
, int length
)
4221 * we presume the 0th element is unique, so i starts at 1. trivial
4222 * edge cases first; no work needs to be done for either
4224 if (length
== 0 || length
== 1)
4226 /* src and dest walk down the list; dest counts unique elements */
4227 for (src
= 1; src
< length
; src
++) {
4228 /* find next unique element */
4229 while (list
[src
] == list
[src
-1]) {
4234 /* dest always points to where the next unique element goes */
4235 list
[dest
] = list
[src
];
4243 * The two pid files - task and cgroup.procs - guaranteed that the result
4244 * is sorted, which forced this whole pidlist fiasco. As pid order is
4245 * different per namespace, each namespace needs differently sorted list,
4246 * making it impossible to use, for example, single rbtree of member tasks
4247 * sorted by task pointer. As pidlists can be fairly large, allocating one
4248 * per open file is dangerous, so cgroup had to implement shared pool of
4249 * pidlists keyed by cgroup and namespace.
4251 * All this extra complexity was caused by the original implementation
4252 * committing to an entirely unnecessary property. In the long term, we
4253 * want to do away with it. Explicitly scramble sort order if on the
4254 * default hierarchy so that no such expectation exists in the new
4257 * Scrambling is done by swapping every two consecutive bits, which is
4258 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4260 static pid_t
pid_fry(pid_t pid
)
4262 unsigned a
= pid
& 0x55555555;
4263 unsigned b
= pid
& 0xAAAAAAAA;
4265 return (a
<< 1) | (b
>> 1);
4268 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4270 if (cgroup_on_dfl(cgrp
))
4271 return pid_fry(pid
);
4276 static int cmppid(const void *a
, const void *b
)
4278 return *(pid_t
*)a
- *(pid_t
*)b
;
4281 static int fried_cmppid(const void *a
, const void *b
)
4283 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4286 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4287 enum cgroup_filetype type
)
4289 struct cgroup_pidlist
*l
;
4290 /* don't need task_nsproxy() if we're looking at ourself */
4291 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4293 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4295 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4296 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4302 * find the appropriate pidlist for our purpose (given procs vs tasks)
4303 * returns with the lock on that pidlist already held, and takes care
4304 * of the use count, or returns NULL with no locks held if we're out of
4307 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4308 enum cgroup_filetype type
)
4310 struct cgroup_pidlist
*l
;
4312 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4314 l
= cgroup_pidlist_find(cgrp
, type
);
4318 /* entry not found; create a new one */
4319 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4323 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4325 /* don't need task_nsproxy() if we're looking at ourself */
4326 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4328 list_add(&l
->links
, &cgrp
->pidlists
);
4333 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4335 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4336 struct cgroup_pidlist
**lp
)
4340 int pid
, n
= 0; /* used for populating the array */
4341 struct css_task_iter it
;
4342 struct task_struct
*tsk
;
4343 struct cgroup_pidlist
*l
;
4345 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4348 * If cgroup gets more users after we read count, we won't have
4349 * enough space - tough. This race is indistinguishable to the
4350 * caller from the case that the additional cgroup users didn't
4351 * show up until sometime later on.
4353 length
= cgroup_task_count(cgrp
);
4354 array
= pidlist_allocate(length
);
4357 /* now, populate the array */
4358 css_task_iter_start(&cgrp
->self
, &it
);
4359 while ((tsk
= css_task_iter_next(&it
))) {
4360 if (unlikely(n
== length
))
4362 /* get tgid or pid for procs or tasks file respectively */
4363 if (type
== CGROUP_FILE_PROCS
)
4364 pid
= task_tgid_vnr(tsk
);
4366 pid
= task_pid_vnr(tsk
);
4367 if (pid
> 0) /* make sure to only use valid results */
4370 css_task_iter_end(&it
);
4372 /* now sort & (if procs) strip out duplicates */
4373 if (cgroup_on_dfl(cgrp
))
4374 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4376 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4377 if (type
== CGROUP_FILE_PROCS
)
4378 length
= pidlist_uniq(array
, length
);
4380 l
= cgroup_pidlist_find_create(cgrp
, type
);
4382 pidlist_free(array
);
4386 /* store array, freeing old if necessary */
4387 pidlist_free(l
->list
);
4395 * cgroupstats_build - build and fill cgroupstats
4396 * @stats: cgroupstats to fill information into
4397 * @dentry: A dentry entry belonging to the cgroup for which stats have
4400 * Build and fill cgroupstats so that taskstats can export it to user
4403 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4405 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4406 struct cgroup
*cgrp
;
4407 struct css_task_iter it
;
4408 struct task_struct
*tsk
;
4410 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4411 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4412 kernfs_type(kn
) != KERNFS_DIR
)
4415 mutex_lock(&cgroup_mutex
);
4418 * We aren't being called from kernfs and there's no guarantee on
4419 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4420 * @kn->priv is RCU safe. Let's do the RCU dancing.
4423 cgrp
= rcu_dereference(kn
->priv
);
4424 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4426 mutex_unlock(&cgroup_mutex
);
4431 css_task_iter_start(&cgrp
->self
, &it
);
4432 while ((tsk
= css_task_iter_next(&it
))) {
4433 switch (tsk
->state
) {
4435 stats
->nr_running
++;
4437 case TASK_INTERRUPTIBLE
:
4438 stats
->nr_sleeping
++;
4440 case TASK_UNINTERRUPTIBLE
:
4441 stats
->nr_uninterruptible
++;
4444 stats
->nr_stopped
++;
4447 if (delayacct_is_task_waiting_on_io(tsk
))
4448 stats
->nr_io_wait
++;
4452 css_task_iter_end(&it
);
4454 mutex_unlock(&cgroup_mutex
);
4460 * seq_file methods for the tasks/procs files. The seq_file position is the
4461 * next pid to display; the seq_file iterator is a pointer to the pid
4462 * in the cgroup->l->list array.
4465 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4468 * Initially we receive a position value that corresponds to
4469 * one more than the last pid shown (or 0 on the first call or
4470 * after a seek to the start). Use a binary-search to find the
4471 * next pid to display, if any
4473 struct kernfs_open_file
*of
= s
->private;
4474 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4475 struct cgroup_pidlist
*l
;
4476 enum cgroup_filetype type
= seq_cft(s
)->private;
4477 int index
= 0, pid
= *pos
;
4480 mutex_lock(&cgrp
->pidlist_mutex
);
4483 * !NULL @of->priv indicates that this isn't the first start()
4484 * after open. If the matching pidlist is around, we can use that.
4485 * Look for it. Note that @of->priv can't be used directly. It
4486 * could already have been destroyed.
4489 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4492 * Either this is the first start() after open or the matching
4493 * pidlist has been destroyed inbetween. Create a new one.
4496 ret
= pidlist_array_load(cgrp
, type
,
4497 (struct cgroup_pidlist
**)&of
->priv
);
4499 return ERR_PTR(ret
);
4504 int end
= l
->length
;
4506 while (index
< end
) {
4507 int mid
= (index
+ end
) / 2;
4508 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4511 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4517 /* If we're off the end of the array, we're done */
4518 if (index
>= l
->length
)
4520 /* Update the abstract position to be the actual pid that we found */
4521 iter
= l
->list
+ index
;
4522 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4526 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4528 struct kernfs_open_file
*of
= s
->private;
4529 struct cgroup_pidlist
*l
= of
->priv
;
4532 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4533 CGROUP_PIDLIST_DESTROY_DELAY
);
4534 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4537 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4539 struct kernfs_open_file
*of
= s
->private;
4540 struct cgroup_pidlist
*l
= of
->priv
;
4542 pid_t
*end
= l
->list
+ l
->length
;
4544 * Advance to the next pid in the array. If this goes off the
4551 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4556 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4558 seq_printf(s
, "%d\n", *(int *)v
);
4563 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4566 return notify_on_release(css
->cgroup
);
4569 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4570 struct cftype
*cft
, u64 val
)
4573 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4575 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4579 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4582 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4585 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4586 struct cftype
*cft
, u64 val
)
4589 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4591 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4595 /* cgroup core interface files for the default hierarchy */
4596 static struct cftype cgroup_dfl_base_files
[] = {
4598 .name
= "cgroup.procs",
4599 .file_offset
= offsetof(struct cgroup
, procs_file
),
4600 .seq_start
= cgroup_pidlist_start
,
4601 .seq_next
= cgroup_pidlist_next
,
4602 .seq_stop
= cgroup_pidlist_stop
,
4603 .seq_show
= cgroup_pidlist_show
,
4604 .private = CGROUP_FILE_PROCS
,
4605 .write
= cgroup_procs_write
,
4608 .name
= "cgroup.controllers",
4609 .flags
= CFTYPE_ONLY_ON_ROOT
,
4610 .seq_show
= cgroup_root_controllers_show
,
4613 .name
= "cgroup.controllers",
4614 .flags
= CFTYPE_NOT_ON_ROOT
,
4615 .seq_show
= cgroup_controllers_show
,
4618 .name
= "cgroup.subtree_control",
4619 .seq_show
= cgroup_subtree_control_show
,
4620 .write
= cgroup_subtree_control_write
,
4623 .name
= "cgroup.events",
4624 .flags
= CFTYPE_NOT_ON_ROOT
,
4625 .file_offset
= offsetof(struct cgroup
, events_file
),
4626 .seq_show
= cgroup_events_show
,
4631 /* cgroup core interface files for the legacy hierarchies */
4632 static struct cftype cgroup_legacy_base_files
[] = {
4634 .name
= "cgroup.procs",
4635 .seq_start
= cgroup_pidlist_start
,
4636 .seq_next
= cgroup_pidlist_next
,
4637 .seq_stop
= cgroup_pidlist_stop
,
4638 .seq_show
= cgroup_pidlist_show
,
4639 .private = CGROUP_FILE_PROCS
,
4640 .write
= cgroup_procs_write
,
4643 .name
= "cgroup.clone_children",
4644 .read_u64
= cgroup_clone_children_read
,
4645 .write_u64
= cgroup_clone_children_write
,
4648 .name
= "cgroup.sane_behavior",
4649 .flags
= CFTYPE_ONLY_ON_ROOT
,
4650 .seq_show
= cgroup_sane_behavior_show
,
4654 .seq_start
= cgroup_pidlist_start
,
4655 .seq_next
= cgroup_pidlist_next
,
4656 .seq_stop
= cgroup_pidlist_stop
,
4657 .seq_show
= cgroup_pidlist_show
,
4658 .private = CGROUP_FILE_TASKS
,
4659 .write
= cgroup_tasks_write
,
4662 .name
= "notify_on_release",
4663 .read_u64
= cgroup_read_notify_on_release
,
4664 .write_u64
= cgroup_write_notify_on_release
,
4667 .name
= "release_agent",
4668 .flags
= CFTYPE_ONLY_ON_ROOT
,
4669 .seq_show
= cgroup_release_agent_show
,
4670 .write
= cgroup_release_agent_write
,
4671 .max_write_len
= PATH_MAX
- 1,
4677 * css destruction is four-stage process.
4679 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4680 * Implemented in kill_css().
4682 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4683 * and thus css_tryget_online() is guaranteed to fail, the css can be
4684 * offlined by invoking offline_css(). After offlining, the base ref is
4685 * put. Implemented in css_killed_work_fn().
4687 * 3. When the percpu_ref reaches zero, the only possible remaining
4688 * accessors are inside RCU read sections. css_release() schedules the
4691 * 4. After the grace period, the css can be freed. Implemented in
4692 * css_free_work_fn().
4694 * It is actually hairier because both step 2 and 4 require process context
4695 * and thus involve punting to css->destroy_work adding two additional
4696 * steps to the already complex sequence.
4698 static void css_free_work_fn(struct work_struct
*work
)
4700 struct cgroup_subsys_state
*css
=
4701 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4702 struct cgroup_subsys
*ss
= css
->ss
;
4703 struct cgroup
*cgrp
= css
->cgroup
;
4705 percpu_ref_exit(&css
->refcnt
);
4709 struct cgroup_subsys_state
*parent
= css
->parent
;
4713 cgroup_idr_remove(&ss
->css_idr
, id
);
4719 /* cgroup free path */
4720 atomic_dec(&cgrp
->root
->nr_cgrps
);
4721 cgroup_pidlist_destroy_all(cgrp
);
4722 cancel_work_sync(&cgrp
->release_agent_work
);
4724 if (cgroup_parent(cgrp
)) {
4726 * We get a ref to the parent, and put the ref when
4727 * this cgroup is being freed, so it's guaranteed
4728 * that the parent won't be destroyed before its
4731 cgroup_put(cgroup_parent(cgrp
));
4732 kernfs_put(cgrp
->kn
);
4736 * This is root cgroup's refcnt reaching zero,
4737 * which indicates that the root should be
4740 cgroup_destroy_root(cgrp
->root
);
4745 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4747 struct cgroup_subsys_state
*css
=
4748 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4750 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4751 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4754 static void css_release_work_fn(struct work_struct
*work
)
4756 struct cgroup_subsys_state
*css
=
4757 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4758 struct cgroup_subsys
*ss
= css
->ss
;
4759 struct cgroup
*cgrp
= css
->cgroup
;
4761 mutex_lock(&cgroup_mutex
);
4763 css
->flags
|= CSS_RELEASED
;
4764 list_del_rcu(&css
->sibling
);
4767 /* css release path */
4768 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4769 if (ss
->css_released
)
4770 ss
->css_released(css
);
4772 /* cgroup release path */
4773 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4777 * There are two control paths which try to determine
4778 * cgroup from dentry without going through kernfs -
4779 * cgroupstats_build() and css_tryget_online_from_dir().
4780 * Those are supported by RCU protecting clearing of
4781 * cgrp->kn->priv backpointer.
4783 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4786 mutex_unlock(&cgroup_mutex
);
4788 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4791 static void css_release(struct percpu_ref
*ref
)
4793 struct cgroup_subsys_state
*css
=
4794 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4796 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4797 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4800 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4801 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4803 lockdep_assert_held(&cgroup_mutex
);
4807 memset(css
, 0, sizeof(*css
));
4811 INIT_LIST_HEAD(&css
->sibling
);
4812 INIT_LIST_HEAD(&css
->children
);
4813 css
->serial_nr
= css_serial_nr_next
++;
4814 atomic_set(&css
->online_cnt
, 0);
4816 if (cgroup_parent(cgrp
)) {
4817 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4818 css_get(css
->parent
);
4821 BUG_ON(cgroup_css(cgrp
, ss
));
4824 /* invoke ->css_online() on a new CSS and mark it online if successful */
4825 static int online_css(struct cgroup_subsys_state
*css
)
4827 struct cgroup_subsys
*ss
= css
->ss
;
4830 lockdep_assert_held(&cgroup_mutex
);
4833 ret
= ss
->css_online(css
);
4835 css
->flags
|= CSS_ONLINE
;
4836 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4838 atomic_inc(&css
->online_cnt
);
4840 atomic_inc(&css
->parent
->online_cnt
);
4845 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4846 static void offline_css(struct cgroup_subsys_state
*css
)
4848 struct cgroup_subsys
*ss
= css
->ss
;
4850 lockdep_assert_held(&cgroup_mutex
);
4852 if (!(css
->flags
& CSS_ONLINE
))
4855 if (ss
->css_offline
)
4856 ss
->css_offline(css
);
4858 css
->flags
&= ~CSS_ONLINE
;
4859 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4861 wake_up_all(&css
->cgroup
->offline_waitq
);
4865 * create_css - create a cgroup_subsys_state
4866 * @cgrp: the cgroup new css will be associated with
4867 * @ss: the subsys of new css
4868 * @visible: whether to create control knobs for the new css or not
4870 * Create a new css associated with @cgrp - @ss pair. On success, the new
4871 * css is online and installed in @cgrp with all interface files created if
4872 * @visible. Returns 0 on success, -errno on failure.
4874 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4877 struct cgroup
*parent
= cgroup_parent(cgrp
);
4878 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4879 struct cgroup_subsys_state
*css
;
4882 lockdep_assert_held(&cgroup_mutex
);
4884 css
= ss
->css_alloc(parent_css
);
4886 return PTR_ERR(css
);
4888 init_and_link_css(css
, ss
, cgrp
);
4890 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4894 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4896 goto err_free_percpu_ref
;
4900 err
= css_populate_dir(css
, NULL
);
4905 /* @css is ready to be brought online now, make it visible */
4906 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4907 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4909 err
= online_css(css
);
4913 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4914 cgroup_parent(parent
)) {
4915 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4916 current
->comm
, current
->pid
, ss
->name
);
4917 if (!strcmp(ss
->name
, "memory"))
4918 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4919 ss
->warned_broken_hierarchy
= true;
4925 list_del_rcu(&css
->sibling
);
4926 css_clear_dir(css
, NULL
);
4928 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4929 err_free_percpu_ref
:
4930 percpu_ref_exit(&css
->refcnt
);
4932 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4936 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4939 struct cgroup
*parent
, *cgrp
;
4940 struct cgroup_root
*root
;
4941 struct cgroup_subsys
*ss
;
4942 struct kernfs_node
*kn
;
4945 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4947 if (strchr(name
, '\n'))
4950 parent
= cgroup_kn_lock_live(parent_kn
);
4953 root
= parent
->root
;
4955 /* allocate the cgroup and its ID, 0 is reserved for the root */
4956 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
4962 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4967 * Temporarily set the pointer to NULL, so idr_find() won't return
4968 * a half-baked cgroup.
4970 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4973 goto out_cancel_ref
;
4976 init_cgroup_housekeeping(cgrp
);
4978 cgrp
->self
.parent
= &parent
->self
;
4981 if (notify_on_release(parent
))
4982 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4984 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4985 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4987 /* create the directory */
4988 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4996 * This extra ref will be put in cgroup_free_fn() and guarantees
4997 * that @cgrp->kn is always accessible.
5001 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
5003 /* allocation complete, commit to creation */
5004 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
5005 atomic_inc(&root
->nr_cgrps
);
5009 * @cgrp is now fully operational. If something fails after this
5010 * point, it'll be released via the normal destruction path.
5012 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
5014 ret
= cgroup_kn_set_ugid(kn
);
5018 ret
= css_populate_dir(&cgrp
->self
, NULL
);
5022 /* let's create and online css's */
5023 for_each_subsys(ss
, ssid
) {
5024 if (parent
->child_subsys_mask
& (1 << ssid
)) {
5025 ret
= create_css(cgrp
, ss
,
5026 parent
->subtree_control
& (1 << ssid
));
5033 * On the default hierarchy, a child doesn't automatically inherit
5034 * subtree_control from the parent. Each is configured manually.
5036 if (!cgroup_on_dfl(cgrp
)) {
5037 cgrp
->subtree_control
= parent
->subtree_control
;
5038 cgroup_refresh_child_subsys_mask(cgrp
);
5041 kernfs_activate(kn
);
5047 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
5049 percpu_ref_exit(&cgrp
->self
.refcnt
);
5053 cgroup_kn_unlock(parent_kn
);
5057 cgroup_destroy_locked(cgrp
);
5062 * This is called when the refcnt of a css is confirmed to be killed.
5063 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5064 * initate destruction and put the css ref from kill_css().
5066 static void css_killed_work_fn(struct work_struct
*work
)
5068 struct cgroup_subsys_state
*css
=
5069 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5071 mutex_lock(&cgroup_mutex
);
5076 /* @css can't go away while we're holding cgroup_mutex */
5078 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5080 mutex_unlock(&cgroup_mutex
);
5083 /* css kill confirmation processing requires process context, bounce */
5084 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5086 struct cgroup_subsys_state
*css
=
5087 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5089 if (atomic_dec_and_test(&css
->online_cnt
)) {
5090 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5091 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5096 * kill_css - destroy a css
5097 * @css: css to destroy
5099 * This function initiates destruction of @css by removing cgroup interface
5100 * files and putting its base reference. ->css_offline() will be invoked
5101 * asynchronously once css_tryget_online() is guaranteed to fail and when
5102 * the reference count reaches zero, @css will be released.
5104 static void kill_css(struct cgroup_subsys_state
*css
)
5106 lockdep_assert_held(&cgroup_mutex
);
5109 * This must happen before css is disassociated with its cgroup.
5110 * See seq_css() for details.
5112 css_clear_dir(css
, NULL
);
5115 * Killing would put the base ref, but we need to keep it alive
5116 * until after ->css_offline().
5121 * cgroup core guarantees that, by the time ->css_offline() is
5122 * invoked, no new css reference will be given out via
5123 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5124 * proceed to offlining css's because percpu_ref_kill() doesn't
5125 * guarantee that the ref is seen as killed on all CPUs on return.
5127 * Use percpu_ref_kill_and_confirm() to get notifications as each
5128 * css is confirmed to be seen as killed on all CPUs.
5130 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5134 * cgroup_destroy_locked - the first stage of cgroup destruction
5135 * @cgrp: cgroup to be destroyed
5137 * css's make use of percpu refcnts whose killing latency shouldn't be
5138 * exposed to userland and are RCU protected. Also, cgroup core needs to
5139 * guarantee that css_tryget_online() won't succeed by the time
5140 * ->css_offline() is invoked. To satisfy all the requirements,
5141 * destruction is implemented in the following two steps.
5143 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5144 * userland visible parts and start killing the percpu refcnts of
5145 * css's. Set up so that the next stage will be kicked off once all
5146 * the percpu refcnts are confirmed to be killed.
5148 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5149 * rest of destruction. Once all cgroup references are gone, the
5150 * cgroup is RCU-freed.
5152 * This function implements s1. After this step, @cgrp is gone as far as
5153 * the userland is concerned and a new cgroup with the same name may be
5154 * created. As cgroup doesn't care about the names internally, this
5155 * doesn't cause any problem.
5157 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5158 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5160 struct cgroup_subsys_state
*css
;
5161 struct cgrp_cset_link
*link
;
5164 lockdep_assert_held(&cgroup_mutex
);
5167 * Only migration can raise populated from zero and we're already
5168 * holding cgroup_mutex.
5170 if (cgroup_is_populated(cgrp
))
5174 * Make sure there's no live children. We can't test emptiness of
5175 * ->self.children as dead children linger on it while being
5176 * drained; otherwise, "rmdir parent/child parent" may fail.
5178 if (css_has_online_children(&cgrp
->self
))
5182 * Mark @cgrp and the associated csets dead. The former prevents
5183 * further task migration and child creation by disabling
5184 * cgroup_lock_live_group(). The latter makes the csets ignored by
5185 * the migration path.
5187 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5189 spin_lock_irq(&css_set_lock
);
5190 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5191 link
->cset
->dead
= true;
5192 spin_unlock_irq(&css_set_lock
);
5194 /* initiate massacre of all css's */
5195 for_each_css(css
, ssid
, cgrp
)
5199 * Remove @cgrp directory along with the base files. @cgrp has an
5200 * extra ref on its kn.
5202 kernfs_remove(cgrp
->kn
);
5204 check_for_release(cgroup_parent(cgrp
));
5206 /* put the base reference */
5207 percpu_ref_kill(&cgrp
->self
.refcnt
);
5212 static int cgroup_rmdir(struct kernfs_node
*kn
)
5214 struct cgroup
*cgrp
;
5217 cgrp
= cgroup_kn_lock_live(kn
);
5221 ret
= cgroup_destroy_locked(cgrp
);
5223 cgroup_kn_unlock(kn
);
5227 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5228 .remount_fs
= cgroup_remount
,
5229 .show_options
= cgroup_show_options
,
5230 .mkdir
= cgroup_mkdir
,
5231 .rmdir
= cgroup_rmdir
,
5232 .rename
= cgroup_rename
,
5235 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5237 struct cgroup_subsys_state
*css
;
5239 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
5241 mutex_lock(&cgroup_mutex
);
5243 idr_init(&ss
->css_idr
);
5244 INIT_LIST_HEAD(&ss
->cfts
);
5246 /* Create the root cgroup state for this subsystem */
5247 ss
->root
= &cgrp_dfl_root
;
5248 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5249 /* We don't handle early failures gracefully */
5250 BUG_ON(IS_ERR(css
));
5251 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5254 * Root csses are never destroyed and we can't initialize
5255 * percpu_ref during early init. Disable refcnting.
5257 css
->flags
|= CSS_NO_REF
;
5260 /* allocation can't be done safely during early init */
5263 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5264 BUG_ON(css
->id
< 0);
5267 /* Update the init_css_set to contain a subsys
5268 * pointer to this state - since the subsystem is
5269 * newly registered, all tasks and hence the
5270 * init_css_set is in the subsystem's root cgroup. */
5271 init_css_set
.subsys
[ss
->id
] = css
;
5273 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5274 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5275 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5276 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5278 /* At system boot, before all subsystems have been
5279 * registered, no tasks have been forked, so we don't
5280 * need to invoke fork callbacks here. */
5281 BUG_ON(!list_empty(&init_task
.tasks
));
5283 BUG_ON(online_css(css
));
5285 mutex_unlock(&cgroup_mutex
);
5289 * cgroup_init_early - cgroup initialization at system boot
5291 * Initialize cgroups at system boot, and initialize any
5292 * subsystems that request early init.
5294 int __init
cgroup_init_early(void)
5296 static struct cgroup_sb_opts __initdata opts
;
5297 struct cgroup_subsys
*ss
;
5300 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5301 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5303 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5305 for_each_subsys(ss
, i
) {
5306 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5307 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5308 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5310 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5311 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5314 ss
->name
= cgroup_subsys_name
[i
];
5315 if (!ss
->legacy_name
)
5316 ss
->legacy_name
= cgroup_subsys_name
[i
];
5319 cgroup_init_subsys(ss
, true);
5324 static unsigned long cgroup_disable_mask __initdata
;
5327 * cgroup_init - cgroup initialization
5329 * Register cgroup filesystem and /proc file, and initialize
5330 * any subsystems that didn't request early init.
5332 int __init
cgroup_init(void)
5334 struct cgroup_subsys
*ss
;
5338 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5339 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5340 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5342 mutex_lock(&cgroup_mutex
);
5344 /* Add init_css_set to the hash table */
5345 key
= css_set_hash(init_css_set
.subsys
);
5346 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5348 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5350 mutex_unlock(&cgroup_mutex
);
5352 for_each_subsys(ss
, ssid
) {
5353 if (ss
->early_init
) {
5354 struct cgroup_subsys_state
*css
=
5355 init_css_set
.subsys
[ss
->id
];
5357 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5359 BUG_ON(css
->id
< 0);
5361 cgroup_init_subsys(ss
, false);
5364 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5365 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5368 * Setting dfl_root subsys_mask needs to consider the
5369 * disabled flag and cftype registration needs kmalloc,
5370 * both of which aren't available during early_init.
5372 if (cgroup_disable_mask
& (1 << ssid
)) {
5373 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5374 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5379 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5381 if (!ss
->dfl_cftypes
)
5382 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
5384 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5385 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5387 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5388 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5392 ss
->bind(init_css_set
.subsys
[ssid
]);
5395 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5396 WARN_ON(register_filesystem(&cgroup_fs_type
));
5397 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5402 static int __init
cgroup_wq_init(void)
5405 * There isn't much point in executing destruction path in
5406 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5407 * Use 1 for @max_active.
5409 * We would prefer to do this in cgroup_init() above, but that
5410 * is called before init_workqueues(): so leave this until after.
5412 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5413 BUG_ON(!cgroup_destroy_wq
);
5416 * Used to destroy pidlists and separate to serve as flush domain.
5417 * Cap @max_active to 1 too.
5419 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5421 BUG_ON(!cgroup_pidlist_destroy_wq
);
5425 core_initcall(cgroup_wq_init
);
5428 * proc_cgroup_show()
5429 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5430 * - Used for /proc/<pid>/cgroup.
5432 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5433 struct pid
*pid
, struct task_struct
*tsk
)
5437 struct cgroup_root
*root
;
5440 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5444 mutex_lock(&cgroup_mutex
);
5445 spin_lock_irq(&css_set_lock
);
5447 for_each_root(root
) {
5448 struct cgroup_subsys
*ss
;
5449 struct cgroup
*cgrp
;
5450 int ssid
, count
= 0;
5452 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5455 seq_printf(m
, "%d:", root
->hierarchy_id
);
5456 if (root
!= &cgrp_dfl_root
)
5457 for_each_subsys(ss
, ssid
)
5458 if (root
->subsys_mask
& (1 << ssid
))
5459 seq_printf(m
, "%s%s", count
++ ? "," : "",
5461 if (strlen(root
->name
))
5462 seq_printf(m
, "%sname=%s", count
? "," : "",
5466 cgrp
= task_cgroup_from_root(tsk
, root
);
5469 * On traditional hierarchies, all zombie tasks show up as
5470 * belonging to the root cgroup. On the default hierarchy,
5471 * while a zombie doesn't show up in "cgroup.procs" and
5472 * thus can't be migrated, its /proc/PID/cgroup keeps
5473 * reporting the cgroup it belonged to before exiting. If
5474 * the cgroup is removed before the zombie is reaped,
5475 * " (deleted)" is appended to the cgroup path.
5477 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5478 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5480 retval
= -ENAMETOOLONG
;
5489 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5490 seq_puts(m
, " (deleted)\n");
5497 spin_unlock_irq(&css_set_lock
);
5498 mutex_unlock(&cgroup_mutex
);
5504 /* Display information about each subsystem and each hierarchy */
5505 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5507 struct cgroup_subsys
*ss
;
5510 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5512 * ideally we don't want subsystems moving around while we do this.
5513 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5514 * subsys/hierarchy state.
5516 mutex_lock(&cgroup_mutex
);
5518 for_each_subsys(ss
, i
)
5519 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5520 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5521 atomic_read(&ss
->root
->nr_cgrps
),
5522 cgroup_ssid_enabled(i
));
5524 mutex_unlock(&cgroup_mutex
);
5528 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5530 return single_open(file
, proc_cgroupstats_show
, NULL
);
5533 static const struct file_operations proc_cgroupstats_operations
= {
5534 .open
= cgroupstats_open
,
5536 .llseek
= seq_lseek
,
5537 .release
= single_release
,
5540 static void **subsys_canfork_priv_p(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5542 if (CGROUP_CANFORK_START
<= i
&& i
< CGROUP_CANFORK_END
)
5543 return &ss_priv
[i
- CGROUP_CANFORK_START
];
5547 static void *subsys_canfork_priv(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5549 void **private = subsys_canfork_priv_p(ss_priv
, i
);
5550 return private ? *private : NULL
;
5554 * cgroup_fork - initialize cgroup related fields during copy_process()
5555 * @child: pointer to task_struct of forking parent process.
5557 * A task is associated with the init_css_set until cgroup_post_fork()
5558 * attaches it to the parent's css_set. Empty cg_list indicates that
5559 * @child isn't holding reference to its css_set.
5561 void cgroup_fork(struct task_struct
*child
)
5563 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5564 INIT_LIST_HEAD(&child
->cg_list
);
5568 * cgroup_can_fork - called on a new task before the process is exposed
5569 * @child: the task in question.
5571 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5572 * returns an error, the fork aborts with that error code. This allows for
5573 * a cgroup subsystem to conditionally allow or deny new forks.
5575 int cgroup_can_fork(struct task_struct
*child
,
5576 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5578 struct cgroup_subsys
*ss
;
5581 for_each_subsys_which(ss
, i
, &have_canfork_callback
) {
5582 ret
= ss
->can_fork(child
, subsys_canfork_priv_p(ss_priv
, i
));
5590 for_each_subsys(ss
, j
) {
5593 if (ss
->cancel_fork
)
5594 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, j
));
5601 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5602 * @child: the task in question
5604 * This calls the cancel_fork() callbacks if a fork failed *after*
5605 * cgroup_can_fork() succeded.
5607 void cgroup_cancel_fork(struct task_struct
*child
,
5608 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5610 struct cgroup_subsys
*ss
;
5613 for_each_subsys(ss
, i
)
5614 if (ss
->cancel_fork
)
5615 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, i
));
5619 * cgroup_post_fork - called on a new task after adding it to the task list
5620 * @child: the task in question
5622 * Adds the task to the list running through its css_set if necessary and
5623 * call the subsystem fork() callbacks. Has to be after the task is
5624 * visible on the task list in case we race with the first call to
5625 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5628 void cgroup_post_fork(struct task_struct
*child
,
5629 void *old_ss_priv
[CGROUP_CANFORK_COUNT
])
5631 struct cgroup_subsys
*ss
;
5635 * This may race against cgroup_enable_task_cg_lists(). As that
5636 * function sets use_task_css_set_links before grabbing
5637 * tasklist_lock and we just went through tasklist_lock to add
5638 * @child, it's guaranteed that either we see the set
5639 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5640 * @child during its iteration.
5642 * If we won the race, @child is associated with %current's
5643 * css_set. Grabbing css_set_lock guarantees both that the
5644 * association is stable, and, on completion of the parent's
5645 * migration, @child is visible in the source of migration or
5646 * already in the destination cgroup. This guarantee is necessary
5647 * when implementing operations which need to migrate all tasks of
5648 * a cgroup to another.
5650 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5651 * will remain in init_css_set. This is safe because all tasks are
5652 * in the init_css_set before cg_links is enabled and there's no
5653 * operation which transfers all tasks out of init_css_set.
5655 if (use_task_css_set_links
) {
5656 struct css_set
*cset
;
5658 spin_lock_irq(&css_set_lock
);
5659 cset
= task_css_set(current
);
5660 if (list_empty(&child
->cg_list
)) {
5662 css_set_move_task(child
, NULL
, cset
, false);
5664 spin_unlock_irq(&css_set_lock
);
5668 * Call ss->fork(). This must happen after @child is linked on
5669 * css_set; otherwise, @child might change state between ->fork()
5670 * and addition to css_set.
5672 for_each_subsys_which(ss
, i
, &have_fork_callback
)
5673 ss
->fork(child
, subsys_canfork_priv(old_ss_priv
, i
));
5677 * cgroup_exit - detach cgroup from exiting task
5678 * @tsk: pointer to task_struct of exiting process
5680 * Description: Detach cgroup from @tsk and release it.
5682 * Note that cgroups marked notify_on_release force every task in
5683 * them to take the global cgroup_mutex mutex when exiting.
5684 * This could impact scaling on very large systems. Be reluctant to
5685 * use notify_on_release cgroups where very high task exit scaling
5686 * is required on large systems.
5688 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5689 * call cgroup_exit() while the task is still competent to handle
5690 * notify_on_release(), then leave the task attached to the root cgroup in
5691 * each hierarchy for the remainder of its exit. No need to bother with
5692 * init_css_set refcnting. init_css_set never goes away and we can't race
5693 * with migration path - PF_EXITING is visible to migration path.
5695 void cgroup_exit(struct task_struct
*tsk
)
5697 struct cgroup_subsys
*ss
;
5698 struct css_set
*cset
;
5702 * Unlink from @tsk from its css_set. As migration path can't race
5703 * with us, we can check css_set and cg_list without synchronization.
5705 cset
= task_css_set(tsk
);
5707 if (!list_empty(&tsk
->cg_list
)) {
5708 spin_lock_irq(&css_set_lock
);
5709 css_set_move_task(tsk
, cset
, NULL
, false);
5710 spin_unlock_irq(&css_set_lock
);
5715 /* see cgroup_post_fork() for details */
5716 for_each_subsys_which(ss
, i
, &have_exit_callback
)
5720 void cgroup_free(struct task_struct
*task
)
5722 struct css_set
*cset
= task_css_set(task
);
5723 struct cgroup_subsys
*ss
;
5726 for_each_subsys_which(ss
, ssid
, &have_free_callback
)
5732 static void check_for_release(struct cgroup
*cgrp
)
5734 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
5735 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5736 schedule_work(&cgrp
->release_agent_work
);
5740 * Notify userspace when a cgroup is released, by running the
5741 * configured release agent with the name of the cgroup (path
5742 * relative to the root of cgroup file system) as the argument.
5744 * Most likely, this user command will try to rmdir this cgroup.
5746 * This races with the possibility that some other task will be
5747 * attached to this cgroup before it is removed, or that some other
5748 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5749 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5750 * unused, and this cgroup will be reprieved from its death sentence,
5751 * to continue to serve a useful existence. Next time it's released,
5752 * we will get notified again, if it still has 'notify_on_release' set.
5754 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5755 * means only wait until the task is successfully execve()'d. The
5756 * separate release agent task is forked by call_usermodehelper(),
5757 * then control in this thread returns here, without waiting for the
5758 * release agent task. We don't bother to wait because the caller of
5759 * this routine has no use for the exit status of the release agent
5760 * task, so no sense holding our caller up for that.
5762 static void cgroup_release_agent(struct work_struct
*work
)
5764 struct cgroup
*cgrp
=
5765 container_of(work
, struct cgroup
, release_agent_work
);
5766 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5767 char *argv
[3], *envp
[3];
5769 mutex_lock(&cgroup_mutex
);
5771 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5772 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5773 if (!pathbuf
|| !agentbuf
)
5776 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5784 /* minimal command environment */
5786 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5789 mutex_unlock(&cgroup_mutex
);
5790 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5793 mutex_unlock(&cgroup_mutex
);
5799 static int __init
cgroup_disable(char *str
)
5801 struct cgroup_subsys
*ss
;
5805 while ((token
= strsep(&str
, ",")) != NULL
) {
5809 for_each_subsys(ss
, i
) {
5810 if (strcmp(token
, ss
->name
) &&
5811 strcmp(token
, ss
->legacy_name
))
5813 cgroup_disable_mask
|= 1 << i
;
5818 __setup("cgroup_disable=", cgroup_disable
);
5821 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5822 * @dentry: directory dentry of interest
5823 * @ss: subsystem of interest
5825 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5826 * to get the corresponding css and return it. If such css doesn't exist
5827 * or can't be pinned, an ERR_PTR value is returned.
5829 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5830 struct cgroup_subsys
*ss
)
5832 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5833 struct cgroup_subsys_state
*css
= NULL
;
5834 struct cgroup
*cgrp
;
5836 /* is @dentry a cgroup dir? */
5837 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5838 kernfs_type(kn
) != KERNFS_DIR
)
5839 return ERR_PTR(-EBADF
);
5844 * This path doesn't originate from kernfs and @kn could already
5845 * have been or be removed at any point. @kn->priv is RCU
5846 * protected for this access. See css_release_work_fn() for details.
5848 cgrp
= rcu_dereference(kn
->priv
);
5850 css
= cgroup_css(cgrp
, ss
);
5852 if (!css
|| !css_tryget_online(css
))
5853 css
= ERR_PTR(-ENOENT
);
5860 * css_from_id - lookup css by id
5861 * @id: the cgroup id
5862 * @ss: cgroup subsys to be looked into
5864 * Returns the css if there's valid one with @id, otherwise returns NULL.
5865 * Should be called under rcu_read_lock().
5867 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5869 WARN_ON_ONCE(!rcu_read_lock_held());
5870 return id
> 0 ? idr_find(&ss
->css_idr
, id
) : NULL
;
5873 #ifdef CONFIG_CGROUP_DEBUG
5874 static struct cgroup_subsys_state
*
5875 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5877 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5880 return ERR_PTR(-ENOMEM
);
5885 static void debug_css_free(struct cgroup_subsys_state
*css
)
5890 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5893 return cgroup_task_count(css
->cgroup
);
5896 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5899 return (u64
)(unsigned long)current
->cgroups
;
5902 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5908 count
= atomic_read(&task_css_set(current
)->refcount
);
5913 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5915 struct cgrp_cset_link
*link
;
5916 struct css_set
*cset
;
5919 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5923 spin_lock_irq(&css_set_lock
);
5925 cset
= rcu_dereference(current
->cgroups
);
5926 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5927 struct cgroup
*c
= link
->cgrp
;
5929 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5930 seq_printf(seq
, "Root %d group %s\n",
5931 c
->root
->hierarchy_id
, name_buf
);
5934 spin_unlock_irq(&css_set_lock
);
5939 #define MAX_TASKS_SHOWN_PER_CSS 25
5940 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5942 struct cgroup_subsys_state
*css
= seq_css(seq
);
5943 struct cgrp_cset_link
*link
;
5945 spin_lock_irq(&css_set_lock
);
5946 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5947 struct css_set
*cset
= link
->cset
;
5948 struct task_struct
*task
;
5951 seq_printf(seq
, "css_set %p\n", cset
);
5953 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5954 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5956 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5959 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5960 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5962 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5966 seq_puts(seq
, " ...\n");
5968 spin_unlock_irq(&css_set_lock
);
5972 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5974 return (!cgroup_is_populated(css
->cgroup
) &&
5975 !css_has_online_children(&css
->cgroup
->self
));
5978 static struct cftype debug_files
[] = {
5980 .name
= "taskcount",
5981 .read_u64
= debug_taskcount_read
,
5985 .name
= "current_css_set",
5986 .read_u64
= current_css_set_read
,
5990 .name
= "current_css_set_refcount",
5991 .read_u64
= current_css_set_refcount_read
,
5995 .name
= "current_css_set_cg_links",
5996 .seq_show
= current_css_set_cg_links_read
,
6000 .name
= "cgroup_css_links",
6001 .seq_show
= cgroup_css_links_read
,
6005 .name
= "releasable",
6006 .read_u64
= releasable_read
,
6012 struct cgroup_subsys debug_cgrp_subsys
= {
6013 .css_alloc
= debug_css_alloc
,
6014 .css_free
= debug_css_free
,
6015 .legacy_cftypes
= debug_files
,
6017 #endif /* CONFIG_CGROUP_DEBUG */