HID: hiddev: Fix slab-out-of-bounds write in hiddev_ioctl_usage()
[linux/fpc-iii.git] / kernel / exit.c
blob03f6722302b542fbbc57180d3626b767e4da136c
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
62 static void exit_mm(struct task_struct *tsk);
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 posix_cpu_timers_exit(tsk);
96 if (group_dead) {
97 posix_cpu_timers_exit_group(tsk);
98 tty = sig->tty;
99 sig->tty = NULL;
100 } else {
102 * This can only happen if the caller is de_thread().
103 * FIXME: this is the temporary hack, we should teach
104 * posix-cpu-timers to handle this case correctly.
106 if (unlikely(has_group_leader_pid(tsk)))
107 posix_cpu_timers_exit_group(tsk);
110 * If there is any task waiting for the group exit
111 * then notify it:
113 if (sig->notify_count > 0 && !--sig->notify_count)
114 wake_up_process(sig->group_exit_task);
116 if (tsk == sig->curr_target)
117 sig->curr_target = next_thread(tsk);
121 * Accumulate here the counters for all threads as they die. We could
122 * skip the group leader because it is the last user of signal_struct,
123 * but we want to avoid the race with thread_group_cputime() which can
124 * see the empty ->thread_head list.
126 task_cputime(tsk, &utime, &stime);
127 write_seqlock(&sig->stats_lock);
128 sig->utime += utime;
129 sig->stime += stime;
130 sig->gtime += task_gtime(tsk);
131 sig->min_flt += tsk->min_flt;
132 sig->maj_flt += tsk->maj_flt;
133 sig->nvcsw += tsk->nvcsw;
134 sig->nivcsw += tsk->nivcsw;
135 sig->inblock += task_io_get_inblock(tsk);
136 sig->oublock += task_io_get_oublock(tsk);
137 task_io_accounting_add(&sig->ioac, &tsk->ioac);
138 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141 write_sequnlock(&sig->stats_lock);
144 * Do this under ->siglock, we can race with another thread
145 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
147 flush_sigqueue(&tsk->pending);
148 tsk->sighand = NULL;
149 spin_unlock(&sighand->siglock);
151 __cleanup_sighand(sighand);
152 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
153 if (group_dead) {
154 flush_sigqueue(&sig->shared_pending);
155 tty_kref_put(tty);
159 static void delayed_put_task_struct(struct rcu_head *rhp)
161 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
163 perf_event_delayed_put(tsk);
164 trace_sched_process_free(tsk);
165 put_task_struct(tsk);
169 void release_task(struct task_struct *p)
171 struct task_struct *leader;
172 int zap_leader;
173 repeat:
174 /* don't need to get the RCU readlock here - the process is dead and
175 * can't be modifying its own credentials. But shut RCU-lockdep up */
176 rcu_read_lock();
177 atomic_dec(&__task_cred(p)->user->processes);
178 rcu_read_unlock();
180 proc_flush_task(p);
182 write_lock_irq(&tasklist_lock);
183 ptrace_release_task(p);
184 __exit_signal(p);
187 * If we are the last non-leader member of the thread
188 * group, and the leader is zombie, then notify the
189 * group leader's parent process. (if it wants notification.)
191 zap_leader = 0;
192 leader = p->group_leader;
193 if (leader != p && thread_group_empty(leader)
194 && leader->exit_state == EXIT_ZOMBIE) {
196 * If we were the last child thread and the leader has
197 * exited already, and the leader's parent ignores SIGCHLD,
198 * then we are the one who should release the leader.
200 zap_leader = do_notify_parent(leader, leader->exit_signal);
201 if (zap_leader)
202 leader->exit_state = EXIT_DEAD;
205 write_unlock_irq(&tasklist_lock);
206 release_thread(p);
207 call_rcu(&p->rcu, delayed_put_task_struct);
209 p = leader;
210 if (unlikely(zap_leader))
211 goto repeat;
215 * Determine if a process group is "orphaned", according to the POSIX
216 * definition in 2.2.2.52. Orphaned process groups are not to be affected
217 * by terminal-generated stop signals. Newly orphaned process groups are
218 * to receive a SIGHUP and a SIGCONT.
220 * "I ask you, have you ever known what it is to be an orphan?"
222 static int will_become_orphaned_pgrp(struct pid *pgrp,
223 struct task_struct *ignored_task)
225 struct task_struct *p;
227 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
228 if ((p == ignored_task) ||
229 (p->exit_state && thread_group_empty(p)) ||
230 is_global_init(p->real_parent))
231 continue;
233 if (task_pgrp(p->real_parent) != pgrp &&
234 task_session(p->real_parent) == task_session(p))
235 return 0;
236 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
238 return 1;
241 int is_current_pgrp_orphaned(void)
243 int retval;
245 read_lock(&tasklist_lock);
246 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
247 read_unlock(&tasklist_lock);
249 return retval;
252 static bool has_stopped_jobs(struct pid *pgrp)
254 struct task_struct *p;
256 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
257 if (p->signal->flags & SIGNAL_STOP_STOPPED)
258 return true;
259 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
261 return false;
265 * Check to see if any process groups have become orphaned as
266 * a result of our exiting, and if they have any stopped jobs,
267 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
269 static void
270 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
272 struct pid *pgrp = task_pgrp(tsk);
273 struct task_struct *ignored_task = tsk;
275 if (!parent)
276 /* exit: our father is in a different pgrp than
277 * we are and we were the only connection outside.
279 parent = tsk->real_parent;
280 else
281 /* reparent: our child is in a different pgrp than
282 * we are, and it was the only connection outside.
284 ignored_task = NULL;
286 if (task_pgrp(parent) != pgrp &&
287 task_session(parent) == task_session(tsk) &&
288 will_become_orphaned_pgrp(pgrp, ignored_task) &&
289 has_stopped_jobs(pgrp)) {
290 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
291 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
295 #ifdef CONFIG_MEMCG
297 * A task is exiting. If it owned this mm, find a new owner for the mm.
299 void mm_update_next_owner(struct mm_struct *mm)
301 struct task_struct *c, *g, *p = current;
303 retry:
305 * If the exiting or execing task is not the owner, it's
306 * someone else's problem.
308 if (mm->owner != p)
309 return;
311 * The current owner is exiting/execing and there are no other
312 * candidates. Do not leave the mm pointing to a possibly
313 * freed task structure.
315 if (atomic_read(&mm->mm_users) <= 1) {
316 mm->owner = NULL;
317 return;
320 read_lock(&tasklist_lock);
322 * Search in the children
324 list_for_each_entry(c, &p->children, sibling) {
325 if (c->mm == mm)
326 goto assign_new_owner;
330 * Search in the siblings
332 list_for_each_entry(c, &p->real_parent->children, sibling) {
333 if (c->mm == mm)
334 goto assign_new_owner;
338 * Search through everything else, we should not get here often.
340 for_each_process(g) {
341 if (g->flags & PF_KTHREAD)
342 continue;
343 for_each_thread(g, c) {
344 if (c->mm == mm)
345 goto assign_new_owner;
346 if (c->mm)
347 break;
350 read_unlock(&tasklist_lock);
352 * We found no owner yet mm_users > 1: this implies that we are
353 * most likely racing with swapoff (try_to_unuse()) or /proc or
354 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
356 mm->owner = NULL;
357 return;
359 assign_new_owner:
360 BUG_ON(c == p);
361 get_task_struct(c);
363 * The task_lock protects c->mm from changing.
364 * We always want mm->owner->mm == mm
366 task_lock(c);
368 * Delay read_unlock() till we have the task_lock()
369 * to ensure that c does not slip away underneath us
371 read_unlock(&tasklist_lock);
372 if (c->mm != mm) {
373 task_unlock(c);
374 put_task_struct(c);
375 goto retry;
377 mm->owner = c;
378 task_unlock(c);
379 put_task_struct(c);
381 #endif /* CONFIG_MEMCG */
384 * Turn us into a lazy TLB process if we
385 * aren't already..
387 static void exit_mm(struct task_struct *tsk)
389 struct mm_struct *mm = tsk->mm;
390 struct core_state *core_state;
392 mm_release(tsk, mm);
393 if (!mm)
394 return;
395 sync_mm_rss(mm);
397 * Serialize with any possible pending coredump.
398 * We must hold mmap_sem around checking core_state
399 * and clearing tsk->mm. The core-inducing thread
400 * will increment ->nr_threads for each thread in the
401 * group with ->mm != NULL.
403 down_read(&mm->mmap_sem);
404 core_state = mm->core_state;
405 if (core_state) {
406 struct core_thread self;
408 up_read(&mm->mmap_sem);
410 self.task = tsk;
411 self.next = xchg(&core_state->dumper.next, &self);
413 * Implies mb(), the result of xchg() must be visible
414 * to core_state->dumper.
416 if (atomic_dec_and_test(&core_state->nr_threads))
417 complete(&core_state->startup);
419 for (;;) {
420 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
421 if (!self.task) /* see coredump_finish() */
422 break;
423 freezable_schedule();
425 __set_task_state(tsk, TASK_RUNNING);
426 down_read(&mm->mmap_sem);
428 atomic_inc(&mm->mm_count);
429 BUG_ON(mm != tsk->active_mm);
430 /* more a memory barrier than a real lock */
431 task_lock(tsk);
432 tsk->mm = NULL;
433 up_read(&mm->mmap_sem);
434 enter_lazy_tlb(mm, current);
435 task_unlock(tsk);
436 mm_update_next_owner(mm);
437 mmput(mm);
438 if (test_thread_flag(TIF_MEMDIE))
439 exit_oom_victim();
442 static struct task_struct *find_alive_thread(struct task_struct *p)
444 struct task_struct *t;
446 for_each_thread(p, t) {
447 if (!(t->flags & PF_EXITING))
448 return t;
450 return NULL;
453 static struct task_struct *find_child_reaper(struct task_struct *father,
454 struct list_head *dead)
455 __releases(&tasklist_lock)
456 __acquires(&tasklist_lock)
458 struct pid_namespace *pid_ns = task_active_pid_ns(father);
459 struct task_struct *reaper = pid_ns->child_reaper;
460 struct task_struct *p, *n;
462 if (likely(reaper != father))
463 return reaper;
465 reaper = find_alive_thread(father);
466 if (reaper) {
467 pid_ns->child_reaper = reaper;
468 return reaper;
471 write_unlock_irq(&tasklist_lock);
472 if (unlikely(pid_ns == &init_pid_ns)) {
473 panic("Attempted to kill init! exitcode=0x%08x\n",
474 father->signal->group_exit_code ?: father->exit_code);
477 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
478 list_del_init(&p->ptrace_entry);
479 release_task(p);
482 zap_pid_ns_processes(pid_ns);
483 write_lock_irq(&tasklist_lock);
485 return father;
489 * When we die, we re-parent all our children, and try to:
490 * 1. give them to another thread in our thread group, if such a member exists
491 * 2. give it to the first ancestor process which prctl'd itself as a
492 * child_subreaper for its children (like a service manager)
493 * 3. give it to the init process (PID 1) in our pid namespace
495 static struct task_struct *find_new_reaper(struct task_struct *father,
496 struct task_struct *child_reaper)
498 struct task_struct *thread, *reaper;
500 thread = find_alive_thread(father);
501 if (thread)
502 return thread;
504 if (father->signal->has_child_subreaper) {
506 * Find the first ->is_child_subreaper ancestor in our pid_ns.
507 * We start from father to ensure we can not look into another
508 * namespace, this is safe because all its threads are dead.
510 for (reaper = father;
511 !same_thread_group(reaper, child_reaper);
512 reaper = reaper->real_parent) {
513 /* call_usermodehelper() descendants need this check */
514 if (reaper == &init_task)
515 break;
516 if (!reaper->signal->is_child_subreaper)
517 continue;
518 thread = find_alive_thread(reaper);
519 if (thread)
520 return thread;
524 return child_reaper;
528 * Any that need to be release_task'd are put on the @dead list.
530 static void reparent_leader(struct task_struct *father, struct task_struct *p,
531 struct list_head *dead)
533 if (unlikely(p->exit_state == EXIT_DEAD))
534 return;
536 /* We don't want people slaying init. */
537 p->exit_signal = SIGCHLD;
539 /* If it has exited notify the new parent about this child's death. */
540 if (!p->ptrace &&
541 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
542 if (do_notify_parent(p, p->exit_signal)) {
543 p->exit_state = EXIT_DEAD;
544 list_add(&p->ptrace_entry, dead);
548 kill_orphaned_pgrp(p, father);
552 * This does two things:
554 * A. Make init inherit all the child processes
555 * B. Check to see if any process groups have become orphaned
556 * as a result of our exiting, and if they have any stopped
557 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
559 static void forget_original_parent(struct task_struct *father,
560 struct list_head *dead)
562 struct task_struct *p, *t, *reaper;
564 if (unlikely(!list_empty(&father->ptraced)))
565 exit_ptrace(father, dead);
567 /* Can drop and reacquire tasklist_lock */
568 reaper = find_child_reaper(father, dead);
569 if (list_empty(&father->children))
570 return;
572 reaper = find_new_reaper(father, reaper);
573 list_for_each_entry(p, &father->children, sibling) {
574 for_each_thread(p, t) {
575 t->real_parent = reaper;
576 BUG_ON((!t->ptrace) != (t->parent == father));
577 if (likely(!t->ptrace))
578 t->parent = t->real_parent;
579 if (t->pdeath_signal)
580 group_send_sig_info(t->pdeath_signal,
581 SEND_SIG_NOINFO, t);
584 * If this is a threaded reparent there is no need to
585 * notify anyone anything has happened.
587 if (!same_thread_group(reaper, father))
588 reparent_leader(father, p, dead);
590 list_splice_tail_init(&father->children, &reaper->children);
594 * Send signals to all our closest relatives so that they know
595 * to properly mourn us..
597 static void exit_notify(struct task_struct *tsk, int group_dead)
599 bool autoreap;
600 struct task_struct *p, *n;
601 LIST_HEAD(dead);
603 write_lock_irq(&tasklist_lock);
604 forget_original_parent(tsk, &dead);
606 if (group_dead)
607 kill_orphaned_pgrp(tsk->group_leader, NULL);
609 if (unlikely(tsk->ptrace)) {
610 int sig = thread_group_leader(tsk) &&
611 thread_group_empty(tsk) &&
612 !ptrace_reparented(tsk) ?
613 tsk->exit_signal : SIGCHLD;
614 autoreap = do_notify_parent(tsk, sig);
615 } else if (thread_group_leader(tsk)) {
616 autoreap = thread_group_empty(tsk) &&
617 do_notify_parent(tsk, tsk->exit_signal);
618 } else {
619 autoreap = true;
622 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
623 if (tsk->exit_state == EXIT_DEAD)
624 list_add(&tsk->ptrace_entry, &dead);
626 /* mt-exec, de_thread() is waiting for group leader */
627 if (unlikely(tsk->signal->notify_count < 0))
628 wake_up_process(tsk->signal->group_exit_task);
629 write_unlock_irq(&tasklist_lock);
631 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
632 list_del_init(&p->ptrace_entry);
633 release_task(p);
637 #ifdef CONFIG_DEBUG_STACK_USAGE
638 static void check_stack_usage(void)
640 static DEFINE_SPINLOCK(low_water_lock);
641 static int lowest_to_date = THREAD_SIZE;
642 unsigned long free;
644 free = stack_not_used(current);
646 if (free >= lowest_to_date)
647 return;
649 spin_lock(&low_water_lock);
650 if (free < lowest_to_date) {
651 pr_warn("%s (%d) used greatest stack depth: %lu bytes left\n",
652 current->comm, task_pid_nr(current), free);
653 lowest_to_date = free;
655 spin_unlock(&low_water_lock);
657 #else
658 static inline void check_stack_usage(void) {}
659 #endif
661 void do_exit(long code)
663 struct task_struct *tsk = current;
664 int group_dead;
665 TASKS_RCU(int tasks_rcu_i);
667 profile_task_exit(tsk);
669 WARN_ON(blk_needs_flush_plug(tsk));
671 if (unlikely(in_interrupt()))
672 panic("Aiee, killing interrupt handler!");
673 if (unlikely(!tsk->pid))
674 panic("Attempted to kill the idle task!");
677 * If do_exit is called because this processes oopsed, it's possible
678 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
679 * continuing. Amongst other possible reasons, this is to prevent
680 * mm_release()->clear_child_tid() from writing to a user-controlled
681 * kernel address.
683 set_fs(USER_DS);
685 ptrace_event(PTRACE_EVENT_EXIT, code);
687 validate_creds_for_do_exit(tsk);
690 * We're taking recursive faults here in do_exit. Safest is to just
691 * leave this task alone and wait for reboot.
693 if (unlikely(tsk->flags & PF_EXITING)) {
694 pr_alert("Fixing recursive fault but reboot is needed!\n");
696 * We can do this unlocked here. The futex code uses
697 * this flag just to verify whether the pi state
698 * cleanup has been done or not. In the worst case it
699 * loops once more. We pretend that the cleanup was
700 * done as there is no way to return. Either the
701 * OWNER_DIED bit is set by now or we push the blocked
702 * task into the wait for ever nirwana as well.
704 tsk->flags |= PF_EXITPIDONE;
705 set_current_state(TASK_UNINTERRUPTIBLE);
706 schedule();
709 exit_signals(tsk); /* sets PF_EXITING */
711 * tsk->flags are checked in the futex code to protect against
712 * an exiting task cleaning up the robust pi futexes.
714 smp_mb();
715 raw_spin_unlock_wait(&tsk->pi_lock);
717 if (unlikely(in_atomic())) {
718 pr_info("note: %s[%d] exited with preempt_count %d\n",
719 current->comm, task_pid_nr(current),
720 preempt_count());
721 preempt_count_set(PREEMPT_ENABLED);
724 /* sync mm's RSS info before statistics gathering */
725 if (tsk->mm)
726 sync_mm_rss(tsk->mm);
727 acct_update_integrals(tsk);
728 group_dead = atomic_dec_and_test(&tsk->signal->live);
729 if (group_dead) {
730 hrtimer_cancel(&tsk->signal->real_timer);
731 exit_itimers(tsk->signal);
732 if (tsk->mm)
733 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
735 acct_collect(code, group_dead);
736 if (group_dead)
737 tty_audit_exit();
738 audit_free(tsk);
740 tsk->exit_code = code;
741 taskstats_exit(tsk, group_dead);
743 exit_mm(tsk);
745 if (group_dead)
746 acct_process();
747 trace_sched_process_exit(tsk);
749 exit_sem(tsk);
750 exit_shm(tsk);
751 exit_files(tsk);
752 exit_fs(tsk);
753 if (group_dead)
754 disassociate_ctty(1);
755 exit_task_namespaces(tsk);
756 exit_task_work(tsk);
757 exit_thread();
760 * Flush inherited counters to the parent - before the parent
761 * gets woken up by child-exit notifications.
763 * because of cgroup mode, must be called before cgroup_exit()
765 perf_event_exit_task(tsk);
767 cgroup_exit(tsk);
770 * FIXME: do that only when needed, using sched_exit tracepoint
772 flush_ptrace_hw_breakpoint(tsk);
774 TASKS_RCU(preempt_disable());
775 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
776 TASKS_RCU(preempt_enable());
777 exit_notify(tsk, group_dead);
778 proc_exit_connector(tsk);
779 #ifdef CONFIG_NUMA
780 task_lock(tsk);
781 mpol_put(tsk->mempolicy);
782 tsk->mempolicy = NULL;
783 task_unlock(tsk);
784 #endif
785 #ifdef CONFIG_FUTEX
786 if (unlikely(current->pi_state_cache))
787 kfree(current->pi_state_cache);
788 #endif
790 * Make sure we are holding no locks:
792 debug_check_no_locks_held();
794 * We can do this unlocked here. The futex code uses this flag
795 * just to verify whether the pi state cleanup has been done
796 * or not. In the worst case it loops once more.
798 tsk->flags |= PF_EXITPIDONE;
800 if (tsk->io_context)
801 exit_io_context(tsk);
803 if (tsk->splice_pipe)
804 free_pipe_info(tsk->splice_pipe);
806 if (tsk->task_frag.page)
807 put_page(tsk->task_frag.page);
809 validate_creds_for_do_exit(tsk);
811 check_stack_usage();
812 preempt_disable();
813 if (tsk->nr_dirtied)
814 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
815 exit_rcu();
816 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
819 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
820 * when the following two conditions become true.
821 * - There is race condition of mmap_sem (It is acquired by
822 * exit_mm()), and
823 * - SMI occurs before setting TASK_RUNINNG.
824 * (or hypervisor of virtual machine switches to other guest)
825 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
827 * To avoid it, we have to wait for releasing tsk->pi_lock which
828 * is held by try_to_wake_up()
830 smp_mb();
831 raw_spin_unlock_wait(&tsk->pi_lock);
833 /* causes final put_task_struct in finish_task_switch(). */
834 tsk->state = TASK_DEAD;
835 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
836 schedule();
837 BUG();
838 /* Avoid "noreturn function does return". */
839 for (;;)
840 cpu_relax(); /* For when BUG is null */
842 EXPORT_SYMBOL_GPL(do_exit);
844 void complete_and_exit(struct completion *comp, long code)
846 if (comp)
847 complete(comp);
849 do_exit(code);
851 EXPORT_SYMBOL(complete_and_exit);
853 SYSCALL_DEFINE1(exit, int, error_code)
855 do_exit((error_code&0xff)<<8);
859 * Take down every thread in the group. This is called by fatal signals
860 * as well as by sys_exit_group (below).
862 void
863 do_group_exit(int exit_code)
865 struct signal_struct *sig = current->signal;
867 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
869 if (signal_group_exit(sig))
870 exit_code = sig->group_exit_code;
871 else if (!thread_group_empty(current)) {
872 struct sighand_struct *const sighand = current->sighand;
874 spin_lock_irq(&sighand->siglock);
875 if (signal_group_exit(sig))
876 /* Another thread got here before we took the lock. */
877 exit_code = sig->group_exit_code;
878 else {
879 sig->group_exit_code = exit_code;
880 sig->flags = SIGNAL_GROUP_EXIT;
881 zap_other_threads(current);
883 spin_unlock_irq(&sighand->siglock);
886 do_exit(exit_code);
887 /* NOTREACHED */
891 * this kills every thread in the thread group. Note that any externally
892 * wait4()-ing process will get the correct exit code - even if this
893 * thread is not the thread group leader.
895 SYSCALL_DEFINE1(exit_group, int, error_code)
897 do_group_exit((error_code & 0xff) << 8);
898 /* NOTREACHED */
899 return 0;
902 struct wait_opts {
903 enum pid_type wo_type;
904 int wo_flags;
905 struct pid *wo_pid;
907 struct siginfo __user *wo_info;
908 int __user *wo_stat;
909 struct rusage __user *wo_rusage;
911 wait_queue_t child_wait;
912 int notask_error;
915 static inline
916 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
918 if (type != PIDTYPE_PID)
919 task = task->group_leader;
920 return task->pids[type].pid;
923 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
925 return wo->wo_type == PIDTYPE_MAX ||
926 task_pid_type(p, wo->wo_type) == wo->wo_pid;
929 static int
930 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
932 if (!eligible_pid(wo, p))
933 return 0;
936 * Wait for all children (clone and not) if __WALL is set or
937 * if it is traced by us.
939 if (ptrace || (wo->wo_flags & __WALL))
940 return 1;
943 * Otherwise, wait for clone children *only* if __WCLONE is set;
944 * otherwise, wait for non-clone children *only*.
946 * Note: a "clone" child here is one that reports to its parent
947 * using a signal other than SIGCHLD, or a non-leader thread which
948 * we can only see if it is traced by us.
950 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
951 return 0;
953 return 1;
956 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
957 pid_t pid, uid_t uid, int why, int status)
959 struct siginfo __user *infop;
960 int retval = wo->wo_rusage
961 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
963 put_task_struct(p);
964 infop = wo->wo_info;
965 if (infop) {
966 if (!retval)
967 retval = put_user(SIGCHLD, &infop->si_signo);
968 if (!retval)
969 retval = put_user(0, &infop->si_errno);
970 if (!retval)
971 retval = put_user((short)why, &infop->si_code);
972 if (!retval)
973 retval = put_user(pid, &infop->si_pid);
974 if (!retval)
975 retval = put_user(uid, &infop->si_uid);
976 if (!retval)
977 retval = put_user(status, &infop->si_status);
979 if (!retval)
980 retval = pid;
981 return retval;
985 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
986 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
987 * the lock and this task is uninteresting. If we return nonzero, we have
988 * released the lock and the system call should return.
990 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
992 int state, retval, status;
993 pid_t pid = task_pid_vnr(p);
994 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
995 struct siginfo __user *infop;
997 if (!likely(wo->wo_flags & WEXITED))
998 return 0;
1000 if (unlikely(wo->wo_flags & WNOWAIT)) {
1001 int exit_code = p->exit_code;
1002 int why;
1004 get_task_struct(p);
1005 read_unlock(&tasklist_lock);
1006 sched_annotate_sleep();
1008 if ((exit_code & 0x7f) == 0) {
1009 why = CLD_EXITED;
1010 status = exit_code >> 8;
1011 } else {
1012 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1013 status = exit_code & 0x7f;
1015 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1018 * Move the task's state to DEAD/TRACE, only one thread can do this.
1020 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1021 EXIT_TRACE : EXIT_DEAD;
1022 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1023 return 0;
1025 * We own this thread, nobody else can reap it.
1027 read_unlock(&tasklist_lock);
1028 sched_annotate_sleep();
1031 * Check thread_group_leader() to exclude the traced sub-threads.
1033 if (state == EXIT_DEAD && thread_group_leader(p)) {
1034 struct signal_struct *sig = p->signal;
1035 struct signal_struct *psig = current->signal;
1036 unsigned long maxrss;
1037 cputime_t tgutime, tgstime;
1040 * The resource counters for the group leader are in its
1041 * own task_struct. Those for dead threads in the group
1042 * are in its signal_struct, as are those for the child
1043 * processes it has previously reaped. All these
1044 * accumulate in the parent's signal_struct c* fields.
1046 * We don't bother to take a lock here to protect these
1047 * p->signal fields because the whole thread group is dead
1048 * and nobody can change them.
1050 * psig->stats_lock also protects us from our sub-theads
1051 * which can reap other children at the same time. Until
1052 * we change k_getrusage()-like users to rely on this lock
1053 * we have to take ->siglock as well.
1055 * We use thread_group_cputime_adjusted() to get times for
1056 * the thread group, which consolidates times for all threads
1057 * in the group including the group leader.
1059 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1060 spin_lock_irq(&current->sighand->siglock);
1061 write_seqlock(&psig->stats_lock);
1062 psig->cutime += tgutime + sig->cutime;
1063 psig->cstime += tgstime + sig->cstime;
1064 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1065 psig->cmin_flt +=
1066 p->min_flt + sig->min_flt + sig->cmin_flt;
1067 psig->cmaj_flt +=
1068 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1069 psig->cnvcsw +=
1070 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1071 psig->cnivcsw +=
1072 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1073 psig->cinblock +=
1074 task_io_get_inblock(p) +
1075 sig->inblock + sig->cinblock;
1076 psig->coublock +=
1077 task_io_get_oublock(p) +
1078 sig->oublock + sig->coublock;
1079 maxrss = max(sig->maxrss, sig->cmaxrss);
1080 if (psig->cmaxrss < maxrss)
1081 psig->cmaxrss = maxrss;
1082 task_io_accounting_add(&psig->ioac, &p->ioac);
1083 task_io_accounting_add(&psig->ioac, &sig->ioac);
1084 write_sequnlock(&psig->stats_lock);
1085 spin_unlock_irq(&current->sighand->siglock);
1088 retval = wo->wo_rusage
1089 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1090 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1091 ? p->signal->group_exit_code : p->exit_code;
1092 if (!retval && wo->wo_stat)
1093 retval = put_user(status, wo->wo_stat);
1095 infop = wo->wo_info;
1096 if (!retval && infop)
1097 retval = put_user(SIGCHLD, &infop->si_signo);
1098 if (!retval && infop)
1099 retval = put_user(0, &infop->si_errno);
1100 if (!retval && infop) {
1101 int why;
1103 if ((status & 0x7f) == 0) {
1104 why = CLD_EXITED;
1105 status >>= 8;
1106 } else {
1107 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1108 status &= 0x7f;
1110 retval = put_user((short)why, &infop->si_code);
1111 if (!retval)
1112 retval = put_user(status, &infop->si_status);
1114 if (!retval && infop)
1115 retval = put_user(pid, &infop->si_pid);
1116 if (!retval && infop)
1117 retval = put_user(uid, &infop->si_uid);
1118 if (!retval)
1119 retval = pid;
1121 if (state == EXIT_TRACE) {
1122 write_lock_irq(&tasklist_lock);
1123 /* We dropped tasklist, ptracer could die and untrace */
1124 ptrace_unlink(p);
1126 /* If parent wants a zombie, don't release it now */
1127 state = EXIT_ZOMBIE;
1128 if (do_notify_parent(p, p->exit_signal))
1129 state = EXIT_DEAD;
1130 p->exit_state = state;
1131 write_unlock_irq(&tasklist_lock);
1133 if (state == EXIT_DEAD)
1134 release_task(p);
1136 return retval;
1139 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1141 if (ptrace) {
1142 if (task_is_stopped_or_traced(p) &&
1143 !(p->jobctl & JOBCTL_LISTENING))
1144 return &p->exit_code;
1145 } else {
1146 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1147 return &p->signal->group_exit_code;
1149 return NULL;
1153 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1154 * @wo: wait options
1155 * @ptrace: is the wait for ptrace
1156 * @p: task to wait for
1158 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1160 * CONTEXT:
1161 * read_lock(&tasklist_lock), which is released if return value is
1162 * non-zero. Also, grabs and releases @p->sighand->siglock.
1164 * RETURNS:
1165 * 0 if wait condition didn't exist and search for other wait conditions
1166 * should continue. Non-zero return, -errno on failure and @p's pid on
1167 * success, implies that tasklist_lock is released and wait condition
1168 * search should terminate.
1170 static int wait_task_stopped(struct wait_opts *wo,
1171 int ptrace, struct task_struct *p)
1173 struct siginfo __user *infop;
1174 int retval, exit_code, *p_code, why;
1175 uid_t uid = 0; /* unneeded, required by compiler */
1176 pid_t pid;
1179 * Traditionally we see ptrace'd stopped tasks regardless of options.
1181 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1182 return 0;
1184 if (!task_stopped_code(p, ptrace))
1185 return 0;
1187 exit_code = 0;
1188 spin_lock_irq(&p->sighand->siglock);
1190 p_code = task_stopped_code(p, ptrace);
1191 if (unlikely(!p_code))
1192 goto unlock_sig;
1194 exit_code = *p_code;
1195 if (!exit_code)
1196 goto unlock_sig;
1198 if (!unlikely(wo->wo_flags & WNOWAIT))
1199 *p_code = 0;
1201 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1202 unlock_sig:
1203 spin_unlock_irq(&p->sighand->siglock);
1204 if (!exit_code)
1205 return 0;
1208 * Now we are pretty sure this task is interesting.
1209 * Make sure it doesn't get reaped out from under us while we
1210 * give up the lock and then examine it below. We don't want to
1211 * keep holding onto the tasklist_lock while we call getrusage and
1212 * possibly take page faults for user memory.
1214 get_task_struct(p);
1215 pid = task_pid_vnr(p);
1216 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1217 read_unlock(&tasklist_lock);
1218 sched_annotate_sleep();
1220 if (unlikely(wo->wo_flags & WNOWAIT))
1221 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1223 retval = wo->wo_rusage
1224 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1225 if (!retval && wo->wo_stat)
1226 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1228 infop = wo->wo_info;
1229 if (!retval && infop)
1230 retval = put_user(SIGCHLD, &infop->si_signo);
1231 if (!retval && infop)
1232 retval = put_user(0, &infop->si_errno);
1233 if (!retval && infop)
1234 retval = put_user((short)why, &infop->si_code);
1235 if (!retval && infop)
1236 retval = put_user(exit_code, &infop->si_status);
1237 if (!retval && infop)
1238 retval = put_user(pid, &infop->si_pid);
1239 if (!retval && infop)
1240 retval = put_user(uid, &infop->si_uid);
1241 if (!retval)
1242 retval = pid;
1243 put_task_struct(p);
1245 BUG_ON(!retval);
1246 return retval;
1250 * Handle do_wait work for one task in a live, non-stopped state.
1251 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1252 * the lock and this task is uninteresting. If we return nonzero, we have
1253 * released the lock and the system call should return.
1255 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1257 int retval;
1258 pid_t pid;
1259 uid_t uid;
1261 if (!unlikely(wo->wo_flags & WCONTINUED))
1262 return 0;
1264 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1265 return 0;
1267 spin_lock_irq(&p->sighand->siglock);
1268 /* Re-check with the lock held. */
1269 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1270 spin_unlock_irq(&p->sighand->siglock);
1271 return 0;
1273 if (!unlikely(wo->wo_flags & WNOWAIT))
1274 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1275 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1276 spin_unlock_irq(&p->sighand->siglock);
1278 pid = task_pid_vnr(p);
1279 get_task_struct(p);
1280 read_unlock(&tasklist_lock);
1281 sched_annotate_sleep();
1283 if (!wo->wo_info) {
1284 retval = wo->wo_rusage
1285 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1286 put_task_struct(p);
1287 if (!retval && wo->wo_stat)
1288 retval = put_user(0xffff, wo->wo_stat);
1289 if (!retval)
1290 retval = pid;
1291 } else {
1292 retval = wait_noreap_copyout(wo, p, pid, uid,
1293 CLD_CONTINUED, SIGCONT);
1294 BUG_ON(retval == 0);
1297 return retval;
1301 * Consider @p for a wait by @parent.
1303 * -ECHILD should be in ->notask_error before the first call.
1304 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1305 * Returns zero if the search for a child should continue;
1306 * then ->notask_error is 0 if @p is an eligible child,
1307 * or another error from security_task_wait(), or still -ECHILD.
1309 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1310 struct task_struct *p)
1313 * We can race with wait_task_zombie() from another thread.
1314 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1315 * can't confuse the checks below.
1317 int exit_state = ACCESS_ONCE(p->exit_state);
1318 int ret;
1320 if (unlikely(exit_state == EXIT_DEAD))
1321 return 0;
1323 ret = eligible_child(wo, ptrace, p);
1324 if (!ret)
1325 return ret;
1327 ret = security_task_wait(p);
1328 if (unlikely(ret < 0)) {
1330 * If we have not yet seen any eligible child,
1331 * then let this error code replace -ECHILD.
1332 * A permission error will give the user a clue
1333 * to look for security policy problems, rather
1334 * than for mysterious wait bugs.
1336 if (wo->notask_error)
1337 wo->notask_error = ret;
1338 return 0;
1341 if (unlikely(exit_state == EXIT_TRACE)) {
1343 * ptrace == 0 means we are the natural parent. In this case
1344 * we should clear notask_error, debugger will notify us.
1346 if (likely(!ptrace))
1347 wo->notask_error = 0;
1348 return 0;
1351 if (likely(!ptrace) && unlikely(p->ptrace)) {
1353 * If it is traced by its real parent's group, just pretend
1354 * the caller is ptrace_do_wait() and reap this child if it
1355 * is zombie.
1357 * This also hides group stop state from real parent; otherwise
1358 * a single stop can be reported twice as group and ptrace stop.
1359 * If a ptracer wants to distinguish these two events for its
1360 * own children it should create a separate process which takes
1361 * the role of real parent.
1363 if (!ptrace_reparented(p))
1364 ptrace = 1;
1367 /* slay zombie? */
1368 if (exit_state == EXIT_ZOMBIE) {
1369 /* we don't reap group leaders with subthreads */
1370 if (!delay_group_leader(p)) {
1372 * A zombie ptracee is only visible to its ptracer.
1373 * Notification and reaping will be cascaded to the
1374 * real parent when the ptracer detaches.
1376 if (unlikely(ptrace) || likely(!p->ptrace))
1377 return wait_task_zombie(wo, p);
1381 * Allow access to stopped/continued state via zombie by
1382 * falling through. Clearing of notask_error is complex.
1384 * When !@ptrace:
1386 * If WEXITED is set, notask_error should naturally be
1387 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1388 * so, if there are live subthreads, there are events to
1389 * wait for. If all subthreads are dead, it's still safe
1390 * to clear - this function will be called again in finite
1391 * amount time once all the subthreads are released and
1392 * will then return without clearing.
1394 * When @ptrace:
1396 * Stopped state is per-task and thus can't change once the
1397 * target task dies. Only continued and exited can happen.
1398 * Clear notask_error if WCONTINUED | WEXITED.
1400 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1401 wo->notask_error = 0;
1402 } else {
1404 * @p is alive and it's gonna stop, continue or exit, so
1405 * there always is something to wait for.
1407 wo->notask_error = 0;
1411 * Wait for stopped. Depending on @ptrace, different stopped state
1412 * is used and the two don't interact with each other.
1414 ret = wait_task_stopped(wo, ptrace, p);
1415 if (ret)
1416 return ret;
1419 * Wait for continued. There's only one continued state and the
1420 * ptracer can consume it which can confuse the real parent. Don't
1421 * use WCONTINUED from ptracer. You don't need or want it.
1423 return wait_task_continued(wo, p);
1427 * Do the work of do_wait() for one thread in the group, @tsk.
1429 * -ECHILD should be in ->notask_error before the first call.
1430 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1431 * Returns zero if the search for a child should continue; then
1432 * ->notask_error is 0 if there were any eligible children,
1433 * or another error from security_task_wait(), or still -ECHILD.
1435 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1437 struct task_struct *p;
1439 list_for_each_entry(p, &tsk->children, sibling) {
1440 int ret = wait_consider_task(wo, 0, p);
1442 if (ret)
1443 return ret;
1446 return 0;
1449 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1451 struct task_struct *p;
1453 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1454 int ret = wait_consider_task(wo, 1, p);
1456 if (ret)
1457 return ret;
1460 return 0;
1463 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1464 int sync, void *key)
1466 struct wait_opts *wo = container_of(wait, struct wait_opts,
1467 child_wait);
1468 struct task_struct *p = key;
1470 if (!eligible_pid(wo, p))
1471 return 0;
1473 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1474 return 0;
1476 return default_wake_function(wait, mode, sync, key);
1479 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1481 __wake_up_sync_key(&parent->signal->wait_chldexit,
1482 TASK_INTERRUPTIBLE, 1, p);
1485 static long do_wait(struct wait_opts *wo)
1487 struct task_struct *tsk;
1488 int retval;
1490 trace_sched_process_wait(wo->wo_pid);
1492 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1493 wo->child_wait.private = current;
1494 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1495 repeat:
1497 * If there is nothing that can match our criteria, just get out.
1498 * We will clear ->notask_error to zero if we see any child that
1499 * might later match our criteria, even if we are not able to reap
1500 * it yet.
1502 wo->notask_error = -ECHILD;
1503 if ((wo->wo_type < PIDTYPE_MAX) &&
1504 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1505 goto notask;
1507 set_current_state(TASK_INTERRUPTIBLE);
1508 read_lock(&tasklist_lock);
1509 tsk = current;
1510 do {
1511 retval = do_wait_thread(wo, tsk);
1512 if (retval)
1513 goto end;
1515 retval = ptrace_do_wait(wo, tsk);
1516 if (retval)
1517 goto end;
1519 if (wo->wo_flags & __WNOTHREAD)
1520 break;
1521 } while_each_thread(current, tsk);
1522 read_unlock(&tasklist_lock);
1524 notask:
1525 retval = wo->notask_error;
1526 if (!retval && !(wo->wo_flags & WNOHANG)) {
1527 retval = -ERESTARTSYS;
1528 if (!signal_pending(current)) {
1529 schedule();
1530 goto repeat;
1533 end:
1534 __set_current_state(TASK_RUNNING);
1535 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1536 return retval;
1539 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1540 infop, int, options, struct rusage __user *, ru)
1542 struct wait_opts wo;
1543 struct pid *pid = NULL;
1544 enum pid_type type;
1545 long ret;
1547 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1548 return -EINVAL;
1549 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1550 return -EINVAL;
1552 switch (which) {
1553 case P_ALL:
1554 type = PIDTYPE_MAX;
1555 break;
1556 case P_PID:
1557 type = PIDTYPE_PID;
1558 if (upid <= 0)
1559 return -EINVAL;
1560 break;
1561 case P_PGID:
1562 type = PIDTYPE_PGID;
1563 if (upid <= 0)
1564 return -EINVAL;
1565 break;
1566 default:
1567 return -EINVAL;
1570 if (type < PIDTYPE_MAX)
1571 pid = find_get_pid(upid);
1573 wo.wo_type = type;
1574 wo.wo_pid = pid;
1575 wo.wo_flags = options;
1576 wo.wo_info = infop;
1577 wo.wo_stat = NULL;
1578 wo.wo_rusage = ru;
1579 ret = do_wait(&wo);
1581 if (ret > 0) {
1582 ret = 0;
1583 } else if (infop) {
1585 * For a WNOHANG return, clear out all the fields
1586 * we would set so the user can easily tell the
1587 * difference.
1589 if (!ret)
1590 ret = put_user(0, &infop->si_signo);
1591 if (!ret)
1592 ret = put_user(0, &infop->si_errno);
1593 if (!ret)
1594 ret = put_user(0, &infop->si_code);
1595 if (!ret)
1596 ret = put_user(0, &infop->si_pid);
1597 if (!ret)
1598 ret = put_user(0, &infop->si_uid);
1599 if (!ret)
1600 ret = put_user(0, &infop->si_status);
1603 put_pid(pid);
1604 return ret;
1607 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1608 int, options, struct rusage __user *, ru)
1610 struct wait_opts wo;
1611 struct pid *pid = NULL;
1612 enum pid_type type;
1613 long ret;
1615 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1616 __WNOTHREAD|__WCLONE|__WALL))
1617 return -EINVAL;
1619 /* -INT_MIN is not defined */
1620 if (upid == INT_MIN)
1621 return -ESRCH;
1623 if (upid == -1)
1624 type = PIDTYPE_MAX;
1625 else if (upid < 0) {
1626 type = PIDTYPE_PGID;
1627 pid = find_get_pid(-upid);
1628 } else if (upid == 0) {
1629 type = PIDTYPE_PGID;
1630 pid = get_task_pid(current, PIDTYPE_PGID);
1631 } else /* upid > 0 */ {
1632 type = PIDTYPE_PID;
1633 pid = find_get_pid(upid);
1636 wo.wo_type = type;
1637 wo.wo_pid = pid;
1638 wo.wo_flags = options | WEXITED;
1639 wo.wo_info = NULL;
1640 wo.wo_stat = stat_addr;
1641 wo.wo_rusage = ru;
1642 ret = do_wait(&wo);
1643 put_pid(pid);
1645 return ret;
1648 #ifdef __ARCH_WANT_SYS_WAITPID
1651 * sys_waitpid() remains for compatibility. waitpid() should be
1652 * implemented by calling sys_wait4() from libc.a.
1654 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1656 return sys_wait4(pid, stat_addr, options, NULL);
1659 #endif